WO2015088302A1 - High-performance intelligently controlled solar lighting system with a plurality of charge stages - Google Patents

High-performance intelligently controlled solar lighting system with a plurality of charge stages Download PDF

Info

Publication number
WO2015088302A1
WO2015088302A1 PCT/MA2013/000050 MA2013000050W WO2015088302A1 WO 2015088302 A1 WO2015088302 A1 WO 2015088302A1 MA 2013000050 W MA2013000050 W MA 2013000050W WO 2015088302 A1 WO2015088302 A1 WO 2015088302A1
Authority
WO
WIPO (PCT)
Prior art keywords
batteries
lighting system
solar lighting
microcontroller
solar panel
Prior art date
Application number
PCT/MA2013/000050
Other languages
French (fr)
Inventor
Abdellatif BENABDELLAH
Mohsine BOUYA
Mohamed ELOUAHABI
Tarik LAGHMICH
Original Assignee
Universite Internaltionale De Rabat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Internaltionale De Rabat filed Critical Universite Internaltionale De Rabat
Priority to PCT/MA2013/000050 priority Critical patent/WO2015088302A1/en
Publication of WO2015088302A1 publication Critical patent/WO2015088302A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • F21S9/03Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/72Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps in street lighting

Definitions

  • the solar lighting system with high efficiency and intelligent control of several stages of charges relates to the field of lighting systems based on light emitting diodes (English: Light Emitting Diodes) or LEDs, powered by solar energy with centralized management.
  • light emitting diodes English: Light Emitting Diodes
  • LEDs powered by solar energy with centralized management.
  • the stand-alone solar street lights that currently exist essentially consist of a solar panel, an accumulator battery, a matrix of LEDs and electronic modules to control the charging / discharging of the battery and adapt the power supply to the LEDs.
  • the main issues related to autonomous LED lighting are:
  • the thermal management of the junctions the luminous flux of the LEDs decreases according to the increase of the temperature of the junctions, which limits the exploitation of this technology and imposes a specific dimensioning of the heatsinks which only partially solves the problem.
  • This invention integrates the latest scientific advances and technological innovations in the field of renewable energies and energy efficiency applied to lighting, capitalizing on certain achievements in electrical engineering, electronics, programming and telecommunications. .
  • the characteristics that distinguish this lighting system, compared to the existing, are detailed in the following of this description.
  • the model described here is a stand-alone solar street lamp with high energy efficiency, compared to similar products, and requiring very little maintenance. It is intended to replace conventional street lights placed in public places: roads, squares, gardens, etc.
  • LED lighting has several advantages, such as low power consumption, long life, fast response and small footprint due to the small size of the LEDs.
  • Variations of this system can replace residential and industrial lighting, as well as the lighting of large surfaces: building sites, stadiums, ports, airports, etc.
  • the architecture of the system comprises according to FIG. 2:
  • HBLEDs High Brightness LEDs
  • 12V lead-acid batteries arranged in series (3) in three phases with automatic compensation of the power dissipated by Joule effect in the LEDs.
  • the use of lithium-ion battery is possible,
  • a microcontroller (2) which controls the charging and discharging of the batteries
  • radiofrequency transmitter (8) connected to the microcontroller (2), and which transmits the state of the circuit in real time to a web server (not shown in this figure),
  • a dust detector (10) associated with a vibrator (11), for removing dust, and optionally placed in a few areas,
  • an ultrasonic frequency transmitting device which has a repulsive effect for birds, which can obstruct the transparency of the solar panels
  • a photoresistor associated with a conditioner that enables the LEDS to be switched on when the brightness decreases
  • a thermistor to read the temperature of the junctions of the LEDs.
  • FIG. 2 The block diagram of the system is shown in FIG. 2: the solar panel, batteries, LEDs, light sensor, wireless transmitter, connect to the controller and allow complete management of the lamp. Photoresistance controls ambient light by activating the system at dusk and stopping it at sunrise.
  • the main circuit of the system is composed of a microcontroller, around which orbit a wireless transmitter, DC-DC converters, a thermistor NTC (Negative Temperature Coefficient), a photoresistor LDR (Light-Dependent Resistor), an optocoupler, MOSFET electronic relays, operational amplifiers, an ultrasonic transducer and its emitter circuit, diodes, resistors and capacitors.
  • a microcontroller around which orbit a wireless transmitter
  • DC-DC converters a thermistor NTC (Negative Temperature Coefficient)
  • a photoresistor LDR Light-Dependent Resistor
  • MOSFET electronic relays MOSFET electronic relays
  • operational amplifiers an ultrasonic transducer and its emitter circuit
  • diodes diodes
  • resistors and capacitors diodes
  • the controller can manage the charge and discharge functions of batteries by following the maximum power point delivered by the photovoltaic generator. It provides power to 12V LED lighting with constant power. The best efficiency is obtained when the power delivered by the photovoltaic panel is maximum.
  • the LED lighting varies slightly (1.7%) for the constant power control, compared to that of the constant current control (12%) and the constant voltage control (+ 50%).
  • the restriction on the number of watts of lighting and the duration of use depends mainly on the solar panels and their ability to recharge the batteries.
  • a 10W solar panel is ideal for recharging two partially discharged 12V batteries, assuming the sun is available for at least six hours / day.
  • the input resistance of the energy converter must be matched to the output resistance of the PV panel.
  • the microcontroller adjusts the output current supplied to the load so that the voltage of the PV panel is that which is set by the control pin of the maximum power point.
  • a programming resistor establishes the maximum power point, ensures the extraction of the maximum power of the PV panel and an optimal charging current at the output.
  • the batteries are charged in three stages.
  • the first step, bulk loading, is applied when the battery voltage drops below 12.45V.
  • This charge cycle transfers maximum power from the solar panel to the batteries until the voltage reaches 14.4V at 20 ° C.
  • the absorption phase where the battery is kept at the threshold voltage for one hour, to ensure that the battery is fully charged.
  • the end of charge voltage the battery is charged, but a voltage of 13.5V is maintained at its terminals.
  • a battery that has been discharged below 10.5V will be charged with short current pulses until it reaches 10.5V, then the main charge phase will begin.
  • the maximum values of the charging voltages are reduced for temperatures above 20 ° C, in accordance with the specifications of the battery manufacturers. Typically, it is 19mV per ° C for a 12V battery.
  • the batteries used are suitable for photovoltaic applications. They have anticorrosive properties thanks to thick positive plates of very good resistance, favor the slow discharge. Having a good reserve of electrolyte and a recycling cap that avoid losses in hot weather. Robust and economical, with monitoring levels every six months, they can last more than 10 years.
  • the temperature of the LED junctions is measured using a NTC (Negative Temperature Coefficient) thermistor located next to the LEDs, for a more accurate temperature measurement.
  • NTC Near Temperature Coefficient
  • the luminous flux and the LED yields given by the manufacturers are valid for a junction temperature of 25 ° C. In practice, the real values are always lower. LEDs always work better as their temperature decreases.
  • the system is designed to optimize the power provided by the solar panel. As shown in FIG. 3, a solar panel outputs current and voltage values that follow the curve. These values extend from the maximum point of the shortcurrent output current Isc to the maximum voltage when the output is open V 0 c
  • the photovoltaic panel is therefore rather a current generator than a voltage generator, at least in the exploitable part of its characteristic between the l sc and the P m , because it is the current which is constant and not the tension. Beyond the P m , the photogenerator is not exploitable, because the power drops very quickly.
  • the solar panel When coupling the photogenerator to the battery, it is the voltage of the battery that imposes the operating point.
  • the solar panel operates at full efficiency when it provides the maximum energy. And this is where the technique of tracking the maximum power point comes into play. It is essentially a step-down switching power converter, which couples the power available from the solar panel to the battery with minimal power loss. At the same time, it offers three stages of charge for the batteries.
  • the principle is explained in FIG. 5.
  • the solar panel current flows through diode D4 and electronic relay Q4.
  • Q4 When Q4 is on, the current flows in the inductance L1 to the capacitor C12 and the batteries.
  • the magnetic field induced in the coil increases (the current increases to its maximum value) and after a short period, Q4 is extinguished and the energy stored in L1 maintains the flow of the current through the diode D7.
  • the duty cycle of the electronic relay Q4 is controlled so that the solar panel delivers its maximum power through pin RB3 of the microcontroller.
  • the peak current in the inductor is provided by the 470 ⁇ capacitor Cil.
  • the capacitor C12 acts as a reservoir to charge the battery when the current does not flow in the inductor.
  • these capacitors have a low effective ESR series resistance, adapted to the 31.24kHz switching frequency.
  • the voltage of the solar panel is monitored by the operational amplifier IC2a, while the current is monitored by measuring the voltage across a 0.1 ⁇ resistor. This voltage is multiplied by -50 using the IC2b operational amplifier. These two operational amplifiers provide their IC microcontroller output signals that control the entire circuit.
  • the maximum power point tracking algorithm is fully automated and requires no user adjustment.
  • the microcontroller firmware has been programmed to search for the maximum power point of the solar panel as it varies with weather conditions.
  • the batteries used are characterized by the nominal voltage which depends on the number of elements, the nominal voltage U is equal to the number of elements multiplied by 2.1 V. Generally it is considered that a lead accumulator is discharged when it reaches the voltage of 1.8 V per element, so a battery of 6 elements or 12 V is discharged, when it reaches the voltage of 10.8 V.
  • Q4 is a P-channel MOSFET transistor that switches with the negative voltage gate (G) with respect to the source (S).
  • the voltage at the source of Q4 can go up to about 21V when the solar panel does not provide power.
  • Transistor Q6 is PWM pulse width modulated by the IC output RB3 (pin 9) via a 4.7k ⁇ resistor (R16).
  • This potentiometer is adjusted so that the voltage appearing at AN2 is 0.3125 times the voltage of the battery.
  • This multiplicative voltage factor was chosen not to exceed the 5V limit of the analog input AN2, for example, a voltage of 14V at the battery terminals will be converted to only 4.375V.
  • the resistive divider is not directly connected to the battery, but via the transistor of the optocoupler IC3, which connects the battery to the divider each time the LED of IC3 is activated.
  • the voltage between the collector and the emitter of the transistor has a minimal effect on the measurement of the voltage of the battery, because it is only about 200 ⁇ .
  • the divided voltage, proportional to that of the batteries, is converted into a numerical value by the program housed in the microcontroller IC.
  • the optocoupler diode is driven from the 5V supply through a 470 ⁇ resistor (R23) and at 0V when the Q3 MOSFET is activated.
  • the NTC thermistor forms a voltage divider with a resistance of 10k ⁇ when Q3 is activated.
  • Input AN6 d (pin 1) reads this voltage and converts it to a value in degrees Celsius.
  • the AN1 input (pin 18) reads the value of the R26 potentiometer that connects to the 5V power supply when Q3 is activated.
  • Inputs AN1 and AN6 are converted to mV / ° C. They can vary from OmV / ° C when R26 is at 0V to 50 mV / ° C when R26 is at 5V.
  • Pulse Width Modulation PWM (PWM) modulation is part of the microcontroller's internal block: the CCP or Capture / Compare / PWM is used to manage the energy transmitted to the outside. Indeed, if a continuous signal corresponds to 100% of energy, a square signal whose high state duration equal to that of low state corresponds to 50% of energy. The percentage of energy transmitted is calculated by making the ratio of the duration of the high state over the duration of the period.
  • Width (10 bits) xT 0Sc x (Timer 2 Primer)
  • T osc is the period of the oscillator serving as clock to the microcontroller.
  • the 10 bits correspond to the byte of the CCPR1L register and the 2 bits of DC1BX.
  • the Q2, Q3 and Q4 MOSFETs act as electronic relays, which in this situation have many advantages compared to the electromechanical relay; better switching speed, quiet operation and vibration insensitivity.
  • the data collected by the nodes are routed through a multi-hop routing. 1 (1) to a node considered as a "sink", which in turn transmits the information to the internet for oversight. 1 (2).
  • This makes it possible to monitor the streetlight network and to detect if a battery is defective. This network can be exploited, in another embodiment, as a traffic management infrastructure for example.
  • connection to the nodes of the network is done thanks to the information relayed gradually by the nodes of communication of the mesh network (mesh).
  • This is the Zigbee industrial standard that is adopted here; the 802.15.4 protocol used by the transmitter module adds to the packets transmitted data, a source address and a recipient address.
  • the transmitter modules require prior configuration to operate in a Sink mode.
  • a module is the coordinator of the network, which must be initialized with some special parameters, the other modules will be "End Device”. This configures a Local Area Network (LAN) between each of the two transmitters.
  • Each LAN module will have an id identifier that will be the same for the entire LAN.
  • An "End Device” can associate with a coordinator in a LAN, without knowing either the LAN id or the Radio Frequency channel. The flexibility of the association is configured by the value of the parameter Al for the "End Device” and by the parameter A2 for the "Coordinator".
  • the transmitters used operate with a 2.4 GHz frequency that does not require a license. And feed with a voltage of 3.3V.
  • the associated resistances make it possible to control this voltage according to the formula (FIG.
  • the quiescent current consumed by the assembly is low, and mainly due to the different sensors that equip the system.

Abstract

The invention concerns a public lighting system consisting of a high-luminance LED-based streetlamp provided with a solar panel and a battery charge controller, modified so as to enable optimum use to be made of the power supplied by the solar panel and enabling all the streetlamps to be monitored remotely. This optimization is brought about by automatically regulating the charge of two batteries arranged in series. The automatic regulation is performed by a microcontroller which efficiently charges the batteries by incorporating the principle of maximum power point tracking. The thermal control of the junctions is also taken in hand owing to appropriate dimensioning of the heat sinks and adaptation of the power transmitted to the LEDs according to the temperature. The streetlamp is provided with a radiofrequency transmitter connected to the microcontroller and enabling all the streetlamps to be monitored remotely, forming a wireless sensor network (WSN). This technology ensures a long service life owing to the intelligent control and system-monitoring functions. The streetlamp is also provided with an ultrasound transducer preventing birds from approaching and thus ensuring that the solar panel remains clean and transparent. In areas exposed to dust, such as building sites or desert regions frequently subject to sand storms, a dust detector is fitted in order to activate a vibration device for removing dust from the surface of the solar panel.

Description

Description  Description
Le système d'éclairage solaire à haute efficacité et à control intelligent de plusieurs étages de charges concerne le domaine de des systèmes d'éclairage à base de diodes électroluminescentes, (anglais: Light Emitting Diodes) ou LEDs, alimentées par l'énergie solaire avec une gestion centralisée.  The solar lighting system with high efficiency and intelligent control of several stages of charges relates to the field of lighting systems based on light emitting diodes (English: Light Emitting Diodes) or LEDs, powered by solar energy with centralized management.
Les lampadaires solaires autonomes qui existent actuellement se composent essentiellement d'un panneau solaire, d'une batterie accumulateur, d'une matrice de LEDs et de modules électroniques pour contrôler le chargement/déchargement de la batterie et adapter l'alimentation électriques aux LEDs. The stand-alone solar street lights that currently exist essentially consist of a solar panel, an accumulator battery, a matrix of LEDs and electronic modules to control the charging / discharging of the battery and adapt the power supply to the LEDs.
Il existe aussi des lampadaires éoliens qui utilisent une petite éolienne comme source d'alimentation. Etant donné que l'énergie éolienne est aléatoire, le recours à ce système est très rare car il nécessite une ressource en vent régulière et constante tout au long de l'année.  There are also wind lamps that use a small wind turbine as a power source. Since wind energy is random, the use of this system is very rare because it requires a constant and steady wind resource throughout the year.
Enfin les lampadaires hybrides utilisant à la fois l'énergie éolienne et l'énergie solaire comme source d'alimentation en énergie.  Finally, hybrid streetlights using both wind energy and solar energy as a source of energy supply.
Les principales problématiques liées à l'éclairage LED autonome sont :  The main issues related to autonomous LED lighting are:
l'extraction du maximum de puissance fournie par le panneau photovoltaïque, qui a un impact direct sur l'autonomie des batteries,  the extraction of the maximum power provided by the photovoltaic panel, which has a direct impact on the autonomy of the batteries,
la gestion efficace et optimale de charge et décharge des batteries avec détection des seuils critiques,  the efficient and optimal management of charge and discharge of batteries with detection of critical thresholds,
la gestion thermique des jonctions : le flux lumineux des LEDs baisse en fonction de l'augmentation de la température des jonctions, ce qui limite l'exploitation de cette technologie et impose un dimensionnement spécifique des dissipateurs thermiques qui ne résout que partiellement le problème.  the thermal management of the junctions: the luminous flux of the LEDs decreases according to the increase of the temperature of the junctions, which limits the exploitation of this technology and imposes a specific dimensioning of the heatsinks which only partially solves the problem.
Cette invention intègre les dernières avancées scientifiques et innovations technologiques dans le domaine des énergies renouvelables et de l'efficacité énergétique appliquées à l'éclairage, en capitalisant sur certains acquis en matière d'ingénierie en électricité, d'électronique, de programmation et de télécommunication. Les caractéristiques qui démarquent ce système d'éclairage, par rapport à l'existant, sont détaillées dans la suite de ce descriptif. This invention integrates the latest scientific advances and technological innovations in the field of renewable energies and energy efficiency applied to lighting, capitalizing on certain achievements in electrical engineering, electronics, programming and telecommunications. . The characteristics that distinguish this lighting system, compared to the existing, are detailed in the following of this description.
Le modèle décrit ici est un lampadaire solaire autonome à haute efficacité énergétique, comparé aux produits similaires, et nécessitant très peu d'entretien. Il est destiné à remplacer les lampadaires conventionnels placés dans les lieux publics : routes, places, jardins, etc.  The model described here is a stand-alone solar street lamp with high energy efficiency, compared to similar products, and requiring very little maintenance. It is intended to replace conventional street lights placed in public places: roads, squares, gardens, etc.
L'éclairage à LED présente plusieurs avantages, tels qu'une faible consommation de puissance, une longue durée de vie, une réponse rapide et un encombrement réduit grâce à la petite taille des LEDs. LED lighting has several advantages, such as low power consumption, long life, fast response and small footprint due to the small size of the LEDs.
Des variantes de ce système peuvent remplacer l'éclairage résidentiel et industriel, aussi bien que l'éclairage des grandes surfaces : chantiers, stades, ports, aéroports, etc. Variations of this system can replace residential and industrial lighting, as well as the lighting of large surfaces: building sites, stadiums, ports, airports, etc.
L'architecture du système comprend selon la fig. 2 :  The architecture of the system comprises according to FIG. 2:
un panneau solaire (1),  a solar panel (1),
des LEDs à haute luminance, ou HBLEDs (High Brightness LEDs) (4), deux batteries au plomb-acide de 12V arrangées en série (3) en trois phases avec compensation automatique de la puissance dissipée par effet joule dans les LEDs. L'utilisation de batterie lithium-ion est envisageable, high luminance LEDs, or HBLEDs (High Brightness LEDs) (4), two 12V lead-acid batteries arranged in series (3) in three phases with automatic compensation of the power dissipated by Joule effect in the LEDs. The use of lithium-ion battery is possible,
un microcontrôleur (2) qui pilote la charge et la décharge des batteries,  a microcontroller (2) which controls the charging and discharging of the batteries,
un régulateur de tension DC-DC (5) pour les LEDs (4),  a DC-DC voltage regulator (5) for the LEDs (4),
un transmetteur radiofréquence (8) relié au microcontrôleur (2), et qui transmet l'état du circuit en temps réel vers un serveur web (non représenté dans cette figure),  a radiofrequency transmitter (8) connected to the microcontroller (2), and which transmits the state of the circuit in real time to a web server (not shown in this figure),
un détecteur de poussière (10) associé à un vibreur (11), permettant d'éliminer la poussière, et placé en option dans quelques zones,  a dust detector (10) associated with a vibrator (11), for removing dust, and optionally placed in a few areas,
un dispositif émetteur de, fréquences ultrasonique (9) qui a un effet répulsif pour les oiseaux, qui peuvent obstruer la transparence des panneaux solaires,  an ultrasonic frequency transmitting device (9) which has a repulsive effect for birds, which can obstruct the transparency of the solar panels,
une photorésistance associée à un conditionneur qui permet l'allumage des LEDS lorsque la luminosité diminue,  a photoresistor associated with a conditioner that enables the LEDS to be switched on when the brightness decreases,
une thermistance permettant de lire la température des jonctions des LEDs.  a thermistor to read the temperature of the junctions of the LEDs.
Le synoptique du système est représenté dans la Fig. 2 : le panneau solaire, les batteries, les LEDs, le capteur de lumière, le transmetteur sans fil, se connectent au contrôleur et permettant la gestion complète du lampadaire. La photorésistance contrôle la lumière ambiante en activant le système au crépuscule et en l'arrêtant au lever du soleil. The block diagram of the system is shown in FIG. 2: the solar panel, batteries, LEDs, light sensor, wireless transmitter, connect to the controller and allow complete management of the lamp. Photoresistance controls ambient light by activating the system at dusk and stopping it at sunrise.
Selon Fig. 5, le circuit principal du système est composé d'un microcontrôleur, autour duquel orbitent un transmetteur sans fil, des convertisseurs DC-DC, une thermistance NTC (Négative Température Coefficient), une photorésistance LDR (Light-Dependent Resistor), un optocoupleur, des relais électroniques MOSFET, des amplificateurs opérationnels, un transducteur ultrasonique et son circuit d'émission, des diodes, des résistances et des condensateurs.  According to FIG. 5, the main circuit of the system is composed of a microcontroller, around which orbit a wireless transmitter, DC-DC converters, a thermistor NTC (Negative Temperature Coefficient), a photoresistor LDR (Light-Dependent Resistor), an optocoupler, MOSFET electronic relays, operational amplifiers, an ultrasonic transducer and its emitter circuit, diodes, resistors and capacitors.
Le contrôleur permet de gérer les fonctions de charge et de décharge de batteries en suivant le point maximum de puissance délivré par le générateur photovoltaïque. Il assure l'alimentation de l'éclairage LED à 12V avec une puissance constante. Le meilleur rendement est obtenu lorsque la puissance délivrée par le panneau photovoltaïque est maximale.  The controller can manage the charge and discharge functions of batteries by following the maximum power point delivered by the photovoltaic generator. It provides power to 12V LED lighting with constant power. The best efficiency is obtained when the power delivered by the photovoltaic panel is maximum.
Lorsque la température ambiante varie de 0 à 40 °C, l'éclairage LED varie légèrement (1.7%) pour le pilotage à puissance constante, par rapport à celle du pilotage à courant constant (12%) et le pilotage à tension constante (+50 %).  When the ambient temperature varies from 0 to 40 ° C, the LED lighting varies slightly (1.7%) for the constant power control, compared to that of the constant current control (12%) and the constant voltage control (+ 50%).
La restriction sur le nombre de watts d'éclairage et la durée d'utilisation dépend principalement des panneaux solaires et leur capacité à recharger les batteries. Un panneau solaire de 10W est idéal pour recharger deux batteries 12V partiellement déchargée, en supposant la disponibilité du soleil pendant au moins six heures/jour.  The restriction on the number of watts of lighting and the duration of use depends mainly on the solar panels and their ability to recharge the batteries. A 10W solar panel is ideal for recharging two partially discharged 12V batteries, assuming the sun is available for at least six hours / day.
Les batteries seront sérieusement endommagées ou rendues inopérantes si elles sont complètement déchargées et/ou laissées dans un état déchargé. Par conséquent, nous avons inclus une logique de détection de seuil de charge. Si les batteries se déchargent au-dessous de 11V, les LEDs s'éteignent. Batteries will be seriously damaged or rendered inoperative if they are completely discharged and / or left unloaded. Therefore, we have included load threshold detection logic. If the batteries discharge below 11V, the LEDs go out.
Pour extraire le maximum de puissance du panneau photovoltaïque, la résistance d'entrée du convertisseur d'énergie doit être adaptée à la résistance de sortie du panneau PV. To extract the maximum power from the photovoltaic panel, the input resistance of the energy converter must be matched to the output resistance of the PV panel.
Le microcontrôleur ajuste le courant de sortie fourni à la charge de telle sorte que la tension du panneau PV soit celle qui est fixée par la broche de contrôle du point de puissance maximum. En conséquence, une résistance de programmation établit le point de puissance maximum, assure l'extraction du maximum de puissance du panneau PV et un courant de charge optimal en sortie. The microcontroller adjusts the output current supplied to the load so that the voltage of the PV panel is that which is set by the control pin of the maximum power point. In As a result, a programming resistor establishes the maximum power point, ensures the extraction of the maximum power of the PV panel and an optimal charging current at the output.
Le chargement des batteries se fait en trois étapes. La première étape, chargement en vrac, est appliquée lorsque la tension de la batterie descend en dessous de 12.45V. Ce cycle de charge transfert une puissance maximale du panneau solaire vers les batteries jusqu'à ce que la tension atteigne 14,4V à 20°C. The batteries are charged in three stages. The first step, bulk loading, is applied when the battery voltage drops below 12.45V. This charge cycle transfers maximum power from the solar panel to the batteries until the voltage reaches 14.4V at 20 ° C.
Ensuite, la phase d'absorption, où la batterie est maintenue à la tension de seuil pendant une heure, afin de s'assurer que la batterie est chargée complètement. Après cela, la tension de fin de charge : la batterie est chargée, on maintient cependant une tension de 13.5V à ses bornes. Une batterie qui a été déchargée en dessous de 10,5 V sera chargée à l'aide de courtes impulsions de courant jusqu'à ce qu'elle atteigne 10,5 V, ensuite la phase de charge principale va commencer.  Then the absorption phase, where the battery is kept at the threshold voltage for one hour, to ensure that the battery is fully charged. After that, the end of charge voltage: the battery is charged, but a voltage of 13.5V is maintained at its terminals. A battery that has been discharged below 10.5V will be charged with short current pulses until it reaches 10.5V, then the main charge phase will begin.
Les valeurs maximales de tensions de charge sont réduites pour des températures supérieures à 20°C, en conformité avec les spécifications des fabricants de batteries. Typiquement, il s'agit 19mV par °C pour une batterie 12V.  The maximum values of the charging voltages are reduced for temperatures above 20 ° C, in accordance with the specifications of the battery manufacturers. Typically, it is 19mV per ° C for a 12V battery.
Deux de batteries de 50Ah et 12V en série donneront 100Ah-12V. Mais pour les montages en parallèle, il est impératif que les deux batteries soient parfaitement identiques : même capacité, même résistance interne, même fabricant, même antécédents, etc. Sinon, on risque d'avoir la plus faible dépérir au profit de l'autre : sa résistance interne augmentera et la batterie en meilleurs conditions prendra la plus grande part du courant de charge, ce qui ne fera qu'à accentuer le déséquilibre. On préférera donc le montage en série (addition de tensions), au montage en parallèle (addition de capacités).  Two of 50Ah and 12V batteries in series will give 100Ah-12V. But for parallel installations, it is imperative that the two batteries are perfectly identical: same capacity, same internal resistance, same manufacturer, same antecedents, etc. Otherwise, there is the risk of having the weakest in favor of the other: its internal resistance will increase and the battery in better conditions will take the largest part of the charging current, which will only increase the imbalance. We therefore prefer the series installation (addition of voltages), the parallel assembly (addition of capacities).
Les batteries utilisées sont adaptées aux applications photovoltaïques. Elles ont des propriétés anticorrosion grâce à des plaques positives épaisses de très bonne résistance, favorisent la décharge lente. Ayant une bonne réserve d'électrolyte et un bouchon à recyclage qui évitent les pertes par temps chaud. Robustes et économiques, moyennant une surveillance des niveaux chaque six mois, elles peuvent durer plus de 10 ans.  The batteries used are suitable for photovoltaic applications. They have anticorrosive properties thanks to thick positive plates of very good resistance, favor the slow discharge. Having a good reserve of electrolyte and a recycling cap that avoid losses in hot weather. Robust and economical, with monitoring levels every six months, they can last more than 10 years.
La température des jonctions de LEDs est mesurée à l'aide d'une thermistance NTC (Coefficient de Température Négatif) située à côté des LEDs, pour une mesure de température plus précise. Les flux lumineux et les rendements des LED donnés par les fabricants sont valables pour une température de jonction de 25°C. Dans la pratique, les valeurs réelles sont toujours plus basses. Les LEDs fonctionnent toujours mieux à mesure que leur température diminue.  The temperature of the LED junctions is measured using a NTC (Negative Temperature Coefficient) thermistor located next to the LEDs, for a more accurate temperature measurement. The luminous flux and the LED yields given by the manufacturers are valid for a junction temperature of 25 ° C. In practice, the real values are always lower. LEDs always work better as their temperature decreases.
Le système est conçu pour optimiser la puissance fournie par le panneau solaire. Comme le montre la Fig. 3, un panneau solaire fournit en sortie des valeurs de courant et de tension qui suivent la courbe. Ces valeurs s'étendent du point maximal du courant de sortie en court-circuit Isc jusqu'à la tension maximale lorsque la sortie est ouverte V0c-The system is designed to optimize the power provided by the solar panel. As shown in FIG. 3, a solar panel outputs current and voltage values that follow the curve. These values extend from the maximum point of the shortcurrent output current Isc to the maximum voltage when the output is open V 0 c
C'est l'association du photogénérateur avec la batterie qui oblige le photogénérateur à travailler à un certain courant et à une certaine tension. Contrairement à une idée couramment répandue, le panneau photovoltaïque est donc plutôt un générateur de courant qu'un générateur de tension, au moins dans la partie exploitable de sa caractéristique entre le lsc et le Pm, car c'est le courant qui est constant et non la tension. Au-delà du Pm, le photogénérateur n'est pas exploitable, car la puissance chute très vite. It is the combination of the photogenerator with the battery that forces the photogenerator to work at a certain current and a certain tension. Contrary to a commonly held idea, the photovoltaic panel is therefore rather a current generator than a voltage generator, at least in the exploitable part of its characteristic between the l sc and the P m , because it is the current which is constant and not the tension. Beyond the P m , the photogenerator is not exploitable, because the power drops very quickly.
Lors du couplage du photogénérateur à la batterie, c'est la tension de la batterie qui impose le point de fonctionnement. Le panneau solaire fonctionne à plein rendement quand il fournit l'énergie au maximum. Et c'est là où la technique du suivi du point maximum de puissance entre en scène. Il s'agit essentiellement d'un convertisseur de puissance à découpage step-down, qui couple la puissance disponible à partir du panneau solaire à la batterie avec une perte de puissance minimale. Au même temps, il offre trois étages de charge pour les batteries. When coupling the photogenerator to the battery, it is the voltage of the battery that imposes the operating point. The solar panel operates at full efficiency when it provides the maximum energy. And this is where the technique of tracking the maximum power point comes into play. It is essentially a step-down switching power converter, which couples the power available from the solar panel to the battery with minimal power loss. At the same time, it offers three stages of charge for the batteries.
Le principe est expliqué dans la Fig. 5. Le courant du panneau solaire traverse la diode D4 et le relais électronique Q4. Lorsque Q4 est passant, le courant circule dans l'inductance Ll vers le condensateur C12 et les batteries. Le champ magnétique induit dans la bobine augmente (le courant augmente jusqu'à sa valeur maximale) et après une courte période, Q4 est éteint et l'énergie stockée dans Ll maintient le flux du courant par l'intermédiaire de la diode D7.  The principle is explained in FIG. 5. The solar panel current flows through diode D4 and electronic relay Q4. When Q4 is on, the current flows in the inductance L1 to the capacitor C12 and the batteries. The magnetic field induced in the coil increases (the current increases to its maximum value) and after a short period, Q4 is extinguished and the energy stored in L1 maintains the flow of the current through the diode D7.
Le rapport cyclique du relais électronique Q4 est commandé de façon à ce que le panneau solaire délivre sa puissance maximale a travers la broche RB3 du microcontrôleur. Le courant crête dans l'inductance est fourni par le condensateur Cil de 470 Ρ. De la même manière, le condensateur C12 agit comme un réservoir pour charger la batterie lorsque le courant ne circule pas dans la bobine d'inductance. Par ailleurs, ces condensateurs ont une faibles résistance série effective ESR, adaptée à la fréquence de commutation 31.24kHz.  The duty cycle of the electronic relay Q4 is controlled so that the solar panel delivers its maximum power through pin RB3 of the microcontroller. The peak current in the inductor is provided by the 470 Ρ capacitor Cil. In the same way, the capacitor C12 acts as a reservoir to charge the battery when the current does not flow in the inductor. Moreover, these capacitors have a low effective ESR series resistance, adapted to the 31.24kHz switching frequency.
La tension du panneau solaire est surveillée par l'amplificateur opérationnel IC2a, tandis que le courant est contrôlé en mesurant la tension aux bornes d'une résistance 0.1Ω. Cette tension est multipliée par -50 à l'aide de l'amplificateur opérationnel IC2b. Ces deux amplificateurs opérationnels fournissent leurs signaux de sortie microcontrôleur IC qui contrôle l'ensemble du circuit.  The voltage of the solar panel is monitored by the operational amplifier IC2a, while the current is monitored by measuring the voltage across a 0.1Ω resistor. This voltage is multiplied by -50 using the IC2b operational amplifier. These two operational amplifiers provide their IC microcontroller output signals that control the entire circuit.
L'algorithme de poursuite de points de puissance maximale est entièrement automatisé et ne nécessite aucun réglage de l'utilisateur. Le firmware du microcontrôleur a été programmé pour rechercher le point de puissance maximale du panneau solaire au fur et à mesure que celui-ci varie en fonction des conditions météorologiques  The maximum power point tracking algorithm is fully automated and requires no user adjustment. The microcontroller firmware has been programmed to search for the maximum power point of the solar panel as it varies with weather conditions.
Les batteries utilisées se caractérisent par la tension nominale qui dépend du nombre d'éléments, la tension nominale U est égale au nombre d'éléments multiplié par 2,1 V. Généralement on considère qu'un accumulateur au plomb est déchargé lorsqu'il atteint la tension de 1,8 V par élément, donc une batterie de 6 éléments ou 12 V est déchargée, lorsqu'elle atteint la tension de 10,8 V.  The batteries used are characterized by the nominal voltage which depends on the number of elements, the nominal voltage U is equal to the number of elements multiplied by 2.1 V. Generally it is considered that a lead accumulator is discharged when it reaches the voltage of 1.8 V per element, so a battery of 6 elements or 12 V is discharged, when it reaches the voltage of 10.8 V.
Dans une réalisation préférée, on envisage l'utilisation de batterie en lithium-ion, plus compacte et moins encombrantes.  In a preferred embodiment, the use of lithium-ion battery, more compact and less cumbersome.
Pour le chargement, nous utilisons le découpage step-down précédemment décrit^ la Fig 5. Q4 est un transistor MOSFET à canal P qui commute avec la grille (G) de tension négative par rapport à la source (S). La tension à la source de Q4 (à partir du panneau solaire et la diode D4) peut aller jusqu'à environ 21V quand le panneau solaire ne fournit pas de courant.  For loading, we use the step-down clipping previously described in FIG. 5. Q4 is a P-channel MOSFET transistor that switches with the negative voltage gate (G) with respect to the source (S). The voltage at the source of Q4 (from the solar panel and diode D4) can go up to about 21V when the solar panel does not provide power.
La grille est maintenue à une tension négative par rapport à la source par l'intermédiaire du transistor Q2, la résistance R21 et la diode D6. Le Transistor Q6 est commandé par modulation de largeur d'impulsion MLI par la sortie RB3 de IC (broche 9) par l'intermédiaire d'une résistance 4.7kO (R16).  The gate is maintained at a negative voltage with respect to the source through transistor Q2, resistor R21 and diode D6. Transistor Q6 is PWM pulse width modulated by the IC output RB3 (pin 9) via a 4.7kΩ resistor (R16).
Lorsque RB3 est à 5V, Q6 est mis en marche et le MOSFET Q4 est donc mis sous tension. La résistance 10Ω (R20) au collecteur de Q6 limite le courant initial au niveau de la diode Zener ZD1 au cas où la tension de grille de Q4 est supérieure à 18V. Cette diode Zener protège la porte G de Q4 contre les surtensions ; une surtension au niveau du transistor Q6 le rendra loqué.  When RB3 is at 5V, Q6 is turned on and so the MOSFET Q4 is turned on. The resistor 10Ω (R20) at the Q6 collector limits the initial current at Zener diode ZD1 in case the gate voltage of Q4 is greater than 18V. This Zener diode protects the gate G of Q4 against overvoltages; an overvoltage at transistor Q6 will make it loosed.
Lorsque la sortie de RB3 est à 0V, le transistor Q.6 se bloque, et la base de Q.1 se met en contact avec la source de Q4 via une résistance de 10kO (R22). Le transistor Ql devient passant et met en contact la grille de Q4 avec sa source, et par conséquent Q4 se bloque. C'est ainsi qu'on commande la commutation on/off du transistor Q4 à travers la broche RB3 de IC. La fréquence de commutation qui assure le transfert optimal de la puissance est 31.24kHz. La tension de la batterie est contrôlée par la broche AN2 de ICI via l'optocoupleur IC3 et le diviseur résistif constitué d'une résistance 22kO et d'un potentiomètre VR2 de 20kO. Ce potentiomètre est ajusté de telle sorte que la tension apparaissant à AN2 est 0,3125 fois la tension de la batterie. Ce facteur multiplicatif de la tension a été choisi pour ne pas dépasser la limite de 5V de l'entrée analogique AN2, par exemple, une tension de 14V aux bornes de batterie sera converti en seulement 4.375V. When the output of RB3 is at 0V, the transistor Q.6 is blocked, and the base of Q.1 comes into contact with the source of Q4 via a resistor of 10kO (R22). Transistor Q1 turns on and puts the gate of Q4 in contact with its source, and therefore Q4 is blocked. This is how we control the on / off switching of the transistor Q4 through the pin RB3 of IC. The switching frequency that ensures the optimal transfer of power is 31.24kHz. The voltage of the battery is controlled by the ICI pin AN2 via the optocoupler IC3 and the resistive divider consists of a 22kO resistor and a 20kO VR2 potentiometer. This potentiometer is adjusted so that the voltage appearing at AN2 is 0.3125 times the voltage of the battery. This multiplicative voltage factor was chosen not to exceed the 5V limit of the analog input AN2, for example, a voltage of 14V at the battery terminals will be converted to only 4.375V.
Le diviseur résistif n'est pas directement relié à la batterie, mais par l'intermédiaire du transistor de l'optocoupleur IC3, qui relie la batterie au diviseur à chaque fois que la LED de IC3 est activée. Le voltage entre le collecteur et l'émetteur du transistor a un effet minime sur la mesure de la tension de la batterie, car il n'est que d'environ 200μν. La tension divisée, proportionnelle à celle des batteries, est convertie en une valeur numérique par le programme logé dans le microcontrôleur IC. The resistive divider is not directly connected to the battery, but via the transistor of the optocoupler IC3, which connects the battery to the divider each time the LED of IC3 is activated. The voltage between the collector and the emitter of the transistor has a minimal effect on the measurement of the voltage of the battery, because it is only about 200μν. The divided voltage, proportional to that of the batteries, is converted into a numerical value by the program housed in the microcontroller IC.
La diode de l'optocoupleur est entraîné à partir de l'alimentation 5 V à travers une résistance de 470Ω (R23) et à 0V lorsque le MOSFET Q3 est activé. La thermistance NTC forme un diviseur de tension avec une résistance de 10kQ lorsque Q3 est activé. L'entrée AN6 d (broche 1) lit cette tension et la convertit en une valeur en degrés Celsius. Au même temps, l'entrée ANl (broche 18) lit la valeur du potentiomètre R26 qui se connecte à l'alimentation 5V lorsque Q3 est activé. Les entrées ANl et AN6 sont converties en mV/°C. Elles peuvent varier de OmV/°C lorsque R26 est à 0V à 50 mV/°C lorsque R26 est à 5V. The optocoupler diode is driven from the 5V supply through a 470Ω resistor (R23) and at 0V when the Q3 MOSFET is activated. The NTC thermistor forms a voltage divider with a resistance of 10kΩ when Q3 is activated. Input AN6 d (pin 1) reads this voltage and converts it to a value in degrees Celsius. At the same time, the AN1 input (pin 18) reads the value of the R26 potentiometer that connects to the 5V power supply when Q3 is activated. Inputs AN1 and AN6 are converted to mV / ° C. They can vary from OmV / ° C when R26 is at 0V to 50 mV / ° C when R26 is at 5V.
La modulation par largeur d'impulsion MLI (Puise Width Modulation PWM) fait partie du bloc interne du microcontrôleur : le CCP ou Capture/Compare/PWM permet de gérer l'énergie transmise à l'extérieure. En effet, si un signal continu correspond à 100% d'énergie, un signal carré dont la durée d'état haut égal à celle d'état bas correspond à 50% d'énergie. Le pourcentage d'énergie transmis se calcule en faisant le rapport de la durée de l'état haut sur la durée de la période.  Pulse Width Modulation PWM (PWM) modulation is part of the microcontroller's internal block: the CCP or Capture / Compare / PWM is used to manage the energy transmitted to the outside. Indeed, if a continuous signal corresponds to 100% of energy, a square signal whose high state duration equal to that of low state corresponds to 50% of energy. The percentage of energy transmitted is calculated by making the ratio of the duration of the high state over the duration of the period.
Deux formules permettent de calculer la durée de la période et la largeur de l'impulsion :  Two formulas make it possible to calculate the duration of the period and the width of the pulse:
Période = (PR2+l)x4xT0SCx(Prédiviseur Timer 2) Period = (PR2 + l) x4xT 0SC x (Timer 2 Predictor)
Largeur = (10 bits)xT0Scx(Prédiviseur Timer 2) Width = (10 bits) xT 0Sc x (Timer 2 Primer)
Tosc est la période de l'oscillateur servant d'horloge au microcontrôleur. Les 10 bits correspondent à l'octet du registre CCPR1L et les 2 bits de DC1BX. T osc is the period of the oscillator serving as clock to the microcontroller. The 10 bits correspond to the byte of the CCPR1L register and the 2 bits of DC1BX.
Les MOSFET Q2, Q3 et Q4 jouent le rôle de relais électroniques, qui présentent dans cette situation beaucoup d'avantages comparé au relais électromécanique ; une meilleure vitesse de commutation, un fonctionnement silencieux et une insensibilité aux vibrations.  The Q2, Q3 and Q4 MOSFETs act as electronic relays, which in this situation have many advantages compared to the electromechanical relay; better switching speed, quiet operation and vibration insensitivity.
Fonctionnement en réseau Fig. 4 et Fig. 1  Network operation Fig. 4 and FIG. 1
Les données collectées par les nœuds (transmetteurs et microcontrôleurs) sont acheminées grâce à un routage multi-saut Fig. 1 (1) à un n ud considéré comme un "point de collecte" (sink), qui à son tour, transmet les informations vers le réseau internet pour être supervisées Fig. 1 (2). Cela permet de surveiller le réseau des lampadaires et de détecter si une batterie est défectueuse. Ce réseau peut être exploité, dans une autre réalisation, comme une infrastructure de gestion de trafic par exemple. The data collected by the nodes (transmitters and microcontrollers) are routed through a multi-hop routing. 1 (1) to a node considered as a "sink", which in turn transmits the information to the internet for oversight. 1 (2). This makes it possible to monitor the streetlight network and to detect if a battery is defective. This network can be exploited, in another embodiment, as a traffic management infrastructure for example.
La connexion aux nœuds du réseau se fait grâce aux informations relayées de proche en proche par les nœuds de communication du réseau maillé (mesh). C'est le standard industriel Zigbee qui est adopté ici ; le protocole 802.15.4 utilisé par le module transmetteur ajoute aux paquets des données transmises, une adresse de la source et une adresse du destinataire. The connection to the nodes of the network is done thanks to the information relayed gradually by the nodes of communication of the mesh network (mesh). This is the Zigbee industrial standard that is adopted here; the 802.15.4 protocol used by the transmitter module adds to the packets transmitted data, a source address and a recipient address.
Les modules transmetteurs nécessitent une configuration préalable pour fonctionner suivant un mode avec Coordinateur (Sink). Un module est le coordinateur du réseau, qu'il faut l'initialiser avec quelques paramètres particuliers, les autres modules seront des "End Device". On configure ainsi un réseau LAN (Local Area Network) entre chaque deux transmetteurs. Chaque module du LAN aura un identificateur id qui sera le même pour tout le LAN. Un "End Device" pourra s'associer à un coordinateur dans un LAN, sans en connaître ni le LAN id (identificateur du réseau local) ni le canal Radio Fréquence. La flexibilité de l'association est configurée par la valeur du paramètre Al pour le " End Device" et par le paramètre A2 pour le "Coordinateur". The transmitter modules require prior configuration to operate in a Sink mode. A module is the coordinator of the network, which must be initialized with some special parameters, the other modules will be "End Device". This configures a Local Area Network (LAN) between each of the two transmitters. Each LAN module will have an id identifier that will be the same for the entire LAN. An "End Device" can associate with a coordinator in a LAN, without knowing either the LAN id or the Radio Frequency channel. The flexibility of the association is configured by the value of the parameter Al for the "End Device" and by the parameter A2 for the "Coordinator".
Les transmetteurs utilisés fonctionnent avec une fréquence 2.4 GHz ne nécessitant pas de licence. Et s'alimentent avec une tension de 3.3V. Nous utilisons un régulateur de tension de sortie 2,8 - 3.4V. Les résistances associées permettent de commander cette tension suivant la formule (Fig. 5) :The transmitters used operate with a 2.4 GHz frequency that does not require a license. And feed with a voltage of 3.3V. We use a 2.8 - 3.4V output voltage regulator. The associated resistances make it possible to control this voltage according to the formula (FIG.
Figure imgf000008_0001
Figure imgf000008_0001
Le courant de repos consommé par le montage est faible, et dû principalement aux différents capteurs qui équipent le système.  The quiescent current consumed by the assembly is low, and mainly due to the different sensors that equip the system.

Claims

Revendications Les réalisations de l'invention, au sujet desquelles un droit exclusif de propriété ou de privilège est revendiqué, sont comme il suit: Claims The embodiments of the invention, in respect of which an exclusive right of ownership or privilege is claimed, are as follows:
1. Système d'éclairage solaire caractérisé par des lampadaires LED à haute luminance alimentés par deux batteries au plomb acide de 12V arrangées en série connectées à un microcontrôleur qui pilote la charge et la décharge des batteries et un régulateur de tension DC-DC pour les LEDs et utilisant un transmetteur radiofréquence relié au microcontrôleur qui transmet l'état du circuit en temps réel vers un serveur Web. Les lampadaires sont protégés par un système de transduction ultrasonique. Ils sont équipés d'un détecteur de poussières qui est lié à un vibreur.  1. Solar lighting system characterized by high luminance LED street lights powered by two 12V acid lead acid batteries arranged in series connected to a microcontroller that controls the charging and discharging of batteries and a DC-DC voltage regulator for LEDs and using a radiofrequency transmitter connected to the microcontroller which transmits the circuit status in real time to a web server. Streetlights are protected by an ultrasonic transduction system. They are equipped with a dust detector that is linked to a vibrator.
i  i
2. Un système d'éclairage solaire selon la revendication 1 caractérisé par un microcontrôleur qui assure le suivi automatique du point maximum de puissance délivrée par le générateur photovoltaïque  2. A solar lighting system according to claim 1 characterized by a microcontroller which automatically monitors the maximum power point delivered by the photovoltaic generator.
3. Un système d'éclairage solaire selon les revendications 1 et 2 caractérisé par le chargement de deux batteries en série en trois phases avec compensation automatique de la puissance dissipée par effet joule dans les LEDs.  3. A solar lighting system according to claims 1 and 2 characterized by the charging of two batteries in series in three phases with automatic compensation of the power dissipated by Joule effect in the LEDs.
4. Un système d'éclairage solaire selon les revendications 1, 2 et 3 caractérisé par un système de fonctionnement des lampadaires en réseau de capteurs sans fil permettant le contrôle de ceux-ci via le réseau internet.  4. A solar lighting system according to claims 1, 2 and 3 characterized by an operating system of street lights wireless sensor network for controlling them via the Internet.
5. Un système d'éclairage solaire selon les revendications 1, 2, 3 et 4 caractérisé en ce que le système de transduction ultrasonique est constitué d'un émetteur et d'un récepteur détectant l'approche des oiseaux. Les fréquences ultrasoniques sont ajustées de telle sorte à causer un effet répulsif.  5. A solar lighting system according to claims 1, 2, 3 and 4 characterized in that the ultrasonic transduction system consists of a transmitter and a receiver detecting the approach of birds. The ultrasonic frequencies are adjusted so as to cause a repellent effect.
6. Un système d'éclairage solaire selon les revendications 1, 2, 3, 4 et 5 caractérisé en ce que des batteries lithium-ion peuvent être utilisées à la place des batteries au plomb acide.  6. A solar lighting system according to claims 1, 2, 3, 4 and 5 characterized in that lithium-ion batteries can be used instead of lead acid batteries.
PCT/MA2013/000050 2013-12-09 2013-12-09 High-performance intelligently controlled solar lighting system with a plurality of charge stages WO2015088302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MA2013/000050 WO2015088302A1 (en) 2013-12-09 2013-12-09 High-performance intelligently controlled solar lighting system with a plurality of charge stages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MA2013/000050 WO2015088302A1 (en) 2013-12-09 2013-12-09 High-performance intelligently controlled solar lighting system with a plurality of charge stages

Publications (1)

Publication Number Publication Date
WO2015088302A1 true WO2015088302A1 (en) 2015-06-18

Family

ID=49955469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2013/000050 WO2015088302A1 (en) 2013-12-09 2013-12-09 High-performance intelligently controlled solar lighting system with a plurality of charge stages

Country Status (1)

Country Link
WO (1) WO2015088302A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105135340A (en) * 2015-10-01 2015-12-09 屈胜环 Lighting method of intelligent solar LED road lamps
CN105554942A (en) * 2015-10-01 2016-05-04 屈胜环 Intelligent LED illuminating streetlamp with environment detection function
CN105554943A (en) * 2015-10-01 2016-05-04 胡金雷 Intelligent LED streetlamp illuminating apparatus
CN105578647A (en) * 2015-09-30 2016-05-11 杨琳 LED lighting device
CN105674198A (en) * 2016-04-06 2016-06-15 朱厚谣 Light energy and solar energy integrated LED (light emitting diode) streetlamp
CN105940771A (en) * 2016-04-12 2016-09-14 汤美 Campus road lamp energy saving and environment protection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021943A1 (en) * 2007-07-19 2009-01-22 Foxsemicon Integrated Technology, Inc. Outdoor lighting apparatus
US20100029268A1 (en) * 2007-02-02 2010-02-04 Ming Solar, Inc., Dba Inovus Solar, Inc. Wireless autonomous solar-powered outdoor lighting and energy and information management network
US20120235579A1 (en) * 2008-04-14 2012-09-20 Digital Lumens, Incorporated Methods, apparatus and systems for providing occupancy-based variable lighting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100029268A1 (en) * 2007-02-02 2010-02-04 Ming Solar, Inc., Dba Inovus Solar, Inc. Wireless autonomous solar-powered outdoor lighting and energy and information management network
US20090021943A1 (en) * 2007-07-19 2009-01-22 Foxsemicon Integrated Technology, Inc. Outdoor lighting apparatus
US20120235579A1 (en) * 2008-04-14 2012-09-20 Digital Lumens, Incorporated Methods, apparatus and systems for providing occupancy-based variable lighting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578647A (en) * 2015-09-30 2016-05-11 杨琳 LED lighting device
CN105135340A (en) * 2015-10-01 2015-12-09 屈胜环 Lighting method of intelligent solar LED road lamps
CN105554942A (en) * 2015-10-01 2016-05-04 屈胜环 Intelligent LED illuminating streetlamp with environment detection function
CN105554943A (en) * 2015-10-01 2016-05-04 胡金雷 Intelligent LED streetlamp illuminating apparatus
CN105674198A (en) * 2016-04-06 2016-06-15 朱厚谣 Light energy and solar energy integrated LED (light emitting diode) streetlamp
CN105940771A (en) * 2016-04-12 2016-09-14 汤美 Campus road lamp energy saving and environment protection system

Similar Documents

Publication Publication Date Title
WO2015088302A1 (en) High-performance intelligently controlled solar lighting system with a plurality of charge stages
JP5979461B2 (en) Control system and method for solar cell lighting device
KR100688035B1 (en) LED solar light system and method for controlling a solar light
US20150021990A1 (en) Energy-efficient solar-powered outdoor lighting
US10483790B2 (en) System and method for charging autonomously powered devices using variable power source
US9480127B2 (en) Ambient lighting control system
WO2010057138A2 (en) Energy-efficient solar-powered outdoor lighting
WO2012064906A2 (en) Energy-efficient utility system utilizing solar-power
US10145525B2 (en) Photo-voltaic powered wireless sensor for passive optical lighting
CN107258044A (en) Solar energy home system
CA3044482A1 (en) Led lighting system and a method therefor
Ahmed et al. Design of a solar powered LED street light: Effect of panel's mounting angle and traffic sensing
JP5233042B2 (en) LED drive circuit
KR101606715B1 (en) Energy system improving energy efficiency
KR20110029767A (en) Hybrid solar street light
US11114861B2 (en) Power optimization for battery powered street lighting system
CN207969015U (en) LED power and LED light device
WO2016142628A1 (en) Electronic board for power control of a self-contained communicating electrical apparatus
KR101133774B1 (en) System and method for managing self generating device
WO2017190999A1 (en) A control switch and method
KR101260933B1 (en) Illumination system
KR101243694B1 (en) Power storage apparatus comprising different storage battery type and solar streetlight using the same
CN104039056A (en) Intelligent LED road lamp with solar energy and wind energy complementation
EP3357140A2 (en) Solar charge circuit and method
KR20130073126A (en) Street light controlling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13821001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13821001

Country of ref document: EP

Kind code of ref document: A1