WO2015047195A1 - Offboard navigation apparatus capable of being coupled to a movable platform - Google Patents

Offboard navigation apparatus capable of being coupled to a movable platform Download PDF

Info

Publication number
WO2015047195A1
WO2015047195A1 PCT/SG2014/000454 SG2014000454W WO2015047195A1 WO 2015047195 A1 WO2015047195 A1 WO 2015047195A1 SG 2014000454 W SG2014000454 W SG 2014000454W WO 2015047195 A1 WO2015047195 A1 WO 2015047195A1
Authority
WO
WIPO (PCT)
Prior art keywords
navigation apparatus
offboard
navigation
movable platform
offboard navigation
Prior art date
Application number
PCT/SG2014/000454
Other languages
French (fr)
Inventor
Kai SIM
Zaw Hein MYAT
Original Assignee
Ctrlworks Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ctrlworks Pte. Ltd. filed Critical Ctrlworks Pte. Ltd.
Publication of WO2015047195A1 publication Critical patent/WO2015047195A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • G05D1/0282Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal generated in a local control room
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/0026Propulsion aids
    • B62B5/0079Towing by connecting to another vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels

Definitions

  • the present invention relates to an offboard navigation apparatus capable of being coupled to a movable platform used for the transportation and delivery of a load, and particularly, relates to an offboard navigation apparatus that provides locomotive power to the movable platform to make the movable platform capable of self-navigation when being attached to the offboard navigation apparatus.
  • robotic devices With the technology of autonomous navigation, robotic devices are widely used in the consumer market and industry. These robotic devices move around a place relying on sensors and navigation systems without any human intervention whilst it is on the move.
  • One example of such robotic devices is the Autonomous Guided Vehicles (AGVs) used to transport articles or objects around in a premises.
  • AGVs Autonomous Guided Vehicles
  • the AGVs are inflexible to re-planning as extensive, expensive and inflexible modifications to the infrastructure are required for these vehicles to work.
  • one type of the AGVs has to follow markers or wires installed in the floor when navigating a place.
  • the AGVs are usually huge platforms built for designated purposes. Thus, their size and fixed footprint prevent them from providing services in smaller or confined areas.
  • Smaller AGVs or mobile robotic devices are devised to reduce manpower needed in these circumstances.
  • the size of these devices still remains quite significant as the navigation processing is performed onboard, i.e. on the moving devices themselves, and these devices must be equipped with powerful computing facilities to provide navigation commands in real time.
  • these devices are mainly designed for carrying the load themselves, and they are not designed to work with existing general movable platforms used for transportation, such as push-carts, trolleys, wheelchairs and the like.
  • an offboard navigation apparatus capable of being coupled to a movable platform used for the transportation and delivery of a load, comprising: a base unit configured to be capable of being attached to the movable platform and providing locomotive power to the movable platform; and a navigation unit configured to drive the base unit to navigate the movable platform, the navigation unit comprising: sensors configured to obtain sensor data; and a communication unit configured to transmit sensor data to a server and receive navigation information of the offboard navigation apparatus from the server.
  • the base unit may comprise an attachment assembly configured to attach the offboard navigation apparatus to the moveable platform; the navigation unit may further comprise a processor to process the navigation information of the offboard navigation apparatus to provide a navigation instruction; the communication unit may be further configured to receive a navigation instruction from the server.
  • the navigation unit may be coupled directly to a driving system of the movable platform to navigate the movable platform when the movable platform itself is a self-powered platform.
  • the base unit may further comprise a power source; a moving mechanism configured to make the offboard navigation apparatus movable; and a driving unit driven by power supplied from the power source and configured to drive the moving mechanism.
  • the driving unit may be configured to receive a navigation instruction from the navigation unit and drives the moving mechanism according to the navigation instruction.
  • the moving mechanism may be a number of wheels; the moving mechanism may be continuous tracks.
  • the power source may be a battery; the power source may be a combustion engine.
  • the navigation unit may further comprise a processor configured to calculate a latency of a network through which the offboard navigation apparatus and the server communicate, the latency of the network being a difference between sending sensor data from the offboard navigation apparatus to the server and receiving processed data corresponding to the sent sensor data by the offboard navigation apparatus from the server, and determine the speed of the offboard navigation apparatus based on a threshold value of a positional accuracy of the offboard navigation apparatus and the latency of the network.
  • the offboard navigation apparatus may further comprise an interface configured to receive the threshold value of the positional accuracy of the offboard navigation apparatus from a user.
  • the offboard navigation apparatus may further comprise an odometer configured to estimate the position of the offboard navigation apparatus.
  • the speed of the offboard navigation apparatus may be determined to be inversely proportional to the latency of the network.
  • Fig. 1 shows a schematic diagram of an offboard navigation apparatus according to an embodiment of the present invention, a server with which the offboard navigation apparatus communicates, and a movable platform to which the offbard navigation apparatus is attached.
  • Fig. 2 is a perspective view of an example of the offboard navigation apparatus.
  • Fig. 3 is a perspective view of the offboard navigation apparatus of Fig. 2 and an example of the movable platform when the offboard navigation apparatus is not attached to the movable platform.
  • Fig. 4 is a perspective view of the offboard navigation apparatus and the movable platform of Fig. 3 when the offboard navigation apparatus is attached to the movable platform.
  • Fig. 5 illustrates how the offboard navigation apparatus of Fig. 3 is attached to the movable platform of Fig. 3.
  • Fig. 1 illustrates a schematic diagram of an exemplary offboard navigation apparatus 100 working with a server 200 to navigate a movable platform 400 mainly used for the transportation and delivery of a load.
  • the offboard navigation apparatus 100 is capable of being coupled to the movable platform 400 to drive the movable platform.
  • the offboard navigation apparatus 100 also communicates with the remote server 200 via a communication link such as a wireless network 300 (for example, WiFi, 3G, 4G, etc.) to harness the processing power of the server 200 to perform navigation processing.
  • the server 200 may be any type of device capable of receiving and sending data, and may comprise powerful processors suitable for navigation processing.
  • the server 200 may be a cloud-computing platform so that the processing load is distributed among the cloud.
  • Navigation applications having a user interface may also be installed at the server 200 so that a user is able to configure parameters related to offboard navigation at the server 200 and monitor the entire navigation process.
  • the movable platforms 400 may be push-carts, trolleys and wheelchairs which are being pushed or pulled by human. However, they are not limited to wheeled vehicles including vehicles on spherical wheels (i.e. ball-based vehicles), and they may be any platform that can be pushed or pulled from one place to another, such as platforms having sliders on the bottom surface.
  • the movable platforms may be powered platforms, i.e. movable platforms equipped with a power source, such as electric wheelchairs.
  • a navigation unit 2 and a base unit 4 which are electrically connected with each other by wiring 28 are included in the offboard navigation apparatus 100.
  • the navigation unit 2 configured to drive the base unit 4 comprises a plurality of sensors 0, a processor 12 and a communication module 14.
  • the plurality of sensors 10 may be any type of sensor capable of obtaining data surrounding the offboard navigation apparatus 100 or data of the environment in which the offboard navigation apparatus 100 operates. Cameras, LIDARS or inertial measurement units or a combination of aforementioned devices may be used as the plurality of sensors 10.
  • the sensor data obtained are then transmitted to the server 200 through the communication module 14 for navigation processing in order to derive the actual position of the offboard navigation apparatus 100.
  • the processor 12 is used to perform processing required at the navigation unit 2. As the majority of the navigation computation is allocated to the server 200 equipped with powerful processors, minimum processing, such as interacting with the other components of the navigation unit 2 and performing routine functions, is performed by the processor 12. For example, it monitors the gathering of the sensor data obtained by the plurality of sensors 10, pre-processes the sensor data before transmitting it to the server 200, gives instruction to send sensor data to the server 200 at appropriate timings through the wireless network 300, monitors the positional information or navigation information of the offboard navigation apparatus 100 received through the communication module 14 from the server 200 and provides a navigation instruction signal to the base unit 4 based on the positional information received. It may be possible for the server 200 to send the navigation instruction instead of the positional information of the offboard navigation apparatus 100 to the navigation unit 2. In such cases, the processing of the positional information to provide the navigation instruction is not performed by the processor 12.
  • the offboard navigation apparatus 100 Various existing offboard navigation methodologies can be used in the offboard navigation apparatus 100.
  • the method described in the Singapore Patent Application No. 201304289-0 which provides adaptive offboard navigation that responds to changes in network conditions may be employed in the offboard navigation apparatus 100.
  • the processor 12 also determines the speed of the offboard navigation apparatus 100 with respect to a latency of the wireless network 300 to achieve a satisfactory positional accuracy of the offboard navigation apparatus 100. To maintain a specific level of positional accuracy, the speed of the offboard navigation apparatus 100 is determined to be inversely proportional to the latency of the network 300.
  • the communication module 4 transmits the sensor data from the navigation unit 2 to the server 200 and receives the processed data for navigation from the server 200.
  • the base unit 4 is capable of being attached to the movable platform 400 and provides locomotive power to the movable platform 400 by either pushing or pulling the movable platform 400. It comprises a driving unit 16, a moving mechanism 18, a locomotive power source 20 and an attachment assembly 22. The base unit 4 is removably mounted to the movable platform 400 via the attachment assembly 22. A variety of mechanical means such as clamps or inserts can be used as the attachment assembly 22.
  • the offboard navigation apparatus 100 becomes a bolt-on component of the movable platform 400 when it is rigidly attached to the movable platform 400 via the attachment assembly 22, and thus makes the movable platform 400 capable of self-navigation.
  • the driving unit 16 of the base unit 4 receives the navigation instruction signal from the processor 2 of the navigation unit 2 through the wiring 28 and drives the moving mechanism 18 according to the navigation instruction signal to move the base unit 4 (i.e. the offboard navigation apparatus 100) in a specific direction with a specific speed.
  • the driving unit 16 is powered by the locomotive power source 20. Any kind of portable power source may be used as the locomotive power source 20 to supply driving forces to the driving unit 16. For example, a battery or a relatively small combustion engine may be used. If a battery is used as the locomotive power source 20, the battery also provides power to the various electrical and/or electronic components of the offboard navigation apparatus 100. If another kind of power source is used as the locomotive power source 20, a separate battery has to be provided to supply power to the various components of the offboard navigation apparatus 100.
  • the moving mechanism 18 may be a number of wheels. Continuous tracks, a belt capable of providing motive traction, may also be used to replace the wheels as the moving mechanism 18 so that the offboard navigation apparatus 100 is suitable to move on uneven surfaces. In such cases, if the movable platform 400 to which the offboard navigation apparatus 100 is attached is also equipped with continuous tracks, the movable platform 400 is able to navigate smoothly on the uneven surfaces as the tracks glide over bumps, small obstacles and trenches on the surfaces.
  • an interface 24 configured to accept a positional accuracy of the offboard navigation apparatus 100 that is input by the user and an odometer 26 used to estimate the distance or displacement travelled the offboard navigation apparatus 100 are provided. As illustrated in Fig. 1, these two components are provided in the base unit 4. It is also possible to provide these two components in the navigation unit 2.
  • the visual odometry method in which the distance travelled is estimated by using sequential camera images can also be used in the offboard navigation apparatus 100. At least one camera is provided in the offboard navigation apparatus 100 when visual odometry method is desired.
  • the base unit 4 may also be provided with additional sensors as anti-collision measures to enhance safety.
  • additional sensors as anti-collision measures to enhance safety.
  • the offboard navigation apparatus 100 attached to the movable platform 400 is in operation, i.e. moving according to the navigation information, if an obstacle such as a person or a large object is detected by these sensors within a predefined safety distance from the base unit 4, the offboard navigation apparatus 100 may be brought to a stop for a certain period. The movement of the offboard navigation apparatus 100 is then resumed when the obstacle is no longer present within the safety distance.
  • the offboard navigation apparatus 100 as shown in Fig. 1 makes the movable platform 400 capable of self-navigation when it is attached to the movable platform 400 via the attachment assembly 22.
  • the plurality of the sensors 10 of the navigation unit 2 obtains sensor data concerning the environs of the movable platform 400.
  • the processor 12 then pre-processes the sensor data obtained and send it to the server 200 through the communication module 14.
  • the server 200 Based on the sensor data received, the server 200 performs navigation processing to calculate the positional information of the offboard navigation apparatus 100 (which would be the same as the positional information of the movable platform 400) and send it back to the navigation unit 2.
  • the processor 12 After receiving the positional information of the movable platform 400, the processor 12 derives the navigation instruction based on the positional information and sends a signal to the driving unit 16 of the base unit 4.
  • the driving unit 16 powered by the locomotive power source 20 drives the moving mechanism 18 to move the offboard navigation apparatus 100 according to the navigation instruction so that the movable platform 400 is pushed or pulled to and from designated locations without any human direction and manpower.
  • the offboard navigation apparatus 100 may be configured to work with a docking station. When the battery is running low, the offboard navigation apparatus 100 may be automatically navigated to the docking station by the navigation unit 2 to charge the battery. It may also be configured to leave the docking station when the battery is fully charged so that the docking station is available to other similar offboard navigation apparatuses in the premises.
  • the navigation unit 2 may be coupled directly to the drive system of the movable platform 400 by sending the navigation instruction to the drive system to navigate the movable platform 400.
  • FIG. 2 An example of the offboard navigation apparatus 100 is shown in Fig. 2, and Fig. 3 and Fig. 4 illustrate the exemplary offboard navigation apparatus 100 before and after being attached to an example of the movable platform 400 respectively.
  • a trolley is presented as the example of the movable platform 400.
  • the exemplary offboard navigation apparatus 100 comprises the navigation unit 2 (a mast unit) and the base unit 4 connected by a post 3 which covers the wiring 28 between the navigation unit 2 and the base unit 4.
  • the base unit 4 is in contact with the ground and the navigation unit 2 is arranged on top of the post 3.
  • the plurality of sensors 10 of the navigation unit 2 is not blocked by the movable platform 400 when the offboard navigation apparatus 100 is attached to the movable platform 400.
  • the navigation unit 2 may be disposed at other positions so long as consistent sensor data can be obtained.
  • the processor 12 is covered in the casing of the navigation unit 2.
  • the driving unit 16 and the locomotive power source 20 are enclosed in the casing of the base unit 4. Two wheels are shown as the moving mechanism 18 driven by the driving unit 16.
  • the attachment assembly 22 is provided on the front surface of the base unit 4 facing the movable platform 400. It is attached to the movable platform 400 through an adapter 410.
  • the adapter 410 may not be part of the offboard navigation apparatus 100.
  • the attachment assembly 22 has a plate-like structure to be fastened to a corresponding connecting part of the adapter 410 with bolts and nuts.
  • the adapter 410 grips the metal columns of the trolley 400 with bolts and nuts as well.
  • the adapter 410 may be designed with a different mechanism for attachment to another kind of movable platform 400, providing flexibility in mounting the offboard navigation apparatus 100 to various kinds of movable platform 400 without any modification of the attachment assembly 22.
  • the offboard navigation apparatus 100 shown in Figs. 2 to 5 and described above is only a workable example, and various modifications can be made.
  • the adapter 410 may not be necessary and the attachment assembly 22 is attached directly to the movable platform 400.
  • a variety of mechanical means such as clamps or inserts can be used as the attachment assembly 22.
  • offboard navigation is employed in the offboard navigation apparatus 100 such that the majority of the processing is performed by the server 200. Therefore, the navigation unit 2 and base unit 4 can be kept relatively small and inexpensive without the requirement of powerful computational facilities in the offboard navigation apparatus 100. Further, no infrastructure modifications are required as the navigation unit 2 uses the plurality of sensors 10 to locate the offboard navigation apparatus 100 using existing features of a place.
  • the offboard navigation apparatus 100 is capable of being attached to any movable platforms, even small ones like ordinary trolleys, and thus provides a degree of flexibility hardly achieved by the AGVs or other existing mobile robotic devices. It is a modular add-on autonomous kit that can be attached to any ordinary movable platform to transform it into an intelligent self-navigating platform, and the user is offered with the flexibility to decide which movable platform he or she would like to automate by simply attaching the offboard navigation apparatus 100 to the selected movable platform. The user is also offered with the flexibility to revert back to manual push/pull by simply removing the offboard navigation apparatus 100 from the selected movable platform.

Abstract

An offboard navigation apparatus capable of being coupled to a movable platform used for the transportation and delivery of a load is provided, the offboard navigation apparatus comprising: a base unit configured to be capable of being attached to the movable platform and providing locomotive power to the movable platform; and a navigation unit configured to drive the base unit to navigate the movable platform, the navigation unit comprising: sensors configured to obtain sensor data; and a communication unit configured to transmit sensor data to a server and receive navigation information of the offboard navigation apparatus from the server.

Description

Offboard Navigation Apparatus Capable of being Coupled to a Movable
Platform
Field of the Invention
The present invention relates to an offboard navigation apparatus capable of being coupled to a movable platform used for the transportation and delivery of a load, and particularly, relates to an offboard navigation apparatus that provides locomotive power to the movable platform to make the movable platform capable of self-navigation when being attached to the offboard navigation apparatus.
Background
With the technology of autonomous navigation, robotic devices are widely used in the consumer market and industry. These robotic devices move around a place relying on sensors and navigation systems without any human intervention whilst it is on the move. One example of such robotic devices is the Autonomous Guided Vehicles (AGVs) used to transport articles or objects around in a premises. However, the AGVs are inflexible to re-planning as extensive, expensive and inflexible modifications to the infrastructure are required for these vehicles to work. For example, one type of the AGVs has to follow markers or wires installed in the floor when navigating a place. The AGVs are usually huge platforms built for designated purposes. Thus, their size and fixed footprint prevent them from providing services in smaller or confined areas.
As a result, manpower is still largely employed to transport objects from one place to another in a number of industries, such as logistics, material-handling, medical, and manufacturing industries, when it is impossible or uneconomicaTtb Use "the" AGVs and other existing robotic devices. For example, in the hospitals, nurses or orderlies have to use trolleys to transport medical instruments and medicines to and from the wards.
Smaller AGVs or mobile robotic devices are devised to reduce manpower needed in these circumstances. However, the size of these devices still remains quite significant as the navigation processing is performed onboard, i.e. on the moving devices themselves, and these devices must be equipped with powerful computing facilities to provide navigation commands in real time. In addition, these devices are mainly designed for carrying the load themselves, and they are not designed to work with existing general movable platforms used for transportation, such as push-carts, trolleys, wheelchairs and the like.
Therefore, it is desirable to have a navigation apparatus that is capable being attached to the existing general movable platforms used for transportation to provide locomotive power to make the movable platform capable of self-navigation.
Summary
In accordance with one aspect of the present invention, there is provided an offboard navigation apparatus capable of being coupled to a movable platform used for the transportation and delivery of a load, comprising: a base unit configured to be capable of being attached to the movable platform and providing locomotive power to the movable platform; and a navigation unit configured to drive the base unit to navigate the movable platform, the navigation unit comprising: sensors configured to obtain sensor data; and a communication unit configured to transmit sensor data to a server and receive navigation information of the offboard navigation apparatus from the server.
The base unit may comprise an attachment assembly configured to attach the offboard navigation apparatus to the moveable platform; the navigation unit may further comprise a processor to process the navigation information of the offboard navigation apparatus to provide a navigation instruction; the communication unit may be further configured to receive a navigation instruction from the server.
The navigation unit may be coupled directly to a driving system of the movable platform to navigate the movable platform when the movable platform itself is a self-powered platform. The base unit may further comprise a power source; a moving mechanism configured to make the offboard navigation apparatus movable; and a driving unit driven by power supplied from the power source and configured to drive the moving mechanism.
The driving unit may be configured to receive a navigation instruction from the navigation unit and drives the moving mechanism according to the navigation instruction. The moving mechanism may be a number of wheels; the moving mechanism may be continuous tracks.
The power source may be a battery; the power source may be a combustion engine.
The navigation unit may further comprise a processor configured to calculate a latency of a network through which the offboard navigation apparatus and the server communicate, the latency of the network being a difference between sending sensor data from the offboard navigation apparatus to the server and receiving processed data corresponding to the sent sensor data by the offboard navigation apparatus from the server, and determine the speed of the offboard navigation apparatus based on a threshold value of a positional accuracy of the offboard navigation apparatus and the latency of the network. The offboard navigation apparatus may further comprise an interface configured to receive the threshold value of the positional accuracy of the offboard navigation apparatus from a user.
The offboard navigation apparatus may further comprise an odometer configured to estimate the position of the offboard navigation apparatus.
The speed of the offboard navigation apparatus may be determined to be inversely proportional to the latency of the network. Brief Description of the Drawings
Embodiments of the offboard navigation apparatus will now be described with reference to the accompanying figures in which:
Fig. 1 shows a schematic diagram of an offboard navigation apparatus according to an embodiment of the present invention, a server with which the offboard navigation apparatus communicates, and a movable platform to which the offbard navigation apparatus is attached.
Fig. 2 is a perspective view of an example of the offboard navigation apparatus.
Fig. 3 is a perspective view of the offboard navigation apparatus of Fig. 2 and an example of the movable platform when the offboard navigation apparatus is not attached to the movable platform.
Fig. 4 is a perspective view of the offboard navigation apparatus and the movable platform of Fig. 3 when the offboard navigation apparatus is attached to the movable platform.
Fig. 5 illustrates how the offboard navigation apparatus of Fig. 3 is attached to the movable platform of Fig. 3.
Detailed Description
Fig. 1 illustrates a schematic diagram of an exemplary offboard navigation apparatus 100 working with a server 200 to navigate a movable platform 400 mainly used for the transportation and delivery of a load. The offboard navigation apparatus 100 is capable of being coupled to the movable platform 400 to drive the movable platform. The offboard navigation apparatus 100 also communicates with the remote server 200 via a communication link such as a wireless network 300 (for example, WiFi, 3G, 4G, etc.) to harness the processing power of the server 200 to perform navigation processing. The server 200 may be any type of device capable of receiving and sending data, and may comprise powerful processors suitable for navigation processing. The server 200 may be a cloud-computing platform so that the processing load is distributed among the cloud. Navigation applications having a user interface may also be installed at the server 200 so that a user is able to configure parameters related to offboard navigation at the server 200 and monitor the entire navigation process.
The movable platforms 400 may be push-carts, trolleys and wheelchairs which are being pushed or pulled by human. However, they are not limited to wheeled vehicles including vehicles on spherical wheels (i.e. ball-based vehicles), and they may be any platform that can be pushed or pulled from one place to another, such as platforms having sliders on the bottom surface. The movable platforms may be powered platforms, i.e. movable platforms equipped with a power source, such as electric wheelchairs.
A navigation unit 2 and a base unit 4 which are electrically connected with each other by wiring 28 are included in the offboard navigation apparatus 100.
The navigation unit 2 configured to drive the base unit 4 comprises a plurality of sensors 0, a processor 12 and a communication module 14.
The plurality of sensors 10 may be any type of sensor capable of obtaining data surrounding the offboard navigation apparatus 100 or data of the environment in which the offboard navigation apparatus 100 operates. Cameras, LIDARS or inertial measurement units or a combination of aforementioned devices may be used as the plurality of sensors 10. The sensor data obtained are then transmitted to the server 200 through the communication module 14 for navigation processing in order to derive the actual position of the offboard navigation apparatus 100.
The processor 12 is used to perform processing required at the navigation unit 2. As the majority of the navigation computation is allocated to the server 200 equipped with powerful processors, minimum processing, such as interacting with the other components of the navigation unit 2 and performing routine functions, is performed by the processor 12. For example, it monitors the gathering of the sensor data obtained by the plurality of sensors 10, pre-processes the sensor data before transmitting it to the server 200, gives instruction to send sensor data to the server 200 at appropriate timings through the wireless network 300, monitors the positional information or navigation information of the offboard navigation apparatus 100 received through the communication module 14 from the server 200 and provides a navigation instruction signal to the base unit 4 based on the positional information received. It may be possible for the server 200 to send the navigation instruction instead of the positional information of the offboard navigation apparatus 100 to the navigation unit 2. In such cases, the processing of the positional information to provide the navigation instruction is not performed by the processor 12.
Various existing offboard navigation methodologies can be used in the offboard navigation apparatus 100. The method described in the Singapore Patent Application No. 201304289-0 which provides adaptive offboard navigation that responds to changes in network conditions may be employed in the offboard navigation apparatus 100. In such cases, the processor 12 also determines the speed of the offboard navigation apparatus 100 with respect to a latency of the wireless network 300 to achieve a satisfactory positional accuracy of the offboard navigation apparatus 100. To maintain a specific level of positional accuracy, the speed of the offboard navigation apparatus 100 is determined to be inversely proportional to the latency of the network 300.
The communication module 4 transmits the sensor data from the navigation unit 2 to the server 200 and receives the processed data for navigation from the server 200.
The base unit 4 is capable of being attached to the movable platform 400 and provides locomotive power to the movable platform 400 by either pushing or pulling the movable platform 400. It comprises a driving unit 16, a moving mechanism 18, a locomotive power source 20 and an attachment assembly 22. The base unit 4 is removably mounted to the movable platform 400 via the attachment assembly 22. A variety of mechanical means such as clamps or inserts can be used as the attachment assembly 22. The offboard navigation apparatus 100 becomes a bolt-on component of the movable platform 400 when it is rigidly attached to the movable platform 400 via the attachment assembly 22, and thus makes the movable platform 400 capable of self-navigation.
The driving unit 16 of the base unit 4 receives the navigation instruction signal from the processor 2 of the navigation unit 2 through the wiring 28 and drives the moving mechanism 18 according to the navigation instruction signal to move the base unit 4 (i.e. the offboard navigation apparatus 100) in a specific direction with a specific speed. The driving unit 16 is powered by the locomotive power source 20. Any kind of portable power source may be used as the locomotive power source 20 to supply driving forces to the driving unit 16. For example, a battery or a relatively small combustion engine may be used. If a battery is used as the locomotive power source 20, the battery also provides power to the various electrical and/or electronic components of the offboard navigation apparatus 100. If another kind of power source is used as the locomotive power source 20, a separate battery has to be provided to supply power to the various components of the offboard navigation apparatus 100.
The moving mechanism 18 may be a number of wheels. Continuous tracks, a belt capable of providing motive traction, may also be used to replace the wheels as the moving mechanism 18 so that the offboard navigation apparatus 100 is suitable to move on uneven surfaces. In such cases, if the movable platform 400 to which the offboard navigation apparatus 100 is attached is also equipped with continuous tracks, the movable platform 400 is able to navigate smoothly on the uneven surfaces as the tracks glide over bumps, small obstacles and trenches on the surfaces.
When the method of the Singapore Patent Application No. 201304289-0 is employed in the offboard navigation apparatus 100, an interface 24 configured to accept a positional accuracy of the offboard navigation apparatus 100 that is input by the user and an odometer 26 used to estimate the distance or displacement travelled the offboard navigation apparatus 100 are provided. As illustrated in Fig. 1, these two components are provided in the base unit 4. It is also possible to provide these two components in the navigation unit 2. Other than the conventional odometry methods for wheeled and tracked vehicles, the visual odometry method in which the distance travelled is estimated by using sequential camera images can also be used in the offboard navigation apparatus 100. At least one camera is provided in the offboard navigation apparatus 100 when visual odometry method is desired.
The base unit 4 may also be provided with additional sensors as anti-collision measures to enhance safety. When the offboard navigation apparatus 100 attached to the movable platform 400 is in operation, i.e. moving according to the navigation information, if an obstacle such as a person or a large object is detected by these sensors within a predefined safety distance from the base unit 4, the offboard navigation apparatus 100 may be brought to a stop for a certain period. The movement of the offboard navigation apparatus 100 is then resumed when the obstacle is no longer present within the safety distance.
The offboard navigation apparatus 100 as shown in Fig. 1 makes the movable platform 400 capable of self-navigation when it is attached to the movable platform 400 via the attachment assembly 22. During self-navigation of the movable platform 400 in which the offboard navigation apparatus 100 become the bolt-on component, the plurality of the sensors 10 of the navigation unit 2 obtains sensor data concerning the environs of the movable platform 400. The processor 12 then pre-processes the sensor data obtained and send it to the server 200 through the communication module 14. Based on the sensor data received, the server 200 performs navigation processing to calculate the positional information of the offboard navigation apparatus 100 (which would be the same as the positional information of the movable platform 400) and send it back to the navigation unit 2. After receiving the positional information of the movable platform 400, the processor 12 derives the navigation instruction based on the positional information and sends a signal to the driving unit 16 of the base unit 4. The driving unit 16 powered by the locomotive power source 20 drives the moving mechanism 18 to move the offboard navigation apparatus 100 according to the navigation instruction so that the movable platform 400 is pushed or pulled to and from designated locations without any human direction and manpower.
If the offboard navigation apparatus 100 is powered by a battery, that is, the locomotive power source 20 is a battery, the offboard navigation apparatus 100 may be configured to work with a docking station. When the battery is running low, the offboard navigation apparatus 100 may be automatically navigated to the docking station by the navigation unit 2 to charge the battery. It may also be configured to leave the docking station when the battery is fully charged so that the docking station is available to other similar offboard navigation apparatuses in the premises.
When the movable platform 400 is a self-powered platform, the navigation unit 2 may be coupled directly to the drive system of the movable platform 400 by sending the navigation instruction to the drive system to navigate the movable platform 400.
An example of the offboard navigation apparatus 100 is shown in Fig. 2, and Fig. 3 and Fig. 4 illustrate the exemplary offboard navigation apparatus 100 before and after being attached to an example of the movable platform 400 respectively. For simplicity, a trolley is presented as the example of the movable platform 400.
The exemplary offboard navigation apparatus 100 comprises the navigation unit 2 (a mast unit) and the base unit 4 connected by a post 3 which covers the wiring 28 between the navigation unit 2 and the base unit 4. The base unit 4 is in contact with the ground and the navigation unit 2 is arranged on top of the post 3. In such arrangement, the plurality of sensors 10 of the navigation unit 2 is not blocked by the movable platform 400 when the offboard navigation apparatus 100 is attached to the movable platform 400. Thus, the sensor data obtained is not affected by the different movable platforms 400 used. The navigation unit 2 may be disposed at other positions so long as consistent sensor data can be obtained. The processor 12 is covered in the casing of the navigation unit 2. The driving unit 16 and the locomotive power source 20 are enclosed in the casing of the base unit 4. Two wheels are shown as the moving mechanism 18 driven by the driving unit 16.
The attachment assembly 22 is provided on the front surface of the base unit 4 facing the movable platform 400. It is attached to the movable platform 400 through an adapter 410. The adapter 410 may not be part of the offboard navigation apparatus 100. As illustrated in Fig. 5, the attachment assembly 22 has a plate-like structure to be fastened to a corresponding connecting part of the adapter 410 with bolts and nuts. The adapter 410 grips the metal columns of the trolley 400 with bolts and nuts as well. The adapter 410 may be designed with a different mechanism for attachment to another kind of movable platform 400, providing flexibility in mounting the offboard navigation apparatus 100 to various kinds of movable platform 400 without any modification of the attachment assembly 22.
The offboard navigation apparatus 100 shown in Figs. 2 to 5 and described above is only a workable example, and various modifications can be made. For example, the adapter 410 may not be necessary and the attachment assembly 22 is attached directly to the movable platform 400. Further, a variety of mechanical means such as clamps or inserts can be used as the attachment assembly 22.
As described above, offboard navigation is employed in the offboard navigation apparatus 100 such that the majority of the processing is performed by the server 200. Therefore, the navigation unit 2 and base unit 4 can be kept relatively small and inexpensive without the requirement of powerful computational facilities in the offboard navigation apparatus 100. Further, no infrastructure modifications are required as the navigation unit 2 uses the plurality of sensors 10 to locate the offboard navigation apparatus 100 using existing features of a place.
In addition, the offboard navigation apparatus 100 is capable of being attached to any movable platforms, even small ones like ordinary trolleys, and thus provides a degree of flexibility hardly achieved by the AGVs or other existing mobile robotic devices. It is a modular add-on autonomous kit that can be attached to any ordinary movable platform to transform it into an intelligent self-navigating platform, and the user is offered with the flexibility to decide which movable platform he or she would like to automate by simply attaching the offboard navigation apparatus 100 to the selected movable platform. The user is also offered with the flexibility to revert back to manual push/pull by simply removing the offboard navigation apparatus 100 from the selected movable platform.
Whilst there has been described in the foregoing description embodiments of the present invention, it will be understood by those skilled in the technology concerned that many variations or modifications in details of design or construction may be made without departing from the present invention.

Claims

Claims
1. An offboard navigation apparatus capable of being coupled to a movable platform used for the transportation and delivery of a load, comprising:
a base unit configured to be capable of being attached to the movable platform and providing locomotive power to the movable platform; and
a navigation unit configured to drive the base unit to navigate the movable platform,
the navigation unit comprising:
sensors configured to obtain sensor data; and
a communication unit configured to transmit sensor data to a server and receive navigation information of the offboard navigation apparatus from the server.
2. The offboard navigation apparatus according to claim 1 , wherein the base unit comprises an attachment assembly configured to attach the offboard navigation apparatus to the moveable platform.
3. The offboard navigation apparatus according to claim 1 or 2, wherein the navigation unit further comprises a processor to process the navigation information of the offboard navigation apparatus to provide a navigation instruction.
4. The offboard navigation apparatus according to claim 1 or 2, wherein the communication unit is further configured to receive a navigation instruction from the server.
5. The offboard navigation apparatus according to any one of claims 1 to 4, wherein the navigation unit is coupled directly to a drive system of the movable platform to navigate the movable platform when the movable platform is a self- powered platform.
6. The offboard navigation apparatus according to any one of claims 1 to 4, wherein the base unit further comprises
a power source; a moving mechanism configured to make the offboard navigation apparatus movable; and
a driving unit driven by power supplied from the power source and configured to drive the moving mechanism.
7. The offboard navigation apparatus according to claim 6, wherein the driving unit is configured to receive a navigation instruction from the navigation unit and drives the moving mechanism according to the navigation instruction.
8. The offboard navigation apparatus according to claim 6 or 7, wherein the moving mechanism is a number of wheels.
9. The offboard navigation apparatus according to claim 6 or 7, wherein the moving mechanism is continuous tracks.
10. The offboard navigation apparatus according to any one of claims 6 to 9, wherein the power source is a battery.
11. The offboard navigation apparatus according to any one of claims 6 to 9, wherein the power source is a combustion engine. 2. The offboard navigation apparatus according to any of claims 1 to 11, wherein the navigation unit further comprises a processor configured to
calculate a latency of a network through which the offboard navigation apparatus and the server communicate, the latency of the network being a difference between sending sensor data from the offboard navigation apparatus to the server and receiving processed data corresponding to the sent sensor data by the offboard navigation apparatus from the server, and
determine the speed of the offboard navigation apparatus based on a threshold value of a positional accuracy of the offboard navigation apparatus and the latency of the network.
13. The offboard navigation apparatus according to claim 12, further comprises an interface configured to receive the threshold value of the positional accuracy of the offboard navigation apparatus from a user. 14. The offboard navigation apparatus according to claim 12 or 13, further comprises an odometer configured to estimate the position of the offboard navigation apparatus.
15. The offboard navigation apparatus according to any one of claims 12 to 14, wherein the speed of the offboard navigation apparatus is determined to be inversely proportional to the latency of the network.
PCT/SG2014/000454 2013-09-24 2014-09-24 Offboard navigation apparatus capable of being coupled to a movable platform WO2015047195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG2013071808 2013-09-24
SG2013071808A SG2013071808A (en) 2013-09-24 2013-09-24 Offboard navigation apparatus capable of being coupled to a movable platform

Publications (1)

Publication Number Publication Date
WO2015047195A1 true WO2015047195A1 (en) 2015-04-02

Family

ID=55168002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SG2014/000454 WO2015047195A1 (en) 2013-09-24 2014-09-24 Offboard navigation apparatus capable of being coupled to a movable platform

Country Status (2)

Country Link
SG (1) SG2013071808A (en)
WO (1) WO2015047195A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531116A (en) * 2015-04-13 2018-01-02 移动工业机器人私人有限责任公司 Robot trailer drawing vehicle for automatic pull trailer
CN107850897A (en) * 2016-04-15 2018-03-27 苏州宝时得电动工具有限公司 Automatic working system, mobile device and its control method
US9987752B2 (en) 2016-06-10 2018-06-05 Brain Corporation Systems and methods for automatic detection of spills
US10001780B2 (en) 2016-11-02 2018-06-19 Brain Corporation Systems and methods for dynamic route planning in autonomous navigation
US10016896B2 (en) 2016-06-30 2018-07-10 Brain Corporation Systems and methods for robotic behavior around moving bodies
US10241514B2 (en) 2016-05-11 2019-03-26 Brain Corporation Systems and methods for initializing a robot to autonomously travel a trained route
US10274325B2 (en) 2016-11-01 2019-04-30 Brain Corporation Systems and methods for robotic mapping
US10282849B2 (en) 2016-06-17 2019-05-07 Brain Corporation Systems and methods for predictive/reconstructive visual object tracker
US10293485B2 (en) 2017-03-30 2019-05-21 Brain Corporation Systems and methods for robotic path planning
US10377040B2 (en) 2017-02-02 2019-08-13 Brain Corporation Systems and methods for assisting a robotic apparatus
CN110235079A (en) * 2017-01-27 2019-09-13 威欧.艾姆伊有限公司 Tourelle and the method for relocating equipment autonomously using integrated form tourelle
US10723018B2 (en) 2016-11-28 2020-07-28 Brain Corporation Systems and methods for remote operating and/or monitoring of a robot
US10809734B2 (en) 2019-03-13 2020-10-20 Mobile Industrial Robots A/S Route planning in an autonomous device
US10852730B2 (en) 2017-02-08 2020-12-01 Brain Corporation Systems and methods for robotic mobile platforms
US11592299B2 (en) 2020-03-19 2023-02-28 Mobile Industrial Robots A/S Using static scores to control vehicle operations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201504272TA (en) * 2015-05-29 2016-12-29 Ctrlworks Pte Ltd Method and Apparatus for Coupling an Automated Load Transporter to a Moveable Load

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738443A (en) * 1969-11-28 1973-06-12 M Kubo Control system for the travel of a goods trolley
US6049745A (en) * 1997-02-10 2000-04-11 Fmc Corporation Navigation system for automatic guided vehicle
EP1752850A2 (en) * 2005-08-02 2007-02-14 Ricoh Company, Ltd Automatic guided vehicle
US20090093900A1 (en) * 2007-10-04 2009-04-09 The Boeing Company Production Moving Line System and Method
US20130162396A1 (en) * 2011-12-22 2013-06-27 National Kaohsiung University Of Applied Sciences Automatically Controllable Smart Stroller or Wheelchair

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738443A (en) * 1969-11-28 1973-06-12 M Kubo Control system for the travel of a goods trolley
US6049745A (en) * 1997-02-10 2000-04-11 Fmc Corporation Navigation system for automatic guided vehicle
EP1752850A2 (en) * 2005-08-02 2007-02-14 Ricoh Company, Ltd Automatic guided vehicle
US20090093900A1 (en) * 2007-10-04 2009-04-09 The Boeing Company Production Moving Line System and Method
US20130162396A1 (en) * 2011-12-22 2013-06-27 National Kaohsiung University Of Applied Sciences Automatically Controllable Smart Stroller or Wheelchair

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531116A (en) * 2015-04-13 2018-01-02 移动工业机器人私人有限责任公司 Robot trailer drawing vehicle for automatic pull trailer
CN112477532A (en) * 2015-04-13 2021-03-12 莫比奥工业机器人有限公司 Robotic trailer tow vehicle for automatically towing a trailer
US10668617B2 (en) 2015-04-13 2020-06-02 Mobile Industrial Robots A/S Robotic cart pulling vehicle for automated pulling of carts
EP3283308A4 (en) * 2015-04-13 2019-01-02 Mobile Industrial Robots APS Robotic cart pulling vehicle for automated pulling of carts
CN107531116B (en) * 2015-04-13 2020-11-06 莫比奥工业机器人有限公司 Robotic trailer tow vehicle for automatically towing a trailer
CN107850897A (en) * 2016-04-15 2018-03-27 苏州宝时得电动工具有限公司 Automatic working system, mobile device and its control method
EP3444694A4 (en) * 2016-04-15 2019-11-06 Positec Power Tools (Suzhou) Co., Ltd Automatic working system, mobile device, and control method therefor
US10241514B2 (en) 2016-05-11 2019-03-26 Brain Corporation Systems and methods for initializing a robot to autonomously travel a trained route
US9987752B2 (en) 2016-06-10 2018-06-05 Brain Corporation Systems and methods for automatic detection of spills
US10282849B2 (en) 2016-06-17 2019-05-07 Brain Corporation Systems and methods for predictive/reconstructive visual object tracker
US10016896B2 (en) 2016-06-30 2018-07-10 Brain Corporation Systems and methods for robotic behavior around moving bodies
US10274325B2 (en) 2016-11-01 2019-04-30 Brain Corporation Systems and methods for robotic mapping
US10001780B2 (en) 2016-11-02 2018-06-19 Brain Corporation Systems and methods for dynamic route planning in autonomous navigation
US10723018B2 (en) 2016-11-28 2020-07-28 Brain Corporation Systems and methods for remote operating and/or monitoring of a robot
CN110235079B (en) * 2017-01-27 2022-09-27 威欧.艾姆伊有限公司 Scrolling device and method for autonomous repositioning of an apparatus using an integrated scrolling device
CN110235079A (en) * 2017-01-27 2019-09-13 威欧.艾姆伊有限公司 Tourelle and the method for relocating equipment autonomously using integrated form tourelle
US10377040B2 (en) 2017-02-02 2019-08-13 Brain Corporation Systems and methods for assisting a robotic apparatus
US10852730B2 (en) 2017-02-08 2020-12-01 Brain Corporation Systems and methods for robotic mobile platforms
US10293485B2 (en) 2017-03-30 2019-05-21 Brain Corporation Systems and methods for robotic path planning
US10809734B2 (en) 2019-03-13 2020-10-20 Mobile Industrial Robots A/S Route planning in an autonomous device
US11592299B2 (en) 2020-03-19 2023-02-28 Mobile Industrial Robots A/S Using static scores to control vehicle operations

Also Published As

Publication number Publication date
SG2013071808A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2015047195A1 (en) Offboard navigation apparatus capable of being coupled to a movable platform
US11684526B2 (en) Patient support apparatuses with navigation and guidance systems
US9487356B1 (en) Managing low-frequency inventory items in a fulfillment center
Chong et al. Autonomy for mobility on demand
CN108431713B (en) Docking system and method for charging a mobile robot
US11287831B2 (en) Apparatus, systems, and methods for operating and maintaining electrically-powered material-transport vehicles
EP2296071A1 (en) Modular and scalable positioning and navigation system
CN110998466B (en) System and method for navigation path determination for unmanned vehicles
US11077708B2 (en) Mobile robot having an improved suspension system
US9471062B1 (en) Vehicle operating method and system
CN106774318B (en) Multi-agent interactive environment perception and path planning motion system
US9821461B1 (en) Determining a trajectory for a walking robot to prevent motor overheating
WO2021141723A1 (en) Directing secondary delivery vehicles using primary delivery vehicles
US20230286565A1 (en) Autonomous Utility Cart and Robotic Cart Platform
Matsuhira et al. Development of robotic transportation system-Shopping support system collaborating with environmental cameras and mobile robots
US20230303267A1 (en) Autonomous, electric vehicle for aviation-related applications
Matsumoto et al. Autonomous traveling control of the" TAO Aicle" intelligent wheelchair
IL227088A (en) Collaborative automated mobile platform
KR102433595B1 (en) Unmanned transportation apparatus based on autonomous driving for smart maintenance of railroad vehicles
Sonsalla et al. Concept study for the FASTER micro scout rover
US11813947B1 (en) Dense vehicle charging station
Yang et al. Autonomous mobile platform for enhanced situational awareness in Mass Casualty Incidents
WO2021053568A1 (en) Device for self-movement of wheel-equipped apparatuses, and related system and method
JP2021196487A (en) Map conversion system and map conversion program
CN113859383B (en) Transfer robot and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.09.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14847771

Country of ref document: EP

Kind code of ref document: A1