WO2015044486A1 - Multi-analysis laser spectrofluorometry system for oils - Google Patents

Multi-analysis laser spectrofluorometry system for oils Download PDF

Info

Publication number
WO2015044486A1
WO2015044486A1 PCT/ES2014/070718 ES2014070718W WO2015044486A1 WO 2015044486 A1 WO2015044486 A1 WO 2015044486A1 ES 2014070718 W ES2014070718 W ES 2014070718W WO 2015044486 A1 WO2015044486 A1 WO 2015044486A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
spectrofluorimetry
oils
analysis system
analysis
Prior art date
Application number
PCT/ES2014/070718
Other languages
Spanish (es)
French (fr)
Inventor
Alberto BENITO RUBIO
Original Assignee
Universidad De Valladolid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Valladolid filed Critical Universidad De Valladolid
Publication of WO2015044486A1 publication Critical patent/WO2015044486A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N15/075
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1734Sequential different kinds of measurements; Combining two or more methods
    • G01N2021/1736Sequential different kinds of measurements; Combining two or more methods with two or more light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel

Definitions

  • the system object of the invention provides information on the chemical composition of the oils, among which its application for classification of olive oil, which by means of this system can be determined if it is virgin or refined olive oil, as well as its state of photooxidation by fluorescence spectroscopy.
  • the automated filter laser fluorometer mode with servo motor for the fluorescence measurement of a band isolated from the spectrum the nephelometer mode of IR turbidity analysis, the RGB spectrophotometer mode and a meter Of temperature.
  • the field of application of the invention is within the sector of optoelectronics with industrial application dedicated to the olive production as quality control of the processes, as well as for implementation in equipment for intermediaries, packers, food sector, hospitality sector and restoration, including the final consumer, among others.
  • One of the points of interest of this invention is an optimization of the systems commonly used, which among others has a higher energy efficiency and allows its implementation in small and portable equipment.
  • the measurements for the determination of the types and quality of the oil are carried out through several multidisciplinary tests mainly: HPLC with various detectors, assessment of the degree of acidity, UV light absorption, taste tasting, smell and color (in the case of edible oils), among other methods.
  • HPLC with various detectors, assessment of the degree of acidity, UV light absorption, taste tasting, smell and color (in the case of edible oils), among other methods.
  • the analyzes are expensive, they are slow, they need a specialized team and a single analysis does not allow clear differentiation.
  • Fluorescence can be used as a very useful source of analytical information.
  • fluorescent compounds By means of fluorescence, the presence and concentration of natural fluorescent compounds can be analyzed, such as: phenolic compounds, tocopherols, pheophytins and their oxidation and conjugation products, among others, as well as harmful compounds, among which polycyclic aromatic hydrocarbons stand out.
  • the measurement obtained by the filter laser fluorimeter system allows the determination of the fluorescent compounds of a mixture with several fluorescent emission bands separately.
  • the turbidity in the infrared spectrum of the oil is a measurement with great potential for its implementation in analyzers, for example in olive oil the regulations require a maximum water content in the oil and the water causes an increase in the oil turbidity Producers need to remove water after filtration and an analyzer that allows to know the concentration of water, calculated through turbidity is very useful for this industry. It is also useful in the filtration process for measuring suspended particles.
  • This system allows measurements as a spectrophotometer to record the color of the oil, as well as the determination of the content in pigments such as chlorophylls and carotenoids, which are influenced by the state of maturity of the fruits, the variety and the process of extraction of the oil.
  • pigments such as chlorophylls and carotenoids
  • a spectrophotometer allows to know the best time to harvest olives in an easy way, among many other applications.
  • the system allows the temperature control simultaneously to any of the previous measurements for better monitoring of the samples.
  • Spectrophotometers for UV-VIS spectroscopy of the most diverse forms of construction are known to the state of the art. In general, they have a switchable light source to supply a beam of light that is required to perform the measurement, there being an optical system that drives the beam of light generated in the light source through a measurement cell to a detector light. Finally, spectrophotometers often have an evaluation unit that is connected to the light detector of the light source on the input side and that handles the measurement values supplied by the light detector.
  • the invention consists of a multi-analysis system for oils, which incorporates in the same device a laser spectrofluorimeter, an automated filter laser fluorometer with servo motor, an IR turbidity analysis nephelometer, an RGB spectrophotometer and a temperature meter. It allows measurements to be carried out sequentially or alternatively, with a design without overlapping in its placement.
  • the system has an interactive data collection device, together with a calculation device that collects the data, analyzes it and displays the results on a screen.
  • the meter allows to obtain a qualitative analysis of the undiluted oil, or a quantitative analysis of some components of the oil with great accuracy if it is diluted.
  • the main advantages of using a method based on fluorescence with laser emission source is that it does not need a monochromator, the sensitivity of fluorescence is between 100-1000 times greater than that of absorption techniques, it is a non-destructive technique and its Low price allows an analyzer based on this analytical chemistry technique to be available to any consumer.
  • the laser light is chosen as the excitation light source.
  • the key quality is the monochromatic emission and high temporal coherence of the laser, so it has been selected against other light sources such as LED or incandescent, such as xenon or mercury lamps; based on this property it is not necessary to incorporate a monochromator after the source of excitation, which allows to save costs, increase the simplicity of the equipment and reduce the size of the equipment considerably.
  • the laser emitters have a long service life and great energy efficiency that make it ideal for implementation in a portable device.
  • the use of the visible band corresponding to the violet-blue range is proposed as an embodiment of the invention, for which economic laser diodes exist. They emit a more energetic wavelength than other visible lasers, which increases their potential as a source of excitation light, allowing a better fluorescence to be visualized throughout the visible spectrum.
  • the filter fluorimeter mode different filters of a specific wavelength can be placed, so that for example the band corresponding to refined olive oils can be isolated, with which measure possible fraud of added compounds can be detected in the Virgin olive oils
  • an RGB LED is implemented that allows the same transmitter to register the Transmittance and Absorbance information at different emission wavelengths, making the measurement in 2 observations and subsequent calculation.
  • the turbidity analyzer nephelometer mode is implemented by an IR LED or near infrared emission IR laser, either of them can be used since turbidity analysis does not necessarily require a monochromatic emission.
  • Figures 5, 6 and 7 respectively show the fluorescence emission spectra of refined wheat, corn and sunflower oil.
  • Figure 1 shows how there is a data acquisition module, specifically a wavelength and light intensity meter (1) that allows different measurements to be recorded sequentially. of the sample, contained in the 4-sided spectrofluorimetry cuvette (4).
  • spectrofluorimetry in which the predominant fluorescent emission of the oil is recorded by excitation with a beam of monochromatic light, coming from the laser module (3) in this case 90 ° is proposed (as an example of a typical arrangement of spectrofluorimetry analysis).
  • filter fluorimeter mode only one band of the spectrum of interest will be read, which will be isolated by means of a filter (2) whose placement is driven by a servomotor (6)
  • the analysis module which consists of a computer instrument with programmable calculation device, it is proposed for its implementation the use of a programmable automaton.
  • this module includes a screen or display that shows the results and a keyboard that facilitates user control.
  • the programmable controller is responsible for receiving the signals from the sensor as well as activating the different transmitters sequentially or alternatively; processing the data and sending the results that are values with which the chemical composition of the oil can be evaluated and differentiate between its types.
  • this broad band of oxidation and conjugation compounds can be observed in most refined oils such as refined wheat oil in Figure 5, corn in Figure 6 and sunflower in Figure 7. Fluorescence emission spectra appearing in the figures were analyzed with a HITACHI F-3000 SPECTROPHOTOMETER FLUORESCENCE spectrofluorimeter.
  • the 650-700nm red fluorescent emission of virgin olive oil is due to the presence of chlorophylls A and B and pheophytins A and B (see Figure 2).
  • the fluorescent emission of green-bluish olive oil 420-600nm is due to refining processes: neutralization, discoloration, deodorization among others, which involve raising the temperature from 80 to 200 ° C.
  • chlorophylls and pheophytins are eliminated, the red fluorescent band is removed and on the other, other new oxidation and conjugation compounds are formed that are fluorescent, which are not present in virgin olive oil.
  • the emission band corresponding to polycyclic aromatic hydrocarbons can be detected with great intensity in the blue visible spectrum, whose determination is of great interest and among its characteristics it is worth mentioning that they are carcinogens, mutagens and teratogens.
  • this system is also useful for the determination of mixtures or derivatives of oils, which have combined emission spectra and in which their characteristic emission bands decrease their intensity as the oil is diluted in other fluids; for which thanks to the filter fluorimeter system its determination is made.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The invention relates to a multi-analysis system for oils, comprising, in a single device, a laser spectrofluorometer, a servomotor-automated filter laser fluorometer, an IR turbidity analysis nephelometer, an RGB spectrophotometer, and a temperature-sensor means. The system permits the measurements to be carried out in a sequential or alternative manner, and is designed such that there is no overlapping in the positioning of same. The system is provided with an interactive data collection device, as well as a computing device that compiles and analyses the data, and displays the results on a screen. Significant applications of the system include the classification between virgin olive oils and refined oils, as well as the determination of the degree of photo-oxidation of same.

Description

SISTEMA MULTIANÁLISIS DE ESPECTROFLUORI M ETRÍA LÁSER PARA  SPECTROFLUORI M ETRÍA LASER MULTIANALYSIS SYSTEM FOR
ACEITES  OILS
DESCRIPCIÓN DESCRIPTION
Objeto de la invención: El objeto al cual se refiere la invención que se describe en esta Patente consiste en un sistema de novedad y presenta importantes ventajas con respecto a los sistemas actualmente utilizados para estos mismos fines en el estado actual de la ciencia. Object of the invention: The object to which the invention described in this patent refers consists in a novelty system and presents important advantages with respect to the systems currently used for these same purposes in the current state of science.
El sistema objeto de la invención, proporciona información sobre la composición química de los aceites, entre los cuales cabe destacar su aplicación para clasificación del aceite oliva, que mediante este sistema puede determinarse si es aceite de oliva virgen o refinado, así como su estado de fotooxidación mediante espectroscopia de fluorescencia. The system object of the invention provides information on the chemical composition of the oils, among which its application for classification of olive oil, which by means of this system can be determined if it is virgin or refined olive oil, as well as its state of photooxidation by fluorescence spectroscopy.
Además para complementar la información incorpora en el mismo dispositivo, el modo de fluorímetro láser de filtro automatizado con servomotor para la medición de fluorescencia de una banda aislada del espectro, el modo nefelómetro de análisis de la turbidez IR, el modo espectrofotómetro RGB y un medidor de temperatura. In addition to complementing the information, it incorporates in the same device, the automated filter laser fluorometer mode with servo motor for the fluorescence measurement of a band isolated from the spectrum, the nephelometer mode of IR turbidity analysis, the RGB spectrophotometer mode and a meter Of temperature.
El campo de aplicación de la invención se encuentra dentro del sector de la optoelectrónica con aplicación industrial dedicado a la fabricación oleícola como control de calidad de los procesos, así como para implementación en equipos para intermediarios, envasadores, sector de la alimentación, sector hostelero y restauración, incluyendo al consumidor final, entre otros. The field of application of the invention is within the sector of optoelectronics with industrial application dedicated to the olive production as quality control of the processes, as well as for implementation in equipment for intermediaries, packers, food sector, hospitality sector and restoration, including the final consumer, among others.
Uno de los puntos de interés de esta invención supone una optimización de los sistemas habitualmente utilizados, que entre otros presenta una mayor eficiencia energética y permite su implementación en equipos de pequeño tamaño y portátil. One of the points of interest of this invention is an optimization of the systems commonly used, which among others has a higher energy efficiency and allows its implementation in small and portable equipment.
Antecedentes: Background:
En la actualidad las mediciones para la determinación de los tipos y calidad del aceite, se realizan mediante varias pruebas multidisciplinares principalmente: HPLC con diversos detectores, valoración del grado de acidez, absorción de luz UV, cata de sabor, olor y color (en el caso de los aceites comestibles), entre otros métodos. Los análisis resultan costosos, son lentos, necesitan un equipo especializado y un único análisis no permite la diferenciación clara. Tanto para los aceites vegetales y animales, como para los aceites minerales; la fluorescencia puede utilizarse como fuente de información analítica muy útil. At present, the measurements for the determination of the types and quality of the oil, are carried out through several multidisciplinary tests mainly: HPLC with various detectors, assessment of the degree of acidity, UV light absorption, taste tasting, smell and color (in the case of edible oils), among other methods. The analyzes are expensive, they are slow, they need a specialized team and a single analysis does not allow clear differentiation. For both vegetable and animal oils, and for mineral oils; Fluorescence can be used as a very useful source of analytical information.
Mediante la fluorescencia se puede analizar la presencia y concentración de los compuestos fluorescentes naturales como: compuestos fenólicos, tocoferoles, feofitinas y sus productos de oxidación y conjugación entre otros, así como compuestos perjudiciales entre los que destacan los hidrocarburos aromáticos policíclicos. By means of fluorescence, the presence and concentration of natural fluorescent compounds can be analyzed, such as: phenolic compounds, tocopherols, pheophytins and their oxidation and conjugation products, among others, as well as harmful compounds, among which polycyclic aromatic hydrocarbons stand out.
Dentro de las aplicaciones en los aceites vegetales, destaca su uso para el análisis del aceite de oliva. Esto se debe a que las diferentes clases de aceite de oliva presentan unas fluorescencias intensas y muy diferenciadas. Por ello, pueden desarrollarse análisis como: la discriminación entre los diferentes grados de calidad, detección de la adulteración, la autenticación de los aceites vírgenes, cuantificación de componentes fluorescentes, monitoreo de los cambios térmicos, la foto-oxidación y la calidad durante el almacenamiento. Los equipos actualmente utilizados para su análisis son los espectrofluorímetros convencionales con lámpara de xenón o vapor de mercurio, que utilizan fuentes de luz que emiten en un amplio rango de longitudes de onda, en los que generalmente un monocromador aisla las bandas del espectro, obteniéndose una estrecha banda de longitud de onda de excitación deseada. Entre sus desventajas destacan su precio elevado, la corta vida útil, el alto consumo energético, la necesidad de refrigeración, requieren sistemas adicionales como los monocromadores y son relativamente grandes. Todo ello dificulta su implementación en un equipo portátil de bajo coste de fabricación. Among the applications in vegetable oils, its use for the analysis of olive oil stands out. This is because the different kinds of olive oil have intense and very differentiated fluorescence. Therefore, analyzes such as: discrimination between different degrees of quality, detection of adulteration, authentication of virgin oils, quantification of fluorescent components, monitoring of thermal changes, photo-oxidation and quality during storage can be developed . The equipment currently used for its analysis are conventional spectrofluorimeters with xenon lamp or mercury vapor, which use light sources that emit in a wide range of wavelengths, in which generally a monochromator isolates the bands of the spectrum, obtaining a Narrow band of desired excitation wavelength. Among its disadvantages, its high price, short service life, high energy consumption, the need for cooling, require additional systems such as monochromators and are relatively large. All this hinders its implementation in a portable equipment with low manufacturing cost.
La medición obtenida mediante el sistema fluorímetro láser de filtro, permite la determinación por separado de los compuestos fluorescentes de una mezcla con varias bandas de emisión fluorescente. The measurement obtained by the filter laser fluorimeter system allows the determination of the fluorescent compounds of a mixture with several fluorescent emission bands separately.
Por otro lado, la turbidez en el espectro infrarrojo del aceite es una medición con gran potencial para su implementación en analizadores, por ejemplo en el aceite de oliva la normativa exige un contenido máximo de agua en el aceite y el agua provoca un incremento en la turbidez del aceite. Los productores necesitan eliminar agua después del filtrado y un analizador que permita conocer la concentración de agua, calculada a través de la turbidez es de gran utilidad para esta industria. También es útil en el proceso de filtración para medición de partículas suspendidas. On the other hand, the turbidity in the infrared spectrum of the oil is a measurement with great potential for its implementation in analyzers, for example in olive oil the regulations require a maximum water content in the oil and the water causes an increase in the oil turbidity Producers need to remove water after filtration and an analyzer that allows to know the concentration of water, calculated through turbidity is very useful for this industry. It is also useful in the filtration process for measuring suspended particles.
Este sistema permite realizar mediciones como espectrofotómetro para registrar el color del aceite, así como la determinación del contenido en pigmentos como por ejemplo los clorofílicos y carotenoides, que están influenciados por el estado de madurez de los frutos, la variedad y el proceso de extracción del aceite. En el caso del aceite de oliva, en la aceituna a medida que avanza la fecha de recolección, se producen descensos en los contenidos de pigmentos, así como cambios en las coordenadas colorimétricas. Un espectrofotometro permite conocer el mejor momento para la recolección de las aceitunas de una forma fácil, entre otras muchas aplicaciones. This system allows measurements as a spectrophotometer to record the color of the oil, as well as the determination of the content in pigments such as chlorophylls and carotenoids, which are influenced by the state of maturity of the fruits, the variety and the process of extraction of the oil. In the case of olive oil, in the olive as the harvest date progresses, there are decreases in pigment contents, as well as changes in the colorimetric coordinates. A spectrophotometer allows to know the best time to harvest olives in an easy way, among many other applications.
Por último, el sistema permite el control de la temperatura simultáneamente a cualquiera de las anteriores mediciones para un mejor monitoreo de las muestras. Finally, the system allows the temperature control simultaneously to any of the previous measurements for better monitoring of the samples.
Los espectrofotómetros para espectroscopia UV-VIS de las formas de construcción más diversas son conocidos por el estado de la técnica. En general disponen de una fuente de luz conmutable para suministrar un rayo de luz que se requiere para realizar la medición, existiendo un sistema óptico que conduce el rayo de luz generado en la fuente de luz a través de una célula de medida a un detector de luz. Por último los espectrofotómetros suelen disponer con frecuencia de una unidad de evaluación que por el lado de entrada está unida al detector de luz de la fuente de luz y que realiza el tratamiento de los valores de medición suministrados por el detector de luz. Spectrophotometers for UV-VIS spectroscopy of the most diverse forms of construction are known to the state of the art. In general, they have a switchable light source to supply a beam of light that is required to perform the measurement, there being an optical system that drives the beam of light generated in the light source through a measurement cell to a detector light. Finally, spectrophotometers often have an evaluation unit that is connected to the light detector of the light source on the input side and that handles the measurement values supplied by the light detector.
Descripción de la invención Description of the invention
La invención consiste en un sistema multianálisis para aceites, que incorpora en el mismo dispositivo un espectrofluorímetro láser, un fluorímetro láser de filtro automatizado con servomotor, un nefelómetro de análisis de la turbidez IR, un espectrofotometro RGB y un medidor de temperatura. Permite la realización de las mediciones de forma secuencial o alternativa, con un diseño sin solapamiento en su colocación. The invention consists of a multi-analysis system for oils, which incorporates in the same device a laser spectrofluorimeter, an automated filter laser fluorometer with servo motor, an IR turbidity analysis nephelometer, an RGB spectrophotometer and a temperature meter. It allows measurements to be carried out sequentially or alternatively, with a design without overlapping in its placement.
El sistema cuenta con un dispositivo de toma de datos interactivo, junto con un dispositivo de cálculo que recopila los datos, los analiza y muestra los resultados en una pantalla. El medidor permite obtener un análisis cualitativo del aceite sin diluir, o un análisis cuantitativo de algunos componentes del aceite con gran exactitud si se este se diluye. The system has an interactive data collection device, together with a calculation device that collects the data, analyzes it and displays the results on a screen. The meter allows to obtain a qualitative analysis of the undiluted oil, or a quantitative analysis of some components of the oil with great accuracy if it is diluted.
Las principales ventajas de utilizar un método basado en la fluorescencia con fuente de emisión láser, es que no necesita monocromador, la sensibilidad de la fluorescencia es entre 100-1000 veces mayor que la de las técnicas de absorción, es una técnica no destructiva y su bajo precio permite que un analizador basado en esta técnica de la química analítica esté al alcance de cualquier consumidor. The main advantages of using a method based on fluorescence with laser emission source, is that it does not need a monochromator, the sensitivity of fluorescence is between 100-1000 times greater than that of absorption techniques, it is a non-destructive technique and its Low price allows an analyzer based on this analytical chemistry technique to be available to any consumer.
Se elige como fuente de luz de excitación la luz láser. La cualidad clave es la emisión monocromática y alta coherencia temporal del láser, por ello se ha seleccionado frente a otras fuentes de luz como LED o de incandescencia, como lámparas de xenón o de mercurio; basándose en esta propiedad no es necesario incorporar un monocromador tras la fuente de excitación, lo que permite ahorrar costes, aumentar la sencillez del equipo y reducir el tamaño del equipo considerablemente. Además los emisores láser tienen una larga vida útil y gran eficiencia energética que lo hacen ideal para su implementación en un equipo portátil. Por otro lado existen módulos láser continuos de diodo en altas potencias a bajo coste, lo que permitirá excitar las muestras con una buena intensidad para su visualización sin grandes interferencias que impidan su diferenciación cualitativa. The laser light is chosen as the excitation light source. The key quality is the monochromatic emission and high temporal coherence of the laser, so it has been selected against other light sources such as LED or incandescent, such as xenon or mercury lamps; based on this property it is not necessary to incorporate a monochromator after the source of excitation, which allows to save costs, increase the simplicity of the equipment and reduce the size of the equipment considerably. In addition, the laser emitters have a long service life and great energy efficiency that make it ideal for implementation in a portable device. On the other hand there are continuous diode laser modules in high powers at low cost, which will allow to excite the samples with a good intensity for their visualization without large interferences that impede their qualitative differentiation.
Como longitud de onda de excitación se propone como ejemplo de realización de la invención la utilización de la banda visible correspondiente al rango violeta-azul, para la que existen diodos láser económicos. Emiten una longitud de onda más energética que el resto de láseres visibles, lo cual aumenta su potencial como fuente de luz de excitación, permitiendo que se visualice una mejor fluorescencia en todo el espectro visible. As an excitation wavelength, the use of the visible band corresponding to the violet-blue range is proposed as an embodiment of the invention, for which economic laser diodes exist. They emit a more energetic wavelength than other visible lasers, which increases their potential as a source of excitation light, allowing a better fluorescence to be visualized throughout the visible spectrum.
Al no ser luz ultravioleta, no será necesario utilizar cubetas de cuarzo, abaratando así los costes pudiéndose utilizar cubetas de plástico o vidrio. Since it is not ultraviolet light, it will not be necessary to use quartz cuvettes, thus lowering costs and being able to use plastic or glass cuvettes.
Por otro lado para el modo fluorímetro de filtro se pueden colocar diferentes filtros de una longitud de onda concreta, de forma que por ejemplo pueda aislarse la banda correspondiente a los aceites de oliva refinados, con cuya medida podrá detectarse posibles fraudes de compuestos añadidos en los aceites de oliva vírgenes. Para el modo espectrofotómetro se implementa un LED RGB que permita con el mismo emisor registrar la información de Transmitancia y Absorbancia a diferentes longitudes de onda de emisión, realizando la medición en 2 observaciones y posterior cálculo. On the other hand, for the filter fluorimeter mode, different filters of a specific wavelength can be placed, so that for example the band corresponding to refined olive oils can be isolated, with which measure possible fraud of added compounds can be detected in the Virgin olive oils For the spectrophotometer mode, an RGB LED is implemented that allows the same transmitter to register the Transmittance and Absorbance information at different emission wavelengths, making the measurement in 2 observations and subsequent calculation.
El modo nefelómetro analizador de turbidez se implementa un LED IR o láser IR de emisión infrarroja cercana, podrán utilizarse cualquiera de los dos ya que en análisis de turbidez no requiere necesariamente de una emisión monocromática. The turbidity analyzer nephelometer mode is implemented by an IR LED or near infrared emission IR laser, either of them can be used since turbidity analysis does not necessarily require a monochromatic emission.
Breve descripción de los dibujos Brief description of the drawings
La Figura 1 , permite completar la descripción de la invención y facilitar su interpretación. En ella se muestra: Figure 1, allows to complete the description of the invention and facilitate its interpretation. It shows:
(1) el medidor de longitud de onda e intensidad de luz (1) the wavelength and light intensity meter
(2) filtro para diferentes bandas de longitudes de onda (2) filter for different wavelength bands
(3) módulo láser (4) la cubeta de espectrofluorimetría de 4 caras iguales (3) laser module (4) the 4-sided spectrofluorimetry cuvette
(5) LED RGB (5) RGB LED
(6) Servomotor (6) Servomotor
(7) LED IR (8) Termómetro (7) IR LED (8) Thermometer
En las Figuras 2, 3 y 4 se presentan sucesivamente los espectros de emisión de fluorescencia del aceite de oliva virgen, aceite de oliva virgen tras su fotooxidación prolongada de 2 años y aceite de oliva refinado. The fluorescence emission spectra of virgin olive oil, virgin olive oil after its prolonged photooxidation of 2 years and refined olive oil are successively presented in Figures 2, 3 and 4.
En las Figuras 5, 6 y 7 se representan respectivamente los espectros de emisión de fluorescencia del aceite refinado de trigo, de maíz y de girasol. Figures 5, 6 and 7 respectively show the fluorescence emission spectra of refined wheat, corn and sunflower oil.
Modo de realización de la invención Embodiment of the invention
Debe entenderse que la invención se describe según una realización preferida de la misma, por lo que puede ser susceptible de modificaciones sin que ello suponga alteración alguna del fundamento de dicha invención, pudiendo afectar tales modificaciones, en especial, a la forma, al tamaño, la colocación y tipos de emisores del conjunto. It should be understood that the invention is described according to a preferred embodiment thereof, so that it may be susceptible to modifications without implying any alteration of the basis of said invention, such modifications being able to affect, in particular, the shape, size, the placement and types of issuers of the set.
Se describen a continuación los medios materiales necesarios y el alcance funcional de la invención En la Figura 1 se muestra cómo existe un módulo de toma de datos, concretamente un medidor de longitud de onda e intensidad de luz (1) que permite registrar secuencialmente diferentes mediciones de la muestra, contenida en la cubeta de espectrofluorimetría de 4 caras iguales (4). The necessary material means and the functional scope of the invention are described below. Figure 1 shows how there is a data acquisition module, specifically a wavelength and light intensity meter (1) that allows different measurements to be recorded sequentially. of the sample, contained in the 4-sided spectrofluorimetry cuvette (4).
Las mediciones que pueden realizarse son: espectrofluorimetría, en la que se registra la emisión fluorescente predominante del aceite mediante la excitación con un haz de luz monocromático, proveniente módulo láser (3) en este caso se propone 90° (como ejemplo de disposición típica de análisis de espectrofluorimetría). En el modo fluorímetro de filtro se realizará la lectura de sólo una banda del espectro de interés, que será aislada mediante un filtro (2) cuya colocación es accionada mediante un servomotor (6) The measurements that can be made are: spectrofluorimetry, in which the predominant fluorescent emission of the oil is recorded by excitation with a beam of monochromatic light, coming from the laser module (3) in this case 90 ° is proposed (as an example of a typical arrangement of spectrofluorimetry analysis). In the filter fluorimeter mode, only one band of the spectrum of interest will be read, which will be isolated by means of a filter (2) whose placement is driven by a servomotor (6)
Para el modo espectrofotómetro con la medición de Absorbancia y Transmitancia mediante la fuente de luz LED RGB (5) en colocación 180° y el modo nefelometro de medición de turbidez IR mediante la fuente de luz LED IR (7). Además se encuentra el sensor de temperatura (8) para un mejor monitoreo de los análisis frente a variaciones térmicas. For the spectrophotometer mode with the Absorbance and Transmittance measurement using the RGB LED light source (5) in 180 ° placement and the nephelometer mode of IR turbidity measurement using the IR LED light source (7). In addition there is the temperature sensor (8) for better monitoring of the analysis against thermal variations.
Por otro lado también es necesario el módulo de análisis, que consiste en un instrumento informático con dispositivo de cálculo programable, se propone para su implementación la utilización de un autómata programable. Además este módulo incluye una pantalla o display en el que se muestran los resultados y un teclado facilite el control por el usuario. Estas partes del equipo no se representan en las figuras porque no representan novedad y son utilizadas por la mayoría de los analizadores. El autómata programable se encarga de recibir las señales provenientes del sensor así como de activar los diferentes emisores de forma secuencial o alternativa; procesando los datos y enviando los resultados que son valores con los que podrá evaluarse la composición química del aceite y realizar una diferenciación entre sus tipos. On the other hand it is also necessary the analysis module, which consists of a computer instrument with programmable calculation device, it is proposed for its implementation the use of a programmable automaton. In addition, this module includes a screen or display that shows the results and a keyboard that facilitates user control. These parts of the equipment are not represented in the figures because they do not represent novelty and are used by most analyzers. The programmable controller is responsible for receiving the signals from the sensor as well as activating the different transmitters sequentially or alternatively; processing the data and sending the results that are values with which the chemical composition of the oil can be evaluated and differentiate between its types.
En el caso del aceite de oliva, una luz de longitud de onda próxima a 400 nm permite la visualización de las dos bandas del espectro características, para los aceites de oliva virgen la banda de las clorofilas y feofitinas y para el aceite de oliva refinado la banda de los compuestos de oxidación y de conjugación, como puede observarse en las Figuras 2, 3 y 4. In the case of olive oil, a wavelength light close to 400 nm allows the display of the two characteristic spectrum bands, for virgin olive oils the band of chlorophylls and pheophytins and for refined olive oil the band of the oxidation and conjugation compounds, as can be seen in Figures 2, 3 and 4.
Por otro lado esta amplia banda de los compuestos de oxidación y conjugación puede observarse en la mayoría de los aceites refinados como por ejemplo el aceite refinado de trigo en la Figura 5, de maíz en la Figura 6 y de girasol en la Figura 7. Los espectros de emisión de fluorescencia que aparecen en las figuras fueron analizados con un espectrofluorímetro HITACHI F-3000 SPECTROPHOTOMETER FLUORESCENCE. La emisión fluorescente roja 650-700nm del aceite de oliva virgen se debe a la presencia de las clorofilas A y B y feofitinas A y B (ver Figura 2). La emisión fluorescente del aceite de oliva verde-azulada 420-600nm (ver Figura 4) se debe a los procesos de refinado: neutralización, decoloración, desodorización entre otros, que implican elevar la temperatura desde 80 a 200°C. Por un lado se eliminan las clorofilas y feofitinas, eliminándose la banda fluorescente roja y por otro se forman otros nuevos compuestos de oxidación y conjugación que son fluorescentes, que no están presentes en el aceite de oliva virgen. On the other hand, this broad band of oxidation and conjugation compounds can be observed in most refined oils such as refined wheat oil in Figure 5, corn in Figure 6 and sunflower in Figure 7. Fluorescence emission spectra appearing in the figures were analyzed with a HITACHI F-3000 SPECTROPHOTOMETER FLUORESCENCE spectrofluorimeter. The 650-700nm red fluorescent emission of virgin olive oil is due to the presence of chlorophylls A and B and pheophytins A and B (see Figure 2). The fluorescent emission of green-bluish olive oil 420-600nm (see Figure 4) is due to refining processes: neutralization, discoloration, deodorization among others, which involve raising the temperature from 80 to 200 ° C. On the one hand, chlorophylls and pheophytins are eliminated, the red fluorescent band is removed and on the other, other new oxidation and conjugation compounds are formed that are fluorescent, which are not present in virgin olive oil.
Por otro lado en el aceite de oliva virgen expuesto a la luz solar prolongado, en caso del ejemplo 2 años (ver Figura 3) no se encuentra la banda de 650 y 700nm, debido a la foto-degradación de las clorofilas y sí se aprecia una pequeña banda entre 500 y 600nm, esta banda se encuentra en todos los aceites de oliva vírgenes y puede visualizarse mejor en el aceite virgen sin la banda de emisión de las clorofilas y feof ¡tinas. On the other hand, in virgin olive oil exposed to prolonged sunlight, in the case of example 2 years (see Figure 3) the band of 650 and 700 nm is not found, due to the photo-degradation of chlorophylls and it is appreciated a small band between 500 and 600nm, this band is found in all virgin olive oils and can visualize better in virgin oil without the emission band of chlorophylls and feoftins.
Por ejemplo en muchos aceites minerales puede detectarse con gran intensidad con emisión en el espectro visible azul la banda de emisión correspondiente a los Hidrocarburos aromáticos policíclicos, cuya determinación es de gran interés y entre sus características cabe destacar que son carcinógenos, mutágenos y teratógenos. For example, in many mineral oils, the emission band corresponding to polycyclic aromatic hydrocarbons can be detected with great intensity in the blue visible spectrum, whose determination is of great interest and among its characteristics it is worth mentioning that they are carcinogens, mutagens and teratogens.
Por último este sistema también es útil para determinación de mezclas o derivados de los aceites, los cuales presentan espectros de emisión combinados y en la que sus bandas características de emisión decrecen su intensidad a medida que el aceite es diluido en otros fluidos; para los cuales gracias al sistema de fluorímetro de filtro se realiza su determinación. Finally, this system is also useful for the determination of mixtures or derivatives of oils, which have combined emission spectra and in which their characteristic emission bands decrease their intensity as the oil is diluted in other fluids; for which thanks to the filter fluorimeter system its determination is made.

Claims

REIVINDICACIONES
Sistema multianálisis de espectrofluorimetría láser para aceites que permite la obtención de parámetros de la composición química del aceite, así como productos derivados, caracterizado porque comprende un sistema de análisis en tiempo real que se representa en la figura 1 con los sistemas de espectrofluorimetría láser, fluorímetro láser de filtro automatizado, espectrofotómetro, nefelómetro y termómetro en el mismo equipo. Multi-analysis system of laser spectrofluorimetry for oils that allows to obtain parameters of the chemical composition of the oil, as well as derivative products, characterized in that it comprises a real-time analysis system that is represented in Figure 1 with the laser spectrofluorimetry systems, fluorimeter Automated filter laser, spectrophotometer, nephelometer and thermometer in the same equipment.
Sistema multianálisis de espectrofluorimetría láser para aceites según reivindicación 1 caracterizado porque incorpora: un medidor de longitud de onda e intensidad de luz (1), un filtro para diferentes bandas de longitudes de onda (2), un módulo láser (3), una cubeta de espectrofluorimetría de 4 caras iguales (4), un LED RGB (5), un servomotor (6), un LED IR y un termómetro (8) Multi-analysis system of laser spectrofluorimetry for oils according to claim 1 characterized in that it incorporates: a wavelength and light intensity meter (1), a filter for different bands of wavelengths (2), a laser module (3), a cuvette 4-sided spectrofluorimetry (4), an RGB LED (5), a servomotor (6), an IR LED and a thermometer (8)
Sistema multianálisis de espectrofluorimetría láser para aceites según reivindicación 1 caracterizado porque los sensores de propiedades físicas son sensores de intensidad de luz de fluorescencia, Absorbancia y Transmitancia y de luz IR dispersada, así como la localización de la longitud de onda de emisión fluorescente predominante; junto con la medición de temperatura Multi-analysis system of laser spectrofluorimetry for oils according to claim 1 characterized in that the physical properties sensors are sensors of fluorescence light intensity, Absorbance and Transmittance and scattered IR light, as well as the location of the predominant fluorescent emission wavelength; together with the temperature measurement
Sistema multianálisis de espectrofluorimetría láser para aceites según reivindicación 1 caracterizado porque consta de una unidad de toma de datos y un módulo de análisis conectados entre sí. La unidad de toma de datos comprende una serie de emisores y un sensor de longitud de onda e intensidad de luz que cuenta con un dispositivo de toma de datos interactivo, junto con un dispositivo de cálculo que recopila los datos, los analiza y muestra los valores en una pantalla. Multi-analysis system of laser spectrofluorimetry for oils according to claim 1 characterized in that it consists of a data collection unit and an analysis module connected to each other. The data collection unit comprises a series of emitters and a wavelength and light intensity sensor that has an interactive data collection device, together with a calculation device that collects the data, analyzes it and displays the values on a screen
Sistema multianálisis de espectrofluorimetría láser para aceites según reivindicación 1 ,2, 3 y 4 caracterizado por comprende al menos de un módulo láser para excitación fluorescente (3) y un detector optoelectrónico (1) para la detección de la banda fluorescente predominante y su intensidad. Multi-analysis system of laser spectrofluorimetry for oils according to claim 1, 2, 3 and 4 characterized by comprising at least one laser module for fluorescent excitation (3) and an optoelectronic detector (1) for the detection of the predominant fluorescent band and its intensity.
PCT/ES2014/070718 2013-09-24 2014-09-23 Multi-analysis laser spectrofluorometry system for oils WO2015044486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201300903 2013-09-24
ES201300903A ES2534631B1 (en) 2013-09-24 2013-09-24 Multi-analysis system of laser spectrofluorimetry for oils

Publications (1)

Publication Number Publication Date
WO2015044486A1 true WO2015044486A1 (en) 2015-04-02

Family

ID=52742123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070718 WO2015044486A1 (en) 2013-09-24 2014-09-23 Multi-analysis laser spectrofluorometry system for oils

Country Status (2)

Country Link
ES (1) ES2534631B1 (en)
WO (1) WO2015044486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505002A (en) * 2020-11-26 2021-03-16 中国科学院苏州生物医学工程技术研究所 RGB model-based solution turbidity detection method, medium and image system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946431A (en) * 1993-07-30 1999-08-31 Molecular Dynamics Multi-functional photometer with movable linkage for routing light-transmitting paths using reflective surfaces
US20030058450A1 (en) * 2001-09-25 2003-03-27 Mosley R. Matthew Instrument and method for testing fluid characteristics
US20050168741A1 (en) * 2004-01-30 2005-08-04 Banks Rodney H. Interchangeable tip-open cell fluorometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946431A (en) * 1993-07-30 1999-08-31 Molecular Dynamics Multi-functional photometer with movable linkage for routing light-transmitting paths using reflective surfaces
US20030058450A1 (en) * 2001-09-25 2003-03-27 Mosley R. Matthew Instrument and method for testing fluid characteristics
US20050168741A1 (en) * 2004-01-30 2005-08-04 Banks Rodney H. Interchangeable tip-open cell fluorometer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Anónimo. Spectroscopy II - Transmission, Absorption, Fluorescence", BEER'S LAW AND SCATTERING., 24 December 2012 (2012-12-24), Retrieved from the Internet <URL:http://web.archive.org/web/20121224210346> [retrieved on 20141024] *
"Vernier SpectroVis Plus Spectrophotomete r", 18 July 2012 (2012-07-18), Retrieved from the Internet <URL:http://sitesmedia.s3.amazonaws.com/chem/files/2012/08/Vernier_Spectrovis_Plus_Spectrophotometer1_.pdf> *
MIGNANI, A.G. ET AL.: "Optical Absorption Spectroscopy for Quality Assessment of Extra Virgin Olive Oil, chapter 3 of the book Olive Oil - Constituents, Quality", HEALTH PROPERTIES AND BIOCONVERSIONS, pages 47 - 62, Retrieved from the Internet <URL:http://www.intechopen.com/books/olive-oil-constituents-quality-health-properties-and-bioconversions/optical-absorption-spectroscopy-for-quality-assessment-of-extra-virgin-olive-oil> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505002A (en) * 2020-11-26 2021-03-16 中国科学院苏州生物医学工程技术研究所 RGB model-based solution turbidity detection method, medium and image system

Also Published As

Publication number Publication date
ES2534631A1 (en) 2015-04-24
ES2534631B1 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
Mäntele et al. UV–VIS absorption spectroscopy: Lambert-Beer reloaded
Teerachaichayut et al. Non-destructive prediction of total soluble solids, titratable acidity and maturity index of limes by near infrared hyperspectral imaging
Würth et al. Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions
de Oliveira et al. A handheld smartphone-controlled spectrophotometer based on hue to wavelength conversion for molecular absorption and emission measurements
US20140267684A1 (en) System and method for detecting contamination in food using hyperspectral imaging
Hossain et al. Fluorescence-based determination of olive oil quality using an endoscopic smart mobile spectrofluorimeter
US20080218733A1 (en) Method and Device for Determining an Alcohol Content of Liquids
Zhu et al. Evaluation of the non-enzymatic browning in thermally processed apple juice by front-face fluorescence spectroscopy
WO2014181209A1 (en) Method and device for measuring quality and freshness of vegetable oil using fluorescence spectrophotometry
US11435296B2 (en) Method and system for grading gemstones
JP2001208745A (en) Food condition evaluating method and device therefor
ES2534631B1 (en) Multi-analysis system of laser spectrofluorimetry for oils
Zwinkels et al. Spectral fluorescence measurements
Ravindran et al. A study on the use of spectroscopic techniques to identify food adulteration
Al Riza et al. Combined fluorescence-transmittance imaging system for geographical authentication of patchouli oil
Jiménez-Márquez et al. Optoelectronic sensor device for monitoring the maceration of red wine: Design issues and validation
Kameoka et al. Effective application of ICT in Food and Agricultural sector—Optical sensing is mainly described—
Ma et al. Toward commercial applications of LED and laser‐induced fluorescence techniques for food identity, quality, and safety monitoring: A review
Bi et al. A handheld miniature ultraviolet LED fluorescence detection spectrometer
JP2021185876A (en) Laver quality evaluation method and laver quality evaluation device
Jamalipour et al. Smartphone instrumentations for public health safety
Peng et al. Development of laser fluorometer system for CDOM measurements
Ou et al. Spectral sensing using a Handheld NIR module based on a fully integrated sensor chip
Walsham et al. Determination of chlorophyll in seawater
Wei et al. Development of hand-held nondestructive detection device for assessing meat freshness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849097

Country of ref document: EP

Kind code of ref document: A1