WO2015089528A1 - Method for the production of abrasive - Google Patents

Method for the production of abrasive Download PDF

Info

Publication number
WO2015089528A1
WO2015089528A1 PCT/AT2014/000214 AT2014000214W WO2015089528A1 WO 2015089528 A1 WO2015089528 A1 WO 2015089528A1 AT 2014000214 W AT2014000214 W AT 2014000214W WO 2015089528 A1 WO2015089528 A1 WO 2015089528A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped structure
net
sintering
grid
starting mixture
Prior art date
Application number
PCT/AT2014/000214
Other languages
German (de)
French (fr)
Inventor
Klaus SIGWART
Martin Hirschmann
Original Assignee
Tyrolit - Schleifmittelwerke Swarovski K.G.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyrolit - Schleifmittelwerke Swarovski K.G. filed Critical Tyrolit - Schleifmittelwerke Swarovski K.G.
Priority to EP14828436.7A priority Critical patent/EP3083026A1/en
Publication of WO2015089528A1 publication Critical patent/WO2015089528A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/26Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic on endless conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/1115Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1418Abrasive particles per se obtained by division of a mass agglomerated by sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade

Definitions

  • the invention relates to a process for the production of abrasives.
  • Such abrasives are incorporated, for example, in abrasive coatings, in solid abrasive or in abrasive papers.
  • all known ceramic bonds and synthetic resin bonds come into consideration as a bond for the abrasive.
  • the field of application of these grinding tools is the grinding of steels, metals and alloys, plastics and wood.
  • WO 201 1/087649 discloses a method in which a rotary shadow mask in combination with vacuum is used to make shaped ceramic material sections which are subsequently sintered. It is a technically very complex and maintenance-intensive process.
  • the present invention is based on the object of specifying a simplified process for the production of abrasives.
  • a combustible reticulated or grid-shaped structure preferably made of plastic, with a plurality of openings on a carrier, preferably an endless carrier belt,
  • One of the fundamental ideas of the method according to the invention is therefore that during the process step of sintering, the starting mixture is converted at least into alumina and, secondly, the reticulated or grid-shaped structure is burned, which results in automatic separation of the abrasive particles, so that the Abrasive particles after sintering - at least for the most part - be present separately.
  • a significant advantage of the method according to the invention over the prior art is that the geometry and dimension of the abrasive particles can be determined in a simple manner by the choice of the shape of the mesh or lattice-shaped structure. In addition, it is possible to quickly and easily change the geometry and size of the manufactured abrasive particles by changing the mesh or lattice-shaped structure.
  • the net or latticed structure filled with the starting mixture is predried before sintering, preferably at a temperature between 50 ° C and 500 ° C, more preferably at a temperature between 150 ° C and 400 ° C.
  • the network or lattice-shaped structure filled with the starting mixture can be converted into a state which, for example, allows the division into sections which are preferably plate-shaped. These sections can then be fed subsequently to the method step of the sinter.
  • the net or lattice-shaped structure filled with the starting mixture remains on the support and the sintering is carried out in a continuous furnace.
  • the sintering is preferably carried out at a temperature between 1200 ° Celsius and 1800 ° Celsius, more preferably at a temperature between 1200 ° Celsius and 1500 ° Celsius.
  • the mesh or lattice structure it is useful for the mesh or lattice structure to use a material which will burn completely at the sintering temperature, but at lower temperatures - e.g. in a possible pre-drying process - is heat resistant.
  • the net or grid-shaped structure (one-ply) provided on the support has a height less than or equal to 1.5 millimeters viewed from the side.
  • This height essentially corresponds to the thickness of the threads or webs from which the network or lattice-shaped structure is advantageously constructed.
  • this height determines the thickness of the abrasive particles present at the end of the manufacturing process since the starting mixture, when it is flowable, flows beyond the confines of an aperture in the form of the strands and into an adjacent aperture as the apertures are filled.
  • the thickness in the course of the sintering process mainly due to the reduction of the liquid content - still decreases.
  • reticulated and grid-shaped structures differ in that reticulated structures have nodes in contrast to grid-shaped structures.
  • the starting mixture can be provided as an alternative or supplementary measure to ensure a certain thickness of the abrasive particles that the net or lattice-like structure filled with the starting mixture passes a gap having a predetermined height prior to sintering.
  • This height is advantageously adjusted to the height of the mesh or latticed structure provided on the support or the thickness of the threads or webs of the net or latticed structure or slightly above, so that the starting mixture is evenly spread in the openings.
  • Polygons preferably diamonds, squares or triangles, are suitable as geometries for the openings of the mesh or latticed structure.
  • the sintered products or abrasive particles obtained by sintering are still occasionally connected to one another via webs or the like.
  • Fig. 1 is a schematic representation of the invention
  • FIGS. 3a and 3b show two possible network or latticed structures used in the method, and FIGS Fig. 4a and 4b two possible producible by the method according to the invention
  • FIG. 1 shows, with reference to a flowchart, the four basic method steps of the method 1 according to the invention for the production of abrasives, namely
  • a combustible reticulated or grid-shaped structure preferably of plastic, with a plurality of openings on a support, preferably an endless carrier fire,
  • a starting mixture preferably containing aluminum hydroxide, which is convertible by sintering at least in aluminum oxide, the starting mixture preferably being flowable
  • FIGS. 2a and 2b The technical implementation of this method can take place in different ways, wherein two particularly preferred embodiments are shown in FIGS. 2a and 2b:
  • the combustible reticulated or grid-shaped structure 4 is provided on a carrier in the form of an endless carrier belt 10 by unwinding the net or lattice-like structure 4 from a roller 15.
  • the angular velocity of this roller 15 and the speed of the endless carrier belt 10 become coordinated with each other to ensure a uniform unwinding of the net or lattice-shaped structure 4.
  • the Endloslectband 10 is guided over the rolling elements 16 and 17.
  • the openings 6 thereof (see Fig. 3a) with a flowable starting mixture 8, which by sintering at least in alumina (and as stated above in possible secondary phases) can be converted, and which in this case contains predominantly aluminum hydroxide, filled.
  • the starting mixture 8 is poured onto the mesh or grid-shaped structure 4.
  • the net or grid-shaped structure 4 filled with the starting mixture 8 then passes through a gap 13, the height of which substantially corresponds to the height 18 of the net or grid-shaped structure 4 provided in one layer on the carrier 10.
  • the filled with the starting mixture 8 mesh or lattice-shaped structure 4 is finally transported by means of Endloschtbands 10 through a continuous furnace 14, in which the Dry process or sintering takes place.
  • the portions of the starting mixture 8, which are located in the openings of the mesh or lattice-shaped structure 4 are sintered to alumina particles.
  • the mesh or grid-shaped structure 4 burns. That is, after the sintering process step, the abrasive particles 2 are present on the endless carrier belt 10 in accordance with the predetermined geometry of the mesh or grid-shaped structure 4. Finally, the abrasive particles 2 are collected in a collecting container.
  • the two method steps "providing a combustible reticulate or grid-shaped structure” and “filling the openings thereof” are carried out in the same way as in the embodiment shown in FIG. 2a.
  • the network or grid-shaped structure 5 filled with the starting mixture 8 is subsequently predried by means of a heating device 19 before sintering, specifically at a temperature between 150 ° Celsius and 400 ° Celsius.
  • the mesh or lattice-shaped structure 5 is heat-resistant. Predrying removes liquid from the starting mixture so that it is less flexible and adheres to the net or latticed structure. Therefore, the net or grid-shaped structure 5 filled with the starting mixture 8 can be subdivided into plate-shaped sections 9 by means of a suitable device, which are subsequently supplied to a sintering furnace 20.
  • the sintering process is again carried out, wherein the starting mixture 8 is converted at least into aluminum oxide and any secondary phases and at the same time the mesh or lattice-shaped structure 5 is burnt, so that a separation of the abrasive particles 3 occurs during sintering.
  • FIGS. 3a and 3b show two exemplary network geometries, namely, in the case of FIG. 3a, a net or lattice-shaped structure 4 whose openings are diamond-shaped and, in the case of FIG. 3b, a net or lattice-shaped structure 5, whose openings square are formed.
  • the threads or webs 1 1 and 12 of the mesh or lattice-like structure 4 and 5 have a thickness of less than or equal to 1, 5 millimeters.
  • the mesh or latticed structures 4 and 5 can be used both in the embodiment according to FIG. 2a and in the embodiment according to FIG. 2b. It is also conceivable to use a network or lattice-shaped structure, the openings with has different geometries, and in this way to produce a mixture of abrasive particles with correspondingly different geometries.
  • FIGS. 4a and 4b show two examples of abrasive particles which can be produced by the process, wherein the particle 2 in FIG. 4a has a diamond shape with a predetermined edge length 22 and the particle 3 in FIG. 4b has a square shape with a predetermined edge length 24.
  • the abrasive particles 2 and 3 correspond to the grid or grid geometries shown in FIGS. 3a and 3b.
  • the thickness 25 or 26 of the abrasive particles is - due to the liquid removal during the sintering process - smaller than the thickness of the threads or webs of the mesh or lattice-shaped structure.

Abstract

Method (1) for producing abrasive (2, 3), comprising the following steps: i. providing a burnable net-shaped or grating-shaped structure (4, 5), which is preferably made of plastic and includes a plurality of openings (6, 7), on a carrier (10), preferably an endless carrier band; ii. providing a feedstock mixture (8) which preferably contains aluminum hydroxide, can be converted at least to alumina, and is preferably pourable; iii. filling the openings (6, 7) with the feedstock mixture (8); and iv. sintering the net-shaped or grating-shaped structure (4, 5) that is filled with the feedstock mixture (8).

Description

Verfahren zur Herstellung von Schleifmittel Die Erfindung betrifft ein Verfahren zur Herstellung von Schleifmittel.  The invention relates to a process for the production of abrasives.
Derartige Schleifmittel werden beispielsweise in Schleifbeläge, in Vollschleifkörper oder in Schleifpapiere eingearbeitet. Dabei kommen als Bindung für das Schleifmittel sämtliche bekannte keramische Bindungen und Kunstharzbindungen in Betracht. Einsatzgebiet der genannten Schleifwerkzeuge sind das Schleifen von Stählen, Metallen und Legierungen, Kunststoffen und Holz. Such abrasives are incorporated, for example, in abrasive coatings, in solid abrasive or in abrasive papers. In this case, all known ceramic bonds and synthetic resin bonds come into consideration as a bond for the abrasive. The field of application of these grinding tools is the grinding of steels, metals and alloys, plastics and wood.
Aus dem Stand der Technik sind unterschiedliche Verfahren zur Herstellung von Schleifmittel bekannt. Beispielsweise offenbart die WO 201 1/087649 ein Verfahren, bei dem eine rotierende Lochmaske in Kombination mit Unterdruck dazu verwendet wird, um geformte keramische Materialabschnitte herzustellen, die in weiterer Folge gesintert werden. Es handelt sich hierbei um ein technisch sehr aufwendiges und wartungsintensives Verfahren. Different methods for the production of abrasives are known from the prior art. For example, WO 201 1/087649 discloses a method in which a rotary shadow mask in combination with vacuum is used to make shaped ceramic material sections which are subsequently sintered. It is a technically very complex and maintenance-intensive process.
Der gegenständlichen Erfindung liegt die Aufgabe zu Grunde ein vereinfachtes Verfahren zur Herstellung von Schleifmittel anzugeben. The present invention is based on the object of specifying a simplified process for the production of abrasives.
Diese Aufgabe wird durch die folgenden Verfahrensschritte gelöst: This task is solved by the following process steps:
i. Bereitstellen einer verbrennbaren netz- oder gitterförmigen Struktur, vorzugsweise aus Kunststoff, mit einer Mehrzahl von Öffnungen auf einem Träger, vorzugsweise einem Endlosträgerband,  i. Providing a combustible reticulated or grid-shaped structure, preferably made of plastic, with a plurality of openings on a carrier, preferably an endless carrier belt,
Ii. Bereitstellen eines, vorzugsweise Aluminiumhydroxid enthaltenden, Ausgangsgemischs, welches durch Sintern zumindest in Aluminiumoxid überführbar ist, wobei das Ausgangsgemisch vorzugsweise fließfähig ist,  Ii. Providing a, preferably aluminum hydroxide-containing, starting mixture, which is convertible by sintering at least in alumina, wherein the starting mixture is preferably flowable,
iii. Befüllen der Öffnungen mit dem Ausgangsgemisch, und  iii. Filling the openings with the starting mixture, and
iv. Sintern der mit dem Ausgangsgemisch befüllten netz- oder gitterförmigen Struktur.  iv. Sintering the net or latticed structure filled with the starting mixture.
Eine der grundlegenden Ideen des erfindungsgemäßen Verfahrens besteht also darin, dass während des Verfahrensschritts des Sinterns zum einen das Ausgangsgemisch zumindest in Aluminiumoxid überführt wird und zum anderen die netz- oder gitterförmige Struktur verbrannt wird, was eine automatische Vereinzelung der Schleifmittelteilchen zur Folge hat, sodass die Schleifmittelteilchen nach dem Sintern - zumindest zum größten Teil - getrennt voneinander vorliegen. Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens gegenüber dem Stand der Technik besteht darin, dass durch die Wahl der Form der netz- oder gitterförmigen Struktur in einfacher Weise die Geometrie und Abmessung der Schleifmittelteilchen festgelegt werden kann. Außerdem ist es möglich, schnell und einfach durch den Wechsel der netz- oder gitterförmigen Struktur die Geometrie und Abmessung der hergestellten Schleifmittelteilchen zu verändern. One of the fundamental ideas of the method according to the invention is therefore that during the process step of sintering, the starting mixture is converted at least into alumina and, secondly, the reticulated or grid-shaped structure is burned, which results in automatic separation of the abrasive particles, so that the Abrasive particles after sintering - at least for the most part - be present separately. A significant advantage of the method according to the invention over the prior art is that the geometry and dimension of the abrasive particles can be determined in a simple manner by the choice of the shape of the mesh or lattice-shaped structure. In addition, it is possible to quickly and easily change the geometry and size of the manufactured abrasive particles by changing the mesh or lattice-shaped structure.
Es sei darauf hingewiesen, dass die Technik, ein, vorzugsweise Aluminiumhydroxid enthaltendes, Ausgangsgemisch durch Sintern zumindest in Aluminiumoxid zu überführen, bereits seit längerem bekannt ist. In diesem Zusammenhang sei auf den sogenannten„Sol-Gel- Prozess" verwiesen. Enthält das Ausgangsgemisch Aluminiumhydroxid können unterschiedliche Modifikationen, wie z.B. Böhmit, zum Einsatz kommen. In Abhängigkeit des Ausgangsgemischs kann es vorkommen, dass neben Aluminiumoxid (typischerweise als alpha-Aluminiumoxid) Nebenphasen, wie z.B. Spinell, entstehen. Diesem Sachverhalt wird durch den Ausdruck „zumindest in Aluminiumoxid" Rechnung getragen. It should be noted that the technique of converting a starting mixture containing preferably aluminum hydroxide by sintering, at least in aluminum oxide, has been known for some time. In this connection, reference should be made to the so-called "sol-gel process." If the starting mixture contains aluminum hydroxide, various modifications, such as boehmite, may be used Depending on the starting mixture, it may also occur in addition to aluminum oxide (typically as alpha-alumina). Secondary phases, such as spinel, are formed, which is accounted for by the expression "at least in aluminum oxide".
In einer vorteilhaften Ausführungsform des Verfahrens wird die mit dem Ausgangsgemisch befüllte netz- oder gitterförmige Struktur vor dem Sintern vorgetrocknet, bevorzugt bei einer Temperatur zwischen 50° Celsius und 500° Celsius, besonders bevorzugt bei einer Temperatur zwischen 150° Celsius und 400° Celsius. Auf diese Weise kann die mit dem Ausgangsgemisch befüllte netz- oder gitterförmige Struktur in einen Zustand überführt werden, der zum Beispiel die Unterteilung in, vorzugsweise plattenförmige, Abschnitte erlaubt. Diese Abschnitte können dann in weiterer Folge dem Verfahrensschritt des Sinters zugeführt werden. In an advantageous embodiment of the method, the net or latticed structure filled with the starting mixture is predried before sintering, preferably at a temperature between 50 ° C and 500 ° C, more preferably at a temperature between 150 ° C and 400 ° C. In this way, the network or lattice-shaped structure filled with the starting mixture can be converted into a state which, for example, allows the division into sections which are preferably plate-shaped. These sections can then be fed subsequently to the method step of the sinter.
Alternativ oder ergänzend dazu ist es jedoch auch möglich, dass die mit dem Ausgangsgemisch befüllte netz- oder gitterförmige Struktur auf dem Träger verbleibt und das Sintern in einem Durchlaufofen durchgeführt wird. Alternatively or additionally, however, it is also possible that the net or lattice-shaped structure filled with the starting mixture remains on the support and the sintering is carried out in a continuous furnace.
Das Sintern wird bevorzugt bei einer Temperatur zwischen 1200° Celsius und 1800° Celsius, besonders bevorzugt bei einer Temperatur zwischen 1200° Celsius und 1500° Celsius, durchgeführt. The sintering is preferably carried out at a temperature between 1200 ° Celsius and 1800 ° Celsius, more preferably at a temperature between 1200 ° Celsius and 1500 ° Celsius.
Es bietet sich an für die netz- oder gitterförmige Struktur ein Material zu verwenden, das bei der Sintertemperatur vollständig verbrennt, jedoch bei niedrigeren Temperaturen - z.B. bei einem etwaigen Vortrockungsprozess - hitzebeständig ist. It is useful for the mesh or lattice structure to use a material which will burn completely at the sintering temperature, but at lower temperatures - e.g. in a possible pre-drying process - is heat resistant.
Vorzugsweise weist die (einlagig) auf dem Träger bereitgestellte netz- oder gitterförmige Struktur von der Seite betrachtet eine Höhe kleiner oder gleich 1 ,5 Millimeter auf. Diese Höhe entspricht im Wesentlichen der Stärke der Fäden bzw. Stege aus denen die netz- oder gitterförmige Struktur vorteilhafterweise aufgebaut ist. Außerdem legt diese Höhe die Dicke der am Ende des Herstellungsverfahrens vorliegenden Schleifmittelteilchen fest, da das Ausgangsgemisch - wenn es fließfähig ist - beim Befüllen der Öffnungen über die Begrenzung einer Öffnung in Form der Fäden bzw. Stege hinaus und in eine benachbarte Öffnung fließt. Dabei muss allerdings noch berücksichtigt werden, dass die Dicke im Zuge des Sinterungsprozesses - im Wesentlichen bedingt durch die Reduktion des Flüssigkeitsanteils - noch abnimmt. Allgemein sei darauf hingewiesen, dass sich netzförmige und gitterförmige Strukturen dadurch unterscheiden, dass netzförmige Strukturen im Gegensatz zu gitterförmigen Strukturen Knoten aufweisen. Preferably, the net or grid-shaped structure (one-ply) provided on the support has a height less than or equal to 1.5 millimeters viewed from the side. This height essentially corresponds to the thickness of the threads or webs from which the network or lattice-shaped structure is advantageously constructed. In addition, this height determines the thickness of the abrasive particles present at the end of the manufacturing process since the starting mixture, when it is flowable, flows beyond the confines of an aperture in the form of the strands and into an adjacent aperture as the apertures are filled. However, it must also be taken into account that the thickness in the course of the sintering process - mainly due to the reduction of the liquid content - still decreases. In general, it should be pointed out that reticulated and grid-shaped structures differ in that reticulated structures have nodes in contrast to grid-shaped structures.
Handelt es sich um ein etwas zähflüssigeres Ausgangsgemisch, kann es als alternative oder ergänzende Maßnahme zur Sicherstellung einer bestimmten Dicke der Schleifmittelteilchen vorgesehen sein, dass die mit dem Ausgangsgemisch befüllte netz- oder gitterförmige Struktur vor dem Sintern einen Spalt mit einer vorbestimmten Höhe passiert. Diese Höhe ist vorteilhafter Weise auf die Höhe der auf dem Träger bereitgestellten netz- oder gitterförmigen Struktur bzw. die Stärke der Fäden bzw. Stege der netz- oder gitterförmigen Struktur oder etwas darüber eingestellt, so dass das Ausgangsgemisch gleichmäßig in die Öffnungen hineingestrichen wird. Als Geometrien für die Öffnungen der netz- oder gitterförmigen Struktur bieten sich Polygone, vorzugsweise Rauten, Quadrate oder Dreiecke, an. If it is a somewhat more viscous starting mixture, it can be provided as an alternative or supplementary measure to ensure a certain thickness of the abrasive particles that the net or lattice-like structure filled with the starting mixture passes a gap having a predetermined height prior to sintering. This height is advantageously adjusted to the height of the mesh or latticed structure provided on the support or the thickness of the threads or webs of the net or latticed structure or slightly above, so that the starting mixture is evenly spread in the openings. Polygons, preferably diamonds, squares or triangles, are suitable as geometries for the openings of the mesh or latticed structure.
Je nach Wahl der konkreten Prozessparameter kann es vorkommen, dass die durch das Sintern gewonnenen Sinterprodukte bzw. Schleifmittelteilchen noch vereinzelt über Stege oder dergleichen miteinander verbunden sind. In diesen Fällen ist es vorteilhaft die durch das Sintern gewonnenen Sinterprodukte einer Vereinzelungsvorrichtung, vorzugsweise einer Rüttelvorrichtung, zuzuführen. Depending on the choice of concrete process parameters, it may happen that the sintered products or abrasive particles obtained by sintering are still occasionally connected to one another via webs or the like. In these cases, it is advantageous to supply the sintered products obtained by sintering to a separating device, preferably a vibrating device.
Weitere Vorteile und Einzelheiten der Erfindung ergeben sich anhand der Figuren und der dazugehörigen Figurenbeschreibung. Dabei zeigen: Further advantages and details of the invention will become apparent from the figures and the associated description of the figures. Showing:
Fig. 1 eine schematische Darstellung des erfindungsgemäßen Fig. 1 is a schematic representation of the invention
Verfahrens in Form eines Flussdiagramms,  Method in the form of a flowchart,
Fig. 2a und 2b zwei vorteilhafte Ausführungsformen der Erfindung anhand von  2a and 2b, two advantageous embodiments of the invention with reference to
Schemazeichnungen,  Schematic drawings,
Fig. 3a und 3b zwei mögliche bei dem Verfahren zum Einsatz kommende netz- oder gitterförmige Strukturen, und Fig. 4a und 4b zwei mögliche mittels des erfindungsgemäßen Verfahrens herstellbareFIGS. 3a and 3b show two possible network or latticed structures used in the method, and FIGS Fig. 4a and 4b two possible producible by the method according to the invention
Schleifmittelteilchen. Abrasive particles.
Figur 1 zeigt anhand eines Flussdiagramms die vier grundlegenden Verfahrensschritte des erfindungsgemäßen Verfahrens 1 zur Herstellung von Schleifmittel, nämlich FIG. 1 shows, with reference to a flowchart, the four basic method steps of the method 1 according to the invention for the production of abrasives, namely
i. das Bereitstellen einer verbrennbaren netz- oder gitterförmigen Struktur, vorzugsweise aus Kunststoff, mit einer Mehrzahl von Öffnungen auf einem Träger, vorzugsweise einem Endlosträgerbrand,  i. the provision of a combustible reticulated or grid-shaped structure, preferably of plastic, with a plurality of openings on a support, preferably an endless carrier fire,
ii. das Bereitstellen eines, vorzugsweise Aluminiumhydroxid enthaltenden, Ausgangsgemischs, welches durch Sintern zumindest in Aluminiumoxid überführbar ist, wobei das Ausgangsgemisch vorzugsweise fließfähig ist,  ii. the provision of a starting mixture, preferably containing aluminum hydroxide, which is convertible by sintering at least in aluminum oxide, the starting mixture preferably being flowable,
iii. das Befüllen der Öffnungen mit dem Ausgangsgemisch, und  iii. filling the openings with the starting mixture, and
iv. das Sintern der mit dem Ausgangsgemisch befüllten netz- oder gitterförmigen Struktur.  iv. the sintering of the filled with the starting mixture net or lattice-shaped structure.
Die technische Umsetzung dieses Verfahrens kann in unterschiedlicher Weise erfolgen, wobei zwei besonders bevorzugte Ausführungsformen in den Figuren 2a und 2b dargestellt sind: The technical implementation of this method can take place in different ways, wherein two particularly preferred embodiments are shown in FIGS. 2a and 2b:
Im Falle der Figur 2a erfolgt das Bereitstellen der verbrennbaren netz- oder gitterförmigen Struktur 4 auf einem Träger in Form eines Endlosträgerbands 10 durch Abwickeln der netz- oder gitterförmigen Struktur 4 von einer Rolle 15. Die Winkelgeschwindigkeit dieser Rolle 15 und die Geschwindigkeit des Endlosträgerbandes 10 werden dabei aufeinander abgestimmt, um ein gleichmäßiges Abwickeln der netz- oder gitterförmigen Struktur 4 sicherzustellen. Das Endlosträgerband 10 wird über die Wälzkörper 16 und 17 geführt. In the case of FIG. 2a, the combustible reticulated or grid-shaped structure 4 is provided on a carrier in the form of an endless carrier belt 10 by unwinding the net or lattice-like structure 4 from a roller 15. The angular velocity of this roller 15 and the speed of the endless carrier belt 10 become coordinated with each other to ensure a uniform unwinding of the net or lattice-shaped structure 4. The Endlosträgerband 10 is guided over the rolling elements 16 and 17.
Nach dem Bereitstellen der verbrennbaren netz- oder gitterförmigen Struktur 4, die in diesem Fall aus Kunststoff besteht, werden die Öffnungen 6 derselben (vgl. Fig. 3a) mit einem fließfähigen Ausgangsgemisch 8, welches durch Sintern zumindest in Aluminiumoxid (und wie weiter oben ausgeführt in etwaige Nebenphasen) überführbar ist, und welches in diesem Fall überwiegend Aluminiumhydroxid enthält, befüllt. Hierzu wird das Ausgangsgemisch 8 auf die netz- oder gitterförmige Struktur 4 gegossen. Die mit dem Ausgangsgemisch 8 befüllte netz- oder gitterförmige Struktur 4 passiert anschließend einen Spalt 13, dessen Höhe im Wesentlichen der Höhe 18 der einlagig auf dem Träger 10 bereitgestellten netz- oder gitterförmige Struktur 4 entspricht. After providing the combustible reticulated or grid-shaped structure 4, which in this case consists of plastic, the openings 6 thereof (see Fig. 3a) with a flowable starting mixture 8, which by sintering at least in alumina (and as stated above in possible secondary phases) can be converted, and which in this case contains predominantly aluminum hydroxide, filled. For this purpose, the starting mixture 8 is poured onto the mesh or grid-shaped structure 4. The net or grid-shaped structure 4 filled with the starting mixture 8 then passes through a gap 13, the height of which substantially corresponds to the height 18 of the net or grid-shaped structure 4 provided in one layer on the carrier 10.
Die mit dem Ausgangsgemisch 8 befüllte netz- oder gitterförmige Struktur 4 wird schließlich mittels des Endlosträgerbands 10 durch einen Durchlaufofen 14 transportiert, in dem der Trockenprozess bzw. das Sintern erfolgt. Dabei werden zum einen die Portionen des Ausgangsgemischs 8, die sich in den Öffnungen der netz- oder gitterförmigen Struktur 4 befinden zu Aluminiumoxid-Teilchen gesintert. Gleichzeitig verbrennt die netz- oder gitterförmige Struktur 4. Das heißt, dass im Anschluss an den Verfahrensschritt des Sinterns die Schleifmittelteilchen 2 gemäß der vorgegebenen Geometrie der netz- oder gitterförmigen Struktur 4 auf dem Endlosträgerband 10 vorliegen. Abschließend werden die Schleifmittelteilchen 2 in einem Sammelbehälter aufgefangen. The filled with the starting mixture 8 mesh or lattice-shaped structure 4 is finally transported by means of Endlosträgerbands 10 through a continuous furnace 14, in which the Dry process or sintering takes place. In this case, on the one hand the portions of the starting mixture 8, which are located in the openings of the mesh or lattice-shaped structure 4 are sintered to alumina particles. At the same time, the mesh or grid-shaped structure 4 burns. That is, after the sintering process step, the abrasive particles 2 are present on the endless carrier belt 10 in accordance with the predetermined geometry of the mesh or grid-shaped structure 4. Finally, the abrasive particles 2 are collected in a collecting container.
Im Falle des in der Figur 2b schematisch dargestellten Ausführungsbeispiel des erfindungsgemäßen Verfahrens erfolgen die beiden Verfahrenschritte „Bereitstellen einer verbrennbaren netz- oder gitterförmigen Struktur" und„Befüllen der Öffnungen derselben" in gleicher Weise wie bei dem in der Figur 2a dargestellten Ausführungsbeispiel. Allerdings wird die mit dem Ausgangsgemisch 8 befüllte netz- oder gitterförmige Struktur 5 anschließend vor dem Sintern mittels einer Heizvorrichtung 19 vorgetrocknet, und zwar bei einer Temperatur zwischen 150° Celsius und 400°Celsius. Bei dieser Temperatur ist die netz- oder gitterförmige Struktur 5 hitzebeständig. Durch das Vortrocknen wird dem Ausgangsgemisch Flüssigkeit entzogen, so dass es weniger flexibel ist und an der netz- oder gitterförmigen Struktur haften bleibt. Daher lässt sich die mit dem Ausgangsgemisch 8 befüllte netz- oder gitterförmige Struktur 5 mittels einer geeigneten Vorrichtung in plattenförmige Abschnitte 9 unterteilen, die in weiterer Folge einem Sinterofen 20 zugeführt werden. In the case of the exemplary embodiment of the method according to the invention diagrammatically shown in FIG. 2b, the two method steps "providing a combustible reticulate or grid-shaped structure" and "filling the openings thereof" are carried out in the same way as in the embodiment shown in FIG. 2a. However, the network or grid-shaped structure 5 filled with the starting mixture 8 is subsequently predried by means of a heating device 19 before sintering, specifically at a temperature between 150 ° Celsius and 400 ° Celsius. At this temperature, the mesh or lattice-shaped structure 5 is heat-resistant. Predrying removes liquid from the starting mixture so that it is less flexible and adheres to the net or latticed structure. Therefore, the net or grid-shaped structure 5 filled with the starting mixture 8 can be subdivided into plate-shaped sections 9 by means of a suitable device, which are subsequently supplied to a sintering furnace 20.
In dem Sinterofen 20 wird wiederum der Verfahrensschritt des Sinterns durchgeführt, wobei das Ausgangsgemischs 8 zumindest in Aluminiumoxid und etwaige Nebenphasen überführt und gleichzeitig die netz- oder gitterförmige Struktur 5 verbrannt wird, sodass beim Sintern eine Vereinzelung der Schleifmittelteilchen 3 erfolgt. In the sintering furnace 20, the sintering process is again carried out, wherein the starting mixture 8 is converted at least into aluminum oxide and any secondary phases and at the same time the mesh or lattice-shaped structure 5 is burnt, so that a separation of the abrasive particles 3 occurs during sintering.
Wie bereits ausgeführt lässt sich über die Geometrie der netz- oder gitterförmigen Struktur die Geometrie der mittels des Verfahrens hergestellten Schleifmittelteilchen bestimmen. Die Figuren 3a und 3b zeigen zwei beispielhafte Netzgeometrien und zwar zum einen im Falle der Figur 3a eine netz- oder gitterförmige Struktur 4, deren Öffnungen rautenförmig ausgebildet sind, und zum anderen im Falle der Figur 3b eine netz- oder gitterförmige Struktur 5, deren Öffnungen quadratisch ausgebildet sind. Die Fäden oder Stege 1 1 bzw. 12 der netz- oder gitterförmigen Struktur 4 bzw. 5 weisen eine Stärkekleiner oder gleich 1 ,5 Millimeter auf. Die netz- oder gitterförmigen Strukturen 4 und 5 können sowohl bei dem Ausführungsbeispiel gemäß Figur 2a als auch bei dem Ausführungsbeispiel gemäß Figur 2b verwendet werden. Es ist auch denkbar eine netz- oder gitterförmige Struktur zu verwenden, die Öffnungen mit unterschiedlichen Geometrien aufweist, und auf diese Weise eine Mischung von Schleifmittelteilchen mit dementsprechend unterschiedlichen Geometrien herzustellen. As already stated, the geometry of the mesh or lattice-shaped structure can be used to determine the geometry of the abrasive particles produced by the process. FIGS. 3a and 3b show two exemplary network geometries, namely, in the case of FIG. 3a, a net or lattice-shaped structure 4 whose openings are diamond-shaped and, in the case of FIG. 3b, a net or lattice-shaped structure 5, whose openings square are formed. The threads or webs 1 1 and 12 of the mesh or lattice-like structure 4 and 5 have a thickness of less than or equal to 1, 5 millimeters. The mesh or latticed structures 4 and 5 can be used both in the embodiment according to FIG. 2a and in the embodiment according to FIG. 2b. It is also conceivable to use a network or lattice-shaped structure, the openings with has different geometries, and in this way to produce a mixture of abrasive particles with correspondingly different geometries.
Die Figuren 4a und 4b zeigen zwei Beispiele für mittels des Verfahrens herstellbare Schleifmittelteilchen, wobei das Teilchen 2 in der Figur 4a eine Rautenform mit einer vorgegebenen Kantenlänge 22 aufweist und das Teilchen 3 in der Figur 4b eine quadratische Form mit einer vorgegebenen Kantenlänge 24. Diese Geometrien der Schleifmittelteilchen 2 und 3 entsprechen den in den Figuren 3a und 3b dargestellten Netz- bzw. Gittergeometrien. Die Dicke 25 bzw. 26 der Schleifmittelteilchen ist - bedingt durch den Flüssigkeitsentzug während des Sinterungsprozesses - kleiner als die Stärke der Fäden bzw. Stege der netz- oder gitterförmigen Struktur. FIGS. 4a and 4b show two examples of abrasive particles which can be produced by the process, wherein the particle 2 in FIG. 4a has a diamond shape with a predetermined edge length 22 and the particle 3 in FIG. 4b has a square shape with a predetermined edge length 24. These geometries The abrasive particles 2 and 3 correspond to the grid or grid geometries shown in FIGS. 3a and 3b. The thickness 25 or 26 of the abrasive particles is - due to the liquid removal during the sintering process - smaller than the thickness of the threads or webs of the mesh or lattice-shaped structure.

Claims

Patentansprüche Patent claims
Verfahren (1 ) zur Herstellung von Schleifmittel (2, 3), gekennzeichnet durch die folgenden Verfahrensschritte: Process (1) for producing abrasives (2, 3), characterized by the following process steps:
i. Bereitstellen einer verbrennbaren netz- oder gitterförmigen Struktur (4, 5), vorzugsweise aus Kunststoff, mit einer Mehrzahl von Öffnungen (6, 7) auf einem Träger (10), vorzugsweise einem Endlosträgerband, i. Providing a combustible net or grid-shaped structure (4, 5), preferably made of plastic, with a plurality of openings (6, 7) on a carrier (10), preferably an endless carrier belt,
ii. Bereitstellen eines, vorzugsweise Aluminiumhydroxid enthaltenden, Ausgangsgemischs (8), welches durch Sintern zumindest in Aluminiumoxid überführbar ist, wobei das Ausgangsgemisch (8) vorzugsweise fließfähig ist, iii. Befüllen der Öffnungen (6, 7) mit dem Ausgangsgemisch (8), und ii. Providing a starting mixture (8), preferably containing aluminum hydroxide, which can be converted at least into aluminum oxide by sintering, the starting mixture (8) preferably being flowable, iii. Filling the openings (6, 7) with the starting mixture (8), and
iv. Sintern der mit dem Ausgangsgemisch (8) befüllten netz- oder gitterförmigen Struktur (4, 5). iv. Sintering the net or grid-shaped structure (4, 5) filled with the starting mixture (8).
Verfahren (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die mit dem Ausgangsgemisch (8) befüllte netz- oder gitterförmige Struktur (4, 5) vor dem Sintern vorgetrocknet wird, bevorzugt bei einer Temperatur zwischen 50°C und 500°C, besonders bevorzugt bei einer Temperatur zwischen 150°C und 400°C. Method (1) according to claim 1, characterized in that the net or grid-shaped structure (4, 5) filled with the starting mixture (8) is pre-dried before sintering, preferably at a temperature between 50 ° C and 500 ° C, especially preferably at a temperature between 150°C and 400°C.
Verfahren (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mit dem Ausgangsgemisch (8) befüllte netz- oder gitterförmige Struktur (4, 5) vor dem Sintern in, vorzugweise plattenförmige, Abschnitte (9) unterteilt wird. Method (1) according to claim 1 or 2, characterized in that the net or grid-shaped structure (4, 5) filled with the starting mixture (8) is divided into, preferably plate-shaped, sections (9) before sintering.
Verfahren (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Sintern in einem Durchlaufofen (14) durchgeführt wird. Method (1) according to one of claims 1 to 3, characterized in that the sintering is carried out in a continuous furnace (14).
Verfahren (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Sintern bei einer Temperatur zwischen 1200°C und 1800°C, vorzugsweise bei einer Temperatur zwischen 1200°C und 1500°C, durchgeführt wird. Method (1) according to one of claims 1 to 4, characterized in that the sintering is carried out at a temperature between 1200°C and 1800°C, preferably at a temperature between 1200°C and 1500°C.
Verfahren (1 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Befüllen der Öffnungen (6, 7) der netz- oder gitterförmigen Struktur (4, 5) im Wesentlichen durch Gießen erfolgt. Method (1) according to one of claims 1 to 5, characterized in that the openings (6, 7) of the net or grid-shaped structure (4, 5) are filled essentially by casting.
7. Verfahren (1 ) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die auf dem Träger bereitgestellte netz- oder gitterförmige Struktur (4, 5) von der Seite betrachtet eine Höhe (18) kleiner oder gleich 1 ,5mm aufweist. 7. Method (1) according to one of claims 1 to 6, characterized in that the net or grid-shaped structure (4, 5) provided on the carrier has a height (18) less than or equal to 1.5 mm when viewed from the side.
8. Verfahren (1 ) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die mit dem Ausgangsgemisch (8) befüllte netz- oder gitterförmige Struktur (4, 5) vor dem Sintern einen Spalt (13) mit einer vorbestimmten Höhe passiert. 8. Method (1) according to one of claims 1 to 7, characterized in that the net or grid-shaped structure (4, 5) filled with the starting mixture (8) passes through a gap (13) with a predetermined height before sintering.
9. Verfahren (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Öffnungen (6, 7) der netz- oder gitterförmigen Struktur (4, 5) polygonal, vorzugsweise rautenförmig, quadratisch oder dreieckig, ausgebildet sind. 9. Method (1) according to one of claims 1 to 8, characterized in that the openings (6, 7) of the net or grid-shaped structure (4, 5) are polygonal, preferably diamond-shaped, square or triangular.
10. Verfahren (1 ) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die durch das Sintern gewonnenen Sinterprodukte einer Vereinzelungsvorrichtung, vorzugsweise einer Rüttelvorrichtung., zugeführt werden. 10. Method (1) according to one of claims 1 to 9, characterized in that the sintered products obtained by sintering are fed to a separating device, preferably a shaking device.
PCT/AT2014/000214 2013-12-18 2014-12-02 Method for the production of abrasive WO2015089528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14828436.7A EP3083026A1 (en) 2013-12-18 2014-12-02 Method for the production of abrasive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA969/2013 2013-12-18
ATA969/2013A AT515229B1 (en) 2013-12-18 2013-12-18 Process for the production of abrasives

Publications (1)

Publication Number Publication Date
WO2015089528A1 true WO2015089528A1 (en) 2015-06-25

Family

ID=52394013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2014/000214 WO2015089528A1 (en) 2013-12-18 2014-12-02 Method for the production of abrasive

Country Status (3)

Country Link
EP (1) EP3083026A1 (en)
AT (1) AT515229B1 (en)
WO (1) WO2015089528A1 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9238768B2 (en) 2012-01-10 2016-01-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
US9303196B2 (en) 2011-06-30 2016-04-05 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9598620B2 (en) 2011-06-30 2017-03-21 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9676982B2 (en) 2012-12-31 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US9676980B2 (en) 2012-01-10 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9765249B2 (en) 2011-12-30 2017-09-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10280350B2 (en) 2011-12-30 2019-05-07 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984988A (en) * 1992-07-23 1999-11-16 Minnesota Minning & Manufacturing Company Shaped abrasive particles and method of making same
US20130236725A1 (en) * 2012-01-10 2013-09-12 Doruk O. Yener Abrasive particles having complex shapes and methods of forming same
US20130263525A1 (en) * 2010-11-01 2013-10-10 3M Innovative Properties Company Shaped Abrasive Particles and Method of Making

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009676A (en) * 1989-04-28 1991-04-23 Norton Company Sintered sol gel alumina abrasive filaments
US5201916A (en) * 1992-07-23 1993-04-13 Minnesota Mining And Manufacturing Company Shaped abrasive particles and method of making same
US5881353A (en) * 1994-03-31 1999-03-09 Hitachi Chemical Company, Ltd. Method for producing porous bodies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984988A (en) * 1992-07-23 1999-11-16 Minnesota Minning & Manufacturing Company Shaped abrasive particles and method of making same
US20130263525A1 (en) * 2010-11-01 2013-10-10 3M Innovative Properties Company Shaped Abrasive Particles and Method of Making
US20130236725A1 (en) * 2012-01-10 2013-09-12 Doruk O. Yener Abrasive particles having complex shapes and methods of forming same

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9303196B2 (en) 2011-06-30 2016-04-05 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US9598620B2 (en) 2011-06-30 2017-03-21 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
US10280350B2 (en) 2011-12-30 2019-05-07 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US9765249B2 (en) 2011-12-30 2017-09-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US10428255B2 (en) 2011-12-30 2019-10-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US10106715B2 (en) 2012-01-10 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US10364383B2 (en) 2012-01-10 2019-07-30 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9238768B2 (en) 2012-01-10 2016-01-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9567505B2 (en) 2012-01-10 2017-02-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11649388B2 (en) 2012-01-10 2023-05-16 Saint-Gobain Cermaics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9676980B2 (en) 2012-01-10 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11859120B2 (en) 2012-01-10 2024-01-02 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having an elongated body comprising a twist along an axis of the body
US9771506B2 (en) 2012-01-10 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
US9428681B2 (en) 2012-05-23 2016-08-30 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10000676B2 (en) 2012-05-23 2018-06-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9688893B2 (en) 2012-05-23 2017-06-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10286523B2 (en) 2012-10-15 2019-05-14 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11154964B2 (en) 2012-10-15 2021-10-26 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11148254B2 (en) 2012-10-15 2021-10-19 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9676982B2 (en) 2012-12-31 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US10668598B2 (en) 2013-03-29 2020-06-02 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US10179391B2 (en) 2013-03-29 2019-01-15 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563106B2 (en) 2013-09-30 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US11091678B2 (en) 2013-12-31 2021-08-17 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US10597568B2 (en) 2014-01-31 2020-03-24 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US10351745B2 (en) 2014-12-23 2019-07-16 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11926780B2 (en) 2014-12-23 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US10358589B2 (en) 2015-03-31 2019-07-23 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11549040B2 (en) 2017-01-31 2023-01-10 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles having a tooth portion on a surface
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11932802B2 (en) 2017-01-31 2024-03-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles comprising a particular toothed body
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same

Also Published As

Publication number Publication date
AT515229A1 (en) 2015-07-15
EP3083026A1 (en) 2016-10-26
AT515229B1 (en) 2016-08-15

Similar Documents

Publication Publication Date Title
AT515229B1 (en) Process for the production of abrasives
AT515223B1 (en) Process for the production of abrasives
EP3083869B1 (en) Method for the production of abrasive articles
EP3083870B1 (en) Method for producing multilayer abrasive particles
AT519483B1 (en) PROCESS FOR PREPARING ABRASIVE PARTICLES
EP2879858B1 (en) Method and device for powder bed-based additive production of a component
EP3530630B1 (en) Device for determining bulk density
EP3360659B1 (en) Method for additive manufacture with continuous layer application
DE19924675A1 (en) Porous sintered body, especially a metallic filter body for particle separation from hot gases, is produced by agitating a loose fiber heap to individualize fibers, filling into a mould and sintering
EP0976518A2 (en) Method and apparatus for making a polygonal foam block of bonded foam pieces
WO2017132710A1 (en) Method for producing a three-dimensional hard metal body in layers
CH224046A (en) Voltage dependent resistance.
EP3496920B1 (en) Method and system for producing a roof tile, and roof tile
WO2011092021A1 (en) Grinding body with additional particles from recycled grinding bodies, and method for the production thereof
DE2054335C (en) Process for the production of steel lamellas coated with sintered fuels on both sides with inner or outer teeth
DE102014205623B4 (en) METHOD FOR PRODUCING OPEN-CELLED BODIES
DE1233547B (en) Method for producing a metal coating on a carrier by sintering a layer of loose metal powder mixture
DE102018103401B3 (en) Method and device for producing pressed formats from renewable raw materials
DE102015218753A1 (en) Method for producing a component
DE1815973A1 (en) Method and device for the strand production of multi-layer concrete moldings, in particular roof tiles
EP2135693A2 (en) Filter element and method for manufacturing a filter element
EP2752280A2 (en) Ready-mixed concrete plant with filling device and method for manufacturing a filling device
CH700931B1 (en) Producing objects that partially contain clay, comprises preparing raw material in powder form to grain form to distribute prepared product over cross-section of the objects to be produced in a layerwise manner, and sintering the product
AT166042B (en) Method and device for the production of high-positional metal plates by sintering metal powder
DE102008049408B4 (en) Method for producing a shaped body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828436

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014828436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014828436

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE