WO2015046384A1 - Flavor inhalator - Google Patents

Flavor inhalator Download PDF

Info

Publication number
WO2015046384A1
WO2015046384A1 PCT/JP2014/075536 JP2014075536W WO2015046384A1 WO 2015046384 A1 WO2015046384 A1 WO 2015046384A1 JP 2014075536 W JP2014075536 W JP 2014075536W WO 2015046384 A1 WO2015046384 A1 WO 2015046384A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
carbon heat
flavor
carbon
cavity
Prior art date
Application number
PCT/JP2014/075536
Other languages
French (fr)
Japanese (ja)
Inventor
健 秋山
山田 学
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to KR1020167008832A priority Critical patent/KR101888282B1/en
Priority to EA201690711A priority patent/EA030672B1/en
Publication of WO2015046384A1 publication Critical patent/WO2015046384A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F42/00Simulated smoking devices other than electrically operated; Component parts thereof; Manufacture or testing thereof
    • A24F42/10Devices with chemical heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/165Chemical features of tobacco products or tobacco substitutes of tobacco substitutes comprising as heat source a carbon fuel or an oxidized or thermally degraded carbonaceous fuel, e.g. carbohydrates, cellulosic material
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/22Cigarettes with integrated combustible heat sources, e.g. with carbonaceous heat sources
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F42/00Simulated smoking devices other than electrically operated; Component parts thereof; Manufacture or testing thereof
    • A24F42/60Constructional details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/048Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters with a flame, e.g. using a burner

Definitions

  • the present invention relates to a flavor suction tool.
  • Patent Document 1 describes a flavor suction device having a carbon heat source in which a ridge groove is formed across an ignition end at an ignition end (an end surface on the ignition side) in order to improve ignition performance.
  • Patent Document 2 describes a flavor suction device having a cylindrical carbon heat source having a through hole with a diameter of 1.5 mm to 3 mm.
  • the carbon heat source used for the flavor suction tool satisfies the following conditions.
  • the first condition is that ignitability is good and a sufficient amount of heat is supplied during the period from the start of combustion to the initial puff (smoke absorption).
  • the second condition is to supply a stable amount of heat with little fluctuation in the amount of heat generated during puffing (smoke absorption) from the middle to the second half.
  • the third condition is to ensure that the fire is extinguished at the end of combustion.
  • the carbon heat source described in Patent Document 1 can improve the ignitability in the period from the start of combustion to the initial puff by the groove formed at the ignition end.
  • the contact area between the ignition source and the ignition end is merely increased, and the air flow in the period from the start of combustion to the initial puff is not efficiently transferred to the ignition end. Therefore, the effect is insufficient.
  • the carbon heat source described in Patent Document 1 is used in a flavor suction device configured to transmit heat generated in the carbon heat source to the flavor generation source via an enclosure member or a holding member of the carbon heat source. Therefore, when used in a flavor suction device configured to transmit heat generated in a carbon heat source to the flavor generation source mainly by convective heat transfer, a stable amount of heat during puffing from the middle to the latter half is used. There was a problem that supply was difficult.
  • the carbon heat source described in Patent Document 2 has a uniform cylindrical shape over the entire length, that is, since no groove or the like is formed at the ignition end, ignition of a lighter or the like that is generally circulated is performed. In the source, it is difficult to efficiently transfer heat to the ignition end, and it is difficult to obtain good ignitability during the period from the start of combustion to the initial puff.
  • the first feature is a flavor suction device comprising a columnar carbon heat source (carbon heat source 10) and a holding part having a cylindrical outer wall for holding the carbon heat source, wherein the carbon heat source is the carbon heat source.
  • a cylinder part provided with one cavity extending along the longitudinal axis direction of the gas, and an ignition end part provided closer to the ignition side of the carbon heat source than the cylinder part, and the ignition end part
  • a groove communicating with the cavity is formed on an end surface of the ignition side of the gas, and the ignition end has a space communicating with the cavity in an extension direction of the cavity provided in the cylindrical portion,
  • the groove is formed separately from the gap, and in the holding portion, the outer wall includes a heat conductive member (heat conductive member 312), and at least a part of the heat conductive member is adjacent to the carbon heat source. This is the gist.
  • a flavor generation source (flavor generation source 2) including at least one volatile flavor component is provided inside the holding portion, and the heat conducting member is The gist extends from at least the carbon heat source to the flavor generation source.
  • the third feature is summarized in that, in the first feature or the second feature, the groove is exposed to a side surface of the ignition end.
  • the fourth feature is any one of the first feature to the third feature, wherein the cylindrical portion has a cylindrical shape.
  • the gist is that the difference between the diameter of the cavity and the outer diameter of the carbon heat source is 1 mm or more.
  • the fifth feature is summarized in that, in the first to fourth features, the cylindrical portion and the ignition end portion are integrally formed.
  • the sixth feature is that in the first feature to the fifth feature, the size of the carbon heat source is 10 mm to 30 mm in the longitudinal axis direction of the carbon heat source.
  • the gist is that the size of the carbon heat source is configured to be 4 mm to 8 mm in a direction orthogonal to the longitudinal direction.
  • the seventh feature is that, in the first feature to the sixth feature, the size of the cavity is configured to be 1 mm to 4 mm in a direction orthogonal to a longitudinal axis direction of the carbon heat source.
  • FIG. 1 is a diagram illustrating a flavor suction device according to an embodiment.
  • FIG. 2 is a diagram illustrating the carbon heat source according to the embodiment.
  • FIG. 3 is a diagram illustrating the carbon heat source according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of a groove formed at an ignition end in the carbon heat source according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of a groove formed at an ignition end in the carbon heat source according to the embodiment.
  • Drawing 6 is a figure for explaining a method of manufacturing carbon heat source 10 concerning an embodiment.
  • FIG. 7 is a diagram for explaining the first embodiment.
  • FIG. 8 is a diagram for explaining the second embodiment.
  • FIG. 9 is a diagram illustrating a carbon heat source according to the first modification.
  • FIG. 10 is a diagram illustrating the carbon heat source according to the first modification.
  • FIG. 11 is a diagram illustrating the heat conducting member according to the second modification.
  • FIG. 1 is a figure which shows the cross section of the flavor suction tool 1 which concerns on embodiment
  • FIG.2 (a) is a figure which shows the cross section of the carbon heat source 10 which concerns on embodiment
  • FIG.2 (b) are the figures which looked at the carbon heat source 10 which concerns on embodiment from the ignition end surface 10a side
  • FIG.2 (c) is the figure which looked at the carbon heat source 10 which concerns on embodiment from the suction end 10b ignition end surface 10a side.
  • FIG. 1 and FIG. 2A are views of the S cross section shown in FIG. 2B viewed from the T side.
  • the S cross section is a cross section passing through the center (axis AX) of the cavity 11A and passing through a groove 12B described later.
  • the flavor suction device 1 includes a flavor generation source 2, a carbon heat source 10, a filter 4, a flavor generation source 2, a carbon heat source 10, and a filter 4. It has.
  • the flavor suction tool 1 has the longitudinal direction L which is a direction along the axis AX, and the short direction D orthogonal to the longitudinal direction L.
  • the carbon heat source 10 side of the flavor suction device 1 is defined as the ignition end side (left side shown in FIG. 1), and the filter 4 side of the flavor suction device 1 is sucked. It is defined as the mouth side (the right side shown in FIG. 1).
  • the flavor generating source 2 is provided between the carbon heat source 10 and the filter 4 inside the holding unit 3.
  • the flavor source 2 contains at least one volatile flavor component.
  • the flavor generating source 2 releases the flavor by the heat generated by the carbon heat source 10 being transferred by the air flow.
  • cigarette leaves can be used as the flavor source 2, and cigarettes such as general cigarettes used for cigarettes (cigarettes), granular cigarettes used for snuff, roll cigarettes, and molded cigarettes.
  • Raw materials can be employed.
  • a porous material or a non-porous material carrier may be employed.
  • the roll tobacco is obtained by forming a sheet of regenerated tobacco into a roll shape, and has a flow path inside.
  • molded tobacco is obtained by molding granular tobacco.
  • a desired fragrance may be contained in the tobacco raw material or carrier used as the above-described flavor generating source 2.
  • the flavor generating source 2 may be configured to include a polyhydric alcohol such as glycerin or propylene glycol, and may have a configuration in which nicotine released from a separately prepared nicotine source is captured by a carrier.
  • the flavor generating source 2 is arranged in the holding unit 3 so as to provide a predetermined gap in the longitudinal axis direction L from the carbon heat source 10, but is not limited thereto.
  • the flavor generating source 2 may be arranged so as to contact the carbon heat source 10.
  • the carbon heat source 10 and the flavor generation source 2 do not adjoin. It may be configured.
  • the holding unit 3 includes a cylindrical outer wall 31 that holds the carbon heat source 10 and a cavity 32 that is formed by the outer wall 31 so as to extend along the longitudinal direction L.
  • the outer wall 31 may be formed as a hollow cylindrical body, for example, by curving a rectangular sheet-like member into a cylindrical shape and combining both side edges.
  • the outer wall 31 is formed by stacking a plurality of sheet-like members. Specifically, the outer wall 31 includes an exterior member 311 and a heat conductive member 312, and is formed by bending the exterior member 311 and the heat conductive member 312 into a cylindrical shape.
  • the exterior member 311 is made of cardboard for packaging.
  • the exterior member 311 may be comprised with the well-known packaging paper used for tobacco packaging.
  • the heat conducting member 312 extends at least from the carbon heat source 10 to the flavor generating source 2.
  • the length L0 of the exterior member 311 and the length of the heat conducting member 312 are the same.
  • the length Ls of the heat conducting member 312 may be different from the length L0 of the exterior member 311. Specifically, the length Ls of the heat conducting member 312 may be shorter than the length L0 of the exterior member 311, for example, 20 mm.
  • the heat conducting member 312 is adjacent to the carbon heat source 10.
  • the heat conducting member 312 has a contact portion that abuts on the outer surface (outer peripheral surface) of the carbon heat source 10 in the short direction D.
  • the heat conducting member 312 also contacts the outer surface (outer peripheral surface) in the short direction D of the flavor generating source 2 and the outer surface (outer peripheral surface) in the short direction D of the filter 4.
  • the heat conducting member 312 has an end portion 312 a on the ignition end side and an end portion 312 b on the mouth end side in the longitudinal axis direction L.
  • the end portion 312 a on the ignition end side of the heat conducting member 312 is located closer to the ignition end side than the suction end 10 b of the carbon heat source 10.
  • the end portion 312 a on the ignition end side of the heat conducting member 312 is located closer to the suction side than the ignition end surface 10 a of the carbon heat source 10.
  • the length Lx between the end portion 312a on the ignition end side of the heat conducting member 312 and the mouth end 10b of the carbon heat source 10 is 0 mm or more.
  • the length Lx is shorter than the length Ly in the longitudinal axis direction L of the carbon heat source 10.
  • the length Lx may be 1 ⁇ 2 or less of the length Ly, or may be 1 ⁇ 4 or less of the length Ly.
  • the length Lx can also be referred to as the length in the longitudinal axis direction L of the contact portion of the heat conducting member 312 that contacts the carbon heat source 10.
  • the filter 4 is provided on the most suction side inside the holding unit 3.
  • the filter 4 is disposed in the holding unit 3 so as to provide a predetermined gap in the longitudinal axis direction L from the flavor generation source 2, but is not limited thereto.
  • the filter 4 may be disposed so as to contact the flavor generation source 2.
  • Filter 4 can include cellulose acetate, paper, or other suitable known filter member.
  • the filter 4 may include at least one volatile flavor component.
  • the visibility of the combustion state of the carbon heat source 10 can be improved by exposing at least a part of the carbon heat source 10 from the holding unit 3. In such a case, the manufacturing process of the cavity 11A can be facilitated.
  • the carbon heat source 10 has a columnar shape and includes a cylindrical portion 11 and an ignition end portion 12.
  • the cylindrical portion 11 is provided with a cavity 11 ⁇ / b> A that extends along the longitudinal axis direction L of the carbon heat source 10.
  • the cavity 11 ⁇ / b> A may have a shape of a coaxial cylinder having the same central axis as the central axis of the cylindrical portion 11 over the entire length of the carbon heat source 10. . In such a case, the manufacturing process of the cavity 11A can be facilitated.
  • the variation between the calorific value at the time of natural combustion and the calorific value at the time of puffing can be suppressed by forming a cylindrical shape having only a single cavity 11A. Is possible.
  • the difference (the thickness of the cylindrical portion 11) between the diameter R1 of the cavity 11A and the outer diameter R2 of the carbon heat source (cylindrical portion 11) is to obtain sufficient ignitability in accordance with the carbon blending ratio of the carbon heat source.
  • the diameter R1 of the cavity 11A may be configured to be 1 mm or more, preferably 1.5 mm or more, more preferably 2.0 mm or more. With this configuration, it is possible to reduce pressure loss that occurs during suction.
  • the cavity 11A may have a shape with different diameters along the longitudinal axis direction L, such as a conical shape. In such a case, the amount of heat supplied at the time of puffing from the middle stage to the latter half can be precisely controlled.
  • the ignition end portion 12 is provided on the ignition side (ignition end surface 10a) side of the carbon heat source 10 with respect to the cylindrical portion 11.
  • the ignition end portion 12 has a gap communicating with the cavity 11A in the extending direction of the cavity 11A provided in the cylindrical portion 11.
  • the size of the gap of the ignition end 12 in the cross section orthogonal to the axis AX is smaller than the size of the cavity 11A in the cross section orthogonal to the axis AX.
  • the size of the gap of the ignition end 12 in the cross section orthogonal to the axis AX may be the same as the size of the cavity 11A in the cross section orthogonal to the axis AX.
  • a groove 12 ⁇ / b> A and a groove 12 ⁇ / b> B are formed as a groove 12 ⁇ / b> X communicating with the cavity 11 ⁇ / b> A on the ignition end surface 10 a in the ignition end portion 12.
  • the groove 12 ⁇ / b> A and the groove 12 ⁇ / b> B are formed separately from the gap at the ignition end 12. That is, through holes (cavities 11A of the cylindrical portion 11 and voids of the ignition end portion 12) penetrating along the longitudinal axis direction L are formed over the entire carbon heat source, and the through holes are exposed to the ignition end surface 10a.
  • the through hole exposed to the ignition end face 10a does not correspond to the groove 12A and the groove 12B.
  • the groove 12A is a hollow portion having a groove bottom 121A
  • the groove 12B is a hollow portion having a groove bottom 121B.
  • the lighter or the like is ignited.
  • the heat of the source is efficiently transmitted to the ignition end, and good ignitability can be obtained in the period from the start of combustion to the initial puff.
  • the ratio of the “area of the groove wall in the groove 12X” to the “area of the ignition end face 10a (excluding the area of the portion where the groove 12X is formed)” is sufficient ignitability according to the carbon blending ratio of the carbon heat source, etc.
  • the numerical value for obtaining the value is appropriately selected. For example, sufficient ignitability can be obtained by setting the value to 0.5 or more, preferably 1.25 or more, and more preferably 2.5 or more.
  • the area of the ignition end face 10a (excluding the area of the portion where the groove 12X is formed)” is the area of the hatched portion shown in FIG. 5, and “the area of the groove wall in the groove 12X” is “ignition”
  • the total length of the groove 12X on the end face 10a (the total length of the eight sides A to H shown in FIG. 5) ⁇ the “depth of the groove 12X”.
  • groove 12X can be arbitrarily arranged as long as it communicates with the cavity 11A.
  • the groove 12 ⁇ / b> X may be exposed on the side surface 12 ⁇ / b> B of the ignition end 12. According to such a configuration, the side wall of the groove 12X can be more efficiently burned during the period from the start of combustion to the initial puff, and the ignitability is further improved.
  • the two grooves 12X may be arranged so as to be orthogonal to each other in the ignition end face 10a, or in the ignition end face 10a as shown in FIG.
  • the three grooves 12X may be arranged to intersect at 60 ° C.
  • the grooves 12X may be arranged in a curved shape, or if each groove communicates with the cavity 11A, the plurality of grooves 12X are arranged so as to intersect at a position other than the center of the cavity 11A. It may be.
  • groove 12X may be inclined so as to become deeper toward the cavity 11A, for example.
  • a plurality of protrusions may be provided on the ignition end surface 10a by intersecting the plurality of curved grooves 12X and the linear grooves 12X at various positions in the ignition end surface 10a.
  • the ignition end surface 10a includes a virtual surface formed by the tips of a plurality of protrusions and a tip surface of the plurality of protrusions.
  • the area of the air flow path at the ignition end is increased, and the ignitability can be further improved.
  • the groove 12X is processed together with the groove that does not communicate with the cavity 11A.
  • the groove 12X is processed together with the groove that does not communicate with the cavity 11A.
  • chipping in the ignition end face 10a can be prevented by chamfering the ignition end face 10a.
  • the carbon heat source 10 (that is, the cylindrical portion 11 and the ignition end portion 12) may be integrally formed by a method such as extrusion, tableting, or pressure casting as described later.
  • the length L1 of the carbon heat source 10 in the longitudinal axis direction L may be configured to be 8 mm to 30 mm, preferably 10 mm to 30 mm, and more preferably 10 mm to 15 mm.
  • the carbon heat source 10 having such a configuration can be suitably employed as a heat source for the flavor suction tool.
  • the outer diameter R2 of the carbon heat source 10 may be configured to be 4 mm to 8 mm, more preferably 5 mm to 7 mm.
  • the carbon heat source 10 having such a configuration can be suitably employed as a heat source for the flavor suction tool.
  • the outer diameter of the cylindrical portion 11 and the outer diameter of the ignition end portion 12 are configured to be the same as the outer diameter R2 of the carbon heat source 10.
  • the length of the cylindrical portion 11 in the longitudinal axis direction L can be arbitrarily set within a range that does not hinder the function (ignitability) of the ignition end portion 12.
  • the length of the cylindrical portion 11 in the longitudinal axis direction L may be a length obtained by subtracting the depth of the groove 12X from the total length of the carbon heat source 10 in the longitudinal axis direction L.
  • step S101 primary molding of the carbon heat source 10 is performed.
  • the carbon heat source 10 at the time of primary molding may have a columnar shape in which the cavity 11A is not provided, or may have a columnar shape in which the cavity 11A extending along the longitudinal axis direction is provided. .
  • the carbon heat source 10 is formed by integrally forming a mixture containing a plant-derived carbon material, an incombustible additive, a binder (an organic binder or an inorganic binder), water, or the like by a method such as extrusion, tableting, or pressure casting. Obtainable.
  • the carbon heat source 10 can include a carbon material in the range of 10 wt% to 99 wt%.
  • the carbon heat source 10 preferably contains a carbon material in the range of 30% by weight to 70% by weight, preferably 40% by weight to 50% by weight. More preferably, a range of carbon materials is included.
  • organic binder for example, a mixture containing at least one of CMC (carboxymethylcellulose), CMC-Na (carboxymethylcellulose sodium), alginate, EVA, PVA, PVAC and sugars can be used.
  • the inorganic binder for example, a mineral type such as purified bentonite, or a silica type binder such as colloidal silica, water glass, calcium silicate, or the like can be used.
  • the binder described above preferably contains 1 to 10% by weight of CMC or CMC-Na, and more preferably contains 1 to 8% by weight of CMC or CMC-Na. .
  • non-combustible additive for example, a carbon salt or oxide made of sodium, potassium, calcium, magnesium, silicon, or the like can be used.
  • the carbon heat source 10 can contain 40 wt% to 89 wt% incombustible additive.
  • calcium carbonate is used as the incombustible additive, and the carbon heat source 10 includes 40 to 55% by weight of the incombustible additive.
  • the carbon heat source 10 may contain an alkali metal salt such as sodium chloride at a ratio of 1% by weight or less for the purpose of improving combustion characteristics.
  • step S102 processing for forming the cylindrical portion 11 is performed.
  • a cylindrical portion 11 having a cavity 11 ⁇ / b> A is formed by making a hole from one end face (puff side end face) of the primarily formed carbon heat source 10 to a predetermined position with a drill.
  • step S103 a process for forming the ignition end 12 is performed.
  • the groove 12X is formed by performing predetermined processing on the surface (ignition end) opposite to the surface (end surface on the puff side) into which the drill is inserted in step S102, using a diamond cutting disk.
  • good ignitability can be obtained by appropriately adjusting the number, depth, width, and the like of the grooves 12X according to the composition of the carbon heat source 10 (carbon blending ratio, etc.) and the outer diameter R2.
  • step S102 may be reversed. Further, when the cavity 11A is formed in the primary molding, step S102 may be omitted.
  • the groove 12X is formed in the ignition end surface 10a, and the cavity 11A extending along the longitudinal axis direction L of the carbon heat source 10 is formed in the cylindrical portion 11.
  • the outer wall 31 of the holding unit 3 includes an exterior member 311 and a heat conduction member 312. Further, at least a part of the heat conducting member 312 is adjacent to the carbon heat source 10. Specifically, a part of the heat conducting member 312 comes into contact with the outer surface (outer peripheral surface) in the short direction D of the carbon heat source 10.
  • the flavor suction tool 1 when the combustion of the carbon heat source 10 proceeds and reaches the contact portion of the heat conducting member 312, the heat generated from the carbon heat source 10 is propagated to the heat conducting member 312. Thereby, the temperature of the carbon heat source 10 falls and combustion is suppressed. That is, according to the flavor inhaler 1, it is possible to reliably extinguish the combustion of the carbon heat source 10 at the end of combustion (at the end of smoking). Furthermore, according to the flavor suction tool 1, it is possible to reliably prevent the spread of the fire in the holding unit 3, and thus to ensure that the fire is extinguished at the end of combustion.
  • the heat conducting member 312 extends at least from the carbon heat source 10 to the flavor generating source 2. Specifically, the heat conducting member 312 contacts the outer surface (outer peripheral surface) in the short direction D of the carbon heat source 10 and the outer surface (outer peripheral surface) in the short direction D of the flavor generating source 2.
  • the flavor suction tool 1 when the combustion of the carbon heat source 10 reaches the contact portion of the heat conducting member 312, the heat generated from the carbon heat source 10 easily propagates to the flavor generating source 2 via the heat conducting member 312. Therefore, the amount of heat supplied to the flavor generating source 2 increases. Thereby, generation
  • the heat conducting member 312 is applied to the heat conducting member 312 as a member having airtightness.
  • the heat generated by the carbon heat source 10 can be efficiently transferred to the flavor generating source 2 by the air flow.
  • FIG. 7 is a view of the S cross section shown in FIG. 2B as seen from the T side, as in FIG.
  • test samples A-1 to E-3 were manufactured as follows. Table 1 shows the width, depth, and number of grooves 12X in each of the test samples A-1 to E-3.
  • the molded product obtained by the extrusion molding was dried and then cut to a length of 13 mm to obtain a primary molded body (carbon heat source 10 at the time of primary molding).
  • a cylindrical portion 11 having a cavity 11A was formed by drilling a hole from one end face (puff side end face) of the primary molded body to a predetermined position with a 2 mm diameter drill.
  • a groove 12X was formed by applying a predetermined process to the surface (ignition end) opposite to the surface (end surface on the puff side) into which the drill was inserted in step S102, using a diamond cutting disk.
  • test samples A-1 to E-3 (carbon heat source 10) was subjected to an ignitability evaluation test by the following method.
  • the cylindrical part 11 of each of the test samples A-1 to E-3 (carbon heat source 10) is connected to the holding part 3 formed in a cylindrical shape.
  • each test sample (carbon heat source 10) is brought into contact with the flame of the gas lighter 500, heated for 3 seconds, and then puffed at 55 ml / 2 seconds. Here, this puff was repeated at 15 second intervals.
  • Table 1 shows the results of the ignitability evaluation test for each of the test samples A-1 to E-3.
  • the area of the groove wall in the groove 12X relative to the area ratio of the groove wall to the ignition end (“the area of the ignition end surface 10a (excluding the area of the portion where the groove 12X is formed)”. It can be seen that the greater the soot, the better the ignitability.
  • the groove depth is the distance from the ignition end face 10a to the bottom of the groove 12X in the longitudinal axis direction L.
  • the groove width is the size of the groove 12X in the direction orthogonal to the extending direction of the groove 12X on the ignition end face 10a.
  • Example 2 In the following, Example 2 will be described.
  • Example 2 a plurality of samples (sample L-1 to sample M-2) shown in FIG.
  • Each sample is a carbon heat source composed of activated carbon, calcium carbonate and CMC. If the total weight of the sample is 100% by weight, the sample is composed of 80% by weight activated carbon, 15% by weight calcium carbonate and 5% by weight CMC. The total length of each sample in the longitudinal axis direction L is 15 mm. The number of cavities, the size of the cavities, and the number of cavities included in each sample are as shown in FIG.
  • Such a sample was inserted into a paper tube, and a commercially available gas lighter flame was brought into contact with the ignition end for 3 seconds, and then 55 ml / 2 seconds was puffed.
  • FIG. 9 and 10 are diagrams showing the carbon heat source 10 according to the first modification.
  • FIG. 9 is a view of the carbon heat source 10 as viewed from the side of the end face on the ignition side (hereinafter, the ignition end face 10a).
  • FIG. 10 is a view of the S cross section shown in FIG. 9 as viewed from the T side.
  • the S cross section is a cross section passing through the center of the cavity 11A and passing through the groove 12B.
  • the ridgeline that appears on the near side is indicated by a dotted line.
  • a cross-shaped groove 12X passing through the center of the cavity 11A is formed in the ignition end face 10a of the carbon heat source 10.
  • the ignition end portion 12 has a gap communicating with the cavity 11A in the extending direction of the cavity 11A provided in the cylindrical portion 11.
  • the size of the gap of the ignition end 12 in the cross section orthogonal to the axis AX is the same as the size of the cavity 11A in the cross section orthogonal to the axis AX. It should be noted that the cross-shaped groove 12X is formed separately from the gap of the ignition end 12.
  • the ignition end surface 10a may be chamfered.
  • a chamfering process is applied to the radially outer end U1 of the ignition end face 10a.
  • the inner end U2 in the radial direction is chamfered.
  • the non-ignition end provided on the opposite side of the ignition end surface 10a is chamfered at the radially outer end U3. That is, the outer end U1, the inner end U2, and the outer end UE are inclined with respect to the vertical plane with respect to the longitudinal axis direction L.
  • the diameter ⁇ of the cavity 11A is, for example, 2.5 mm.
  • the groove width of each groove 12X is smaller than the diameter ⁇ of the cavity 11A, for example, 1 mm.
  • the total length of the carbon heat source 10 in the longitudinal axis direction L is, for example, 17 mm.
  • the length of the ignition end 12 in the longitudinal axis direction L is, for example, 2 mm.
  • the length of the portion to be chamfered in the ignition end portion 12 is, for example, 0.5 mm. That is, in the longitudinal axis direction L, the length of the portion that is not chamfered in the ignition end 12 is 1.5 mm.
  • the carbon heat source 10 (the cylindrical portion 11 and the ignition end portion 12) is integrally formed.
  • a groove may be formed by cutting the ignition end face.
  • FIG. 11 is a view showing a flavor suction device 1 according to the second modification. 11 is a view of the S cross section shown in FIG. 2B as seen from the T side, as in FIG.
  • the configuration of the heat conducting member is mainly different from the above-described embodiment.
  • the flavor suction tool 1 according to the second modification includes a heat conducting member 313 instead of the heat conducting member 312 of the above-described embodiment.
  • the heat conducting member 313 according to the modified example 2 extends from the carbon heat source 10 to the flavor generating source 2 in the longitudinal axis direction L. More specifically, the end portion 313b on the mouth side of the heat conducting member 313 is located on the outer peripheral surface of the flavor generating source 2 in the longitudinal axis direction L, and the end portion 313b on the mouth side of the heat conducting member 313 is In the longitudinal axis direction L, it is located on the outer peripheral surface of the flavor generating source 2.
  • the position of the end portion 313a on the ignition end side of the heat conducting member 313 is the same as in the above-described embodiment (see FIG. 1).
  • the position of the end portion 313a on the ignition end side of the heat conducting member 313 is the same as the position of the end portion on the ignition end side of the exterior member 311 as an example. However, it is not limited to this.
  • the position of the end portion 313 a on the ignition end side of the heat conducting member 313 may be provided closer to the suction side than the end portion on the ignition end side of the exterior member 311.
  • the position of the end portion 313 b on the mouth side of the heat conducting member 313 is the same as the position of the end portion 2 b on the mouth side of the flavor generating source 2 as an example. Although listed, it is not limited to this.
  • the position of the end portion 313b on the mouth side of the heat conducting member 313 may be any position between the end portion 2a on the ignition end side of the flavor generating source 2 and the end portion 2b on the mouth side.
  • the carbon heat source 10 has a cylindrical shape, but the embodiment is not limited thereto.
  • the carbon heat source 10 may have a prismatic shape.
  • the cavity 11A in the cross section orthogonal to the longitudinal axis direction L, the cavity 11A has a circular shape, but the embodiment is not limited thereto.
  • the cavity 11A In the cross section orthogonal to the longitudinal axis direction L, the cavity 11A may have a rectangular shape or an elliptical shape. In such a case, the diameter R1 of the cavity 11A and the outer diameter R2 of the carbon heat source 10 may be read as the size in the direction orthogonal to the longitudinal axis direction L.
  • the size in the direction orthogonal to the longitudinal axis direction L may be the maximum length of a straight line passing through the center of the carbon heat source 10 (cavity 11A) in the cross section orthogonal to the longitudinal axis direction L. It may be a length or an average length.
  • the flavor generation source 2 and the filter 4 were separate was mentioned as an example, the flavor generation source (aerosol generation source) which integrated the flavor generation source 2 and the filter 4 was demonstrated. ).
  • the present invention is not limited to this, and may have a structure of three or more layers.
  • a part of the heat conducting member 312 is configured to abut on the outer surface (outer peripheral surface) of the carbon heat source 10 in the short direction D, but is not limited thereto.
  • the outer wall 31 has another sheet-like member between the carbon heat source 10 and the heat conducting member 312, and the other sheet-like member comes into contact with the outer surface (outer peripheral surface) of the carbon heat source 10. It may be a configuration. In other words, various configurations can be applied to the heat conducting member 312 as long as the configuration is adjacent to the outer surface (outer surface) of the carbon heat source 10.
  • the ignitability in the period from the start of combustion to the initial puff is good, and a stable supply of heat during the puff from the middle to the second half is realized. It is possible to provide a carbon heat source and a flavor suction device that can be surely extinguished at the end of combustion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A flavor inhalator (1) is provided with a carbon heat source (10) and a holding section (3) which has a cylindrical outer wall (31). The carbon heat source (10) is provided with: a circular cylinder section (11) having provided therein a single hollow cavity (11A) extending in the longitudinal axis direction (L) of the carbon heat source (10); and an ignition end section (12) provided closer to the ignition side of the carbon heat source (10) than the circular cylinder section (11). A groove (12X) connecting to the hollow cavity (11A) is formed in the ignition-side end surface (10a) of the ignition end section (12). The outer wall (31) is provided with a thermally conductive member (312), and at least a part of the thermally conductive member (312) is adjacent to the carbon heat source (10).

Description

香味吸引具Flavor suction tool
 本発明は、香味吸引具に関する。 The present invention relates to a flavor suction tool.
 従来、炭素熱源を有し、かかる炭素熱源から発生する熱によって香味発生源を加熱するように構成されている香味吸引具について、種々の提案が行われている。 Conventionally, various proposals have been made on a flavor suction device that has a carbon heat source and is configured to heat the flavor generation source by heat generated from the carbon heat source.
 例えば、特許文献1には、着火性を向上させるために、着火端(着火側の端面)に着火端を横切る畝溝が形成された炭素熱源を有する香味吸引具が記載されている。 For example, Patent Document 1 describes a flavor suction device having a carbon heat source in which a ridge groove is formed across an ignition end at an ignition end (an end surface on the ignition side) in order to improve ignition performance.
 また、特許文献2には、直径1.5mm~3mmの貫通孔を有する円柱形状の炭素熱源を有する香味吸引具が記載されている。 Patent Document 2 describes a flavor suction device having a cylindrical carbon heat source having a through hole with a diameter of 1.5 mm to 3 mm.
 ここで、香味吸引具に用いられる炭素熱源は、以下の条件を満たすことが好ましい。 Here, it is preferable that the carbon heat source used for the flavor suction tool satisfies the following conditions.
 1つ目の条件は、燃焼開始時から初期パフ(吸煙)時までの期間において、着火性が良好であり、十分な熱量を供給することである。 The first condition is that ignitability is good and a sufficient amount of heat is supplied during the period from the start of combustion to the initial puff (smoke absorption).
 また、2つ目の条件は、中盤から後半にかけてのパフ(吸煙)時において、発熱量の変動が少なく、安定した熱量を供給することである。 The second condition is to supply a stable amount of heat with little fluctuation in the amount of heat generated during puffing (smoke absorption) from the middle to the second half.
 また、3つ目の条件は、燃焼終了時に確実に消火させることである。 Also, the third condition is to ensure that the fire is extinguished at the end of combustion.
 これに対して、特許文献1に記載されている炭素熱源は、着火端に形成された溝によって、燃焼開始時から初期パフ時までの期間における着火性については向上させることができるが、ライター等の着火源及び着火端部の接触面積を増大させているのみで、燃焼開始時から初期パフ時までの期間における空気流路について着火端部に効率的に熱が伝達する構成となっていないため、その効果は不十分である。 On the other hand, the carbon heat source described in Patent Document 1 can improve the ignitability in the period from the start of combustion to the initial puff by the groove formed at the ignition end. The contact area between the ignition source and the ignition end is merely increased, and the air flow in the period from the start of combustion to the initial puff is not efficiently transferred to the ignition end. Therefore, the effect is insufficient.
 また、特許文献1に記載されている炭素熱源は、炭素熱源において発生した熱を当該炭素熱源の囲包部材や保持部材を介して香味発生源へ伝達する構成の香味吸引具で用いられることを想定しているため、炭素熱源において発生した熱を主に対流伝熱によって香味発生源へ伝達する構成の香味吸引具で用いられた場合には、中盤から後半にかけてのパフ時における安定した熱量の供給は困難であるという問題点があった。 In addition, the carbon heat source described in Patent Document 1 is used in a flavor suction device configured to transmit heat generated in the carbon heat source to the flavor generation source via an enclosure member or a holding member of the carbon heat source. Therefore, when used in a flavor suction device configured to transmit heat generated in a carbon heat source to the flavor generation source mainly by convective heat transfer, a stable amount of heat during puffing from the middle to the latter half is used. There was a problem that supply was difficult.
 また、特許文献2に記載されている炭素熱源は、全長に渡って均一な円柱形状であるため、すなわち、着火端において溝等が形成されていないため、一般に流通しているライター等の着火源では、着火端に効率的に熱を伝達することが困難であり、燃焼開始時から初期パフ時までの期間において、良好な着火性を得ることが困難であるという問題点があった。 Moreover, since the carbon heat source described in Patent Document 2 has a uniform cylindrical shape over the entire length, that is, since no groove or the like is formed at the ignition end, ignition of a lighter or the like that is generally circulated is performed. In the source, it is difficult to efficiently transfer heat to the ignition end, and it is difficult to obtain good ignitability during the period from the start of combustion to the initial puff.
 これら特許文献1及び2のように、従来の一体成型された炭素熱源において、燃焼開始時から初期パフ時における良好な着火性と、中盤から後半にかけてのパフ時における安定した熱量供給とを両立することは、非常に困難であった。更に、燃焼終了時に燃焼を消火させるという点においても対策が望まれていた。 As in these Patent Documents 1 and 2, in the conventional integrally formed carbon heat source, both good ignitability from the start of combustion to the initial puff and stable supply of heat during the puff from the middle to the latter half are achieved. It was very difficult. Furthermore, a countermeasure has been desired in that the combustion is extinguished at the end of the combustion.
特開平5-103836号公報JP-A-5-103836 特表2010-535530号公報Special table 2010-535530 gazette
 第1の特徴は、柱状形状の炭素熱源(炭素熱源10)と、前記炭素熱源を保持する筒状の外壁を有する保持部とを備える香味吸引具であって、前記炭素熱源は、前記炭素熱源の長手軸方向に沿って延びる1つの空洞が設けられている筒部と、前記筒部よりも前記炭素熱源の着火側に設けられている着火端部とを具備しており、前記着火端部における前記着火側の端面に、前記空洞と連通する溝が形成され、前記着火端部は、前記筒部に設けられた前記空洞の延長方向において前記空洞に連通する空隙を有しており、前記溝は、前記空隙とは別に形成され、前記保持部において、前記外壁は、熱伝導部材(熱伝導部材312)を備えており、前記熱伝導部材の少なくとも一部は、前記炭素熱源に隣接することを要旨とする。 The first feature is a flavor suction device comprising a columnar carbon heat source (carbon heat source 10) and a holding part having a cylindrical outer wall for holding the carbon heat source, wherein the carbon heat source is the carbon heat source. A cylinder part provided with one cavity extending along the longitudinal axis direction of the gas, and an ignition end part provided closer to the ignition side of the carbon heat source than the cylinder part, and the ignition end part A groove communicating with the cavity is formed on an end surface of the ignition side of the gas, and the ignition end has a space communicating with the cavity in an extension direction of the cavity provided in the cylindrical portion, The groove is formed separately from the gap, and in the holding portion, the outer wall includes a heat conductive member (heat conductive member 312), and at least a part of the heat conductive member is adjacent to the carbon heat source. This is the gist.
 第2の特徴は、第1の特徴において、前記保持部の内部には、少なくとも一種の揮発性の香味成分を含む香味発生源(香味発生源2)が設けられており、前記熱伝導部材は、少なくとも前記炭素熱源から前記香味発生源まで延在することを要旨とする。 According to a second feature, in the first feature, a flavor generation source (flavor generation source 2) including at least one volatile flavor component is provided inside the holding portion, and the heat conducting member is The gist extends from at least the carbon heat source to the flavor generation source.
 第3の特徴は、第1の特徴又は第2の特徴において、前記溝部は、前記着火端部の側面に露出することを要旨とする。 The third feature is summarized in that, in the first feature or the second feature, the groove is exposed to a side surface of the ignition end.
 第4の特徴は、第1の特徴乃至第3の特徴のいずれかにおいて、前記筒部は、円筒形状を有する。前記空洞の直径と前記炭素熱源の外径との差は、1mm以上となるように構成されていることを要旨とする。 The fourth feature is any one of the first feature to the third feature, wherein the cylindrical portion has a cylindrical shape. The gist is that the difference between the diameter of the cavity and the outer diameter of the carbon heat source is 1 mm or more.
 第5の特徴は、第1の特徴乃至第4の特徴において、前記筒部及び前記着火端部は、一体成形されていることを要旨とする。 The fifth feature is summarized in that, in the first to fourth features, the cylindrical portion and the ignition end portion are integrally formed.
 第6の特徴は、第1の特徴乃至第5の特徴において、前記炭素熱源の長手軸方向において、前記炭素熱源のサイズは、10mm~30mmとなるように構成されている。前記長手軸方向に直交する方向において、前記炭素熱源のサイズは、4mm~8mmとなるように構成されていることを要旨とする。 The sixth feature is that in the first feature to the fifth feature, the size of the carbon heat source is 10 mm to 30 mm in the longitudinal axis direction of the carbon heat source. The gist is that the size of the carbon heat source is configured to be 4 mm to 8 mm in a direction orthogonal to the longitudinal direction.
  第7の特徴は、第1の特徴乃至第6の特徴において、前記炭素熱源の長手軸方向に直交する方向において、前記空洞のサイズは、1mm~4mmとなるように構成されていることを要旨とする。 The seventh feature is that, in the first feature to the sixth feature, the size of the cavity is configured to be 1 mm to 4 mm in a direction orthogonal to a longitudinal axis direction of the carbon heat source. And
図1は、実施形態に係る香味吸引具について示す図である。FIG. 1 is a diagram illustrating a flavor suction device according to an embodiment. 図2は、実施形態に係る炭素熱源について示す図である。FIG. 2 is a diagram illustrating the carbon heat source according to the embodiment. 図3は、実施形態に係る炭素熱源について示す図である。FIG. 3 is a diagram illustrating the carbon heat source according to the embodiment. 図4は、実施形態に係る炭素熱源における着火端に形成される溝の一例について示す図である。FIG. 4 is a diagram illustrating an example of a groove formed at an ignition end in the carbon heat source according to the embodiment. 図5は、実施形態に係る炭素熱源における着火端に形成される溝の一例について示す図である。FIG. 5 is a diagram illustrating an example of a groove formed at an ignition end in the carbon heat source according to the embodiment. 図6は、実施形態に係る炭素熱源10を製造する方法について説明するための図である。Drawing 6 is a figure for explaining a method of manufacturing carbon heat source 10 concerning an embodiment. 図7は、実施例1を説明するための図である。FIG. 7 is a diagram for explaining the first embodiment. 図8は、実施例2を説明するための図である。FIG. 8 is a diagram for explaining the second embodiment. 図9は、変更例1に係る炭素熱源について示す図である。FIG. 9 is a diagram illustrating a carbon heat source according to the first modification. 図10は、変更例1に係る炭素熱源について示す図である。FIG. 10 is a diagram illustrating the carbon heat source according to the first modification. 図11は、変更例2に係る熱伝導部材について示す図である。FIG. 11 is a diagram illustrating the heat conducting member according to the second modification.
 (一実施形態)
 図1乃至図6を参照して、一実施形態に係る香味吸引具1について説明する。
(One embodiment)
With reference to FIG. 1 thru | or FIG. 6, the flavor suction tool 1 which concerns on one Embodiment is demonstrated.
 ここで、図1は、実施形態に係る香味吸引具1の断面を示す図であり、図2(a)は、実施形態に係る炭素熱源10の断面を示す図であり、図2(b)は、実施形態に係る炭素熱源10を着火端面10a側から見た図であり、図2(c)は、実施形態に係る炭素熱源10を吸い口端10b着火端面10a側から見た図である。詳細には、図1及び図2(a)は、図2(b)に示すS断面をT側から見た図である。S断面は、空洞11Aの中心(軸線AX)を通り、かつ、後述する溝12Bを通る断面である。 Here, FIG. 1 is a figure which shows the cross section of the flavor suction tool 1 which concerns on embodiment, FIG.2 (a) is a figure which shows the cross section of the carbon heat source 10 which concerns on embodiment, FIG.2 (b) These are the figures which looked at the carbon heat source 10 which concerns on embodiment from the ignition end surface 10a side, and FIG.2 (c) is the figure which looked at the carbon heat source 10 which concerns on embodiment from the suction end 10b ignition end surface 10a side. . Specifically, FIG. 1 and FIG. 2A are views of the S cross section shown in FIG. 2B viewed from the T side. The S cross section is a cross section passing through the center (axis AX) of the cavity 11A and passing through a groove 12B described later.
 図1に示すように、実施形態に係る香味吸引具1は、香味発生源2と、炭素熱源10と、フィルタ4と、香味発生源2と炭素熱源10とフィルタ4とを保持する保持部3を具備している。 As shown in FIG. 1, the flavor suction device 1 according to the embodiment includes a flavor generation source 2, a carbon heat source 10, a filter 4, a flavor generation source 2, a carbon heat source 10, and a filter 4. It has.
 なお、香味吸引具1は、軸線AXに沿った方向である長手軸方向Lと、長手軸方向Lに直交する短手方向Dとを有する。また、実施形態では、説明のため、長手軸方向Lにおいて、香味吸引具1の炭素熱源10側を着火端側(図1に示す左側)と規定し、香味吸引具1のフィルタ4側を吸い口側(図1に示す右側)と規定する。 In addition, the flavor suction tool 1 has the longitudinal direction L which is a direction along the axis AX, and the short direction D orthogonal to the longitudinal direction L. In the embodiment, for the sake of explanation, in the longitudinal axis direction L, the carbon heat source 10 side of the flavor suction device 1 is defined as the ignition end side (left side shown in FIG. 1), and the filter 4 side of the flavor suction device 1 is sucked. It is defined as the mouth side (the right side shown in FIG. 1).
 香味吸引具1では、ユーザがフィルタ4側の端部に口をあてて吸引すると、炭素熱源10側の端部から、フィルタ4側の端部に向かって空気流が発生する。 In the flavor suction tool 1, when a user puts a mouth on the end on the filter 4 side and sucks, an air flow is generated from the end on the carbon heat source 10 side toward the end on the filter 4 side.
 香味発生源2は、保持部3の内部において、炭素熱源10とフィルタ4との間に設けられている。香味発生源2は、少なくとも一種の揮発性の香味成分を含む。香味発生源2は、炭素熱源10によって生じた熱が空気流によって伝達されることによって、香味を放出する。 The flavor generating source 2 is provided between the carbon heat source 10 and the filter 4 inside the holding unit 3. The flavor source 2 contains at least one volatile flavor component. The flavor generating source 2 releases the flavor by the heat generated by the carbon heat source 10 being transferred by the air flow.
 香味発生源2としては、例えば、たばこ葉を用いることができ、シガレット(紙巻きたばこ)に使用される一般的な刻みたばこや、嗅ぎたばこに使用される粒状たばこや、ロールたばこや、成形たばこ等のたばこ原料を採用することができる。また、香味発生源2として、多孔質素材又は非多孔質素材の担持体を採用してもよい。 For example, cigarette leaves can be used as the flavor source 2, and cigarettes such as general cigarettes used for cigarettes (cigarettes), granular cigarettes used for snuff, roll cigarettes, and molded cigarettes. Raw materials can be employed. Further, as the flavor generation source 2, a porous material or a non-porous material carrier may be employed.
 なお、ロールたばこは、シート状の再生たばこをロール状に成形して得られ、内部に流路を有する。また、成形たばこは、粒状たばこを型成形することによって得られる。 Note that the roll tobacco is obtained by forming a sheet of regenerated tobacco into a roll shape, and has a flow path inside. In addition, molded tobacco is obtained by molding granular tobacco.
 さらに、上述の香味発生源2として用いられるたばこ原料又は担持体には、所望の香料が含まれていてもよい。例えば、香味発生源2は、グリセリンやプロピレングリコール等の多価アルコールを含むように構成されており、別途準備したニコチン源から放出されたニコチンを担持体に捕捉させた構成であってもよい。 Furthermore, a desired fragrance may be contained in the tobacco raw material or carrier used as the above-described flavor generating source 2. For example, the flavor generating source 2 may be configured to include a polyhydric alcohol such as glycerin or propylene glycol, and may have a configuration in which nicotine released from a separately prepared nicotine source is captured by a carrier.
 なお、図1の例では、香味発生源2は、保持部3の内部において、炭素熱源10から長手軸方向Lに所定の空隙を設けるように配置されているが、これに限定されるものではない、例えば、香味発生源2は、炭素熱源10に当接するように配置されてもよい。 In the example of FIG. 1, the flavor generating source 2 is arranged in the holding unit 3 so as to provide a predetermined gap in the longitudinal axis direction L from the carbon heat source 10, but is not limited thereto. For example, the flavor generating source 2 may be arranged so as to contact the carbon heat source 10.
 また、保持部3の内部において、炭素熱源10と香味発生源2との間に、空隙部又は通気性を有する不燃部材を配置することによって、炭素熱源10及び香味発生源2が隣接しないように構成されていてもよい。 Moreover, in the holding | maintenance part 3, by arrange | positioning a space | gap part or a nonflammable member which has air permeability between the carbon heat source 10 and the flavor generation source 2, the carbon heat source 10 and the flavor generation source 2 do not adjoin. It may be configured.
 保持部3は、炭素熱源10を保持する筒状の外壁31と、外壁31によって長手方向Lに沿って延びるように形成される空洞32とを有する。保持部3において、外壁31は、例えば、矩形形状のシート状部材を円筒状に湾曲させて両側縁部を合わせて中空の円筒体として形成されていてもよい。 The holding unit 3 includes a cylindrical outer wall 31 that holds the carbon heat source 10 and a cavity 32 that is formed by the outer wall 31 so as to extend along the longitudinal direction L. In the holding part 3, the outer wall 31 may be formed as a hollow cylindrical body, for example, by curving a rectangular sheet-like member into a cylindrical shape and combining both side edges.
 実施形態において、外壁31は、複数のシート状部材を積層することによって形成されている。具体的に、外壁31は、外装部材311と熱伝導部材312とを備え、外装部材311と熱伝導部材312とを円筒状に湾曲させることによって形成されている。 In the embodiment, the outer wall 31 is formed by stacking a plurality of sheet-like members. Specifically, the outer wall 31 includes an exterior member 311 and a heat conductive member 312, and is formed by bending the exterior member 311 and the heat conductive member 312 into a cylindrical shape.
 実施形態において、外装部材311は、包装用の厚紙によって構成されている。なお、外装部材311は、たばこの包装用に用いられる公知の包装紙によって構成されていてもよい。 In the embodiment, the exterior member 311 is made of cardboard for packaging. In addition, the exterior member 311 may be comprised with the well-known packaging paper used for tobacco packaging.
 熱伝導部材312は、少なくとも炭素熱源10から香味発生源2まで延在する。また、長手軸方向Lにおいて、外装部材311の長さL0と、熱伝導部材312の長さとは、同一であることとする。なお、熱伝導部材312の長さLsは、外装部材311の長さL0と異なるようにしてもよい。具体的には、熱伝導部材312の長さLsは、外装部材311の長さL0よりも短くてもよく、例えば、20mmであってもよい。 The heat conducting member 312 extends at least from the carbon heat source 10 to the flavor generating source 2. In the longitudinal axis direction L, the length L0 of the exterior member 311 and the length of the heat conducting member 312 are the same. The length Ls of the heat conducting member 312 may be different from the length L0 of the exterior member 311. Specifically, the length Ls of the heat conducting member 312 may be shorter than the length L0 of the exterior member 311, for example, 20 mm.
 また、実施形態において、熱伝導部材312の少なくとも一部は、炭素熱源10に隣接する。具体的に、熱伝導部材312は、その一部において、炭素熱源10の短手方向Dの外表面(外周面)に当接する当接部分を有する。なお、熱伝導部材312は、香味発生源2の短手方向Dの外表面(外周面)と、フィルタ4の短手方向Dの外表面(外周面)とも当接する。 In the embodiment, at least a part of the heat conducting member 312 is adjacent to the carbon heat source 10. Specifically, the heat conducting member 312 has a contact portion that abuts on the outer surface (outer peripheral surface) of the carbon heat source 10 in the short direction D. The heat conducting member 312 also contacts the outer surface (outer peripheral surface) in the short direction D of the flavor generating source 2 and the outer surface (outer peripheral surface) in the short direction D of the filter 4.
 また、図1に示すように、熱伝導部材312は、長手軸方向Lにおいて、着火端側の端部312aと吸い口側の端部312bとを有する。熱伝導部材312の着火端側の端部312aは、炭素熱源10の吸い口端10bよりも、着火端側に位置する。一方で、熱伝導部材312の着火端側の端部312aは、炭素熱源10の着火端面10aよりも、吸い口側に位置する。 Further, as shown in FIG. 1, the heat conducting member 312 has an end portion 312 a on the ignition end side and an end portion 312 b on the mouth end side in the longitudinal axis direction L. The end portion 312 a on the ignition end side of the heat conducting member 312 is located closer to the ignition end side than the suction end 10 b of the carbon heat source 10. On the other hand, the end portion 312 a on the ignition end side of the heat conducting member 312 is located closer to the suction side than the ignition end surface 10 a of the carbon heat source 10.
 換言すると、熱伝導部材312の着火端側の端部312aと、炭素熱源10の吸い口端10bとの間の長さLxは、0mm以上である。また、長さLxは、炭素熱源10の長手軸方向Lにおける長さLyよりも短い。なお、長さLxは、長さLyの1/2以下の長さであってもよいし、1/4以下の長さであってもよい。また、長さLxは、熱伝導部材312の炭素熱源10に当接する当接部分の長手軸方向Lにおける長さとも言い換えることができる。 In other words, the length Lx between the end portion 312a on the ignition end side of the heat conducting member 312 and the mouth end 10b of the carbon heat source 10 is 0 mm or more. The length Lx is shorter than the length Ly in the longitudinal axis direction L of the carbon heat source 10. Note that the length Lx may be ½ or less of the length Ly, or may be ¼ or less of the length Ly. The length Lx can also be referred to as the length in the longitudinal axis direction L of the contact portion of the heat conducting member 312 that contacts the carbon heat source 10.
 熱伝導部材312には、非燃焼性に優れた部材を適用することが好ましい。また、熱伝導部材312には、熱伝導性に優れた部材を適用することが好ましい。更に、炭素熱源10によって生じた熱を、空気流によって香味発生源2に効率よく伝達することを考慮すると、熱伝導部材312には、気密性に優れた部材を適用することが好ましい。このような観点を考慮すると、熱伝導部材312には、金属部材を適用することが好ましく、特に、アルミニウムを適用することがより好ましい。 It is preferable to apply a member excellent in non-combustibility to the heat conducting member 312. In addition, it is preferable to apply a member having excellent thermal conductivity to the heat conductive member 312. Furthermore, considering that the heat generated by the carbon heat source 10 is efficiently transferred to the flavor generating source 2 by the air flow, it is preferable to apply a member having excellent airtightness to the heat conducting member 312. Considering such a viewpoint, it is preferable to apply a metal member to the heat conducting member 312, and more preferable to apply aluminum in particular.
 フィルタ4は、保持部3の内部において、最も吸い口側に設けられている。なお、図1の例では、フィルタ4は、保持部3の内部において、香味発生源2から長手軸方向Lに所定の空隙を設けるように配置されているが、これに限定されるものではない、例えば、フィルタ4は、香味発生源2に当接するように配置されてもよい。 The filter 4 is provided on the most suction side inside the holding unit 3. In the example of FIG. 1, the filter 4 is disposed in the holding unit 3 so as to provide a predetermined gap in the longitudinal axis direction L from the flavor generation source 2, but is not limited thereto. For example, the filter 4 may be disposed so as to contact the flavor generation source 2.
 フィルタ4は、セルロースアセテート、紙、又は他の適切な公知のフィルタ部材を含むことができる。また、フィルタ4は、少なくとも一種の揮発性の香味成分を含んでいてもよい。 Filter 4 can include cellulose acetate, paper, or other suitable known filter member. The filter 4 may include at least one volatile flavor component.
 また、図1に示すように、炭素熱源10の少なくとも一部を保持部3から露出させることで、炭素熱源10の燃焼状態の視認性を向上させることができる。かかる場合、空洞11Aの製造工程を容易にすることができる。 Moreover, as shown in FIG. 1, the visibility of the combustion state of the carbon heat source 10 can be improved by exposing at least a part of the carbon heat source 10 from the holding unit 3. In such a case, the manufacturing process of the cavity 11A can be facilitated.
 図2及び図3に示すように、炭素熱源10は、円柱形状であって、円筒部11と、着火端部12とを具備している。 2 and 3, the carbon heat source 10 has a columnar shape and includes a cylindrical portion 11 and an ignition end portion 12.
 図2(a)に示すように、円筒部11には、炭素熱源10の長手軸方向Lに沿って延びる空洞11Aが設けられている。 As shown in FIG. 2A, the cylindrical portion 11 is provided with a cavity 11 </ b> A that extends along the longitudinal axis direction L of the carbon heat source 10.
 また、図2(c)に示すように、かかる空洞11Aは、炭素熱源10の全長に渡って、円筒部11の中心軸と同一の中心軸を有する同軸円柱の形状を有していてもよい。かかる場合、空洞11Aの製造工程を容易にすることができる。 Further, as shown in FIG. 2C, the cavity 11 </ b> A may have a shape of a coaxial cylinder having the same central axis as the central axis of the cylindrical portion 11 over the entire length of the carbon heat source 10. . In such a case, the manufacturing process of the cavity 11A can be facilitated.
 ここで、中盤から後半にかけてのパフ時において、安定した熱量を供給するため、すなわち、自然燃焼時(非吸煙時)における発熱量とパフ時における発熱量との間の変動量を抑制するためには、パフ時における流入空気と燃焼領域との接触面積を低減した形状とすることが好ましい。 Here, in order to supply a stable amount of heat at the time of puffing from the middle to the second half, that is, to suppress the amount of fluctuation between the amount of heat generated during natural combustion (non-smoke absorption) and the amount of heat generated during puffing. Is preferably a shape with a reduced contact area between the inflowing air and the combustion region during puffing.
 したがって、例えば、図2(a)に示すように単一の空洞11Aのみを有する円筒形状とすることで、自然燃焼時における発熱量とパフ時における発熱量との間の変動量を抑制することが可能となる。 Therefore, for example, as shown in FIG. 2 (a), the variation between the calorific value at the time of natural combustion and the calorific value at the time of puffing can be suppressed by forming a cylindrical shape having only a single cavity 11A. Is possible.
 ここで、空洞11Aの直径R1と炭素熱源(円筒部11)の外径R2との差(円筒部11の肉厚)は、炭素熱源のカーボン配合割合等に応じて十分な着火性を得るための数値が適宜選択されるが、1mm以上、好ましくは、1.5mm以上、より好ましくは、2.0mm以上となるように構成されていてもよい。かかる構成によって、ユーザは、香味の吸引を十分な回数行うことができる。 Here, the difference (the thickness of the cylindrical portion 11) between the diameter R1 of the cavity 11A and the outer diameter R2 of the carbon heat source (cylindrical portion 11) is to obtain sufficient ignitability in accordance with the carbon blending ratio of the carbon heat source. Is appropriately selected, but it may be configured to be 1 mm or more, preferably 1.5 mm or more, more preferably 2.0 mm or more. With such a configuration, the user can perform flavor suction a sufficient number of times.
 また、空洞11Aの直径R1は、1mm以上、好ましくは、1.5mm以上、より好ましくは、2.0mm以上となるように構成されていてもよい。かかる構成によって、吸引時に生じる圧力損失を低減することができる。 Moreover, the diameter R1 of the cavity 11A may be configured to be 1 mm or more, preferably 1.5 mm or more, more preferably 2.0 mm or more. With this configuration, it is possible to reduce pressure loss that occurs during suction.
 或いは、かかる空洞11Aは、円錐形状等のように、長手軸方向Lに沿って異なる直径となる形状を有していてもよい。かかる場合、中盤から後半にかけてのパフ時において供給する熱量を精密に制御することができる。 Alternatively, the cavity 11A may have a shape with different diameters along the longitudinal axis direction L, such as a conical shape. In such a case, the amount of heat supplied at the time of puffing from the middle stage to the latter half can be precisely controlled.
 図2(a)に示すように、着火端部12は、円筒部11よりも炭素熱源10の着火側(着火端面10a)側に設けられている。着火端部12は、円筒部11に設けられた空洞11Aの延長方向において空洞11Aに連通する空隙を有する。実施形態において、軸線AXに直交する断面における着火端部12の空隙のサイズは、軸線AXに直交する断面における空洞11Aのサイズよりも小さい。但し、軸線AXに直交する断面における着火端部12の空隙のサイズは、軸線AXに直交する断面における空洞11Aのサイズと同じであってもよい。 As shown in FIG. 2A, the ignition end portion 12 is provided on the ignition side (ignition end surface 10a) side of the carbon heat source 10 with respect to the cylindrical portion 11. The ignition end portion 12 has a gap communicating with the cavity 11A in the extending direction of the cavity 11A provided in the cylindrical portion 11. In the embodiment, the size of the gap of the ignition end 12 in the cross section orthogonal to the axis AX is smaller than the size of the cavity 11A in the cross section orthogonal to the axis AX. However, the size of the gap of the ignition end 12 in the cross section orthogonal to the axis AX may be the same as the size of the cavity 11A in the cross section orthogonal to the axis AX.
 また、図2(b)及び図3に示すように、着火端部12における着火端面10aに、空洞11Aと連通する溝12Xとして溝12A及び溝12Bが形成されている。溝12A及び溝12Bは、着火端部12の空隙とは別に形成されることに留意すべきである。すなわち、炭素熱源の全体に亘って長手軸方向Lに沿って貫通する貫通孔(円筒部11の空洞11A及び着火端部12の空隙)が形成されており、貫通孔が着火端面10aに露出しているケースにおいて、着火端面10aに露出する貫通孔は、溝12A及び溝12Bには該当しないことに留意すべきである。ここで、溝12Aは、溝底121Aを有する窪み部分であり、溝12Bは、溝底121Bを有する窪み部分である。 Further, as shown in FIGS. 2B and 3, a groove 12 </ b> A and a groove 12 </ b> B are formed as a groove 12 </ b> X communicating with the cavity 11 </ b> A on the ignition end surface 10 a in the ignition end portion 12. It should be noted that the groove 12 </ b> A and the groove 12 </ b> B are formed separately from the gap at the ignition end 12. That is, through holes (cavities 11A of the cylindrical portion 11 and voids of the ignition end portion 12) penetrating along the longitudinal axis direction L are formed over the entire carbon heat source, and the through holes are exposed to the ignition end surface 10a. It should be noted that the through hole exposed to the ignition end face 10a does not correspond to the groove 12A and the groove 12B. Here, the groove 12A is a hollow portion having a groove bottom 121A, and the groove 12B is a hollow portion having a groove bottom 121B.
 かかる構成によれば、「着火端面10aの面積(溝12Aが形成されている部分の面積を除く)」を小さくし、「溝12Xにおける溝壁の面積」を大きくするため、ライター等の着火源の熱が効率的に着火端部に伝達し、燃焼開始時から初期パフ時までの期間において、良好な着火性を得ることができる。 According to such a configuration, in order to reduce the “area of the ignition end face 10a (excluding the area of the portion where the groove 12A is formed)” and increase the “area of the groove wall in the groove 12X”, the lighter or the like is ignited. The heat of the source is efficiently transmitted to the ignition end, and good ignitability can be obtained in the period from the start of combustion to the initial puff.
 すなわち、十分な着火性を得るためには、「着火端面10aの面積(溝12Xが形成されている部分の面積を除く)」に対する「溝12Xにおける溝壁の面積」の割合、「溝12Xにおける溝壁の面積」/「着火端面10aの面積(溝12Xが形成されている部分の面積を除く)」が大きい方が望ましい。 That is, in order to obtain sufficient ignitability, the ratio of the “area of the groove wall in the groove 12X” to the “area of the ignition end face 10a (excluding the area of the portion where the groove 12X is formed)”, “in the groove 12X It is desirable that “the area of the groove wall” / “the area of the ignition end face 10a (excluding the area of the portion where the groove 12X is formed)” is larger.
 この「着火端面10aの面積(溝12Xが形成されている部分の面積を除く)」に対する「溝12Xにおける溝壁の面積」の割合は、炭素熱源のカーボン配合割合等に応じて十分な着火性を得るための数値が適宜選択されるが、例えば、0.5以上、好ましくは、1.25以上、さらに好ましくは、2.5以上とすることで十分な着火性を得ることができる。 The ratio of the “area of the groove wall in the groove 12X” to the “area of the ignition end face 10a (excluding the area of the portion where the groove 12X is formed)” is sufficient ignitability according to the carbon blending ratio of the carbon heat source, etc. The numerical value for obtaining the value is appropriately selected. For example, sufficient ignitability can be obtained by setting the value to 0.5 or more, preferably 1.25 or more, and more preferably 2.5 or more.
 ここで、「着火端面10aの面積(溝12Xが形成されている部分の面積を除く)」は、図5に示す斜線部分の面積であり、「溝12Xにおける溝壁の面積」は、「着火端面10aにおける溝12Xの全長(図5に示すA~Hの8辺の長さの合計)」×「溝12Xの深さ」によって算出される面積である。 Here, “the area of the ignition end face 10a (excluding the area of the portion where the groove 12X is formed)” is the area of the hatched portion shown in FIG. 5, and “the area of the groove wall in the groove 12X” is “ignition” The total length of the groove 12X on the end face 10a (the total length of the eight sides A to H shown in FIG. 5) × the “depth of the groove 12X”.
 なお、溝12Xは、空洞11Aと連通する形状であれば、任意の配置とすることができる。 Note that the groove 12X can be arbitrarily arranged as long as it communicates with the cavity 11A.
 例えば、図2(b)及び図3に示すように、溝12Xは、着火端部12の側面12Bに露出していてもよい。かかる構成によれば、燃焼開始時から初期パフ時までの期間において、より効率的に溝12Xの側壁を燃焼せしめることができ、さらに着火性が向上する。 For example, as shown in FIGS. 2B and 3, the groove 12 </ b> X may be exposed on the side surface 12 </ b> B of the ignition end 12. According to such a configuration, the side wall of the groove 12X can be more efficiently burned during the period from the start of combustion to the initial puff, and the ignitability is further improved.
 また、例えば、図2(b)に示すように、着火端面10aにおいて、2本の溝12Xが、直交するように配置されていてもよいし、図4に示すように、着火端面10aにおいて、3本の溝12Xが、60℃で交差するように配置されていてもよい。 Further, for example, as shown in FIG. 2 (b), the two grooves 12X may be arranged so as to be orthogonal to each other in the ignition end face 10a, or in the ignition end face 10a as shown in FIG. The three grooves 12X may be arranged to intersect at 60 ° C.
 ここで、着火端面10aを均等に分割するように、複数の溝12Xを配置することで、燃焼開始時から初期パフ時までの期間において、着火端面10a全体に均一且つ効率的に熱を伝達することができる。 Here, by disposing the plurality of grooves 12X so as to divide the ignition end face 10a evenly, heat is uniformly and efficiently transmitted to the entire ignition end face 10a in the period from the start of combustion to the initial puff. be able to.
 なお、溝12Xは、曲線状として配置されていてもよいし、各々の溝が空洞11Aに連通していれば、複数の溝12Xが、空洞11Aの中心以外の位置で交差するように配置されていてもよい。 The grooves 12X may be arranged in a curved shape, or if each groove communicates with the cavity 11A, the plurality of grooves 12X are arranged so as to intersect at a position other than the center of the cavity 11A. It may be.
 さらに、溝12Xは、例えば、空洞11Aに向かって深くなるように傾斜していてもよい。 Further, the groove 12X may be inclined so as to become deeper toward the cavity 11A, for example.
 また、着火端面10a内の様々な位置において複数の曲線状の溝12Xや直線状の溝12Xを交差させることで、着火端面10aにおいて、複数の突起が設けられることになってもよい。このようなケースにおいて、着火端面10aとは、複数の突起の先端で形成される仮想面及び複数の突起の先端面を含むことに留意すべきである。 Further, a plurality of protrusions may be provided on the ignition end surface 10a by intersecting the plurality of curved grooves 12X and the linear grooves 12X at various positions in the ignition end surface 10a. In such a case, it should be noted that the ignition end surface 10a includes a virtual surface formed by the tips of a plurality of protrusions and a tip surface of the plurality of protrusions.
 また、溝12Xの深さを深くすることで、着火端部における空気の流路の面積が大きくなり、より着火性を向上させることができる。 Also, by increasing the depth of the groove 12X, the area of the air flow path at the ignition end is increased, and the ignitability can be further improved.
 なお、着火性の向上には、溝12Xよりも効果は低減するものの、デザイン性等の観点から、溝12Xと併せて空洞11Aと連通しない溝等の加工を施すことも実施形態に含まれることは勿論である。 In addition, although the effect is less than that of the groove 12X for improving the ignitability, from the viewpoint of design and the like, it is included in the embodiment that the groove 12X is processed together with the groove that does not communicate with the cavity 11A. Of course.
 さらに、着火端面10aに対して、面取り加工を施すことで、着火端面10aにおける欠けを防止することができる。 Furthermore, chipping in the ignition end face 10a can be prevented by chamfering the ignition end face 10a.
 また、炭素熱源10(すなわち、円筒部11及び着火端部12)は、後述するように、押出や打錠や圧鋳込み等の方法によって、一体成形されていてもよい。 Further, the carbon heat source 10 (that is, the cylindrical portion 11 and the ignition end portion 12) may be integrally formed by a method such as extrusion, tableting, or pressure casting as described later.
 さらに、炭素熱源10の長手軸方向Lの長さL1は、8mm~30mm、好ましくは、10mm~30mm、より好ましくは、10mm~15mmとなるように構成されていてもよい。かかる構成の炭素熱源10は、香味吸引具の熱源として好適に採用することができる。 Furthermore, the length L1 of the carbon heat source 10 in the longitudinal axis direction L may be configured to be 8 mm to 30 mm, preferably 10 mm to 30 mm, and more preferably 10 mm to 15 mm. The carbon heat source 10 having such a configuration can be suitably employed as a heat source for the flavor suction tool.
 また、炭素熱源10の外径R2は、4mm~8mm、より好ましくは、5mm~7mmとなるように構成されていてもよい。かかる構成の炭素熱源10は、香味吸引具の熱源として好適に採用することができる。 Further, the outer diameter R2 of the carbon heat source 10 may be configured to be 4 mm to 8 mm, more preferably 5 mm to 7 mm. The carbon heat source 10 having such a configuration can be suitably employed as a heat source for the flavor suction tool.
 なお、円筒部11の外径及び着火端部12の外径は、炭素熱源10の外径R2と同じになるように構成されている。 The outer diameter of the cylindrical portion 11 and the outer diameter of the ignition end portion 12 are configured to be the same as the outer diameter R2 of the carbon heat source 10.
 また、長手軸方向Lにおける円筒部11の長さは、着火端部12の機能(着火性)を阻害しない範囲で任意に設定され得る。例えば、長手軸方向Lにおける円筒部11の長さは、長手軸方向Lにおける炭素熱源10の全長から、上述の溝12Xの深さを減じた長さであってもよい。 Also, the length of the cylindrical portion 11 in the longitudinal axis direction L can be arbitrarily set within a range that does not hinder the function (ignitability) of the ignition end portion 12. For example, the length of the cylindrical portion 11 in the longitudinal axis direction L may be a length obtained by subtracting the depth of the groove 12X from the total length of the carbon heat source 10 in the longitudinal axis direction L.
 以下、図6を参照して、実施形態に係る炭素熱源10を製造する方法の一例について説明する。 Hereinafter, an example of a method for producing the carbon heat source 10 according to the embodiment will be described with reference to FIG.
 図6に示すように、ステップS101において、炭素熱源10についての一次成形を行う。 As shown in FIG. 6, in step S101, primary molding of the carbon heat source 10 is performed.
 一次成形時の炭素熱源10は、空洞11Aが設けられていない円柱形状を有していてもよいし、長手軸方向に沿って延びる空洞11Aが設けられている円柱形状を有していてもよい。 The carbon heat source 10 at the time of primary molding may have a columnar shape in which the cavity 11A is not provided, or may have a columnar shape in which the cavity 11A extending along the longitudinal axis direction is provided. .
 ここで、植物由来の炭素材料や不燃添加物やバインダ(有機バインダ又は無機バインダ)や水等を含む混合物を、押出、打錠、圧鋳込み等の方法によって一体成形することで、炭素熱源10を得ることができる。 Here, the carbon heat source 10 is formed by integrally forming a mixture containing a plant-derived carbon material, an incombustible additive, a binder (an organic binder or an inorganic binder), water, or the like by a method such as extrusion, tableting, or pressure casting. Obtainable.
 なお、かかる炭素材料としては、加熱処理等によって揮発性の不純物を除去したものを用いることが望ましい。 As such a carbon material, it is desirable to use a material from which volatile impurities have been removed by heat treatment or the like.
 また、炭素熱源10は、10重量%~99重量%の範囲の炭素材料を含むことができる。ここで、十分な熱量の供給や灰締まり等の燃焼特性の観点から、炭素熱源10は、30重量%~70重量%の範囲の炭素材料を含むことが好ましく、40重量%~50重量%の範囲の炭素材料を含むことがより好ましい。 In addition, the carbon heat source 10 can include a carbon material in the range of 10 wt% to 99 wt%. Here, from the viewpoint of combustion characteristics such as supply of a sufficient amount of heat and ash tightening, the carbon heat source 10 preferably contains a carbon material in the range of 30% by weight to 70% by weight, preferably 40% by weight to 50% by weight. More preferably, a range of carbon materials is included.
 有機バインダとしては、例えば、CMC(カルボキシメチルセルロース)、CMC-Na(カルボキシメチルセルロースナトリウム)、アルギン酸塩、EVA、PVA、PVAC及び糖類の少なくとも1つを含む混合物を使用することができる。 As the organic binder, for example, a mixture containing at least one of CMC (carboxymethylcellulose), CMC-Na (carboxymethylcellulose sodium), alginate, EVA, PVA, PVAC and sugars can be used.
 また、無機バインダとしては、例えば、精製ベントナイト等の鉱物系、又は、コロイダルシリカや水ガラスやケイ酸カルシウム等のシリカ系バインダを使用することができる。 Further, as the inorganic binder, for example, a mineral type such as purified bentonite, or a silica type binder such as colloidal silica, water glass, calcium silicate, or the like can be used.
 例えば、香味の観点から、上述のバインダが、1重量%~10重量%のCMC又はCMC-Naを含むことが好ましく、1重量%~8重量%のCMC又はCMC-Naを含むことがより好ましい。 For example, from the viewpoint of flavor, the binder described above preferably contains 1 to 10% by weight of CMC or CMC-Na, and more preferably contains 1 to 8% by weight of CMC or CMC-Na. .
 また、不燃添加物としては、例えば、ナトリウムやカリウムやカルシウムやマグネシウムやケイ素等からなる炭素塩又は酸化物を使用することができる。なお、炭素熱源10は、40重量%~89重量%の不燃添加物を含むことができる。 Further, as the non-combustible additive, for example, a carbon salt or oxide made of sodium, potassium, calcium, magnesium, silicon, or the like can be used. The carbon heat source 10 can contain 40 wt% to 89 wt% incombustible additive.
 ここで、不燃添加物として、炭酸カルシウムを使用し、炭素熱源10が、40重量%~55重量%の不燃添加物を含むことが好ましい。 Here, it is preferable that calcium carbonate is used as the incombustible additive, and the carbon heat source 10 includes 40 to 55% by weight of the incombustible additive.
 炭素熱源10は、燃焼特性を改善する目的で、塩化ナトリウム等のアルカリ金属塩を、1重量%以下の割合で含んでもよい。 The carbon heat source 10 may contain an alkali metal salt such as sodium chloride at a ratio of 1% by weight or less for the purpose of improving combustion characteristics.
 ステップS102において、円筒部11を形成するための加工を行う。例えば、一次成形された炭素熱源10の一方の端面(パフ側の端面)より、ドリルにて所定位置まで穴を開けることで、空洞11Aを有する円筒部11を形成する。 In step S102, processing for forming the cylindrical portion 11 is performed. For example, a cylindrical portion 11 having a cavity 11 </ b> A is formed by making a hole from one end face (puff side end face) of the primarily formed carbon heat source 10 to a predetermined position with a drill.
 ステップS103において、着火端部12を形成するための加工を行う。例えば、ステップS102でドリルを挿入した面(パフ側の端面)と反対側の面(着火端)に、ダイヤモンドカッティングディスクにて、所定加工を施すことによって、溝12Xを形成する。 In step S103, a process for forming the ignition end 12 is performed. For example, the groove 12X is formed by performing predetermined processing on the surface (ignition end) opposite to the surface (end surface on the puff side) into which the drill is inserted in step S102, using a diamond cutting disk.
 ここで、炭素熱源10の組成(カーボン配合率等)や外径R2に応じて、溝12Xの本数や深さや幅等を適宜調整することで、良好な着火性を得ることができる。 Here, good ignitability can be obtained by appropriately adjusting the number, depth, width, and the like of the grooves 12X according to the composition of the carbon heat source 10 (carbon blending ratio, etc.) and the outer diameter R2.
 なお、ステップS102及びステップS103の順序は、反対であってもよい。また、一次成形において空洞11Aが形成されている場合、ステップS102は、省略されてもよい。 Note that the order of step S102 and step S103 may be reversed. Further, when the cavity 11A is formed in the primary molding, step S102 may be omitted.
 (作用及び効果)
 実施形態に係る香味吸引具1及び炭素熱源10によれば、着火端面10aにおいて、溝12Xを形成すると共に、円筒部11において、炭素熱源10の長手軸方向Lに沿って延びる空洞11Aを形成することで、着火端面10aにおける良好な着火性及び円筒部11における安定した熱量の供給を同時に満たすことができる。
(Function and effect)
According to the flavor suction tool 1 and the carbon heat source 10 according to the embodiment, the groove 12X is formed in the ignition end surface 10a, and the cavity 11A extending along the longitudinal axis direction L of the carbon heat source 10 is formed in the cylindrical portion 11. Thereby, the favorable ignitability in the ignition end face 10a and the stable supply of heat in the cylindrical portion 11 can be satisfied at the same time.
 また、実施形態に係る香味吸引具1では、保持部3の外壁31は、外装部材311と熱伝導部材312とを備える。また、熱伝導部材312の少なくとも一部は、炭素熱源10に隣接する。具体的に、熱伝導部材312の一部は、炭素熱源10の短手方向Dの外表面(外周面)に当接する。 Further, in the flavor suction device 1 according to the embodiment, the outer wall 31 of the holding unit 3 includes an exterior member 311 and a heat conduction member 312. Further, at least a part of the heat conducting member 312 is adjacent to the carbon heat source 10. Specifically, a part of the heat conducting member 312 comes into contact with the outer surface (outer peripheral surface) in the short direction D of the carbon heat source 10.
 かかる香味吸引具1によれば、炭素熱源10の燃焼が進行して、熱伝導部材312の当接部分に達すると、炭素熱源10から発生した熱が熱伝導部材312に伝搬する。これにより、炭素熱源10の温度が低下して、燃焼が抑制される。すなわち、かかる香味吸引具1によれば、燃焼終了時(喫煙終了時)において、炭素熱源10の燃焼を確実に消火させることが可能になる。更に、かかる香味吸引具1によれば、保持部3における延焼も確実に防止し、これにより燃焼終了時において、確実に消火させることが可能になる。 According to the flavor suction tool 1, when the combustion of the carbon heat source 10 proceeds and reaches the contact portion of the heat conducting member 312, the heat generated from the carbon heat source 10 is propagated to the heat conducting member 312. Thereby, the temperature of the carbon heat source 10 falls and combustion is suppressed. That is, according to the flavor inhaler 1, it is possible to reliably extinguish the combustion of the carbon heat source 10 at the end of combustion (at the end of smoking). Furthermore, according to the flavor suction tool 1, it is possible to reliably prevent the spread of the fire in the holding unit 3, and thus to ensure that the fire is extinguished at the end of combustion.
 また、熱伝導部材312は、少なくとも炭素熱源10から香味発生源2まで延在する。具体的に、熱伝導部材312は、炭素熱源10の短手方向Dの外表面(外周面)と、香味発生源2の短手方向Dの外表面(外周面)とに当接する。 The heat conducting member 312 extends at least from the carbon heat source 10 to the flavor generating source 2. Specifically, the heat conducting member 312 contacts the outer surface (outer peripheral surface) in the short direction D of the carbon heat source 10 and the outer surface (outer peripheral surface) in the short direction D of the flavor generating source 2.
 かかる香味吸引具1によれば、炭素熱源10の燃焼が熱伝導部材312の当接部分に達すると、炭素熱源10から発生した熱が熱伝導部材312を介して香味発生源2に伝搬し易くなるため、香味発生源2に供給される熱量が増加する。これにより、香味発生源2からの香味成分の発生が促され、ユーザに対してより多くの香味成分を効率よく供給できる。 According to the flavor suction tool 1, when the combustion of the carbon heat source 10 reaches the contact portion of the heat conducting member 312, the heat generated from the carbon heat source 10 easily propagates to the flavor generating source 2 via the heat conducting member 312. Therefore, the amount of heat supplied to the flavor generating source 2 increases. Thereby, generation | occurrence | production of the flavor component from the flavor generation source 2 is promoted, and more flavor components can be efficiently supplied with respect to a user.
 また、熱伝導部材312には、気密性を有する部材として、例えば、アルミニウムが適用されることが好ましい。かかる場合、炭素熱源10によって生じた熱を、空気流によって香味発生源2に効率よく伝達することが可能になる。 Further, it is preferable that, for example, aluminum is applied to the heat conducting member 312 as a member having airtightness. In such a case, the heat generated by the carbon heat source 10 can be efficiently transferred to the flavor generating source 2 by the air flow.
 (実施例1)
 図7を参照して、着火端面10aにおける溝12Xの形状及び着火性の関係を評価するために行った試験について説明する。図7は、図1と同様に、図2(b)に示すS断面をT側から見た図である。
Example 1
With reference to FIG. 7, the test performed in order to evaluate the relationship between the shape of the groove | channel 12X in the ignition end surface 10a and ignitability is demonstrated. FIG. 7 is a view of the S cross section shown in FIG. 2B as seen from the T side, as in FIG.
 かかる試験では、以下のように、複数の試験用サンプルA-1~E-3を製造した。各試験用サンプルA-1~E-3における溝12Xの幅や深さや本数について、表1に示す。 In this test, a plurality of test samples A-1 to E-3 were manufactured as follows. Table 1 shows the width, depth, and number of grooves 12X in each of the test samples A-1 to E-3.
 第1に、100gの活性炭と90gの炭酸カルシウムと10gのCMC(エーテル化度0.6)とを混合した後、1gの塩化ナトリウムを含む270gの水を加えて、さらに混合した。 First, after mixing 100 g of activated carbon, 90 g of calcium carbonate, and 10 g of CMC (etherification degree 0.6), 270 g of water containing 1 g of sodium chloride was added and further mixed.
 第2に、かかる混合物を混練した後、外径6mmで且つ内径0.7mmの円柱形状となるように押出成形を行った。 Second, after kneading the mixture, it was extruded so as to have a cylindrical shape with an outer diameter of 6 mm and an inner diameter of 0.7 mm.
 第3に、かかる押出成形によって得られた成形物を乾燥した後、13mmの長さに切断し、一次成形体(一次成形時の炭素熱源10)を得た。 Thirdly, the molded product obtained by the extrusion molding was dried and then cut to a length of 13 mm to obtain a primary molded body (carbon heat source 10 at the time of primary molding).
 第4に、一次成形体の一方の端面(パフ側の端面)より、2mm径のドリルにて所定位置まで穴を開けることで、空洞11Aを有する円筒部11を形成した。 Fourth, a cylindrical portion 11 having a cavity 11A was formed by drilling a hole from one end face (puff side end face) of the primary molded body to a predetermined position with a 2 mm diameter drill.
 第5に、ステップS102でドリルを挿入した面(パフ側の端面)と反対側の面(着火端)に、ダイヤモンドカッティングディスクにて、所定加工を施すことによって、溝12Xを形成した。 Fifth, a groove 12X was formed by applying a predetermined process to the surface (ignition end) opposite to the surface (end surface on the puff side) into which the drill was inserted in step S102, using a diamond cutting disk.
 その後、各試験用サンプルA-1~E-3(炭素熱源10)に対して、以下の方法で、着火性の評価試験を行った。 Thereafter, each of test samples A-1 to E-3 (carbon heat source 10) was subjected to an ignitability evaluation test by the following method.
 第1に、図7に示すように、各試験用サンプルA-1~E-3(炭素熱源10)の円筒部11を、筒状に形成されている保持部3に接続する。 First, as shown in FIG. 7, the cylindrical part 11 of each of the test samples A-1 to E-3 (carbon heat source 10) is connected to the holding part 3 formed in a cylindrical shape.
 第2に、市販のガスライター500を使用し、各試験用サンプル(炭素熱源10)を、ガスライター500の炎に接触させ、3秒間、加熱した後、55ml/2秒でパフする。ここで、かかるパフを、15秒間隔で繰り返した。 Second, using a commercially available gas lighter 500, each test sample (carbon heat source 10) is brought into contact with the flame of the gas lighter 500, heated for 3 seconds, and then puffed at 55 ml / 2 seconds. Here, this puff was repeated at 15 second intervals.
 各試験用サンプルA-1~E-3における着火性の評価試験の結果について、表1に示す。 Table 1 shows the results of the ignitability evaluation test for each of the test samples A-1 to E-3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、着火性の評価試験として、「最初のパフ後における各試験用サンプルの着火端の燃焼状態(着火端の全体が燃焼するか否か)」及び「2回目のパフ後における燃焼の持続の可否(均一に燃焼が持続するか)」について確認した。かかる評価試験の結果によれば、溝12Xの本数が「2本」である場合、溝12Xの深さを「2mm以上」とすることで、市販のガスライター500でも十分な着火性を有することが確認できた。 Here, as the evaluation test of ignitability, “the combustion state of the ignition end of each test sample after the first puff (whether or not the entire ignition end is combusted)” and “continuation of combustion after the second puff” The possibility of combustion (whether combustion continues uniformly) was confirmed. According to the result of the evaluation test, when the number of the grooves 12X is “2”, the commercially available gas lighter 500 has sufficient ignitability by setting the depth of the grooves 12X to “2 mm or more”. Was confirmed.
 また、溝12Xの深さが「1mm」の場合であっても、溝12Xの本数を「3本以上」とすることで、着火性が向上する傾向が認められた。 In addition, even when the depth of the groove 12X was “1 mm”, the tendency to improve the ignitability was recognized by setting the number of the grooves 12X to “3 or more”.
 また、かかる評価試験の結果によれば、着火端に対する溝壁の面積比(「着火端面10aの面積(溝12Xが形成されている部分の面積を除く)」に対する「溝12Xにおける溝壁の面積」の割合) が大きいほど、着火性が向上していることが分かる。 Further, according to the result of the evaluation test, “the area of the groove wall in the groove 12X relative to the area ratio of the groove wall to the ignition end” (“the area of the ignition end surface 10a (excluding the area of the portion where the groove 12X is formed)”. It can be seen that the greater the soot, the better the ignitability.
 なお、溝深さとは、長手軸方向Lにおいて、着火端面10aから溝12Xの底までの距離である。溝幅は、着火端面10aにおいて、溝12Xの延長方向に直交する方向における溝12Xのサイズである。 The groove depth is the distance from the ignition end face 10a to the bottom of the groove 12X in the longitudinal axis direction L. The groove width is the size of the groove 12X in the direction orthogonal to the extending direction of the groove 12X on the ignition end face 10a.
 (実施例2)
以下において、実施例2について説明する。実施例2では、図8に示す複数のサンプル(サンプルL-1~サンプルM-2)を作成して、パフ間の温度差及び燃焼持続パフ回数について確認した。
(Example 2)
In the following, Example 2 will be described. In Example 2, a plurality of samples (sample L-1 to sample M-2) shown in FIG.
 各サンプルは、活性炭、炭酸カルシウム及びCMCによって構成される炭素熱源である。サンプルの総重量が100重量%である場合に、サンプルは、80重量%の活性炭、15重量%の炭酸カルシウム及び5重量%のCMCによって構成される。長手軸方向Lにおける各サンプルの全長は、15mmである。各サンプルが有する空洞の数、空洞のサイズ及び空洞の個数は、図8に示す通りである。 Each sample is a carbon heat source composed of activated carbon, calcium carbonate and CMC. If the total weight of the sample is 100% by weight, the sample is composed of 80% by weight activated carbon, 15% by weight calcium carbonate and 5% by weight CMC. The total length of each sample in the longitudinal axis direction L is 15 mm. The number of cavities, the size of the cavities, and the number of cavities included in each sample are as shown in FIG.
 このようなサンプルを紙管に挿入して、市販のガスライターの炎を3秒間に亘って着火端に接触させた後に55ml/2秒のパフを行った。 Such a sample was inserted into a paper tube, and a commercially available gas lighter flame was brought into contact with the ignition end for 3 seconds, and then 55 ml / 2 seconds was puffed.
 図8に示すように、複数の空洞を有するサンプルM-1~サンプルM-2と比べて、単数の空洞を有するサンプルL-1~サンプルL-3では、パフ間の温度差及び燃焼持続パフ回数の双方において良好な結果が得られた。 As shown in FIG. 8, in comparison with Samples M-1 to M-2 having a plurality of cavities, in Samples L-1 to L-3 having a single cavity, the temperature difference between the puffs and the sustained combustion puff Good results were obtained both in number of times.
 すなわち、複数の空洞が設けられる場合と比べて、単数の空洞が設けられる場合に、“成形体断面積/流路周長”が大きいため、パフ間の温度差が縮小することが確認された。また、複数の空洞が設けられる場合と比べて、単数の空洞が設けられる場合に、“成形体断面積/流路周長”が大きいため、パフ回数が増加することが確認された。 That is, it was confirmed that the temperature difference between the puffs was reduced when the single cavity was provided compared to the case where a plurality of cavities were provided, because the “molded body cross-sectional area / flow path circumferential length” was large. . In addition, it was confirmed that the number of puffs increased when “single cavity” was provided because “molded body cross-sectional area / flow path circumferential length” was larger than when a plurality of cavities were provided.
 (変更例1)
 以下において、上述した実施形態の変更例1について説明する。以下においては、上述した実施形態に対する相違点について説明する。
(Modification 1)
Hereinafter, Modification Example 1 of the above-described embodiment will be described. In the following, differences from the above-described embodiment will be described.
 図9及び図10は、変更例1に係る炭素熱源10を示す図である。図9は、炭素熱源10を着火側の端面(以下、着火端面10a)側から見た図である。図10は、図9に示すS断面をT側から見た図である。S断面は、空洞11Aの中心を通り、かつ、溝12Bを通る断面である。図10においては、説明の便宜上、手前側に見える稜線を点線で示していることに留意すべきである。 9 and 10 are diagrams showing the carbon heat source 10 according to the first modification. FIG. 9 is a view of the carbon heat source 10 as viewed from the side of the end face on the ignition side (hereinafter, the ignition end face 10a). FIG. 10 is a view of the S cross section shown in FIG. 9 as viewed from the T side. The S cross section is a cross section passing through the center of the cavity 11A and passing through the groove 12B. In FIG. 10, it should be noted that for convenience of explanation, the ridgeline that appears on the near side is indicated by a dotted line.
 図9に示すように、炭素熱源10の着火端面10aには、空洞11Aの中心を通る十字形状の溝12Xが形成されている。 As shown in FIG. 9, a cross-shaped groove 12X passing through the center of the cavity 11A is formed in the ignition end face 10a of the carbon heat source 10.
 変更例1において、着火端部12は、円筒部11に設けられた空洞11Aの延長方向において空洞11Aに連通する空隙を有する。変更例1において、軸線AXに直交する断面における着火端部12の空隙のサイズは、軸線AXに直交する断面における空洞11Aのサイズと同じである。十字形状の溝12Xは、着火端部12の空隙とは別に形成されることに留意すべきである。 In the first modification, the ignition end portion 12 has a gap communicating with the cavity 11A in the extending direction of the cavity 11A provided in the cylindrical portion 11. In the first modification, the size of the gap of the ignition end 12 in the cross section orthogonal to the axis AX is the same as the size of the cavity 11A in the cross section orthogonal to the axis AX. It should be noted that the cross-shaped groove 12X is formed separately from the gap of the ignition end 12.
 上述した実施形態で既に述べたように、着火端面10aに面取り加工が施されていてもよい。例えば、図9及び図10に示すように、着火端面10aにおいて径方向の外側端U1には面取り加工が施されている。着火端面10aにおいて径方向の内側端U2には面取り加工が施されている。着火端面10aの反対側に設けられた非着火端において径方向の外側端U3には面取り加工が施されている。すなわち、外側端U1、内側端U2及び外側端UEは、長手軸方向Lに対する垂直面に対して傾きを有している。このような面取り加工によって、炭素熱源10の欠けが抑制される。 As already described in the above-described embodiment, the ignition end surface 10a may be chamfered. For example, as shown in FIGS. 9 and 10, a chamfering process is applied to the radially outer end U1 of the ignition end face 10a. In the ignition end face 10a, the inner end U2 in the radial direction is chamfered. The non-ignition end provided on the opposite side of the ignition end surface 10a is chamfered at the radially outer end U3. That is, the outer end U1, the inner end U2, and the outer end UE are inclined with respect to the vertical plane with respect to the longitudinal axis direction L. By such chamfering, chipping of the carbon heat source 10 is suppressed.
 ここで、空洞11Aの直径φは、例えば、2.5mmである。各溝12Xの溝幅は、空洞11Aの直径φよりも小さく、例えば、1mmである。長手軸方向Lにおける炭素熱源10の全長は、例えば、17mmである。長手軸方向Lにおける着火端部12の長さは、例えば、2mmである。長手軸方向Lにおいて、着火端部12のうち、面取り加工が施される部位の長さは、例えば、0.5mmである。すなわち、長手軸方向Lにおいて、着火端部12のうち、面取り加工が施されていない部位の長さは、1.5mmである。 Here, the diameter φ of the cavity 11A is, for example, 2.5 mm. The groove width of each groove 12X is smaller than the diameter φ of the cavity 11A, for example, 1 mm. The total length of the carbon heat source 10 in the longitudinal axis direction L is, for example, 17 mm. The length of the ignition end 12 in the longitudinal axis direction L is, for example, 2 mm. In the longitudinal axis direction L, the length of the portion to be chamfered in the ignition end portion 12 is, for example, 0.5 mm. That is, in the longitudinal axis direction L, the length of the portion that is not chamfered in the ignition end 12 is 1.5 mm.
 なお、変更例1では、炭素熱源10(円筒部11及び着火端部12)は、一体成形されていることに留意すべきである。例えば、炭素材料によって構成されており、長手軸方向に沿って延びる空洞を有する塊体を押出や打錠や圧鋳込み等の方法によって形成した後に、着火端面の切削によって溝を形成してもよい。 Note that in the first modification, the carbon heat source 10 (the cylindrical portion 11 and the ignition end portion 12) is integrally formed. For example, after forming a lump made of a carbon material and having a cavity extending along the longitudinal axis direction by a method such as extrusion, tableting or pressure casting, a groove may be formed by cutting the ignition end face. .
 (変更例2)
 以下において、上述した実施形態の変更例2について説明する。以下においては、上述した実施形態に対する相違点について説明する。図11は、変更例2に係る香味吸引具1を示す図である。図11は、図1と同様に、図2(b)に示すS断面をT側から見た図である。
(Modification 2)
Hereinafter, Modification 2 of the above-described embodiment will be described. In the following, differences from the above-described embodiment will be described. FIG. 11 is a view showing a flavor suction device 1 according to the second modification. 11 is a view of the S cross section shown in FIG. 2B as seen from the T side, as in FIG.
 変更例2に係る香味吸引具1では、上述した実施形態と比較して、主に、熱伝導部材の構成が異なる。具体的に、変更例2に係る香味吸引具1は、上述した実施形態の熱伝導部材312に代えて、熱伝導部材313を有する。変更例2に係る熱伝導部材313は、長手軸方向Lにおいて、炭素熱源10から香味発生源2まで延在する。より詳細には、熱伝導部材313の吸い口側の端部313bが、長手軸方向Lにおいて、香味発生源2の外周面に位置し、熱伝導部材313の吸い口側の端部313bは、長手軸方向Lにおいて、香味発生源2の外周面に位置する。 In the flavor suction tool 1 according to the modified example 2, the configuration of the heat conducting member is mainly different from the above-described embodiment. Specifically, the flavor suction tool 1 according to the second modification includes a heat conducting member 313 instead of the heat conducting member 312 of the above-described embodiment. The heat conducting member 313 according to the modified example 2 extends from the carbon heat source 10 to the flavor generating source 2 in the longitudinal axis direction L. More specifically, the end portion 313b on the mouth side of the heat conducting member 313 is located on the outer peripheral surface of the flavor generating source 2 in the longitudinal axis direction L, and the end portion 313b on the mouth side of the heat conducting member 313 is In the longitudinal axis direction L, it is located on the outer peripheral surface of the flavor generating source 2.
 なお、長手軸方向Lにおいて、熱伝導部材313の着火端側の端部313aの位置は、上述した実施形態と同様である(図1参照)。 In the longitudinal axis direction L, the position of the end portion 313a on the ignition end side of the heat conducting member 313 is the same as in the above-described embodiment (see FIG. 1).
 かかる構成によれば、熱伝導部材313の長手軸方向Lにおける長さを短くできるので、材料コストを削減することが可能になる。 According to such a configuration, since the length of the heat conducting member 313 in the longitudinal axis direction L can be shortened, the material cost can be reduced.
 なお、図11の例では、長手軸方向Lにおいて、熱伝導部材313の着火端側の端部313aの位置は、外装部材311の着火端側の端部の位置と同じ場合を例に挙げているが、これに限定されるものではない。例えば、熱伝導部材313の着火端側の端部313aの位置は、外装部材311の着火端側の端部よりも、吸い口側に設けられていてもよい。 In the example of FIG. 11, in the longitudinal axis direction L, the position of the end portion 313a on the ignition end side of the heat conducting member 313 is the same as the position of the end portion on the ignition end side of the exterior member 311 as an example. However, it is not limited to this. For example, the position of the end portion 313 a on the ignition end side of the heat conducting member 313 may be provided closer to the suction side than the end portion on the ignition end side of the exterior member 311.
 また、図11の例では、長手軸方向Lにおいて、熱伝導部材313の吸い口側の端部313bの位置が、香味発生源2の吸い口側の端部2bの位置と同じ場合を例に挙げているが、これに限定されるものではない。熱伝導部材313の吸い口側の端部313bの位置は、香味発生源2の着火端側の端部2aと吸い口側の端部2bとの間であれば、何れであってもよい。 Further, in the example of FIG. 11, in the longitudinal axis direction L, the position of the end portion 313 b on the mouth side of the heat conducting member 313 is the same as the position of the end portion 2 b on the mouth side of the flavor generating source 2 as an example. Although listed, it is not limited to this. The position of the end portion 313b on the mouth side of the heat conducting member 313 may be any position between the end portion 2a on the ignition end side of the flavor generating source 2 and the end portion 2b on the mouth side.
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 As described above, the present invention has been described in detail using the above-described embodiments. However, it is obvious for those skilled in the art that the present invention is not limited to the embodiments described in the present specification. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
 例えば、実施形態において、炭素熱源10は、円柱形状を有するが、実施形態は、これに限定されるものではない。炭素熱源10は、角柱形状を有していてもよい。実施形態において、長手軸方向Lに直交する断面において、空洞11Aは円形形状を有するが、実施形態は、これに限定されるものではない。長手軸方向Lに直交する断面において、空洞11Aは、矩形形状、楕円形状を有していてもよい。このようなケースにおいて、空洞11Aの直径R1及び炭素熱源10の外径R2は、長手軸方向Lに直交する方向のサイズと読み替えてもよい。このようなケースにおいて、長手軸方向Lに直交する方向のサイズは、長手軸方向Lに直交する断面において炭素熱源10(空洞11A)の中心を通る直線の最大長さであってもよく、最小長さであってもよく、平均長さであってもよい。 For example, in the embodiment, the carbon heat source 10 has a cylindrical shape, but the embodiment is not limited thereto. The carbon heat source 10 may have a prismatic shape. In the embodiment, in the cross section orthogonal to the longitudinal axis direction L, the cavity 11A has a circular shape, but the embodiment is not limited thereto. In the cross section orthogonal to the longitudinal axis direction L, the cavity 11A may have a rectangular shape or an elliptical shape. In such a case, the diameter R1 of the cavity 11A and the outer diameter R2 of the carbon heat source 10 may be read as the size in the direction orthogonal to the longitudinal axis direction L. In such a case, the size in the direction orthogonal to the longitudinal axis direction L may be the maximum length of a straight line passing through the center of the carbon heat source 10 (cavity 11A) in the cross section orthogonal to the longitudinal axis direction L. It may be a length or an average length.
 また、上述の実施形態では、香味発生源2とフィルタ4とが別体である場合を例に挙げて説明したが、香味発生源2とフィルタ4とを一体化した香味発生源(エアロゾル発生源)としてもよい。 Moreover, in the above-mentioned embodiment, although the case where the flavor generation source 2 and the filter 4 were separate was mentioned as an example, the flavor generation source (aerosol generation source) which integrated the flavor generation source 2 and the filter 4 was demonstrated. ).
 また、上述の実施形態では、保持部3において、外壁31は、外装部材311と熱伝導部材312との2層構造である場合を例に挙げて説明した。しかし、これに限定されず、3層以上の構造であってもよい。更に、上述の実施形態では、熱伝導部材312の一部は、炭素熱源10の短手方向Dの外表面(外周面)に当接する構成であったが、これに限定されるものではない。例えば、外壁31は、炭素熱源10と熱伝導部材312との間に、他のシート状部材を有しており、他のシート状部材が、炭素熱源10の外表面(外周面)に当接する構成であってもよい。すなわち、熱伝導部材312は、炭素熱源10の外表面(外表面)に隣接する構成であれば、様々な構成を適用可能である。 In the above-described embodiment, the case where the outer wall 31 has the two-layer structure of the exterior member 311 and the heat conduction member 312 in the holding unit 3 has been described as an example. However, the present invention is not limited to this, and may have a structure of three or more layers. Furthermore, in the above-described embodiment, a part of the heat conducting member 312 is configured to abut on the outer surface (outer peripheral surface) of the carbon heat source 10 in the short direction D, but is not limited thereto. For example, the outer wall 31 has another sheet-like member between the carbon heat source 10 and the heat conducting member 312, and the other sheet-like member comes into contact with the outer surface (outer peripheral surface) of the carbon heat source 10. It may be a configuration. In other words, various configurations can be applied to the heat conducting member 312 as long as the configuration is adjacent to the outer surface (outer surface) of the carbon heat source 10.
 更に、上述した実施形態及び変形例は組み合わせることも可能である。 Furthermore, the above-described embodiments and modification examples can be combined.
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 Thus, it goes without saying that the present invention includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 なお、日本国特許出願第2013-204167号(2013年9月30日出願)の全内容が、参照により、本願明細書に組み込まれている。 Note that the entire content of Japanese Patent Application No. 2013-204167 (filed on September 30, 2013) is incorporated herein by reference.
 以上説明したように、本発明によれば、燃焼開始時から初期パフ時までの期間における着火性が良好であり、かつ、中盤から後半にかけてのパフ時における安定した熱量の供給を実現し、更に、燃焼終了時に確実に消火することができる炭素熱源及び香味吸引具を提供することができる。 As described above, according to the present invention, the ignitability in the period from the start of combustion to the initial puff is good, and a stable supply of heat during the puff from the middle to the second half is realized. It is possible to provide a carbon heat source and a flavor suction device that can be surely extinguished at the end of combustion.

Claims (7)

  1.  柱状形状の炭素熱源と、前記炭素熱源を保持する筒状の外壁を有する保持部とを備えた香味吸引具であって、
     前記炭素熱源は、
     前記炭素熱源の長手軸方向に沿って延びる1つの空洞が設けられている筒部と、
     前記筒部よりも前記炭素熱源の着火側に設けられている着火端部とを具備しており、
     前記着火端部における前記着火側の端面に、前記空洞と連通する溝が形成されており、
     前記着火端部は、前記筒部に設けられた前記空洞の延長方向において前記空洞に連通する空隙を有しており、
     前記溝は、前記空隙とは別に形成されており、
     前記保持部において、前記外壁は、熱伝導部材を備えており、
     前記熱伝導部材の少なくとも一部は、前記炭素熱源に隣接することを特徴とする香味吸引具。
    A flavor suction device comprising a columnar carbon heat source and a holding part having a cylindrical outer wall for holding the carbon heat source,
    The carbon heat source is
    A cylindrical portion provided with one cavity extending along the longitudinal direction of the carbon heat source;
    An ignition end provided on the ignition side of the carbon heat source rather than the tube portion;
    A groove communicating with the cavity is formed on an end surface on the ignition side of the ignition end portion,
    The ignition end portion has a gap communicating with the cavity in the extending direction of the cavity provided in the cylindrical portion,
    The groove is formed separately from the gap,
    In the holding portion, the outer wall includes a heat conducting member,
    At least a part of the heat conducting member is adjacent to the carbon heat source.
  2.  前記保持部の内部には、少なくとも一種の揮発性の香味成分を含む香味発生源が設けられており、
     前記熱伝導部材は、少なくとも前記炭素熱源から前記香味発生源まで延在することを特徴とする請求項1に記載の香味吸引具。
    Inside the holding part, a flavor generation source containing at least one volatile flavor component is provided,
    The flavor inhaler according to claim 1, wherein the heat conducting member extends at least from the carbon heat source to the flavor generating source.
  3.  前記溝は、前記着火端部の側面に露出することを特徴とする請求項1又は2に記載の香味吸引具。 The flavor suction tool according to claim 1 or 2, wherein the groove is exposed on a side surface of the ignition end.
  4.  前記筒部は、円筒形状を有しており、
     前記空洞の直径と前記炭素熱源の外径との差は、1mm以上となるように構成されていることを特徴とする請求項1乃至3のいずれか一項に記載の香味吸引具。
    The cylindrical portion has a cylindrical shape,
    The flavor inhaler according to any one of claims 1 to 3, wherein a difference between a diameter of the cavity and an outer diameter of the carbon heat source is configured to be 1 mm or more.
  5.  前記筒部及び前記着火端部は、一体成形されていることを特徴とする請求項1乃至4のいずれか一項に記載の香味吸引具。 The flavor suction tool according to any one of claims 1 to 4, wherein the tube portion and the ignition end portion are integrally formed.
  6.  前記炭素熱源の長手軸方向において、前記炭素熱源のサイズは、10mm~30mmとなるように構成されており、
     前記長手軸方向に直交する方向において、前記炭素熱源のサイズは、4mm~8mmとなるように構成されていることを特徴とする請求項1乃至5のいずれか一項に記載の香味吸引具。
    In the longitudinal direction of the carbon heat source, the size of the carbon heat source is configured to be 10 mm to 30 mm,
    The flavor suction device according to any one of claims 1 to 5, wherein the carbon heat source is configured to have a size of 4 mm to 8 mm in a direction orthogonal to the longitudinal axis direction.
  7.  前記炭素熱源の長手軸方向に直交する方向において、前記空洞のサイズは、1mm~4mmとなるように構成されていることを特徴とする請求項1乃至6のいずれか一項に記載の香味吸引具。 The flavor suction according to any one of claims 1 to 6, wherein the cavity has a size of 1 mm to 4 mm in a direction orthogonal to a longitudinal axis direction of the carbon heat source. Ingredients.
PCT/JP2014/075536 2013-09-30 2014-09-25 Flavor inhalator WO2015046384A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167008832A KR101888282B1 (en) 2013-09-30 2014-09-25 Flavor inhalator
EA201690711A EA030672B1 (en) 2013-09-30 2014-09-25 Flavor inhalator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-204167 2013-09-30
JP2013204167 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046384A1 true WO2015046384A1 (en) 2015-04-02

Family

ID=52743510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075536 WO2015046384A1 (en) 2013-09-30 2014-09-25 Flavor inhalator

Country Status (4)

Country Link
KR (1) KR101888282B1 (en)
EA (1) EA030672B1 (en)
TW (1) TW201517819A (en)
WO (1) WO2015046384A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543667A (en) * 2019-04-04 2021-10-22 日本烟草产业株式会社 Method for producing carbon heat source for flavor absorber, composite particle, carbon heat source for flavor absorber, and flavor absorber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187555A1 (en) * 2016-04-27 2017-11-02 日本たばこ産業株式会社 Flavor inhaler
JP7100024B2 (en) 2017-05-26 2022-07-12 日本たばこ産業株式会社 Flavor source unit and flavor aspirator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854331A (en) * 1984-09-14 1989-08-08 R. J. Reynolds Tobacco Company Smoking article
JPH03272675A (en) * 1989-11-29 1991-12-04 Philip Morris Prod Inc Chemical heat source matter containing metallic nitride, metallic oxide and carbon
US5135009A (en) * 1989-03-13 1992-08-04 B.A.T. Cigarettenfabriken Gmbh Smokable article
WO2003056949A1 (en) * 2001-12-28 2003-07-17 Japan Tobacco Inc. Smoking implement
WO2006046422A1 (en) * 2004-10-25 2006-05-04 Japan Tobacco Inc. Heat source rod production machine and its production method
WO2010076653A1 (en) * 2008-12-30 2010-07-08 Philip Morris Products S.A. Apparatus and method for combining components for smoking articles
WO2012014490A1 (en) * 2010-07-30 2012-02-02 Japan Tobacco Inc. Smokeless flavor inhalator
WO2013146951A2 (en) * 2012-03-30 2013-10-03 日本たばこ産業株式会社 Carbon heat source and flavour inhalation tool
WO2014136722A1 (en) * 2013-03-08 2014-09-12 日本たばこ産業株式会社 Flavor inhaler
WO2014136721A1 (en) * 2013-03-08 2014-09-12 日本たばこ産業株式会社 Package

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444553A3 (en) 1990-02-27 1993-04-14 R.J. Reynolds Tobacco Company Cigarette
DE19818975A1 (en) * 1997-08-12 1999-02-18 Hewlett Packard Co Method for correcting dark current in CMOS imaging sensors
CN101778578B (en) 2007-08-10 2011-08-31 菲利普莫里斯生产公司 Distillation-based smoking article

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854331A (en) * 1984-09-14 1989-08-08 R. J. Reynolds Tobacco Company Smoking article
US5135009A (en) * 1989-03-13 1992-08-04 B.A.T. Cigarettenfabriken Gmbh Smokable article
JPH03272675A (en) * 1989-11-29 1991-12-04 Philip Morris Prod Inc Chemical heat source matter containing metallic nitride, metallic oxide and carbon
WO2003056949A1 (en) * 2001-12-28 2003-07-17 Japan Tobacco Inc. Smoking implement
WO2006046422A1 (en) * 2004-10-25 2006-05-04 Japan Tobacco Inc. Heat source rod production machine and its production method
WO2010076653A1 (en) * 2008-12-30 2010-07-08 Philip Morris Products S.A. Apparatus and method for combining components for smoking articles
WO2012014490A1 (en) * 2010-07-30 2012-02-02 Japan Tobacco Inc. Smokeless flavor inhalator
WO2013146951A2 (en) * 2012-03-30 2013-10-03 日本たばこ産業株式会社 Carbon heat source and flavour inhalation tool
WO2014136722A1 (en) * 2013-03-08 2014-09-12 日本たばこ産業株式会社 Flavor inhaler
WO2014136721A1 (en) * 2013-03-08 2014-09-12 日本たばこ産業株式会社 Package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543667A (en) * 2019-04-04 2021-10-22 日本烟草产业株式会社 Method for producing carbon heat source for flavor absorber, composite particle, carbon heat source for flavor absorber, and flavor absorber

Also Published As

Publication number Publication date
TW201517819A (en) 2015-05-16
EA201690711A1 (en) 2016-07-29
KR20160052672A (en) 2016-05-12
KR101888282B1 (en) 2018-08-13
EA030672B1 (en) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6175539B2 (en) Carbon heat source and flavor suction tool
JP6998925B2 (en) Heat generator for aerosol generation system of smoking goods, and related smoking goods
CN108024568B (en) Heat generation section for an aerosol-generating system of a smoking article
US11160302B2 (en) Flavor inhaler and cup
KR102384544B1 (en) Smoking article with non-overlapping, radially separated, dual heat-conducting elements
KR102354033B1 (en) Smoking article with single radially-separated heat-conducting element
RU2760721C2 (en) Thermally insulated heat source
KR102500004B1 (en) Smoking article comprising a combustible heat source with at least one airflow channel
UA118973C2 (en) Smoking article comprising an insulated combustible heat source
JP6275776B2 (en) Combustion type heat source, flavor inhaler, and method of manufacturing combustion type heat source
TW201511694A (en) Smoking article comprising a blind combustible heat source
US10524506B2 (en) Burning type heat source and flavor inhaler
WO2015046384A1 (en) Flavor inhalator
KR20220044935A (en) Aerosol generating article including heat source
WO2016021550A1 (en) Flavor imparting agent for smoking article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167008832

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201690711

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 14848237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP