WO2015050060A1 - Resin composition and molded product thereof - Google Patents

Resin composition and molded product thereof Download PDF

Info

Publication number
WO2015050060A1
WO2015050060A1 PCT/JP2014/075677 JP2014075677W WO2015050060A1 WO 2015050060 A1 WO2015050060 A1 WO 2015050060A1 JP 2014075677 W JP2014075677 W JP 2014075677W WO 2015050060 A1 WO2015050060 A1 WO 2015050060A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
block copolymer
resin composition
mass
resin
Prior art date
Application number
PCT/JP2014/075677
Other languages
French (fr)
Japanese (ja)
Inventor
俊一朗 井
美穂子 山本
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN201480054532.1A priority Critical patent/CN105722911B/en
Priority to US15/025,583 priority patent/US9783675B2/en
Priority to KR1020167003164A priority patent/KR101778478B1/en
Priority to EP14851347.6A priority patent/EP3053955B1/en
Publication of WO2015050060A1 publication Critical patent/WO2015050060A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/123Polyphenylene oxides not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified

Definitions

  • the present invention relates to a resin composition and a molded body thereof.
  • Polypropylene resin has excellent properties such as moldability, water resistance, oil resistance, acid resistance and alkali resistance. However, since a polypropylene resin has defects that are inferior in heat resistance, rigidity, and impact resistance, it is known to form a composition containing a polyphenylene ether resin. In the composition, it is known that a polypropylene resin forms a matrix phase and a polyphenylene ether resin forms a dispersed phase, thereby providing a resin composition with improved heat resistance and rigidity.
  • Patent Documents 1 and 2 propose a composition of a polyphenylene ether resin and a polypropylene resin.
  • Patent Documents 1, 3, and 4 propose a composition of a polyphenylene ether resin, a polypropylene resin, and a hydrogenated block copolymer.
  • the hydrogenated block copolymer includes a polyphenylene ether resin and a polypropylene resin. It is disclosed that it is a component that acts as an admixture with and further imparts impact resistance.
  • Patent Document 1 discloses a polymer block B mainly composed of a conjugated diene compound in which the ratio of the vinyl bond amount to the total bond amount of the polymer block A mainly composed of a vinyl aromatic compound and the conjugated diene compound is 30 to 95%.
  • a hydrogenated block copolymer obtained by hydrogenating a block copolymer consisting of is described.
  • Patent Document 3 discloses a polymer block B mainly composed of a conjugated diene compound in which the ratio of the vinyl bond amount to the total bond amount of the polymer block A mainly composed of a vinyl aromatic compound and the conjugated diene compound is 65 to 75%.
  • a hydrogenated block copolymer obtained by hydrogenating 65 to less than 80% of a block copolymer consisting of is described.
  • Patent Document 4 discloses a block copolymer comprising a polymer block A mainly composed of styrene and a polymer block B mainly composed of butadiene having a vinyl bond amount ratio of 70 to 90% with respect to the total bond amount of butadiene.
  • a hydrogenated block copolymer obtained by hydrogenation of water having a bound styrene content of 15 to 50% by mass, a number average molecular weight of 100,000 or less, and a polymer block A having a number average molecular weight of 8000 or more.
  • a block copolymer is described.
  • composition containing the polyphenylene ether resin and the polypropylene resin disclosed in the above-mentioned Patent Documents 1 to 4 has drastically improved solvent resistance and improved heat resistance compared to the classic polyphenylene ether resin composition. Although excellent, there is room for improvement in terms of tensile elongation, warpage of molded pieces, and impact resistance at low temperatures.
  • the present invention is a resin composition comprising a polypropylene resin and a polyphenylene ether resin, which is more excellent in tensile elongation and impact resistance at low temperatures, and a resin composition having a small warping of a molded piece and its molding
  • the purpose is to provide a body.
  • a resin composition containing a polypropylene resin and a polyphenylene ether resin, a specific first hydrogenated block copolymer resin, an ethylene- ⁇ -olefin copolymer It has been found that a resin composition can be obtained that is more excellent in tensile elongation and low temperature impact property and has a small warp of a molded piece by containing a coalesced rubber and / or a specific second hydrogenated block copolymer resin. It was.
  • the present invention is as follows.
  • the block copolymer comprising the components (c) and (e) comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound.
  • a hydrogenated block copolymer obtained by hydrogenating a polymer and / or a modified product of the hydrogenated block copolymer In the total bond of the conjugated diene compound unit in the component (c), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 45 to 90%,
  • the component (c) contains 30 to 50% by mass of vinyl aromatic compound units, In the total bond of the conjugated diene compound unit in the component (e), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 60%,
  • the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%, In the component (e), the hydrogenation rate with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) of the block copolymer is 10% or more and less than 80%.
  • Resin composition [2] The resin composition according to [1], including at least the component (d). [3] [1] The melt flow rate of the component (d) (MFR: measured in accordance with ASTM D-1238 at 190 ° C. under a load of 2.16 kg) is 0.1 to 4.5 g / 10 min. Or the resin composition as described in [2]. [4] The resin composition according to any one of [1] to [3], wherein the component (d) has a Shore A hardness (according to ASTM D-2240) of 75 or less. [5] The total content of the components (c) and (d) is 1 to 50 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
  • the mass ratio of the components (a) and (b) ((a) :( b)) is 25:75 to 99: 1,
  • Including at least the component (e) The total content of the components (c) and (e) is 1 to 50 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
  • the mass ratio of the components (a) and (b) ((a) :( b)) is 25:75 to 99: 1,
  • the content of the component (f) is 1 to 15 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
  • the component (f) is a hydrogenated block copolymer comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound.
  • the component (f) contains 10% by mass or more and less than 30% by mass of a vinyl aromatic compound unit, In the total bond of the conjugated diene compound unit in the component (f), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 70%, In the component (f), the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%,
  • the resin composition according to any one of [1] to [9], wherein the polymer block A forming the component (f) has a number average molecular weight (MneA) of 4,000 to 8,000.
  • the component (a) is homopolypropylene and / or block polypropylene, [1] to [12], wherein the melt flow rate of the component (a) (MFR: measured at 230 ° C. under a load of 2.16 kg in accordance with JIS K7210) is 0.1 to 100 g / 10 min.
  • MFR melt flow rate
  • the component (c) is a hydrogenated block copolymer comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound.
  • tan ⁇ of the loss tangent at ⁇ 50 ° C. ( ⁇ 50 ° C. tan ⁇ ) obtained by the following measurement method to the loss tangent at 0 ° C. (0 ° C. tan ⁇ ) is 0.39 or more.
  • a molded article comprising the resin composition according to any one of [1] to [15].
  • the present invention it is possible to obtain a resin composition that is more excellent in tensile elongation and low-temperature impact properties and has a small warp of a molded piece, and a molded body using the same.
  • FIG. 1 is a schematic view showing a position when measuring warpage of a molded piece in the embodiment of the present application.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiment is an exemplification for explaining the present invention, and is not intended to limit the present invention only to this embodiment.
  • this invention can be deform
  • the resin composition of the present embodiment is (A) a polypropylene resin, (b) a polyphenylene ether resin, (c) a first hydrogenated block copolymer resin, and (d) an ethylene- ⁇ -olefin copolymer rubber and / or (e ) Including a second hydrogenated block copolymer resin;
  • the block copolymer comprising the components (c) and (e) comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound.
  • a hydrogenated block copolymer obtained by hydrogenating a polymer and / or a modified product of the hydrogenated block copolymer In the total bond of the conjugated diene compound unit in the component (c), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 45 to 90%,
  • the component (c) contains 30 to 50% by mass of vinyl aromatic compound units, In the total bond of the conjugated diene compound unit in the component (e), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 60%,
  • the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%,
  • the hydrogenation rate of the block copolymer with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) is 10% or more and less than 80%.
  • the melt flow rate (MFR: measured in accordance with ASTM D-1238, at 190 ° C. under a load of 2.16 kg) of the component (d) is preferably 0.1 to 4.5 g / 10 minutes.
  • the component (d) preferably has a Shore A hardness (according to ASTM D-2240) of 75 or less.
  • the characteristic of the component (d) is a characteristic in the case of the component (d) alone.
  • component (a) Polypropylene resin (hereinafter, also referred to as “component (a)”) used in the present embodiment is not particularly limited.
  • component (a1) polypropylene resin and (a2) modified polypropylene resin described later are used. Can be mentioned.
  • Polypropylene resin refers to a polymer in which 50 mol% or more of the constituent monomer is propylene, and the others are not particularly limited.
  • a crystalline propylene homopolymer a crystalline propylene homopolymer portion obtained in the first step of polymerization, and propylene, ethylene and / or at least one other ⁇ -olefin (eg, butene- 1, propylene- ⁇ -olefin random copolymer portion obtained by copolymerizing hexene-1, etc.) and a crystalline propylene- ⁇ -olefin block copolymer such as a crystalline propylene-ethylene block copolymer Is mentioned.
  • ⁇ -olefin eg, butene- 1, propylene- ⁇ -olefin random copolymer portion obtained by copolymerizing hexene-1, etc.
  • a crystalline propylene- ⁇ -olefin block copolymer such as a crystalline
  • the proportion of propylene in the monomer constituting the polypropylene resin is preferably 70 mol% or more, more preferably 90 mol% or more.
  • These (a1) polypropylene resins may be used individually by 1 type, and may use 2 or more types together.
  • An example of using two or more types in combination is not particularly limited.
  • a crystalline propylene homopolymer and a crystalline propylene-ethylene block copolymer except for those having a Shore A hardness of 75 or less).
  • a mixture is mentioned.
  • the polypropylene resin is preferably homopolypropylene and / or block polypropylene.
  • the method for producing the (a1) polypropylene resin is not particularly limited.
  • the polymerization temperature is 0 in the presence of a titanium trichloride catalyst or a titanium halide catalyst supported on a carrier such as magnesium chloride and an alkylaluminum compound.
  • a carrier such as magnesium chloride and an alkylaluminum compound.
  • examples thereof include a method in which a monomer containing propylene is polymerized in a range of from -100 ° C. and a polymerization pressure of from 3 to 100 atm.
  • a chain transfer agent such as hydrogen may be added to adjust the molecular weight of the resulting polymer.
  • the polymerization method is not particularly limited, and may be either batch type or continuous type. Further, solution polymerization in a solvent such as butane, pentane, hexane, heptane, octane, etc .; slurry polymerization; bulk polymerization in a monomer without solvent; gas phase polymerization method in a gaseous monomer, etc. can also be applied.
  • a solvent such as butane, pentane, hexane, heptane, octane, etc.
  • slurry polymerization bulk polymerization in a monomer without solvent
  • an electron donating compound can be used as an internal donor component or an external donor component as a third component of the catalyst in the polymerization catalyst.
  • the type of the electron donating compound is not particularly limited, and known compounds can be used.
  • ester compounds such as ⁇ -caprolactone, methyl methacrylate, ethyl benzoate and methyl toluate; phosphorous acid esters such as triphenyl phosphite and tributyl phosphite; phosphoric acid derivatives such as hexamethylphosphoramide;
  • Examples include alkoxy ester compounds, aromatic monocarboxylic acid esters, aromatic alkyl alkoxy silanes, aliphatic hydrocarbon alkoxy silanes, various ether compounds, various alcohols, and / or various phenols.
  • the melt flow rate (MFR) of polypropylene resin (value measured at 230 ° C. under a load of 2.16 kg in accordance with JIS K7210) is preferably 0.1 to 100 g / 10 min, more preferably The range is 0.1 to 80 g / 10 minutes. (A1) By making MFR of a polypropylene resin into the said range, it exists in the tendency for the balance of the fluidity
  • the method of controlling the MFR of the polypropylene resin within the above range is not particularly limited, and examples thereof include a method of controlling the ratio of hydrogen supply to the monomer.
  • (A2) Modified polypropylene resin refers to, for example, the above (a1) polypropylene resin and an ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof in a molten or solution state in the presence or absence of a radical generator. And a resin obtained by reacting at 30 to 350 ° C.
  • the (a2) modified polypropylene resin is not particularly limited.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid or derivative thereof are not particularly limited, and examples thereof include maleic anhydride and N-phenylmaleimide.
  • the mixing ratio of (a1) polypropylene resin and (a2) modified polypropylene resin in (a) polypropylene resin is not particularly limited and is arbitrarily determined. it can.
  • Polypropylene resin used in the present embodiment can be obtained by the above-described method or other known methods. Moreover, even if it is (a) polypropylene resin which has what kind of crystallinity and melting
  • the (b) polyphenylene ether-based resin (hereinafter, also simply referred to as “(b) component” or “PPE”) used in the present embodiment is not particularly limited.
  • (b1) polyphenylene ether resin and ( b2) Modified polyphenylene ether resin (b1) polyphenylene ether resin and ( b2) Modified polyphenylene ether resin.
  • the polyphenylene ether resin is a homopolymer and / or copolymer containing a repeating unit structure represented by the following formula (1).
  • the reduced viscosity (0.5 g / dL chloroform solution, measured at 30 ° C.) of the polyphenylene ether resin is preferably in the range of 0.15 to 2.50, more preferably 0.30 to 2.00. More preferably, it is in the range of 0.35 to 2.00.
  • R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, a halogen atom, a primary or secondary alkyl group having 1 to 7 carbon atoms, or a phenyl group , A haloalkyl group, an aminoalkyl group, a hydrocarbonoxy group, or a monovalent group selected from the group consisting of a halohydrocarbonoxy group in which at least two carbon atoms separate a halogen atom and an oxygen atom.
  • the (b1) polyphenylene ether resin used in the present embodiment is not particularly limited, but a known polyphenylene ether resin can be used.
  • (B1) Specific examples of the polyphenylene ether resin are not particularly limited. For example, poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene) Ethers), poly (2-methyl-6-phenyl-1,4-phenylene ether), and poly (2,6-dichloro-1,4-phenylene ether) homopolymers, and 2,6-dimethylphenol And other phenols (for example, 2,3,6-trimethylphenol and 2-methyl-6-butylphenol).
  • poly (2,6-dimethyl-1,4-phenylene ether) and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferable.
  • 1,4-phenylene ether) is more preferable.
  • the method for producing the polyphenylene ether resin is not particularly limited, and a conventionally known method can be used.
  • a polyphenylene ether resin can be easily produced by, for example, oxidative polymerization of 2,6-xylenol using, for example, a complex of cuprous salt and amine described in US Pat. No. 3,306,874 as a catalyst. .
  • polyphenylene ether resins are disclosed in US Pat. No. 3,306,875, US Pat. No. 3,257,357, US Pat. No. 3,257,358, Japanese Patent Publication No. 52-17880, Japanese Patent Laid-Open No. 50-51197. Also, it can be produced by the method described in JP-A-63-152628.
  • the modified polyphenylene ether resin is, for example, the above (b1) polyphenylene ether resin and a styrene monomer and / or an ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof (for example, maleic anhydride, N-phenylmaleimide, fumarate). And unsaturated dicarboxylic acids such as acids and their derivatives, vinyl compounds such as styrene, acrylic acid esters, and methacrylic acid esters)) in the presence or absence of a radical generator, Alternatively, it refers to a resin obtained by reacting at 80 to 350 ° C. in a slurry state.
  • the (b2) modified polyphenylene ether resin is not particularly limited.
  • the (b1) polyphenylene ether resin contains 0.01 to 10 mass of a styrene monomer and / or an ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof. % -Grafted or added modified polyphenylene ether resin.
  • the styrenic monomer refers to styrene or one or more hydrogen molecules of styrene, a halogen atom, a primary or secondary alkyl group having 1 to 7 carbon atoms, a phenyl group, a haloalkyl group, an amino group.
  • the (c) first hydrogenated block copolymer resin (hereinafter also referred to as “component (c)”) used in the present embodiment is the (c1) first hydrogenated block copolymer and / or described later. Or (c2) a first modified hydrogenated block copolymer.
  • the first hydrogenated block copolymer includes at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound.
  • the hydrogenated block copolymer has a hydrogenation rate of 80 to 100% with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) of the block copolymer.
  • the polymer block A mainly composed of a vinyl aromatic compound is a homopolymer block of a vinyl aromatic compound or a copolymer block of a vinyl aromatic compound and a conjugated diene compound.
  • “mainly composed of a vinyl aromatic compound” means that the polymer block A contains more than 50% by mass of vinyl aromatic compound units, and 70% by mass of vinyl aromatic compound units. % Or more is preferable.
  • the vinyl aromatic compound is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, p-tert-butylstyrene, and diphenylethylene. These may be used alone or in combination of two or more. Of the above, styrene is preferred. Examples of the conjugated diene compound include the compounds described below, which may be used alone or in combination of two or more.
  • the polymer block B mainly composed of a conjugated diene compound is a homopolymer block of a conjugated diene compound or a random copolymer block of a conjugated diene compound and a vinyl aromatic compound.
  • “consisting mainly of a conjugated diene compound” means that the polymer block B contains more than 50% by mass of conjugated diene compound units, and contains 70% by mass or more of conjugated diene compound units. It is preferable to do.
  • the conjugated diene compound is not particularly limited, and examples thereof include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. These may be used alone or in combination of two or more. Among the above, butadiene, isoprene and combinations thereof are preferable. Examples of the vinyl aromatic compound include the aforementioned compounds, and these may be used alone or in combination of two or more.
  • the polymer block B is a polymer block mainly composed of butadiene
  • the total proportion of 1,2-vinyl bonds and 3,4-vinyl bonds of butadiene in the polymer block B is 65 to 90%. It is preferable.
  • the conjugated diene compound unit is bonded to an adjacent monomer unit by any of 1,2-vinyl bond, 3,4-vinyl bond, or 1,4-conjugated bond. .
  • the polymer block B includes the amount of 1,2-vinyl bond and 3,4-vinyl bond relative to the total bond amount of the conjugated diene compound unit. It may be a single polymer block having a total amount (hereinafter, also referred to as “total vinyl bond amount”) of 45 to 90%, and the total vinyl bond amount is 45 to 90%.
  • It has at least one polymer block B1 mainly composed of a conjugated diene compound and at least one polymer block B2 mainly composed of a conjugated diene compound whose ratio of the total vinyl bond amount is 30% or more and less than 45%. It may be a polymer block mainly composed of a conjugated diene compound.
  • a block copolymer having such a block structure is, for example, when the polymer block A is “A”, the polymer block B1 is “B1”, and the polymer block B2 is “B2”. It can be obtained by a known polymerization method in which the total vinyl bond amount is controlled based on the feed sequence of each monomer unit represented by -B2-B1-A.
  • the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound can be known with an infrared spectrophotometer.
  • Block copolymer structure As the block copolymer, when the polymer block A is “A” and the polymer block B is “B”, for example, ABA type, ABAB type, BA -BA type, (AB-) nX type (where n is an integer of 1 or more, X is a reactive residue or polyfunctionality of a polyfunctional coupling agent such as silicon tetrachloride or tin tetrachloride) Represents a residue of an initiator such as an organolithium compound), and a vinyl aromatic-conjugated diene compound block copolymer having a structure in which block units such as ABABABA type are bonded.
  • the block copolymer having the ABAB type structure and the BABA type structure is compared with the block copolymer having the ABAA type structure as the component (c). It is more preferable because of its excellent fluidity.
  • the molecular structure of the block copolymer including the polymer block A and the polymer block B is not particularly limited, and may be, for example, linear, branched, radial, or any combination thereof. Also good. Polymer block A and polymer block B are random and tapered distributions of vinyl aromatic compounds and conjugated diene compounds in the molecular chains in each polymer block (in which monomer components increase or decrease along the molecular chain). ), Partly in the form of blocks, or any combination thereof. When there are two or more polymer blocks A or polymer blocks B in the repeating unit, each polymer block may have the same structure or a different structure.
  • the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound is preferably 45 to 90%, more preferably 50 to 90%, and 65 to 90%. Is more preferable, and 70 to 90% is particularly preferable. When the ratio of the total vinyl bond amount exceeds 90%, industrial production may be difficult.
  • the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 45 to 90%, preferably 50 to 90%. 65 to 90% is more preferable, and 70 to 90% is still more preferable.
  • the total proportion of 1,2-vinyl bonds and 3,4-vinyl bonds is within the above range.
  • the component (c1) has excellent compatibility with the component (a), and the resulting resin composition has improved mechanical properties. .
  • the method for controlling the total ratio of 1,2-vinyl bond and 3,4-vinyl bond within the above range is not particularly limited.
  • the amount of 1,2-vinyl bond is adjusted.
  • examples thereof include a method of adding an agent and a method of adjusting the polymerization temperature.
  • total vinyl bond amount relative to the total bond amount of the conjugated diene compound means the hydrogenated block copolymer resin. It refers to the amount of vinyl bonds in the block copolymer before hydrogenation. This can be calculated, for example, by measuring the block copolymer before hydrogenation with an infrared spectrophotometer and using the Hampton method. Moreover, it can calculate using a nuclear magnetic resonance (NMR) from the block copolymer after hydrogenation.
  • NMR nuclear magnetic resonance
  • the hydrogenation ratio of the block copolymer to the ethylenic double bond is 80 to 100%. , More preferably 85% or more, particularly preferably 90% or more. It is preferable from the viewpoint of obtaining a resin composition having good heat resistance and weather resistance when the hydrogenation rate is within the above range.
  • the method for controlling the hydrogenation rate within the above range is not particularly limited.
  • the amount of hydrogen consumed is within the desired hydrogenation rate range. The method of controlling is mentioned.
  • the hydrogenation rate can be measured by nuclear magnetic resonance (NMR). Specifically, it can be measured by the method described in Examples described later.
  • NMR nuclear magnetic resonance
  • the (c2) first modified hydrogenated block copolymer includes, for example, the above (c1) first hydrogenated block copolymer and an ⁇ , ⁇ -unsaturated carboxylic acid or derivative thereof (ester compound or A modified hydrogenated block copolymer obtained by reacting an acid anhydride compound) in the presence of a radical generator in the presence or absence of a radical generator in a molten state, a solution state or a slurry state at 80 to 350 ° C.
  • the ⁇ , ⁇ -unsaturated carboxylic acid or derivative thereof is preferably grafted or added to the (c1) first hydrogenated block copolymer in a proportion of 0.01 to 10% by mass.
  • the number average molecular weight (Mnc) of the component (c) is preferably 5,000 to 1,000,000, more preferably 100,000 or less.
  • Mnc is 1,000,000 or less
  • the role of the (c) first hydrogenated block copolymer resin in the resin composition is merely an emulsifying dispersant (admixture) between polymer (polypropylene) and polymer (polyphenylene ether). It tends to be a role as an agent.
  • the first hydrogenated block copolymer resin as an emulsifying dispersant (admixture)
  • the number average molecular weight (Mnc) of the component (c) is 5,000 to 1,000 in consideration of the melt viscosity of the (c) first hydrogenated block copolymer in order to diffuse preferably in the melt mixing system. 1,000 is preferable and 100,000 or less is more preferable.
  • the method of controlling the number average molecular weight (Mnc) of the component (c) within the above range is not particularly limited, and examples thereof include a method of adjusting the amount of catalyst in the polymerization step of the component (c).
  • the number average molecular weight (Mnc) of the component (c) can be measured under the following conditions using Showa Denko Co., Ltd. Gel Permeation Chromatography System 21.
  • a column in which one KG manufactured by Showa Denko KK, one K-800RL and one K-800R were connected in series was used as the column, and the column temperature was 40 ° C.
  • the solvent is chloroform
  • the solvent flow rate is 10 mL / min
  • the sample concentration is 1 g of hydrogenated block copolymer / 1 liter of chloroform solution.
  • a calibration curve is prepared using standard polystyrene (the molecular weight of standard polystyrene is 3650000, 217000, 1090000, 681000, 204000, 52000, 30200, 13800, 3360, 1300, 550). Further, the UV (ultraviolet) wavelength of the detection unit is measured by setting both standard polystyrene and hydrogenated block copolymer to 254 nm.
  • the content of the vinyl aromatic compound unit (hydrogenated block copolymer constituent unit derived from the vinyl aromatic compound) in the component (c) is 30 to 50% by mass, preferably 30 to 48% by mass, More preferably, it is 30 to 45% by mass, and still more preferably 35 to 45% by mass.
  • the content of the vinyl aromatic compound unit is 30% by mass or more, the mechanical strength of the resin composition is improved, and when the content of the vinyl aromatic compound unit is 50% by mass or less, heat resistance and A resin composition having an excellent balance with impact resistance is obtained.
  • the content of the vinyl aromatic compound unit can be measured by an ultraviolet spectrophotometer (UV). Specifically, it can be carried out by the method described in Examples described later.
  • UV ultraviolet spectrophotometer
  • the content of the vinyl aromatic compound unit is 30 to 50% by mass
  • the first hydrogenated block copolymer resin is an emulsion dispersion between a polypropylene resin and a polyphenylene ether resin. Good emulsification and dispersion of the polyphenylene ether resin is given, and the resin composition obtained is greatly superior in heat resistance, mechanical properties and impact resistance.
  • the (d) ethylene- ⁇ -olefin copolymer rubber (hereinafter also referred to as “component (d)”) used in the present embodiment is a copolymer rubber of ethylene and ⁇ -olefin.
  • the component (d) is not particularly limited, and a known component may be used, but the melt flow rate (measured in accordance with MFR: ASTM D-1238 at 190 ° C. under a load of 2.16 kg) is 0.1. It is preferably ⁇ 4.5 g / 10 min, and the Shore A hardness (according to ASTM D-2240) is preferably 75 or less.
  • the component (d) is not particularly limited, and examples thereof include a copolymer rubber of ethylene and one or more C3-C20 ⁇ -olefins.
  • the component (d) is preferably a copolymer rubber of ethylene and one or more C3 to C10 ⁇ -olefins, and ethylene and one or more C4 to C8 ⁇ -olefins. More preferably, the rubber is a copolymer rubber, and one or more selected from the group consisting of ethylene and propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene.
  • a copolymer rubber with a comonomer is more preferable, and a copolymer rubber of ethylene and 1-octene is particularly preferable.
  • a copolymer rubber of ethylene and 1-octene is particularly preferable.
  • the method for preparing the ethylene- ⁇ -olefin copolymer rubber is not particularly limited, and a catalyst that can easily obtain a high molecular weight ⁇ -olefin copolymer under normal processing conditions (for example, , Titanium, metallocene, or vanadium-based catalysts). Among these, a method using a metallocene catalyst and a titanium chloride catalyst is preferable from the viewpoint of stability of structure control.
  • a method for producing the ethylene- ⁇ -olefin copolymer rubber known methods described in JP-A-6-306121, JP-A-7-500622 and the like can be used.
  • the Shore A hardness (based on ASTM D-2240) of the component (d) alone is preferably 75 or less, more preferably 70 or less, and even more preferably 65 or less, from the viewpoint of low-temperature impact properties of the resin composition.
  • the lower limit of the Shore A hardness of the component (d) alone is not particularly limited, but is 48 or more, for example.
  • the method for controlling the Shore A hardness of the component (d) within the above range is not particularly limited, and examples thereof include a method of adjusting by controlling the content and density of ethylene units.
  • the content of the ⁇ -olefin in the component (d) is not particularly limited, and is preferably 5% by mass or more and 20% by mass or more from the viewpoint of low temperature curability and flexibility of the resin composition. In view of the rigidity of the resin composition, it is preferably 50% by mass or less, and more preferably 48% by mass or less.
  • the density of the component (d) alone is not particularly limited, and is preferably 0.850 g / cm 3 or more and more preferably 0.855 g / cm 3 or more from the viewpoint of the rigidity of the resin composition. From the viewpoint of obtaining a resin composition having high impact resistance and high tensile elongation at break, 0.910 g / cm 3 or less is preferable, and 0.885 g / cm 3 or less is more preferable.
  • two or more kinds of ethylene- ⁇ -olefin copolymer rubbers may be used.
  • Ethylene- ⁇ -olefin copolymer rubber having a density of 0.857 g / cm 3 and ethylene- ⁇ -olefin copolymer having a density of 0.870 g / cm 3 from the viewpoint of impact resistance, tensile elongation at break and rigidity of the product A combined rubber can be used in combination.
  • the melt flow rate of component (d) as a single component is a morphological change due to dispersion of component (d) in the resin composition. From the viewpoints of stabilization and impact resistance of the resin composition, 0.1 to 4.5 g / 10 min is preferable, and 0.3 to 3 g / 10 min is more preferable.
  • the method for controlling the melt flow rate of the component (d) within the above range is not particularly limited.
  • a method of adjusting the molar ratio between the monomer concentration of ⁇ -olefin and the hydrogen concentration is not particularly limited.
  • the molecular weight distribution (Mw / Mn; Mw is the weight average molecular weight, Mn is the number average molecular weight) of the component (d) is not particularly limited, but is preferably 1.3 to 5.0.
  • the (d) ethylene- ⁇ -olefin copolymer rubber in the resin composition is only (a) A component that serves as an impact resistance imparting agent between two or more resins selected from the group consisting of a polypropylene resin, (b) a polyphenylene ether resin, and (c) a first hydrogenated block copolymer resin; Become.
  • the content of vinyl aromatic compound units in the first hydrogenated block copolymer resin is 30 to 50% by mass, and (d) the Shore A hardness of the ethylene- ⁇ -olefin copolymer rubber is 75.
  • the resin composition of the present embodiment preferably further includes at least one (e) second hydrogenated block copolymer resin different from the component (c) from the viewpoint of improving impact resistance. Moreover, it is more preferable that the resin composition of this Embodiment contains the said (d) component and (e) component from a viewpoint of tensile elongation and low temperature impact property.
  • the (e) second hydrogenated block copolymer resin (hereinafter also referred to as “component (e)”) used in the present embodiment is a (e1) second hydrogenated block copolymer and / or Or (e2) a second modified hydrogenated block copolymer.
  • the second hydrogenated block copolymer includes at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound.
  • the hydrogenation rate of the block copolymer with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) is 10% or more and less than 80%.
  • the total bond of the conjugated diene compound unit in the component (e1) the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 60%, and 25 to 55%. Is more preferable, and 30 to 50% is more preferable.
  • the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is less than 60%, the impact resistance at low temperature of the resin composition is improved.
  • the component (e1) having a total ratio of 1,2-vinyl bonds and 3,4-vinyl bonds of 25% or more improves compatibility with the component (a) in combination with the component (c). It is preferable from the viewpoint.
  • the method for controlling the total ratio of 1,2-vinyl bond and 3,4-vinyl bond within the above range is not particularly limited.
  • the amount of 1,2-vinyl bond is adjusted.
  • examples thereof include a method of adding an agent and a method of adjusting the polymerization temperature.
  • total vinyl bond amount relative to total bond amount of conjugated diene compound means the water This refers to the amount of vinyl bonds in the block copolymer before hydrogenation of the added block copolymer resin. This can be calculated, for example, by measuring the block copolymer before hydrogenation with an infrared spectrophotometer and using the Hampton method. Moreover, it can calculate using NMR from the block copolymer after hydrogenation.
  • (E1) Structure of second hydrogenated block copolymer) (E1)
  • the structure of the second hydrogenated block copolymer is not particularly limited when the polymer block A is “A” and the polymer block B is “B”.
  • ABA type, BABA type, (AB-) nX type (where n is an integer of 1 or more, X is a polyfunctional cup such as silicon tetrachloride or tin tetrachloride) A reaction residue of a ring agent or a residue of an initiator such as a polyfunctional organolithium compound)), and a structure such as ABABABA type.
  • the polymer block B mainly composed of a conjugated diene compound contains a homopolymer block of a conjugated diene compound or a conjugated diene compound in an amount of more than 50% by mass, preferably 70% by mass or more.
  • a polymer block A having a copolymer block structure of a conjugated diene compound and a vinyl aromatic compound, and further comprising a vinyl aromatic compound as a main component is a homopolymer block of vinyl aromatic compound, or vinyl It preferably has a structure of a copolymer block of a vinyl aromatic compound and a conjugated diene compound, containing an aromatic compound in an amount exceeding 50% by mass, preferably 70% by mass or more.
  • the polymer block A mainly composed of a vinyl aromatic compound is a homopolymer block of a vinyl aromatic compound or a copolymer block of a vinyl aromatic compound and a conjugated diene compound.
  • “mainly composed of a vinyl aromatic compound” means that the polymer block A contains more than 50% by mass of vinyl aromatic compound units, and 70% by mass of vinyl aromatic compound units. % Or more is preferable.
  • the vinyl aromatic compound is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, p-tert-butylstyrene, and diphenylethylene. These may be used alone or in combination of two or more. Of the above, styrene is preferred. Examples of the conjugated diene compound include the compounds described below, which may be used alone or in combination of two or more.
  • the polymer block B mainly composed of a conjugated diene compound is a homopolymer block of a conjugated diene compound or a random copolymer block of a conjugated diene compound and a vinyl aromatic compound.
  • “consisting mainly of a conjugated diene compound” means that the polymer block B contains more than 50% by mass of conjugated diene compound units, and contains 70% by mass or more of conjugated diene compound units. It is preferable to do.
  • the conjugated diene compound is not particularly limited, and examples thereof include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. These may be used alone or in combination of two or more. Among the above, butadiene, isoprene and combinations thereof are preferable.
  • vinyl aromatic compound the above-mentioned compound is mentioned, 1 type may be used individually and 2 or more types may be used.
  • the polymer block B may be a single polymer block in which the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound unit is 25% or more and less than 60%, and the ratio of the total vinyl bond amount is At least one polymer mainly comprising a conjugated diene compound having a ratio of 45% or more and less than 70% to at least one polymer block B1 mainly comprising a conjugated diene compound of 25 to 45% It may be a polymer block B mainly composed of a conjugated diene compound having both the block B2.
  • a block copolymer having such a block structure is, for example, when the polymer block A is “A”, the polymer block B1 is “B1”, and the polymer block B2 is “B2”. It can be obtained by a known polymerization method in which the total vinyl bond amount is controlled based on the feed sequence of each monomer unit represented by -B2-B1-A.
  • the molecular structure of the block copolymer including the polymer block A and the polymer block B is not particularly limited, and may be, for example, linear, branched, radial, or any combination thereof. Also good. Polymer block A and polymer block B are random and tapered distribution of vinyl aromatic compound or conjugated diene compound in the molecular chain in each polymer block (in which the monomer component increases or decreases along the molecular chain) ), Partly in the form of blocks, or any combination thereof. When there are two or more polymer blocks A or B in the component (e1), the polymer blocks may have the same structure or different structures.
  • the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound is preferably 25% or more and less than 60%, more preferably 25 to 55%, more preferably 30 to 50%. More preferably. When the ratio of the total vinyl bond amount is less than 60%, the impact resistance at low temperature of the resin composition is improved.
  • the hydrogenation rate relative to the ethylenic double bond (double bond in the conjugated diene compound unit) in the block copolymer is 10% or more and 80%. Is preferably from 10 to 60%, more preferably from 20 to 50%. It is preferable for the hydrogenation rate to be within the above range since the low temperature impact property of the resin composition is improved.
  • the component (e1) having such a hydrogenation rate is, for example, a desired hydrogenation rate (for example, 10% or more and less than 80%) in a hydrogenation reaction of an ethylenic double bond of a block copolymer. ) Can be easily obtained by controlling to the range of
  • the (e1) second hydrogenated block copolymer is a resin.
  • the impact resistance at low temperature of the composition is improved, which is more preferable.
  • the second hydrogenated block copolymer preferably contains 20 to 70% by mass of vinyl aromatic compound units (hydrogenated block copolymer constituent units derived from vinyl aromatic compounds). Further, not only one (e1) component having a vinyl aromatic compound unit content in these ranges but also two or more different (e1) components having a different vinyl aromatic compound unit content can be used in combination. .
  • the (e2) second modified hydrogenated block copolymer includes, for example, the (e1) second hydrogenated block copolymer and an ⁇ , ⁇ -unsaturated carboxylic acid or derivative thereof (ester compound or acid).
  • the ⁇ , ⁇ -unsaturated carboxylic acid or derivative thereof is preferably grafted or added to the (e1) second hydrogenated block copolymer in a proportion of 0.01 to 10% by mass.
  • the number average molecular weight (Mne) of the component (e) is preferably 5,000 to 1,000,000, more preferably 100,000 or less.
  • Mne is 1,000,000 or less
  • the role of (e) the second hydrogenated block copolymer resin in the resin composition is only (a) polypropylene resin, (b) polyphenylene ether resin and (c ) It tends to serve as an impact resistance imparting agent between two or more resins selected from the group consisting of the first hydrogenated block copolymer resins.
  • the method of controlling the number average molecular weight (Mne) of the component (e) within the above range is not particularly limited, and examples thereof include a method of adjusting the catalyst amount in the polymerization step of the component (e).
  • the number average molecular weight (Mne) of (e) component can be measured on condition of the following using the gel permeation chromatography System21 by Showa Denko KK.
  • a column in which one KG manufactured by Showa Denko KK, one K-800RL and one K-800R were connected in series was used as the column, and the column temperature was 40 ° C.
  • the solvent is chloroform
  • the solvent flow rate is 10 mL / min
  • the sample concentration is 1 g of hydrogenated block copolymer / 1 liter of chloroform solution.
  • a calibration curve is prepared using standard polystyrene (the molecular weight of standard polystyrene is 3650000, 217000, 1090000, 681000, 204000, 52000, 30200, 13800, 3360, 1300, 550). Further, the UV (ultraviolet) wavelength of the detection unit is measured by setting both standard polystyrene and hydrogenated block copolymer to 254 nm.
  • (MneA) (Mne) ⁇ the ratio of the amount of bound vinyl aromatic compound ⁇ 3 Can be obtained.
  • the measurement is performed without depending on the above calculation formula. It may be calculated from the ratio of the block structure A based on the number average molecular weight (Mne) of the component (e).
  • the number average molecular weight (MneA) of the polymer block A forming the component (e) is preferably 5,000 to 25,000, more preferably 5,000 to 14,000.
  • the content of the vinyl aromatic compound unit (hydrogenated block copolymer-derived structural unit derived from the vinyl aromatic compound) in the component (e) is preferably 20 to 70% by mass, and more preferably 20 to 70% by mass. 60% by mass, more preferably 20 to 40% by mass.
  • the content of the vinyl aromatic compound unit in the component (e) is 20% by mass or more, the mechanical strength of the resin composition tends to be improved, and when it is 70% by mass or less, heat resistance and impact resistance. There exists a tendency to obtain the resin composition which is excellent in balance with property.
  • the mass ratio of (c) the first hydrogenated block copolymer resin and (d) the ethylene- ⁇ -olefin copolymer rubber ( (C): (d)) is preferably used from the viewpoint of obtaining a polymer alloy in which the (b) polyphenylene ether resin is stably emulsified and dispersed in the matrix containing the (a) polypropylene resin.
  • the total content of the components (c) and (d) is preferably 1 with respect to 100 parts by mass of the total content of the components (a) and (b). -50 parts by mass, more preferably 2-45 parts by mass, still more preferably 3-40 parts by mass, and particularly preferably 10-30 parts by mass.
  • the total content of the components (c) and (d) is within the above range, a resin composition excellent in heat resistance and impact resistance tends to be obtained.
  • the second hydrogenated block copolymer (c) that can be used in combination with the first hydrogenated block copolymer resin.
  • the mass ratio ((c) :( e)) to the polymer resin is: The ratio is preferably 1:99 to 99: 1, more preferably 10:90 to 90:10, still more preferably 20:80 to 80:20, and particularly preferably 30:70 to 70:30. .
  • the total content of the components (c) and (e) is preferably 1 with respect to 100 parts by mass of the total content of the components (a) and (b). -50 parts by mass, more preferably 2-45 parts by mass, still more preferably 3-40 parts by mass, and particularly preferably 10-30 parts by mass. It is preferable from the viewpoint of heat resistance of the resin composition that the total content of the components (c) and (e) is within the above range.
  • the mass ratio ((a) :( b)) of the components (a) and (b) is preferably 25:75 to 99: 1, more preferably 27:73 to 95: 5, more preferably 26:74 to 92: 8, and particularly preferably 30:70 to 50:50. It is preferable in terms of heat resistance and impact resistance of the resin composition that the mass ratio of the components (a) and (b) is within the above range.
  • the resin composition of the present embodiment further includes (f) a third hydrogenated block copolymer resin (hereinafter also referred to as “component (f)”) as an optional component from the viewpoint of improving impact resistance. May be included.
  • component (f) a third hydrogenated block copolymer resin
  • the content of the component (f) is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
  • the amount is more preferably 2 to 12 parts by mass, and further preferably 3 to 10 parts by mass.
  • the mass ratio ((e) :( f)) of the components (e) and (f) is preferably Is 10:90 to 90:10, more preferably 20:80 to 80:20, and still more preferably 30:70 to 70:30.
  • the component (f) used in the present embodiment is (f1) a third hydrogenated block copolymer and / or (f2) a third modified hydrogenated block copolymer described later.
  • the third hydrogenated block copolymer includes at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound.
  • a hydrogenated block copolymer obtained by hydrogenating a block copolymer containing 10% by mass to 30% by mass of a vinyl aromatic compound unit (hydrogenated block copolymer-derived unit derived from a vinyl aromatic compound).
  • the total proportion of 1,2-vinyl bonds and 3,4-vinyl bonds is 25% or more and less than 70% in all bonds of conjugated diene compound units (hydrogenated block copolymer constituent units derived from conjugated diene compounds). It is.
  • the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%.
  • the number average molecular weight (Mnf-1A) of the polymer block A forming the component (f1) is preferably 4,000 to 8,000.
  • the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 70%, and 30 to 60%. Preferably, it is 40 to 60%, more preferably 40 to 55%.
  • the resulting resin composition has a tensile elongation or low temperature.
  • the impact resistance at is improved.
  • the method for controlling the total ratio of 1,2-vinyl bond and 3,4-vinyl bond within the above range is not particularly limited.
  • the amount of 1,2-vinyl bond is adjusted. Examples thereof include a method of adding an agent and a method of adjusting the polymerization temperature.
  • the total ratio of 1,2-vinyl bond and 3,4-vinyl bond can be measured with an infrared spectrophotometer.
  • the structure of the third hydrogenated block copolymer is not particularly limited as long as the polymer block A is “A” and the polymer block B is “B”.
  • a type, ABAB type, (AB-) nX type (where n is an integer of 1 or more, X is a polyfunctional coupling agent such as silicon tetrachloride or tin tetrachloride) A reactive residue or a residue of an initiator such as a polyfunctional organolithium compound.), A vinyl aromatic compound-conjugated diene block having a structure in which block units such as ABABABA type are bonded Examples thereof include hydrogenated products of copolymers. Among them, a hydrogenated block copolymer having an ABAB type structure is more preferable because it has better fluidity than an ABA type hydrogenated block copolymer.
  • the polymer block A mainly composed of a vinyl aromatic compound is a homopolymer block of a vinyl aromatic compound or a copolymer block of a vinyl aromatic compound and a conjugated diene compound.
  • “mainly composed of a vinyl aromatic compound” means that the polymer block A contains more than 50% by mass of vinyl aromatic compound units, and 70% by mass of vinyl aromatic compound units. % Or more is preferable.
  • the vinyl aromatic compound is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, p-tert-butylstyrene, and diphenylethylene. These may be used alone or in combination of two or more. Of the above, styrene is preferred. Examples of the conjugated diene compound include the compounds described below, which may be used alone or in combination of two or more.
  • the polymer block B mainly composed of a conjugated diene compound is a homopolymer block of a conjugated diene compound or a random copolymer block of a conjugated diene compound and a vinyl aromatic compound.
  • “consisting mainly of a conjugated diene compound” means that the polymer block B contains more than 50% by mass of conjugated diene compound units, and contains 70% by mass or more of conjugated diene compound units. It is preferable to do.
  • the conjugated diene compound is not particularly limited, and examples thereof include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. These may be used alone or in combination of two or more. Among the above, butadiene, isoprene and combinations thereof are preferable. Examples of the vinyl aromatic compound include the aforementioned compounds, and these may be used alone or in combination of two or more.
  • the polymer block B may be a single polymer block in which the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound unit is 25% or more and less than 70%, and the ratio is 25 to 45%.
  • Conjugated diene compound having at least one polymer block B1 mainly composed of a conjugated diene compound and at least one polymer block B2 mainly composed of a conjugated diene compound whose ratio is 45% or more and less than 70%
  • the polymer block B mainly composed of A block copolymer having such a block structure is, for example, when the polymer block A is “A”, the polymer block B1 is “B1”, and the polymer block B2 is “B2”. It can be obtained by a known polymerization method in which the total vinyl bond amount is controlled based on the feed sequence of each monomer unit represented by -B2-B1-A.
  • Block copolymer structure As the structure of the block copolymer, when the polymer block A is “A” and the polymer block B is “B”, for example, ABA type, ABAB type, B -ABA type, (AB-) nX type (where n is an integer of 1 or more, X is a reactive residue or a polyfunctional coupling agent such as silicon tetrachloride or tin tetrachloride) Represents a residue of an initiator such as a functional organolithium compound), and a block copolymer of vinyl aromatic-conjugated diene compound having a structure in which block units such as ABABABA type are bonded. preferable.
  • the block copolymer having the structure of ABAB type or BABA type is more preferable as the component (f1) than the block copolymer having the structure of ABAA type. Since it is excellent in fluidity
  • the molecular structure of the block copolymer including the polymer block A and the polymer block B is not particularly limited, and may be, for example, linear, branched, radial, or any combination thereof. Also good. Polymer block A and polymer block B are random and tapered distribution of vinyl aromatic compound or conjugated diene compound in the molecular chain in each polymer block (in which the monomer component increases or decreases along the molecular chain) ), Partly in the form of blocks, or any combination thereof. When two or more polymer blocks A or B are present in the component (f1), the polymer blocks may have the same structure or different structures.
  • the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound unit is preferably 25% or more and less than 70%, more preferably 30 to 60%, and more preferably 40 to 60%. % Is more preferable, and 40 to 55% is particularly preferable.
  • the hydrogenation rate relative to the ethylenic double bond (double bond in the conjugated diene compound unit) in the block copolymer is 80 to 100%. Yes, preferably 90% or more, more preferably 95% or more. When the hydrogenation rate is within the above range, a resin composition having good heat resistance and weather resistance can be obtained.
  • the method for controlling the hydrogenation rate within the above range is not particularly limited.
  • the amount of hydrogen consumed is within the desired hydrogenation rate range. The method of controlling is mentioned.
  • the hydrogenation rate can be measured by nuclear magnetic resonance (NMR). Specifically, it can be measured by the method described in Examples described later.
  • NMR nuclear magnetic resonance
  • the (f2) third modified hydrogenated block copolymer includes, for example, the above (f1) third hydrogenated block copolymer and an ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof (ester compound or acid).
  • the ⁇ , ⁇ -unsaturated carboxylic acid or derivative thereof is grafted or added to the (f1) third hydrogenated block copolymer in a proportion of 0.01 to 10% by mass.
  • the number average molecular weight (Mnf) of the component (f) is preferably 5,000 to 1,000,000, more preferably 100,000 or less.
  • Mnf is 1,000,000 or less
  • the role of (f) the third hydrogenated block copolymer resin in the resin composition is only (a) polypropylene resin, (b) polyphenylene ether resin and (c ) It tends to serve as an impact resistance imparting agent between two or more kinds of resins selected from the group consisting of hydrogenated block copolymer resins.
  • the number average molecular weight (Mnf) of the component (f) is It is preferably 5,000 to 1,000,000, more preferably 100,000 or less.
  • the method of controlling the number average molecular weight (Mnf) of the component (f) within the above range is not particularly limited, and examples thereof include a method of adjusting the amount of catalyst in the polymerization step of the component (f).
  • the number average molecular weight (Mnf) of the component (f) can be measured under the following conditions using Showa Denko Co., Ltd. Gel Permeation Chromatography System 21.
  • a column in which one KG manufactured by Showa Denko KK, one K-800RL and one K-800R were connected in series was used as the column, and the column temperature was 40 ° C.
  • the solvent is chloroform
  • the solvent flow rate is 10 mL / min
  • the sample concentration is 1 g of hydrogenated block copolymer / 1 liter of chloroform solution.
  • a calibration curve is prepared using standard polystyrene (the molecular weight of standard polystyrene is 3650000, 217000, 1090000, 681000, 204000, 52000, 30200, 13800, 3360, 1300, 550). Further, the UV (ultraviolet) wavelength of the detection unit is measured by setting both standard polystyrene and hydrogenated block copolymer to 254 nm.
  • (MnfA) (Mnf) ⁇ the proportion of the amount of bound vinyl aromatic compound ⁇ 3 Can be obtained.
  • the measurement is performed without depending on the above calculation formula. It may be calculated from the ratio of the block structure A based on the number average molecular weight (Mnf) of the component (f).
  • the number average molecular weight (MnfA) of the polymer block A forming the component (f) is preferably 4,000 to 8,000, more preferably 4,500 to 7,000.
  • the third hydrogenated block copolymer resin having a number average molecular weight (MnfA) of the polymer block A mainly composed of a vinyl aromatic compound of 4,000 to 8,000 has good impact resistance. It has a function of imparting properties, and can give a great advantage to the impact resistance of the resulting resin composition.
  • the method of controlling the number average molecular weight (MnfA) within the above range is not particularly limited, and examples thereof include a method of adjusting by the amount of the polymerization initiator.
  • the content of the vinyl aromatic compound unit (hydrogenated block copolymer-derived structural unit derived from the vinyl aromatic compound) in the component (f) is 10% by mass or more and less than 30% by mass, preferably 12 to 25%. % By mass, more preferably 13 to 22% by mass.
  • the content of the vinyl aromatic compound unit in the component (f) is 10% by mass or more, the mechanical strength of the resin composition tends to be improved, and when it is less than 30% by mass, the heat resistance and impact resistance are increased. There exists a tendency to obtain the resin composition which is excellent in balance with property.
  • the resin composition of the present embodiment preferably has a matrix phase containing the component (a) and a dispersed phase containing the component (b). Such a morphology can be confirmed by a transmission electron microscope.
  • the matrix phase may be composed of component (a) alone.
  • the dispersed phase may be the component (b) alone, or may be composed of, for example, the component (b), the component (c), the component (d), and / or the component (e).
  • the resin composition of the present embodiment includes a matrix phase (component (a)) and a dispersed phase (component (b) alone, or component (b), component (c), component (d) and / or (E) the dispersed particles constituting the component and the like).
  • the component (c), the component (d) and / or the component (e) are not only included in the dispersed phase, but are also included in the matrix phase to the extent that the effects of the present embodiment are not impaired. It may be.
  • the component (c), the component (d) and / or the component (e) contained in the matrix phase and / or the dispersed phase are further impact resistant. It is presumed that a dispersion state effective for improving the property can be taken and the effect of the present embodiment is further improved (however, the operation of the present embodiment is not limited to this).
  • a mixture of (b) a polyphenylene ether resin and at least one selected from the group consisting of polystyrene, syndiotactic polystyrene, and high impact polystyrene can also be used suitably.
  • at least one selected from the group consisting of polystyrene, syndiotactic polystyrene and high-impact polystyrene is preferably 400 parts by mass or less, more preferably 100 parts by mass of (b) polyphenylene ether resin.
  • additional components may be added as necessary within the range not impairing the effects of the present embodiment.
  • additional components include, but are not limited to, vinyl aromatic compounds-conjugated diene compound block copolymers, vinyl aromatics not corresponding to components (c), (e), and (f).
  • the resin composition according to the present embodiment has a ratio ( ⁇ 50 ° C. tan ⁇ /) of a loss tangent ( ⁇ 50 ° C. tan ⁇ ) at ⁇ 50 ° C. obtained by the following measurement method to a loss tangent at 0 ° C. (0 ° C. tan ⁇ ).
  • 0 ° C. tan ⁇ ) is preferably 0.39 or more, more preferably 0.41 or more, and further preferably 0.42 or more.
  • the ratio ( ⁇ 50 ° C. tan ⁇ / 0 ° C. tan ⁇ ) is preferably as high as possible, but the upper limit is, for example, 1.50.
  • the ratio ( ⁇ 50 ° C. tan ⁇ / 0 ° C. tan ⁇ ) is preferably as high as possible, but the upper limit is, for example, 1.50.
  • a loss tangent of ⁇ 45 ° C. ( ⁇ 45 ° C. tan ⁇ ) obtained by the following measurement method and a loss tangent of 0 ° C. (0 ° C. tan ⁇ ) ) ( ⁇ 45 ° C. tan ⁇ / 0 ° C. tan ⁇ ) is preferably 0.41 or more, more preferably 0.45 or more, and further preferably 0.50 or more.
  • the ratio ( ⁇ 45 ° C. tan ⁇ / 0 ° C. tan ⁇ ) is preferably as high as possible, but the upper limit is, for example, 1.50.
  • the ratio ( ⁇ 45 ° C. tan ⁇ / 0 ° C. tan ⁇ ) is preferably as high as possible, but the upper limit is, for example, 1.50.
  • the resin composition in which the ratio ( ⁇ 45 ° C. tan ⁇ / 0 ° C. tan ⁇ ) is within the above range includes, for example, (a) a polypropylene-based resin and (b) a polyphenylene ether-based resin, as described above. It can be obtained by adding block copolymer resins (c) and (e).
  • the resin composition of the present embodiment can be obtained, for example, by melt-kneading a raw material containing the components (a) to (c) described above and the components (d) and / or (e).
  • the melt kneader is not particularly limited, and a known kneader can be used.
  • a hot melt kneader is preferable.
  • the ZSK series manufactured by Coperion the TEM series manufactured by Toshiba Machine Co., Ltd., the TEX series manufactured by Nippon Steel Works, Ltd., and the like can be used.
  • the L / D (barrel effective length / barrel inner diameter) of the extruder is preferably in the range of 20 to 75, more preferably in the range of 30 to 60.
  • the extruder is provided with a first raw material supply port on the upstream side with respect to the flow direction of the raw material, a first vacuum vent on the downstream side, a second raw material supply port on the downstream side, and a second vacuum vent on the downstream side.
  • An extruder having a first raw material supply port upstream, a first vacuum vent downstream thereof, a second and third raw material supply ports downstream thereof, and a second vacuum vent downstream thereof; preferable.
  • a kneading section is provided upstream of the first vacuum vent, a kneading section is provided between the first vacuum vent and the second raw material supply port, and the second raw material supply port and the second vacuum vent are further connected.
  • Extruder with a kneading section in between, a kneading section upstream of the first vacuum vent, a kneading section between the first vacuum vent and the second raw material supply port, and a second raw material supply More preferred is an extruder in which a kneading section is provided between the mouth and the third raw material supply port, and a kneading section is provided between the second raw material supply port and the second vacuum vent.
  • the raw material supply method to a 2nd and 3rd raw material supply port is not specifically limited, Rather than the mere addition supply from the open port of the 2nd and 3rd raw material supply port of an extruder, it is from an extruder side open port. It is more stable and preferable to supply using a forced side feeder.
  • a twin screw extruder having a plurality of feed ports is used as a method of melt-kneading the raw material containing the components (a) to (c) and the components (d) and / or (e) and the following (1- The method 1 including the steps 1) and (1-2) is preferred.
  • (1-1) the total amount of the component (b), the part or the total amount of the component (a), the part or the total amount of the component (c), and the part of the component (d) and / or (e) or The step of melt-kneading the whole amount (however, at least one component selected from the group consisting of the component (a), the component (c), the component (d) and / or the component (e)) is used only partially. ).
  • a twin screw extruder having a plurality of feed ports is used as a method of melt kneading a raw material containing the components (a) to (c) and the components (d) and / or (e).
  • the method 2 including the steps -1) to (2-3) is more preferable.
  • a twin screw extruder having a plurality of feed ports is used as a method of melt kneading a raw material containing the components (a) to (c) and the components (d) and / or (e).
  • the method 3 including the steps -1) to (3-3) is more preferable.
  • (3-1) A step of melt-kneading the total amount of component (b), a part or all of component (a), and a part or all of component (c).
  • the melt-kneading temperature and the screw rotation speed are not particularly limited, but can usually be appropriately selected from a melt-kneading temperature of 200 to 370 ° C. and a screw rotation speed of 100 to 1200 rpm.
  • the method of adding these components is not particularly limited, but the (e) and (f) components are the second raw material supply port and / or It is preferable to supply from the third raw material supply port.
  • the molded body of the present embodiment includes the above-described resin composition.
  • the molded body of the present embodiment can be obtained, for example, by molding the above-described resin composition.
  • the molding method is not particularly limited, and includes various conventionally known methods such as injection molding, extrusion molding, extrusion profile forming, and hollow molding.
  • the molded body of the present embodiment obtained by such a molding method can be used as a molded product of various parts, a sheet, or a film.
  • These various parts are not particularly limited, but include, for example, automobile parts. Specifically, bumpers, fenders, door panels, various moldings, emblems, engine hoods, wheel caps, roofs, spoilers, various aero parts, etc. Suitable for exterior parts and interior parts such as instrument panels, console boxes and trims.
  • the molded body of the present embodiment can be suitably used as an interior / exterior part of an electric device.
  • various computers and peripheral devices thereof, other OA devices, televisions, videos, various disc players, etc. Examples include cabinets, chassis, refrigerators, air conditioners, and liquid crystal projectors.
  • it is suitable also for the electric wire and cable obtained by coat
  • the molded body of the present embodiment is suitable for parts such as various pump casings and boiler casings in industrial parts.
  • the number average molecular weight of each component was measured by gel permeation chromatography (GPC) (mobile phase: chloroform, standard substance: polystyrene). Specifically, it measured on condition of the following using the gel permeation chromatography System21 by Showa Denko KK. In this measurement, a column in which one KG manufactured by Showa Denko KK, one K-800RL and one K-800R were connected in series was used as the column, and the column temperature was 40 ° C. The solvent was chloroform, the solvent flow rate was 10 mL / min, and the sample concentration was 1 g of hydrogenated block copolymer / 1 liter of chloroform solution.
  • GPC gel permeation chromatography
  • calibration curves were prepared using standard polystyrene (the molecular weight of standard polystyrene is 3650000, 217000, 1090000, 681000, 204000, 52000, 30200, 13800, 3360, 1300, 550). Further, the UV (ultraviolet) wavelength of the detection part was measured by setting both standard polystyrene and hydrogenated block copolymer to 254 nm.
  • the total amount of vinyl bonds in the conjugated diene compound unit in the hydrogenated block copolymer resin (the total ratio of 1,2-vinyl bonds and 3,4-vinyl bonds to the total bonds) is the value of the hydrogenated block copolymer resin.
  • the block copolymer before hydrogenation was measured with an infrared spectrophotometer (manufactured by JASCO Corporation, FT / IR-230) and calculated by the Hampton method.
  • the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is determined by nuclear magnetic resonance (NMR) of the hydrogenated block copolymer resin (device name: DPX-400 BRUKER) Manufactured).
  • MFR Melt flow rate
  • the MFR of the component (d) was measured under conditions of 190 ° C. and a load of 2.16 kg in accordance with ASTM D-1238.
  • Component (a) (polypropylene resin)
  • the following components (a-1) and (a-2) were used as the component (a).
  • (A-1) Propylene homopolymer (melting point: 167 ° C., MFR: 0.4 g / 10 min)
  • (A-2) Propylene homopolymer (melting point: 165 ° C., MFR: 6.0 g / 10 min)
  • Component (b) (polyphenylene ether resin) 2,6-Xylenol was oxidatively polymerized to obtain a polyphenylene ether homopolymer. The obtained polyphenylene ether homopolymer was used as component (b). The reduced viscosity of the polyphenylene ether homopolymer was 0.42.
  • Component (c) (hydrogenated block copolymer resin)
  • the following components (c-1) to (c-3) were used as the component (c) and the like.
  • (C-1) A hydrogenated block copolymer having a structure of BABA type of hydrogenated polybutadiene-polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) was synthesized by a conventional method. The characteristics of the hydrogenated block copolymer (c-1) are shown below.
  • Bonded styrene content 43% by mass Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 75%
  • Number average molecular weight (Mnc) 98,000 Number average molecular weight (MncA) of polystyrene block (1): 20,000 Number average molecular weight (MncA) of polystyrene block (2): 22,000 Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 99.9%
  • component (c-2) A hydrogenated block copolymer (Tuftec H1043 manufactured by Asahi Kasei Chemicals Corporation) was used as component (c-2). The amount of bound styrene of component (c-2) was 67% by mass. The total vinyl bond content in the conjugated diene compound unit in the hydrogenated block copolymer was 40%.
  • component (c-3) A hydrogenated block copolymer (Tuftec H1051 manufactured by Asahi Kasei Chemicals Corporation) was used as component (c-3). The amount of bound styrene of component (c-3) was 42% by mass. The total vinyl bond content in the conjugated diene compound unit in the hydrogenated block copolymer was 36%.
  • Component (d) (ethylene- ⁇ -olefin copolymer rubber)
  • component (d-1) to (d-4) were used as the component (d) and the like.
  • Ethylene-1-octene copolymer rubber was synthesized by a conventional method. The characteristics of the ethylene-1-octene copolymer rubber (d-1) are shown below. Shore A hardness: 50, MFR: 1.0, density: 0.857
  • Ethylene-1-octene copolymer rubber was synthesized by a conventional method. The characteristics of the ethylene-1-octene copolymer rubber (d-2) are shown below. Shore A hardness: 66, MFR: 0.5, density: 0.863
  • Ethylene-1-octene copolymer rubber was synthesized by a conventional method. The characteristics of the ethylene-1-octene copolymer rubber (d-3) are shown below. Shore A hardness: 75, MFR: 1.0, density: 0.870
  • Ethylene-1-octene copolymer rubber was synthesized by a conventional method. The characteristics of the ethylene-1-octene copolymer rubber (d-4) are shown below. Shore A hardness: 75, MFR: 5.0, density: 0.870
  • Component (e) (second hydrogenated block copolymer resin)
  • component (e) The following components (e-1) to (e-5) were used as the component (e).
  • (E-1) A hydrogenated block copolymer having an ABA type structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) was synthesized by a conventional method. The characteristics of the hydrogenated block copolymer resin (e-1) are shown below.
  • Bonded styrene content 30% by mass Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 41% Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 43% Number average molecular weight (Mne): 72,000 Number average molecular weight (MneA) of polystyrene block (1): 10,700 Number average molecular weight (MneA) of polystyrene block (2): 11,000
  • Bonded styrene content 66% by mass Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 36% Hydrogenation rate of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 57% Number average molecular weight (Mne): 61,000 Number average molecular weight (MneA) of polystyrene block (1): 19,000 Number average molecular weight (MneA) of polystyrene block (2): 21,000
  • Bonded styrene content 64% by mass Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 75% Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 68% Number average molecular weight (Mne): 99,000 Number average molecular weight (MneA) of polystyrene block (1): 32,000 Number average molecular weight (MneA) of polystyrene block (2): 31,000
  • (E-4) A block copolymer having an ABA type structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) was synthesized by a conventional method. The characteristics of the block copolymer resin (e-4) are shown below.
  • Bonded styrene content 42% Total vinyl bond content in polybutadiene units (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 9% Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 10% Number average molecular weight (Mne): 110,000 Number average molecular weight (MneA) of polystyrene block (1): 22,000 Number average molecular weight (MneA) of polystyrene block (2): 24,000
  • (E-5) A hydrogenated block copolymer having a structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) ABA type was synthesized by a conventional method. The characteristics of the block copolymer resin (e-5) are shown below.
  • Bonded styrene content 30% by mass Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 40% Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 45% Number average molecular weight (Mnf): 72,000 Number average molecular weight (MneA) of polystyrene block (1): 10,700 Number average molecular weight (MneA) of polystyrene block (2): 11,000
  • Component (f) (third hydrogenated block copolymer resin)
  • a hydrogenated block copolymer having an ABAB type structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) -hydrogenated polybutadiene was synthesized by a conventional method. The synthesized hydrogenated block copolymer was used as the component (f). The characteristics of the hydrogenated block copolymer are shown below.
  • Bonded styrene content 17% by mass Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 50% Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 99.9% Number average molecular weight (Mnf): 65,000 Number average molecular weight (MnfA) of polystyrene block (1): 5,300 Number average molecular weight of polystyrene block (2): (MnfA) 5,700
  • (H) Component (Other block copolymer resin) (H-1) A block copolymer having an ABA type structure of polystyrene (1) -polybutadiene-polystyrene (2) was synthesized by a conventional method. The properties of the block copolymer (h-1) are shown below.
  • Bonded styrene content 30% by mass Total vinyl bond content in polybutadiene units (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 12% Number average molecular weight (Mnh): 91,000 Number average molecular weight (MnhA) of polystyrene block (1): 13,300 Number average molecular weight (MnhA) of polystyrene block (2): 14,000
  • (H-2) A block copolymer having an ABA type structure of polystyrene (1) -polybutadiene-polystyrene (2) was synthesized by a conventional method. The properties of the block copolymer (h-2) are shown below. Bonded styrene content: 30% Total vinyl bond content in polybutadiene unit (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 11% Number average molecular weight (Mnh): 136,000 Number average molecular weight (MnhA) of polystyrene block (1): 20,800 Number average molecular weight (MnhA) of polystyrene block (2): 20,000
  • Examples 1 to 20 and Comparative Examples 1 to 11 Using a twin screw extruder (ZSK-25, manufactured by Coperion Co., Ltd.) having a first raw material supply port, a second raw material supply port (located substantially at the center of the extruder) and a third raw material supply port, the above (a) to ( Each component such as f) was supplied to the first to third raw material supply ports of the extruder with the compositions shown in Tables 1 and 2 and melt-kneaded to obtain a resin composition as pellets.
  • the twin screw extruder was set to a barrel temperature of 270 to 320 ° C. and a screw rotation speed of 300 rpm.
  • Each physical property of the obtained resin composition was evaluated as follows. The measurement results are shown in Tables 1 and 2.
  • the resin composition pellets obtained in the examples and comparative examples are supplied to a screw in-line type injection molding machine set at 240 to 280 ° C. and injection molded at a mold temperature of 60 ° C. for tensile elongation measurement.
  • a test piece was prepared. The prepared test piece was allowed to stand in an environment of 80 ° C. for 24 hours using a gear oven and subjected to a heat history treatment. About the test piece which performed the heat history process, tensile elongation was measured according to ISO527. At this time, the standard deviation was calculated from the tensile elongation values of 10 test pieces. A smaller standard deviation indicates a more stable morphology.
  • Charpy impact strength measurement was performed by supplying pellets of the resin compositions obtained in Examples and Comparative Examples to a screw in-line type injection molding machine set at 240 to 280 ° C. and injection molding at a mold temperature of 60 ° C. For test piece. The obtained test piece was left to stand in an environment of 80 ° C. for 24 hours using a gear oven to perform a heat history treatment. The Charpy impact strength of the test piece after the heat history treatment was measured in an environment of 23 ° C. and ⁇ 40 ° C. according to ISO 179.
  • the resin composition and molded product of the present invention have industrial applicability as automotive parts, heat-resistant parts, electronic device parts, industrial parts, and coating materials.

Abstract

A resin composition according to the present invention contains (a) a polypropylene resin, (b) a polyphenylene ether resin and (c) a first hydrogenated block copolymer resin, and additionally contains (d) an ethylene-(α-olefin) copolymer rubber and/or (e) a second hydrogenated block copolymer resin.

Description

樹脂組成物及びその成形体Resin composition and molded body thereof
 本発明は、樹脂組成物及びその成形体に関する。 The present invention relates to a resin composition and a molded body thereof.
 ポリプロピレン樹脂は、成形加工性、耐水性、耐油性、耐酸性及び耐アルカリ性などに優れた特性を有している。しかしながら、ポリプロピレン樹脂は、耐熱性、剛性及び耐衝撃性に劣る欠点を有するため、ポリフェニレンエーテル樹脂を配合した組成物とすることが知られている。該組成物においては、ポリプロピレン樹脂がマトリックス相を形成し、ポリフェニレンエーテル樹脂が分散相を形成することで、耐熱性及び剛性が改良された樹脂組成物となることが知られている。 Polypropylene resin has excellent properties such as moldability, water resistance, oil resistance, acid resistance and alkali resistance. However, since a polypropylene resin has defects that are inferior in heat resistance, rigidity, and impact resistance, it is known to form a composition containing a polyphenylene ether resin. In the composition, it is known that a polypropylene resin forms a matrix phase and a polyphenylene ether resin forms a dispersed phase, thereby providing a resin composition with improved heat resistance and rigidity.
 特許文献1及び2にはポリフェニレンエーテル樹脂とポリプロピレン樹脂との組成物が提案されている。また、特許文献1、3及び4には、ポリフェニレンエーテル樹脂とポリプロピレン樹脂と水添ブロック共重合体との組成物が提案されており、該水添ブロック共重合体は、ポリフェニレンエーテル樹脂とポリプロピレン樹脂との混和剤として作用し、さらには耐衝撃性を付与する成分であることが開示されている。 Patent Documents 1 and 2 propose a composition of a polyphenylene ether resin and a polypropylene resin. Patent Documents 1, 3, and 4 propose a composition of a polyphenylene ether resin, a polypropylene resin, and a hydrogenated block copolymer. The hydrogenated block copolymer includes a polyphenylene ether resin and a polypropylene resin. It is disclosed that it is a component that acts as an admixture with and further imparts impact resistance.
 上記特許文献1、3及び4に記載の発明において使用されている水添ブロック共重合体に着目すると、以下のとおり記載されている。 Focusing on the hydrogenated block copolymer used in the inventions described in Patent Documents 1, 3, and 4, the following is described.
 特許文献1には、ビニル芳香族化合物を主体とする重合体ブロックAと共役ジエン化合物の全結合量に対するビニル結合量の割合が30~95%である共役ジエン化合物を主体とする重合体ブロックBとからなるブロック共重合体を水素添加してなる水添ブロック共重合体が記載されている。 Patent Document 1 discloses a polymer block B mainly composed of a conjugated diene compound in which the ratio of the vinyl bond amount to the total bond amount of the polymer block A mainly composed of a vinyl aromatic compound and the conjugated diene compound is 30 to 95%. A hydrogenated block copolymer obtained by hydrogenating a block copolymer consisting of is described.
 特許文献3には、ビニル芳香族化合物を主体とする重合体ブロックAと共役ジエン化合物の全結合量に対するビニル結合量の割合が65~75%である共役ジエン化合物を主体とする重合体ブロックBとからなるブロック共重合体を65~80%未満水素添加してなる水添ブロック共重合体が記載されている。 Patent Document 3 discloses a polymer block B mainly composed of a conjugated diene compound in which the ratio of the vinyl bond amount to the total bond amount of the polymer block A mainly composed of a vinyl aromatic compound and the conjugated diene compound is 65 to 75%. A hydrogenated block copolymer obtained by hydrogenating 65 to less than 80% of a block copolymer consisting of is described.
 特許文献4には、スチレンを主体とする重合体ブロックAとブタジエンの全結合量に対するビニル結合量の割合が70~90%であるブタジエンを主体とする重合体ブロックBとからなるブロック共重合体を水素添加してなる水添ブロック共重合体であって、結合したスチレン量が15~50質量%であり、数平均分子量が100000以下、かつ重合体ブロックAの数平均分子量が8000以上の水添ブロック共重合体が記載されている。 Patent Document 4 discloses a block copolymer comprising a polymer block A mainly composed of styrene and a polymer block B mainly composed of butadiene having a vinyl bond amount ratio of 70 to 90% with respect to the total bond amount of butadiene. A hydrogenated block copolymer obtained by hydrogenation of water having a bound styrene content of 15 to 50% by mass, a number average molecular weight of 100,000 or less, and a polymer block A having a number average molecular weight of 8000 or more. A block copolymer is described.
国際公開第97/01600号International Publication No. 97/01600 特開2001-270968号公報Japanese Patent Laid-Open No. 2001-270968 特開平09-12800号公報Japanese Patent Application Laid-Open No. 09-12800 特開2010-229348号公報JP 2010-229348 A
 上述の特許文献1~4に開示されているポリフェニレンエーテル樹脂とポリプロピレン樹脂とを含む組成物は、古典的なポリフェニレンエーテル樹脂組成物と比較すると、飛躍的に耐溶剤性が改良され、耐熱性に優れるものの、引張伸び、成形片の反り、及び低温での耐衝撃性の点で改良の余地がある。 The composition containing the polyphenylene ether resin and the polypropylene resin disclosed in the above-mentioned Patent Documents 1 to 4 has drastically improved solvent resistance and improved heat resistance compared to the classic polyphenylene ether resin composition. Although excellent, there is room for improvement in terms of tensile elongation, warpage of molded pieces, and impact resistance at low temperatures.
 そこで、本発明は、ポリプロピレン系樹脂とポリフェニレンエーテル系樹脂とを含む樹脂組成物であって、引張伸び、及び低温での耐衝撃性により一層優れ、成形片の反りの小さい樹脂組成物及びその成形体を提供することを目的とする。 Therefore, the present invention is a resin composition comprising a polypropylene resin and a polyphenylene ether resin, which is more excellent in tensile elongation and impact resistance at low temperatures, and a resin composition having a small warping of a molded piece and its molding The purpose is to provide a body.
 本発明者らは、鋭意検討を重ねた結果、ポリプロピレン系樹脂とポリフェニレンエーテル系樹脂とを含む樹脂組成物において、特定の第一の水添ブロック共重合体系樹脂と、エチレン-α-オレフィン共重合体ゴム及び/又は特定の第二の水添ブロック共重合体系樹脂とを含有させることにより、引張伸び、及び低温衝撃性により一層優れ、成形片の反りの小さい樹脂組成物が得られることを見出した。 As a result of intensive studies, the present inventors have found that in a resin composition containing a polypropylene resin and a polyphenylene ether resin, a specific first hydrogenated block copolymer resin, an ethylene-α-olefin copolymer It has been found that a resin composition can be obtained that is more excellent in tensile elongation and low temperature impact property and has a small warp of a molded piece by containing a coalesced rubber and / or a specific second hydrogenated block copolymer resin. It was.
 すなわち、本発明は以下の通りである。 That is, the present invention is as follows.
 [1]
 (a)ポリプロピレン系樹脂、(b)ポリフェニレンエーテル系樹脂、(c)第一の水添ブロック共重合体系樹脂、を含み、更に(d)エチレン-α-オレフィン共重合体ゴム及び/又は(e)第二の水添ブロック共重合体系樹脂を含み、
 前記(c)及び(e)成分が、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとからなるブロック共重合体を水素添加してなる水添ブロック共重合体及び/又は該水添ブロック共重合体の変性物であり、
 前記(c)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が45~90%であり、
 前記(c)成分が、ビニル芳香族化合物単位を30~50質量%含み、
 前記(e)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が25%以上60%未満であり、
 前記(c)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が80~100%であり、
 前記(e)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が10%以上80%未満である、
樹脂組成物。
 [2]
 少なくとも前記(d)成分を含む、前記[1]に記載の樹脂組成物。
 [3]
 前記(d)成分のメルトフローレート(MFR:ASTM D-1238に準拠し、190℃、2.16kgの荷重で測定)が、0.1~4.5g/10分である、前記[1]又は[2]に記載の樹脂組成物。
 [4]
 前記(d)成分のショアA硬度(ASTM D-2240準拠)が、75以下である、前記[1]~[3]のいずれか1項に記載の樹脂組成物。
 [5]
 前記(a)及び(b)成分の合計含有量100質量部に対して、前記(c)及び(d)成分の合計含有量が1~50質量部であり、
 前記(a)及び(b)成分の質量比率((a):(b))が、25:75~99:1であり、
 前記(c)及び(d)成分の質量比率((c):(d))が、1:99~99:1である、前記[2]に記載の樹脂組成物。
 [6]
 少なくとも前記(e)成分を含み、
 前記(a)及び(b)成分の合計含有量100質量部に対して、前記(c)及び(e)成分の合計含有量が1~50質量部であり、
 前記(a)及び(b)成分の質量比率((a):(b))が、25:75~99:1であり、
 前記(c)及び(e)成分の質量比率((c):(e))が、1:99~99:1である、前記[1]~[5]のいずれか1項に記載の樹脂組成物。
 [7]
 前記(c)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が70~90%である、前記[1]~[6]のいずれか1項に記載の樹脂組成物。
 [8]
 前記(e)成分が、ビニル芳香族化合物単位を20~70質量%含む、前記[1]~[7]のいずれか1項に記載の樹脂組成物。
 [9]
 前記(e)成分を形成する重合体ブロックAの数平均分子量(MndA)が、5,000~25,000である、前記[1]~[8]のいずれか1項に記載の樹脂組成物。
 [10]
 (f)第三の水添ブロック共重合体系樹脂をさらに含み、
 前記(f)成分の含有量が、前記(a)及び(b)成分の合計含有量100質量部に対して、1~15質量部であり、
 前記(f)成分が、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとからなるブロック共重合体を水素添加してなる水添ブロック共重合体及び/又は該水添ブロック共重合体の変性物であり、
 前記(f)成分が、ビニル芳香族化合物単位を10質量%以上30質量%未満含み、
 前記(f)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が25%以上70%未満であり、
 前記(f)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が80~100%であり、
 前記(f)成分を形成する重合体ブロックAの数平均分子量(MneA)が、4,000~8,000である、前記[1]~[9]のいずれか1項に記載の樹脂組成物。
 [11]
 前記(d)成分及び(e)成分を含む、前記[1]~[10]のいずれか1項に記載の樹脂組成物。
 [12]
 前記(d)成分が、エチレンと1-オクテンとの共重合体ゴムである、前記[1]~[11]のいずれか1項に記載の樹脂組成物。
 [13]
 前記(a)成分が、ホモポリプロピレン及び/又はブロックポリプロピレンであり、
 前記(a)成分のメルトフローレート(MFR:JIS K7210に準拠し、230℃、2.16kgの荷重で測定)が、0.1~100g/10分である、前記[1]~[12]のいずれか1項に記載の樹脂組成物。
 [14]
 前記(a)成分を含むマトリックス相と、前記(b)成分を含む分散相とを有する、前記[1]~[13]のいずれか1項に記載の樹脂組成物。
 [15]
 (a)ポリプロピレン系樹脂、(b)ポリフェニレンエーテル系樹脂、(c)水添ブロック共重合体系樹脂を含有し、
 前記(c)成分が、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとからなるブロック共重合体を水素添加してなる水添ブロック共重合体及び/又は該水添ブロック共重合体の変性物であり、
 下記測定方法により得られる-50℃の損失正接(-50℃tanδ)と、0℃の損失正接(0℃tanδ)との比(-50℃tanδ/0℃tanδ)が0.39以上である、樹脂組成物;
<損失正接(tanδ)の測定>
樹脂組成物から得られるISO試験片について、粘弾性測定機を用いて、引張りモード、振動周波数:10Hz、静的負荷歪み:0.2%、動的負荷歪み:0.1%、接触荷重:0.5N、昇温速度:3℃/分、温度範囲:-100℃~160℃の温度掃引モードにおいて測定した際の-50℃及び0℃における損失正接(tanδ)。
 [16]
 前記[1]~[15]のいずれか1項に記載の樹脂組成物を含む成形体。
[1]
(A) a polypropylene resin, (b) a polyphenylene ether resin, (c) a first hydrogenated block copolymer resin, and (d) an ethylene-α-olefin copolymer rubber and / or (e ) Including a second hydrogenated block copolymer resin;
The block copolymer comprising the components (c) and (e) comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer obtained by hydrogenating a polymer and / or a modified product of the hydrogenated block copolymer,
In the total bond of the conjugated diene compound unit in the component (c), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 45 to 90%,
The component (c) contains 30 to 50% by mass of vinyl aromatic compound units,
In the total bond of the conjugated diene compound unit in the component (e), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 60%,
In the component (c), the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%,
In the component (e), the hydrogenation rate with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) of the block copolymer is 10% or more and less than 80%.
Resin composition.
[2]
The resin composition according to [1], including at least the component (d).
[3]
[1] The melt flow rate of the component (d) (MFR: measured in accordance with ASTM D-1238 at 190 ° C. under a load of 2.16 kg) is 0.1 to 4.5 g / 10 min. Or the resin composition as described in [2].
[4]
The resin composition according to any one of [1] to [3], wherein the component (d) has a Shore A hardness (according to ASTM D-2240) of 75 or less.
[5]
The total content of the components (c) and (d) is 1 to 50 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
The mass ratio of the components (a) and (b) ((a) :( b)) is 25:75 to 99: 1,
The resin composition according to the above [2], wherein the mass ratio ((c) :( d)) of the components (c) and (d) is 1:99 to 99: 1.
[6]
Including at least the component (e),
The total content of the components (c) and (e) is 1 to 50 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
The mass ratio of the components (a) and (b) ((a) :( b)) is 25:75 to 99: 1,
The resin according to any one of [1] to [5], wherein the mass ratio of the components (c) and (e) ((c) :( e)) is 1:99 to 99: 1. Composition.
[7]
Any of [1] to [6] above, wherein the total proportion of 1,2-vinyl bonds and 3,4-vinyl bonds is 70 to 90% in all bonds of the conjugated diene compound unit in component (c). 2. The resin composition according to item 1.
[8]
The resin composition according to any one of [1] to [7], wherein the component (e) contains 20 to 70% by mass of a vinyl aromatic compound unit.
[9]
The resin composition according to any one of [1] to [8], wherein the polymer block A forming the component (e) has a number average molecular weight (MndA) of 5,000 to 25,000. .
[10]
(F) further comprising a third hydrogenated block copolymer resin;
The content of the component (f) is 1 to 15 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
The component (f) is a hydrogenated block copolymer comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer and / or a modified product of the hydrogenated block copolymer,
The component (f) contains 10% by mass or more and less than 30% by mass of a vinyl aromatic compound unit,
In the total bond of the conjugated diene compound unit in the component (f), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 70%,
In the component (f), the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%,
The resin composition according to any one of [1] to [9], wherein the polymer block A forming the component (f) has a number average molecular weight (MneA) of 4,000 to 8,000. .
[11]
The resin composition according to any one of [1] to [10], comprising the component (d) and the component (e).
[12]
The resin composition according to any one of [1] to [11], wherein the component (d) is a copolymer rubber of ethylene and 1-octene.
[13]
The component (a) is homopolypropylene and / or block polypropylene,
[1] to [12], wherein the melt flow rate of the component (a) (MFR: measured at 230 ° C. under a load of 2.16 kg in accordance with JIS K7210) is 0.1 to 100 g / 10 min. The resin composition according to any one of the above.
[14]
The resin composition according to any one of [1] to [13], which has a matrix phase containing the component (a) and a dispersed phase containing the component (b).
[15]
(A) a polypropylene resin, (b) a polyphenylene ether resin, (c) a hydrogenated block copolymer resin,
The component (c) is a hydrogenated block copolymer comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer and / or a modified product of the hydrogenated block copolymer,
The ratio (−50 ° C. tan δ / 0 ° C. tan δ) of the loss tangent at −50 ° C. (−50 ° C. tan δ) obtained by the following measurement method to the loss tangent at 0 ° C. (0 ° C. tan δ) is 0.39 or more. A resin composition;
<Measurement of loss tangent (tan δ)>
About the ISO test piece obtained from a resin composition, using a viscoelasticity measuring machine, tension mode, vibration frequency: 10 Hz, static load strain: 0.2%, dynamic load strain: 0.1%, contact load: Loss tangent (tan δ) at −50 ° C. and 0 ° C. when measured in a temperature sweep mode of 0.5 N, heating rate: 3 ° C./min, temperature range: −100 ° C. to 160 ° C.
[16]
A molded article comprising the resin composition according to any one of [1] to [15].
 本発明によれば、引張伸び、及び低温衝撃性により一層優れ、成形片の反りの小さい樹脂組成物、及びこれを用いた成形体を得ることができる。 According to the present invention, it is possible to obtain a resin composition that is more excellent in tensile elongation and low-temperature impact properties and has a small warp of a molded piece, and a molded body using the same.
図1は、本願実施例における成形片の反りを測定する際の位置を表す概略図である。FIG. 1 is a schematic view showing a position when measuring warpage of a molded piece in the embodiment of the present application.
 以下、本発明を実施するための形態(以下、「本実施の形態」という。)について詳細に説明する。以下の本実施の形態は、本発明を説明するための例示であり、本発明をこの本実施の形態にのみ限定する趣旨ではない。そして、本発明は、その要旨の範囲内で適宜に変形して実施できる。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. The following embodiment is an exemplification for explaining the present invention, and is not intended to limit the present invention only to this embodiment. And this invention can be deform | transformed suitably and implemented within the range of the summary.
 ≪樹脂組成物≫
 本実施の形態の樹脂組成物は、
 (a)ポリプロピレン系樹脂、(b)ポリフェニレンエーテル系樹脂、(c)第一の水添ブロック共重合体系樹脂、を含み、更に(d)エチレン-α-オレフィン共重合体ゴム及び/又は(e)第二の水添ブロック共重合体系樹脂を含み、
 前記(c)及び(e)成分が、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとからなるブロック共重合体を水素添加してなる水添ブロック共重合体及び/又は該水添ブロック共重合体の変性物であり、
 前記(c)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が45~90%であり、
 前記(c)成分が、ビニル芳香族化合物単位を30~50質量%含み、
 前記(e)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が25%以上60%未満であり、
 前記(c)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が80~100%であり、
 前記(e)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が10%以上80%未満である。
 前記(d)成分のメルトフローレート(MFR:ASTM D-1238に準拠し、190℃、2.16kgの荷重で測定)は、0.1~4.5g/10分であることが好ましい。
 前記(d)成分のショアA硬度(ASTM D-2240準拠)は、75以下であることが好ましい。
≪Resin composition≫
The resin composition of the present embodiment is
(A) a polypropylene resin, (b) a polyphenylene ether resin, (c) a first hydrogenated block copolymer resin, and (d) an ethylene-α-olefin copolymer rubber and / or (e ) Including a second hydrogenated block copolymer resin;
The block copolymer comprising the components (c) and (e) comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer obtained by hydrogenating a polymer and / or a modified product of the hydrogenated block copolymer,
In the total bond of the conjugated diene compound unit in the component (c), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 45 to 90%,
The component (c) contains 30 to 50% by mass of vinyl aromatic compound units,
In the total bond of the conjugated diene compound unit in the component (e), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 60%,
In the component (c), the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%,
In the component (e), the hydrogenation rate of the block copolymer with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) is 10% or more and less than 80%.
The melt flow rate (MFR: measured in accordance with ASTM D-1238, at 190 ° C. under a load of 2.16 kg) of the component (d) is preferably 0.1 to 4.5 g / 10 minutes.
The component (d) preferably has a Shore A hardness (according to ASTM D-2240) of 75 or less.
 なお、本実施の形態において、上記(d)成分の特性は、(d)成分単独の場合の特性である。 In the present embodiment, the characteristic of the component (d) is a characteristic in the case of the component (d) alone.
 [(a)成分]
 本実施の形態に用いる(a)ポリプロピレン系樹脂(以下、「(a)成分」ともいう。)は、特に限定されないが、例えば、後述する(a1)ポリプロピレン樹脂と(a2)変性ポリプロピレン樹脂とが挙げられる。
[(A) component]
(A) Polypropylene resin (hereinafter, also referred to as “component (a)”) used in the present embodiment is not particularly limited. For example, (a1) polypropylene resin and (a2) modified polypropylene resin described later are used. Can be mentioned.
 <(a1)ポリプロピレン樹脂>
 (a1)ポリプロピレン樹脂とは、構成する単量体の50モル%以上がプロピレンである重合体をいい、それ以外は特に限定されない。例えば、結晶性プロピレンホモポリマー;重合の第一工程で得られる結晶性プロピレンホモポリマー部分と、重合の第二工程以降でプロピレン、エチレン及び/又は少なくとも1つの他のα-オレフィン(例えば、ブテン-1、ヘキセン-1等)を共重合して得られるプロピレン-α-オレフィンランダム共重合体部分とを有する、結晶性プロピレン-エチレンブロック共重合体等の結晶性プロピレン-α-オレフィンブロック共重合体が挙げられる。(a1)ポリプロピレン樹脂を構成する単量体においてプロピレンが占める割合は70モル%以上が好ましく、90モル%以上がより好ましい。これらの(a1)ポリプロピレン樹脂は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上を併用する場合の例としては、特に限定されないが、例えば、結晶性プロピレンホモポリマーと結晶性プロピレン-エチレンブロック共重合体(ただし、ショアA硬度75以下のものは除く。)との混合物が挙げられる。(a1)ポリプロピレン樹脂としては、ホモポリプロピレン及び/又はブロックポリプロピレンであることが好ましい。
<(A1) Polypropylene resin>
(A1) Polypropylene resin refers to a polymer in which 50 mol% or more of the constituent monomer is propylene, and the others are not particularly limited. For example, a crystalline propylene homopolymer; a crystalline propylene homopolymer portion obtained in the first step of polymerization, and propylene, ethylene and / or at least one other α-olefin (eg, butene- 1, propylene-α-olefin random copolymer portion obtained by copolymerizing hexene-1, etc.) and a crystalline propylene-α-olefin block copolymer such as a crystalline propylene-ethylene block copolymer Is mentioned. (A1) The proportion of propylene in the monomer constituting the polypropylene resin is preferably 70 mol% or more, more preferably 90 mol% or more. These (a1) polypropylene resins may be used individually by 1 type, and may use 2 or more types together. An example of using two or more types in combination is not particularly limited. For example, a crystalline propylene homopolymer and a crystalline propylene-ethylene block copolymer (except for those having a Shore A hardness of 75 or less). A mixture is mentioned. (A1) The polypropylene resin is preferably homopolypropylene and / or block polypropylene.
 かかる(a1)ポリプロピレン樹脂の製造方法は、特に限定されないが、例えば、三塩化チタン触媒、又は塩化マグネシウム等の担体に担持したハロゲン化チタン触媒等とアルキルアルミニウム化合物との存在下に、重合温度0~100℃の範囲で、重合圧力3~100気圧の範囲で、プロピレンを含む単量体を重合する方法が挙げられる。この際、得られる重合体の分子量を調整するために水素等の連鎖移動剤を添加してもよい。 The method for producing the (a1) polypropylene resin is not particularly limited. For example, the polymerization temperature is 0 in the presence of a titanium trichloride catalyst or a titanium halide catalyst supported on a carrier such as magnesium chloride and an alkylaluminum compound. Examples thereof include a method in which a monomer containing propylene is polymerized in a range of from -100 ° C. and a polymerization pressure of from 3 to 100 atm. At this time, a chain transfer agent such as hydrogen may be added to adjust the molecular weight of the resulting polymer.
 重合方法は特に限定されず、バッチ式、連続式いずれの方法でもよい。また、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の溶媒下での溶液重合;スラリー重合;無溶媒下モノマー中での塊状重合;ガス状モノマー中での気相重合方法等も適用できる。 The polymerization method is not particularly limited, and may be either batch type or continuous type. Further, solution polymerization in a solvent such as butane, pentane, hexane, heptane, octane, etc .; slurry polymerization; bulk polymerization in a monomer without solvent; gas phase polymerization method in a gaseous monomer, etc. can also be applied.
 さらに、得られる(a1)ポリプロピレン樹脂のアイソタクティシティと重合活性とを高めるため、上記重合触媒に触媒の第三成分として電子供与性化合物を内部ドナー成分又は外部ドナー成分として用いることができる。この電子供与性化合物の種類としては特に限定されず、公知のものを使用できる。例えば、ε-カプロラクトン、メタクリル酸メチル、安息香酸エチル、トルイル酸メチル等のエステル化合物;亜リン酸トリフェニル、亜リン酸トリブチル等の亜リン酸エステル;ヘキサメチルホスホルアミド等のリン酸誘導体;アルコキシエステル化合物、芳香族モノカルボン酸エステル、芳香族アルキルアルコキシシラン、脂肪族炭化水素アルコキシシラン、各種エーテル化合物、各種アルコール類及び/又は各種フェノール類等が挙げられる。 Furthermore, in order to enhance the isotacticity and polymerization activity of the obtained (a1) polypropylene resin, an electron donating compound can be used as an internal donor component or an external donor component as a third component of the catalyst in the polymerization catalyst. The type of the electron donating compound is not particularly limited, and known compounds can be used. For example, ester compounds such as ε-caprolactone, methyl methacrylate, ethyl benzoate and methyl toluate; phosphorous acid esters such as triphenyl phosphite and tributyl phosphite; phosphoric acid derivatives such as hexamethylphosphoramide; Examples include alkoxy ester compounds, aromatic monocarboxylic acid esters, aromatic alkyl alkoxy silanes, aliphatic hydrocarbon alkoxy silanes, various ether compounds, various alcohols, and / or various phenols.
 (a1)ポリプロピレン樹脂のメルトフローレート(MFR)(JIS K7210に準拠して、230℃、荷重2.16kgで測定した値)は、好ましくは0.1~100g/10分であり、より好ましくは0.1~80g/10分の範囲である。(a1)ポリプロピレン樹脂のMFRを上記範囲とすることによって、樹脂組成物の流動性や剛性のバランスが良好となる傾向にある。 (A1) The melt flow rate (MFR) of polypropylene resin (value measured at 230 ° C. under a load of 2.16 kg in accordance with JIS K7210) is preferably 0.1 to 100 g / 10 min, more preferably The range is 0.1 to 80 g / 10 minutes. (A1) By making MFR of a polypropylene resin into the said range, it exists in the tendency for the balance of the fluidity | liquidity and rigidity of a resin composition to become favorable.
 (a1)ポリプロピレン樹脂のMFRを上記範囲に制御する方法としては、特に限定されないが、例えば、モノマーに対する水素の供給量比を制御する方法が挙げられる。 (A1) The method of controlling the MFR of the polypropylene resin within the above range is not particularly limited, and examples thereof include a method of controlling the ratio of hydrogen supply to the monomer.
 <(a2)変性ポリプロピレン樹脂>
 (a2)変性ポリプロピレン樹脂とは、例えば、前記(a1)ポリプロピレン樹脂と、α、β-不飽和カルボン酸又はその誘導体とを、ラジカル発生剤の存在下又は非存在下に、溶融状態或いは溶液状態で30~350℃で反応させることによって得られる樹脂をいう。(a2)変性ポリプロピレン樹脂としては、特に限定されないが、例えば、前記(a1)ポリプロピレン樹脂に、α、β-不飽和カルボン酸又はその誘導体が0.01~10質量%グラフト化又は付加した変性ポリプロピレン樹脂が挙げられる。前記α、β-不飽和カルボン酸又はその誘導体の例としては、特に限定されないが、例えば、無水マレイン酸、N-フェニルマレイミドが挙げられる。
<(A2) Modified polypropylene resin>
(A2) Modified polypropylene resin refers to, for example, the above (a1) polypropylene resin and an α, β-unsaturated carboxylic acid or a derivative thereof in a molten or solution state in the presence or absence of a radical generator. And a resin obtained by reacting at 30 to 350 ° C. The (a2) modified polypropylene resin is not particularly limited. For example, a modified polypropylene obtained by grafting or adding 0.01 to 10% by mass of an α, β-unsaturated carboxylic acid or a derivative thereof to the (a1) polypropylene resin. Resin. Examples of the α, β-unsaturated carboxylic acid or derivative thereof are not particularly limited, and examples thereof include maleic anhydride and N-phenylmaleimide.
 (a1)ポリプロピレン樹脂と(a2)変性ポリプロピレン樹脂とを併用する場合、(a)ポリプロピレン系樹脂中の(a1)ポリプロピレン樹脂と(a2)変性ポリプロピレン樹脂との混合割合は特に制限されず任意に決定できる。 When (a1) polypropylene resin and (a2) modified polypropylene resin are used in combination, the mixing ratio of (a1) polypropylene resin and (a2) modified polypropylene resin in (a) polypropylene resin is not particularly limited and is arbitrarily determined. it can.
 本実施の形態に用いる(a)ポリプロピレン系樹脂は、上記の方法、又はそれ以外の公知の方法によって得ることができる。また、いかなる結晶性や融点を有する(a)ポリプロピレン系樹脂である場合でも、単独で用いてもよいし、2種類以上を併用してもよい。 (A) Polypropylene resin used in the present embodiment can be obtained by the above-described method or other known methods. Moreover, even if it is (a) polypropylene resin which has what kind of crystallinity and melting | fusing point, you may use independently and may use 2 or more types together.
 [(b)成分]
 本実施の形態に用いる(b)ポリフェニレンエーテル系樹脂(以下、単に「(b)成分」又は「PPE」ともいう。)は、特に限定されないが、例えば、後述する(b1)ポリフェニレンエーテル樹脂と(b2)変性ポリフェニレンエーテル樹脂とが挙げられる。
[Component (b)]
The (b) polyphenylene ether-based resin (hereinafter, also simply referred to as “(b) component” or “PPE”) used in the present embodiment is not particularly limited. For example, (b1) polyphenylene ether resin and ( b2) Modified polyphenylene ether resin.
 <(b1)ポリフェニレンエーテル樹脂>
 (b1)ポリフェニレンエーテル樹脂とは、下記式(1)で表される繰返し単位構造を含むホモ重合体及び/又は共重合体である。(b1)ポリフェニレンエーテル樹脂の還元粘度(0.5g/dLのクロロホルム溶液、30℃測定)は、0.15~2.50の範囲であることが好ましく、より好ましくは0.30~2.00、さらに好ましくは0.35~2.00の範囲である。
<(B1) Polyphenylene ether resin>
(B1) The polyphenylene ether resin is a homopolymer and / or copolymer containing a repeating unit structure represented by the following formula (1). (B1) The reduced viscosity (0.5 g / dL chloroform solution, measured at 30 ° C.) of the polyphenylene ether resin is preferably in the range of 0.15 to 2.50, more preferably 0.30 to 2.00. More preferably, it is in the range of 0.35 to 2.00.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~7の第1級若しくは第2級のアルキル基、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、又は少なくとも2個の炭素原子がハロゲン原子と酸素原子とを隔てているハロ炭化水素オキシ基からなる群から選択される1価の基である。 In formula (1), R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, a halogen atom, a primary or secondary alkyl group having 1 to 7 carbon atoms, or a phenyl group , A haloalkyl group, an aminoalkyl group, a hydrocarbonoxy group, or a monovalent group selected from the group consisting of a halohydrocarbonoxy group in which at least two carbon atoms separate a halogen atom and an oxygen atom.
 本実施の形態に用いる(b1)ポリフェニレンエーテル樹脂は、特に限定されないが、公知のポリフェニレンエーテル樹脂を用いることができる。(b1)ポリフェニレンエーテル樹脂の具体例としては、特に限定されないが、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、及びポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等のホモ重合体並びに、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノールや2-メチル-6-ブチルフェノール等)との共重合体が挙げられる。 The (b1) polyphenylene ether resin used in the present embodiment is not particularly limited, but a known polyphenylene ether resin can be used. (B1) Specific examples of the polyphenylene ether resin are not particularly limited. For example, poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene) Ethers), poly (2-methyl-6-phenyl-1,4-phenylene ether), and poly (2,6-dichloro-1,4-phenylene ether) homopolymers, and 2,6-dimethylphenol And other phenols (for example, 2,3,6-trimethylphenol and 2-methyl-6-butylphenol).
 上記の中でも、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体が好ましく、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)がより好ましい。 Among these, poly (2,6-dimethyl-1,4-phenylene ether) and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferable. 1,4-phenylene ether) is more preferable.
 (b1)ポリフェニレンエーテル樹脂の製造方法は、特に限定されず、従来公知の方法を用いることができる。(b1)ポリフェニレンエーテル樹脂は、例えば、米国特許第3306874号明細書記載の第一銅塩とアミンとのコンプレックスを触媒として用い、例えば、2,6-キシレノールを酸化重合することにより容易に製造できる。また、(b1)ポリフェニレンエーテル樹脂は、米国特許第3306875号明細書、米国特許第3257357号明細書、米国特許第3257358号明細書、特公昭52-17880号公報、特開昭50-51197号公報、特開昭63-152628号公報等に記載された方法等によっても製造できる。 (B1) The method for producing the polyphenylene ether resin is not particularly limited, and a conventionally known method can be used. (B1) A polyphenylene ether resin can be easily produced by, for example, oxidative polymerization of 2,6-xylenol using, for example, a complex of cuprous salt and amine described in US Pat. No. 3,306,874 as a catalyst. . Further, (b1) polyphenylene ether resins are disclosed in US Pat. No. 3,306,875, US Pat. No. 3,257,357, US Pat. No. 3,257,358, Japanese Patent Publication No. 52-17880, Japanese Patent Laid-Open No. 50-51197. Also, it can be produced by the method described in JP-A-63-152628.
 <(b2)変性ポリフェニレンエーテル樹脂>
 (b2)変性ポリフェニレンエーテル樹脂とは、例えば、前記(b1)ポリフェニレンエーテル樹脂とスチレン系モノマー及び/又はα,β-不飽和カルボン酸若しくはその誘導体(例えば、無水マレイン酸、N-フェニルマレイミド、フマル酸などの不飽和ジカルボン酸及びその誘導体、スチレン、アクリル酸エステル、メタクリル酸エステルなどのビニル化合物等が挙げられる。)とを、ラジカル発生剤の存在下又は非存在下に、溶融状態、溶液状態又はスラリー状態で80~350℃で反応させることによって得られる樹脂をいう。(b2)変性ポリフェニレンエーテル樹脂としては、特に限定されないが、例えば、前記(b1)ポリフェニレンエーテル樹脂に、スチレン系モノマー及び/又はα,β-不飽和カルボン酸若しくはその誘導体が0.01~10質量%グラフト化又は付加した変性ポリフェニレンエーテル樹脂が挙げられる。ここで、スチレン系モノマーとは、スチレン、又はスチレンの水素分子の単数若しくは複数個を、ハロゲン原子、炭素数1~7の第1級若しくは第2級のアルキル基、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基又は少なくとも2個の炭素原子がハロゲン原子と酸素原子とを隔てているハロ炭化水素オキシ基からなる群から選択される置換基で置換した化合物をいう。
<(B2) Modified polyphenylene ether resin>
(B2) The modified polyphenylene ether resin is, for example, the above (b1) polyphenylene ether resin and a styrene monomer and / or an α, β-unsaturated carboxylic acid or a derivative thereof (for example, maleic anhydride, N-phenylmaleimide, fumarate). And unsaturated dicarboxylic acids such as acids and their derivatives, vinyl compounds such as styrene, acrylic acid esters, and methacrylic acid esters)) in the presence or absence of a radical generator, Alternatively, it refers to a resin obtained by reacting at 80 to 350 ° C. in a slurry state. The (b2) modified polyphenylene ether resin is not particularly limited. For example, the (b1) polyphenylene ether resin contains 0.01 to 10 mass of a styrene monomer and / or an α, β-unsaturated carboxylic acid or a derivative thereof. % -Grafted or added modified polyphenylene ether resin. Here, the styrenic monomer refers to styrene or one or more hydrogen molecules of styrene, a halogen atom, a primary or secondary alkyl group having 1 to 7 carbon atoms, a phenyl group, a haloalkyl group, an amino group. An alkyl group, a hydrocarbon oxy group or a compound in which at least two carbon atoms are substituted with a substituent selected from the group consisting of a halo hydrocarbon oxy group separating a halogen atom and an oxygen atom.
 (b1)ポリフェニレンエーテル樹脂と(b2)変性ポリフェニレンエーテル樹脂とを併用する場合、(b)ポリフェニレンエーテル系樹脂中の(b1)ポリフェニレンエーテル樹脂と(b2)変性ポリフェニレンエーテル樹脂との混合割合は制限されず、任意に決定できる。 When (b1) polyphenylene ether resin and (b2) modified polyphenylene ether resin are used in combination, the mixing ratio of (b1) polyphenylene ether resin and (b2) modified polyphenylene ether resin in (b) polyphenylene ether resin is limited. It can be determined arbitrarily.
 [(c)成分]
 本実施の形態に用いる(c)第一の水添ブロック共重合体系樹脂(以下、「(c)成分」ともいう。)は、後述する(c1)第一の水添ブロック共重合体及び/又は(c2)第一の変性水添ブロック共重合体である。
[Component (c)]
The (c) first hydrogenated block copolymer resin (hereinafter also referred to as “component (c)”) used in the present embodiment is the (c1) first hydrogenated block copolymer and / or described later. Or (c2) a first modified hydrogenated block copolymer.
 <(c1)成分>
 (c1)第一の水添ブロック共重合体とは、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとを含むブロック共重合体を水素添加してなる水添ブロック共重合体であって、前記共役ジエン化合物単位(共役ジエン化合物由来の水添ブロック共重合体構成単位)の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が45~90%であり、ビニル芳香族化合物単位(ビニル芳香族化合物由来の水添ブロック共重合体構成単位)を30~50質量%含み、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が80~100%である、水添ブロック共重合体である。
<(C1) component>
(C1) The first hydrogenated block copolymer includes at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer obtained by hydrogenating a block copolymer containing 1,2- in the total bond of the conjugated diene compound unit (hydrogenated block copolymer constituent unit derived from a conjugated diene compound) The total proportion of vinyl bonds and 3,4-vinyl bonds is 45 to 90%, contains 30 to 50% by mass of vinyl aromatic compound units (hydrogenated block copolymer-derived structural units derived from vinyl aromatic compounds), The hydrogenated block copolymer has a hydrogenation rate of 80 to 100% with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) of the block copolymer.
 (重合体ブロックA)
 ビニル芳香族化合物を主体とする重合体ブロックAは、ビニル芳香族化合物のホモ重合体ブロック、又はビニル芳香族化合物と共役ジエン化合物との共重合体ブロックである。重合体ブロックAにおいて「ビニル芳香族化合物を主体とする」とは、重合体ブロックA中にビニル芳香族化合物単位を50質量%を超えて含有することを言い、ビニル芳香族化合物単位を70質量%以上含有することが好ましい。
(Polymer block A)
The polymer block A mainly composed of a vinyl aromatic compound is a homopolymer block of a vinyl aromatic compound or a copolymer block of a vinyl aromatic compound and a conjugated diene compound. In the polymer block A, “mainly composed of a vinyl aromatic compound” means that the polymer block A contains more than 50% by mass of vinyl aromatic compound units, and 70% by mass of vinyl aromatic compound units. % Or more is preferable.
 前記ビニル芳香族化合物としては、特に限定されないが、例えば、スチレン、α-メチルスチレン、ビニルトルエン、p-tert-ブチルスチレン、ジフェニルエチレン等が挙げられる。これらは1種単独で用いてもよいし、2種以上を用いてもよい。上記の中ではスチレンが好ましい。前記共役ジエン化合物としては、後述の化合物が挙げられ、1種単独で用いてもよいし、2種以上を用いてもよい。 The vinyl aromatic compound is not particularly limited, and examples thereof include styrene, α-methylstyrene, vinyltoluene, p-tert-butylstyrene, and diphenylethylene. These may be used alone or in combination of two or more. Of the above, styrene is preferred. Examples of the conjugated diene compound include the compounds described below, which may be used alone or in combination of two or more.
 (重合体ブロックB)
 共役ジエン化合物を主体とする重合体ブロックBは、共役ジエン化合物のホモ重合体ブロック、又は共役ジエン化合物とビニル芳香族化合物とのランダム共重合体ブロックである。重合体ブロックBにおいて「共役ジエン化合物を主体とする」とは、重合体ブロックB中に共役ジエン化合物単位を50質量%を超えて含有することを言い、共役ジエン化合物単位を70質量%以上含有することが好ましい。
(Polymer block B)
The polymer block B mainly composed of a conjugated diene compound is a homopolymer block of a conjugated diene compound or a random copolymer block of a conjugated diene compound and a vinyl aromatic compound. In the polymer block B, “consisting mainly of a conjugated diene compound” means that the polymer block B contains more than 50% by mass of conjugated diene compound units, and contains 70% by mass or more of conjugated diene compound units. It is preferable to do.
 前記共役ジエン化合物としては、特に限定されないが、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。これらは1種単独で用いてもよいし、2種以上を用いてもよい。上記の中でも、ブタジエン、イソプレン及びこれらの組み合わせが好ましい。前記ビニル芳香族化合物としては、前述の化合物が挙げられ、1種単独で用いてもよいし、2種以上を用いてもよい。 The conjugated diene compound is not particularly limited, and examples thereof include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. These may be used alone or in combination of two or more. Among the above, butadiene, isoprene and combinations thereof are preferable. Examples of the vinyl aromatic compound include the aforementioned compounds, and these may be used alone or in combination of two or more.
 重合体ブロックBが、ブタジエンを主体とする重合体ブロックである場合には、重合体ブロックBにおけるブタジエンの1,2-ビニル結合及び3,4-ビニル結合の合計割合が65~90%であることが好ましい。 When the polymer block B is a polymer block mainly composed of butadiene, the total proportion of 1,2-vinyl bonds and 3,4-vinyl bonds of butadiene in the polymer block B is 65 to 90%. It is preferable.
 重合体ブロックBにおいて、前記共役ジエン化合物単位は隣接するモノマー単位との間で、1,2-ビニル結合、3,4-ビニル結合、又は1,4-共役結合のいずれかで結合している。これら3つの結合の合計量を「全結合量」とした時、重合体ブロックBとしては、共役ジエン化合物単位の全結合量に対する1,2-ビニル結合量と3,4-ビニル結合量との合計量(以下、「全ビニル結合量」ともいう。)の割合が45~90%である単一の重合体ブロックであってもよく、前記全ビニル結合量の割合が45~90%である共役ジエン化合物を主体とする少なくとも1個の重合体ブロックB1と前記全ビニル結合量の割合が30%以上45%未満である共役ジエン化合物を主体とする少なくとも1個の重合体ブロックB2とを併せ持つ共役ジエン化合物を主体とする重合体ブロックであってもよい。 In the polymer block B, the conjugated diene compound unit is bonded to an adjacent monomer unit by any of 1,2-vinyl bond, 3,4-vinyl bond, or 1,4-conjugated bond. . Assuming that the total amount of these three bonds is “total bond amount”, the polymer block B includes the amount of 1,2-vinyl bond and 3,4-vinyl bond relative to the total bond amount of the conjugated diene compound unit. It may be a single polymer block having a total amount (hereinafter, also referred to as “total vinyl bond amount”) of 45 to 90%, and the total vinyl bond amount is 45 to 90%. It has at least one polymer block B1 mainly composed of a conjugated diene compound and at least one polymer block B2 mainly composed of a conjugated diene compound whose ratio of the total vinyl bond amount is 30% or more and less than 45%. It may be a polymer block mainly composed of a conjugated diene compound.
 このようなブロック構造を示すブロック共重合体は、前記重合体ブロックAを「A」とし、前記重合体ブロックB1を「B1」とし、前記重合体ブロックB2を「B2」とすると、例えば、A-B2-B1-Aで示され、調整された各モノマー単位のフィードシーケンスに基づいて全ビニル結合量を制御した公知の重合方法によって得ることができる。 A block copolymer having such a block structure is, for example, when the polymer block A is “A”, the polymer block B1 is “B1”, and the polymer block B2 is “B2”. It can be obtained by a known polymerization method in which the total vinyl bond amount is controlled based on the feed sequence of each monomer unit represented by -B2-B1-A.
 なお、本実施の形態において、前記共役ジエン化合物の全結合量に対する全ビニル結合量の割合は、赤外分光光度計で知ることができる。 In the present embodiment, the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound can be known with an infrared spectrophotometer.
 (ブロック共重合体の構造)
 ブロック共重合体としては、前記重合体ブロックAを「A」とし、前記重合体ブロックBを「B」とすると、例えばA-B-A型、A-B-A-B型、B-A-B-A型、(A-B-)n-X型(ここでnは1以上の整数、Xは四塩化ケイ素、四塩化スズなどの多官能カップリング剤の反応残基又は多官能性有機リチウム化合物等の開始剤の残基を示す。)、A-B-A-B-A型等のブロック単位が結合した構造を有するビニル芳香族-共役ジエン化合物ブロック共重合体が好ましい。中でもA-B-A-B型、B-A-B-A型の構造を有するブロック共重合体は、A-B-A型の構造を有するブロック共重合体と比べ、(c)成分としての流動性に優れるためより好ましい。
(Block copolymer structure)
As the block copolymer, when the polymer block A is “A” and the polymer block B is “B”, for example, ABA type, ABAB type, BA -BA type, (AB-) nX type (where n is an integer of 1 or more, X is a reactive residue or polyfunctionality of a polyfunctional coupling agent such as silicon tetrachloride or tin tetrachloride) Represents a residue of an initiator such as an organolithium compound), and a vinyl aromatic-conjugated diene compound block copolymer having a structure in which block units such as ABABABA type are bonded. Among them, the block copolymer having the ABAB type structure and the BABA type structure is compared with the block copolymer having the ABAA type structure as the component (c). It is more preferable because of its excellent fluidity.
 前記重合体ブロックAと前記重合体ブロックBとを含むブロック共重合体の分子構造としては、特に制限されず、例えば、直鎖状、分岐状、放射状又はこれらの任意の組み合わせのいずれであってもよい。重合体ブロックAと重合体ブロックBとは、それぞれの重合体ブロックにおける分子鎖中のビニル芳香族化合物及び共役ジエン化合物の分布がランダム、テーパード(分子鎖に沿ってモノマー成分が増加又は減少するもの)、一部ブロック状又はこれらの任意の組み合わせで構成されていてもよい。重合体ブロックA又は重合体ブロックBのいずれかが繰り返し単位中に2個以上ある場合は、各重合体ブロックはそれぞれ同一構造であってもよいし、異なる構造であってもよい。 The molecular structure of the block copolymer including the polymer block A and the polymer block B is not particularly limited, and may be, for example, linear, branched, radial, or any combination thereof. Also good. Polymer block A and polymer block B are random and tapered distributions of vinyl aromatic compounds and conjugated diene compounds in the molecular chains in each polymer block (in which monomer components increase or decrease along the molecular chain). ), Partly in the form of blocks, or any combination thereof. When there are two or more polymer blocks A or polymer blocks B in the repeating unit, each polymer block may have the same structure or a different structure.
 前記ブロック共重合体において、共役ジエン化合物の全結合量に対する全ビニル結合量の割合は、45~90%であることが好ましく、50~90%であることがより好ましく、65~90%であることがさらに好ましく、70~90%であることが特に好ましい。当該全ビニル結合量の割合が90%を超える場合には工業的な生産が困難となる場合がある。 In the block copolymer, the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound is preferably 45 to 90%, more preferably 50 to 90%, and 65 to 90%. Is more preferable, and 70 to 90% is particularly preferable. When the ratio of the total vinyl bond amount exceeds 90%, industrial production may be difficult.
 (ビニル結合量)
 前記(c1)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合は、45~90%であり、50~90%であることが好ましく、65~90%であることがより好ましく、70~90%であることがさらに好ましい。
(Vinyl bond amount)
In the total bond of the conjugated diene compound unit in the component (c1), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 45 to 90%, preferably 50 to 90%. 65 to 90% is more preferable, and 70 to 90% is still more preferable.
 1,2-ビニル結合及び3,4-ビニル結合の合計割合が上記範囲内である(c1)成分は(a)成分との相溶性が優れ、得られる樹脂組成物は機械的特性が改善する。 The total proportion of 1,2-vinyl bonds and 3,4-vinyl bonds is within the above range. The component (c1) has excellent compatibility with the component (a), and the resulting resin composition has improved mechanical properties. .
 1,2-ビニル結合及び3,4-ビニル結合の合計割合を上記範囲内に制御する方法としては、特に限定されないが、例えば、(c1)成分の製造において、1,2-ビニル結合量調節剤を添加する方法や、重合温度を調整する方法が挙げられる。 The method for controlling the total ratio of 1,2-vinyl bond and 3,4-vinyl bond within the above range is not particularly limited. For example, in the production of component (c1), the amount of 1,2-vinyl bond is adjusted. Examples thereof include a method of adding an agent and a method of adjusting the polymerization temperature.
 ここでいう「共役ジエン化合物の全結合量に対する全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合)」とは、当該水添ブロック共重合体系樹脂の水添前のブロック共重合体中のビニル結合量のことを指す。これは例えば水添前のブロック共重合体を赤外分光光度計により測定し、ハンプトン法で算出することができる。また、水添後のブロック共重合体から核磁気共鳴(NMR)を用いて算出することができる。 The “total vinyl bond amount relative to the total bond amount of the conjugated diene compound” (the total ratio of 1,2-vinyl bond and 3,4-vinyl bond with respect to the total bond) means the hydrogenated block copolymer resin. It refers to the amount of vinyl bonds in the block copolymer before hydrogenation. This can be calculated, for example, by measuring the block copolymer before hydrogenation with an infrared spectrophotometer and using the Hampton method. Moreover, it can calculate using a nuclear magnetic resonance (NMR) from the block copolymer after hydrogenation.
 (水素添加率)
 また、(c1)第一の水添ブロック共重合体において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率としては、80~100%であり、より好ましくは85%以上、特に好ましくは90%以上である。該水素添加率が上記範囲内であると、良好な耐熱性及び耐候性を有する樹脂組成物を得る観点から好ましい。
(Hydrogen addition rate)
In the (c1) first hydrogenated block copolymer, the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%. , More preferably 85% or more, particularly preferably 90% or more. It is preferable from the viewpoint of obtaining a resin composition having good heat resistance and weather resistance when the hydrogenation rate is within the above range.
 該水素添加率を上記範囲内に制御する方法としては、特に限定されないが、例えば、ブロック共重合体のエチレン性二重結合の水素添加反応において、消費水素量を所望の水素添加率の範囲に制御する方法が挙げられる。 The method for controlling the hydrogenation rate within the above range is not particularly limited. For example, in the hydrogenation reaction of the ethylenic double bond of the block copolymer, the amount of hydrogen consumed is within the desired hydrogenation rate range. The method of controlling is mentioned.
 なお、本実施の形態において、水素添加率は核磁気共鳴(NMR)によって測定することができる。具体的には、後述の実施例に記載の方法により測定することができる。 In the present embodiment, the hydrogenation rate can be measured by nuclear magnetic resonance (NMR). Specifically, it can be measured by the method described in Examples described later.
 (製造方法)
 (c1)第一の水添ブロック共重合体の製造方法としては、特に限定されず、公知の製造方法を用いることができる。公知の製造方法としては、特に限定されないが、例えば、特開昭47-11486号公報、特開昭49-66743号公報、特開昭50-75651号公報、特開昭54-126255号公報、特開昭56-10542号公報、特開昭56-62847号公報、特開昭56-100840号公報、特開平2-300218号公報、英国特許第1130770号明細書、米国特許第3281383号明細書、米国特許第3639517号明細書、英国特許第1020720号明細書、米国特許第3333024号明細書及び米国特許第4501857号明細書に記載の方法が挙げられる。
(Production method)
(C1) It does not specifically limit as a manufacturing method of a 1st hydrogenated block copolymer, A well-known manufacturing method can be used. Known production methods are not particularly limited. For example, JP-A-47-11486, JP-A-49-66743, JP-A-50-75651, JP-A-54-126255, JP-A-56-10542, JP-A-56-62847, JP-A-56-100840, JP-A-2-300218, British Patent 1130770, US Pat. No. 3,281,383 US Pat. No. 3,639,517, British Patent No. 1,020,720, US Pat. No. 3,330,024 and US Pat. No. 4,501,857.
 <(c2)成分>
 また、(c2)第一の変性水添ブロック共重合体は、例えば、前記の(c1)第一の水添ブロック共重合体と、α,β-不飽和カルボン酸又はその誘導体(エステル化合物や酸無水物化合物)とをラジカル発生剤の存在下又は非存在下に、溶融状態、溶液状態又はスラリー状態で、80~350℃で反応させることによって得られる変性水添ブロック共重合体をいう。この場合、α,β-不飽和カルボン酸又はその誘導体が0.01~10質量%の割合で前記(c1)第一の水添ブロック共重合体にグラフト化又は付加していることが好ましい。
<(C2) component>
The (c2) first modified hydrogenated block copolymer includes, for example, the above (c1) first hydrogenated block copolymer and an α, β-unsaturated carboxylic acid or derivative thereof (ester compound or A modified hydrogenated block copolymer obtained by reacting an acid anhydride compound) in the presence of a radical generator in the presence or absence of a radical generator in a molten state, a solution state or a slurry state at 80 to 350 ° C. In this case, the α, β-unsaturated carboxylic acid or derivative thereof is preferably grafted or added to the (c1) first hydrogenated block copolymer in a proportion of 0.01 to 10% by mass.
 (c1)第一の水添ブロック共重合体と(c2)第一の変性水添ブロック共重合体とを併用する場合、(c)第一の水添ブロック共重合体系樹脂中の(c1)第一の水添ブロック共重合体と(c2)第一の変性水添ブロック共重合体との混合割合は特に制限されず任意に決定できる。 When (c1) the first hydrogenated block copolymer and (c2) the first modified hydrogenated block copolymer are used in combination, (c1) in the (c) first hydrogenated block copolymer resin The mixing ratio of the first hydrogenated block copolymer and (c2) the first modified hydrogenated block copolymer is not particularly limited and can be arbitrarily determined.
 <数平均分子量>
 (c)成分の数平均分子量(Mnc)は、好ましくは5,000~1,000,000であり、より好ましくは100,000以下である。Mncを1,000,000以下とすると、樹脂組成物における(c)第一の水添ブロック共重合体系樹脂の役割があくまでも、ポリマー(ポリプロピレン)-ポリマー(ポリフェニレンエーテル)間の乳化分散剤(混和剤)としての役割となる傾向にある。すなわち、粘度が高いポリマー(ポリプロピレン)-ポリマー(ポリフェニレンエーテル)の溶融バルク状態での乳化の際に、乳化分散剤(混和剤)としての(c)第一の水添ブロック共重合体系樹脂を、溶融混合系内で好ましく拡散させるため、(c)第一の水添ブロック共重合体の溶融粘度を考慮して、(c)成分の数平均分子量(Mnc)は、5,000~1,000,000であることが好ましく、100,000以下であることがより好ましい。
<Number average molecular weight>
The number average molecular weight (Mnc) of the component (c) is preferably 5,000 to 1,000,000, more preferably 100,000 or less. When Mnc is 1,000,000 or less, the role of the (c) first hydrogenated block copolymer resin in the resin composition is merely an emulsifying dispersant (admixture) between polymer (polypropylene) and polymer (polyphenylene ether). It tends to be a role as an agent. That is, at the time of emulsification of a polymer (polypropylene) -polymer (polyphenylene ether) having a high viscosity in a melt bulk state, (c) the first hydrogenated block copolymer resin as an emulsifying dispersant (admixture), The number average molecular weight (Mnc) of the component (c) is 5,000 to 1,000 in consideration of the melt viscosity of the (c) first hydrogenated block copolymer in order to diffuse preferably in the melt mixing system. 1,000 is preferable and 100,000 or less is more preferable.
 (c)成分の数平均分子量(Mnc)を前記範囲に制御する方法としては、特に限定されないが、例えば、(c)成分の重合工程における触媒量を調整する方法が挙げられる。 The method of controlling the number average molecular weight (Mnc) of the component (c) within the above range is not particularly limited, and examples thereof include a method of adjusting the amount of catalyst in the polymerization step of the component (c).
 なお、本実施の形態において、(c)成分の数平均分子量(Mnc)は、昭和電工(株)製ゲルパーミエーションクロマトグラフィー System21を用いて以下の条件で測定することができる。該測定において、カラムとして、昭和電工(株)製K-Gを1本、K-800RLを1本、さらにK-800Rを1本の順番で直列につないだカラムを用い、カラム温度を40℃とし、溶媒をクロロホルムとし、溶媒流量を10mL/分とし、サンプル濃度を、水添ブロック共重合体1g/クロロホルム溶液1リットルとする。また、標準ポリスチレン(標準ポリスチレンの分子量は、3650000、2170000、1090000、681000、204000,52000、30200、13800,3360、1300,550)を用いて検量線を作成する。さらに、検出部のUV(紫外線)の波長は、標準ポリスチレン及び水添ブロック共重合体共に254nmに設定して測定する。 In the present embodiment, the number average molecular weight (Mnc) of the component (c) can be measured under the following conditions using Showa Denko Co., Ltd. Gel Permeation Chromatography System 21. In this measurement, a column in which one KG manufactured by Showa Denko KK, one K-800RL and one K-800R were connected in series was used as the column, and the column temperature was 40 ° C. The solvent is chloroform, the solvent flow rate is 10 mL / min, and the sample concentration is 1 g of hydrogenated block copolymer / 1 liter of chloroform solution. Moreover, a calibration curve is prepared using standard polystyrene (the molecular weight of standard polystyrene is 3650000, 217000, 1090000, 681000, 204000, 52000, 30200, 13800, 3360, 1300, 550). Further, the UV (ultraviolet) wavelength of the detection unit is measured by setting both standard polystyrene and hydrogenated block copolymer to 254 nm.
 <ビニル芳香族化合物単位の含有量>
 また、(c)成分中におけるビニル芳香族化合物単位(ビニル芳香族化合物由来の水添ブロック共重合体構成単位)の含有量は、30~50質量%であり、好ましくは30~48質量%、より好ましくは30~45質量%、さらに好ましくは35~45質量%である。該ビニル芳香族化合物単位の含有量が30質量%以上であると、樹脂組成物の機械的強度が向上し、該ビニル芳香族化合物単位の含有量が50質量%以下であると、耐熱性と耐衝撃性とのバランスに優れる樹脂組成物が得られる。なお、本実施の形態において、ビニル芳香族化合物単位の含有量の測定は、紫外分光光度計(UV)によって行うことができる。具体的には、後述の実施例に記載の方法により行うことができる。
<Content of vinyl aromatic compound unit>
In addition, the content of the vinyl aromatic compound unit (hydrogenated block copolymer constituent unit derived from the vinyl aromatic compound) in the component (c) is 30 to 50% by mass, preferably 30 to 48% by mass, More preferably, it is 30 to 45% by mass, and still more preferably 35 to 45% by mass. When the content of the vinyl aromatic compound unit is 30% by mass or more, the mechanical strength of the resin composition is improved, and when the content of the vinyl aromatic compound unit is 50% by mass or less, heat resistance and A resin composition having an excellent balance with impact resistance is obtained. In the present embodiment, the content of the vinyl aromatic compound unit can be measured by an ultraviolet spectrophotometer (UV). Specifically, it can be carried out by the method described in Examples described later.
 また、該ビニル芳香族化合物単位の含有量が30~50質量%である(c)第一の水添ブロック共重合体系樹脂は、ポリプロピレン系樹脂とポリフェニレンエーテル系樹脂との間の乳化分散において、ポリフェニレンエーテル系樹脂の良好な乳化分散を与え、得られる樹脂組成物の耐熱性、機械的特性及び耐衝撃性に大きな優位性を与える。 Further, the content of the vinyl aromatic compound unit is 30 to 50% by mass (c) the first hydrogenated block copolymer resin is an emulsion dispersion between a polypropylene resin and a polyphenylene ether resin. Good emulsification and dispersion of the polyphenylene ether resin is given, and the resin composition obtained is greatly superior in heat resistance, mechanical properties and impact resistance.
 [(d)成分]
 本実施の形態に用いる(d)エチレン-α-オレフィン共重合体ゴム(以下、「(d)成分」ともいう。)は、エチレンとα-オレフィンとの共重合体ゴムである。(d)成分は、特に限定されず、公知のものを用いてもよいが、メルトフローレート(MFR:ASTM D-1238に準拠し、190℃、2.16kgの荷重で測定)が0.1~4.5g/10分であることが好ましく、ショアA硬度(ASTM D-2240準拠)が75以下であることが好ましい。
[Component (d)]
The (d) ethylene-α-olefin copolymer rubber (hereinafter also referred to as “component (d)”) used in the present embodiment is a copolymer rubber of ethylene and α-olefin. The component (d) is not particularly limited, and a known component may be used, but the melt flow rate (measured in accordance with MFR: ASTM D-1238 at 190 ° C. under a load of 2.16 kg) is 0.1. It is preferably ˜4.5 g / 10 min, and the Shore A hardness (according to ASTM D-2240) is preferably 75 or less.
 (d)成分としては、特に限定されないが、例えば、エチレンと、1種又は2種以上のC3~C20のα-オレフィンとの共重合体ゴム等が挙げられる。(d)成分としては、エチレンと、1種又は2種以上のC3~C10のα-オレフィンとの共重合体ゴムが好ましく、エチレンと、1種又は2種以上のC4~C8のα-オレフィンとの共重合体ゴムであることがより好ましく、エチレンと、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン及び1-オクテンからなる群から選択される1種又は2種以上のコモノマーとの共重合体ゴムであることがさらに好ましく、エチレンと1-オクテンとの共重合体ゴムであることが特に好ましい。かかる共重合体を(d)成分として用いることで、より高い引張伸びとより高い耐衝撃性とを有する樹脂組成物が得られる傾向にある。 The component (d) is not particularly limited, and examples thereof include a copolymer rubber of ethylene and one or more C3-C20 α-olefins. The component (d) is preferably a copolymer rubber of ethylene and one or more C3 to C10 α-olefins, and ethylene and one or more C4 to C8 α-olefins. More preferably, the rubber is a copolymer rubber, and one or more selected from the group consisting of ethylene and propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene. A copolymer rubber with a comonomer is more preferable, and a copolymer rubber of ethylene and 1-octene is particularly preferable. By using such a copolymer as the component (d), a resin composition having higher tensile elongation and higher impact resistance tends to be obtained.
 (d)エチレン-α-オレフィン共重合体ゴムの調製方法は、特に限定されず、通常行われる加工条件下で高分子量化されたα-オレフィン共重合体を容易に得ることができる触媒(例えば、チタニウム、メタロセン、又はバナジウムをベースとする触媒等)を用いる方法が挙げられる。これらの中でも、構造制御の安定性の観点から、メタロセン触媒及び塩化チタン触媒を用いる方法が好ましい。(d)エチレン-α-オレフィン共重合体ゴムの製法としては、特開平6-306121号公報や特表平7-500622号公報などに記載されている公知の方法を用いることができる。 (D) The method for preparing the ethylene-α-olefin copolymer rubber is not particularly limited, and a catalyst that can easily obtain a high molecular weight α-olefin copolymer under normal processing conditions (for example, , Titanium, metallocene, or vanadium-based catalysts). Among these, a method using a metallocene catalyst and a titanium chloride catalyst is preferable from the viewpoint of stability of structure control. (D) As a method for producing the ethylene-α-olefin copolymer rubber, known methods described in JP-A-6-306121, JP-A-7-500622 and the like can be used.
 (d)成分の単体でのショアA硬度(ASTM D-2240準拠)は、樹脂組成物の低温衝撃性の観点から、75以下が好ましく、70以下がより好ましく、65以下が更に好ましい。(d)成分の単体でのショアA硬度の下限は、特に限定されないが、例えば、48以上である。 The Shore A hardness (based on ASTM D-2240) of the component (d) alone is preferably 75 or less, more preferably 70 or less, and even more preferably 65 or less, from the viewpoint of low-temperature impact properties of the resin composition. The lower limit of the Shore A hardness of the component (d) alone is not particularly limited, but is 48 or more, for example.
 (d)成分のショアA硬度を上記範囲内に制御する方法としては、特に限定されないが、例えば、エチレン単位の含有割合や密度を制御することにより調整する方法が挙げられる。 The method for controlling the Shore A hardness of the component (d) within the above range is not particularly limited, and examples thereof include a method of adjusting by controlling the content and density of ethylene units.
 (d)成分中のα-オレフィンの含有量は、特に限定されず、樹脂組成物の耐低温硬化性や柔軟性の観点から、5質量%以上であることが好ましく、20質量%以上であることがより好ましく、また、樹脂組成物の剛性の観点から、50質量%以下であることが好ましく、48質量%以下であることがより好ましい。  The content of the α-olefin in the component (d) is not particularly limited, and is preferably 5% by mass or more and 20% by mass or more from the viewpoint of low temperature curability and flexibility of the resin composition. In view of the rigidity of the resin composition, it is preferably 50% by mass or less, and more preferably 48% by mass or less.
 (d)成分の単体での密度は、特に限定されず、樹脂組成物の剛性の観点から、0.850g/cm以上が好ましく、0.855g/cm以上がより好ましい。高い耐衝撃性及び高い引張り破断伸びを有する樹脂組成物を得る観点から、0.910g/cm以下が好ましく、0.885g/cm以下がより好ましい。 The density of the component (d) alone is not particularly limited, and is preferably 0.850 g / cm 3 or more and more preferably 0.855 g / cm 3 or more from the viewpoint of the rigidity of the resin composition. From the viewpoint of obtaining a resin composition having high impact resistance and high tensile elongation at break, 0.910 g / cm 3 or less is preferable, and 0.885 g / cm 3 or less is more preferable.
 (d)成分として、2種以上のエチレン-α-オレフィン共重合体ゴムを用いてもよい。この場合、樹脂組成物の耐衝撃性、引張り伸び及び剛性をさらに向上させる観点から、例えば、密度が異なる2種以上のエチレン-α-オレフィン共重合体ゴムを用いることが好ましく、例えば、樹脂組成物の耐衝撃性、引張り破断伸び及び剛性の観点から、密度が0.857g/cmのエチレン-α-オレフィン共重合体ゴムと密度が0.870g/cmのエチレン-α-オレフィン共重合体ゴムとを併用することができる。  As the component (d), two or more kinds of ethylene-α-olefin copolymer rubbers may be used. In this case, from the viewpoint of further improving the impact resistance, tensile elongation and rigidity of the resin composition, for example, it is preferable to use two or more kinds of ethylene-α-olefin copolymer rubbers having different densities. Ethylene-α-olefin copolymer rubber having a density of 0.857 g / cm 3 and ethylene-α-olefin copolymer having a density of 0.870 g / cm 3 from the viewpoint of impact resistance, tensile elongation at break and rigidity of the product A combined rubber can be used in combination.
 (d)成分の単体でのメルトフローレート(MFR:ASTM  D-1238に準拠し、190℃、2.16kgの荷重で測定)は、(d)成分の樹脂組成物中への分散によるモルフォロジーの安定化、及び樹脂組成物の耐衝撃性の観点から、0.1~4.5g/10分が好ましく、0.3~3g/10分がより好ましい。 The melt flow rate of component (d) as a single component (MFR: measured in accordance with ASTM D-1238 at 190 ° C. under a load of 2.16 kg) is a morphological change due to dispersion of component (d) in the resin composition. From the viewpoints of stabilization and impact resistance of the resin composition, 0.1 to 4.5 g / 10 min is preferable, and 0.3 to 3 g / 10 min is more preferable.
 (d)成分のメルトフローレートを上記範囲内に制御する方法としては、特に限定されないが、例えば、(d)成分を製造する際、重合温度及び重合圧力を調整する方法、重合系内のエチレン及びα-オレフィンのモノマー濃度と水素濃度とのモル比率を調整する方法等が挙げられる。 The method for controlling the melt flow rate of the component (d) within the above range is not particularly limited. For example, when the component (d) is produced, a method for adjusting the polymerization temperature and the polymerization pressure, ethylene in the polymerization system, and the like. And a method of adjusting the molar ratio between the monomer concentration of α-olefin and the hydrogen concentration.
 (d)成分の分子量分布(Mw/Mn;Mwは重量平均分子量、Mnは数平均分子量)は、特に限定されないが、1.3~5.0が好ましい。 The molecular weight distribution (Mw / Mn; Mw is the weight average molecular weight, Mn is the number average molecular weight) of the component (d) is not particularly limited, but is preferably 1.3 to 5.0.
 (d)成分のMFRを0.1~4.5g/10分とし、ショアA硬度を75以下とすると、樹脂組成物における(d)エチレン-α-オレフィン共重合体ゴムがあくまでも、(a)ポリプロピレン系樹脂、(b)ポリフェニレンエーテル系樹脂及び(c)第一の水添ブロック共重合体系樹脂からなる群より選択される2種以上の樹脂間の耐衝撃付与剤としての役割を果たす成分となる。 When the MFR of the component (d) is 0.1 to 4.5 g / 10 min and the Shore A hardness is 75 or less, the (d) ethylene-α-olefin copolymer rubber in the resin composition is only (a) A component that serves as an impact resistance imparting agent between two or more resins selected from the group consisting of a polypropylene resin, (b) a polyphenylene ether resin, and (c) a first hydrogenated block copolymer resin; Become.
 さらに、(c)第一の水添ブロック共重合体系樹脂におけるビニル芳香族化合物単位の含有量を30~50質量%とし、(d)エチレン-α-オレフィン共重合体ゴムのショアA硬度を75以下とすると、(a)ポリプロピレン系樹脂と(b)ポリフェニレンエーテル系樹脂との間の乳化分散において、(b)ポリフェニレンエーテル系樹脂の良好な乳化分散状態を与え、かつ得られる樹脂組成物の引張伸び及び耐衝撃性に大きな優位性を与える。 Further, (c) the content of vinyl aromatic compound units in the first hydrogenated block copolymer resin is 30 to 50% by mass, and (d) the Shore A hardness of the ethylene-α-olefin copolymer rubber is 75. When (a) the emulsion dispersion between the polypropylene resin and (b) the polyphenylene ether resin is given as below, (b) a good emulsion dispersion state of the polyphenylene ether resin is given, and the resulting resin composition is tensile Great advantage in elongation and impact resistance.
 [(e)成分]
 本実施の形態の樹脂組成物は、耐衝撃性改良の観点から、前記(c)成分とは異なる少なくとも1種の(e)第二の水添ブロック共重合体系樹脂をさらに含むことが好ましい。また、本実施の形態の樹脂組成物は、引張伸び及び低温衝撃性の観点から、前記(d)成分及び(e)成分を含むことがより好ましい。本実施の形態に用いる(e)第二の水添ブロック共重合体系樹脂(以下、「(e)成分」ともいう。)は、後述する(e1)第二の水添ブロック共重合体及び/又は(e2)第二の変性水添ブロック共重合体である。
[(E) component]
The resin composition of the present embodiment preferably further includes at least one (e) second hydrogenated block copolymer resin different from the component (c) from the viewpoint of improving impact resistance. Moreover, it is more preferable that the resin composition of this Embodiment contains the said (d) component and (e) component from a viewpoint of tensile elongation and low temperature impact property. The (e) second hydrogenated block copolymer resin (hereinafter also referred to as “component (e)”) used in the present embodiment is a (e1) second hydrogenated block copolymer and / or Or (e2) a second modified hydrogenated block copolymer.
 <(e1)成分>
 (e1)第二の水添ブロック共重合体とは、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとを含むブロック共重合体を水素添加してなる水添ブロック共重合体であって、共役ジエン化合物単位(共役ジエン化合物由来の水添ブロック共重合体構成単位)の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が25%以上60%未満である。また、前記(e1)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率は、10%以上80%未満である。
<(E1) component>
(E1) The second hydrogenated block copolymer includes at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer obtained by hydrogenating a block copolymer containing 1,2-vinyl in all bonds of a conjugated diene compound unit (hydrogenated block copolymer constituent unit derived from a conjugated diene compound) The total proportion of bonds and 3,4-vinyl bonds is 25% or more and less than 60%. In the component (e1), the hydrogenation rate of the block copolymer with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) is 10% or more and less than 80%.
 前記(e1)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合は、25%以上60%未満であり、25~55%であることが好ましく、30~50%であることがより好ましい。 In the total bond of the conjugated diene compound unit in the component (e1), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 60%, and 25 to 55%. Is more preferable, and 30 to 50% is more preferable.
 1,2-ビニル結合及び3,4-ビニル結合の合計割合が60%未満であると、樹脂組成物の低温での耐衝撃性が改善される。また、1,2-ビニル結合及び3,4-ビニル結合の合計割合が25%以上である(e1)成分は、(c)成分との併用において、(a)成分との相溶性を改善させる観点で好ましい。 When the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is less than 60%, the impact resistance at low temperature of the resin composition is improved. In addition, the component (e1) having a total ratio of 1,2-vinyl bonds and 3,4-vinyl bonds of 25% or more improves compatibility with the component (a) in combination with the component (c). It is preferable from the viewpoint.
 1,2-ビニル結合及び3,4-ビニル結合の合計割合を上記範囲内に制御する方法としては、特に限定されないが、例えば、(e1)成分の製造において、1,2-ビニル結合量調節剤を添加する方法や、重合温度を調整する方法が挙げられる。 The method for controlling the total ratio of 1,2-vinyl bond and 3,4-vinyl bond within the above range is not particularly limited. For example, in the production of component (e1), the amount of 1,2-vinyl bond is adjusted. Examples thereof include a method of adding an agent and a method of adjusting the polymerization temperature.
 (c)成分の場合と同様に、「共役ジエン化合物の全結合量に対する全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合)」とは、当該水添ブロック共重合体系樹脂の水添前のブロック共重合体中のビニル結合量のことを指す。これは例えば水添前のブロック共重合体を赤外分光光度計により測定し、ハンプトン法で算出することができる。また、水添後のブロック共重合体からNMRを用いて算出することができる。 As in the case of component (c), “total vinyl bond amount relative to total bond amount of conjugated diene compound (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to total bond)” means the water This refers to the amount of vinyl bonds in the block copolymer before hydrogenation of the added block copolymer resin. This can be calculated, for example, by measuring the block copolymer before hydrogenation with an infrared spectrophotometer and using the Hampton method. Moreover, it can calculate using NMR from the block copolymer after hydrogenation.
 ((e1)第二の水添ブロック共重合体の構造)
 (e1)第二の水添ブロック共重合体の構造は、前記重合体ブロックAを「A」とし、前記重合体ブロックBを「B」とすると、特に限定されないが、例えばA-B型、A-B-A型、B-A-B-A型、(A-B-)n-X型(ここでnは1以上の整数、Xは四塩化ケイ素、四塩化スズなどの多官能カップリング剤の反応残基又は多官能性有機リチウム化合物等の開始剤の残基を示す。)、A-B-A-B-A型等の構造が挙げられる。また、ブロック構造について言及すると、共役ジエン化合物を主体とする重合体ブロックBが、共役ジエン化合物のホモ重合体ブロック、又は共役ジエン化合物を50質量%を超え、好ましくは70質量%以上含有する、共役ジエン化合物とビニル芳香族化合物との共重合体ブロックの構造を有しており、そしてさらにビニル芳香族化合物を主体とする重合体ブロックAが、ビニル芳香族化合物のホモ重合体ブロック、又はビニル芳香族化合物を50質量%を超え、好ましくは70質量%以上含有する、ビニル芳香族化合物と共役ジエン化合物との共重合体ブロックの構造を有することが好ましい。
((E1) Structure of second hydrogenated block copolymer)
(E1) The structure of the second hydrogenated block copolymer is not particularly limited when the polymer block A is “A” and the polymer block B is “B”. ABA type, BABA type, (AB-) nX type (where n is an integer of 1 or more, X is a polyfunctional cup such as silicon tetrachloride or tin tetrachloride) A reaction residue of a ring agent or a residue of an initiator such as a polyfunctional organolithium compound)), and a structure such as ABABABA type. Further, referring to the block structure, the polymer block B mainly composed of a conjugated diene compound contains a homopolymer block of a conjugated diene compound or a conjugated diene compound in an amount of more than 50% by mass, preferably 70% by mass or more. A polymer block A having a copolymer block structure of a conjugated diene compound and a vinyl aromatic compound, and further comprising a vinyl aromatic compound as a main component is a homopolymer block of vinyl aromatic compound, or vinyl It preferably has a structure of a copolymer block of a vinyl aromatic compound and a conjugated diene compound, containing an aromatic compound in an amount exceeding 50% by mass, preferably 70% by mass or more.
 (重合体ブロックA)
 ビニル芳香族化合物を主体とする重合体ブロックAは、ビニル芳香族化合物のホモ重合体ブロック、又はビニル芳香族化合物と共役ジエン化合物との共重合体ブロックである。重合体ブロックAにおいて「ビニル芳香族化合物を主体とする」とは、重合体ブロックA中にビニル芳香族化合物単位を50質量%を超えて含有することを言い、ビニル芳香族化合物単位を70質量%以上含有することが好ましい。
(Polymer block A)
The polymer block A mainly composed of a vinyl aromatic compound is a homopolymer block of a vinyl aromatic compound or a copolymer block of a vinyl aromatic compound and a conjugated diene compound. In the polymer block A, “mainly composed of a vinyl aromatic compound” means that the polymer block A contains more than 50% by mass of vinyl aromatic compound units, and 70% by mass of vinyl aromatic compound units. % Or more is preferable.
 前記ビニル芳香族化合物としては、特に限定されないが、例えば、スチレン、α-メチルスチレン、ビニルトルエン、p-tert-ブチルスチレン、ジフェニルエチレン等が挙げられる。これらは1種単独で用いてもよいし、2種以上を用いてもよい。上記の中ではスチレンが好ましい。前記共役ジエン化合物としては、後述の化合物が挙げられ、1種単独で用いてもよいし、2種以上を用いてもよい。 The vinyl aromatic compound is not particularly limited, and examples thereof include styrene, α-methylstyrene, vinyltoluene, p-tert-butylstyrene, and diphenylethylene. These may be used alone or in combination of two or more. Of the above, styrene is preferred. Examples of the conjugated diene compound include the compounds described below, which may be used alone or in combination of two or more.
 (重合体ブロックB)
 共役ジエン化合物を主体とする重合体ブロックBは、共役ジエン化合物のホモ重合体ブロック又は共役ジエン化合物とビニル芳香族化合物とのランダム共重合体ブロックである。重合体ブロックBにおいて「共役ジエン化合物を主体とする」とは、重合体ブロックB中に共役ジエン化合物単位を50質量%を超えて含有することを言い、共役ジエン化合物単位を70質量%以上含有することが好ましい。
(Polymer block B)
The polymer block B mainly composed of a conjugated diene compound is a homopolymer block of a conjugated diene compound or a random copolymer block of a conjugated diene compound and a vinyl aromatic compound. In the polymer block B, “consisting mainly of a conjugated diene compound” means that the polymer block B contains more than 50% by mass of conjugated diene compound units, and contains 70% by mass or more of conjugated diene compound units. It is preferable to do.
 前記共役ジエン化合物としては、特に限定されないが、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。これらは1種単独で用いてもよいし、2種以上を用いてもよい。上記の中でも、ブタジエン、イソプレン及びこれらの組み合わせが好ましい。前記ビニル芳香族化合物としては、上述の化合物が挙げられ、1種単独で用いてもよいし、2種以上を用いてもよい。 The conjugated diene compound is not particularly limited, and examples thereof include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. These may be used alone or in combination of two or more. Among the above, butadiene, isoprene and combinations thereof are preferable. As said vinyl aromatic compound, the above-mentioned compound is mentioned, 1 type may be used individually and 2 or more types may be used.
 重合体ブロックBとしては、共役ジエン化合物単位の全結合量に対する全ビニル結合量の割合が25%以上60%未満である単一の重合体ブロックであってもよく、全ビニル結合量の割合が25~45%である共役ジエン化合物を主体とする少なくとも1個の重合体ブロックB1と全ビニル結合量の割合が45%以上70%未満である共役ジエン化合物を主体とする少なくとも1個の重合体ブロックB2とを併せ持つ共役ジエン化合物を主体とする重合体ブロックBであってもよい。このようなブロック構造を示すブロック共重合体は、前記重合体ブロックAを「A」とし、前記重合体ブロックB1を「B1」とし、前記重合体ブロックB2を「B2」とすると、例えば、A-B2-B1-Aで示され、調整された各モノマー単位のフィードシーケンスに基づいて全ビニル結合量を制御した公知の重合方法によって得ることができる。 The polymer block B may be a single polymer block in which the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound unit is 25% or more and less than 60%, and the ratio of the total vinyl bond amount is At least one polymer mainly comprising a conjugated diene compound having a ratio of 45% or more and less than 70% to at least one polymer block B1 mainly comprising a conjugated diene compound of 25 to 45% It may be a polymer block B mainly composed of a conjugated diene compound having both the block B2. A block copolymer having such a block structure is, for example, when the polymer block A is “A”, the polymer block B1 is “B1”, and the polymer block B2 is “B2”. It can be obtained by a known polymerization method in which the total vinyl bond amount is controlled based on the feed sequence of each monomer unit represented by -B2-B1-A.
 (ブロック共重合体の構造)
 前記重合体ブロックAと前記重合体ブロックBとを含むブロック共重合体の分子構造としては、特に制限されず、例えば、直鎖状、分岐状、放射状又はこれらの任意の組み合わせのいずれであってもよい。重合体ブロックAと重合体ブロックBとは、それぞれの重合体ブロックにおける分子鎖中のビニル芳香族化合物又は共役ジエン化合物の分布がランダム、テーパード(分子鎖に沿ってモノマー成分が増加又は減少するもの)、一部ブロック状又はこれらの任意の組み合わせで構成されていてもよい。重合体ブロックA又は重合体ブロックBのいずれかが(e1)成分中に2個以上ある場合は、各重合体ブロックはそれぞれ同一構造であってもよいし、異なる構造であってもよい。
(Block copolymer structure)
The molecular structure of the block copolymer including the polymer block A and the polymer block B is not particularly limited, and may be, for example, linear, branched, radial, or any combination thereof. Also good. Polymer block A and polymer block B are random and tapered distribution of vinyl aromatic compound or conjugated diene compound in the molecular chain in each polymer block (in which the monomer component increases or decreases along the molecular chain) ), Partly in the form of blocks, or any combination thereof. When there are two or more polymer blocks A or B in the component (e1), the polymer blocks may have the same structure or different structures.
 前記ブロック共重合体において、共役ジエン化合物の全結合量に対する全ビニル結合量の割合は、25%以上60%未満であることが好ましく、25~55%であることがより好ましく、30~50%であることがさらに好ましい。前記全ビニル結合量の割合が60%未満であれば、樹脂組成物の低温での耐衝撃性が改善される。 In the block copolymer, the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound is preferably 25% or more and less than 60%, more preferably 25 to 55%, more preferably 30 to 50%. More preferably. When the ratio of the total vinyl bond amount is less than 60%, the impact resistance at low temperature of the resin composition is improved.
 (水素添加率)
 また、(e1)第二の水添ブロック共重合体において、前記ブロック共重合体中のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率としては、10%以上80%未満であり、好ましくは10~60%であり、より好ましくは20~50%である。該水素添加率が上記範囲内であると、樹脂組成物の低温衝撃性が改善されるため好ましい。このような水素添加率を有する(e1)成分は、例えば、ブロック共重合体のエチレン性二重結合の水素添加反応において、消費水素量を所望の水素添加率(例えば、10%以上80%未満)の範囲に制御することにより容易に得られる。
(Hydrogen addition rate)
In the second hydrogenated block copolymer (e1), the hydrogenation rate relative to the ethylenic double bond (double bond in the conjugated diene compound unit) in the block copolymer is 10% or more and 80%. Is preferably from 10 to 60%, more preferably from 20 to 50%. It is preferable for the hydrogenation rate to be within the above range since the low temperature impact property of the resin composition is improved. The component (e1) having such a hydrogenation rate is, for example, a desired hydrogenation rate (for example, 10% or more and less than 80%) in a hydrogenation reaction of an ethylenic double bond of a block copolymer. ) Can be easily obtained by controlling to the range of
 (製造方法)
 (e1)第二の水添ブロック共重合体の製造方法としては、特に限定されず、公知の製造方法を用いることができる。公知の製造方法としては、特に限定されないが、例えば、特開昭47-11486号公報、特開昭49-66743号公報、特開昭50-75651号公報、特開昭54-126255号公報、特開昭56-10542号公報、特開昭56-62847号公報、特開昭56-100840号公報、特開平2-300218号公報、英国特許第1130770号明細書、米国特許第3281383号明細書、米国特許第3639517号明細書、英国特許第1020720号明細書、米国特許第3333024号明細書及び米国特許第4501857号明細書に記載の方法が挙げられる。
(Production method)
(E1) It does not specifically limit as a manufacturing method of a 2nd hydrogenated block copolymer, A well-known manufacturing method can be used. Known production methods are not particularly limited. For example, JP-A-47-11486, JP-A-49-66743, JP-A-50-75651, JP-A-54-126255, JP-A-56-10542, JP-A-56-62847, JP-A-56-100840, JP-A-2-300218, British Patent 1130770, US Pat. No. 3,281,383 US Pat. No. 3,639,517, British Patent No. 1,020,720, US Pat. No. 3,330,024 and US Pat. No. 4,501,857.
 かかる(e1)第二の水添ブロック共重合体が、共役ジエン化合物の全結合量に対する全ビニル結合量の割合が60%未満及び/又は、その水素添加率が80%未満の場合に、樹脂組成物の低温での耐衝撃性が改善されるのでより好ましい。 When the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound is less than 60% and / or the hydrogenation rate is less than 80%, the (e1) second hydrogenated block copolymer is a resin. The impact resistance at low temperature of the composition is improved, which is more preferable.
 ((e1)成分中におけるビニル芳香族化合物単位の含有量)
 (e1)第二の水添ブロック共重合体は、ビニル芳香族化合物単位(ビニル芳香族化合物由来の水添ブロック共重合体構成単位)を20~70質量%含むことが好ましい。また、これらの範囲のビニル芳香族化合物単位含有量を有する1種の(e1)成分のみならず、2種以上の異なるビニル芳香族化合物単位含有量を有する(e1)成分を併用することができる。
(Content of vinyl aromatic compound unit in component (e1))
(E1) The second hydrogenated block copolymer preferably contains 20 to 70% by mass of vinyl aromatic compound units (hydrogenated block copolymer constituent units derived from vinyl aromatic compounds). Further, not only one (e1) component having a vinyl aromatic compound unit content in these ranges but also two or more different (e1) components having a different vinyl aromatic compound unit content can be used in combination. .
 <(e2)成分>
 また、(e2)第二の変性水添ブロック共重合体は、例えば、前記(e1)第二の水添ブロック共重合体と、α,β-不飽和カルボン酸又はその誘導体(エステル化合物や酸無水物化合物)とをラジカル発生剤の存在下又は非存在下に、溶融状態、溶液状態又はスラリー状態で、80~350℃で反応させることによって得られる変性水添ブロック共重合体をいう。この場合、α,β-不飽和カルボン酸又はその誘導体が0.01~10質量%の割合で前記(e1)第二の水添ブロック共重合体にグラフト化又は付加していることが好ましい。
<(E2) component>
The (e2) second modified hydrogenated block copolymer includes, for example, the (e1) second hydrogenated block copolymer and an α, β-unsaturated carboxylic acid or derivative thereof (ester compound or acid). A modified hydrogenated block copolymer obtained by reacting an anhydride compound) with a radical generator in the presence or absence of a melt, solution or slurry at 80 to 350 ° C. In this case, the α, β-unsaturated carboxylic acid or derivative thereof is preferably grafted or added to the (e1) second hydrogenated block copolymer in a proportion of 0.01 to 10% by mass.
 (e1)第二の水添ブロック共重合体と(e2)第二の変性水添ブロック共重合体とを併用する場合、(e)第二の水添ブロック共重合体系樹脂中の(e1)第二の水添ブロック共重合体と(e2)第二の変性水添ブロック共重合体との混合割合は特に制限されずに決定できる。 When (e1) the second hydrogenated block copolymer and (e2) the second modified hydrogenated block copolymer are used in combination, (e) (e1) in the second hydrogenated block copolymer resin The mixing ratio of the second hydrogenated block copolymer and (e2) the second modified hydrogenated block copolymer can be determined without particular limitation.
 <数平均分子量>
 (e)成分の数平均分子量(Mne)は、好ましくは5,000~1,000,000であり、より好ましくは100,000以下である。Mneを1,000,000以下とすると、樹脂組成物における(e)第二の水添ブロック共重合体系樹脂の役割があくまでも、(a)ポリプロピレン系樹脂、(b)ポリフェニレンエーテル系樹脂及び(c)第一の水添ブロック共重合体系樹脂からなる群より選択される2種以上の樹脂間の耐衝撃付与剤としての役割となる傾向にある。すなわち、粘度が高いポリマー(ポリプロピレン)-ポリマー(ポリフェニレンエーテル)-ポリマー(第一の水添ブロック共重合体)の溶融バルク状態での乳化の際に、耐衝撃付与剤としての(e)第二の水添ブロック共重合体系樹脂が溶融混合系内で好ましく拡散させるため、(e)第二の水添ブロック共重合体系樹脂の溶融粘度を考慮して、(e)成分の数平均分子量(Mne)は、5,000~1,000,000であることが好ましく、100,000以下であることがより好ましい。
<Number average molecular weight>
The number average molecular weight (Mne) of the component (e) is preferably 5,000 to 1,000,000, more preferably 100,000 or less. When Mne is 1,000,000 or less, the role of (e) the second hydrogenated block copolymer resin in the resin composition is only (a) polypropylene resin, (b) polyphenylene ether resin and (c ) It tends to serve as an impact resistance imparting agent between two or more resins selected from the group consisting of the first hydrogenated block copolymer resins. That is, when emulsifying a polymer (polypropylene) -polymer (polyphenylene ether) -polymer (first hydrogenated block copolymer) having a high viscosity in a molten bulk state, (e) second as an impact resistance imparting agent. (E) The number average molecular weight (Mne) of the component (e) in consideration of the melt viscosity of the second hydrogenated block copolymer resin. ) Is preferably 5,000 to 1,000,000, and more preferably 100,000 or less.
 (e)成分の数平均分子量(Mne)を前記範囲に制御する方法としては、特に限定されないが、例えば、(e)成分の重合工程における触媒量を調整する方法が挙げられる。 The method of controlling the number average molecular weight (Mne) of the component (e) within the above range is not particularly limited, and examples thereof include a method of adjusting the catalyst amount in the polymerization step of the component (e).
 なお、本実施の形態において、(e)成分の数平均分子量(Mne)は、昭和電工(株)製ゲルパーミエーションクロマトグラフィー System21を用いて以下の条件で測定することができる。該測定において、カラムとして、昭和電工(株)製K-Gを1本、K-800RLを1本、さらにK-800Rを1本の順番で直列につないだカラムを用い、カラム温度を40℃とし、溶媒をクロロホルムとし、溶媒流量を10mL/分とし、サンプル濃度を、水添ブロック共重合体1g/クロロホルム溶液1リットルとする。また、標準ポリスチレン(標準ポリスチレンの分子量は、3650000、2170000、1090000、681000、204000,52000、30200、13800,3360、1300,550)を用いて検量線を作成する。さらに、検出部のUV(紫外線)の波長は、標準ポリスチレン及び水添ブロック共重合体共に254nmに設定して測定する。 In addition, in this Embodiment, the number average molecular weight (Mne) of (e) component can be measured on condition of the following using the gel permeation chromatography System21 by Showa Denko KK. In this measurement, a column in which one KG manufactured by Showa Denko KK, one K-800RL and one K-800R were connected in series was used as the column, and the column temperature was 40 ° C. The solvent is chloroform, the solvent flow rate is 10 mL / min, and the sample concentration is 1 g of hydrogenated block copolymer / 1 liter of chloroform solution. Moreover, a calibration curve is prepared using standard polystyrene (the molecular weight of standard polystyrene is 3650000, 217000, 1090000, 681000, 204000, 52000, 30200, 13800, 3360, 1300, 550). Further, the UV (ultraviolet) wavelength of the detection unit is measured by setting both standard polystyrene and hydrogenated block copolymer to 254 nm.
 なお、(e)第二の水添ブロック共重合体系樹脂を形成する重合体ブロックAの数平均分子量(MneA)は、例えば、(e)成分がA-B-A型構造の場合、上記した(e)成分の数平均分子量(Mne)を基に、(e)成分の分子量分布が1、さらにビニル芳香族化合物を主体とする重合体ブロックAの2つが同一分子量として存在することを前提とし、(MneA)=(Mne)×結合ビニル芳香族化合物量の割合÷2の計算式で求めることができる。同様に、(e)成分がA-B-A-B-A型の水添ブロック共重合体の場合は、(MneA)=(Mne)×結合ビニル芳香族化合物量の割合÷3の計算式で求めることができる。なお、ビニル芳香族化合物-共役ジエン化合物ブロック共重合体を合成する段階で、上記したブロック構造A及びブロック構造Bのシーケンスが明確になっている場合は、上記計算式に依存せずに、測定した(e)成分の数平均分子量(Mne)をベースにブロック構造Aの割合から算出しても構わない。 The number average molecular weight (MneA) of the polymer block A forming the second hydrogenated block copolymer resin (e) is, for example, as described above when the component (e) has an ABA type structure. Based on the number average molecular weight (Mne) of the component (e), it is assumed that the molecular weight distribution of the component (e) is 1, and that two polymer blocks A mainly composed of vinyl aromatic compounds exist as the same molecular weight. , (MneA) = (Mne) × bonded vinyl aromatic compound amount ratio ÷ 2. Similarly, when the component (e) is an ABABABA type hydrogenated block copolymer, (MneA) = (Mne) × the ratio of the amount of bound vinyl aromatic compound ÷ 3 Can be obtained. When the sequence of the block structure A and the block structure B is clear at the stage of synthesizing the vinyl aromatic compound-conjugated diene compound block copolymer, the measurement is performed without depending on the above calculation formula. It may be calculated from the ratio of the block structure A based on the number average molecular weight (Mne) of the component (e).
 (e)成分を形成する重合体ブロックAの数平均分子量(MneA)は、好ましくは5,000~25,000であり、より好ましくは5,000~14,000である。 The number average molecular weight (MneA) of the polymer block A forming the component (e) is preferably 5,000 to 25,000, more preferably 5,000 to 14,000.
 <ビニル芳香族化合物単位の含有量>
 また、(e)成分中におけるビニル芳香族化合物単位(ビニル芳香族化合物由来の水添ブロック共重合体構成単位)の含有量は、20~70質量%であることが好ましく、より好ましくは20~60質量%、さらに好ましくは20~40質量%である。(e)成分中におけるビニル芳香族化合物単位の含有量が20質量%以上であると、樹脂組成物の機械的強度が向上する傾向にあり、70質量%以下であると、耐熱性と耐衝撃性とのバランスに優れる樹脂組成物が得られる傾向にある。
<Content of vinyl aromatic compound unit>
In addition, the content of the vinyl aromatic compound unit (hydrogenated block copolymer-derived structural unit derived from the vinyl aromatic compound) in the component (e) is preferably 20 to 70% by mass, and more preferably 20 to 70% by mass. 60% by mass, more preferably 20 to 40% by mass. When the content of the vinyl aromatic compound unit in the component (e) is 20% by mass or more, the mechanical strength of the resin composition tends to be improved, and when it is 70% by mass or less, heat resistance and impact resistance. There exists a tendency to obtain the resin composition which is excellent in balance with property.
 [各成分の含有割合]
 本実施の形態の樹脂組成物において、(d)成分を含有させる場合、(c)第一の水添ブロック共重合体系樹脂と(d)エチレン-α-オレフィン共重合体ゴムとの質量比率((c):(d))は、(b)ポリフェニレンエーテル系樹脂が(a)ポリプロピレン系樹脂を含むマトリックス中に安定した乳化分散状態となったポリマーアロイを得る観点から、好ましくは1:99~99:1であり、より好ましくは10:90~90:10であり、さらに好ましくは20:80~80:20であり、特に好ましくは30:70~70:30である。
[Content ratio of each component]
In the resin composition of the present embodiment, when the component (d) is contained, the mass ratio of (c) the first hydrogenated block copolymer resin and (d) the ethylene-α-olefin copolymer rubber ( (C): (d)) is preferably used from the viewpoint of obtaining a polymer alloy in which the (b) polyphenylene ether resin is stably emulsified and dispersed in the matrix containing the (a) polypropylene resin. 99: 1, more preferably 10:90 to 90:10, still more preferably 20:80 to 80:20, and particularly preferably 30:70 to 70:30.
 また、本実施の形態の樹脂組成物において、前記(c)及び(d)成分の合計含有量は、前記(a)及び(b)成分の合計含有量100質量部に対して、好ましくは1~50質量部であり、より好ましくは2~45質量部であり、さらに好ましくは3~40質量部であり、特に好ましくは10~30質量部である。前記(c)及び(d)成分の合計含有量が前記範囲内であると、耐熱性及び耐衝撃性に優れる樹脂組成物が得られる傾向にある。 In the resin composition of the present embodiment, the total content of the components (c) and (d) is preferably 1 with respect to 100 parts by mass of the total content of the components (a) and (b). -50 parts by mass, more preferably 2-45 parts by mass, still more preferably 3-40 parts by mass, and particularly preferably 10-30 parts by mass. When the total content of the components (c) and (d) is within the above range, a resin composition excellent in heat resistance and impact resistance tends to be obtained.
 また、本実施の形態の樹脂組成物において、(e)成分を含有させる場合、(c)第一の水添ブロック共重合体系樹脂と併用可能な上記の(e)第二の水添ブロック共重合体系樹脂との質量比率((c):(e))は、(b)ポリフェニレンエーテル系樹脂が(a)ポリプロピレン系樹脂マトリックス中に安定した乳化分散状態となったポリマーアロイを得る観点から、好ましくは1:99~99:1であり、より好ましくは10:90~90:10であり、さらに好ましくは20:80~80:20であり、特に好ましくは30:70~70:30である。 In addition, in the resin composition of the present embodiment, when the component (e) is contained, (c) the second hydrogenated block copolymer (c) that can be used in combination with the first hydrogenated block copolymer resin. From the viewpoint of obtaining a polymer alloy in which (b) the polyphenylene ether resin is in a stable emulsified dispersion state in the (a) polypropylene resin matrix, the mass ratio ((c) :( e)) to the polymer resin is: The ratio is preferably 1:99 to 99: 1, more preferably 10:90 to 90:10, still more preferably 20:80 to 80:20, and particularly preferably 30:70 to 70:30. .
 また、本実施の形態の樹脂組成物において、前記(c)及び(e)成分の合計含有量は、前記(a)及び(b)成分の合計含有量100質量部に対して、好ましくは1~50質量部であり、より好ましくは2~45質量部であり、さらに好ましくは3~40質量部であり、特に好ましくは10~30質量部である。前記(c)及び(e)成分の合計含有量が前記範囲内であると、樹脂組成物の耐熱性の観点で好ましい。 In the resin composition of the present embodiment, the total content of the components (c) and (e) is preferably 1 with respect to 100 parts by mass of the total content of the components (a) and (b). -50 parts by mass, more preferably 2-45 parts by mass, still more preferably 3-40 parts by mass, and particularly preferably 10-30 parts by mass. It is preferable from the viewpoint of heat resistance of the resin composition that the total content of the components (c) and (e) is within the above range.
 さらに、本実施の形態の樹脂組成物において、前記(a)及び(b)成分の質量比率((a):(b))は、好ましくは25:75~99:1であり、より好ましくは27:73~95:5であり、さらに好ましくは26:74~92:8であり、特に好ましくは、30:70~50:50である。前記(a)及び(b)成分の質量比率が前記範囲内であると、樹脂組成物の耐熱性及び耐衝撃性の点で好ましい。 Furthermore, in the resin composition of the present embodiment, the mass ratio ((a) :( b)) of the components (a) and (b) is preferably 25:75 to 99: 1, more preferably 27:73 to 95: 5, more preferably 26:74 to 92: 8, and particularly preferably 30:70 to 50:50. It is preferable in terms of heat resistance and impact resistance of the resin composition that the mass ratio of the components (a) and (b) is within the above range.
 [(f)成分]
 本実施の形態の樹脂組成物は、耐衝撃性改良の観点から、任意成分として、(f)第三の水添ブロック共重合体系樹脂(以下、「(f)成分」ともいう。)をさらに含んでいてもよい。
[Component (f)]
The resin composition of the present embodiment further includes (f) a third hydrogenated block copolymer resin (hereinafter also referred to as “component (f)”) as an optional component from the viewpoint of improving impact resistance. May be included.
 本実施の形態の樹脂組成物において、前記(f)成分の含有量は、前記(a)及び(b)成分の合計含有量100質量部に対して、1~15質量部であることが好ましく、2~12質量部であることがより好ましく、3~10質量部であることがさらに好ましい。 In the resin composition of the present embodiment, the content of the component (f) is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b). The amount is more preferably 2 to 12 parts by mass, and further preferably 3 to 10 parts by mass.
 また、本実施の形態の樹脂組成物において、前記(e)及び(f)成分を併用する場合、前記(e)及び(f)成分の質量比率((e):(f))は、好ましくは10:90~90:10であり、より好ましくは20:80~80:20であり、さらに好ましくは、30:70~70:30である。 In the resin composition of the present embodiment, when the components (e) and (f) are used in combination, the mass ratio ((e) :( f)) of the components (e) and (f) is preferably Is 10:90 to 90:10, more preferably 20:80 to 80:20, and still more preferably 30:70 to 70:30.
 本実施の形態に用いる(f)成分は、後述する(f1)第三の水添ブロック共重合体及び/又は(f2)第三の変性水添ブロック共重合体である。 The component (f) used in the present embodiment is (f1) a third hydrogenated block copolymer and / or (f2) a third modified hydrogenated block copolymer described later.
 〈(f1)成分〉
 (f1)第三の水添ブロック共重合体とは、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとを含むブロック共重合体を水素添加してなる水添ブロック共重合体であって、ビニル芳香族化合物単位(ビニル芳香族化合物由来の水添ブロック共重合体構成単位)を10質量%以上30質量%未満含み、共役ジエン化合物単位(共役ジエン化合物由来の水添ブロック共重合体構成単位)の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が25%以上70%未満である。また、前記(f)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が80~100%である。さらに、前記(f1)成分を形成する重合体ブロックAの数平均分子量(Mnf-1A)は、好ましくは4,000~8,000である。
<(F1) component>
(F1) The third hydrogenated block copolymer includes at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer obtained by hydrogenating a block copolymer containing 10% by mass to 30% by mass of a vinyl aromatic compound unit (hydrogenated block copolymer-derived unit derived from a vinyl aromatic compound). The total proportion of 1,2-vinyl bonds and 3,4-vinyl bonds is 25% or more and less than 70% in all bonds of conjugated diene compound units (hydrogenated block copolymer constituent units derived from conjugated diene compounds). It is. In the component (f), the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%. Further, the number average molecular weight (Mnf-1A) of the polymer block A forming the component (f1) is preferably 4,000 to 8,000.
 前記(f1)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合は25%以上70%未満であり、30~60%であることが好ましく、40~60%であることがより好ましく、40~55%であることがさらに好ましい。 In the total bond of the conjugated diene compound unit in the component (f1), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 70%, and 30 to 60%. Preferably, it is 40 to 60%, more preferably 40 to 55%.
 前記(f1)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が前記範囲内であると、得られる樹脂組成物は引張伸びや低温での耐衝撃性が改善される。 When the total proportion of 1,2-vinyl bond and 3,4-vinyl bond in the total bond of the conjugated diene compound unit in the component (f1) is within the above range, the resulting resin composition has a tensile elongation or low temperature. The impact resistance at is improved.
 1,2-ビニル結合及び3,4-ビニル結合の合計割合を上記範囲内に制御する方法としては、特に限定されないが、例えば、(f1)成分の製造において、1,2-ビニル結合量調節剤を添加する方法や、重合温度を調整する方法が挙げられる。 The method for controlling the total ratio of 1,2-vinyl bond and 3,4-vinyl bond within the above range is not particularly limited. For example, in the production of component (f1), the amount of 1,2-vinyl bond is adjusted. Examples thereof include a method of adding an agent and a method of adjusting the polymerization temperature.
 なお、本実施の形態において、1,2-ビニル結合及び3,4-ビニル結合の合計割合は、赤外分光光度計で測定することができる。 In this embodiment, the total ratio of 1,2-vinyl bond and 3,4-vinyl bond can be measured with an infrared spectrophotometer.
 ((f1)第三の水添ブロック共重合体の構造)
 (f1)第三の水添ブロック共重合体の構造は、前記重合体ブロックAを「A」とし、前記重合体ブロックBを「B」とすると、特に限定されないが、例えば、A-B-A型、A-B-A-B型、(A-B-)n-X型(ここで、nは1以上の整数、Xは四塩化ケイ素、四塩化スズなどの多官能カップリング剤の反応残基又は多官能性有機リチウム化合物等の開始剤の残基を示す。)、A-B-A-B-A型等のブロック単位が結合した構造を有するビニル芳香族化合物-共役ジエンブロック共重合体の水素添加物が挙げられる。中でも、A-B-A-B型の構造を有する水添ブロック共重合体がA-B-A型水添ブロック共重合体と比べて流動性に優れるためより好ましい。
((F1) Structure of third hydrogenated block copolymer)
(F1) The structure of the third hydrogenated block copolymer is not particularly limited as long as the polymer block A is “A” and the polymer block B is “B”. A type, ABAB type, (AB-) nX type (where n is an integer of 1 or more, X is a polyfunctional coupling agent such as silicon tetrachloride or tin tetrachloride) A reactive residue or a residue of an initiator such as a polyfunctional organolithium compound.), A vinyl aromatic compound-conjugated diene block having a structure in which block units such as ABABABA type are bonded Examples thereof include hydrogenated products of copolymers. Among them, a hydrogenated block copolymer having an ABAB type structure is more preferable because it has better fluidity than an ABA type hydrogenated block copolymer.
 (重合体ブロックA)
 ビニル芳香族化合物を主体とする重合体ブロックAは、ビニル芳香族化合物のホモ重合体ブロック、又はビニル芳香族化合物と共役ジエン化合物との共重合体ブロックである。重合体ブロックAにおいて「ビニル芳香族化合物を主体とする」とは、重合体ブロックA中にビニル芳香族化合物単位を50質量%を超えて含有することを言い、ビニル芳香族化合物単位を70質量%以上含有することが好ましい。
(Polymer block A)
The polymer block A mainly composed of a vinyl aromatic compound is a homopolymer block of a vinyl aromatic compound or a copolymer block of a vinyl aromatic compound and a conjugated diene compound. In the polymer block A, “mainly composed of a vinyl aromatic compound” means that the polymer block A contains more than 50% by mass of vinyl aromatic compound units, and 70% by mass of vinyl aromatic compound units. % Or more is preferable.
 前記ビニル芳香族化合物としては、特に限定されないが、例えば、スチレン、α-メチルスチレン、ビニルトルエン、p-tert-ブチルスチレン、ジフェニルエチレン等が挙げられる。これらは1種単独で用いてもよいし、2種以上を用いてもよい。上記の中ではスチレンが好ましい。共役ジエン化合物としては、後述の化合物が挙げられ、1種単独で用いてもよいし、2種以上を用いてもよい。 The vinyl aromatic compound is not particularly limited, and examples thereof include styrene, α-methylstyrene, vinyltoluene, p-tert-butylstyrene, and diphenylethylene. These may be used alone or in combination of two or more. Of the above, styrene is preferred. Examples of the conjugated diene compound include the compounds described below, which may be used alone or in combination of two or more.
 (重合体ブロックB)
 共役ジエン化合物を主体とする重合体ブロックBは、共役ジエン化合物のホモ重合体ブロック又は共役ジエン化合物とビニル芳香族化合物とのランダム共重合体ブロックである。重合体ブロックBにおいて「共役ジエン化合物を主体とする」とは、重合体ブロックB中に共役ジエン化合物単位を50質量%を超えて含有することを言い、共役ジエン化合物単位を70質量%以上含有することが好ましい。
(Polymer block B)
The polymer block B mainly composed of a conjugated diene compound is a homopolymer block of a conjugated diene compound or a random copolymer block of a conjugated diene compound and a vinyl aromatic compound. In the polymer block B, “consisting mainly of a conjugated diene compound” means that the polymer block B contains more than 50% by mass of conjugated diene compound units, and contains 70% by mass or more of conjugated diene compound units. It is preferable to do.
 前記共役ジエン化合物としては、特に限定されないが、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。これらは1種単独で用いてもよいし、2種以上を用いてもよい。上記の中でも、ブタジエン、イソプレン及びこれらの組み合わせが好ましい。前記ビニル芳香族化合物としては、前述の化合物が挙げられ、1種単独で用いてもよいし、2種以上を用いてもよい。 The conjugated diene compound is not particularly limited, and examples thereof include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. These may be used alone or in combination of two or more. Among the above, butadiene, isoprene and combinations thereof are preferable. Examples of the vinyl aromatic compound include the aforementioned compounds, and these may be used alone or in combination of two or more.
 重合体ブロックBとしては、共役ジエン化合物単位の全結合量に対する全ビニル結合量の割合が25%以上70%未満である単一の重合体ブロックであってもよく、前記割合が25~45%である共役ジエン化合物を主体とする少なくとも1個の重合体ブロックB1と前記割合が45%以上70%未満である共役ジエン化合物を主体とする少なくとも1個の重合体ブロックB2とを併せ持つ共役ジエン化合物を主体とする重合体ブロックBであってもよい。このようなブロック構造を示すブロック共重合体は、前記重合体ブロックAを「A」とし、前記重合体ブロックB1を「B1」とし、前記重合体ブロックB2を「B2」とすると、例えば、A-B2-B1-Aで示され、調整された各モノマー単位のフィードシーケンスに基づいて全ビニル結合量を制御した公知の重合方法によって得ることができる。 The polymer block B may be a single polymer block in which the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound unit is 25% or more and less than 70%, and the ratio is 25 to 45%. Conjugated diene compound having at least one polymer block B1 mainly composed of a conjugated diene compound and at least one polymer block B2 mainly composed of a conjugated diene compound whose ratio is 45% or more and less than 70% The polymer block B mainly composed of A block copolymer having such a block structure is, for example, when the polymer block A is “A”, the polymer block B1 is “B1”, and the polymer block B2 is “B2”. It can be obtained by a known polymerization method in which the total vinyl bond amount is controlled based on the feed sequence of each monomer unit represented by -B2-B1-A.
 (ブロック共重合体の構造)
 ブロック共重合体の構造としては、前記重合体ブロックAを「A」とし、前記重合体ブロックBを「B」とすると、例えばA-B-A型、A-B-A-B型、B-A-B-A型、(A-B-)n-X型(ここでnは1以上の整数、Xは四塩化ケイ素、四塩化スズなどの多官能カップリング剤の反応残基又は多官能性有機リチウム化合物等の開始剤の残基を示す。)、A-B-A-B-A型等のブロック単位が結合した構造を有するビニル芳香族-共役ジエン化合物のブロック共重合体が好ましい。中でもA-B-A-B型、B-A-B-A型の構造を有するブロック共重合体は、A-B-A型の構造を有するブロック共重合体と比べ(f1)成分としての流動性に優れるためより好ましい。
(Block copolymer structure)
As the structure of the block copolymer, when the polymer block A is “A” and the polymer block B is “B”, for example, ABA type, ABAB type, B -ABA type, (AB-) nX type (where n is an integer of 1 or more, X is a reactive residue or a polyfunctional coupling agent such as silicon tetrachloride or tin tetrachloride) Represents a residue of an initiator such as a functional organolithium compound), and a block copolymer of vinyl aromatic-conjugated diene compound having a structure in which block units such as ABABABA type are bonded. preferable. Among them, the block copolymer having the structure of ABAB type or BABA type is more preferable as the component (f1) than the block copolymer having the structure of ABAA type. Since it is excellent in fluidity | liquidity, it is more preferable.
 前記重合体ブロックAと前記重合体ブロックBとを含むブロック共重合体の分子構造としては、特に制限されず、例えば、直鎖状、分岐状、放射状又はこれらの任意の組み合わせのいずれであってもよい。重合体ブロックAと重合体ブロックBとは、それぞれの重合体ブロックにおける分子鎖中のビニル芳香族化合物又は共役ジエン化合物の分布がランダム、テーパード(分子鎖に沿ってモノマー成分が増加又は減少するもの)、一部ブロック状又はこれらの任意の組み合わせで構成されていてもよい。重合体ブロックA又は重合体ブロックBのいずれかが(f1)成分中に2個以上ある場合は、各重合体ブロックはそれぞれ同一構造であってもよいし、異なる構造であってもよい。 The molecular structure of the block copolymer including the polymer block A and the polymer block B is not particularly limited, and may be, for example, linear, branched, radial, or any combination thereof. Also good. Polymer block A and polymer block B are random and tapered distribution of vinyl aromatic compound or conjugated diene compound in the molecular chain in each polymer block (in which the monomer component increases or decreases along the molecular chain) ), Partly in the form of blocks, or any combination thereof. When two or more polymer blocks A or B are present in the component (f1), the polymer blocks may have the same structure or different structures.
 前記ブロック共重合体において、共役ジエン化合物単位の全結合量に対する全ビニル結合量の割合は、25%以上70%未満であることが好ましく、30~60%であることがより好ましく、40~60%であることがさらに好ましく、40~55%であることが特に好ましい。 In the block copolymer, the ratio of the total vinyl bond amount to the total bond amount of the conjugated diene compound unit is preferably 25% or more and less than 70%, more preferably 30 to 60%, and more preferably 40 to 60%. % Is more preferable, and 40 to 55% is particularly preferable.
 (水素添加率)
 また、(f1)第三の水添ブロック共重合体において、前記ブロック共重合体中のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率としては、80~100%であり、好ましくは90%以上、より好ましくは95%以上である。該水素添加率が上記範囲内であると、良好な耐熱性及び耐候性を有する樹脂組成物を得ることができる。
(Hydrogen addition rate)
In addition, in the (f1) third hydrogenated block copolymer, the hydrogenation rate relative to the ethylenic double bond (double bond in the conjugated diene compound unit) in the block copolymer is 80 to 100%. Yes, preferably 90% or more, more preferably 95% or more. When the hydrogenation rate is within the above range, a resin composition having good heat resistance and weather resistance can be obtained.
 該水素添加率を上記範囲内に制御する方法としては、特に限定されないが、例えば、ブロック共重合体のエチレン性二重結合の水素添加反応において、消費水素量を所望の水素添加率の範囲に制御する方法が挙げられる。 The method for controlling the hydrogenation rate within the above range is not particularly limited. For example, in the hydrogenation reaction of the ethylenic double bond of the block copolymer, the amount of hydrogen consumed is within the desired hydrogenation rate range. The method of controlling is mentioned.
 なお、本実施の形態において、水素添加率は核磁気共鳴(NMR)によって測定することができる。具体的には、後述の実施例に記載の方法により測定することができる。 In the present embodiment, the hydrogenation rate can be measured by nuclear magnetic resonance (NMR). Specifically, it can be measured by the method described in Examples described later.
 (製造方法)
 (f1)第三の水添ブロック共重合体の製造方法としては、特に限定されず、公知の製造方法を用いることができる。公知の製造方法としては、特に限定されないが、例えば、特開昭47-11486号公報、特開昭49-66743号公報、特開昭50-75651号公報、特開昭54-126255号公報、特開昭56-10542号公報、特開昭56-62847号公報、特開昭56-100840号公報、特開平2-300218号公報、英国特許第1130770号明細書、米国特許第3281383号明細書、米国特許第3639517号明細書、英国特許第1020720号明細書、米国特許第3333024号明細書及び米国特許第4501857号明細書に記載の方法が挙げられる。
(Production method)
(F1) It does not specifically limit as a manufacturing method of a 3rd hydrogenated block copolymer, A well-known manufacturing method can be used. Known production methods are not particularly limited. For example, JP-A-47-11486, JP-A-49-66743, JP-A-50-75651, JP-A-54-126255, JP-A-56-10542, JP-A-56-62847, JP-A-56-100840, JP-A-2-300218, British Patent 1130770, US Pat. No. 3,281,383 US Pat. No. 3,639,517, British Patent No. 1,020,720, US Pat. No. 3,330,024 and US Pat. No. 4,501,857.
 〈(f2)成分〉
 また、(f2)第三の変性水添ブロック共重合体は、例えば、前記(f1)第三の水添ブロック共重合体と、α,β-不飽和カルボン酸又はその誘導体(エステル化合物や酸無水物化合物)とをラジカル発生剤の存在下又は非存在下に、溶融状態、溶液状態又はスラリー状態で、80~350℃で反応させることによって得られる変性水添ブロック共重合体をいう。この場合、α,β-不飽和カルボン酸又はその誘導体が0.01~10質量%の割合で前記(f1)第三の水添ブロック共重合体にグラフト化又は付加していることが好ましい。
<(F2) component>
The (f2) third modified hydrogenated block copolymer includes, for example, the above (f1) third hydrogenated block copolymer and an α, β-unsaturated carboxylic acid or a derivative thereof (ester compound or acid). A modified hydrogenated block copolymer obtained by reacting an anhydride compound) with a radical generator in the presence or absence of a melt, solution or slurry at 80 to 350 ° C. In this case, it is preferable that the α, β-unsaturated carboxylic acid or derivative thereof is grafted or added to the (f1) third hydrogenated block copolymer in a proportion of 0.01 to 10% by mass.
 (f1)第三の水添ブロック共重合体と(f2)第三の変性水添ブロック共重合体とを併用する場合、(f)第三の水添ブロック共重合体系樹脂中の(f1)第三の水添ブロック共重合体と(f2)第三の変性水添ブロック共重合体との混合割合は特に制限されずに決定できる。 When (f1) the third hydrogenated block copolymer and (f2) the third modified hydrogenated block copolymer are used in combination, (f1) in the (f) third hydrogenated block copolymer resin The mixing ratio of the third hydrogenated block copolymer and (f2) the third modified hydrogenated block copolymer can be determined without any particular limitation.
 <数平均分子量>
 (f)成分の数平均分子量(Mnf)は、好ましくは5,000~1,000,000であり、より好ましくは100,000以下である。Mnfを1,000,000以下とすると、樹脂組成物における(f)第三の水添ブロック共重合体系樹脂の役割があくまでも、(a)ポリプロピレン系樹脂、(b)ポリフェニレンエーテル系樹脂及び(c)水添ブロック共重合体系樹脂からなる群より選択される2種以上の樹脂間の耐衝撃付与剤としての役割となる傾向にある。すなわち、粘度が高いポリマー(ポリプロピレン)-ポリマー(ポリフェニレンエーテル)-ポリマー(水添ブロック共重合体)の溶融バルク状態での乳化の際に、耐衝撃付与剤としての(f)第三の水添ブロック共重合体系樹脂が溶融混合系内で好ましく拡散させるため、(f)第三の水添ブロック共重合体系樹脂の溶融粘度を考慮して、(f)成分の数平均分子量(Mnf)は、5,000~1,000,000であることが好ましく、100,000以下であることがより好ましい。
<Number average molecular weight>
The number average molecular weight (Mnf) of the component (f) is preferably 5,000 to 1,000,000, more preferably 100,000 or less. When Mnf is 1,000,000 or less, the role of (f) the third hydrogenated block copolymer resin in the resin composition is only (a) polypropylene resin, (b) polyphenylene ether resin and (c ) It tends to serve as an impact resistance imparting agent between two or more kinds of resins selected from the group consisting of hydrogenated block copolymer resins. That is, when emulsifying a polymer (polypropylene) -polymer (polyphenylene ether) -polymer (hydrogenated block copolymer) having a high viscosity in the melt bulk state, (f) a third hydrogenation as an impact resistance imparting agent In order for the block copolymer-based resin to diffuse preferably in the melt-mixed system, (f) considering the melt viscosity of the third hydrogenated block copolymer-based resin, the number average molecular weight (Mnf) of the component (f) is It is preferably 5,000 to 1,000,000, more preferably 100,000 or less.
 (f)成分の数平均分子量(Mnf)を前記範囲に制御する方法としては、特に限定されないが、例えば、(f)成分の重合工程における触媒量を調整する方法が挙げられる。 The method of controlling the number average molecular weight (Mnf) of the component (f) within the above range is not particularly limited, and examples thereof include a method of adjusting the amount of catalyst in the polymerization step of the component (f).
 なお、本実施の形態において、(f)成分の数平均分子量(Mnf)は、昭和電工(株)製ゲルパーミエーションクロマトグラフィー System21を用いて以下の条件で測定することができる。該測定において、カラムとして、昭和電工(株)製K-Gを1本、K-800RLを1本、さらにK-800Rを1本の順番で直列につないだカラムを用い、カラム温度を40℃とし、溶媒をクロロホルムとし、溶媒流量を10mL/分とし、サンプル濃度を、水添ブロック共重合体1g/クロロホルム溶液1リットルとする。また、標準ポリスチレン(標準ポリスチレンの分子量は、3650000、2170000、1090000、681000、204000,52000、30200、13800,3360、1300,550)を用いて検量線を作成する。さらに、検出部のUV(紫外線)の波長は、標準ポリスチレン及び水添ブロック共重合体共に254nmに設定して測定する。 In the present embodiment, the number average molecular weight (Mnf) of the component (f) can be measured under the following conditions using Showa Denko Co., Ltd. Gel Permeation Chromatography System 21. In this measurement, a column in which one KG manufactured by Showa Denko KK, one K-800RL and one K-800R were connected in series was used as the column, and the column temperature was 40 ° C. The solvent is chloroform, the solvent flow rate is 10 mL / min, and the sample concentration is 1 g of hydrogenated block copolymer / 1 liter of chloroform solution. Moreover, a calibration curve is prepared using standard polystyrene (the molecular weight of standard polystyrene is 3650000, 217000, 1090000, 681000, 204000, 52000, 30200, 13800, 3360, 1300, 550). Further, the UV (ultraviolet) wavelength of the detection unit is measured by setting both standard polystyrene and hydrogenated block copolymer to 254 nm.
 また、(f)第三の水添ブロック共重合体系樹脂を形成する重合体ブロックAの数平均分子量(MnfA)は、例えば、(f)成分がA-B-A型構造の場合、上記した(f)成分の数平均分子量(Mnf)を基に、(f)成分の分子量分布が1、さらにビニル芳香族化合物を主体とする重合体ブロックAの2つが同一分子量として存在することを前提とし、(MnfA)=(Mnf)×結合ビニル芳香族化合物量の割合÷2の計算式で求めることができる。同様に、(f)成分がA-B-A-B-A型の水添ブロック共重合体の場合は、(MnfA)=(Mnf)×結合ビニル芳香族化合物量の割合÷3の計算式で求めることができる。なお、ビニル芳香族化合物-共役ジエン化合物ブロック共重合体を合成する段階で、上記したブロック構造A及びブロック構造Bのシーケンスが明確になっている場合は、上記計算式に依存せずに、測定した(f)成分の数平均分子量(Mnf)をベースにブロック構造Aの割合から算出しても構わない。 The number average molecular weight (MnfA) of the polymer block A forming the third hydrogenated block copolymer resin (f) is, for example, as described above when the component (f) has an ABA type structure. Based on the number average molecular weight (Mnf) of the component (f), it is assumed that the molecular weight distribution of the component (f) is 1, and that two polymer blocks A mainly composed of vinyl aromatic compounds exist as the same molecular weight. , (MnfA) = (Mnf) × the ratio of the amount of bonded vinyl aromatic compound ÷ 2. Similarly, when the component (f) is an ABABABA type hydrogenated block copolymer, (MnfA) = (Mnf) × the proportion of the amount of bound vinyl aromatic compound ÷ 3 Can be obtained. When the sequence of the block structure A and the block structure B is clear at the stage of synthesizing the vinyl aromatic compound-conjugated diene compound block copolymer, the measurement is performed without depending on the above calculation formula. It may be calculated from the ratio of the block structure A based on the number average molecular weight (Mnf) of the component (f).
 (f)成分を形成する重合体ブロックAの数平均分子量(MnfA)は、好ましくは4,000~8,000であり、より好ましくは4,500~7,000である。 The number average molecular weight (MnfA) of the polymer block A forming the component (f) is preferably 4,000 to 8,000, more preferably 4,500 to 7,000.
 また、ビニル芳香族化合物を主体とする重合体ブロックAの数平均分子量(MnfA)を4,000~8,000とした(f)第三の水添ブロック共重合体系樹脂は、良好な耐衝撃性を与える機能を有し、得られる樹脂組成物の耐衝撃性に大きな優位性を与えることができる。 In addition, (f) the third hydrogenated block copolymer resin having a number average molecular weight (MnfA) of the polymer block A mainly composed of a vinyl aromatic compound of 4,000 to 8,000 has good impact resistance. It has a function of imparting properties, and can give a great advantage to the impact resistance of the resulting resin composition.
 該数平均分子量(MnfA)を前記範囲に制御する方法としては、特に限定されないが、例えば、重合開始剤の量で調整する方法が挙げられる。 The method of controlling the number average molecular weight (MnfA) within the above range is not particularly limited, and examples thereof include a method of adjusting by the amount of the polymerization initiator.
 <ビニル芳香族化合物単位の含有量>
 また、(f)成分中におけるビニル芳香族化合物単位(ビニル芳香族化合物由来の水添ブロック共重合体構成単位)の含有量は、10質量%以上30質量%未満であり、好ましくは12~25質量%、より好ましくは13~22質量%である。(f)成分中におけるビニル芳香族化合物単位の含有量が10質量%以上であると、樹脂組成物の機械的強度が向上する傾向にあり、30質量%未満であると、耐熱性と耐衝撃性とのバランスに優れる樹脂組成物が得られる傾向にある。
<Content of vinyl aromatic compound unit>
Further, the content of the vinyl aromatic compound unit (hydrogenated block copolymer-derived structural unit derived from the vinyl aromatic compound) in the component (f) is 10% by mass or more and less than 30% by mass, preferably 12 to 25%. % By mass, more preferably 13 to 22% by mass. When the content of the vinyl aromatic compound unit in the component (f) is 10% by mass or more, the mechanical strength of the resin composition tends to be improved, and when it is less than 30% by mass, the heat resistance and impact resistance are increased. There exists a tendency to obtain the resin composition which is excellent in balance with property.
 [モルフォロジー]
 本実施の形態の樹脂組成物は、(a)成分を含むマトリックス相と、(b)成分を含む分散相とを有することが好ましい。このようなモルフォロジーは、透過型電子顕微鏡によって確認することができる。
[Morphology]
The resin composition of the present embodiment preferably has a matrix phase containing the component (a) and a dispersed phase containing the component (b). Such a morphology can be confirmed by a transmission electron microscope.
 マトリックス相は、(a)成分単独で構成されていてもよい。分散相は、(b)成分単独でもよいし、例えば、(b)成分と、(c)成分と、(d)成分及び/又は(e)成分とから構成されていてもよい。この場合、本実施の形態の樹脂組成物は、マトリックス相((a)成分)と、分散相((b)成分単独、又は(b)成分、(c)成分、(d)成分及び/又は(e)成分等)を構成する分散粒子とを有する。(c)成分、(d)成分及び/又は(e)成分は、分散相中に包含されているだけでなく、本実施の形態の効果が損なわれない程度に、マトリックス相中にも包含されていてもよい。本実施の形態の樹脂組成物において、このようなモルフォロジーをとることで、マトリックス相及び/又は分散相に含まれる(c)成分、(d)成分及び/又は(e)成分が、一層耐衝撃性の向上に有効な分散状態をとることができ、本実施の形態の効果が一層向上するものと推測される(但し、本実施の形態の作用はこれに限定されない。)。 The matrix phase may be composed of component (a) alone. The dispersed phase may be the component (b) alone, or may be composed of, for example, the component (b), the component (c), the component (d), and / or the component (e). In this case, the resin composition of the present embodiment includes a matrix phase (component (a)) and a dispersed phase (component (b) alone, or component (b), component (c), component (d) and / or (E) the dispersed particles constituting the component and the like). The component (c), the component (d) and / or the component (e) are not only included in the dispersed phase, but are also included in the matrix phase to the extent that the effects of the present embodiment are not impaired. It may be. In the resin composition of the present embodiment, by taking such a morphology, the component (c), the component (d) and / or the component (e) contained in the matrix phase and / or the dispersed phase are further impact resistant. It is presumed that a dispersion state effective for improving the property can be taken and the effect of the present embodiment is further improved (however, the operation of the present embodiment is not limited to this).
 [(h)他の成分]
 本実施の形態の樹脂組成物においては、(b)ポリフェニレンエーテル系樹脂と、ポリスチレン、シンジオタクチックポリスチレン及びハイインパクトポリスチレンからなる群より選択される少なくとも1種との混合物も好適に用いることができる。
 より好適には、(b)ポリフェニレンエーテル系樹脂100質量部に対して、ポリスチレン、シンジオタクチックポリスチレン及びハイインパクトポリスチレンからなる群より選択される少なくとも1種が、好ましくは400質量部以下、より好ましくは100質量部以下、さらに好ましくは50質量部以下、特に好ましくは10質量部以下の範囲で混合した混合物を用いることができる。
 本実施の形態の樹脂組成物においては、上記の成分の他に、本実施の形態の効果を損なわない範囲で、必要に応じて他の付加的成分を添加してもかまわない。このような他の付加的成分としては、特に限定されないが、例えば、ビニル芳香族化合物-共役ジエン化合物のブロック共重合体、(c)、(e)及び(f)成分に該当しないビニル芳香族化合物-共役ジエン化合物の水素添加ブロック共重合体、(d)成分に該当しないオレフィン系エラストマー、酸化防止剤、金属不活性化剤、熱安定剤、難燃剤(有機リン酸エステル系化合物、ポリリン酸アンモニウム系化合物、ポリリン酸メラミン系化合物、ホスフィン酸塩類、水酸化マグネシウム、芳香族ハロゲン系難燃剤、シリコーン系難燃剤等)、フッ素系ポリマー、可塑剤(低分子量ポリエチレン、エポキシ化大豆油、ポリエチレングリコール、脂肪酸エステル類等)、三酸化アンチモン等の難燃助剤、耐候(光)性改良剤、ポリオレフィン用造核剤、スリップ剤、無機又は有機の充填材や強化材(チョップドストランドガラス繊維、ガラス長繊維、CF長繊維、ポリアクリロニトリル繊維、ガラスフレーク、ガラスビーズ、カーボンブラック、酸化チタン、炭酸カルシウム、タルク、マイカ、ウィスカ、クレイ、水酸化マグネシウム、硫酸マグネシウム及びその繊維、シリカ、ワラストナイト導電性金属繊維、導電性カーボンブラック等)、各種着色剤、離型剤等が挙げられる。
[(H) Other ingredients]
In the resin composition of the present embodiment, a mixture of (b) a polyphenylene ether resin and at least one selected from the group consisting of polystyrene, syndiotactic polystyrene, and high impact polystyrene can also be used suitably. .
More preferably, at least one selected from the group consisting of polystyrene, syndiotactic polystyrene and high-impact polystyrene is preferably 400 parts by mass or less, more preferably 100 parts by mass of (b) polyphenylene ether resin. Can be used in the range of 100 parts by mass or less, more preferably 50 parts by mass or less, particularly preferably 10 parts by mass or less.
In the resin composition of the present embodiment, in addition to the above components, other additional components may be added as necessary within the range not impairing the effects of the present embodiment. Examples of such other additional components include, but are not limited to, vinyl aromatic compounds-conjugated diene compound block copolymers, vinyl aromatics not corresponding to components (c), (e), and (f). Compound-hydrogenated block copolymer of conjugated diene compound, olefin elastomer not corresponding to component (d), antioxidant, metal deactivator, heat stabilizer, flame retardant (organophosphate ester compound, polyphosphoric acid Ammonium compounds, melamine polyphosphate compounds, phosphinates, magnesium hydroxide, aromatic halogen flame retardants, silicone flame retardants, etc., fluoropolymers, plasticizers (low molecular weight polyethylene, epoxidized soybean oil, polyethylene glycol) Flame retardants such as antimony trioxide, weather resistance (light) improver, polyolefin Nucleating agent, slip agent, inorganic or organic filler or reinforcing material (chopped strand glass fiber, glass long fiber, CF long fiber, polyacrylonitrile fiber, glass flake, glass beads, carbon black, titanium oxide, calcium carbonate, talc Mica, whisker, clay, magnesium hydroxide, magnesium sulfate and its fiber, silica, wollastonite conductive metal fiber, conductive carbon black, etc.), various colorants, release agents and the like.
 [損失正接(tanδ)]
 本実施の形態に係わる樹脂組成物は、下記測定方法により得られる-50℃の損失正接(-50℃tanδ)と、0℃の損失正接(0℃tanδ)との比(-50℃tanδ/0℃tanδ)が、好ましくは0.39以上、より好ましくは0.41以上、さらに好ましくは0.42以上である。
<損失正接(tanδ)の測定>
樹脂組成物から得られるISO試験片について、粘弾性測定機を用いて、引張りモード、振動周波数:10Hz、静的負荷歪み:0.2%、動的負荷歪み:0.1%、接触荷重:0.5N、昇温速度:3℃/分、温度範囲:-100℃~160℃の温度掃引モードにおいて測定した際の-50℃及び0℃における損失正接(tanδ)。
[Loss tangent (tan δ)]
The resin composition according to the present embodiment has a ratio (−50 ° C. tan δ /) of a loss tangent (−50 ° C. tan δ) at −50 ° C. obtained by the following measurement method to a loss tangent at 0 ° C. (0 ° C. tan δ). 0 ° C. tan δ) is preferably 0.39 or more, more preferably 0.41 or more, and further preferably 0.42 or more.
<Measurement of loss tangent (tan δ)>
About the ISO test piece obtained from a resin composition, using a viscoelasticity measuring machine, tension mode, vibration frequency: 10 Hz, static load strain: 0.2%, dynamic load strain: 0.1%, contact load: Loss tangent (tan δ) at −50 ° C. and 0 ° C. when measured in a temperature sweep mode of 0.5 N, heating rate: 3 ° C./min, temperature range: −100 ° C. to 160 ° C.
 当該比(-50℃tanδ/0℃tanδ)は高いほど好ましいが、上限としては、例えば1.50である。当該比(-50℃tanδ/0℃tanδ)を0.39以上にすることにより、0℃以下の樹脂組成物の低温衝撃性を向上させることができる。 The ratio (−50 ° C. tan δ / 0 ° C. tan δ) is preferably as high as possible, but the upper limit is, for example, 1.50. By setting the ratio (−50 ° C. tan δ / 0 ° C. tan δ) to 0.39 or more, the low temperature impact property of the resin composition at 0 ° C. or less can be improved.
 また、本実施の形態に係わる樹脂組成物は、(e)成分を含む場合、下記測定方法により得られる-45℃の損失正接(-45℃tanδ)と、0℃の損失正接(0℃tanδ)との比(-45℃tanδ/0℃tanδ)が、好ましくは0.41以上、より好ましくは0.45以上、さらに好ましくは0.50以上である。
<損失正接(tanδ)の測定>
樹脂組成物から得られるISO試験片について、粘弾性測定機を用いて、引張りモード、振動周波数:10Hz、静的負荷歪み:0.2%、動的負荷歪み:0.1%、接触荷重:0.5N、昇温速度:3℃/分、温度範囲:-100℃~160℃の温度掃引モードにおいて測定した際の-45℃及び0℃における損失正接(tanδ)。
When the resin composition according to the present embodiment includes the component (e), a loss tangent of −45 ° C. (−45 ° C. tan δ) obtained by the following measurement method and a loss tangent of 0 ° C. (0 ° C. tan δ) ) (−45 ° C. tan δ / 0 ° C. tan δ) is preferably 0.41 or more, more preferably 0.45 or more, and further preferably 0.50 or more.
<Measurement of loss tangent (tan δ)>
About the ISO test piece obtained from a resin composition, using a viscoelasticity measuring machine, tension mode, vibration frequency: 10 Hz, static load strain: 0.2%, dynamic load strain: 0.1%, contact load: Loss tangent (tan δ) at −45 ° C. and 0 ° C. when measured in a temperature sweep mode of 0.5 N, heating rate: 3 ° C./min, temperature range: −100 ° C. to 160 ° C.
 当該比(-45℃tanδ/0℃tanδ)は高いほど好ましいが、上限としては、例えば1.50である。当該比(-45℃tanδ/0℃tanδ)を0.41以上にすることにより、0℃以下の樹脂組成物の低温衝撃性を向上させることができる。 The ratio (−45 ° C. tan δ / 0 ° C. tan δ) is preferably as high as possible, but the upper limit is, for example, 1.50. By setting the ratio (−45 ° C. tan δ / 0 ° C. tan δ) to 0.41 or more, the low-temperature impact property of the resin composition at 0 ° C. or less can be improved.
 当該比(-45℃tanδ/0℃tanδ)が前記範囲内である樹脂組成物は、例えば、(a)ポリプロピレン系樹脂及び(b)ポリフェニレンエーテル系樹脂に、上述した特定の2種の水添ブロック共重合体系樹脂(c)及び(e)を添加することにより得ることができる。 The resin composition in which the ratio (−45 ° C. tan δ / 0 ° C. tan δ) is within the above range includes, for example, (a) a polypropylene-based resin and (b) a polyphenylene ether-based resin, as described above. It can be obtained by adding block copolymer resins (c) and (e).
 ≪樹脂組成物の製造方法≫
 本実施の形態の樹脂組成物は、例えば、上述した(a)~(c)成分と、(d)及び/又は(e)成分とを含む原料を溶融混練して得られる。溶融混練機は、特に限定されず、公知の混練機を用いることができ、例えば、単軸押出機、二軸押出機を含む多軸押出機、ロール、ニーダー、ブラベンダープラストグラフ、バンバリーミキサー等による加熱溶融混練機が挙げられる。上記の中でも、二軸押出機が好ましい。具体的には、コペリオン社製のZSKシリーズ、東芝機械(株)製のTEMシリーズ、日本製鋼所(株)製のTEXシリーズ等を用いることができる。
≪Method for producing resin composition≫
The resin composition of the present embodiment can be obtained, for example, by melt-kneading a raw material containing the components (a) to (c) described above and the components (d) and / or (e). The melt kneader is not particularly limited, and a known kneader can be used. For example, a single screw extruder, a multi-screw extruder including a twin screw extruder, a roll, a kneader, a Brabender plastograph, a Banbury mixer, etc. And a hot melt kneader. Among the above, a twin screw extruder is preferable. Specifically, the ZSK series manufactured by Coperion, the TEM series manufactured by Toshiba Machine Co., Ltd., the TEX series manufactured by Nippon Steel Works, Ltd., and the like can be used.
 また、押出機を用いる場合であれば、その種類や規格等は特に限定されず、適宜に公知の押出機を用いることができる。押出機のL/D(バレル有効長/バレル内径)は、好ましくは20以上75以下の範囲であり、より好ましくは30以上60以下の範囲である。 Further, if an extruder is used, the type and standard thereof are not particularly limited, and a known extruder can be used as appropriate. The L / D (barrel effective length / barrel inner diameter) of the extruder is preferably in the range of 20 to 75, more preferably in the range of 30 to 60.
 押出機は原料の流れ方向に対し上流側に第1原料供給口、これより下流に第1真空ベント、その下流に第2原料供給口を設け、さらにその下流に第2真空ベントを設けた押出機や、上流側に第1原料供給口、これより下流に第1真空ベント、その下流に第2及び第3原料供給口を設け、さらにその下流に第2真空ベントを設けた押出機等が好ましい。 The extruder is provided with a first raw material supply port on the upstream side with respect to the flow direction of the raw material, a first vacuum vent on the downstream side, a second raw material supply port on the downstream side, and a second vacuum vent on the downstream side. An extruder having a first raw material supply port upstream, a first vacuum vent downstream thereof, a second and third raw material supply ports downstream thereof, and a second vacuum vent downstream thereof; preferable.
 上記の中でも、第1真空ベントの上流にニーディングセクションを設け、第1真空ベントと第2原料供給口との間にニーディングセクションを設け、さらに第2原料供給口と第2真空ベントとの間にニーディングセクションを設けた押出機や、第1真空ベントの上流にニーディングセクションを設け、第1真空ベントと第2原料供給口との間にニーディングセクションを設け、さらに第2原料供給口と第3原料供給口との間にニーディングセクションを設け、第2原料供給口と第2真空ベントとの間にニーディングセクションを設けた押出機がより好ましい。 Among these, a kneading section is provided upstream of the first vacuum vent, a kneading section is provided between the first vacuum vent and the second raw material supply port, and the second raw material supply port and the second vacuum vent are further connected. Extruder with a kneading section in between, a kneading section upstream of the first vacuum vent, a kneading section between the first vacuum vent and the second raw material supply port, and a second raw material supply More preferred is an extruder in which a kneading section is provided between the mouth and the third raw material supply port, and a kneading section is provided between the second raw material supply port and the second vacuum vent.
 また、第2及び第3原料供給口への原料供給方法は、特に限定されず、押出機の第2及び第3原料供給口の開放口からの単なる添加供給よりも、押出機サイド開放口から強制サイドフィーダーを用いて供給する方が安定で好ましい。 Moreover, the raw material supply method to a 2nd and 3rd raw material supply port is not specifically limited, Rather than the mere addition supply from the open port of the 2nd and 3rd raw material supply port of an extruder, it is from an extruder side open port. It is more stable and preferable to supply using a forced side feeder.
 (a)~(c)成分と、(d)及び/又は(e)成分とを含む原料を溶融混練する方法としては、複数のフィード口を有する二軸押出機を用い、下記の(1-1)工程と(1-2)工程と、を含む方法1が好ましい。 As a method of melt-kneading the raw material containing the components (a) to (c) and the components (d) and / or (e), a twin screw extruder having a plurality of feed ports is used and the following (1- The method 1 including the steps 1) and (1-2) is preferred.
 (1-1):(b)成分の全量と、(a)成分の一部又は全量と、(c)成分の一部又は全量と、(d)及び/又は(e)成分の一部又は全量とを溶融混練する工程(ただし、(a)成分と、(c)成分と、(d)及び/又は(e)成分とからなる群より選択される少なくとも一成分は、一部だけ用いる。)。
 (1-2):(1-1)工程で得られた混練物に対して、(a)成分と、(c)成分と、(d)及び/又は(e)成分とからなる群より選択される少なくとも一成分の残量を溶融混練する工程。
(1-1): the total amount of the component (b), the part or the total amount of the component (a), the part or the total amount of the component (c), and the part of the component (d) and / or (e) or The step of melt-kneading the whole amount (however, at least one component selected from the group consisting of the component (a), the component (c), the component (d) and / or the component (e)) is used only partially. ).
(1-2): selected from the group consisting of component (a), component (c), and component (d) and / or (e) for the kneaded product obtained in step (1-1) Melting and kneading the remaining amount of at least one component.
 また、(a)~(c)成分と、(d)及び/又は(e)成分とを含む原料を溶融混練する方法として、複数のフィード口を有する二軸押出機を用い、下記の(2-1)工程~(2-3)工程を含む方法2がより好ましい。 Further, as a method of melt kneading a raw material containing the components (a) to (c) and the components (d) and / or (e), a twin screw extruder having a plurality of feed ports is used. The method 2 including the steps -1) to (2-3) is more preferable.
 (2-1):(b)成分の全量と、(a)成分の一部又は全量と、(c)成分の一部又は全量とを溶融混練する工程。
 (2-2):(2-1)工程で得られた混練物に対して、(a)成分及び(c)成分からなる群より選択される少なくとも一成分の残量と、(d)及び/又は(e)成分の一部又は全量を添加し、溶融混練する工程。
 (2-3):(2-2)工程で得られた混練物に対して、(d)及び/又は(e)成分の残量を添加し、溶融混練する工程(ただし、(2-2)工程で(d)及び(e)成分の全量を添加した場合を除く。)。
(2-1): A step of melt-kneading the total amount of component (b), a part or all of component (a), and a part or all of component (c).
(2-2): With respect to the kneaded material obtained in the step (2-1), the remaining amount of at least one component selected from the group consisting of the component (a) and the component (c), and (d) and Step of adding a part or all of the component (e) and melt-kneading.
(2-3): Step of adding the remaining amount of component (d) and / or (e) to the kneaded product obtained in step (2-2), and melt-kneading (however, (2-2 ) Except when the total amount of components (d) and (e) is added in step).
 また、(a)~(c)成分と、(d)及び/又は(e)成分とを含む原料を溶融混練する方法として、複数のフィード口を有する二軸押出機を用い、下記の(3-1)工程~(3―3)工程を含む方法3がさらに好ましい。 Further, as a method of melt kneading a raw material containing the components (a) to (c) and the components (d) and / or (e), a twin screw extruder having a plurality of feed ports is used. The method 3 including the steps -1) to (3-3) is more preferable.
 (3-1):(b)成分の全量と、(a)成分の一部又は全量と、(c)成分の一部又は全量とを溶融混練する工程。
 (3-2):(3-1)工程で得られた混練物に対して、(a)成分及び(c)成分からなる群より選択される少なくとも一成分の残量を添加し、溶融混練する工程。
 (3―3):(3-2)工程で得られた混練物に対して、(d)及び/又は(e)成分の全量を添加し、溶融混練する工程。
(3-1): A step of melt-kneading the total amount of component (b), a part or all of component (a), and a part or all of component (c).
(3-2): The remaining amount of at least one component selected from the group consisting of component (a) and component (c) is added to the kneaded product obtained in step (3-1), and melt-kneaded. Process.
(3-3): A step of adding the total amount of the components (d) and / or (e) to the kneaded product obtained in the step (3-2) and melt-kneading.
 溶融混練温度、スクリュー回転数は特に限定されないが、通常、溶融混練温度200~370℃、スクリュー回転数100~1200rpmの中から適宜に選ぶことができる。なお、原料中に(e)、(f)及び(h)成分を含む場合、これらの成分の投入方法は特に限定されないが、(e)及び(f)成分は第2原料供給口及び/又は第3原料供給口から投入することが好ましい。 The melt-kneading temperature and the screw rotation speed are not particularly limited, but can usually be appropriately selected from a melt-kneading temperature of 200 to 370 ° C. and a screw rotation speed of 100 to 1200 rpm. In addition, when (e), (f), and (h) components are included in the raw material, the method of adding these components is not particularly limited, but the (e) and (f) components are the second raw material supply port and / or It is preferable to supply from the third raw material supply port.
 ≪成形体≫
 本実施の形態の成形体は、上述した樹脂組成物を含む。
≪Molded body≫
The molded body of the present embodiment includes the above-described resin composition.
 また、本実施の形態の成形体は、例えば、上述した樹脂組成物を成形することにより得ることができる。当該成形方法としては、特に限定されず、従来から公知の種々の方法、例えば、射出成形、押出成形、押出異形成形、中空成形が挙げられる。このような成形方法により得られる本実施の形態の成形体は、各種部品の成形品、又はシート、フィルムとして用いることができる。これら各種部品としては、特に限定されないが、例えば自動車部品が挙げられ、具体的には、バンパー、フェンダー、ドアーパネル、各種モール、エンブレム、エンジンフード、ホイールキャップ、ルーフ、スポイラー、各種エアロパーツ等の外装部品や、インストゥルメントパネル、コンソールボックス、トリム等の内装部品等に適している。 Further, the molded body of the present embodiment can be obtained, for example, by molding the above-described resin composition. The molding method is not particularly limited, and includes various conventionally known methods such as injection molding, extrusion molding, extrusion profile forming, and hollow molding. The molded body of the present embodiment obtained by such a molding method can be used as a molded product of various parts, a sheet, or a film. These various parts are not particularly limited, but include, for example, automobile parts. Specifically, bumpers, fenders, door panels, various moldings, emblems, engine hoods, wheel caps, roofs, spoilers, various aero parts, etc. Suitable for exterior parts and interior parts such as instrument panels, console boxes and trims.
 さらに、本実施の形態の成形体は、電気機器の内外装部品としても好適に使用でき、具体的には、各種コンピューター及びその周辺機器、その他のOA機器、テレビ、ビデオ、各種ディスクプレーヤー等のキャビネット、シャーシ、冷蔵庫、エアコン、液晶プロジェクターが挙げられる。また、電気機器用のリチウムイオン電池のセパレータ、金属導体又は光ファイバーに被覆して得られる電線・ケーブルにも適している。またさらに、本実施の形態の成形体は、工業用部品用途では各種ポンプケーシング、ボイラーケーシング等の部品用途に適している。 Furthermore, the molded body of the present embodiment can be suitably used as an interior / exterior part of an electric device. Specifically, various computers and peripheral devices thereof, other OA devices, televisions, videos, various disc players, etc. Examples include cabinets, chassis, refrigerators, air conditioners, and liquid crystal projectors. Moreover, it is suitable also for the electric wire and cable obtained by coat | covering the separator of a lithium ion battery for electrical devices, a metal conductor, or an optical fiber. Furthermore, the molded body of the present embodiment is suitable for parts such as various pump casings and boiler casings in industrial parts.
 次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。 Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist.
 各材料の各物性の測定は以下のとおりに行った。 The measurement of each physical property of each material was performed as follows.
 [数平均分子量]
 各成分の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)(移動相:クロロホルム、標準物質:ポリスチレン)により測定した。具体的には、昭和電工(株)製ゲルパーミエーションクロマトグラフィー System21を用いて以下の条件で測定した。該測定において、カラムとして、昭和電工(株)製K-Gを1本、K-800RLを1本、さらにK-800Rを1本の順番で直列につないだカラムを用い、カラム温度を40℃とし、溶媒をクロロホルムとし、溶媒流量を10mL/分とし、サンプル濃度を、水添ブロック共重合体1g/クロロホルム溶液1リットルとした。また、標準ポリスチレン(標準ポリスチレンの分子量は、3650000、2170000、1090000、681000、204000,52000、30200、13800,3360、1300,550)を用いて検量線を作成した。さらに、検出部のUV(紫外線)の波長は、標準ポリスチレン及び水添ブロック共重合体共に254nmに設定して測定した。
[Number average molecular weight]
The number average molecular weight of each component was measured by gel permeation chromatography (GPC) (mobile phase: chloroform, standard substance: polystyrene). Specifically, it measured on condition of the following using the gel permeation chromatography System21 by Showa Denko KK. In this measurement, a column in which one KG manufactured by Showa Denko KK, one K-800RL and one K-800R were connected in series was used as the column, and the column temperature was 40 ° C. The solvent was chloroform, the solvent flow rate was 10 mL / min, and the sample concentration was 1 g of hydrogenated block copolymer / 1 liter of chloroform solution. In addition, calibration curves were prepared using standard polystyrene (the molecular weight of standard polystyrene is 3650000, 217000, 1090000, 681000, 204000, 52000, 30200, 13800, 3360, 1300, 550). Further, the UV (ultraviolet) wavelength of the detection part was measured by setting both standard polystyrene and hydrogenated block copolymer to 254 nm.
 [結合スチレン量の測定]
 水添ブロック共重合体系樹脂における結合スチレン量(ビニル芳香族化合物単位の含有量)は、当該水添ブロック共重合体系樹脂を紫外線分光光度計(島津製作所製、UV-2450)により測定した。
[Measurement of bound styrene content]
The amount of bound styrene (content of vinyl aromatic compound unit) in the hydrogenated block copolymer resin was measured with an ultraviolet spectrophotometer (UV-2450, manufactured by Shimadzu Corporation) of the hydrogenated block copolymer resin.
 [全ビニル結合量の測定]
 水添ブロック共重合体系樹脂中の共役ジエン化合物単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合)は、当該水添ブロック共重合体系樹脂の水添前のブロック共重合体を赤外分光光度計(日本分光社製、FT/IR-230)により測定し、ハンプトン法で算出した。
[Measurement of total vinyl bond content]
The total amount of vinyl bonds in the conjugated diene compound unit in the hydrogenated block copolymer resin (the total ratio of 1,2-vinyl bonds and 3,4-vinyl bonds to the total bonds) is the value of the hydrogenated block copolymer resin. The block copolymer before hydrogenation was measured with an infrared spectrophotometer (manufactured by JASCO Corporation, FT / IR-230) and calculated by the Hampton method.
 [水素添加率の測定]
 ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率は、当該水添ブロック共重合体系樹脂を核磁気共鳴(NMR)(装置名:DPX-400 BRUKER社製)により測定した。
[Measurement of hydrogenation rate]
The hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is determined by nuclear magnetic resonance (NMR) of the hydrogenated block copolymer resin (device name: DPX-400 BRUKER) Manufactured).
 [融点]
 各成分の融点は、示差走査熱量計により測定した。
[Melting point]
The melting point of each component was measured with a differential scanning calorimeter.
 [メルトフローレート(MFR)]
 (a)成分のMFRは、JIS K7210に準拠し、230℃、荷重2.16kgの条件で測定した。
[Melt flow rate (MFR)]
The MFR of the component (a) was measured under the conditions of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.
 (d)成分のMFRは、ASTM D-1238に準拠し、190℃、荷重2.16kgの条件で測定した。 The MFR of the component (d) was measured under conditions of 190 ° C. and a load of 2.16 kg in accordance with ASTM D-1238.
 [還元粘度]
 ポリフェニレンエーテル系樹脂の還元粘度は、0.5g/dLのクロロホルム溶液、30℃の条件で測定した。
[Reduced viscosity]
The reduced viscosity of the polyphenylene ether resin was measured under conditions of 0.5 g / dL chloroform solution and 30 ° C.
 [ショアA硬度]
 (d)成分のショアA硬度は、ASTM D-2240準拠して測定した。
[Shore A hardness]
The Shore A hardness of component (d) was measured according to ASTM D-2240.
 [密度]
 (d)成分の密度は、ASTM D-792に準拠して測定した。
[density]
The density of component (d) was measured according to ASTM D-792.
 [樹脂組成物の製造]
 1.(a)成分(ポリプロピレン系樹脂)
 下記(a-1)及び(a-2)成分を(a)成分として用いた。
(a-1)プロピレンホモポリマー(融点:167℃、MFR:0.4g/10分)
(a-2)プロピレンホモポリマー(融点:165℃、MFR:6.0g/10分)
[Production of resin composition]
1. Component (a) (polypropylene resin)
The following components (a-1) and (a-2) were used as the component (a).
(A-1) Propylene homopolymer (melting point: 167 ° C., MFR: 0.4 g / 10 min)
(A-2) Propylene homopolymer (melting point: 165 ° C., MFR: 6.0 g / 10 min)
 2.(b)成分(ポリフェニレンエーテル系樹脂)
 2,6-キシレノールを酸化重合してポリフェニレンエーテルホモポリマーを得た。得られたポリフェニレンエーテルホモポリマーを(b)成分として用いた。該ポリフェニレンエーテルホモポリマーの還元粘度は、0.42であった。
2. Component (b) (polyphenylene ether resin)
2,6-Xylenol was oxidatively polymerized to obtain a polyphenylene ether homopolymer. The obtained polyphenylene ether homopolymer was used as component (b). The reduced viscosity of the polyphenylene ether homopolymer was 0.42.
 3.(c)成分(水添ブロック共重合体系樹脂)
 下記(c-1)~(c-3)成分を(c)成分等として用いた。
3. Component (c) (hydrogenated block copolymer resin)
The following components (c-1) to (c-3) were used as the component (c) and the like.
 (c-1)
 水素添加ポリブタジエン-ポリスチレン(1)-水素添加ポリブタジエン-ポリスチレン(2)のB-A-B-A型の構造を有する水添ブロック共重合体を常法によって合成した。該水添ブロック共重合体(c-1)の特性を以下に示す。
結合スチレン量:43質量%
水添ブロック共重合体中のポリブタジエン単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合):75%
数平均分子量(Mnc):98,000
ポリスチレンブロック(1)の数平均分子量(MncA):20,000
ポリスチレンブロック(2)の数平均分子量(MncA):22,000
ブロック共重合体のエチレン性二重結合(ポリブタジエン単位における二重結合)に対する水素添加率:99.9%
(C-1)
A hydrogenated block copolymer having a structure of BABA type of hydrogenated polybutadiene-polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) was synthesized by a conventional method. The characteristics of the hydrogenated block copolymer (c-1) are shown below.
Bonded styrene content: 43% by mass
Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 75%
Number average molecular weight (Mnc): 98,000
Number average molecular weight (MncA) of polystyrene block (1): 20,000
Number average molecular weight (MncA) of polystyrene block (2): 22,000
Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 99.9%
 (c-2)
 水素添加ブロック共重合体(旭化成ケミカルズ社製 タフテックH1043)を(c-2)成分として用いた。(c-2)成分の結合スチレン量は、67質量%であった。水素添加ブロック共重合体中の共役ジエン化合物単位における全ビニル結合量は40%であった。
(C-2)
A hydrogenated block copolymer (Tuftec H1043 manufactured by Asahi Kasei Chemicals Corporation) was used as component (c-2). The amount of bound styrene of component (c-2) was 67% by mass. The total vinyl bond content in the conjugated diene compound unit in the hydrogenated block copolymer was 40%.
 (c-3)
 水素添加ブロック共重合体(旭化成ケミカルズ社製 タフテックH1051)を(c-3)成分として用いた。(c-3)成分の結合スチレン量は、42質量%であった。水素添加ブロック共重合体中の共役ジエン化合物単位における全ビニル結合量は36%であった。
(C-3)
A hydrogenated block copolymer (Tuftec H1051 manufactured by Asahi Kasei Chemicals Corporation) was used as component (c-3). The amount of bound styrene of component (c-3) was 42% by mass. The total vinyl bond content in the conjugated diene compound unit in the hydrogenated block copolymer was 36%.
 4.(d)成分(エチレン-α-オレフィン共重合体ゴム)
 下記(d-1)~(d-4)成分を(d)成分等として用いた。
4). Component (d) (ethylene-α-olefin copolymer rubber)
The following components (d-1) to (d-4) were used as the component (d) and the like.
 (d-1)
 エチレン-1-オクテン共重合体ゴムを常法によって合成した。該エチレン-1-オクテン共重合体ゴム(d-1)の特性を以下に示す。
ショアA硬度:50、MFR:1.0、密度:0.857
(D-1)
Ethylene-1-octene copolymer rubber was synthesized by a conventional method. The characteristics of the ethylene-1-octene copolymer rubber (d-1) are shown below.
Shore A hardness: 50, MFR: 1.0, density: 0.857
 (d-2)
 エチレン-1-オクテン共重合体ゴムを常法によって合成した。該エチレン-1-オクテン共重合体ゴム(d-2)の特性を以下に示す。
ショアA硬度:66、MFR:0.5、密度:0.863
(D-2)
Ethylene-1-octene copolymer rubber was synthesized by a conventional method. The characteristics of the ethylene-1-octene copolymer rubber (d-2) are shown below.
Shore A hardness: 66, MFR: 0.5, density: 0.863
 (d-3)
 エチレン-1-オクテン共重合体ゴムを常法によって合成した。該エチレン-1-オクテン共重合体ゴム(d-3)の特性を以下に示す。
ショアA硬度:75、MFR:1.0、密度:0.870
(D-3)
Ethylene-1-octene copolymer rubber was synthesized by a conventional method. The characteristics of the ethylene-1-octene copolymer rubber (d-3) are shown below.
Shore A hardness: 75, MFR: 1.0, density: 0.870
 (d-4)
 エチレン-1-オクテン共重合体ゴムを常法によって合成した。該エチレン-1-オクテン共重合体ゴム(d-4)の特性を以下に示す。
ショアA硬度:75、MFR:5.0、密度:0.870
(D-4)
Ethylene-1-octene copolymer rubber was synthesized by a conventional method. The characteristics of the ethylene-1-octene copolymer rubber (d-4) are shown below.
Shore A hardness: 75, MFR: 5.0, density: 0.870
 5.(e)成分(第二の水添ブロック共重合体系樹脂)
 下記(e-1)~(e-5)成分を(e)成分等として用いた。
5. Component (e) (second hydrogenated block copolymer resin)
The following components (e-1) to (e-5) were used as the component (e).
 (e-1)
 ポリスチレン(1)-水素添加ポリブタジエン-ポリスチレン(2)のA-B-A型の構造を有する水添ブロック共重合体を常法によって合成した。該水添ブロック共重合体系樹脂(e-1)の特性を以下に示す。
結合スチレン量:30質量%
水添ブロック共重合体中のポリブタジエン単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合):41%
ブロック共重合体のエチレン性二重結合(ポリブタジエン単位における二重結合)に対する水素添加率:43%
数平均分子量(Mne):72,000
ポリスチレンブロック(1)の数平均分子量(MneA):10,700
ポリスチレンブロック(2)の数平均分子量(MneA):11,000
(E-1)
A hydrogenated block copolymer having an ABA type structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) was synthesized by a conventional method. The characteristics of the hydrogenated block copolymer resin (e-1) are shown below.
Bonded styrene content: 30% by mass
Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 41%
Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 43%
Number average molecular weight (Mne): 72,000
Number average molecular weight (MneA) of polystyrene block (1): 10,700
Number average molecular weight (MneA) of polystyrene block (2): 11,000
 (e-2)
 ポリスチレン(1)-水素添加ポリブタジエン-ポリスチレン(2)のA-B-A型の構造を有する水添ブロック共重合体を常法によって合成した。該水添ブロック共重合体系樹脂(e-2)の特性を以下に示す。
結合スチレン量:66質量%
水添ブロック共重合体中のポリブタジエン単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合):36%
ブロック共重合体のエチレン性二重結合(ポリブタジエン単位における二重結合)に対する水素添加率:57%
数平均分子量(Mne):61,000
ポリスチレンブロック(1)の数平均分子量(MneA):19,000
ポリスチレンブロック(2)の数平均分子量(MneA):21,000
(E-2)
A hydrogenated block copolymer having an ABA type structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) was synthesized by a conventional method. The characteristics of the hydrogenated block copolymer resin (e-2) are shown below.
Bonded styrene content: 66% by mass
Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 36%
Hydrogenation rate of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 57%
Number average molecular weight (Mne): 61,000
Number average molecular weight (MneA) of polystyrene block (1): 19,000
Number average molecular weight (MneA) of polystyrene block (2): 21,000
 (e-3)
 ポリスチレン(1)-水素添加ポリブタジエン-ポリスチレン(2)のA-B-A型の構造を有する水添ブロック共重合体を常法によって合成した。該水添ブロック共重合体系樹脂(e-3)の特性を以下に示す。
結合スチレン量:64質量%
水添ブロック共重合体中のポリブタジエン単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合):75%
ブロック共重合体のエチレン性二重結合(ポリブタジエン単位における二重結合)に対する水素添加率:68%
数平均分子量(Mne):99,000
ポリスチレンブロック(1)の数平均分子量(MneA):32,000
ポリスチレンブロック(2)の数平均分子量(MneA):31,000
(E-3)
A hydrogenated block copolymer having an ABA type structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) was synthesized by a conventional method. The characteristics of the hydrogenated block copolymer resin (e-3) are shown below.
Bonded styrene content: 64% by mass
Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 75%
Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 68%
Number average molecular weight (Mne): 99,000
Number average molecular weight (MneA) of polystyrene block (1): 32,000
Number average molecular weight (MneA) of polystyrene block (2): 31,000
 (e-4)
 ポリスチレン(1)-水素添加ポリブタジエン-ポリスチレン(2)のA-B-A型の構造を有するブロック共重合体を常法によって合成した。該ブロック共重合体系樹脂(e-4)の特性を以下に示す。
結合スチレン量:42%
ポリブタジエン単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合):9%
ブロック共重合体のエチレン性二重結合(ポリブタジエン単位における二重結合)に対する水素添加率:10%
数平均分子量(Mne):110,000
ポリスチレンブロック(1)の数平均分子量(MneA):22,000
ポリスチレンブロック(2)の数平均分子量(MneA):24,000
(E-4)
A block copolymer having an ABA type structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) was synthesized by a conventional method. The characteristics of the block copolymer resin (e-4) are shown below.
Bonded styrene content: 42%
Total vinyl bond content in polybutadiene units (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 9%
Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 10%
Number average molecular weight (Mne): 110,000
Number average molecular weight (MneA) of polystyrene block (1): 22,000
Number average molecular weight (MneA) of polystyrene block (2): 24,000
 (e-5)
 ポリスチレン(1)-水素添加ポリブタジエン-ポリスチレン(2)A-B-A型の構造を有する水添ブロック共重合体を常法によって合成した。該ブロック共重合体系樹脂(e-5)の特性を以下に示す。
結合スチレン量:30質量%
水添ブロック共重合体中のポリブタジエン単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合):40%
ブロック共重合体のエチレン性二重結合(ポリブタジエン単位における二重結合)に対する水素添加率:45%
数平均分子量(Mnf):72,000
ポリスチレンブロック(1)の数平均分子量(MneA):10,700
ポリスチレンブロック(2)の数平均分子量(MneA):11,000
(E-5)
A hydrogenated block copolymer having a structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) ABA type was synthesized by a conventional method. The characteristics of the block copolymer resin (e-5) are shown below.
Bonded styrene content: 30% by mass
Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 40%
Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 45%
Number average molecular weight (Mnf): 72,000
Number average molecular weight (MneA) of polystyrene block (1): 10,700
Number average molecular weight (MneA) of polystyrene block (2): 11,000
 6.(f)成分(第三の水添ブロック共重合体系樹脂)
 ポリスチレン(1)-水素添加ポリブタジエン-ポリスチレン(2)-水素添加ポリブタジエンのA-B-A-B型の構造を有する水添ブロック共重合体を常法によって合成した。合成した水添ブロック共重合体を(f)成分として用いた。該水添ブロック共重合体の特性を以下に示す。
結合スチレン量:17質量%
水添ブロック共重合体中のポリブタジエン単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合):50%
ブロック共重合体のエチレン性二重結合(ポリブタジエン単位における二重結合)に対する水素添加率:99.9%
数平均分子量(Mnf):65,000
ポリスチレンブロック(1)の数平均分子量(MnfA):5,300
ポリスチレンブロック(2)の数平均分子量:(MnfA)5,700
6). Component (f) (third hydrogenated block copolymer resin)
A hydrogenated block copolymer having an ABAB type structure of polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) -hydrogenated polybutadiene was synthesized by a conventional method. The synthesized hydrogenated block copolymer was used as the component (f). The characteristics of the hydrogenated block copolymer are shown below.
Bonded styrene content: 17% by mass
Total vinyl bond content in polybutadiene units in the hydrogenated block copolymer (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 50%
Hydrogenation ratio of block copolymer to ethylenic double bond (double bond in polybutadiene unit): 99.9%
Number average molecular weight (Mnf): 65,000
Number average molecular weight (MnfA) of polystyrene block (1): 5,300
Number average molecular weight of polystyrene block (2): (MnfA) 5,700
 7.(h)成分(その他のブロック共重合体系樹脂)
 (h-1)
 ポリスチレン(1)-ポリブタジエン-ポリスチレン(2)のA-B-A型の構造を有するブロック共重合体を常法によって合成した。該ブロック共重合体(h-1)の特性を以下に示す。
結合スチレン量:30質量%
ポリブタジエン単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合):12%
数平均分子量(Mnh):91,000
ポリスチレンブロック(1)の数平均分子量(MnhA):13,300
ポリスチレンブロック(2)の数平均分子量(MnhA):14,000
7). (H) Component (Other block copolymer resin)
(H-1)
A block copolymer having an ABA type structure of polystyrene (1) -polybutadiene-polystyrene (2) was synthesized by a conventional method. The properties of the block copolymer (h-1) are shown below.
Bonded styrene content: 30% by mass
Total vinyl bond content in polybutadiene units (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 12%
Number average molecular weight (Mnh): 91,000
Number average molecular weight (MnhA) of polystyrene block (1): 13,300
Number average molecular weight (MnhA) of polystyrene block (2): 14,000
 (h-2)
 ポリスチレン(1)-ポリブタジエン-ポリスチレン(2)のA-B-A型の構造を有するブロック共重合体を常法によって合成した。該ブロック共重合体(h-2)の特性を以下に示す。
結合スチレン量:30%
ポリブタジエン単位における全ビニル結合量(全結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計割合):11%
数平均分子量(Mnh):136,000
ポリスチレンブロック(1)の数平均分子量(MnhA):20,800
ポリスチレンブロック(2)の数平均分子量(MnhA):20,000
(H-2)
A block copolymer having an ABA type structure of polystyrene (1) -polybutadiene-polystyrene (2) was synthesized by a conventional method. The properties of the block copolymer (h-2) are shown below.
Bonded styrene content: 30%
Total vinyl bond content in polybutadiene unit (total ratio of 1,2-vinyl bond and 3,4-vinyl bond to all bonds): 11%
Number average molecular weight (Mnh): 136,000
Number average molecular weight (MnhA) of polystyrene block (1): 20,800
Number average molecular weight (MnhA) of polystyrene block (2): 20,000
 [実施例1~20及び比較例1~11]
 第一原料供給口、第二原料供給口(押出機のほぼ中央に位置する)及び第三原料供給口を有する二軸押出機(コペリオン社製 ZSK-25)を用い、上記(a)~(f)等の各成分を、表1及び2に示した組成で、押出機の第一~第三原料供給口に供給して溶融混練し、樹脂組成物をペレットとして得た。なお、前記二軸押出機は、バレル温度270~320℃、スクリュー回転数300rpmに設定した。得られた樹脂組成物の各物性の評価を以下のとおりに行った。測定結果を表1及び2に示す。
[Examples 1 to 20 and Comparative Examples 1 to 11]
Using a twin screw extruder (ZSK-25, manufactured by Coperion Co., Ltd.) having a first raw material supply port, a second raw material supply port (located substantially at the center of the extruder) and a third raw material supply port, the above (a) to ( Each component such as f) was supplied to the first to third raw material supply ports of the extruder with the compositions shown in Tables 1 and 2 and melt-kneaded to obtain a resin composition as pellets. The twin screw extruder was set to a barrel temperature of 270 to 320 ° C. and a screw rotation speed of 300 rpm. Each physical property of the obtained resin composition was evaluated as follows. The measurement results are shown in Tables 1 and 2.
 <引張伸び>
 実施例及び比較例で得た樹脂組成物のペレットを、240~280℃に設定したスクリューインライン型射出成形機に供給し、金型温度60℃の条件で射出成形することにより、引張伸び測定用試験片を作成した。作成した試験片を、ギアオーブンを用い80℃の環境下に24時間静置し熱履歴処理を行った。熱履歴処理を行った試験片について、ISO527に準じて引張伸びを測定した。このとき、試験片10本の引張伸びの値から標準偏差を計算した。標準偏差が小さい程、モルフォロジーが安定していることを示す。
<Tensile elongation>
The resin composition pellets obtained in the examples and comparative examples are supplied to a screw in-line type injection molding machine set at 240 to 280 ° C. and injection molded at a mold temperature of 60 ° C. for tensile elongation measurement. A test piece was prepared. The prepared test piece was allowed to stand in an environment of 80 ° C. for 24 hours using a gear oven and subjected to a heat history treatment. About the test piece which performed the heat history process, tensile elongation was measured according to ISO527. At this time, the standard deviation was calculated from the tensile elongation values of 10 test pieces. A smaller standard deviation indicates a more stable morphology.
 <シャルピー衝撃強度(Charpy)>
 実施例及び比較例で得た樹脂組成物のペレットを、240~280℃に設定したスクリューインライン型射出成形機に供給し、金型温度60℃の条件で射出成形することにより、シャルピー衝撃強度測定用テストピースを得た。得られたテストピースを、ギアオーブンを用い80℃の環境下に24時間静置し熱履歴処理を行った。熱履歴処理後のテストピースについて、23℃及び-40℃環境下にてISO179に準じてシャルピー衝撃強度を測定した。
<Charpy impact strength>
Charpy impact strength measurement was performed by supplying pellets of the resin compositions obtained in Examples and Comparative Examples to a screw in-line type injection molding machine set at 240 to 280 ° C. and injection molding at a mold temperature of 60 ° C. For test piece. The obtained test piece was left to stand in an environment of 80 ° C. for 24 hours using a gear oven to perform a heat history treatment. The Charpy impact strength of the test piece after the heat history treatment was measured in an environment of 23 ° C. and −40 ° C. according to ISO 179.
 <損失正接(tanδ)の測定>
 実施例及び比較例で得た樹脂組成物ペレットを、240~280℃に設定したスクリューインライン型射出成形機に供給し、金型温度60℃の条件で射出成形することにより、ISO試験片を作製した。当該試験片を粘弾性測定機「EPLEXOR500N(GABO社製)」に装着し、引張りモード、振動周波数が10Hz、静的負荷歪みを0.2%、動的負荷歪みを0.1%、接触荷重を0.5N、昇温速度が3℃/分、温度範囲が-100℃~160℃の温度掃引モードにおいて測定し、-50℃及び0℃における読み取ったtanδ値からtanδ比(-50℃tanδ/0℃tanδ)を算出した。同様に、-45℃及び0℃におけるtanδの比率(-50℃tanδ/0℃tanδ)を算出した。
<Measurement of loss tangent (tan δ)>
The resin composition pellets obtained in the examples and comparative examples are supplied to a screw in-line type injection molding machine set at 240 to 280 ° C. and injection molded at a mold temperature of 60 ° C. to produce an ISO test piece. did. The test piece is mounted on a viscoelasticity measuring device “EPLEXOR500N (manufactured by GABO)”. Tensile mode, vibration frequency is 10 Hz, static load strain is 0.2%, dynamic load strain is 0.1%, contact load Tan δ ratio (−50 ° C. tan δ) from the tan δ values read at −50 ° C. and 0 ° C. / 0 ° C. tan δ) was calculated. Similarly, the ratio of tan δ at −45 ° C. and 0 ° C. (−50 ° C. tan δ / 0 ° C. tan δ) was calculated.
 <成形片の反り>
 実施例及び比較例で得た樹脂組成物のペレットを、240~280℃に設定したスクリューインライン型射出成形機に供給し、金型温度60℃の条件で射出成形することにより、150×150×2mmの平板を得た。この平板を図1記載の15点から、ミツトヨ(株)製の3次元測定器を用いて最小二乗法により仮想平面を設定し、その平面からの15点の位置のズレを求め、その最大値から最小値を引いた値をその平板の平面度とした。この値が小さいものほど、成形片の反りが少ない。
<War of molded piece>
The resin composition pellets obtained in the examples and comparative examples were supplied to a screw in-line injection molding machine set at 240 to 280 ° C., and injection molded at a mold temperature of 60 ° C. A 2 mm flat plate was obtained. From the 15 points shown in FIG. 1, a virtual plane is set by the least square method using a three-dimensional measuring instrument manufactured by Mitutoyo Corporation, and the deviation of the position of 15 points from the plane is obtained. The value obtained by subtracting the minimum value from the value was defined as the flatness of the flat plate. The smaller this value, the less the warp of the molded piece.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本出願は、2013年10月1日出願の日本特許出願(特願2013-206541号)及び2013年10月1日出願の日本特許出願(特願2013-206526号)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on October 1, 2013 (Japanese Patent Application No. 2013-206541) and a Japanese patent application filed on October 1, 2013 (Japanese Patent Application No. 2013-206526). The contents are incorporated herein by reference.
 本発明の樹脂組成物及び成形体は、自動車用部品、耐熱部品、電子機器用部品、工業用部品、被覆材としての産業上の利用可能性を有している。 The resin composition and molded product of the present invention have industrial applicability as automotive parts, heat-resistant parts, electronic device parts, industrial parts, and coating materials.

Claims (16)

  1.  (a)ポリプロピレン系樹脂、(b)ポリフェニレンエーテル系樹脂、(c)第一の水添ブロック共重合体系樹脂、を含み、更に(d)エチレン-α-オレフィン共重合体ゴム及び/又は(e)第二の水添ブロック共重合体系樹脂を含み、
     前記(c)及び(e)成分が、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとからなるブロック共重合体を水素添加してなる水添ブロック共重合体及び/又は該水添ブロック共重合体の変性物であり、
     前記(c)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が45~90%であり、
     前記(c)成分が、ビニル芳香族化合物単位を30~50質量%含み、
     前記(e)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が25%以上60%未満であり、
     前記(c)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が80~100%であり、
     前記(e)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が10%以上80%未満である、
    樹脂組成物。
    (A) a polypropylene resin, (b) a polyphenylene ether resin, (c) a first hydrogenated block copolymer resin, and (d) an ethylene-α-olefin copolymer rubber and / or (e ) Including a second hydrogenated block copolymer resin;
    The block copolymer comprising the components (c) and (e) comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer obtained by hydrogenating a polymer and / or a modified product of the hydrogenated block copolymer,
    In the total bond of the conjugated diene compound unit in the component (c), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 45 to 90%,
    The component (c) contains 30 to 50% by mass of vinyl aromatic compound units,
    In the total bond of the conjugated diene compound unit in the component (e), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 60%,
    In the component (c), the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%,
    In the component (e), the hydrogenation rate with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) of the block copolymer is 10% or more and less than 80%.
    Resin composition.
  2.  少なくとも前記(d)成分を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, comprising at least the component (d).
  3.  前記(d)成分のメルトフローレート(MFR:ASTM D-1238に準拠し、190℃、2.16kgの荷重で測定)が、0.1~4.5g/10分である、請求項1又は2に記載の樹脂組成物。 The melt flow rate of the component (d) (MFR: measured in accordance with ASTM D-1238 at 190 ° C. under a load of 2.16 kg) is 0.1 to 4.5 g / 10 min. 2. The resin composition according to 2.
  4.  前記(d)成分のショアA硬度(ASTM D-2240準拠)が、75以下である、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the component (d) has a Shore A hardness (according to ASTM D-2240) of 75 or less.
  5.  前記(a)及び(b)成分の合計含有量100質量部に対して、前記(c)及び(d)成分の合計含有量が1~50質量部であり、
     前記(a)及び(b)成分の質量比率((a):(b))が、25:75~99:1であり、
     前記(c)及び(d)成分の質量比率((c):(d))が、1:99~99:1である、請求項2に記載の樹脂組成物。
    The total content of the components (c) and (d) is 1 to 50 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
    The mass ratio of the components (a) and (b) ((a) :( b)) is 25:75 to 99: 1,
    The resin composition according to claim 2, wherein a mass ratio ((c) :( d)) of the components (c) and (d) is 1:99 to 99: 1.
  6.  少なくとも前記(e)成分を含み、
     前記(a)及び(b)成分の合計含有量100質量部に対して、前記(c)及び(e)成分の合計含有量が1~50質量部であり、
     前記(a)及び(b)成分の質量比率((a):(b))が、25:75~99:1であり、
     前記(c)及び(e)成分の質量比率((c):(e))が、1:99~99:1である、請求項1~5のいずれか1項に記載の樹脂組成物。
    Including at least the component (e),
    The total content of the components (c) and (e) is 1 to 50 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
    The mass ratio of the components (a) and (b) ((a) :( b)) is 25:75 to 99: 1,
    The resin composition according to any one of claims 1 to 5, wherein a mass ratio ((c) :( e)) of the components (c) and (e) is 1:99 to 99: 1.
  7.  前記(c)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が70~90%である、請求項1~6のいずれか1項に記載の樹脂組成物。 The total proportion of 1,2-vinyl bonds and 3,4-vinyl bonds in the total bonds of the conjugated diene compound unit in the component (c) is 70 to 90%. The resin composition described in 1.
  8.  前記(e)成分が、ビニル芳香族化合物単位を20~70質量%含む、請求項1~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the component (e) contains 20 to 70% by mass of a vinyl aromatic compound unit.
  9.  前記(e)成分を形成する重合体ブロックAの数平均分子量(MndA)が、5,000~25,000である、請求項1~8のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the polymer block A forming the component (e) has a number average molecular weight (MndA) of 5,000 to 25,000.
  10.  (f)第三の水添ブロック共重合体系樹脂をさらに含み、
     前記(f)成分の含有量が、前記(a)及び(b)成分の合計含有量100質量部に対して、1~15質量部であり、
     前記(f)成分が、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとからなるブロック共重合体を水素添加してなる水添ブロック共重合体及び/又は該水添ブロック共重合体の変性物であり、
     前記(f)成分が、ビニル芳香族化合物単位を10質量%以上30質量%未満含み、
     前記(f)成分中の共役ジエン化合物単位の全結合において、1,2-ビニル結合及び3,4-ビニル結合の合計割合が25%以上70%未満であり、
     前記(f)成分において、前記ブロック共重合体のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率が80~100%であり、
     前記(f)成分を形成する重合体ブロックAの数平均分子量(MneA)が、4,000~8,000である、請求項1~9のいずれか1項に記載の樹脂組成物。
    (F) further comprising a third hydrogenated block copolymer resin;
    The content of the component (f) is 1 to 15 parts by mass with respect to 100 parts by mass of the total content of the components (a) and (b).
    The component (f) is a hydrogenated block copolymer comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer and / or a modified product of the hydrogenated block copolymer,
    The component (f) contains 10% by mass or more and less than 30% by mass of a vinyl aromatic compound unit,
    In the total bond of the conjugated diene compound unit in the component (f), the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 25% or more and less than 70%,
    In the component (f), the hydrogenation ratio of the block copolymer to the ethylenic double bond (double bond in the conjugated diene compound unit) is 80 to 100%,
    The resin composition according to any one of claims 1 to 9, wherein the polymer block A forming the component (f) has a number average molecular weight (MneA) of 4,000 to 8,000.
  11.  前記(d)成分及び(e)成分を含む、請求項1~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, comprising the component (d) and the component (e).
  12.  前記(d)成分が、エチレンと1-オクテンとの共重合体ゴムである、請求項1~11のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the component (d) is a copolymer rubber of ethylene and 1-octene.
  13.  前記(a)成分が、ホモポリプロピレン及び/又はブロックポリプロピレンであり、
     前記(a)成分のメルトフローレート(MFR:JIS K7210に準拠し、230℃、2.16kgの荷重で測定)が、0.1~100g/10分である、請求項1~12のいずれか1項に記載の樹脂組成物。
    The component (a) is homopolypropylene and / or block polypropylene,
    The melt flow rate (MFR: measured in accordance with JIS K7210, 230 ° C., 2.16 kg load) of the component (a) is 0.1 to 100 g / 10 min. 2. The resin composition according to item 1.
  14.  前記(a)成分を含むマトリックス相と、前記(b)成分を含む分散相とを有する、請求項1~13のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 13, which has a matrix phase containing the component (a) and a dispersed phase containing the component (b).
  15.  (a)ポリプロピレン系樹脂、(b)ポリフェニレンエーテル系樹脂、(c)水添ブロック共重合体系樹脂を含有し、
     前記(c)成分が、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックAと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとからなるブロック共重合体を水素添加してなる水添ブロック共重合体及び/又は該水添ブロック共重合体の変性物であり、
     下記測定方法により得られる-50℃の損失正接(-50℃tanδ)と、0℃の損失正接(0℃tanδ)との比(-50℃tanδ/0℃tanδ)が0.39以上である、樹脂組成物;
    <損失正接(tanδ)の測定>
    樹脂組成物から得られるISO試験片について、粘弾性測定機を用いて、引張りモード、振動周波数:10Hz、静的負荷歪み:0.2%、動的負荷歪み:0.1%、接触荷重:0.5N、昇温速度:3℃/分、温度範囲:-100℃~160℃の温度掃引モードにおいて測定した際の-50℃及び0℃における損失正接(tanδ)。
    (A) a polypropylene resin, (b) a polyphenylene ether resin, (c) a hydrogenated block copolymer resin,
    The component (c) is a hydrogenated block copolymer comprising at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A hydrogenated block copolymer and / or a modified product of the hydrogenated block copolymer,
    The ratio (−50 ° C. tan δ / 0 ° C. tan δ) of the loss tangent at −50 ° C. (−50 ° C. tan δ) obtained by the following measurement method to the loss tangent at 0 ° C. (0 ° C. tan δ) is 0.39 or more. A resin composition;
    <Measurement of loss tangent (tan δ)>
    About the ISO test piece obtained from a resin composition, using a viscoelasticity measuring machine, tension mode, vibration frequency: 10 Hz, static load strain: 0.2%, dynamic load strain: 0.1%, contact load: Loss tangent (tan δ) at −50 ° C. and 0 ° C. when measured in a temperature sweep mode of 0.5 N, heating rate: 3 ° C./min, temperature range: −100 ° C. to 160 ° C.
  16.  請求項1~15のいずれか1項に記載の樹脂組成物を含む成形体。 A molded article comprising the resin composition according to any one of claims 1 to 15.
PCT/JP2014/075677 2013-10-01 2014-09-26 Resin composition and molded product thereof WO2015050060A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480054532.1A CN105722911B (en) 2013-10-01 2014-09-26 Resin combination and its formed body
US15/025,583 US9783675B2 (en) 2013-10-01 2014-09-26 Resin composition and molded article thereof
KR1020167003164A KR101778478B1 (en) 2013-10-01 2014-09-26 Resin composition and molded product thereof
EP14851347.6A EP3053955B1 (en) 2013-10-01 2014-09-26 Resin composition and molded article thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013206541 2013-10-01
JP2013206526 2013-10-01
JP2013-206526 2013-10-01
JP2013-206541 2013-10-01

Publications (1)

Publication Number Publication Date
WO2015050060A1 true WO2015050060A1 (en) 2015-04-09

Family

ID=52778650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075677 WO2015050060A1 (en) 2013-10-01 2014-09-26 Resin composition and molded product thereof

Country Status (6)

Country Link
US (1) US9783675B2 (en)
EP (1) EP3053955B1 (en)
KR (1) KR101778478B1 (en)
CN (1) CN105722911B (en)
TW (1) TWI532774B (en)
WO (1) WO2015050060A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208945A1 (en) 2016-05-31 2017-12-07 旭化成株式会社 Resin composition, process for producing resin composition, and molded object
WO2019004317A1 (en) 2017-06-28 2019-01-03 旭化成株式会社 Resin composition, method for producing resin composition, and molded article

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063914A1 (en) * 2014-10-21 2016-04-28 古河電気工業株式会社 Polyolefin resin composition, molded article, and outer panel for vehicle
WO2017013833A1 (en) * 2015-07-22 2017-01-26 旭化成株式会社 Resin composition and molded article
JP7010666B2 (en) * 2016-11-22 2022-02-10 旭化成株式会社 Resin composition
US10858513B2 (en) 2016-11-24 2020-12-08 Sabic Global Technologies B.V. Compatibilised polyolefin and polyphenylene oxide and/or polystyrene composition
WO2019026689A1 (en) * 2017-08-03 2019-02-07 三菱エンジニアリングプラスチックス株式会社 Resin composition, molded article, and electrical wire
CN108384113B (en) * 2018-03-08 2021-02-09 金发科技股份有限公司 Polypropylene/polyphenyl ether alloy and preparation method thereof
US10954368B2 (en) 2018-04-10 2021-03-23 Regents Of The University Of Minnesota Block copolymer-toughened isotactic polypropylene
KR20210016357A (en) 2018-05-31 2021-02-15 주식회사 쿠라레 Hydrogenated material of block copolymer, resin composition, and various uses thereof

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1020720A (en) 1963-12-26 1966-02-23 Shell Int Research Process for the catalytic hydrogenation of block copolymers
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
US3281383A (en) 1962-08-09 1966-10-25 Phillips Petroleum Co Branched polymers prepared from monolithium-terminated polymers and compounds having at least three reactive sites
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3333024A (en) 1963-04-25 1967-07-25 Shell Oil Co Block polymers, compositions containing them and process of their preparation
GB1130770A (en) 1965-12-29 1968-10-16 Asahi Chemical Ind Process for producing thermoplastic elastomers
US3639517A (en) 1969-09-22 1972-02-01 Phillips Petroleum Co Resinous branched block copolymers
JPS4966743A (en) 1972-10-18 1974-06-28
JPS5051197A (en) 1973-09-06 1975-05-07
JPS5075651A (en) 1973-11-08 1975-06-20
JPS5217880A (en) 1975-07-31 1977-02-10 Mitsubishi Heavy Ind Ltd Method to walk inside tube
JPS54126255A (en) 1978-02-28 1979-10-01 Hooker Chemicals Plastics Corp Halogenized vinyl polymer blend having improved impact resistance
JPS5610542A (en) 1979-07-06 1981-02-03 Nippon Steel Chem Co Ltd Iridescent resin composition
JPS5662847A (en) 1979-10-29 1981-05-29 Denki Kagaku Kogyo Kk Resin composition
JPS56100840A (en) 1980-01-16 1981-08-13 Denki Kagaku Kogyo Kk Resin composition
US4501857A (en) 1983-01-20 1985-02-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for hydrogenation of polymer
JPS63152628A (en) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd Production of polyphenylene ether resin having excellent color tone
JPH02248446A (en) * 1989-03-22 1990-10-04 Sumitomo Chem Co Ltd Resin composition
JPH02300218A (en) 1989-05-15 1990-12-12 Kuraray Co Ltd Polymer and composition of excellent vibration damping property
JPH0657130A (en) * 1992-08-10 1994-03-01 Asahi Chem Ind Co Ltd Polymer composition
JPH06306121A (en) 1993-04-21 1994-11-01 Dow Chem Co:The Elastic substantially linear olefin polymer
JPH07500622A (en) 1991-10-15 1995-01-19 ザ・ダウ・ケミカル・カンパニー olefin polymer that is elastic and substantially linear
JPH07224192A (en) * 1994-02-08 1995-08-22 Asahi Chem Ind Co Ltd Polymer composition
JPH07224193A (en) * 1994-02-08 1995-08-22 Asahi Chem Ind Co Ltd Composition of polymer
JPH0912799A (en) * 1995-06-29 1997-01-14 Asahi Chem Ind Co Ltd Polymer composition
JPH0912800A (en) 1995-06-29 1997-01-14 Asahi Chem Ind Co Ltd Thermoplastic resin composition
WO1997001600A1 (en) 1995-06-29 1997-01-16 Asahi Kasei Kogyo Kabushiki Kaisha Resin composition and resin composition for secondary battery jar
JP2001270968A (en) 2000-01-19 2001-10-02 Sumitomo Chem Co Ltd Thermoplastic resin composition
JP2003253066A (en) * 2002-03-06 2003-09-10 Asahi Kasei Corp Resin composition and preparation process therefor
JP2008231277A (en) * 2007-03-22 2008-10-02 Asahi Kasei Chemicals Corp Thermoplastic polymer rubber composition
JP2010229348A (en) 2009-03-27 2010-10-14 Asahi Kasei Chemicals Corp Resin composition and molding thereof
JP2010254994A (en) * 2009-04-01 2010-11-11 Asahi Kasei Chemicals Corp Resin composition and molded body thereof
JP2011190358A (en) * 2010-03-15 2011-09-29 Asahi Kasei Chemicals Corp Resin composition
JP2011252097A (en) * 2010-06-02 2011-12-15 Asahi Kasei Chemicals Corp Damping flame-retardant resin composition
JP2012171982A (en) * 2011-02-17 2012-09-10 Asahi Kasei Chemicals Corp Automobile exterior component made of polypropylene/polyphenylene ether-based resin composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW509707B (en) * 1997-02-21 2002-11-11 Montell Technology Company Bv Soft elastomeric thermoplastic polyolefin compositions
KR100377601B1 (en) 1998-09-14 2003-03-26 아사히 가세이 가부시키가이샤 Hydrogenated block copolymer
US6455636B2 (en) * 2000-01-19 2002-09-24 Sumitomo Chemical Company, Limited Thermoplastic resin composition
US6509412B1 (en) * 2000-09-29 2003-01-21 Bridgestone Corporation Soft gel compatibilized polymer compound for high temperature use
US6855767B2 (en) * 2000-12-28 2005-02-15 General Electric Poly(arylene ether)-polyolefin composition and articles derived therefrom
US6734253B2 (en) * 2002-07-19 2004-05-11 Dow Global Technologies, Inc. Scratch and mar resistant propylene polymer composition
US20070099792A1 (en) * 2005-04-27 2007-05-03 William Marsh Rice University Carbon nanotube reinforced thermoplastic polymer composites achieved through benzoyl peroxide initiated interfacial bonding to polymer matrices
JP5357012B2 (en) 2007-03-26 2013-12-04 旭化成ケミカルズ株式会社 Thermoplastic composition and molded article thereof
JP2008291100A (en) 2007-05-24 2008-12-04 Asahi Kasei Chemicals Corp Crosslink-type thermoplastic elastomer composition
TWI397551B (en) * 2008-07-31 2013-06-01 Asahi Kasei E Materials Corp Microporous film and method for manufacturing the same
WO2013005806A1 (en) * 2011-07-05 2013-01-10 旭化成ケミカルズ株式会社 Resin composition and method for producing same

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3281383A (en) 1962-08-09 1966-10-25 Phillips Petroleum Co Branched polymers prepared from monolithium-terminated polymers and compounds having at least three reactive sites
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3333024A (en) 1963-04-25 1967-07-25 Shell Oil Co Block polymers, compositions containing them and process of their preparation
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
GB1020720A (en) 1963-12-26 1966-02-23 Shell Int Research Process for the catalytic hydrogenation of block copolymers
GB1130770A (en) 1965-12-29 1968-10-16 Asahi Chemical Ind Process for producing thermoplastic elastomers
US3639517A (en) 1969-09-22 1972-02-01 Phillips Petroleum Co Resinous branched block copolymers
JPS4966743A (en) 1972-10-18 1974-06-28
JPS5051197A (en) 1973-09-06 1975-05-07
JPS5075651A (en) 1973-11-08 1975-06-20
JPS5217880A (en) 1975-07-31 1977-02-10 Mitsubishi Heavy Ind Ltd Method to walk inside tube
JPS54126255A (en) 1978-02-28 1979-10-01 Hooker Chemicals Plastics Corp Halogenized vinyl polymer blend having improved impact resistance
JPS5610542A (en) 1979-07-06 1981-02-03 Nippon Steel Chem Co Ltd Iridescent resin composition
JPS5662847A (en) 1979-10-29 1981-05-29 Denki Kagaku Kogyo Kk Resin composition
JPS56100840A (en) 1980-01-16 1981-08-13 Denki Kagaku Kogyo Kk Resin composition
US4501857A (en) 1983-01-20 1985-02-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for hydrogenation of polymer
JPS63152628A (en) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd Production of polyphenylene ether resin having excellent color tone
JPH02248446A (en) * 1989-03-22 1990-10-04 Sumitomo Chem Co Ltd Resin composition
JPH02300218A (en) 1989-05-15 1990-12-12 Kuraray Co Ltd Polymer and composition of excellent vibration damping property
JPH07500622A (en) 1991-10-15 1995-01-19 ザ・ダウ・ケミカル・カンパニー olefin polymer that is elastic and substantially linear
JPH0657130A (en) * 1992-08-10 1994-03-01 Asahi Chem Ind Co Ltd Polymer composition
JPH06306121A (en) 1993-04-21 1994-11-01 Dow Chem Co:The Elastic substantially linear olefin polymer
JPH07224192A (en) * 1994-02-08 1995-08-22 Asahi Chem Ind Co Ltd Polymer composition
JPH07224193A (en) * 1994-02-08 1995-08-22 Asahi Chem Ind Co Ltd Composition of polymer
JPH0912800A (en) 1995-06-29 1997-01-14 Asahi Chem Ind Co Ltd Thermoplastic resin composition
JPH0912799A (en) * 1995-06-29 1997-01-14 Asahi Chem Ind Co Ltd Polymer composition
WO1997001600A1 (en) 1995-06-29 1997-01-16 Asahi Kasei Kogyo Kabushiki Kaisha Resin composition and resin composition for secondary battery jar
JP2001270968A (en) 2000-01-19 2001-10-02 Sumitomo Chem Co Ltd Thermoplastic resin composition
JP2003253066A (en) * 2002-03-06 2003-09-10 Asahi Kasei Corp Resin composition and preparation process therefor
JP2008231277A (en) * 2007-03-22 2008-10-02 Asahi Kasei Chemicals Corp Thermoplastic polymer rubber composition
JP2010229348A (en) 2009-03-27 2010-10-14 Asahi Kasei Chemicals Corp Resin composition and molding thereof
JP2010254994A (en) * 2009-04-01 2010-11-11 Asahi Kasei Chemicals Corp Resin composition and molded body thereof
JP2011190358A (en) * 2010-03-15 2011-09-29 Asahi Kasei Chemicals Corp Resin composition
JP2011252097A (en) * 2010-06-02 2011-12-15 Asahi Kasei Chemicals Corp Damping flame-retardant resin composition
JP2012171982A (en) * 2011-02-17 2012-09-10 Asahi Kasei Chemicals Corp Automobile exterior component made of polypropylene/polyphenylene ether-based resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3053955A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208945A1 (en) 2016-05-31 2017-12-07 旭化成株式会社 Resin composition, process for producing resin composition, and molded object
US10738189B2 (en) 2016-05-31 2020-08-11 Asahi Kasei Kabushiki Kaisha Resin composition, method of producing resin composition, and shaped product
WO2019004317A1 (en) 2017-06-28 2019-01-03 旭化成株式会社 Resin composition, method for producing resin composition, and molded article
US11352496B2 (en) 2017-06-28 2022-06-07 Asahi Kasei Kabushiki Kaisha Resin composition, method of producing resin composition, and molded article

Also Published As

Publication number Publication date
CN105722911B (en) 2017-11-24
EP3053955A4 (en) 2016-09-28
US9783675B2 (en) 2017-10-10
KR101778478B1 (en) 2017-09-13
KR20160030248A (en) 2016-03-16
EP3053955A1 (en) 2016-08-10
TWI532774B (en) 2016-05-11
TW201522460A (en) 2015-06-16
CN105722911A (en) 2016-06-29
EP3053955B1 (en) 2017-08-16
US20160237277A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2015050060A1 (en) Resin composition and molded product thereof
JP5550393B2 (en) Resin composition
JP6854873B2 (en) Resin composition, manufacturing method of resin composition and molded product
JP6192623B2 (en) Resin composition and molded body thereof
JP5787449B2 (en) Resin composition and molded product
EP3647371B1 (en) Resin composition, method for producing resin composition, and molded article
JP2008195801A (en) Resin composition and method for producing the same
JP6165013B2 (en) Resin composition and molded body thereof
JP6243795B2 (en) Molded body containing flame retardant resin composition
JP6175339B2 (en) Resin composition and molded body thereof
JP6763698B2 (en) Resin composition and molded product
JP6185442B2 (en) Resin composition and molded body thereof
JP7032163B2 (en) Resin composition, manufacturing method of resin composition and molded product
JP5312928B2 (en) RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, MOLDED ARTICLE COMPRISING THE SAME, CABLE COVERING MATERIAL AND CABLE
JP6586327B2 (en) Resin composition and molded body
JP2015078275A (en) Molded body
JP2022108192A (en) resin composition
JP6049483B2 (en) Polypropylene resin composition and molded product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167003164

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15025583

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014851347

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014851347

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE