WO2014208029A1 - Scroll-type compressor - Google Patents

Scroll-type compressor Download PDF

Info

Publication number
WO2014208029A1
WO2014208029A1 PCT/JP2014/003106 JP2014003106W WO2014208029A1 WO 2014208029 A1 WO2014208029 A1 WO 2014208029A1 JP 2014003106 W JP2014003106 W JP 2014003106W WO 2014208029 A1 WO2014208029 A1 WO 2014208029A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition wall
scroll
refrigerant
port portion
downstream
Prior art date
Application number
PCT/JP2014/003106
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 薬師寺
洋悟 高須
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP14816917.0A priority Critical patent/EP3015709B1/en
Priority to CN201480016535.6A priority patent/CN105190041B/en
Publication of WO2014208029A1 publication Critical patent/WO2014208029A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/061Silencers using overlapping frequencies, e.g. Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a scroll compressor constituting, for example, an indoor air conditioner.
  • a scroll compressor used in a refrigeration cycle such as an air conditioner or a refrigeration apparatus includes a fixed scroll and a turning scroll.
  • the fixed scroll and the orbiting scroll are each formed by integrally forming a spiral wrap wall on one surface side of a disk-shaped end plate.
  • Such a fixed scroll and the orbiting scroll are made to face each other with the lap wall meshed, and the orbiting scroll is caused to revolve with an electric motor or the like with respect to the fixed scroll. Then, the refrigerant gas in the compression chamber is compressed by reducing the volume while moving the compression chamber formed between both wrap walls from the outer peripheral side to the inner peripheral side.
  • the refrigerant gas compressed in the compression chamber passes through the discharge port formed in the end plate of the fixed scroll, flows into the high pressure chamber between the discharge cover and the housing, and further from the discharge pipe provided in the housing to the refrigerant circuit. It is discharged toward.
  • Patent Document 1 proposes fitting a hollow cylindrical collar to the discharge port in order to suppress vibration and noise due to the discharge of fluid compressed by the turning motion of the scroll. By providing the collar, the excitation force of the in-cylinder pressure pulsation can be reduced, and an increase in compressor noise can be suppressed.
  • the vibration and noise generated by the scroll compressor covers a wide frequency range. Therefore, it is difficult to reduce noise in all frequency regions with one noise reduction means. Therefore, it is necessary to take measures according to the frequency to be reduced. For example, since the volume of a discharge port provided with a collar in Patent Document 1 is limited, it is difficult to reduce noise in a low frequency region.
  • the present invention has been made based on such a technical problem, and an object of the present invention is to provide a scroll compressor that can reduce noise in an arbitrary frequency band generated in the scroll compressor.
  • the resonance frequency at the discharge port can be changed.
  • the discharge port provided in the fixed scroll is divided into an upstream port portion and a downstream port portion, and the volume of the downstream port portion is increased to function as a muffler.
  • the downstream port part is divided into a plurality of rooms, a resonance frequency different from that of the downstream port part not provided with a partition is realized, thereby reducing sound in an arbitrary frequency band.
  • a plurality of partitioned rooms need to function as refrigerant passages.
  • the scroll compressor according to the present invention forms a turning scroll that is rotatably connected to the eccentric shaft portion of the main shaft, a compression chamber that compresses the refrigerant by facing the turning scroll, and the compressed refrigerant is high-pressure.
  • the fixed scroll which has the discharge port which discharges toward a chamber in an end plate, and the discharge cover which covers a discharge port are provided.
  • the discharge port has an upstream port portion provided on the upstream side in the refrigerant inflow direction, and a downstream port portion provided on the downstream side in the refrigerant inflow direction and having a larger volume than the upstream port portion. It consists of.
  • the downstream port portion includes a partition wall that divides the interior into a plurality of regions, and a refrigerant passage through which the refrigerant passes through the plurality of regions.
  • the scroll compressor of the present invention is provided with a partition wall at the downstream port portion of the discharge port, and the partition wall can be arbitrarily set in specifications such as length and height. That is, the partition wall can be tuned. Therefore, sound can be reduced in an arbitrary frequency band by tuning the partition wall corresponding to the target scroll compressor.
  • the discharge port has a circular inner space (cavity) including the downstream port portion.
  • the partition wall preferably has a circular cross section. This is to reduce the disturbance of the refrigerant flow passing through the downstream port portion.
  • One or more arcuate partition walls can be provided along the circumferential direction of the downstream port portion. In the case of providing a plurality, it is preferable to provide them at mutually symmetrical positions in order to reduce the disturbance of the refrigerant flow.
  • the method for providing the partition wall is arbitrary, but it is preferably formed integrally with the discharge cover.
  • the discharge cover is manufactured by casting in the same way as the orbiting scroll and fixed scroll.
  • the partition wall is integrally formed by casting, the manufacturing man-hours can be saved compared to the case of separately manufacturing and fixing the partition wall.
  • the partition wall is preferably formed integrally with the discharge cover via a rib.
  • the partition wall is tuned to reduce noise in an arbitrary frequency band and suppress noise.
  • FIG. 1 It is a longitudinal section showing a scroll type compressor in this embodiment.
  • A is the elements on larger scale near the discharge port of the fixed scroll of FIG. 1
  • (b) is a perspective view which shows typically the discharge port vicinity of (a).
  • (A)-(f) is a cross-sectional view for demonstrating the various installation states of a partition wall.
  • (A)-(c) is a cross-sectional view for demonstrating the handwork which improves the rigidity of a partition wall. It is a figure which shows the effect of the sound reduction in this embodiment.
  • the scroll compressor 1 of this embodiment includes an electric motor 12 and a scroll compression mechanism 2 driven by the electric motor 12 in a housing 10.
  • the scroll compressor 1 compresses refrigerant such as R410C and R407C and supplies the compressed refrigerant to a refrigerant circuit such as an air conditioner or a refrigerator.
  • refrigerant such as R410C and R407C
  • a refrigerant circuit such as an air conditioner or a refrigerator.
  • the housing 10 includes a bottomed cylindrical housing main body 101 having an open upper end, and a housing top 102 that covers an opening at the upper end of the housing main body 101.
  • a suction pipe 13 for introducing a refrigerant into the housing body 101 from an accumulator (not shown) is provided on a side surface of the housing body 101.
  • the housing top 102 is provided with a discharge pipe 14 that discharges the refrigerant compressed by the scroll compression mechanism 2.
  • the interior of the housing 10 is partitioned into a low pressure chamber 10A and a high pressure chamber 10B by a discharge cover 25.
  • the electric motor 12 includes a stator 15 and a rotor 16.
  • the stator 15 is provided with a winding that generates a magnetic field when electric power is supplied through a power supply unit (not shown) attached to the side surface of the housing body 101.
  • the rotor 16 includes a permanent magnet and a yoke as main elements, and a main shaft 17 is integrally coupled around the center.
  • An upper bearing 18 and a lower bearing 19 that rotatably support the main shaft 17 are provided on both ends of the main shaft 17 with the electric motor 12 interposed therebetween.
  • an eccentric pin 17A provided at the upper end of the main shaft 17 protrudes and is accommodated.
  • the scroll compression mechanism 2 includes a fixed scroll 20 and a turning scroll 30 that revolves with respect to the fixed scroll 20.
  • the fixed scroll 20 includes a fixed end plate 21 and a spiral wrap 22 erected from one surface of the fixed end plate 21.
  • the fixed scroll 20 is also provided with a discharge port 23 in the fixed end plate 21.
  • the discharge port 23 has an upstream port portion 23A having a circular opening shape (cavity) and a downstream port having a volume larger than that of the upstream port portion 23A.
  • Part 23B The upstream port portion 23A is disposed on the upstream side in the refrigerant flow direction A, and the downstream port portion 23B is disposed on the downstream side.
  • the upstream port portion 23 ⁇ / b> A communicates with a compression chamber PR formed between the fixed scroll 20 and the orbiting scroll 30 on the upstream side. Further, the downstream port portion 23 ⁇ / b> B communicates with the discharge port 27 of the discharge cover 25 that covers the upper side of the fixed scroll 20 on the downstream side.
  • a partition wall 40 is provided in the downstream port portion 23B.
  • the partition wall 40 is composed of partition walls 40a and 40b having the same shape and the same dimensions, each of which has an arcuate cross section.
  • the partition wall 40 partitions the downstream port portion 23B into the outer region OA and the inner region IA, and changes the natural frequency of the downstream port portion 23B.
  • the partition walls 40a and 40b are disposed at symmetrical positions around the center C of the downstream port portion 23B. By disposing the partition wall 40 at a symmetrical position, it is possible to reduce disturbance of the refrigerant flow in the downstream port portion 23B.
  • a gap G is provided between the circumferential ends E of the partition walls 40a and 40b.
  • the gap G is provided over the entire area of the partition walls 40a and 40b in the height direction, and communicates the outer region OA and the inner region IA in the radial direction.
  • the refrigerant that has flowed into the downstream port portion 23B flows into the discharge port 27 of the discharge cover 25 through the refrigerant passage that continues to the outer region OA, the gap G, and the inner region IA.
  • the partition wall 40 is formed integrally with the discharge cover 25, and is provided so that the tip thereof is in contact with the surface of the fixed end plate 21. The operation and effect of providing the partition wall 40 will be described later.
  • the orbiting scroll 30 is also provided with a disc-shaped orbiting end plate 31 and a spiral wrap 32 erected from one surface of the orbiting end plate 31.
  • a boss 34 is provided on the rear surface of the orbiting end plate 31 of the orbiting scroll 30, and a drive bush 36 is assembled to the boss 34 via a bearing.
  • An eccentric pin 17A is fitted inside the drive bush 36.
  • the orbiting scroll 30 is eccentrically coupled to the axis of the main shaft 17. Therefore, when the main shaft 17 rotates, the orbiting scroll 30 rotates (revolves) with the eccentric distance from the axis of the main shaft 17 as the orbiting radius.
  • An Oldham ring (not shown) that restrains rotation is provided between the orbiting scroll 30 and the main shaft 17 so that the orbiting scroll 30 does not rotate while revolving.
  • the compression chamber PR is formed point-symmetrically with respect to the spiral center portions (innermost peripheral portions) of the wraps 22 and 32, and the compression chamber reduces its volume as the orbiting scroll 30 turns. Gradually moved to the inner circumference. The refrigerant is compressed to the maximum at the center of the spiral.
  • the compression chamber PR in FIG. 1 shows this portion.
  • the volume of the compression chamber PR formed between the scrolls 20 and 30 is also reduced in the wrap height direction in the middle of the spiral. Therefore, in both the fixed scroll 20 and the orbiting scroll 30, the height of the wrap is made lower on the inner peripheral side than on the outer peripheral side, and the other end plate facing the stepped wrap is placed on the inner side from the outer peripheral side. On the circumferential side, it protrudes toward the inner surface of the end plate.
  • the electric motor 12 is excited and a refrigerant is introduced into the housing 10 through the suction pipe 13.
  • the electric motor 12 is energized, the main shaft 17 rotates, and the orbiting scroll 30 revolves with respect to the fixed scroll 20 accordingly.
  • the refrigerant is compressed in the compression chamber PR between the orbiting scroll 30 and the fixed scroll 20, and the refrigerant introduced into the low pressure chamber 10 ⁇ / b> A in the housing 10 from the suction pipe 13 is exchanged between the orbiting scroll 30 and the fixed scroll 20. Inhaled in between.
  • the refrigerant compressed in the compression chamber PR sequentially passes through the discharge port 23 of the fixed end plate 21 and the discharge port 27 of the discharge cover 25 and is discharged to the high pressure chamber 10B, and further discharged from the discharge pipe 14 to the outside. Is done. In this way, refrigerant suction, compression, and discharge are continuously performed.
  • the partition wall 40 is provided in the downstream port portion 23B, thereby partitioning the internal space of the downstream port portion 23B into the outer region OA and the inner region IA. By doing so, the natural frequency in the downstream port portion 23B is changed when the partition wall 40 is not provided. By changing the natural frequency in this way, it is possible to reduce sound in an arbitrary frequency band.
  • an arbitrary frequency band can be reduced by setting the length L of the partition wall 40 to 1 ⁇ 2 of the wavelength ⁇ of the sound to be reduced.
  • the length L of the partition wall 40 is increased, the low frequency sound can be reduced. On the contrary, as the length of the partition wall 40 is decreased, the high frequency sound tends to be reduced.
  • the length L but also the height T of the partition wall 40 is an object of tuning of the partition wall 40.
  • the relationship between the frequency and the volume reduction was examined for both the compressor provided with the partition wall 40 and the compressor not provided with the partition wall 40.
  • the result is shown in FIG.
  • the vertical axis represents the volume reduction, and the larger the value, the greater the amount of sound reduction.
  • FIG. 5 it has been found that by providing the partition wall 40 in a frequency band of 1.6 kHz, it is possible to reduce sound by about 25 dB.
  • the partition wall 40 it has been found that sound reduction can be promoted even in the frequency band of 4.0 to 5.0 kHz. From the above results, it was confirmed that by providing the partition wall 40 in the downstream port portion 23B, it is possible to reduce the sound corresponding to 1.6 kHz and 4.1 kHz that cause noise.
  • partition wall shape In the above, an example in which two partition walls 40a and 40b having the same shape and the same size are provided symmetrically has been described. However, the present invention is not limited to this, and various modifications can be made to the formation pattern of the partition wall 40. it can. With reference to FIG. 3, some examples are shown. For example, one gap G of the partition walls 40a and 40b can be connected to form a C-shaped partition wall 40 as shown in FIG. Thus, by increasing the length L of the arc of the partition wall 40, it is possible to reduce the sound of a lower frequency.
  • the symmetrical center C 'of the partition wall 40 (40a, 40b) can also be provided in the position eccentric from the center C of the downstream port part 23B.
  • the partition walls 40a and 40b from which the length of an arc differs can be used. By doing so, the sound of the frequency of a different area
  • the distance from the center C to the partition walls 40a and 40b can be varied.
  • the partition wall 40 can also be divided and provided in three or more (three in FIG.3 (d)).
  • the partition walls 40a, 40c, 40b, and 40d can also be provided in double in the radial direction. Also in this case, the downstream port portion 23B is partitioned into a plurality of regions. That is, each of the partition walls 40a to 40d is partitioned into a radially inner region and an outer region. This is effective when the arc length L of the partition wall 40 as a whole is increased to increase the sound reduction effect.
  • the partition wall 40 is not limited to being double, and the partition wall 40 may be triple or more.
  • the partition wall 40 may be spiral.
  • the spiral partition wall 40 partitions the downstream port portion 23 ⁇ / b> B into an inner area surrounded by the partition wall 40 in the radial direction and an outermost outermost area of the partition wall 40. Even when the partition wall 40 is formed in a spiral shape, the length L of the partition wall 40 can be increased, which is effective in reducing the sound of a lower frequency.
  • the refrigerant flowing in from the upstream port portion 23A passes through the downstream port portion 23B while flowing in a spiral shape along the partition wall 40, and is discharged to the discharge port 27. It should be noted that the forms shown in FIGS. 3A to 3F can be appropriately combined.
  • the partition wall 40 is not limited to an arc shape (or an elliptical arc shape), and various types of partition walls 40 such as a linear shape or a U-shape may be used. Further, when a plurality of, for example, two partition walls 40a and 40b are provided, they can be provided at asymmetric positions. In short, the form of the partition wall is not limited as long as the partition wall is tuned according to the frequency band to be reduced.
  • the partition wall 40 needs to have rigidity that can counteract the pressure received from the refrigerant passing through the discharge port 23.
  • the rigidity referred to here is exclusively related to the joint portion with the discharge cover 25. Therefore, in the present embodiment, as shown in FIG. 4A, ribs 41 projecting outward in the radial direction can be provided at the end portions E and E of the partition walls 40a and 40b. By providing the rib 41, the partition walls 40a and 40b are improved in rigidity against the pressure of the refrigerant from the inner region IA toward the outer side in the radial direction.
  • the rib 41 has the same height as the partition wall 40 and has a uniform width in the height direction, but is not limited to this as long as the effect of improving the rigidity can be obtained.
  • the rib 41 has a function of forming a diaphragm in addition to a function of improving rigidity. That is, by providing the rib 41, the refrigerant inlet / outlet 44 from the inner area IA to the outer area OA is throttled, so that the effect of reducing sound is increased.
  • the rib 42 can be provided at an arbitrary position between the end portions E and E, for example, at an intermediate position. By doing so, the rigidity of the partition wall 40 is further improved, and the partition wall 50 having a length of 1/2 L is formed between the rib 41 and the rib 42, so that the sound in the high frequency range is also reduced. I can sound.
  • a partition wall 43 having a corrugated cross section can also be applied as shown in FIG.
  • portions corresponding to the corrugated peaks and valleys exhibit the same action as the rib 41.
  • the partition wall 43 has higher rigidity.
  • the partition wall 40 is not limited to be formed integrally with the discharge cover 25 as long as the downstream port portion 23B is partitioned into the outer region OA and the inner region IA.
  • it may be formed integrally with the fixed end plate 21, or may be manufactured separately from the fixed end plate 21 and the discharge cover 25 and fixed to a predetermined position of the downstream port portion 23 ⁇ / b> B by an appropriate means.
  • the tip of the partition wall 40 is not necessarily in contact with the fixed end plate 21, and the tip of the partition wall 40 may be separated from the fixed end plate 21 as long as the sound reduction effect by the partition wall is obtained.

Abstract

The present invention provides a scroll-type compressor capable of reducing noise of any arbitrary frequency band occurring in the scroll-type compressor. This scroll-type compressor (1) is provided with: a revolving scroll (30) rotatably connected to an eccentric shaft part of a main shaft (17); a stationary scroll (20) facing the revolving scroll (30) to form a compression chamber (PR) for compressing refrigerant, and having an ejection port (23) in a stationary end plate (21), the ejection port being for ejecting compressed refrigerant into a high-pressure chamber (10B); and a discharge cover (25) for covering the ejection port (23). The ejection port (23) comprises an upstream port section (23A) provided on the upstream side of the direction in which refrigerant flows in, and a downstream port section (23B) provided on the downstream side of the direction in which refrigerant flows in, the downstream port section having greater capacity than the upstream port section. Moreover, the downstream port section (23B) is characterized in being provided with a partitioning wall (40) for partitioning the interior thereof into a plurality of areas, and a refrigerant passage whereby the refrigerant passes through the plurality of areas.

Description

スクロール型圧縮機Scroll compressor
 本発明は、例えば室内用の空気調和装置を構成するスクロール型圧縮機に関する。 The present invention relates to a scroll compressor constituting, for example, an indoor air conditioner.
 空気調和装置や冷凍装置などの冷凍サイクルに用いられるスクロール型圧縮機は、固定スクロールと旋回スクロールとを備える。固定スクロール、旋回スクロールは、それぞれ円板状の端板の一面側に、渦巻状のラップ壁が一体的に形成されたものである。このような固定スクロールと旋回スクロールを、ラップ壁を噛み合わせた状態で対向させ、固定スクロールに対して旋回スクロールを電動機等により公転旋回運動させる。そして、双方のラップ壁の間に形成される圧縮室を外周側から内周側に移動させつつその容積を減少させることで、圧縮室内の冷媒ガスの圧縮を行う。
 圧縮室で圧縮された冷媒ガスは、固定スクロールの端板に形成される吐出ポートを通過して、ディスチャージカバーとハウジングとの間の高圧室に流入し、さらにハウジングに設けられる吐出管から冷媒回路に向けて吐出される。
A scroll compressor used in a refrigeration cycle such as an air conditioner or a refrigeration apparatus includes a fixed scroll and a turning scroll. The fixed scroll and the orbiting scroll are each formed by integrally forming a spiral wrap wall on one surface side of a disk-shaped end plate. Such a fixed scroll and the orbiting scroll are made to face each other with the lap wall meshed, and the orbiting scroll is caused to revolve with an electric motor or the like with respect to the fixed scroll. Then, the refrigerant gas in the compression chamber is compressed by reducing the volume while moving the compression chamber formed between both wrap walls from the outer peripheral side to the inner peripheral side.
The refrigerant gas compressed in the compression chamber passes through the discharge port formed in the end plate of the fixed scroll, flows into the high pressure chamber between the discharge cover and the housing, and further from the discharge pipe provided in the housing to the refrigerant circuit. It is discharged toward.
 固定スクロールに形成される吐出ポートは、スクロール型圧縮機の性能、あるいは、騒音に影響を与えることから、種々の提案がなされている。
 例えば特許文献1には、スクロールの旋回運動で圧縮された流体の吐出による振動・騒音を抑制するために、吐出ポートに中空円筒状のカラーを嵌着させることが提案されている。当該カラーを設けることで、筒内圧力脈動の加振力を低減することができ、圧縮機騒音の増加を抑えられるとしている。
Since the discharge port formed in the fixed scroll affects the performance of the scroll compressor or noise, various proposals have been made.
For example, Patent Document 1 proposes fitting a hollow cylindrical collar to the discharge port in order to suppress vibration and noise due to the discharge of fluid compressed by the turning motion of the scroll. By providing the collar, the excitation force of the in-cylinder pressure pulsation can be reduced, and an increase in compressor noise can be suppressed.
実開平4-82391号公報Japanese Utility Model Publication No. 4-82391
 ところが、スクロール型圧縮機が発生させる振動・騒音は、広範な周波数領域にわたる。したがって、一つの騒音低減手段により全ての周波数領域の騒音を低減することは困難である。したがって、低減させたい周波数に応じた対策が必要である。例えば、特許文献1においてカラーが設けられる吐出ポートは容積が限られているため、低周波数領域の騒音を低減するのは困難である。
 本発明は、このような技術的課題に基づいてなされたもので、スクロール型圧縮機に生じる任意の周波数帯の騒音を低減できるスクロール型圧縮機を提供することを目的とする。
However, the vibration and noise generated by the scroll compressor covers a wide frequency range. Therefore, it is difficult to reduce noise in all frequency regions with one noise reduction means. Therefore, it is necessary to take measures according to the frequency to be reduced. For example, since the volume of a discharge port provided with a collar in Patent Document 1 is limited, it is difficult to reduce noise in a low frequency region.
The present invention has been made based on such a technical problem, and an object of the present invention is to provide a scroll compressor that can reduce noise in an arbitrary frequency band generated in the scroll compressor.
 吐出ポートの長さ及び容積(以下、仕様と総称する)を変えることで、吐出ポートにおける共鳴周波数を変えることができる。しかし、スクロール型圧縮機の寸法の制約上から、吐出ポートの仕様をさほど大きく変えることができないため、共鳴周波数も変えることができない。
 そこで、本発明では、固定スクロールに設けられる吐出ポートを上流ポート部と下流ポート部に区分し、下流ポート部の容積を大きくすることでマフラ(muffler)として機能させる。加えて、下流ポート部をあたかも複数の部屋に仕切ることにより、仕切りを設けない下流ポート部とは異なる共鳴周波数を実現することで、任意の周波数帯の減音を図る。ただし、下流ポート部を冷媒が無理なく通過するためには、仕切られた複数の部屋が、冷媒の通路として機能する必要がある。
By changing the length and volume (hereinafter collectively referred to as the specification) of the discharge port, the resonance frequency at the discharge port can be changed. However, because of the limitations on the size of the scroll compressor, the specification of the discharge port cannot be changed so much, and the resonance frequency cannot be changed.
Therefore, in the present invention, the discharge port provided in the fixed scroll is divided into an upstream port portion and a downstream port portion, and the volume of the downstream port portion is increased to function as a muffler. In addition, by dividing the downstream port part into a plurality of rooms, a resonance frequency different from that of the downstream port part not provided with a partition is realized, thereby reducing sound in an arbitrary frequency band. However, in order for the refrigerant to pass through the downstream port portion without difficulty, a plurality of partitioned rooms need to function as refrigerant passages.
 すなわち本願発明のスクロール型圧縮機は、主軸の偏心軸部に回転自在に連結される旋回スクロールと、旋回スクロールと対向することで冷媒を圧縮する圧縮室を形成し、かつ圧縮された冷媒を高圧室に向けて吐出する吐出ポートを端板に有する固定スクロールと、吐出ポートを覆うディスチャージカバーと、を備える。
 本発明のスクロール型圧縮機は、吐出ポートが、冷媒の流入方向の上流側に設けられる上流ポート部と、冷媒の流入方向の下流側に設けられ、上流ポート部より容積の大きい下流ポート部と、からなる。しかも、下流ポート部は、その内部を複数の領域に仕切る仕切り壁と、複数の領域を冷媒が通過する冷媒通路と、を備えることを特徴とする。
That is, the scroll compressor according to the present invention forms a turning scroll that is rotatably connected to the eccentric shaft portion of the main shaft, a compression chamber that compresses the refrigerant by facing the turning scroll, and the compressed refrigerant is high-pressure. The fixed scroll which has the discharge port which discharges toward a chamber in an end plate, and the discharge cover which covers a discharge port are provided.
In the scroll compressor of the present invention, the discharge port has an upstream port portion provided on the upstream side in the refrigerant inflow direction, and a downstream port portion provided on the downstream side in the refrigerant inflow direction and having a larger volume than the upstream port portion. It consists of. In addition, the downstream port portion includes a partition wall that divides the interior into a plurality of regions, and a refrigerant passage through which the refrigerant passes through the plurality of regions.
 本発明のスクロール型圧縮機は、吐出ポートの下流ポート部に仕切り壁を設けるが、この仕切り壁は長さ、高さ等の仕様を任意に設定することができる。つまり、仕切り壁をチューニングできる。したがって、対象とするスクロール型圧縮機に対応して仕切り壁をチューニングすることで、任意の周波数帯の減音ができる。 The scroll compressor of the present invention is provided with a partition wall at the downstream port portion of the discharge port, and the partition wall can be arbitrarily set in specifications such as length and height. That is, the partition wall can be tuned. Therefore, sound can be reduced in an arbitrary frequency band by tuning the partition wall corresponding to the target scroll compressor.
 一般に、下流ポート部も含めて、吐出ポートはその内部空間(キャビティ)が円形をなしている。これを前提とすると、仕切り壁は、横断面が円弧状であることが好ましい。下流ポート部を通過する冷媒の流れの乱れを小さくするためである。円弧状の仕切り壁は、下流ポート部の円周方向に沿って、単数又は複数を設けることができる。複数設ける場合には、相互に対称の位置に設けることが、冷媒の流れの乱れを小さくするために好ましい。 Generally, the discharge port has a circular inner space (cavity) including the downstream port portion. Assuming this, the partition wall preferably has a circular cross section. This is to reduce the disturbance of the refrigerant flow passing through the downstream port portion. One or more arcuate partition walls can be provided along the circumferential direction of the downstream port portion. In the case of providing a plurality, it is preferable to provide them at mutually symmetrical positions in order to reduce the disturbance of the refrigerant flow.
 本発明において、仕切り壁を設ける手立ては任意であるが、ディスチャージカバーと一体的に形成することが好ましい。ディスチャージカバーは、旋回スクロール、固定スクロールと同様に、鋳造で製造されるが、鋳造により仕切り壁を一体的に形成すれば、仕切り壁を別途作製して固定するのに比べて、製造工数を省ける。仕切り壁は、剛性を高くするために、リブを介してディスチャージカバーに一体的に形成することが好ましい。 In the present invention, the method for providing the partition wall is arbitrary, but it is preferably formed integrally with the discharge cover. The discharge cover is manufactured by casting in the same way as the orbiting scroll and fixed scroll. However, if the partition wall is integrally formed by casting, the manufacturing man-hours can be saved compared to the case of separately manufacturing and fixing the partition wall. . In order to increase rigidity, the partition wall is preferably formed integrally with the discharge cover via a rib.
 本発明によれば、スクロール型圧縮機に下流ポート部に仕切り壁を設けることにより、仕切り壁にチューニングを施すことで、任意の周波数帯の減音を図り、騒音を抑制する。 According to the present invention, by providing a partition wall at the downstream port portion of the scroll compressor, the partition wall is tuned to reduce noise in an arbitrary frequency band and suppress noise.
本実施形態におけるスクロール型圧縮機を示す縦断面図である。It is a longitudinal section showing a scroll type compressor in this embodiment. (a)は図1の固定スクロールの吐出ポート近傍の部分拡大図、(b)は(a)の吐出ポート近傍を模式的に示す斜視図である。(A) is the elements on larger scale near the discharge port of the fixed scroll of FIG. 1, (b) is a perspective view which shows typically the discharge port vicinity of (a). (a)~(f)は仕切り壁の種々の設置状態を説明するための横断面図である。(A)-(f) is a cross-sectional view for demonstrating the various installation states of a partition wall. (a)~(c)は仕切り壁の剛性を向上する手立てを説明するための横断面図である。(A)-(c) is a cross-sectional view for demonstrating the handwork which improves the rigidity of a partition wall. 本実施形態における減音の効果を示す図である。It is a figure which shows the effect of the sound reduction in this embodiment.
 以下、添付図面に示す実施形態に基づいてこの発明を詳細に説明する。
 図1に示すように、本実施形態のスクロール型圧縮機1は、ハウジング10内に、電動モータ12と、電動モータ12により駆動されるスクロール型圧縮機構2とを備えている。このスクロール型圧縮機1は、R410C、R407Cなどの冷媒を圧縮して例えば空気調和機や冷凍機などの冷媒回路に供給する。以下、スクロール型圧縮機1の構成を説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
As shown in FIG. 1, the scroll compressor 1 of this embodiment includes an electric motor 12 and a scroll compression mechanism 2 driven by the electric motor 12 in a housing 10. The scroll compressor 1 compresses refrigerant such as R410C and R407C and supplies the compressed refrigerant to a refrigerant circuit such as an air conditioner or a refrigerator. Hereinafter, the configuration of the scroll compressor 1 will be described.
 ハウジング10は、上端が開放された有底円筒状のハウジング本体101と、ハウジング本体101の上端の開口を覆うハウジングトップ102とを備えている。
 ハウジング本体101の側面には、図示しないアキュムレータからハウジング本体101内に冷媒を導入する吸入管13が設けられている。
 ハウジングトップ102には、スクロール型圧縮機構2によって圧縮された冷媒を吐出する吐出管14が設けられている。ハウジング10の内部は、ディスチャージカバー25によって低圧室10Aと高圧室10Bとに仕切られている。
The housing 10 includes a bottomed cylindrical housing main body 101 having an open upper end, and a housing top 102 that covers an opening at the upper end of the housing main body 101.
A suction pipe 13 for introducing a refrigerant into the housing body 101 from an accumulator (not shown) is provided on a side surface of the housing body 101.
The housing top 102 is provided with a discharge pipe 14 that discharges the refrigerant compressed by the scroll compression mechanism 2. The interior of the housing 10 is partitioned into a low pressure chamber 10A and a high pressure chamber 10B by a discharge cover 25.
 電動モータ12は、ステータ15と、ロータ16とを備えている。
 ステータ15には、ハウジング本体101の側面に取り付けられた図示しない電源ユニットを介して電力が供給されることで、磁界を発生する巻き線が設けられている。ロータ16は、永久磁石とヨークを主要素として備え、さらに主軸17が中心に一体に結合されている。
The electric motor 12 includes a stator 15 and a rotor 16.
The stator 15 is provided with a winding that generates a magnetic field when electric power is supplied through a power supply unit (not shown) attached to the side surface of the housing body 101. The rotor 16 includes a permanent magnet and a yoke as main elements, and a main shaft 17 is integrally coupled around the center.
 電動モータ12を挟んで主軸17の両端側には、主軸17を回転可能に支持する上部軸受18および下部軸受19が設けられている。
 上部軸受18に形成される収容空間190には、主軸17の上端に設けられる偏心ピン17Aが突出し、収容されている。
An upper bearing 18 and a lower bearing 19 that rotatably support the main shaft 17 are provided on both ends of the main shaft 17 with the electric motor 12 interposed therebetween.
In the accommodation space 190 formed in the upper bearing 18, an eccentric pin 17A provided at the upper end of the main shaft 17 protrudes and is accommodated.
 スクロール型圧縮機構2は、固定スクロール20と、固定スクロール20に対して公転旋回運動する旋回スクロール30とを備えている。
 固定スクロール20は、固定端板21と、固定端板21の一方の面から立設する渦巻状のラップ22と、を備えている。固定スクロール20は、また、固定端板21に吐出ポート23を備えている。
 吐出ポート23は、図2(a)に示すように、いずれも開口形状(キャビティ)が円形の上流ポート部23Aと、上流ポート部23Aに連通し、上流ポート部23Aよりも容積の大きい下流ポート部23Bとからなる。上流ポート部23Aは冷媒の流れる向きAの上流側に配置され、下流ポート部23Bが下流側に配置される。向きAの下流側に位置する下流ポート部23Bの開口面積を大きくすることで、当該部分における冷媒の圧力損失を低減できる。なお、図2(b)は、固定端板21について、ディスチャージカバー25を取り除いた状態における下流ポート部23Bの周囲近傍のみを示している。後述する図3(a)~(f)も同様である。
 上流ポート部23Aは、上流側が固定スクロール20と旋回スクロール30の間に形成される圧縮室PRに連通する。また、下流ポート部23Bは、下流側が、固定スクロール20の上方を覆うディスチャージカバー25の吐出ポート27に連通している。
The scroll compression mechanism 2 includes a fixed scroll 20 and a turning scroll 30 that revolves with respect to the fixed scroll 20.
The fixed scroll 20 includes a fixed end plate 21 and a spiral wrap 22 erected from one surface of the fixed end plate 21. The fixed scroll 20 is also provided with a discharge port 23 in the fixed end plate 21.
As shown in FIG. 2A, the discharge port 23 has an upstream port portion 23A having a circular opening shape (cavity) and a downstream port having a volume larger than that of the upstream port portion 23A. Part 23B. The upstream port portion 23A is disposed on the upstream side in the refrigerant flow direction A, and the downstream port portion 23B is disposed on the downstream side. By increasing the opening area of the downstream port portion 23B located on the downstream side in the direction A, the pressure loss of the refrigerant in the portion can be reduced. 2B shows only the vicinity of the downstream end portion 23B of the fixed end plate 21 in a state where the discharge cover 25 is removed. The same applies to FIGS. 3A to 3F described later.
The upstream port portion 23 </ b> A communicates with a compression chamber PR formed between the fixed scroll 20 and the orbiting scroll 30 on the upstream side. Further, the downstream port portion 23 </ b> B communicates with the discharge port 27 of the discharge cover 25 that covers the upper side of the fixed scroll 20 on the downstream side.
 下流ポート部23Bには、仕切り壁40が設けられている。仕切り壁40は、各々が円弧状の横断面をなしている同じ形状及び同じ寸法の仕切り壁40a,40bからなる。
 仕切り壁40は、下流ポート部23Bを外側領域OAと内側領域IAに仕切り、下流ポート部23Bの固有周波数を変化させる。仕切り壁40a,40bは、下流ポート部23Bの中心Cを中心として、対称の位置に配置されている。仕切り壁40を対称の位置に配置することにより、下流ポート部23Bにおける冷媒の流れの乱れを小さくすることができる。仕切り壁40a,40bの周方向の端部E,Eの間には隙間Gが設けられている。この隙間Gは、仕切り壁40a,40bの高さ方向の全域に亘って設けられるとともに、外側領域OAと内側領域IAを径方向に連通させる。下流ポート部23Bに流入した冷媒は、外側領域OA、隙間G及び内側領域IAに連なる冷媒通路を通って、ディスチャージカバー25の吐出ポート27に流入する。
 仕切り壁40は、ディスチャージカバー25と一体的に形成され、その先端が固定端板21の表面に接するように設けられている。
 仕切り壁40を設けることによる作用・効果については後述する。
A partition wall 40 is provided in the downstream port portion 23B. The partition wall 40 is composed of partition walls 40a and 40b having the same shape and the same dimensions, each of which has an arcuate cross section.
The partition wall 40 partitions the downstream port portion 23B into the outer region OA and the inner region IA, and changes the natural frequency of the downstream port portion 23B. The partition walls 40a and 40b are disposed at symmetrical positions around the center C of the downstream port portion 23B. By disposing the partition wall 40 at a symmetrical position, it is possible to reduce disturbance of the refrigerant flow in the downstream port portion 23B. A gap G is provided between the circumferential ends E of the partition walls 40a and 40b. The gap G is provided over the entire area of the partition walls 40a and 40b in the height direction, and communicates the outer region OA and the inner region IA in the radial direction. The refrigerant that has flowed into the downstream port portion 23B flows into the discharge port 27 of the discharge cover 25 through the refrigerant passage that continues to the outer region OA, the gap G, and the inner region IA.
The partition wall 40 is formed integrally with the discharge cover 25, and is provided so that the tip thereof is in contact with the surface of the fixed end plate 21.
The operation and effect of providing the partition wall 40 will be described later.
 旋回スクロール30も、円板状の旋回端板31と、旋回端板31の一方の面から立設する渦巻状のラップ32とを備えている。
 旋回スクロール30の旋回端板31の背面には、ボス34が設けられているとともに、そのボス34に軸受を介してドライブブッシュ36が組み付けられている。ドライブブッシュ36の内側には偏心ピン17Aが嵌められている。これにより、旋回スクロール30が主軸17の軸心に偏心して結合されるので、主軸17が回転すると、旋回スクロール30は、主軸17の軸心からの偏心距離を旋回半径として回転(公転)する。
 なお、旋回スクロール30が、公転しつつも自転はしないよう、旋回スクロール30と主軸17との間には、自転を拘束する図示しないオルダムリングが設けられている。
The orbiting scroll 30 is also provided with a disc-shaped orbiting end plate 31 and a spiral wrap 32 erected from one surface of the orbiting end plate 31.
A boss 34 is provided on the rear surface of the orbiting end plate 31 of the orbiting scroll 30, and a drive bush 36 is assembled to the boss 34 via a bearing. An eccentric pin 17A is fitted inside the drive bush 36. As a result, the orbiting scroll 30 is eccentrically coupled to the axis of the main shaft 17. Therefore, when the main shaft 17 rotates, the orbiting scroll 30 rotates (revolves) with the eccentric distance from the axis of the main shaft 17 as the orbiting radius.
An Oldham ring (not shown) that restrains rotation is provided between the orbiting scroll 30 and the main shaft 17 so that the orbiting scroll 30 does not rotate while revolving.
 互いに所定量だけ偏心し、180度位相をずらして噛み合わせられるラップ22,32は、旋回スクロール30の回転角に応じて複数箇所で互いに接触する。すると、ラップ22,32の渦巻きの中心部(最内周部)に対して点対称に圧縮室PRが形成されるとともに、旋回スクロール30の旋回に伴って、圧縮室はその容積を減少させながら次第に内周側に移動される。そして、渦巻きの中心部で冷媒が最大に圧縮される。図1の圧縮室PRはこの部分を示している。 The wraps 22 and 32 that are eccentric with each other by a predetermined amount and meshed with a phase difference of 180 degrees contact each other at a plurality of locations according to the rotation angle of the orbiting scroll 30. Then, the compression chamber PR is formed point-symmetrically with respect to the spiral center portions (innermost peripheral portions) of the wraps 22 and 32, and the compression chamber reduces its volume as the orbiting scroll 30 turns. Gradually moved to the inner circumference. The refrigerant is compressed to the maximum at the center of the spiral. The compression chamber PR in FIG. 1 shows this portion.
 このスクロール型圧縮機構2では、双方のスクロール20,30間に形成される圧縮室PRの容積を渦巻きの途中でラップの高さ方向にも減少させている。そのために、固定スクロール20および旋回スクロール30の双方において、ラップの高さを外周側よりも内周側で低くするとともに、その段差状のラップに対向する相手側の端板を外周側よりも内周側で、端板内面側に突出するようにしている。 In this scroll type compression mechanism 2, the volume of the compression chamber PR formed between the scrolls 20 and 30 is also reduced in the wrap height direction in the middle of the spiral. Therefore, in both the fixed scroll 20 and the orbiting scroll 30, the height of the wrap is made lower on the inner peripheral side than on the outer peripheral side, and the other end plate facing the stepped wrap is placed on the inner side from the outer peripheral side. On the circumferential side, it protrudes toward the inner surface of the end plate.
 以上の構成を備えるスクロール型圧縮機1を起動するには、電動モータ12を励磁するとともに、吸入管13を通じてハウジング10内に冷媒を導入する。
 電動モータ12が励磁されると主軸17が回転し、それに伴って旋回スクロール30が固定スクロール20に対して公転旋回運動する。すると、旋回スクロール30と固定スクロール20との間の圧縮室PRで冷媒が圧縮されるとともに、吸入管13からハウジング10内の低圧室10Aに導入された冷媒が旋回スクロール30と固定スクロール20との間に吸い込まれる。そして、圧縮室PR内で圧縮された冷媒は、固定端板21の吐出ポート23、ディスチャージカバー25の吐出ポート27を順次通過して高圧室10Bに吐出され、さらに吐出管14から外部へと吐出される。こうして、冷媒の吸入、圧縮、および吐出が連続して行われる。
In order to start the scroll compressor 1 having the above configuration, the electric motor 12 is excited and a refrigerant is introduced into the housing 10 through the suction pipe 13.
When the electric motor 12 is energized, the main shaft 17 rotates, and the orbiting scroll 30 revolves with respect to the fixed scroll 20 accordingly. Then, the refrigerant is compressed in the compression chamber PR between the orbiting scroll 30 and the fixed scroll 20, and the refrigerant introduced into the low pressure chamber 10 </ b> A in the housing 10 from the suction pipe 13 is exchanged between the orbiting scroll 30 and the fixed scroll 20. Inhaled in between. Then, the refrigerant compressed in the compression chamber PR sequentially passes through the discharge port 23 of the fixed end plate 21 and the discharge port 27 of the discharge cover 25 and is discharged to the high pressure chamber 10B, and further discharged from the discharge pipe 14 to the outside. Is done. In this way, refrigerant suction, compression, and discharge are continuously performed.
[作用・効果]
 次に、下流ポート部23Bに仕切り壁40を設けることによる作用・効果を説明する。
 固定スクロール20、および、旋回スクロール30で圧縮された冷媒は、圧縮室PRから上流ポート部23Aへ吐出し、上流ポート部23Aおよび下流ポート部23Bを順次通過する。下流ポート部23Bを通過した冷媒は、吐出ポート27から高圧室10Bに吐出される。
 この経路で高圧室10Bに吐出される冷媒は、各吐出ポートに対応する周波数で共鳴を生じさせる。共鳴が生じると、吐出ポートの振幅が急激に増大されるため、騒音が大きくなる。
 そこで、本実施形態では、下流ポート部23Bに仕切り壁40を設けることで、下流ポート部23Bの内部空間を外側領域OAと内側領域IAに仕切る。そうすることで、仕切り壁40を設けない場合と、下流ポート部23B内の固有振動数を変化させる。このように固有振動数を変化させることで、任意の周波数帯の減音を図ることができる。
[Action / Effect]
Next, the operation and effect by providing the partition wall 40 in the downstream port portion 23B will be described.
The refrigerant compressed by the fixed scroll 20 and the orbiting scroll 30 is discharged from the compression chamber PR to the upstream port portion 23A, and sequentially passes through the upstream port portion 23A and the downstream port portion 23B. The refrigerant that has passed through the downstream port portion 23B is discharged from the discharge port 27 to the high-pressure chamber 10B.
The refrigerant discharged into the high pressure chamber 10B through this path causes resonance at a frequency corresponding to each discharge port. When resonance occurs, the amplitude of the discharge port increases rapidly, resulting in increased noise.
Therefore, in the present embodiment, the partition wall 40 is provided in the downstream port portion 23B, thereby partitioning the internal space of the downstream port portion 23B into the outer region OA and the inner region IA. By doing so, the natural frequency in the downstream port portion 23B is changed when the partition wall 40 is not provided. By changing the natural frequency in this way, it is possible to reduce sound in an arbitrary frequency band.
 ここで、本実施形態では、仕切り壁40の長さLを、減音したい音の波長λの1/2に設定することによって、任意の周波数帯を減音することができる。
 任意の周波数の音を減音する原理は以下の通りである。
 一般に、音速度c、周波数f、および波長λの間には、以下の(式1)の関係が成り立つ。
 c[m/s]=f[Hz]×λ[m] (式1)
 (c:音速、f:周波数、λ:波長)
 減音したい周波数fを決定すれば、式(1)から波長λを算出できる。そして、算出した波長λの1/2を、仕切り壁40の長さLと設定する。
 なお、仕切り壁40の長さLを長くするほど、低周波数の音を減音でき、反対に、仕切り壁40の長さを短くするほど、高周波数の音を減音できる傾向がある。もっとも、長さLだけでなく、仕切り壁40の高さTも、仕切り壁40のチューニングの対象となる。
Here, in the present embodiment, an arbitrary frequency band can be reduced by setting the length L of the partition wall 40 to ½ of the wavelength λ of the sound to be reduced.
The principle of reducing the sound of an arbitrary frequency is as follows.
In general, the following relationship (Equation 1) holds among the sound velocity c, the frequency f, and the wavelength λ.
c [m / s] = f [Hz] × λ [m] (Formula 1)
(C: speed of sound, f: frequency, λ: wavelength)
If the frequency f to be reduced is determined, the wavelength λ can be calculated from the equation (1). Then, ½ of the calculated wavelength λ is set as the length L of the partition wall 40.
In addition, as the length L of the partition wall 40 is increased, the low frequency sound can be reduced. On the contrary, as the length of the partition wall 40 is decreased, the high frequency sound tends to be reduced. However, not only the length L but also the height T of the partition wall 40 is an object of tuning of the partition wall 40.
 本実施形態の効果を確認するために、仕切り壁40を設けた圧縮機と仕切り壁40を設けない圧縮機の双方について、周波数と減音量の関係を調べた。その結果を図5に示す。縦軸は減音量を示し、値が大きい方が減音された量が多いことを示している。
 図5に示すように、例えば、1.6kHzの周波数帯において、仕切り壁40を設けることで、約25dBの減音ができることが判った。同様に、仕切り壁40を設けることで、4.0~5.0kHzの周波数帯においても、減音を促進できることが判った。
 以上の結果から、下流ポート部23Bに仕切り壁40を設けることにより、騒音の原因となる1.6kHz、4.1kHzに対応する音を減音できることが確認された。
In order to confirm the effect of this embodiment, the relationship between the frequency and the volume reduction was examined for both the compressor provided with the partition wall 40 and the compressor not provided with the partition wall 40. The result is shown in FIG. The vertical axis represents the volume reduction, and the larger the value, the greater the amount of sound reduction.
As shown in FIG. 5, for example, it has been found that by providing the partition wall 40 in a frequency band of 1.6 kHz, it is possible to reduce sound by about 25 dB. Similarly, by providing the partition wall 40, it has been found that sound reduction can be promoted even in the frequency band of 4.0 to 5.0 kHz.
From the above results, it was confirmed that by providing the partition wall 40 in the downstream port portion 23B, it is possible to reduce the sound corresponding to 1.6 kHz and 4.1 kHz that cause noise.
[仕切り壁の形態例]
 以上では、2つの同形状及び同寸法の仕切り壁40a,40bを対称に設ける施例を示したが、本発明はこれに限定されず、仕切り壁40の形成パターンに種々の変更を加えることができる。図3を参照して、いくつかの例を示す。
 例えば、仕切り壁40a,40bの一方の隙間Gの部分を繋げて、図3(a)に示すようにC字状の仕切り壁40とすることができる。このように、仕切り壁40の弧の長さLを長くすることにより、より低周波数の音を減音できる。
 また、図3(b)に示すように、仕切り壁40(40a,40b)の対称の中心C’を、下流ポート部23Bの中心Cから、偏心した位置に設けることもできる。
 また、図3(c)に示すように、弧の長さの異なる仕切り壁40a,40bを用いることができる。そうすることで、異なる領域の周波数の音をそれぞれ減音することができる。この場合、図3(c)に示すように、中心Cから仕切り壁40a,40bまでの距離を相違させることができる。
 また、図3(d)に示すように、仕切り壁40を3つ以上(図3(d)では3つ)に区分して設けることもできる。仕切り壁40を多数設けることで、減音効果を増大させることができる。
 また、図3(e)に示すように、仕切り壁40a,40c、40b,40dを径方向に間隔をあけ、2重に設けることもできる。この場合も、下流ポート部23Bは複数の領域に仕切られる。つまり、各々の仕切り壁40a~40dについて、径方向の内側の領域と外側の領域に仕切られる。
 全体としての仕切り壁40の弧の長さLを長くし、減音効果を増大させたい場合に有効である。なお、2重に限らず、仕切り壁40を3重以上に設けることもできる。
 さらに、図3(f)に示すように、仕切り壁40を渦巻状にすることもできる。渦巻き状の仕切り壁40は、下流ポート部23Bを、仕切り壁40により径方向に取り囲まれる内側の領域と、仕切り壁40の最外周の外側の領域に仕切る。
 仕切り壁40を渦巻き状とすることによっても、仕切り壁40の長さLを長くできるため、より低周波数の音を減音するのに有効である。
 なお、上流ポート部23Aから流入した冷媒は、仕切り壁40に沿って渦巻状に流れつつ下流ポート部23Bを通過し、吐出ポート27に吐出される。
 なお、図3(a)~(f)に示される形態を適宜組み合わせることもできる。
 また、横断面が円弧状(又は、楕円弧状)に限らず、例えば、直線状、あるいは、コの字状等の種々の形態の仕切り壁40を用いることもできる。さらに、複数、例えば2つの仕切り壁40a,40bを設ける場合には、非対称の位置に設けることもできる。要は、減音したい周波数帯に合せて仕切り壁をチューニングする限り、仕切り壁の形態は問われない。
[Example of partition wall shape]
In the above, an example in which two partition walls 40a and 40b having the same shape and the same size are provided symmetrically has been described. However, the present invention is not limited to this, and various modifications can be made to the formation pattern of the partition wall 40. it can. With reference to FIG. 3, some examples are shown.
For example, one gap G of the partition walls 40a and 40b can be connected to form a C-shaped partition wall 40 as shown in FIG. Thus, by increasing the length L of the arc of the partition wall 40, it is possible to reduce the sound of a lower frequency.
Moreover, as shown in FIG.3 (b), the symmetrical center C 'of the partition wall 40 (40a, 40b) can also be provided in the position eccentric from the center C of the downstream port part 23B.
Moreover, as shown in FIG.3 (c), the partition walls 40a and 40b from which the length of an arc differs can be used. By doing so, the sound of the frequency of a different area | region can be reduced, respectively. In this case, as shown in FIG.3 (c), the distance from the center C to the partition walls 40a and 40b can be varied.
Moreover, as shown in FIG.3 (d), the partition wall 40 can also be divided and provided in three or more (three in FIG.3 (d)). By providing a large number of partition walls 40, the sound reduction effect can be increased.
Moreover, as shown in FIG.3 (e), the partition walls 40a, 40c, 40b, and 40d can also be provided in double in the radial direction. Also in this case, the downstream port portion 23B is partitioned into a plurality of regions. That is, each of the partition walls 40a to 40d is partitioned into a radially inner region and an outer region.
This is effective when the arc length L of the partition wall 40 as a whole is increased to increase the sound reduction effect. It should be noted that the partition wall 40 is not limited to being double, and the partition wall 40 may be triple or more.
Furthermore, as shown in FIG. 3 (f), the partition wall 40 may be spiral. The spiral partition wall 40 partitions the downstream port portion 23 </ b> B into an inner area surrounded by the partition wall 40 in the radial direction and an outermost outermost area of the partition wall 40.
Even when the partition wall 40 is formed in a spiral shape, the length L of the partition wall 40 can be increased, which is effective in reducing the sound of a lower frequency.
The refrigerant flowing in from the upstream port portion 23A passes through the downstream port portion 23B while flowing in a spiral shape along the partition wall 40, and is discharged to the discharge port 27.
It should be noted that the forms shown in FIGS. 3A to 3F can be appropriately combined.
In addition, the partition wall 40 is not limited to an arc shape (or an elliptical arc shape), and various types of partition walls 40 such as a linear shape or a U-shape may be used. Further, when a plurality of, for example, two partition walls 40a and 40b are provided, they can be provided at asymmetric positions. In short, the form of the partition wall is not limited as long as the partition wall is tuned according to the frequency band to be reduced.
[剛性向上の例]
 次に、仕切り壁40は、吐出ポート23を通過する冷媒から受ける圧力に対抗できる剛性を備えることが必要である。なお、ここで言う剛性は、専らディスチャージカバー25との接合部分に関するものである。
 そこで本実施形態は、図4(a)に示すように、仕切り壁40a,40bの端部E,Eに、径方向の外側に向けて張り出すリブ41を設けることができる。リブ41を設けることで、仕切り壁40a,40bは、内側領域IAから径方向の外側に向けた冷媒の圧力に対する剛性が向上する。リブ41は、仕切り壁40と同じ高さを有し、かつ、高さ方向に均等な幅を有しているものとするが、剛性向上の効果が得られるのであれば、これに限定されない。
 リブ41は、剛性向上の機能を有するのに加えて、絞りを形成する機能をも有する。つまり、リブ41を設けることで、内側領域IAから外側領域OAに向けた冷媒の出入口44が絞られるので、減音する効果が増大する。
[Example of improved rigidity]
Next, the partition wall 40 needs to have rigidity that can counteract the pressure received from the refrigerant passing through the discharge port 23. The rigidity referred to here is exclusively related to the joint portion with the discharge cover 25.
Therefore, in the present embodiment, as shown in FIG. 4A, ribs 41 projecting outward in the radial direction can be provided at the end portions E and E of the partition walls 40a and 40b. By providing the rib 41, the partition walls 40a and 40b are improved in rigidity against the pressure of the refrigerant from the inner region IA toward the outer side in the radial direction. The rib 41 has the same height as the partition wall 40 and has a uniform width in the height direction, but is not limited to this as long as the effect of improving the rigidity can be obtained.
The rib 41 has a function of forming a diaphragm in addition to a function of improving rigidity. That is, by providing the rib 41, the refrigerant inlet / outlet 44 from the inner area IA to the outer area OA is throttled, so that the effect of reducing sound is increased.
 リブ41に加え、図4(b)に示すように、端部E,Eの間の任意の位置、例えば中間位置にリブ42を設けることもできる。そうすることで、仕切り壁40の剛性のさらなる向上が図られるとともに、リブ41とリブ42の間には長さが1/2Lの仕切り壁50が形成されることで、高周波域の音も減音できる。 In addition to the rib 41, as shown in FIG. 4 (b), the rib 42 can be provided at an arbitrary position between the end portions E and E, for example, at an intermediate position. By doing so, the rigidity of the partition wall 40 is further improved, and the partition wall 50 having a length of 1/2 L is formed between the rib 41 and the rib 42, so that the sound in the high frequency range is also reduced. I can sound.
 剛性向上のために、図4(c)に示すように、横断面が波型の仕切り壁43を適用することもできる。仕切り壁43は、波型の山および谷に対応する部分が、リブ41と同様の作用を発揮し、しかも、この部分が複数あるため、仕切り壁43はより高い剛性をもつ。 In order to improve rigidity, a partition wall 43 having a corrugated cross section can also be applied as shown in FIG. In the partition wall 43, portions corresponding to the corrugated peaks and valleys exhibit the same action as the rib 41. Moreover, since there are a plurality of these portions, the partition wall 43 has higher rigidity.
 以上、実施形態について説明したが、上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
 例えば、仕切り壁40は、下流ポート部23Bを外側領域OAと内側領域IAに仕切れるのであれば、ディスチャージカバー25と一体に形成するのに限定されない。例えば、固定端板21と一体に形成することもできるし、固定端板21及びディスチャージカバー25とは別体として作製し、適宜の手段で下流ポート部23Bの所定位置に固定してもよい。
The embodiment has been described above. In addition to the above, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate without departing from the gist of the present invention.
For example, the partition wall 40 is not limited to be formed integrally with the discharge cover 25 as long as the downstream port portion 23B is partitioned into the outer region OA and the inner region IA. For example, it may be formed integrally with the fixed end plate 21, or may be manufactured separately from the fixed end plate 21 and the discharge cover 25 and fixed to a predetermined position of the downstream port portion 23 </ b> B by an appropriate means.
 さらに、仕切り壁40の先端は必ずしも固定端板21に接している必要はなく、仕切り壁による減音の効果が得られる限り、固定端板21から仕切り壁40の先端が離れていてもよい。 Furthermore, the tip of the partition wall 40 is not necessarily in contact with the fixed end plate 21, and the tip of the partition wall 40 may be separated from the fixed end plate 21 as long as the sound reduction effect by the partition wall is obtained.
1   スクロール型圧縮機
2   スクロール型圧縮機構
10  ハウジング
10A 低圧室
10B 高圧室
12  電動モータ
13  吸入管
14  吐出管
15  ステータ
16  ロータ
17  主軸
17A 偏心ピン
18  上部軸受
19  下部軸受
20  固定スクロール
21  固定端板
22,32 ラップ
23  吐出ポート
23A 上流ポート部
23B 下流ポート部
25  ディスチャージカバー
27  吐出ポート
30  旋回スクロール
31  旋回端板
34  ボス
36  ドライブブッシュ
40,40a~40d,43 仕切り壁
41,42 リブ
44 出入口
101 ハウジング本体
102 ハウジングトップ
190 収容空間
A   向き
OA  外側領域
IA  内側領域
C,C’ 中心
G   隙間
PR  圧縮室
DESCRIPTION OF SYMBOLS 1 Scroll type compressor 2 Scroll type compression mechanism 10 Housing 10A Low pressure chamber 10B High pressure chamber 12 Electric motor 13 Suction pipe 14 Discharge pipe 15 Stator 16 Rotor 17 Main shaft 17A Eccentric pin 18 Upper bearing 19 Lower bearing 20 Fixed scroll 21 Fixed end plate 22 , 32 Lap 23 Discharge port 23A Upstream port portion 23B Downstream port portion 25 Discharge cover 27 Discharge port 30 Revolving scroll 31 Revolving end plate 34 Boss 36 Drive bushes 40, 40a to 40d, 43 Partition walls 41, 42 Rib 44 Entrance / exit 101 Housing body 102 Housing top 190 Accommodating space A Orientation OA Outside area IA Inside area C, C ′ Center G Gap PR Compression chamber

Claims (7)

  1.  主軸の偏心軸部に回転自在に連結される旋回スクロールと、
     前記旋回スクロールと対向することで冷媒を圧縮する圧縮室を形成し、かつ圧縮された前記冷媒を高圧室に向けて吐出する吐出ポートを端板に有する固定スクロールと、
     前記吐出ポートを覆うディスチャージカバーと、
    を備え、
     前記吐出ポートは、
     前記冷媒の流入方向の上流側に設けられる上流ポート部と、前記冷媒の前記流入方向の下流側に設けられ、上流ポート部より容積の大きい下流ポート部と、からなり、
     前記下流ポート部は、
     その内部を複数の領域に仕切る仕切り壁と、
     複数の前記領域を前記冷媒が通過する冷媒通路と、を備える
    ことを特徴とするスクロール型圧縮機。
    An orbiting scroll rotatably connected to the eccentric shaft portion of the main shaft,
    A fixed scroll that forms a compression chamber for compressing the refrigerant by facing the orbiting scroll, and has a discharge port for discharging the compressed refrigerant toward the high-pressure chamber on an end plate;
    A discharge cover covering the discharge port;
    With
    The discharge port is
    An upstream port portion provided on the upstream side in the refrigerant inflow direction, and a downstream port portion provided on the downstream side in the refrigerant inflow direction and having a larger volume than the upstream port portion,
    The downstream port portion is
    A partition wall that divides the interior into a plurality of regions;
    And a refrigerant passage through which the refrigerant passes through the plurality of regions.
  2.  前記下流ポート部は、キャビティが円形をなしており、
     横断面が円弧状の前記仕切り壁が、前記下流ポート部の円周方向に沿って、単数又は複数設けられる、
    ことを特徴とする請求項1に記載のスクロール型圧縮機。
    The downstream port portion has a circular cavity.
    The partition wall having an arc-shaped cross section is provided singly or plurally along the circumferential direction of the downstream port portion.
    The scroll compressor according to claim 1.
  3.  前記仕切り壁は、
     前記ディスチャージカバーに一体的に形成される、
    ことを特徴とする請求項1又は2に記載のスクロール型圧縮機。
    The partition wall is
    Formed integrally with the discharge cover,
    The scroll compressor according to claim 1 or 2, characterized by the above-mentioned.
  4.  前記仕切り壁は、
     前記ディスチャージカバーにリブを介して一体的に形成される、
    ことを特徴とする請求項1~3のいずれか一項に記載のスクロール型圧縮機。
    The partition wall is
    Formed integrally with the discharge cover via a rib,
    The scroll compressor according to any one of claims 1 to 3, wherein
  5.  前記仕切り壁は、
     その先端が前記端板の表面に接するように設けられている、
    ことを特徴とする請求項1~4のいずれか一項に記載のスクロール型圧縮機。
    The partition wall is
    The tip is provided so as to contact the surface of the end plate,
    The scroll compressor according to any one of claims 1 to 4, wherein the scroll compressor is provided.
  6.  前記仕切り壁は、
     前記下流ポート部の中心部を中心として、対称の位置に配置されている、
    ことを特徴とする請求項1~5のいずれか一項に記載のスクロール型圧縮機。
    The partition wall is
    Centered on the central part of the downstream port part, it is arranged at a symmetrical position,
    The scroll compressor according to any one of claims 1 to 5, wherein:
  7.  前記仕切り壁は、
     前記下流ポート部の中心部から偏心した位置を中心として、対称の位置に配置されている、
    ことを特徴とする請求項1~5のいずれか一項に記載のスクロール型圧縮機。
    The partition wall is
    Centered on the position eccentric from the central part of the downstream port part, it is arranged at a symmetrical position,
    The scroll compressor according to any one of claims 1 to 5, wherein:
PCT/JP2014/003106 2013-06-27 2014-06-11 Scroll-type compressor WO2014208029A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14816917.0A EP3015709B1 (en) 2013-06-27 2014-06-11 Scroll-type compressor
CN201480016535.6A CN105190041B (en) 2013-06-27 2014-06-11 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-135496 2013-06-27
JP2013135496A JP6130748B2 (en) 2013-06-27 2013-06-27 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2014208029A1 true WO2014208029A1 (en) 2014-12-31

Family

ID=52141401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003106 WO2014208029A1 (en) 2013-06-27 2014-06-11 Scroll-type compressor

Country Status (4)

Country Link
EP (1) EP3015709B1 (en)
JP (1) JP6130748B2 (en)
CN (1) CN105190041B (en)
WO (1) WO2014208029A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110657097A (en) * 2018-06-29 2020-01-07 艾默生环境优化技术(苏州)有限公司 Damping device for exhaust valve in compressor, exhaust valve assembly and compressor
WO2020001379A1 (en) * 2018-06-29 2020-01-02 艾默生环境优化技术(苏州)有限公司 Damping apparatus for exhaust valve in compressor, exhaust valve assembly, and compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482391U (en) 1990-11-29 1992-07-17
JPH06307356A (en) * 1993-04-26 1994-11-01 Matsushita Electric Ind Co Ltd Scroll compressor
US5921761A (en) * 1997-04-17 1999-07-13 Copeland Corporation Scroll machine with discharge duct
JP2001132666A (en) * 1999-11-09 2001-05-18 Hitachi Ltd Displacement compressor
US20090232670A1 (en) * 2005-08-29 2009-09-17 Heng-Yi Lai Compressor muffler
JP2012122376A (en) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd Scroll compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474431A (en) * 1993-11-16 1995-12-12 Copeland Corporation Scroll machine having discharge port inserts
JPH08319963A (en) * 1995-03-22 1996-12-03 Mitsubishi Electric Corp Scroll compressor
CN202417950U (en) * 2011-12-15 2012-09-05 上海日立电器有限公司 Exhaust device for scroll compressor
CN202937456U (en) * 2012-09-21 2013-05-15 珠海格力电器股份有限公司 High-and-low-pressure division board with silencing function and scroll compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482391U (en) 1990-11-29 1992-07-17
JPH06307356A (en) * 1993-04-26 1994-11-01 Matsushita Electric Ind Co Ltd Scroll compressor
US5921761A (en) * 1997-04-17 1999-07-13 Copeland Corporation Scroll machine with discharge duct
JP2001132666A (en) * 1999-11-09 2001-05-18 Hitachi Ltd Displacement compressor
US20090232670A1 (en) * 2005-08-29 2009-09-17 Heng-Yi Lai Compressor muffler
JP2012122376A (en) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd Scroll compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3015709A4 *

Also Published As

Publication number Publication date
JP2015010519A (en) 2015-01-19
EP3015709A4 (en) 2016-06-22
EP3015709A1 (en) 2016-05-04
JP6130748B2 (en) 2017-05-17
CN105190041B (en) 2017-06-09
EP3015709B1 (en) 2017-03-01
CN105190041A (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP2009030469A (en) Scroll compressor
JP2007170253A (en) Scroll compressor
US20150192126A1 (en) Electric compressor
JP6147605B2 (en) Compressor
JP6130748B2 (en) Scroll compressor
JP6943215B2 (en) Electric compressor
EP2894341B1 (en) Compressor
JP2007154762A (en) Scroll compressor
JP2020153294A (en) Scroll compressor
WO2003064859A1 (en) Closed compressor
JP5758112B2 (en) Scroll compressor
JP6332336B2 (en) Screw compressor
JP5951456B2 (en) Scroll compressor
KR102259671B1 (en) Rotary compressor
JP2009167983A (en) Scroll compressor
WO2019017248A1 (en) Rotary compressor
JP5179955B2 (en) Positive displacement compressor
JP2009121490A (en) Scroll compressor
JP5916419B2 (en) Scroll compressor
WO2017183367A1 (en) Rotary compressor
JP2009191845A (en) Compressor
JPH11173285A (en) Fluid compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016535.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14816917

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014816917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014816917

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE