WO2014129639A1 - Laser welding apparatus - Google Patents

Laser welding apparatus Download PDF

Info

Publication number
WO2014129639A1
WO2014129639A1 PCT/JP2014/054392 JP2014054392W WO2014129639A1 WO 2014129639 A1 WO2014129639 A1 WO 2014129639A1 JP 2014054392 W JP2014054392 W JP 2014054392W WO 2014129639 A1 WO2014129639 A1 WO 2014129639A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
output
laser light
laser beam
welding
Prior art date
Application number
PCT/JP2014/054392
Other languages
French (fr)
Japanese (ja)
Inventor
三郎 八木
繁松 孝
佐藤 雅也
伸弥 児嶋
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to JP2014512570A priority Critical patent/JP5657181B1/en
Publication of WO2014129639A1 publication Critical patent/WO2014129639A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/0344Observing the speed of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/20Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/16Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending

Definitions

  • the present invention relates to a laser welding apparatus for welding a butt interface of workpieces by laser irradiation.
  • Wire harnesses are often used for in-vehicle wiring.
  • the wire harness is a set of a plurality of covered electric wires in a collective part according to the specifications of in-vehicle wiring.
  • a terminal for connection (hereinafter referred to as a crimp terminal) is crimped to the end of each covered electric wire.
  • a crimp terminal When connecting the crimp terminal to the wire terminal of the wire harness, peel off the insulation coating layer of the wire terminal to expose the core wire, and crimp the core wire barrel of the crimp terminal to the core wire exposed part to crimp the wire terminal. Electrical connection with the terminal is made.
  • connection part of a crimp terminal and an electric wire terminal is resin-sealed in order to prevent the corrosion of a core wire by the penetration
  • the crimping part (wire connection part) of the crimping terminal is bent into a cylindrical shape by press molding, and the entire butt interface at both ends of the plate material formed in the cylindrically bent part is joined by laser welding to seal the crimping part. Attempts have been made to structure.
  • the joint strength of the welded part by laser welding depends on the output of the irradiated laser beam and the sweep speed.
  • the weld strength against crimping becomes insufficient. This causes cracks in the welded portion when the crimp terminal is crimped to the wire end.
  • the problem to be solved by the present invention is to monitor the abnormality of the light source and optical system of the laser beam irradiated to the welded portion with a simple configuration, and to perform laser welding of the butt interface of the workpiece with high quality.
  • the object is to provide a laser welding apparatus.
  • a laser welding apparatus of the present invention is a laser welding apparatus that welds a butt interface of a workpiece by laser irradiation while sequentially supplying a workpiece having a butt interface to a welding position.
  • a laser beam sweep irradiation means for irradiating the laser beam outputted from the laser light source while sweeping along the abutting interface; and the laser light source for keeping the output of the laser beam emitted to the workpiece constant.
  • Laser output control means for controlling the output of the laser beam, and a weld bead for measuring the width dimension of the weld bead (weld mark) formed along the butt interface (hereinafter, “width dimension” is referred to as “bead width”). Width measuring means.
  • the laser welding apparatus configured as described above can guarantee the quality of the workpiece after welding by measuring the width dimension of the weld bead formed along the butt interface.
  • the reason why quality can be assured by measuring the bead width is that the bead width has a corresponding relationship with the amount of heat input by welding. For example, if the laser output, sweep speed, focal position, terminal dimensional accuracy before welding, and terminal positioning accuracy before welding do not change, the welding quality is stable and the bead width at that time is also reproducible. Therefore, since the bead width when the welding quality is good is reproduced without change, the laser welding apparatus of the present invention confirms this reproducibility, and thereby the total number of workpieces welded by the laser welding apparatus. Quality inspection can be performed.
  • the focus position and product positioning accuracy can be secured with a clamp jig, and the terminal dimension accuracy before welding is basically a press-fed product, so there is basically no short-term change.
  • the output of the laser can be monitored by receiving light on the PD. When the bead width deviates from the predetermined width under these conditions, the laser welding apparatus of the present invention can determine that there is an abnormality in the laser light source or the optical system.
  • laser light sweep speed control means for controlling the sweep speed of the laser light by the laser light sweep irradiation means based on the measurement value by the weld bead width measurement means.
  • the laser welding apparatus configured as described above keeps the output of the laser beam irradiated to the workpiece constant and performs irradiation while sweeping the laser beam along the butt interface of the workpiece.
  • the butt interface of the workpiece is welded, and the bead width of the weld bead formed at the butt interface after the welding is measured. Based on the measured value, the laser beam sweep speed during the subsequent welding is controlled.
  • the output of the laser beam irradiated to the workpiece is constant, it is possible to determine whether the welding quality is good or bad by using the bead width as a guide. Therefore, welding is performed with the laser beam irradiation output to the work piece kept constant within an appropriate range, the bead width of the weld bead formed at the butt interface after the welding is measured, and based on the measured value Then, by controlling the laser beam sweep speed during the subsequent welding, the laser beam sweep speed is controlled to an appropriate value in relation to the irradiation output that is kept constant within an appropriate range.
  • the butt interface of the workpiece can be laser welded with high quality.
  • the laser beam sweep speed control means is configured to correlate the laser beam sweep speed and the bead width of the weld bead under a condition in which the output of the laser beam irradiated onto the workpiece is constant.
  • the above correlation data indicates that the output of the laser beam irradiated to the workpiece is constant, welding is performed under a plurality of conditions with different sweep speeds, and the bead width of the weld bead of the weld where the weld quality is good.
  • the laser beam sweep speed is recorded, and a curve (see FIG. 3) representing the correlation between the two is obtained from the recorded result (actual measurement value), and this is digitized. Therefore, if the output of the laser beam irradiated to the workpiece is constant, the sweep speed target that improves the welding quality is obtained by obtaining the value of the sweep speed corresponding to the target value of the bead width from this correlation data. The value can be determined. And good welding quality is realizable by controlling a sweep speed so that a bead width may become a target value.
  • the laser output control means includes a laser light branching means for branching a part of the laser light outputted from the laser light source, and an output of the laser light branched by the laser light branching means. And a laser beam output monitoring unit for detecting, and it is preferable to control the output of the laser light source based on the output of the laser beam detected by the laser beam output monitoring unit.
  • the laser light output from the laser light source is controlled by branching a part of the laser light output from the laser light source, detecting the output, and controlling the laser light source so that the detected value is constant. Can be kept constant.
  • the weld bead width measuring means measures the bead width of the weld bead based on an imaging means for imaging the workpiece and an image captured by the imaging means. It is desirable to have the image processing means. According to this configuration, since the bead width of the weld bead can be measured from the appearance of the actual workpiece subjected to the welding process, the laser beam sweep speed is set to an appropriate value based on the actual welding result. Can be controlled.
  • the laser welding apparatus of the present invention can monitor the abnormality of the laser light source and the optical system irradiated to the butt interface of the workpiece with a simple configuration, the butt interface of the workpiece is laser-welded with high quality. be able to.
  • the crimp terminal 80 has (a) a belt-shaped metal plate 81 that is fed forward at a constant pitch in the longitudinal direction (direction of arrow A), and (b) the carrier portion 82 and the unfolded state. (C) A plate material that can be formed into a crimping portion 85 by integrally molding the box-shaped connector portion 84 and the cylindrical crimping portion 85 by punching and bending the terminal material 83. It is manufactured through a series of processes in which the butt interface 86 at both ends and the overlapping portion 100 are joined by laser welding.
  • the abutting interface refers to a portion where one end surface in the bending direction of the plate material constituting the crimping portion and the other end surface are abutted and brought into contact with each other.
  • FIG. 1 is a system configuration diagram showing a first embodiment of a laser welding apparatus of the present invention.
  • the laser welding apparatus 10 is an apparatus that sequentially supplies unwelded crimp terminals 87 as workpieces to a welding position P and welds a butt interface 86 of a crimping portion 85 of the crimp terminals 87 by laser irradiation.
  • the crimp terminals 87 are sequentially fed to the welding position P in the form of chain terminals 88 that are cantilevered by the carrier portion 82 at regular intervals, and are subjected to welding by laser irradiation. Is done.
  • the laser welding apparatus 10 includes a laser light source 20, a laser irradiation optical system 30, a feeding device 40, a clamping device 50, a laser output control system 60, a weld bead width measurement system 70, and a control device 90. is doing.
  • the laser light source 20 is a known fiber laser, and oscillates laser light having a wavelength in the near-infrared region using a silica optical fiber doped with a rare earth element as a laser medium.
  • the laser irradiation optical system 30 is an optical system for guiding the laser beam output from the laser light source 20 to the welding processing position P.
  • the laser irradiation optical system 30 includes an optical path axis shift optical system 31, a galvano scanner 32, and a condenser lens 33.
  • the optical path axis shift optical system 31 is an optical system that reflects the laser light output from the laser light source 20 in the horizontal direction at right angles a plurality of times and shifts the optical path axis of the laser light upward in parallel.
  • it is composed of two dielectric multilayer flat mirrors 31A and 31B which are arranged in parallel with each other and vertically spaced from each other with an incident angle of 45 °.
  • the galvano scanner 32 is a two-axis (XY) type galvano scanner, and the laser beam from the optical path axis shift optical system 31 is driven at high speed and with high accuracy by driving the two mirrors 32X and 32Y attached to the rotation axis, respectively.
  • the laser light LB is swept to the butt interface 86 and the overlapping portion 100 of the crimp terminal 87 stopped at the welding position P.
  • the irradiation position of the laser beam LB in the horizontal plane can be adjusted by controlling the angles of the mirrors 32X and 32Y, and the sweep speed of the laser beam LB can be adjusted by controlling the rotation speed of the mirrors 32X and 32Y. .
  • the condensing lens 33 is an optical coupling system that condenses the laser light from the galvano scanner 32 at the position of the butt interface 86 of the crimp terminal 87.
  • a telecentric lens or an f ⁇ lens is used as the condenser lens 33.
  • the feeding device 40 is a device that sequentially supplies the crimp terminals 87 to the welding position P by intermittently feeding the chain terminals 88 at a constant pitch corresponding to the interval L where the crimp terminals 87 are arranged.
  • the feeding device 40 has twin rollers 41 and 42 that rotate while sandwiching the carrier portion 82 of the chain terminal 88 from above and below in the vicinity of the upstream side and the downstream side of the welding position P in the feed direction of the chain terminal 88. Yes.
  • the twin rollers 41 and 42 include a feed roller 43 that contacts the lower surface of the carrier portion 82 and a pressing roller 44 that contacts the upper surface. The pressing roller 44 is driven to rotate while pressing the carrier portion 82 from above.
  • the feed roller 43 is rotationally driven at a constant speed by a drive mechanism (not shown).
  • feed claws 45 are projected at equal intervals in the circumferential direction.
  • the feed claw 45 engages with a feed hole 89 (see FIG. 7) of the carrier portion 82.
  • the feed claw 45 engaged with the feed hole 89 of the carrier portion 82 moves the chain terminal 88 by an interval L where the crimp terminals 87 are arranged.
  • the clamp device 50 is a device for accurately positioning the crimp terminal 87 supplied to the welding position P.
  • the clamp device 50 has an upper clamp jig 51 and a lower clamp jig 52, and is clamped from above and below so that the clamp jigs 51 and 52 are in contact with the crimping portion 85 of the crimp terminal 87 at least at three points.
  • the clamp jig 51 is formed with, for example, a substantially C-shaped portion 51 a that abuts and presses against the crimping portion 85 at two points.
  • the clamp jig 52 is formed with a substantially flat contact surface 52a that contacts the crimping portion 85 at one point.
  • the butt interface 86 of the crimping portion 85 is placed at a position where the laser beam LB can be irradiated as shown in FIG. Can be positioned. Further, the upper clamp jig 51 is formed with a slit 51b so as not to obstruct the irradiation of the laser beam LB to the butt interface 86.
  • the laser output control system 60 is an optical-electric composite system for controlling the output of the laser light source 20 so as to keep the output of the laser light LB irradiated to the crimping portion 85 of the crimp terminal 87 constant.
  • the laser output control system 60 has a laser beam branching optical system 61 for branching a part of the laser beam LB output from the laser light source 20 and a laser beam LB (pd) branched by the laser beam branching optical system 61.
  • a laser beam output monitor device 62 for detecting the output of
  • two dielectric multilayer flat mirrors 31 ⁇ / b> A and 31 ⁇ / b> B of the optical path axis shift optical system 31 are used as the laser beam branching optical system 61.
  • the laser beam LB output from the laser light source 20 is sequentially reflected by the two dielectric multilayer film plane mirrors 31A and 31B and guided to the galvano scanner 32.
  • a part of the laser beam LB is planar on the upper dielectric multilayer film plane.
  • the light passes through the mirror 31 ⁇ / b> A and enters the light receiving unit of the laser light output monitor device 62.
  • a condensing lens 102 is provided between the laser light output monitoring device 62 and the dielectric multilayer flat mirror 31A.
  • the laser light output monitoring device 62 includes a photodiode (PD) as a light receiving element, and outputs an electrical signal proportional to the amount of light received.
  • the output signal of the laser light output monitor device 62 is input to the control device 90.
  • PD photodiode
  • the output of the laser light source 20 is W 1
  • the reflectance of the mirror 31B is R 31B
  • the transmittance of the condenser lens 102 is T LPD
  • the transmittance of the dielectric multilayer flat mirror 31A is T 1
  • the mirror 32X in the galvano scanner 32 R g reflectivity per one 32Y, when the transmittance of the condenser lens 33 and T L, the output W pd and crimp terminals of the laser beam LB which is measured by a laser beam output monitor unit 62 (pd) 87
  • the output Wx of the laser beam LB irradiated to is expressed by the following equations (1) and (2).
  • W pd W 1 ⁇ R 31B ⁇ T 1 ⁇ T LPD (1)
  • Wx ⁇ (1 ⁇ T 1 ) ⁇ R g 2 ⁇ T L ⁇ W pd / (T 1 ⁇ T LPD ) (2)
  • an optical filter between the PD and the condensing lens 102 or between the mirror 31A and the condensing lens 102.
  • the output W pd of the laser beam LB (pd) and the output Wx of the laser beam LB irradiated to the crimp terminal 87 are expressed by the following equations (3) and (4).
  • W pd W 1 ⁇ R 31B ⁇ T 1 ⁇ T 2 ⁇ T LPD (3)
  • Wx ⁇ (1 ⁇ T 1 ) ⁇ R g 2 ⁇ T L ⁇ W pd / (T 1 ⁇ T 2 ⁇ T LPD ) (4)
  • the output W pd of the laser beam LB (pd) is constantly monitored using a photodiode (PD), and the output W 1 of the laser light source 20 is set so that W 1 obtained from the formula (1) or (3) falls within the allowable output value.
  • PD photodiode
  • the allowable output value is set to 392 to 408 W of ⁇ 2%. That is, by controlling so that the output W pd of the laser beam LB (pd) and W 1 obtained from the expression (1) or (3) do not deviate from the output allowable value, it is guaranteed that Wx is always stable. it can. If it is outside the allowable output range, an output error is issued.
  • the weld bead width measurement system 70 is an optical-electric composite system that performs a process of measuring the bead width of a weld bead (weld mark) formed along the butt interface 86 of the crimp terminal 87.
  • the weld bead width measurement system 70 includes an imaging device 71 for imaging the crimping portion 85 of the crimp terminal 87 and an image processing system 72 for measuring the width dimension of the weld bead based on an image captured by the imaging device 71. And have.
  • the imaging device 71 is disposed at a predetermined position downstream of the welding position P so as to face the passing region of the crimping terminal 80 that has been subjected to the welding process. In this example, it is provided facing the downstream position by a distance corresponding to 4 pitches (L ⁇ 4) from the welding position P.
  • an image sensor using a solid-state imaging device such as a CCD (Charge Coupled Dice) or a CMOS (Complementary Metal Oxide Semiconductor) is used.
  • the imaging device 71 images the crimping portion 85 of the crimp terminal 80 and outputs the obtained image data.
  • the image data output from the imaging device 71 is input to the image processing system 72.
  • the image processing system 72 performs image processing such as edge detection processing on the input image data, and outputs the processed data. Data output from the image processing system 72 is input to the control device 90.
  • the laser welding apparatus 10 configured as described above keeps the output Wx of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87 constant, and sweeps the laser beam LB along the butt interface 86 of the crimp terminal 87.
  • the butt interface 86 of the crimp terminal 87 is welded, and the bead width of the weld bead formed on the butt interface 86 after the welding is measured.
  • the optical system for example, the galvano scanner 32 and the condenser lens 33
  • An error can be issued. In other words, if the control system using the photodiode (PD) is normal but the bead width deviates from the predetermined width, it can be determined that the optical system such as the galvano scanner 32 is abnormal.
  • the control device 90 is a computer system that performs overall control of the overall operation of the laser welding apparatus 1 and functions as laser output control means and welding bead width measurement means. That is, the control device 90 controls the output of the laser light source 20 to be constant based on the output signal from the laser light output monitor device 62, and the image processing system 72 based on the image data from the image processing system 71. Measure the width of the weld bead. Further, the control device 90 functions as a laser beam sweep speed control means.
  • control device 90 generates correlation data indicating the correlation between the sweep speed of the laser beam LB and the width of the weld bead under the condition that the output of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87 is constant.
  • the sweep speed of the laser beam LB by the galvano scanner 32 is controlled based on the measured value of the bead width of the weld bead and the correlation data.
  • Correlation data shows that welding was performed under a plurality of conditions with different sweep speeds of the laser beam LB while keeping the output of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87 constant, and the welding quality was good.
  • the bead width of the weld bead and the sweep speed of the laser beam LB are recorded, and a correlation curve (see FIG. 3) representing the correlation between the two is obtained from the recorded result (actual measurement value), and this is quantified. It is.
  • the correlation data is stored in the storage unit of the control device 90 as a data table in which the output Wx of the laser beam LB is constant and the value of the sweep speed is associated with the value of the width dimension of the weld bead.
  • the data table is measured data obtained from an experiment in which welding is performed under a plurality of conditions with different laser beam sweep rates while keeping the laser beam output constant, and the sweep rate value and welding quality are good. It is comprised by the data which matched the value of the width dimension of the weld bead of the weld part which was.
  • the temporal change of the shape of the press die used for manufacture of the crimp terminal 80 can be mentioned.
  • the gap of the butt interface 86 may be widened.
  • the laser welding apparatus 10 configured as described above keeps the output Wx of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87 constant, and sweeps the laser beam LB along the butt interface 86 of the crimp terminal 87.
  • the butt interface 86 of the crimp terminal 87 is welded, and the bead width of the weld bead formed on the butt interface 86 after the welding is measured.
  • the sweep speed of the laser beam LB during the subsequent welding is controlled based on the measured value and the correlation data (see FIG. 3).
  • the target value of the bead width is ⁇ 5% of 200 ⁇ m, that is, 190 to 210 ⁇ m, the bead width upper limit acceptable value is 220 ⁇ m, and the lower limit acceptable value is 180 ⁇ m.
  • the operation of the laser welding apparatus 10 was started, and the average value of the bead width was obtained for every 100 terminals.
  • the average value of the bead width of the crimp terminals 80 of 1 to 50000 was all 200 ⁇ m,
  • a signal having a difference of 10 ⁇ m from the target value is fed back to the control system of the galvano scanner 32, and the bead width is the target value of 200 ⁇ m ⁇ 5
  • Control is performed so that the sweep speed of the laser beam LB is shifted toward the lower limit sweep speed side so as to be within the range of%.
  • the routine operation is repeated until the bead width reaches the target value by a series of operations. When the bead width comes out of the upper limit or lower limit pass value, it is judged as NG and the whole system is stopped.
  • the sweep speed v of the laser beam LB at the time of subsequent welding is controlled, so that the sweep speed v of the laser beam LB is kept constant within an appropriate range.
  • the butt interface 86 of the crimp terminal 87 can be laser-welded with high quality by controlling to an appropriate value.
  • FIG. 4 shows curves C1, C2, and C3 representing changes in bead width according to the sweep speed.
  • C1, C2, and C3 can be curves when the butt gap is 0 ⁇ m, 10 ⁇ m, and 20 ⁇ m.
  • a curve C2 where the bead width becomes 190 ⁇ m at the sweep speed V1 is found from the data table.
  • the sweep speed V2 (v1> v2) ⁇ 20 mm / sec at the point where the curve C2 intersects the target value 200 ⁇ m of the bead width is set.
  • the sweep speed is increased or decreased so that the target value of the bead width becomes 200 ⁇ m within the set sweep speed, and the sweep speed that has become the target value of the bead width is set as a new sweep speed v.
  • the bead width is controlled to a target value of 200 ⁇ m in the subsequent welding.
  • a data table associated with a plurality of matching gaps is used.
  • a data table in which a deviation due to rolling of a butt interface or a matching gap and rolling is created and stored in the control device 90 is stored. More preferably, it is stored in the part.
  • FIG. 5 is a system configuration diagram showing a third embodiment of the laser welding apparatus of the present invention.
  • constituent elements common to the first embodiment are denoted by the same reference numerals in the drawing, and description thereof will be omitted as appropriate.
  • the galvano scanner 32 is provided, and the laser light LB from the laser light source 20 is shaken in the XY direction (horizontal direction) by the two mirrors 32X and 32Y in the galvano scanner 32, thereby matching the crimp terminal 87.
  • the third embodiment shown in FIG. 5 includes a laser processing head 90, and the laser processing head 90 itself is XY direction (horizontal direction).
  • the laser beam LB is swept by moving to.
  • a dielectric multilayer flat mirror 91 that reflects the laser beam LB from the laser light source 20 downward at right angles and falls on the welding processing position P, and a laser from the dielectric multilayer flat mirror 91.
  • a condensing lens 92 that condenses the light LB at the position of the butt interface 86 of the crimp terminal 87 is provided.
  • the laser processing head 90 is provided with a laser light output monitoring device 62.
  • the laser beam LB from the laser light source 20 passes through the dielectric multilayer flat mirror 91 and enters the light receiving unit of the laser beam output monitor device 62.
  • the output of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87 is welded and formed at the butt interface 86 after the welding. Measure the bead width of the weld bead. When the measured value deviates from the target value, the moving speed of the laser machining head 90 in the sweep direction is controlled based on the measured value and the correlation data (see FIG. 3), thereby The butt interface 86 can be laser welded with high quality.
  • the configuration of the present invention is not limited to the configuration of the above embodiment.
  • the arrangement of various mirrors and lenses, the number of mirrors between the welding processing position P and the PD can be appropriately changed.
  • the installation position of the PD 62 should not be a position where reflected light (laser scattered light, that is, return light) from the welding position P is transmitted from the mirror. This is because the return light component may be erroneously detected as the output of the laser and added to the output to be measured.
  • the PD 62 only needs to detect the output of the laser beam irradiated to the workpiece.
  • the installation position of the PD 62 may be set immediately before the workpiece, that is, immediately before the welding position P.
  • a mirror or the like is disposed immediately before the welding position P so that the PD 62 does not receive the reflected light from the welding position P.
  • the workpiece is not limited to the crimp terminal. That is, the present invention can be applied to a laser welding apparatus for all workpieces having a butt interface between metal sheets.
  • the laser light source 20 is not limited to a fiber laser.
  • the width of the portion where there is no plating at the butt interface after welding may be measured as the bead width.
  • the width dimension of the weld bead may be measured by measuring a change in the outer diameter or inner diameter of the welded part using, for example, a laser distance meter, without being limited to the captured image. Further, when any abnormality is detected from the measurement result of the weld bead width, the molding process by the press machine and the welding process by the laser welding apparatus may be stopped simultaneously.

Abstract

This laser welding apparatus (10) is equipped with a galvanic scanner (33) for radiating a laser beam (LB) along the abutting interface (86) between workpieces (87), a laser output control system (60) for controlling the output from a laser beam source (20) in order to maintain a constant output (Wx) of the laser beam (LB), and a welding bead width measurement system (70) for measuring the width of welding beads formed along the abutting interface (86), and performs high quality laser welding of the abutting interface (86) of the workpieces (87) by controlling the sweep rate (v) of the laser beam (LB) by the galvanic scanner (33) on the basis of the measurement value from the welding bead width measurement system (70) and using the appropriate values for the output (Wx) and sweep rate (v) of the laser beam (LB).

Description

レーザ溶接装置Laser welding equipment
 本発明は、被加工物の突き合わせ界面をレーザ照射により溶接するレーザ溶接装置に関する。 The present invention relates to a laser welding apparatus for welding a butt interface of workpieces by laser irradiation.
 自動車の車内配線にはワイヤハーネスが多用される。ワイヤハーネスは、車内配線の仕様に合わせて複数の被覆電線を集合部品化したものである。各被覆電線の端末には、接続用の端子(以下、圧着端子という。)が圧着されている。圧着端子をワイヤハーネスの電線端末に接続する場合、電線端末の絶縁被覆層を皮剥ぎして芯線を露出させ、芯線露出部に圧着端子の芯線バレルを加締め圧着することにより、電線端末と圧着端子との電気的接続がなされる。そして、圧着端子との接続部から電線内への水分の浸入による芯線の腐食を防止するべく、圧着端子と電線端末との接続部が樹脂封止される。(特許文献1、特許文献2) Wire harnesses are often used for in-vehicle wiring. The wire harness is a set of a plurality of covered electric wires in a collective part according to the specifications of in-vehicle wiring. A terminal for connection (hereinafter referred to as a crimp terminal) is crimped to the end of each covered electric wire. When connecting the crimp terminal to the wire terminal of the wire harness, peel off the insulation coating layer of the wire terminal to expose the core wire, and crimp the core wire barrel of the crimp terminal to the core wire exposed part to crimp the wire terminal. Electrical connection with the terminal is made. And the connection part of a crimp terminal and an electric wire terminal is resin-sealed in order to prevent the corrosion of a core wire by the penetration | invasion of the water | moisture content from the connection part with a crimp terminal into the inside of an electric wire. (Patent Document 1, Patent Document 2)
特開2001-167821号Japanese Patent Laid-Open No. 2001-167821 特開2012-069449号JP 2012-069449 A
 しかし、圧着端子と電線端末との接続部を樹脂封止することがワイヤハーネスの製造単価を増加させる要因となっている。これは使用される樹脂そのものが高価であることに加え、樹脂モールド処理或いはコーティング処理の工程で、樹脂の流し込みや硬化に時間を要することによる。 However, resin-sealing the connection between the crimp terminal and the wire terminal is a factor that increases the manufacturing cost of the wire harness. This is because the resin itself used is expensive, and it takes time for the resin to be poured and cured in the resin molding process or the coating process.
 そこで、圧着端子の圧着部(電線接続部)をプレス成型により筒状に曲げ加工し、その筒状に曲げ加工した部分にできる板材両端の突き合わせ界面全体をレーザ溶接により接合して圧着部を密閉構造にする試みがなされている。 Therefore, the crimping part (wire connection part) of the crimping terminal is bent into a cylindrical shape by press molding, and the entire butt interface at both ends of the plate material formed in the cylindrically bent part is joined by laser welding to seal the crimping part. Attempts have been made to structure.
 レーザ溶接による溶接部の接合強度は、照射されたレーザ光の出力と掃引速度とに左右される。両パラメータの値が適正範囲から外れた条件下でレーザ溶接が行われると、圧着に対する溶接部強度が不十分となる。このことが圧着端子を電線端末に圧着する際その溶接部に割れが発生する原因となる。 The joint strength of the welded part by laser welding depends on the output of the irradiated laser beam and the sweep speed. When laser welding is performed under the condition where the values of both parameters are out of the appropriate range, the weld strength against crimping becomes insufficient. This causes cracks in the welded portion when the crimp terminal is crimped to the wire end.
 本発明が解決しようとする課題は、溶接部に照射されるレーザ光の光源と光学系の異常を簡単な構成で監視して、被加工物の突き合わせ界面を高品質にレーザ溶接することができるレーザ溶接装置を提供することにある。 The problem to be solved by the present invention is to monitor the abnormality of the light source and optical system of the laser beam irradiated to the welded portion with a simple configuration, and to perform laser welding of the butt interface of the workpiece with high quality. The object is to provide a laser welding apparatus.
 上記課題を解決するために、本発明のレーザ溶接装置は、突き合わせ界面を有する被加工物を溶接加工位置に順次供給しつつ、当該被加工物の突き合わせ界面をレーザ照射により溶接するレーザ溶接装置であって、レーザ光源から出力されたレーザ光を前記突き合わせ界面に沿って掃引しつつ照射するレーザ光掃引照射手段と、前記被加工物に照射されるレーザ光の出力を一定に保つべく前記レーザ光源の出力を制御するレーザ出力制御手段と、前記突き合わせ界面に沿って形成された溶接ビード(溶接痕)の幅寸法(以下、「幅寸法」を「ビード幅」と記す。)を測定する溶接ビード幅測定手段と、を有する。 In order to solve the above problems, a laser welding apparatus of the present invention is a laser welding apparatus that welds a butt interface of a workpiece by laser irradiation while sequentially supplying a workpiece having a butt interface to a welding position. A laser beam sweep irradiation means for irradiating the laser beam outputted from the laser light source while sweeping along the abutting interface; and the laser light source for keeping the output of the laser beam emitted to the workpiece constant. Laser output control means for controlling the output of the laser beam, and a weld bead for measuring the width dimension of the weld bead (weld mark) formed along the butt interface (hereinafter, “width dimension” is referred to as “bead width”). Width measuring means.
 上記のように構成されたレーザ溶接装置は、突き合わせ界面に沿って形成された溶接ビードの幅寸法を測定することにより、溶接後の被加工物の品質を保証することができる。ここで、ビード幅の寸法測定で品質保証ができるのは、ビード幅が、溶接による投入熱量と対応関係にあるからである。例えば、レーザ出力、掃引速度、焦点位置、溶接前の端子寸法精度、溶接前の端子の位置決め精度が変わらなければ、溶接品質は安定的であり、その時のビード幅にも再現性がある。よって、溶接品質が良い時のビード幅が変化なく再現しているので、本発明のレーザ溶接装置は、この再現性を確認することにより、当該レーザ溶接装置により溶接加工された全数の被加工物の品質検査を行うことができる。 The laser welding apparatus configured as described above can guarantee the quality of the workpiece after welding by measuring the width dimension of the weld bead formed along the butt interface. Here, the reason why quality can be assured by measuring the bead width is that the bead width has a corresponding relationship with the amount of heat input by welding. For example, if the laser output, sweep speed, focal position, terminal dimensional accuracy before welding, and terminal positioning accuracy before welding do not change, the welding quality is stable and the bead width at that time is also reproducible. Therefore, since the bead width when the welding quality is good is reproduced without change, the laser welding apparatus of the present invention confirms this reproducibility, and thereby the total number of workpieces welded by the laser welding apparatus. Quality inspection can be performed.
 また、焦点位置と製品の位置決め精度はクランプ治具で担保でき、溶接前の端子寸法精度は順送プレス品なので基本的には短期的な変化はない。また、レーザの出力はPDに受光して監視することができる。この条件下でビード幅が所定の幅から外れることがあったときに本発明のレーザ溶接装置は、レーザ光の光源か光学系に異常があると判断することができる。 Also, the focus position and product positioning accuracy can be secured with a clamp jig, and the terminal dimension accuracy before welding is basically a press-fed product, so there is basically no short-term change. Further, the output of the laser can be monitored by receiving light on the PD. When the bead width deviates from the predetermined width under these conditions, the laser welding apparatus of the present invention can determine that there is an abnormality in the laser light source or the optical system.
 本発明のレーザ溶接装置において、前記溶接ビード幅測定手段による測定値に基づいて、前記レーザ光掃引照射手段によるレーザ光の掃引速度を制御するレーザ光掃引速度制御手段、を更に有することが望ましい。 In the laser welding apparatus of the present invention, it is desirable to further include laser light sweep speed control means for controlling the sweep speed of the laser light by the laser light sweep irradiation means based on the measurement value by the weld bead width measurement means.
 上記のように構成されたレーザ溶接装置は、被加工物に照射されるレーザ光の出力を一定に保ち、被加工物の突き合わせ界面に沿ってレーザ光を掃引しつつ照射することにより、当該被加工物の突き合わせ界面を溶接し、その溶接後の突き合わせ界面に形成されている溶接ビードのビード幅を測定する。その測定値に基づいて、その後の溶接時のレーザ光の掃引速度を制御する。 The laser welding apparatus configured as described above keeps the output of the laser beam irradiated to the workpiece constant and performs irradiation while sweeping the laser beam along the butt interface of the workpiece. The butt interface of the workpiece is welded, and the bead width of the weld bead formed at the butt interface after the welding is measured. Based on the measured value, the laser beam sweep speed during the subsequent welding is controlled.
 被加工物に照射されるレーザ光の出力が一定であれば、ビード幅を目安にして、溶接品質の良、不良を判別することができる。したがって、被加工物へのレーザ光の照射出力を適正な範囲で一定に保って溶接を行い、その溶接後の突き合わせ界面に形成されている溶接ビードのビード幅を測定し、その測定値に基づいて、その後の溶接時のレーザ光の掃引速度を制御することにより、レーザ光の掃引速度を、適正な範囲で一定に保たれている照射出力との関係において適正な値に制御して、被加工物の突き合わせ界面を高品質にレーザ溶接することができる。 If the output of the laser beam irradiated to the workpiece is constant, it is possible to determine whether the welding quality is good or bad by using the bead width as a guide. Therefore, welding is performed with the laser beam irradiation output to the work piece kept constant within an appropriate range, the bead width of the weld bead formed at the butt interface after the welding is measured, and based on the measured value Then, by controlling the laser beam sweep speed during the subsequent welding, the laser beam sweep speed is controlled to an appropriate value in relation to the irradiation output that is kept constant within an appropriate range. The butt interface of the workpiece can be laser welded with high quality.
 本発明のレーザ溶接装置において、前記レーザ光掃引速度制御手段は、前記被加工物に照射されるレーザ光の出力を一定とした条件下におけるレーザ光の掃引速度と溶接ビードのビード幅との相関を示す相関データを記憶している記憶手段を有し、前記溶接ビード幅測定手段による測定値と前記相関データとに基づいて、前記レーザ光掃引照射手段によるレーザ光の掃引速度を制御することが望ましい。 In the laser welding apparatus of the present invention, the laser beam sweep speed control means is configured to correlate the laser beam sweep speed and the bead width of the weld bead under a condition in which the output of the laser beam irradiated onto the workpiece is constant. Storage means for storing the correlation data indicating, and based on the measurement value by the weld bead width measurement means and the correlation data, the laser beam sweep speed by the laser beam sweep irradiation means is controlled. desirable.
 上記相関データは、被加工物に照射されるレーザ光の出力を一定とし、掃引速度を異ならせた複数の条件で溶接を行い、溶接品質が良好であった溶接部の溶接ビードのビード幅とレーザ光の掃引速度とを記録し、その記録結果(実測値)から両者の相関を表す曲線(図3参照)を求めこれを数値化したものである。したがって、被加工物に照射されるレーザ光の出力を一定とすれば、ビード幅の目標値に対応する掃引速度の値をこの相関データから求めることにより、溶接品質が良好となる掃引速度の目標値を決定することができる。そして、ビード幅が目標値になるように掃引速度を制御することにより、良好な溶接品質を実現することができる。 The above correlation data indicates that the output of the laser beam irradiated to the workpiece is constant, welding is performed under a plurality of conditions with different sweep speeds, and the bead width of the weld bead of the weld where the weld quality is good. The laser beam sweep speed is recorded, and a curve (see FIG. 3) representing the correlation between the two is obtained from the recorded result (actual measurement value), and this is digitized. Therefore, if the output of the laser beam irradiated to the workpiece is constant, the sweep speed target that improves the welding quality is obtained by obtaining the value of the sweep speed corresponding to the target value of the bead width from this correlation data. The value can be determined. And good welding quality is realizable by controlling a sweep speed so that a bead width may become a target value.
 本発明のレーザ溶接装置において、前記レーザ出力制御手段は、前記レーザ光源から出力されたレーザ光の一部を分岐させるレーザ光分岐手段と、前記レーザ光分岐手段により分岐させたレーザ光の出力を検出するレーザ光出力モニタ手段と、を備え、前記レーザ光出力モニタ手段により検出されたレーザ光の出力に基づいて前記レーザ光源の出力を制御することが望ましい。レーザ光源から出力されたレーザ光の一部を分岐させて、その出力を検出し、その検出値が一定になるようにレーザ光源を制御することにより、レーザ光源から出力されるレーザ光の出力を一定に保つことができる。 In the laser welding apparatus of the present invention, the laser output control means includes a laser light branching means for branching a part of the laser light outputted from the laser light source, and an output of the laser light branched by the laser light branching means. And a laser beam output monitoring unit for detecting, and it is preferable to control the output of the laser light source based on the output of the laser beam detected by the laser beam output monitoring unit. The laser light output from the laser light source is controlled by branching a part of the laser light output from the laser light source, detecting the output, and controlling the laser light source so that the detected value is constant. Can be kept constant.
 本発明のレーザ溶接装置において、前記溶接ビード幅測定手段は、前記被加工物を撮像するための撮像手段と、前記撮像手段により撮像された画像に基づいて前記溶接ビードのビード幅を測定するための画像処理手段と、を有することが望ましい。この構成によれば、溶接加工が施された実際の被加工物の外観から溶接ビードのビード幅を測定することができるので、実際の溶接結果に基づいてレーザ光の掃引速度を適正な値に制御することができる。 In the laser welding apparatus of the present invention, the weld bead width measuring means measures the bead width of the weld bead based on an imaging means for imaging the workpiece and an image captured by the imaging means. It is desirable to have the image processing means. According to this configuration, since the bead width of the weld bead can be measured from the appearance of the actual workpiece subjected to the welding process, the laser beam sweep speed is set to an appropriate value based on the actual welding result. Can be controlled.
 本発明のレーザ溶接装置は、被加工物の突き合わせ界面に照射するレーザ光光源と光学系の異常を簡単な構成で監視することができるので、被加工物の突き合わせ界面を高品質にレーザ溶接することができる。 Since the laser welding apparatus of the present invention can monitor the abnormality of the laser light source and the optical system irradiated to the butt interface of the workpiece with a simple configuration, the butt interface of the workpiece is laser-welded with high quality. be able to.
本発明の第1の実施形態の装置構成図Device configuration diagram of the first embodiment of the present invention (a)突き合わせ界面に隙間が生じている被加工物と当該被加工物を挟み込む前の状態におけるクランプ装置の形態とを例示する概念図(b)被加工物をクランプ装置で挟み込んだ状態で被加工物の突き合わせ界面にレーザ光を照射している状態を例示する概念図(A) Conceptual diagram illustrating the workpiece having a gap at the butt interface and the configuration of the clamping device in a state before the workpiece is sandwiched. (B) The workpiece in a state in which the workpiece is sandwiched by the clamping device. Conceptual diagram illustrating the state in which laser light is irradiated to the butt interface of the workpiece レーザ光の出力が一定で且つ溶接品質が良好となる場合の掃引速度とビード幅との相関を表す相関曲線を例示したグラフ図The graph which illustrated the correlation curve showing the correlation of sweep speed and bead width when the output of laser light is constant and the welding quality is good 図3の相関曲線を用いて掃引速度の目標値を変更する処理の説明図Explanatory drawing of the process which changes the target value of sweep speed using the correlation curve of FIG. 本発明の第3の実施形態の装置構成図The apparatus block diagram of the 3rd Embodiment of this invention 本発明のレーザ溶接装置により溶接加工された圧着端子の斜視図The perspective view of the crimp terminal welded by the laser welding apparatus of this invention 図5の圧着端子の製造工程の概略を示す工程図Process drawing which shows the outline of the manufacturing process of the crimp terminal of FIG.
 以下、本発明を実施するための最良の形態について説明する。 Hereinafter, the best mode for carrying out the present invention will be described.
 この実施形態では、図6に例示する圧着端子80を製造するための装置構成について説明する。この圧着端子80は、図7に示すように、(a)帯状の金属板81をその長手方向(矢印Aの向き)に一定のピッチで順送しつつ、(b)キャリア部82と展開状態の端子素材83とを打ち抜き、(c)端子素材83を打ち抜き及び曲げ加工することにより箱状のコネクタ部84と筒状の圧着部85とを一体成型し、(d)圧着部85にできる板材両端の突き合わせ界面86及び重ね合わせ部100をレーザ溶接により接合する、という一連の工程を経て製造される。ここで、突き合わせ界面とは、圧着部を構成する板材の曲げ方向における一方の端面と、もう一方の端面とを突き合わせて接触させた部分のことをいう。 In this embodiment, an apparatus configuration for manufacturing the crimp terminal 80 illustrated in FIG. 6 will be described. As shown in FIG. 7, the crimp terminal 80 has (a) a belt-shaped metal plate 81 that is fed forward at a constant pitch in the longitudinal direction (direction of arrow A), and (b) the carrier portion 82 and the unfolded state. (C) A plate material that can be formed into a crimping portion 85 by integrally molding the box-shaped connector portion 84 and the cylindrical crimping portion 85 by punching and bending the terminal material 83. It is manufactured through a series of processes in which the butt interface 86 at both ends and the overlapping portion 100 are joined by laser welding. Here, the abutting interface refers to a portion where one end surface in the bending direction of the plate material constituting the crimping portion and the other end surface are abutted and brought into contact with each other.
 [第1の実施形態]
 図1は本発明のレーザ溶接装置の第1の実施形態を示すシステム構成図である。このレーザ溶接装置10は、被加工物である未溶接の圧着端子87を溶接加工位置Pに順次供給し、その圧着端子87の圧着部85の突き合わせ界面86をレーザ照射により溶接する装置である。圧着端子87は、図7(C)に示すように一定の間隔でキャリア部82に片持ち支持された連鎖端子88の形態で溶接加工位置Pに順次送り込まれて、レーザ照射による溶接加工が施される。
[First Embodiment]
FIG. 1 is a system configuration diagram showing a first embodiment of a laser welding apparatus of the present invention. The laser welding apparatus 10 is an apparatus that sequentially supplies unwelded crimp terminals 87 as workpieces to a welding position P and welds a butt interface 86 of a crimping portion 85 of the crimp terminals 87 by laser irradiation. As shown in FIG. 7C, the crimp terminals 87 are sequentially fed to the welding position P in the form of chain terminals 88 that are cantilevered by the carrier portion 82 at regular intervals, and are subjected to welding by laser irradiation. Is done.
 レーザ溶接装置10は、レーザ光源20と、レーザ照射光学系30と、送り装置40と、クランプ装置50と、レーザ出力制御系60と、溶接ビード幅測定系70と、制御装置90と、を有している。 The laser welding apparatus 10 includes a laser light source 20, a laser irradiation optical system 30, a feeding device 40, a clamping device 50, a laser output control system 60, a weld bead width measurement system 70, and a control device 90. is doing.
 レーザ光源20は、公知のファイバレーザであり、希土類元素を添加した石英光ファイバをレーザ媒体に使用して近赤外領域の波長のレーザ光を発振する。 The laser light source 20 is a known fiber laser, and oscillates laser light having a wavelength in the near-infrared region using a silica optical fiber doped with a rare earth element as a laser medium.
 レーザ照射光学系30は、レーザ光源20から出力されたレーザ光を溶接加工位置Pに導くための光学系である。レーザ照射光学系30は、光路軸シフト光学系31と、ガルバノスキャナ32と、集光レンズ33と、を有している。 The laser irradiation optical system 30 is an optical system for guiding the laser beam output from the laser light source 20 to the welding processing position P. The laser irradiation optical system 30 includes an optical path axis shift optical system 31, a galvano scanner 32, and a condenser lens 33.
 光路軸シフト光学系31は、レーザ光源20から水平方向に出力されたレーザ光を複数回直角に反射させて、レーザ光の光路軸を上方に平行にシフトさせる光学系である。この例では、互いに平行且つ上下に離間させて入射角45°の姿勢で配置された2つの誘電体多層膜平面ミラー31A、31Bで構成されている。 The optical path axis shift optical system 31 is an optical system that reflects the laser light output from the laser light source 20 in the horizontal direction at right angles a plurality of times and shifts the optical path axis of the laser light upward in parallel. In this example, it is composed of two dielectric multilayer flat mirrors 31A and 31B which are arranged in parallel with each other and vertically spaced from each other with an incident angle of 45 °.
 ガルバノスキャナ32は、2軸(XY)式ガルバノスキャナであり、光路軸シフト光学系31からのレーザ光を、それぞれ回転軸に取り付けられた2つのミラー32X,32Yを高速且つ高精度に駆動させながら順次反射させることにより、溶接加工位置Pに停止している圧着端子87の突き合わせ界面86及び重ね合わせ部100にレーザ光LBを掃引照射する。レーザ光LBの水平面内における照射位置は、ミラー32X,32Yの角度を制御することにより、レーザ光LBの掃引速度はミラー32X,32Yの回動速度を制御することにより、各々調節することができる。 The galvano scanner 32 is a two-axis (XY) type galvano scanner, and the laser beam from the optical path axis shift optical system 31 is driven at high speed and with high accuracy by driving the two mirrors 32X and 32Y attached to the rotation axis, respectively. By sequentially reflecting, the laser light LB is swept to the butt interface 86 and the overlapping portion 100 of the crimp terminal 87 stopped at the welding position P. The irradiation position of the laser beam LB in the horizontal plane can be adjusted by controlling the angles of the mirrors 32X and 32Y, and the sweep speed of the laser beam LB can be adjusted by controlling the rotation speed of the mirrors 32X and 32Y. .
 集光レンズ33は、ガルバノスキャナ32からのレーザ光を圧着端子87の突き合わせ界面86の位置に集光させる光結合系である。集光レンズ33には、テレセントリックレンズ又はfθレンズが用いられる。 The condensing lens 33 is an optical coupling system that condenses the laser light from the galvano scanner 32 at the position of the butt interface 86 of the crimp terminal 87. As the condenser lens 33, a telecentric lens or an fθ lens is used.
 送り装置40は、連鎖端子88を圧着端子87の並んでいる間隔Lに相当する一定のピッチで間欠的に送ることにより、圧着端子87を溶接加工位置Pに順次供給する装置である。送り装置40は、連鎖端子88の送り方向における溶接加工位置Pの上流側近傍と下流側近傍とに、連鎖端子88のキャリア部82を上下から挟んで回転する双ローラ41、42を有している。双ローラ41、42は、キャリア部82の下面に接する送りローラ43と、上面に接する押さえローラ44とからなる。押さえローラ44は、キャリア部82を上方から押さえつつ従動回転する。送りローラ43は、図示しない駆動機構により一定速度で回転駆動される。送りローラ43の外周面には、周方向に等間隔に送り爪45が突設されている。送り爪45は、キャリア部82の送り孔89(図7参照)に係合する。送りローラ43が一定角度回転する毎に、キャリア部82の送り孔89に係合している送り爪45が連鎖端子88を圧着端子87の並んでいる間隔L分だけ移動させる。 The feeding device 40 is a device that sequentially supplies the crimp terminals 87 to the welding position P by intermittently feeding the chain terminals 88 at a constant pitch corresponding to the interval L where the crimp terminals 87 are arranged. The feeding device 40 has twin rollers 41 and 42 that rotate while sandwiching the carrier portion 82 of the chain terminal 88 from above and below in the vicinity of the upstream side and the downstream side of the welding position P in the feed direction of the chain terminal 88. Yes. The twin rollers 41 and 42 include a feed roller 43 that contacts the lower surface of the carrier portion 82 and a pressing roller 44 that contacts the upper surface. The pressing roller 44 is driven to rotate while pressing the carrier portion 82 from above. The feed roller 43 is rotationally driven at a constant speed by a drive mechanism (not shown). On the outer peripheral surface of the feed roller 43, feed claws 45 are projected at equal intervals in the circumferential direction. The feed claw 45 engages with a feed hole 89 (see FIG. 7) of the carrier portion 82. Each time the feed roller 43 rotates by a certain angle, the feed claw 45 engaged with the feed hole 89 of the carrier portion 82 moves the chain terminal 88 by an interval L where the crimp terminals 87 are arranged.
 クランプ装置50は、溶接加工位置Pに供給された圧着端子87を精度良く位置決めするための装置である。クランプ装置50は、上クランプ治具51と下クランプ治具52とを有し、両クランプ治具51、52で圧着端子87の圧着部85に最低3点で接触するように上下から挟み込む。このため、クランプ治具51には、例えば、圧着部85と2点で当接して押さえ込む略ハ字型部51aが形成されている。一方、クランプ治具52には、圧着部85と一点で当接する略平らな当接面52aが形成されている。両クランプ治具51、52で圧着端子87の圧着部85を上下から挟み込むことにより、圧着部85の突き合わせ界面86を、図2(b)に示すように、レーザ光LBを照射可能な位置に位置決めをすることができる。また、上クランプ治具51には、突き合わせ界面86へのレーザ光LBの照射の邪魔にならないようにスリット51bが形成されている。 The clamp device 50 is a device for accurately positioning the crimp terminal 87 supplied to the welding position P. The clamp device 50 has an upper clamp jig 51 and a lower clamp jig 52, and is clamped from above and below so that the clamp jigs 51 and 52 are in contact with the crimping portion 85 of the crimp terminal 87 at least at three points. For this reason, the clamp jig 51 is formed with, for example, a substantially C-shaped portion 51 a that abuts and presses against the crimping portion 85 at two points. On the other hand, the clamp jig 52 is formed with a substantially flat contact surface 52a that contacts the crimping portion 85 at one point. By sandwiching the crimping portion 85 of the crimping terminal 87 from above and below by the clamp jigs 51 and 52, the butt interface 86 of the crimping portion 85 is placed at a position where the laser beam LB can be irradiated as shown in FIG. Can be positioned. Further, the upper clamp jig 51 is formed with a slit 51b so as not to obstruct the irradiation of the laser beam LB to the butt interface 86.
 レーザ出力制御系60は、圧着端子87の圧着部85に照射されるレーザ光LBの出力を一定に保つべくレーザ光源20の出力を制御するための光-電気複合系である。つまり、レーザ出力制御系60は、レーザ光源20から出力されたレーザ光LBの一部を分岐させるためのレーザ光分岐光学系61と、レーザ光分岐光学系61により分岐させたレーザ光LB(pd)の出力を検出するためのレーザ光出力モニタ装置62と、を有している。この例では、レーザ光分岐光学系61として、光路軸シフト光学系31の2つの誘電体多層膜平面ミラー31A、31Bを利用している。レーザ光源20から出力されたレーザ光LBは、2つの誘電体多層膜平面ミラー31A、31Bで大部分が順次反射されてガルバノスキャナ32に導かれるが、その一部は上側の誘電体多層膜平面ミラー31Aを透過してレーザ光出力モニタ装置62の受光部に入射する。レーザ光出力モニタ装置62と誘電体多層膜平面ミラー31Aとの間には、集光レンズ102が設けられている。レーザ光出力モニタ装置62は、受光素子としてフォトダイオード(PD)を備え、受光量に比例した電気信号を出力する。レーザ光出力モニタ装置62の出力信号は制御装置90に入力される。レーザ光源20の出力をW、ミラー31Bの反射率をR31B、集光レンズ102の透過率をTLPD、誘電体多層膜平面ミラー31Aの透過率をT、ガルバノスキャナ32内のミラー32X、32Yの1枚当りの反射率をR、集光レンズ33の透過率をTとすると、レーザ光出力モニタ装置62により測定されるレーザ光LB(pd)の出力Wpd及び圧着端子87に照射されるレーザ光LBの出力Wxは、次式(1)及び(2)で表される。 The laser output control system 60 is an optical-electric composite system for controlling the output of the laser light source 20 so as to keep the output of the laser light LB irradiated to the crimping portion 85 of the crimp terminal 87 constant. In other words, the laser output control system 60 has a laser beam branching optical system 61 for branching a part of the laser beam LB output from the laser light source 20 and a laser beam LB (pd) branched by the laser beam branching optical system 61. And a laser beam output monitor device 62 for detecting the output of In this example, two dielectric multilayer flat mirrors 31 </ b> A and 31 </ b> B of the optical path axis shift optical system 31 are used as the laser beam branching optical system 61. Most of the laser beam LB output from the laser light source 20 is sequentially reflected by the two dielectric multilayer film plane mirrors 31A and 31B and guided to the galvano scanner 32. A part of the laser beam LB is planar on the upper dielectric multilayer film plane. The light passes through the mirror 31 </ b> A and enters the light receiving unit of the laser light output monitor device 62. A condensing lens 102 is provided between the laser light output monitoring device 62 and the dielectric multilayer flat mirror 31A. The laser light output monitoring device 62 includes a photodiode (PD) as a light receiving element, and outputs an electrical signal proportional to the amount of light received. The output signal of the laser light output monitor device 62 is input to the control device 90. The output of the laser light source 20 is W 1 , the reflectance of the mirror 31B is R 31B , the transmittance of the condenser lens 102 is T LPD , the transmittance of the dielectric multilayer flat mirror 31A is T 1 , and the mirror 32X in the galvano scanner 32 , R g reflectivity per one 32Y, when the transmittance of the condenser lens 33 and T L, the output W pd and crimp terminals of the laser beam LB which is measured by a laser beam output monitor unit 62 (pd) 87 The output Wx of the laser beam LB irradiated to is expressed by the following equations (1) and (2).
 Wpd=W×R31B×T×TLPD ・・・(1)
 Wx={(1-T)×R ×T}Wpd/(T×TLPD) ・・・(2)
 ここで、PDへの入射光をさらに減衰させる必要がある場合は、PDと集光レンズ102の間もしくは、ミラー31Aと集光レンズ102の間に光学フィルタを挿入することが好ましい。
W pd = W 1 × R 31B × T 1 × T LPD (1)
Wx = {(1−T 1 ) × R g 2 × T L } W pd / (T 1 × T LPD ) (2)
Here, when it is necessary to further attenuate the incident light to the PD, it is preferable to insert an optical filter between the PD and the condensing lens 102 or between the mirror 31A and the condensing lens 102.
 フィルタの透過率をTとすると、レーザ光LB(pd)の出力Wpd及び圧着端子87に照射されるレーザ光LBの出力Wxは、次式(3)及び(4)で表される。 Assuming that the transmittance of the filter is T 2 , the output W pd of the laser beam LB (pd) and the output Wx of the laser beam LB irradiated to the crimp terminal 87 are expressed by the following equations (3) and (4).
 Wpd=W×R31B×T×T×TLPD ・・・(3)
 Wx={(1-T)×R ×T}Wpd/(T×T×TLPD) ・・・(4)
 フォトダイオード(PD)を用いてレーザ光LB(pd)の出力Wpdを常に監視し、式(1)もしくは(3)から求められるWが出力許容値に収まるようレーザ光源20の出力Wを制御する。
W pd = W 1 × R 31B × T 1 × T 2 × T LPD (3)
Wx = {(1−T 1 ) × R g 2 × T L } W pd / (T 1 × T 2 × T LPD ) (4)
The output W pd of the laser beam LB (pd) is constantly monitored using a photodiode (PD), and the output W 1 of the laser light source 20 is set so that W 1 obtained from the formula (1) or (3) falls within the allowable output value. To control.
 たとえば、レーザ光源20の出力Wが400Wであった場合、出力許容値を±2%の392~408Wとする。つまり、レーザ光LB(pd)の出力Wpdと式(1)もしくは(3)から求められるWが出力許容値から外れないように制御することで、Wxは常に安定していることを保証できる。もし、出力許容値から外れれば出力エラーを出す。 For example, when the output W 1 of the laser light source 20 is 400 W, the allowable output value is set to 392 to 408 W of ± 2%. That is, by controlling so that the output W pd of the laser beam LB (pd) and W 1 obtained from the expression (1) or (3) do not deviate from the output allowable value, it is guaranteed that Wx is always stable. it can. If it is outside the allowable output range, an output error is issued.
 溶接ビード幅測定系70は、圧着端子87の突き合わせ界面86に沿って形成された溶接ビード(溶接痕)のビード幅を測定する処理を行う光-電気複合系である。溶接ビード幅測定系70は、圧着端子87の圧着部85を撮像するための撮像装置71と、撮像装置71により撮像された画像に基づいて溶接ビードの幅寸法を測定するための画像処理系72と、を有している。 The weld bead width measurement system 70 is an optical-electric composite system that performs a process of measuring the bead width of a weld bead (weld mark) formed along the butt interface 86 of the crimp terminal 87. The weld bead width measurement system 70 includes an imaging device 71 for imaging the crimping portion 85 of the crimp terminal 87 and an image processing system 72 for measuring the width dimension of the weld bead based on an image captured by the imaging device 71. And have.
 撮像装置71は、溶接加工処理済みの圧着端子80の通過領域に臨ませて、溶接加工位置Pの下流側の所定の位置に設置されている。この例では、溶接加工位置Pから4ピッチ(L×4)分に相当する距離だけ下流側の位置に臨ませて設けられている。撮像装置71には、CCD(Charge Coupled Dice)やCMOS(Complementary Metal Oxide Semiconductor)など固体撮像素子を用いたイメージセンサが使用される。撮像装置71は、圧着端子80の圧着部85を撮像し、得られた画像データを出力する。撮像装置71から出力された画像データは、画像処理系72に入力される。画像処理系72は、入力された画像データにエッジ検出処理などの画像処理を施し、処理後のデータを出力する。画像処理系72から出力されたデータは、制御装置90に入力される。 The imaging device 71 is disposed at a predetermined position downstream of the welding position P so as to face the passing region of the crimping terminal 80 that has been subjected to the welding process. In this example, it is provided facing the downstream position by a distance corresponding to 4 pitches (L × 4) from the welding position P. For the imaging device 71, an image sensor using a solid-state imaging device such as a CCD (Charge Coupled Dice) or a CMOS (Complementary Metal Oxide Semiconductor) is used. The imaging device 71 images the crimping portion 85 of the crimp terminal 80 and outputs the obtained image data. The image data output from the imaging device 71 is input to the image processing system 72. The image processing system 72 performs image processing such as edge detection processing on the input image data, and outputs the processed data. Data output from the image processing system 72 is input to the control device 90.
 上記のように構成されたレーザ溶接装置10は、圧着端子87の突き合わせ界面86に照射されるレーザ光LBの出力Wxを一定に保ち、圧着端子87の突き合わせ界面86に沿ってレーザ光LBを掃引しつつ照射することにより、圧着端子87の突き合わせ界面86を溶接し、その溶接後の突き合わせ界面86に形成されている溶接ビードのビード幅を測定する。これにより、被加工物の突き合わせ界面を高品質にレーザ溶接するだけでなく、誘電体多層膜平面ミラー31A以降の光学系(例えば、ガルバノスキャナ32、集光レンズ33)に異常があった場合にエラーを出すことも可能となる。つまり、フォトダイオード(PD)を用いた制御系が正常であるのにビード幅が所定の幅から外れた場合はガルバノスキャナ32等の光学系に異常があると判断することができる。 The laser welding apparatus 10 configured as described above keeps the output Wx of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87 constant, and sweeps the laser beam LB along the butt interface 86 of the crimp terminal 87. By irradiating, the butt interface 86 of the crimp terminal 87 is welded, and the bead width of the weld bead formed on the butt interface 86 after the welding is measured. Thereby, not only the butt interface of the workpiece is laser welded with high quality, but also when the optical system (for example, the galvano scanner 32 and the condenser lens 33) after the dielectric multilayer flat mirror 31A is abnormal. An error can be issued. In other words, if the control system using the photodiode (PD) is normal but the bead width deviates from the predetermined width, it can be determined that the optical system such as the galvano scanner 32 is abnormal.
 続いて、制御装置90を追加した場合を説明する。制御装置90は、このレーザ溶接装置1の全体の動作を統括制御するコンピュータシステムであり、レーザ出力制御手段及び溶接ビード幅測定手段として機能する。すなわち、制御装置90は、レーザ光出力モニタ装置62からの出力信号に基づいてレーザ光源20の出力を一定となるように制御し、画像処理系71からの画像データに基づいて、画像処理系72で溶接ビードの幅寸法を測定する。さらに、制御装置90は、レーザ光掃引速度制御手段として機能する。すなわち、制御装置90は、圧着端子87の突き合わせ界面86に照射されるレーザ光LBの出力を一定とした条件下におけるレーザ光LBの掃引速度と溶接ビードの幅寸法との相関を示す相関データを記憶しており、溶接ビードのビード幅の測定値と相関データとに基づいて、ガルバノスキャナ32によるレーザ光LBの掃引速度を制御する。 Subsequently, a case where the control device 90 is added will be described. The control device 90 is a computer system that performs overall control of the overall operation of the laser welding apparatus 1 and functions as laser output control means and welding bead width measurement means. That is, the control device 90 controls the output of the laser light source 20 to be constant based on the output signal from the laser light output monitor device 62, and the image processing system 72 based on the image data from the image processing system 71. Measure the width of the weld bead. Further, the control device 90 functions as a laser beam sweep speed control means. That is, the control device 90 generates correlation data indicating the correlation between the sweep speed of the laser beam LB and the width of the weld bead under the condition that the output of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87 is constant. The sweep speed of the laser beam LB by the galvano scanner 32 is controlled based on the measured value of the bead width of the weld bead and the correlation data.
 相関データは、圧着端子87の突き合わせ界面86に照射されるレーザ光LBの出力を一定に保ちつつ、レーザ光LBの掃引速度を異ならせた複数の条件で溶接を行い、溶接品質が良好であった溶接部の溶接ビードのビード幅とレーザ光LBの掃引速度とを記録し、その記録結果(実測値)から両者の相関を表す相関曲線(図3参照)を求め、これを数値化したものである。相関データは、レーザ光LBの出力Wxを一定として、掃引速度の値と溶接ビードの幅寸法の値とを対応させたデータテーブルとして、制御装置90の記憶部に記憶されている。データテーブルは、レーザ光の出力を一定に保ちつつ、レーザ光の掃引速度を異ならせた複数の条件で溶接する実験から得られた実測データであって、掃引速度の値と、溶接品質が良好であった溶接部の溶接ビードの幅寸法の値とを対応させたデータで構成されている。このパラメータとして、圧着端子80の製造に使用されるプレス金型の形状の経時変化を挙げることができる。例えば、突き合わせ界面86の隙間が広がってくる可能性がある。 Correlation data shows that welding was performed under a plurality of conditions with different sweep speeds of the laser beam LB while keeping the output of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87 constant, and the welding quality was good. The bead width of the weld bead and the sweep speed of the laser beam LB are recorded, and a correlation curve (see FIG. 3) representing the correlation between the two is obtained from the recorded result (actual measurement value), and this is quantified. It is. The correlation data is stored in the storage unit of the control device 90 as a data table in which the output Wx of the laser beam LB is constant and the value of the sweep speed is associated with the value of the width dimension of the weld bead. The data table is measured data obtained from an experiment in which welding is performed under a plurality of conditions with different laser beam sweep rates while keeping the laser beam output constant, and the sweep rate value and welding quality are good. It is comprised by the data which matched the value of the width dimension of the weld bead of the weld part which was. As this parameter, the temporal change of the shape of the press die used for manufacture of the crimp terminal 80 can be mentioned. For example, the gap of the butt interface 86 may be widened.
 上記のように構成されたレーザ溶接装置10は、圧着端子87の突き合わせ界面86に照射されるレーザ光LBの出力Wxを一定に保ち、圧着端子87の突き合わせ界面86に沿ってレーザ光LBを掃引しつつ照射することにより、圧着端子87の突き合わせ界面86を溶接し、その溶接後の突き合わせ界面86に形成されている溶接ビードのビード幅を測定する。そして、その測定値が目標値から外れた場合、その測定値と相関データ(図3参照)とに基づいて、その後の溶接時におけるレーザ光LBの掃引速度を制御する。 The laser welding apparatus 10 configured as described above keeps the output Wx of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87 constant, and sweeps the laser beam LB along the butt interface 86 of the crimp terminal 87. By irradiating, the butt interface 86 of the crimp terminal 87 is welded, and the bead width of the weld bead formed on the butt interface 86 after the welding is measured. When the measured value deviates from the target value, the sweep speed of the laser beam LB during the subsequent welding is controlled based on the measured value and the correlation data (see FIG. 3).
 たとえば、ビード幅の目標値が200μmの±5%つまり190~210μm,ビード幅上限合格値220μm,下限合格値180μmであるとする。レーザ溶接装置10の稼働を開始して、端子100個ごとにビード幅の平均値を求め、1~50000個までの圧着端子80のビード幅の平均値が全て200μmであったのに対して、50001~50101個の圧着端子80のビード幅の平均値が180μmとなった場合、目標値との差分10μmの信号をガルバノスキャナ32の制御系にフィードバックし、ビード幅が目標値である200μm±5%に収まるように、レーザ光LBの掃引速度を下限掃引速度側に向かってシフトするように制御する。そして、一連の作業によりビード幅が目標値に入るまでルーチン作業を繰り返す。ビード幅が上限もしくは下限合格値から出た場合はNGと判断してシステム全体を停止する。 For example, it is assumed that the target value of the bead width is ± 5% of 200 μm, that is, 190 to 210 μm, the bead width upper limit acceptable value is 220 μm, and the lower limit acceptable value is 180 μm. The operation of the laser welding apparatus 10 was started, and the average value of the bead width was obtained for every 100 terminals. The average value of the bead width of the crimp terminals 80 of 1 to 50000 was all 200 μm, When the average value of the bead width of the 50001 to 50101 crimp terminals 80 is 180 μm, a signal having a difference of 10 μm from the target value is fed back to the control system of the galvano scanner 32, and the bead width is the target value of 200 μm ± 5 Control is performed so that the sweep speed of the laser beam LB is shifted toward the lower limit sweep speed side so as to be within the range of%. The routine operation is repeated until the bead width reaches the target value by a series of operations. When the bead width comes out of the upper limit or lower limit pass value, it is judged as NG and the whole system is stopped.
 このように、圧着端子87の突き合わせ界面86へのレーザ光のLBの照射出力Wxを一定に保って溶接を行い、その溶接後の突き合わせ界面86に形成されている溶接ビードのビード幅を測定し、その測定値に基づいて、その後の溶接時のレーザ光LBの掃引速度を制御することにより、レーザ光LBの掃引速度vを、適正な範囲で一定に保たれている照射出力Wxとの関係において適正な値に制御して、圧着端子87の突き合わせ界面86を高品質にレーザ溶接することができる。 In this way, welding is performed while keeping the LB irradiation output Wx of the laser beam to the butt interface 86 of the crimp terminal 87 constant, and the bead width of the weld bead formed on the butt interface 86 after the welding is measured. Based on the measurement value, the sweep speed v of the laser beam LB at the time of subsequent welding is controlled, so that the sweep speed v of the laser beam LB is kept constant within an appropriate range. The butt interface 86 of the crimp terminal 87 can be laser-welded with high quality by controlling to an appropriate value.
 [第2の実施形態]
 図3を用いて説明した制御方法とは別の掃引速度制御方法を、図4の例で説明する。図4では、掃引速度に応じたビード幅の変化を表す曲線C1、C2、C3を示している。例えば、C1、C2、C3は突き合せの隙間が0μm、10μm、20μmのときの曲線とすることができる。
[Second Embodiment]
A sweep speed control method different from the control method described with reference to FIG. 3 will be described with reference to FIG. FIG. 4 shows curves C1, C2, and C3 representing changes in bead width according to the sweep speed. For example, C1, C2, and C3 can be curves when the butt gap is 0 μm, 10 μm, and 20 μm.
 まず、ビード幅が目標値200μmからずれて190μmとなった場合、そのときの掃引速度V1でビード幅が190μmとなる曲線C2をデータテーブルから見つける。その曲線C2がビード幅の目標値200μmと交わる点における掃引速度V2(v1>v2)の±20mm/secを設定する。設定した掃引速度内でビード幅の目標値200μmとなるように掃引速度を上下させ、ビード幅の目標値となった掃引速度を新たな掃引速度vに設定する。レーザ光LBの掃引速度vが当初の掃引速度v1からそれよりも遅い掃引速度v2に変更されたことで、その後の溶接においてはビード幅が目標値である200μmに制御される。上記では、複数の突き合せの隙間に対応付けたデータテーブルを使用したが、例えば、突合せ界面のローリングによるずれや、突き合せの隙間とローリングを組み合わせたデータテーブルを作成して制御装置90の記憶部に記憶することがより好ましい。 First, when the bead width deviates from the target value of 200 μm and becomes 190 μm, a curve C2 where the bead width becomes 190 μm at the sweep speed V1 is found from the data table. The sweep speed V2 (v1> v2) ± 20 mm / sec at the point where the curve C2 intersects the target value 200 μm of the bead width is set. The sweep speed is increased or decreased so that the target value of the bead width becomes 200 μm within the set sweep speed, and the sweep speed that has become the target value of the bead width is set as a new sweep speed v. By changing the sweep speed v of the laser beam LB from the initial sweep speed v1 to a slower sweep speed v2, the bead width is controlled to a target value of 200 μm in the subsequent welding. In the above, a data table associated with a plurality of matching gaps is used. However, for example, a data table in which a deviation due to rolling of a butt interface or a matching gap and rolling is created and stored in the control device 90 is stored. More preferably, it is stored in the part.
 [第3の実施形態]
 図5は本発明のレーザ溶接装置の第3の実施形態を示すシステム構成図である。ここでは、第1の実施形態と共通の構成要素については図中に同一符号を付し、説明を適宜省略する。第1の実施形態では、ガルバノスキャナ32を備え、レーザ光源20からのレーザ光LBをガルバノスキャナ32内の2つのミラー32X、32YでXY方向(水平方向)に振ることにより、圧着端子87の突き合わせ界面86に沿ってレーザ光LBを掃引する構成を採用しているが、図5に示す第3の実施形態では、レーザ加工ヘッド90を備え、そのレーザ加工ヘッド90自体をXY方向(水平方向)に移動させることにより、レーザ光LBを掃引する。レーザ加工ヘッド90内には、レーザ光源20からのレーザ光LBを下向きに直角に反射させて溶接加工位置Pに落射させる誘電体多層膜平面ミラー91と、誘電体多層膜平面ミラー91からのレーザ光LBを圧着端子87の突き合わせ界面86の位置に集光させる集光レンズ92とが設けられている。さらに、レーザ加工ヘッド90には、レーザ光出力モニタ装置62が設けられている。レーザ光源20からのレーザ光LBは、誘電体多層膜平面ミラー91を透過してレーザ光出力モニタ装置62の受光部に入射する。
[Third Embodiment]
FIG. 5 is a system configuration diagram showing a third embodiment of the laser welding apparatus of the present invention. Here, constituent elements common to the first embodiment are denoted by the same reference numerals in the drawing, and description thereof will be omitted as appropriate. In the first embodiment, the galvano scanner 32 is provided, and the laser light LB from the laser light source 20 is shaken in the XY direction (horizontal direction) by the two mirrors 32X and 32Y in the galvano scanner 32, thereby matching the crimp terminal 87. Although the configuration in which the laser beam LB is swept along the interface 86 is adopted, the third embodiment shown in FIG. 5 includes a laser processing head 90, and the laser processing head 90 itself is XY direction (horizontal direction). The laser beam LB is swept by moving to. In the laser processing head 90, a dielectric multilayer flat mirror 91 that reflects the laser beam LB from the laser light source 20 downward at right angles and falls on the welding processing position P, and a laser from the dielectric multilayer flat mirror 91. A condensing lens 92 that condenses the light LB at the position of the butt interface 86 of the crimp terminal 87 is provided. Further, the laser processing head 90 is provided with a laser light output monitoring device 62. The laser beam LB from the laser light source 20 passes through the dielectric multilayer flat mirror 91 and enters the light receiving unit of the laser beam output monitor device 62.
 第3の実施形態においても、レーザ光源20から出力されたレーザ光LBの一部のレーザ光LB(pd)をモニタすることにより、圧着端子87の突き合わせ界面86に照射されるレーザ光LBの出力Wxを一定に保ち、圧着端子87の突き合わせ界面86に沿ってレーザ光LBを掃引しつつ照射することにより、圧着端子87の突き合わせ界面86を溶接し、その溶接後の突き合わせ界面86に形成されている溶接ビードのビード幅を測定する。そして、その測定値が目標値から外れた場合、その測定値と相関データ(図3参照)とに基づいて、掃引方向へのレーザ加工ヘッド90の移動速度を制御することにより、圧着端子87の突き合わせ界面86を高品質にレーザ溶接することができる。 Also in the third embodiment, by monitoring a part of the laser beam LB (pd) of the laser beam LB output from the laser light source 20, the output of the laser beam LB irradiated to the butt interface 86 of the crimp terminal 87. By keeping Wx constant and irradiating the butt interface 86 of the crimp terminal 87 while sweeping the laser beam LB, the butt interface 86 of the crimp terminal 87 is welded and formed at the butt interface 86 after the welding. Measure the bead width of the weld bead. When the measured value deviates from the target value, the moving speed of the laser machining head 90 in the sweep direction is controlled based on the measured value and the correlation data (see FIG. 3), thereby The butt interface 86 can be laser welded with high quality.
 [その他の実施形態]
 本発明の構成は上記実施形態の構成に限定されるものではない。たとえば、各種ミラーやレンズの配置、溶接加工位置PからPD間のミラーの枚数などは適宜変更可能である。ただし、PD62の設置位置は、溶接加工位置Pからの反射光(レーザの散乱光つまりは戻り光)がミラーから透過してくる位置にあってはならない。これは戻り光成分を誤ってレーザの出力として検知し、測定したい出力に合算してしまう可能性があるからである。なお、PD62は、被加工物に照射されるレーザ光の出力を検出すればよく、例えば、PD62の設置位置を、加工物の直前、つまり溶接加工位置Pの直前にしてもよい。この場合も、例えば溶接加工位置Pの直前にミラーなどを配置して、PD62が溶接加工位置Pからの反射光を受光しないようにする。
[Other Embodiments]
The configuration of the present invention is not limited to the configuration of the above embodiment. For example, the arrangement of various mirrors and lenses, the number of mirrors between the welding processing position P and the PD can be appropriately changed. However, the installation position of the PD 62 should not be a position where reflected light (laser scattered light, that is, return light) from the welding position P is transmitted from the mirror. This is because the return light component may be erroneously detected as the output of the laser and added to the output to be measured. The PD 62 only needs to detect the output of the laser beam irradiated to the workpiece. For example, the installation position of the PD 62 may be set immediately before the workpiece, that is, immediately before the welding position P. Also in this case, for example, a mirror or the like is disposed immediately before the welding position P so that the PD 62 does not receive the reflected light from the welding position P.
 また、被加工物についても圧着端子に限るものではない。すなわち本発明は金属板材相互の突合せ界面を有する被加工物全般のレーザ溶接装置に適用できる。また、上記の例では、レーザ光源20としてファイバレーザを使用した場合について説明したが、レーザ光源20はファイバレーザに限定されない。また、被加工物表面にめっき処理が施されている場合には、溶接後の突き合わせ界面において、メッキがない箇所の幅を、ビード幅として測定してもよい。また、撮像画像に限らず、例えばレーザ距離計を用いて溶接部の外径や内径の大きさの変化を計測することで、溶接ビードの幅寸法を測定してもよい。また、溶接ビード幅の測定結果などから何かしらの異常を検知した時には、同時に、プレス機による成型処理とレーザ溶接装置による溶接処理とを停止するようにしてもよい。 Also, the workpiece is not limited to the crimp terminal. That is, the present invention can be applied to a laser welding apparatus for all workpieces having a butt interface between metal sheets. In the above example, the case where a fiber laser is used as the laser light source 20 has been described. However, the laser light source 20 is not limited to a fiber laser. Further, when the surface of the workpiece is plated, the width of the portion where there is no plating at the butt interface after welding may be measured as the bead width. In addition, the width dimension of the weld bead may be measured by measuring a change in the outer diameter or inner diameter of the welded part using, for example, a laser distance meter, without being limited to the captured image. Further, when any abnormality is detected from the measurement result of the weld bead width, the molding process by the press machine and the welding process by the laser welding apparatus may be stopped simultaneously.
10 レーザ溶接装置
20 レーザ光源
30 レーザ照射光学系
32 ガルバノスキャナ(レーザ掃引照射手段)
40 送り装置
50 クランプ装置
60 レーザ出力制御系
61 レーザ光分岐光学系
71 撮像装置
80 制御装置(レーザ出力制御手段、溶接ビード幅測定手段、レーザ光掃引速度制御手段)
85 圧着部
86 突き合わせ界面
87 圧着端子(被加工物)
LB レーザ光
P 溶接加工位置
DESCRIPTION OF SYMBOLS 10 Laser welding apparatus 20 Laser light source 30 Laser irradiation optical system 32 Galvano scanner (laser sweep irradiation means)
40 Feeding device 50 Clamping device 60 Laser output control system 61 Laser beam branching optical system 71 Imaging device 80 Control device (laser output control means, weld bead width measuring means, laser light sweep speed control means)
85 Crimping part 86 Butt interface 87 Crimp terminal (workpiece)
LB Laser beam P Welding position

Claims (5)

  1.  突き合わせ界面を有する被加工物を溶接加工位置に順次供給しつつ、当該被加工物の突き合わせ界面をレーザ照射により溶接するレーザ溶接装置であって、
     レーザ光源から出力されたレーザ光を前記突き合わせ界面に沿って掃引しつつ照射するレーザ光掃引照射手段と、
     前記被加工物に照射されるレーザ光の出力を一定に保つべく前記レーザ光源の出力を制御するレーザ出力制御手段と、
     前記突き合わせ界面に沿って形成された溶接ビードの幅寸法を測定する溶接ビード幅測定手段と、を有するレーザ溶接装置。
    A laser welding apparatus that welds the butt interface of the workpiece by laser irradiation while sequentially supplying the workpiece having the butt interface to the welding position,
    Laser light sweep irradiation means for irradiating laser light output from a laser light source while sweeping along the butt interface;
    Laser output control means for controlling the output of the laser light source so as to keep the output of the laser light applied to the workpiece constant;
    And a welding bead width measuring means for measuring a width dimension of a weld bead formed along the butt interface.
  2.  前記溶接ビード幅測定手段による測定値に基づいて、前記レーザ光掃引照射手段によるレーザ光の掃引速度を制御するレーザ光掃引速度制御手段、を更に有する請求項1記載のレーザ溶接装置。 The laser welding apparatus according to claim 1, further comprising laser light sweep speed control means for controlling a laser light sweep speed by the laser light sweep irradiation means based on a measurement value obtained by the weld bead width measurement means.
  3.  前記レーザ光掃引速度制御手段は、
     前記被加工物に照射されるレーザ光の出力を一定とした条件下におけるレーザ光の掃引速度と溶接ビードの幅寸法との相関を示す相関データを記憶している記憶手段を有し、
    前記溶接ビード幅測定手段による測定値と前記相関データとに基づいて、前記レーザ光掃引照射手段によるレーザ光の掃引速度を制御する、請求項2記載のレーザ溶接装置。
    The laser light sweep speed control means is
    Storage means for storing correlation data indicating a correlation between the sweep speed of the laser beam and the width dimension of the weld bead under a condition in which the output of the laser beam irradiated to the workpiece is constant;
    The laser welding apparatus according to claim 2, wherein a laser beam sweep speed by the laser beam sweep irradiation unit is controlled based on a measurement value by the weld bead width measurement unit and the correlation data.
  4.  前記レーザ出力制御手段は、
    前記レーザ光源から出力されたレーザ光の一部を分岐させるレーザ光分岐手段と、
     前記レーザ光分岐手段により分岐させたレーザ光の出力を検出するレーザ光出力モニタ手段と、を備え、
     前記レーザ光出力モニタ手段により検出されたレーザ光の出力に基づいて前記レーザ光源の出力を制御する、請求項1乃至3のいずれかに記載のレーザ溶接装置。
    The laser output control means includes
    Laser beam branching means for branching a part of the laser beam output from the laser light source;
    Laser light output monitoring means for detecting the output of the laser light branched by the laser light branching means,
    The laser welding apparatus according to any one of claims 1 to 3, wherein an output of the laser light source is controlled based on an output of the laser light detected by the laser light output monitoring means.
  5.  前記溶接ビード幅測定手段は、
     前記被加工物を撮像するための撮像手段と、
     前記撮像手段により撮像された画像に基づいて前記溶接ビードの幅寸法を測定するための画像処理手段と、を有する請求項1乃至4のいずれかに記載のレーザ溶接装置。
    The weld bead width measuring means is
    Imaging means for imaging the workpiece;
    5. The laser welding apparatus according to claim 1, further comprising an image processing unit configured to measure a width dimension of the welding bead based on an image captured by the imaging unit.
PCT/JP2014/054392 2013-02-22 2014-02-24 Laser welding apparatus WO2014129639A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014512570A JP5657181B1 (en) 2013-02-22 2014-02-24 Laser welding equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013033954 2013-02-22
JP2013-033954 2013-02-22

Publications (1)

Publication Number Publication Date
WO2014129639A1 true WO2014129639A1 (en) 2014-08-28

Family

ID=51391415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054392 WO2014129639A1 (en) 2013-02-22 2014-02-24 Laser welding apparatus

Country Status (2)

Country Link
JP (1) JP5657181B1 (en)
WO (1) WO2014129639A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105033457A (en) * 2015-08-03 2015-11-11 东莞市德瑞精密设备有限公司 Battery module laser time-sharing welding machine
WO2021149683A1 (en) * 2020-01-20 2021-07-29 株式会社ニコン Processing system
CN117347901A (en) * 2023-10-23 2024-01-05 山东朝日电子有限公司 Laser power supply conductivity detection equipment and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207487A (en) * 1987-02-20 1988-08-26 Mitsubishi Electric Corp Laser beam machine
US4907169A (en) * 1987-09-30 1990-03-06 International Technical Associates Adaptive tracking vision and guidance system
JPH04127984A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Method and device for laser welding
JPH06344165A (en) * 1993-05-28 1994-12-20 Sollac Device for guiding and transferring sheet material
JP2006326640A (en) * 2005-05-26 2006-12-07 Toyota Motor Corp Laser welding method and equipment for laser welding
JP2007283337A (en) * 2006-04-14 2007-11-01 Nippon Steel Corp Method of manufacturing butt-welded metal plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207487A (en) * 1987-02-20 1988-08-26 Mitsubishi Electric Corp Laser beam machine
US4907169A (en) * 1987-09-30 1990-03-06 International Technical Associates Adaptive tracking vision and guidance system
JPH04127984A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Method and device for laser welding
JPH06344165A (en) * 1993-05-28 1994-12-20 Sollac Device for guiding and transferring sheet material
JP2006326640A (en) * 2005-05-26 2006-12-07 Toyota Motor Corp Laser welding method and equipment for laser welding
JP2007283337A (en) * 2006-04-14 2007-11-01 Nippon Steel Corp Method of manufacturing butt-welded metal plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105033457A (en) * 2015-08-03 2015-11-11 东莞市德瑞精密设备有限公司 Battery module laser time-sharing welding machine
WO2021149683A1 (en) * 2020-01-20 2021-07-29 株式会社ニコン Processing system
CN117347901A (en) * 2023-10-23 2024-01-05 山东朝日电子有限公司 Laser power supply conductivity detection equipment and method
CN117347901B (en) * 2023-10-23 2024-03-01 山东朝日电子有限公司 Laser power supply conductivity detection equipment and method

Also Published As

Publication number Publication date
JP5657181B1 (en) 2015-01-21
JPWO2014129639A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5649015B1 (en) Laser welding apparatus and laser welding method
US9985405B2 (en) Terminal manufacturing apparatus and welding apparatus
JP4531396B2 (en) Method and apparatus for evaluating workpiece joints
US7983470B2 (en) Method and device for assessing joins of workpieces
JP3802403B2 (en) Wire bonding method and apparatus
CN109834387B (en) Laser processing device for alarming abnormality of external optical system before laser processing
JP5657181B1 (en) Laser welding equipment
JP6581763B2 (en) Terminal manufacturing apparatus and method
CN111279462A (en) Joining device
JPH0249194B2 (en)
JP2515103B2 (en) Laser butt welding quality inspection method
US20220118548A1 (en) Method and processing machine for pore defect monitoring of a laser welding process for welding a plurality of bar conductors and associated computer program product
JP5981472B2 (en) Laser welding equipment
JPH01216246A (en) Quality deciding method for resistance welded article
US20230271272A1 (en) Method for determining a position of a workpiece for a laser machining process, and laser machining system
JP2014161865A (en) Laser welding device
JP2002213934A (en) Inspection of flat cable
Belke et al. Laser integrated process monitoring
JP6147023B2 (en) Crimping terminal manufacturing method and manufacturing apparatus
WO2020261472A1 (en) Method of detecting abnormality in laser beam and laser machining device
JPH03176654A (en) Method and device for inspecting solder zone
CN114769862A (en) Laser processing control method, device and system
CN115605313A (en) Method for analyzing a laser welding process and laser machining system
Gedicke et al. Comparison of different process monitoring methods for laser beam micro welding
JPH0543245B2 (en)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014512570

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754073

Country of ref document: EP

Kind code of ref document: A1