WO2015193580A1 - System for controlling a rankine cycle - Google Patents

System for controlling a rankine cycle Download PDF

Info

Publication number
WO2015193580A1
WO2015193580A1 PCT/FR2015/051504 FR2015051504W WO2015193580A1 WO 2015193580 A1 WO2015193580 A1 WO 2015193580A1 FR 2015051504 W FR2015051504 W FR 2015051504W WO 2015193580 A1 WO2015193580 A1 WO 2015193580A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
reservoir
tank
level
liquid level
Prior art date
Application number
PCT/FR2015/051504
Other languages
French (fr)
Inventor
Wissam Rached
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to KR1020167035203A priority Critical patent/KR20170008808A/en
Priority to CN201580032428.7A priority patent/CN106460573A/en
Priority to SG11201610029RA priority patent/SG11201610029RA/en
Priority to AU2015275960A priority patent/AU2015275960B2/en
Priority to JP2016572819A priority patent/JP2017524090A/en
Priority to CA2951358A priority patent/CA2951358A1/en
Priority to US15/319,202 priority patent/US20170122134A1/en
Priority to EP15738718.4A priority patent/EP3155240A1/en
Publication of WO2015193580A1 publication Critical patent/WO2015193580A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure

Definitions

  • the present invention relates to a control system of a Rankine cycle and a method of generating electricity that can be implemented with this system.
  • a Rankine cycle is a system that converts thermal energy into electrical energy.
  • the recovered heat is used to heat and then vaporize a heat transfer fluid, which is then expanded in an expansion member, typically a turbine, supplying a generator.
  • the fluid is then condensed to restart the cycle.
  • Rankine cycles are used in particular for the production of electricity, for example in power plants. Such cycles generally use water as a heat transfer fluid.
  • Organic Rankine Cycles use organic products instead of water. This allows the reduction of plant size and the construction of low power installations.
  • the heat transfer fluid must therefore generally be in the vapor state before passing into the expansion member. It is known, in order to prevent the passage of liquid in the expansion member, to have a liquid-vapor separator between the evaporator and the turbine.
  • Document WO 2007/104970 describes in connection with FIG. 1 a known Rankine cycle comprising a liquid-vapor separator between the evaporator and the turbine.
  • a pipe is provided for recycling liquid from the separator to the evaporator.
  • the liquid level in the separator is measured and is determined to control the circuit pump, depending on the electrical energy demand. If the liquid level in the separator increases, the flow rate of the pump decreases, and vice versa.
  • the document then proposes to stand out from this known system by allowing a fraction of liquid to pass into the expansion member and controlling it by means of a complex control system.
  • the document WO 2012/130421 describes an installation adapted to heat recovery from several different sources.
  • the installation includes a common liquid - vapor separator and a common turbine, and several evaporators and pumps corresponding to different sources.
  • the liquid - vapor separator serves as a liquid reservoir for the installation, since it is also supplied with liquid from the condenser.
  • FR 2976136 teaches a facility based on a Rankine cycle, provided with bypass valves for short-circuiting the turbine.
  • the invention firstly relates to a system for the production of electricity, comprising a closed circuit of heat transfer fluid which comprises an evaporator, an expansion device, a condenser and a circulation pump, a generator being coupled to the expansion element, in which a liquid-vapor separator provided with a liquid reservoir is arranged between the evaporator and the expansion element, the system being further provided with a control device configured to drain the reservoir if the level of liquid in the tank reaches a maximum threshold.
  • the heat transfer fluid is organic.
  • the tank is emptied by a liquid recycling line feeding the evaporator.
  • control device is configured to reduce the flow rate of the circulation pump if the level of liquid in the reservoir reaches the maximum threshold.
  • the level of liquid in the reservoir is maintained between a minimum threshold and the maximum threshold.
  • control device is configured to stop the emptying of the tank if the level of liquid in the tank reaches the minimum threshold.
  • control device is configured to increase the flow rate of the circulation pump if the level of liquid in the reservoir reaches the minimum threshold.
  • the invention also relates to a method for generating electricity, comprising the following concurrent steps:
  • the heat transfer fluid is organic.
  • the drained liquid is recycled to the heating and evaporation stage.
  • the pumping rate of the condensed phase is reduced when the liquid level in this reservoir reaches the maximum threshold.
  • the level of liquid in the reservoir is constantly maintained between a minimum threshold and the maximum threshold. According to one embodiment, the step of emptying the tank is interrupted if the level of liquid in the tank reaches the minimum threshold.
  • the pumping rate of the condensed phase is increased if the level of liquid in the reservoir reaches the minimum threshold.
  • the present invention overcomes the disadvantages of the state of the art. More particularly, it provides a Rankine cycle based power generation system operable with an organic heat transfer fluid, in which the detent is protected from damage in a simple and economical manner.
  • liquid vapor separator provided with a liquid reservoir at the outlet of the evaporator which is coupled to a control device capable of controlling the level of liquid in the reservoir.
  • Figure 1 schematically shows a Rankine cycle that can be used to implement the invention.
  • Figures 2 to 5 show schematically a part of a system according to one embodiment of the invention, in different phases of operation.
  • a system for the production of electricity according to the invention is based on a Rankine cycle, comprising an evaporator 1, an expansion device 2, a condenser 3 and a circulation pump 4.
  • the Rankine ring contains a heat transfer fluid, which is preferably an organic compound, for example a hydrocarbon, or a hydrofluorocarbon, or a hydrofluoroolefin, or a mixture of several such compounds.
  • a heat transfer fluid which is preferably an organic compound, for example a hydrocarbon, or a hydrofluorocarbon, or a hydrofluoroolefin, or a mixture of several such compounds.
  • HFC-134a (1, 1, 1, 2-tetrafluoroethane), HFC-32 (difluoromethane), HFC-125 (pentafluoroethane), HFC-152a (1,1-difluoroethane), HFC -134 (1,1,2,2-tetrafluoroethane), HFC-161 (fluoroethane), HFO-1234yf (2,3,3,3-tetrafluoropropene), HFO-1234ze (1, 3,3,3-tetrafluoropropene), HFO-1233zd (1-chloro-3,3,3-trifluoropropene), HFO-1336mzz (1,1,1,4,4,4-hexafluorobutene) under form E or Z, HC-600 (butane), HC-600a (2-methylpropane) and HC-290 (propane).
  • the evaporator 1 is coupled to a heat source.
  • a generator 5 is coupled to the expansion member 2. It supplies electrical power at the output of the system.
  • the heat transfer fluid receives heat from the heat source in the evaporator 1. It is thus heated, evaporated and possibly overheated. The energy thus accumulated in the fluid is returned to mechanical work by relaxing the fluid in the expansion member 2. This mechanical work is itself converted into electrical current in the generator 5 in a manner known per se.
  • the expanded heat transfer fluid is condensed in the condenser 3, then returned to the evaporator 1 by means of pump 4.
  • FIG. 1 Although only one element of each category is shown in FIG. 1, it is possible to provide several of these elements, for example several evaporators and / or several expansion devices and / or several pumps and / or several condensers, and in series and / or in parallel.
  • evaporator is used here in a general sense. It designates a heat exchanger adapted to heat, evaporate and possibly overheat the fluid.
  • the evaporator may therefore include different sections, for example a heating section, a vaporization section, and possibly an overheating section. It can be or include a boiler.
  • a heat source can be used for example a source of hot liquid (geothermal source), an industrial flow (combustion gas for example) or another thermal installation (cooling or air conditioning, combustion engine. to which the system of the invention can be coupled.
  • a source of hot liquid geothermal source
  • an industrial flow combustion gas for example
  • another thermal installation cooling or air conditioning, combustion engine. to which the system of the invention can be coupled.
  • the heat source can either directly exchange heat with the heat transfer fluid in the evaporator 1, or exchange heat therewith by means of an intermediate heat transfer fluid circuit.
  • the heat transfer fluid transfers heat to a cold source, which may be for example air or water from the environment, either directly or by means of a intermediate heat transfer fluid circuit.
  • the expansion member 2 is preferably a turbine, especially a centrifugal turbine, screw, piston or rotary (scroll type).
  • the invention provides a liquid-vapor separation device 6 between the evaporator 1 and the expansion member 2. It allows to separate the heated fluid and evaporated (and possibly superheated) in a vapor phase (in principle majority or very large majority) and a possible liquid phase.
  • the liquid phase is collected in a reservoir 12 where it accumulates.
  • the liquid-vapor separator 6 simply comprises the reservoir 12, a dip tube connected to the outlet of the evaporator 1 immersed in the liquid contained in the reservoir 12, and a gas outlet connected to the inlet of the trigger 2 disposed towards the top of the tank 12.
  • the liquid-vapor separator 6 may comprise a cyclone or a coalescence membrane or any other separation device, the reservoir 12 then being intended to collect the previously separated liquid phase.
  • a liquid recycling line 9 is connected at the outlet of the tank 12; it is advantageously provided with a valve 10.
  • the liquid recycling line 9 can in particular supply the evaporator 1.
  • it can be connected to a pipe 7 located between the pump 4 and the evaporator 1.
  • the pipe 7 can directly feed the evaporator 1, at its inlet or at an intermediate point.
  • liquid recycling line 9 can be connected between the expansion device 2 and the condenser 3, or between the condenser 3 and the pump 4.
  • one or more liquid level sensors are provided in the reservoir 12 to detect the arrival of the liquid level at a maximum liquid threshold 13 and at a minimum liquid threshold 14 in the reservoir 12 These liquid level sensors are connected to a control device 15.
  • the maximum liquid threshold 13 is located below the upper end of the reservoir 12, and the minimum liquid threshold 14 is located above the lower end of the reservoir 12 - to prevent the reservoir 12 can be completely empty or completely full.
  • the control device 15 advantageously controls the valve 10 as well as the pump 4.
  • the control device 15 ensures the emptying of the reservoir 12 if the level of liquid in the reservoir reaches the maximum threshold 13. This makes it possible to avoid any risk of liquid being drawn into the expansion element 2.
  • draining is meant the action of emptying all or part of the reservoir 12 of liquid. Preferably, the emptying is only partial.
  • the emptying of the reservoir is effected by opening the valve 10. If the reservoir 12 is placed above the evaporator 1, the emptying of the reservoir can be accomplished simply under the effect of gravity. Alternatively, if necessary, an additional pump can be provided on the liquid recycling line 9, controlled by the control device 15.
  • the control device 15 acts on the pump 4 to reduce the flow rate.
  • the reduction of the flow is performed up to a zero or non-zero value.
  • reducing the flow rate means stopping the flow of fluid in the pump 4. It is understood that the same function can be ensured by having the control device 15 control a valve located upstream or downstream of the pump 4 .
  • control device 15 is adapted to terminate the emptying of the tank 12 if the liquid level in the tank reaches the minimum threshold 14, and in particular to ensure that the amount of liquid in the tank 12 remains sufficient for the liquid - vapor separator to function properly and to allow the system to return to its normal operating mode.
  • the end of the emptying is effected by a closure of the valve 10.
  • the control device 15 acts on the pump 4 to increase the flow rate (that is to say, to turn on the pump 4, if she had been previously arrested).
  • FIGS 2 to 5 show the system of the invention in different configurations.
  • the pump 4 pumps the liquid, and the valve 10 is closed.
  • the level of liquid in the reservoir 12 is located between the minimum level 14 and the maximum level 13. This liquid level tends to rise over time, as the liquid phase present at the evaporator outlet is collected in the liquid - vapor separator 6.
  • the control device 15 stops the pump 4 (or decreases the flow rate to a non-zero value), and it opens the valve 10.
  • the liquid from the tank is drained by the liquid recycle line 9 (for example under the effect of gravity).
  • This liquid is heated, evaporated and if necessary superheated in the evaporator 1 so that the system continues to operate and to produce electric current during this emptying phase.
  • the level of liquid in the reservoir 12 decreases during this emptying phase.
  • the control device 15 starts up the pump 4 (or it increases the flow rate if this pump was not previously stopped) , and it closes the valve 10. The system thus returns to the state of FIG. 2.
  • control device 15 makes it possible to increase the flow rate in the liquid recycling line 9 during the emptying phases. This variant may be useful when a large proportion of liquid is present at the outlet of the evaporator 1.
  • FIG. 2 to 5 has the advantage of being particularly simple design and implementation. However, it is also possible to provide a more complex system, adapting more finely to variations in the conditions of use, for example by providing other level thresholds in addition to the maximum threshold 13 and the minimum threshold 14, the control device 15 being thus adapted to regulate the flow rate of the pump 4 and / or the flow rate of the liquid recycling coming from the reservoir 12 as a function of the level of liquid in the reservoir 12.

Abstract

The invention relates to a system for producing electricity, comprising a closed circuit of heat-transfer fluid which comprises an evaporator (1), an expansion member (2), a condenser (3) and a circulation pump (4), a generator (5) being coupled to the expansion member (2), in which system a liquid - vapour separator (6) provided with a liquid reservoir (12) is positioned between the evaporator (1) and the expansion member (2), the system being further provided with a control device (15) configured to empty the reservoir (12) if the liquid level in the reservoir reaches a maximum threshold (13).

Description

SYSTEME DE CONTROLE D'UN CYCLE DE RANKINE  SYSTEM FOR CONTROLLING A RANKINE CYCLE
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention concerne un système de contrôle d'un cycle de Rankine ainsi qu'un procédé de production d'électricité pouvant être mis en œuvre avec ce système. ARRIERE-PLAN TECHNIQUE  The present invention relates to a control system of a Rankine cycle and a method of generating electricity that can be implemented with this system. TECHNICAL BACKGROUND
Un cycle de Rankine est un système qui permet de transformer de l'énergie thermique en énergie électrique. La chaleur récupérée est utilisée pour chauffer puis vaporiser un fluide de transfert de chaleur, qui est ensuite détendu dans un organe de détente, typiquement une turbine, alimentant un générateur. Le fluide est ensuite condensé pour recommencer le cycle.  A Rankine cycle is a system that converts thermal energy into electrical energy. The recovered heat is used to heat and then vaporize a heat transfer fluid, which is then expanded in an expansion member, typically a turbine, supplying a generator. The fluid is then condensed to restart the cycle.
Les cycles de Rankine sont notamment utilisés pour la production d'électricité, par exemple dans des centrales électriques. De tels cycles utilisent en général l'eau comme fluide de transfert de chaleur.  Rankine cycles are used in particular for the production of electricity, for example in power plants. Such cycles generally use water as a heat transfer fluid.
Les cycles organiques de Rankine (ou ORC) utilisent des produits organiques à la place de l'eau. Cela permet la réduction de la taille des installations et la construction d'installations de faible puissance.  Organic Rankine Cycles (or ORCs) use organic products instead of water. This allows the reduction of plant size and the construction of low power installations.
A l'heure actuelle, le prix de ces installations reste élevé à cause des technologies nécessaires pour leur contrôle, ce qui freine le développent de cette technologie pour des applications courantes.  At present, the price of these installations remains high because of the technologies necessary for their control, which hampers the development of this technology for current applications.
La présence de particules de liquide à l'entrée de l'organe de détente The presence of liquid particles at the inlet of the detent
(turbine) conduit à des phénomènes de corrosion et d'érosion sur celui-ci, ainsi qu'à des contraintes mécaniques susceptibles de l'endommager ou de le détruire. (turbine) leads to corrosion and erosion phenomena on it, as well as mechanical stresses likely to damage or destroy it.
Le fluide de transfert de chaleur doit donc généralement être à l'état vapeur avant de passer dans l'organe de détente. Il est connu, afin d'éviter le passage de liquide dans l'organe de détente, de disposer un séparateur liquide - vapeur entre l'évaporateur et la turbine.  The heat transfer fluid must therefore generally be in the vapor state before passing into the expansion member. It is known, in order to prevent the passage of liquid in the expansion member, to have a liquid-vapor separator between the evaporator and the turbine.
Le document US 7,841 ,306 décrit ainsi un cycle de Rankine comprenant un séparateur liquide - vapeur entre l'évaporateur et la turbine, et permettant de récupérer les gouttes de liquide présentes dans le flux issu de l'évaporateur et de les retourner vers un réservoir de liquide disposé en sortie du condenseur. Le document DE 10 201 1 009 280 décrit également un séparateur liquide - vapeur connecté à une conduite de retour vers l'évaporateur. The document US Pat. No. 7,841,306 thus describes a Rankine cycle comprising a liquid-vapor separator between the evaporator and the turbine, and making it possible to recover the drops of liquid present in the flow coming from the evaporator and to return them to a reservoir. of liquid disposed at the outlet of the condenser. DE 10 201 1 009 280 also discloses a liquid-vapor separator connected to a return line to the evaporator.
Le document WO 2007/104970 décrit en lien avec sa figure 1 un cycle de Rankine connu comprenant un séparateur liquide - vapeur entre l'évaporateur et la turbine. Une conduite est prévue pour le recyclage de liquide issu du séparateur vers l'évaporateur. En outre, le niveau de liquide dans le séparateur est mesuré et est déterminé pour commander la pompe du circuit, en fonction de la demande en énergie électrique. Si le niveau de liquide dans le séparateur augmente, le débit de la pompe diminue, et vice versa. Le document propose ensuite de se démarquer de ce système connu en autorisant une fraction de liquide à passer dans l'organe de détente et en contrôlant celle-ci au moyen d'un système de contrôle complexe.  Document WO 2007/104970 describes in connection with FIG. 1 a known Rankine cycle comprising a liquid-vapor separator between the evaporator and the turbine. A pipe is provided for recycling liquid from the separator to the evaporator. In addition, the liquid level in the separator is measured and is determined to control the circuit pump, depending on the electrical energy demand. If the liquid level in the separator increases, the flow rate of the pump decreases, and vice versa. The document then proposes to stand out from this known system by allowing a fraction of liquid to pass into the expansion member and controlling it by means of a complex control system.
Le document WO 2012/130421 décrit une installation adaptée à la récupération de chaleur de plusieurs sources distinctes. L'installation comprend un séparateur liquide - vapeur commun et une turbine commune, et plusieurs évaporateurs et pompes correspondant aux différentes sources. Le séparateur liquide - vapeur sert de réservoir de liquide pour l'installation, puisqu'il est également alimenté en liquide issu du condenseur.  The document WO 2012/130421 describes an installation adapted to heat recovery from several different sources. The installation includes a common liquid - vapor separator and a common turbine, and several evaporators and pumps corresponding to different sources. The liquid - vapor separator serves as a liquid reservoir for the installation, since it is also supplied with liquid from the condenser.
Le document FR 2976136 enseigne une installation basée sur un cycle de Rankine, pourvue de vannes de dérivation pour court-circuiter la turbine.  FR 2976136 teaches a facility based on a Rankine cycle, provided with bypass valves for short-circuiting the turbine.
Il existe donc un réel besoin de fournir un système de production d'électricité reposant sur un cycle de Rankine, susceptible de fonctionner avec un fluide de transfert de chaleur organique, dans lequel l'organe de détente est protégé de tout endommagement de manière simple et économique.  There is therefore a real need to provide a Rankine cycle-based power generation system capable of operating with an organic heat transfer fluid, wherein the expansion member is protected from damage in a simple manner and economic.
RESUME DE L'INVENTION SUMMARY OF THE INVENTION
L'invention concerne en premier lieu un système pour la production d'électricité, comprenant un circuit fermé de fluide de transfert de chaleur qui comporte un évaporateur, un organe de détente, un condenseur et une pompe de circulation, un générateur étant couplé à l'organe de détente, dans lequel un séparateur liquide - vapeur pourvu d'un réservoir de liquide est disposé entre l'évaporateur et l'organe de détente, le système étant en outre pourvu d'un dispositif de contrôle configuré pour vidanger le réservoir si le niveau de liquide dans le réservoir atteint un seuil maximal.  The invention firstly relates to a system for the production of electricity, comprising a closed circuit of heat transfer fluid which comprises an evaporator, an expansion device, a condenser and a circulation pump, a generator being coupled to the expansion element, in which a liquid-vapor separator provided with a liquid reservoir is arranged between the evaporator and the expansion element, the system being further provided with a control device configured to drain the reservoir if the level of liquid in the tank reaches a maximum threshold.
Selon un mode de réalisation, le fluide de transfert de chaleur est organique. Selon un mode de réalisation, la vidange du réservoir est effectuée par une ligne de recyclage de liquide alimentant l'évaporateur. According to one embodiment, the heat transfer fluid is organic. According to one embodiment, the tank is emptied by a liquid recycling line feeding the evaporator.
Selon un mode de réalisation, le dispositif de contrôle est configuré pour réduire le débit de la pompe de circulation si le niveau de liquide dans le réservoir atteint le seuil maximal.  According to one embodiment, the control device is configured to reduce the flow rate of the circulation pump if the level of liquid in the reservoir reaches the maximum threshold.
Selon un mode de réalisation, le niveau de liquide dans le réservoir est maintenu entre un seuil minimal et le seuil maximal.  According to one embodiment, the level of liquid in the reservoir is maintained between a minimum threshold and the maximum threshold.
Selon un mode de réalisation, le dispositif de contrôle est configuré pour mettre fin à la vidange du réservoir si le niveau de liquide dans le réservoir atteint le seuil minimal.  According to one embodiment, the control device is configured to stop the emptying of the tank if the level of liquid in the tank reaches the minimum threshold.
Selon un mode de réalisation, le dispositif de contrôle est configuré pour augmenter le débit de la pompe de circulation si le niveau de liquide dans le réservoir atteint le seuil minimal.  According to one embodiment, the control device is configured to increase the flow rate of the circulation pump if the level of liquid in the reservoir reaches the minimum threshold.
L'invention concerne également un procédé de production d'électricité, comprenant les étapes concurrentes suivantes :  The invention also relates to a method for generating electricity, comprising the following concurrent steps:
- chauffage et évaporation d'un fluide de transfert de chaleur grâce à une source de chaleur ;  heating and evaporation of a heat transfer fluid by means of a heat source;
- séparation du fluide de transfert de chaleur ayant subi l'évaporation en une phase liquide et une phase vapeur, la phase liquide étant stockée dans un réservoir de liquide ;  separating the evaporated heat transfer fluid into a liquid phase and a vapor phase, the liquid phase being stored in a liquid reservoir;
- détente de la phase vapeur permettant de générer un courant électrique ;  - Relaxing the vapor phase for generating an electric current;
- condensation de la phase vapeur détendue ; et  - condensation of the relaxed vapor phase; and
- pompage de la phase condensée ;  - pumping the condensed phase;
et comprenant en outre les étapes suivantes :  and further comprising the steps of:
- surveillance du niveau de liquide dans le réservoir de liquide ; et - monitoring of the liquid level in the liquid tank; and
- vidange du réservoir de liquide lorsque le niveau de liquide dans ce réservoir atteint un seuil maximal. - emptying the liquid tank when the liquid level in this tank reaches a maximum threshold.
Selon un mode de réalisation, le fluide de transfert de chaleur est organique.  According to one embodiment, the heat transfer fluid is organic.
Selon un mode de réalisation, le liquide vidangé est recyclé à l'étape de chauffage et d'évaporation.  According to one embodiment, the drained liquid is recycled to the heating and evaporation stage.
Selon un mode de réalisation, le débit de pompage de la phase condensée est réduit lorsque le niveau de liquide dans ce réservoir atteint le seuil maximal.  According to one embodiment, the pumping rate of the condensed phase is reduced when the liquid level in this reservoir reaches the maximum threshold.
Selon un mode de réalisation, le niveau de liquide dans le réservoir est constamment maintenu entre un seuil minimal et le seuil maximal. Selon un mode de réalisation, l'étape de vidange du réservoir est interrompue si le niveau de liquide dans le réservoir atteint le seuil minimal. According to one embodiment, the level of liquid in the reservoir is constantly maintained between a minimum threshold and the maximum threshold. According to one embodiment, the step of emptying the tank is interrupted if the level of liquid in the tank reaches the minimum threshold.
Selon un mode de réalisation, le débit de pompage de la phase condensée est augmenté si le niveau de liquide dans le réservoir atteint le seuil minimal.  According to one embodiment, the pumping rate of the condensed phase is increased if the level of liquid in the reservoir reaches the minimum threshold.
La présente invention permet de surmonter les inconvénients de l'état de la technique. Elle fournit plus particulièrement de fournir un système de production d'électricité reposant sur un cycle de Rankine, susceptible de fonctionner avec un fluide de transfert de chaleur organique, dans lequel l'organe de détente est protégé de tout endommagement de manière simple et économique.  The present invention overcomes the disadvantages of the state of the art. More particularly, it provides a Rankine cycle based power generation system operable with an organic heat transfer fluid, in which the detent is protected from damage in a simple and economical manner.
Cela est accompli grâce à l'utilisation d'un séparateur liquide - vapeur pourvu d'un réservoir de liquide, en sortie de l'évaporateur, qui est couplé à un dispositif de contrôle capable de contrôler le niveau de liquide dans le réservoir.  This is accomplished through the use of a liquid vapor separator provided with a liquid reservoir at the outlet of the evaporator which is coupled to a control device capable of controlling the level of liquid in the reservoir.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
La figure 1 représente de manière schématique un cycle de Rankine susceptible d'être utilisé pour mettre en œuvre l'invention.  Figure 1 schematically shows a Rankine cycle that can be used to implement the invention.
Les figures 2 à 5 représentent de manière schématique une partie d'un système selon un mode de réalisation de l'invention, dans différentes phases de fonctionnement.  Figures 2 to 5 show schematically a part of a system according to one embodiment of the invention, in different phases of operation.
DESCRIPTION DE MODES DE REALISATION DE L'INVENTION DESCRIPTION OF EMBODIMENTS OF THE INVENTION
L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.  The invention is now described in more detail and without limitation in the description which follows.
En faisant référence à la figure 1 , un système pour la production d'électricité selon l'invention repose sur un cycle de Rankine, comprenant un évaporateur 1 , un organe de détente 2, un condenseur 3 et une pompe de circulation 4.  With reference to FIG. 1, a system for the production of electricity according to the invention is based on a Rankine cycle, comprising an evaporator 1, an expansion device 2, a condenser 3 and a circulation pump 4.
Le cycle de Rankine contient un fluide de transfert de chaleur, qui de préférence est un composé organique, par exemple un hydrocarbure, ou un hydrofluorocarbure, ou une hydrofluorooléfine, ou un mélange de plusieurs tels composés.  The Rankine ring contains a heat transfer fluid, which is preferably an organic compound, for example a hydrocarbon, or a hydrofluorocarbon, or a hydrofluoroolefin, or a mixture of several such compounds.
Des composés préférés sont le HFC-134a (1 ,1 ,1 ,2-tétrafluoroéthane), le HFC-32 (difluorométhane), le HFC-125 (pentafluoroéthane), le HFC-152a (1 ,1 - difluoroéthane), le HFC-134 (1 ,1 ,2,2-tétrafluoroéthane), le HFC-161 (fluoroéthane), le HFO-1234yf (2,3,3,3-tétrafluoropropène), le HFO-1234ze (1 ,3,3,3-tétrafluoropropène), le HFO-1233zd (1 -chloro-3,3,3-trifluoropropène), le HFO-1336mzz (1 ,1 ,1 ,4,4,4-hexafluorobutène) sous forme E ou Z, le HC-600 (butane), le HC-600a (2-méthylpropane) et le HC-290 (propane). Preferred compounds are HFC-134a (1, 1, 1, 2-tetrafluoroethane), HFC-32 (difluoromethane), HFC-125 (pentafluoroethane), HFC-152a (1,1-difluoroethane), HFC -134 (1,1,2,2-tetrafluoroethane), HFC-161 (fluoroethane), HFO-1234yf (2,3,3,3-tetrafluoropropene), HFO-1234ze (1, 3,3,3-tetrafluoropropene), HFO-1233zd (1-chloro-3,3,3-trifluoropropene), HFO-1336mzz (1,1,1,4,4,4-hexafluorobutene) under form E or Z, HC-600 (butane), HC-600a (2-methylpropane) and HC-290 (propane).
L'évaporateur 1 est couplé à une source de chaleur.  The evaporator 1 is coupled to a heat source.
Un générateur 5 est couplé à l'organe de détente 2. Il fournit du courant électrique en sortie du système.  A generator 5 is coupled to the expansion member 2. It supplies electrical power at the output of the system.
Le fluide de transfert de chaleur reçoit de la chaleur de la source de chaleur dans l'évaporateur 1 . Il est ainsi chauffé, évaporé et éventuellement surchauffé. L'énergie ainsi accumulée dans le fluide est restituée en travail mécanique en détendant le fluide dans l'organe de détente 2. Ce travail mécanique est lui-même converti en courant électrique dans le générateur 5 de manière connue en soi.  The heat transfer fluid receives heat from the heat source in the evaporator 1. It is thus heated, evaporated and possibly overheated. The energy thus accumulated in the fluid is returned to mechanical work by relaxing the fluid in the expansion member 2. This mechanical work is itself converted into electrical current in the generator 5 in a manner known per se.
Le fluide de transfert de chaleur détendu est condensé dans le condenseur 3, puis ramené à l'évaporateur 1 au moyen de pompe 4.  The expanded heat transfer fluid is condensed in the condenser 3, then returned to the evaporator 1 by means of pump 4.
Bien qu'un seul élément de chaque catégorie soit représenté sur la figure 1 , il est possible de prévoir plusieurs de ces éléments, par exemple plusieurs évaporateurs et / ou plusieurs organes de détente et / ou plusieurs pompes et / ou plusieurs condenseurs, et ce en série et / ou en parallèle.  Although only one element of each category is shown in FIG. 1, it is possible to provide several of these elements, for example several evaporators and / or several expansion devices and / or several pumps and / or several condensers, and in series and / or in parallel.
Le terme « évaporateur s est utilisé ici dans une acception générale. Il désigne un échangeur de chaleur adapté à chauffer, évaporer et éventuellement surchauffer le fluide. L'évaporateur peut donc inclure des sections différentes, par exemple une section de chauffage, une section de vaporisation, et éventuellement une section de surchauffage. Il peut être ou inclure un bouilleur.  The term "evaporator" is used here in a general sense. It designates a heat exchanger adapted to heat, evaporate and possibly overheat the fluid. The evaporator may therefore include different sections, for example a heating section, a vaporization section, and possibly an overheating section. It can be or include a boiler.
A titre de source de chaleur on peut utiliser par exemple une source de liquide chaud (source géothermique), un flux industriel (gaz de combustion par exemple) ou encore une autre installation thermique (installation de refroidissement ou de climatisation, moteur à combustion...) à laquelle le système de l'invention peut être couplé.  As a heat source can be used for example a source of hot liquid (geothermal source), an industrial flow (combustion gas for example) or another thermal installation (cooling or air conditioning, combustion engine. to which the system of the invention can be coupled.
La source de chaleur peut soit échanger directement de la chaleur avec le fluide de transfert de chaleur dans l'évaporateur 1 , soit échanger de la chaleur avec celui-ci au moyen d'un circuit de fluide de transfert de chaleur intermédiaire.  The heat source can either directly exchange heat with the heat transfer fluid in the evaporator 1, or exchange heat therewith by means of an intermediate heat transfer fluid circuit.
De même, dans le condenseur 3, le fluide de transfert de chaleur transfère de la chaleur à une source froide, qui peut être par exemple de l'air ou de l'eau de l'environnement, soit directement soit au moyen d'un circuit de fluide de transfert de chaleur intermédiaire. L'organe de détente 2 est de préférence une turbine, notamment une turbine centrifuge, à vis, à piston ou rotative (de type scroll). Similarly, in the condenser 3, the heat transfer fluid transfers heat to a cold source, which may be for example air or water from the environment, either directly or by means of a intermediate heat transfer fluid circuit. The expansion member 2 is preferably a turbine, especially a centrifugal turbine, screw, piston or rotary (scroll type).
En faisant référence aux figures 2 à 5, l'invention prévoit un dispositif de séparation liquide - vapeur 6 entre l'évaporateur 1 et l'organe de détente 2. Celui-ci permet de séparer le fluide chauffé et évaporé (et éventuellement surchauffé) en une phase vapeur (en principe majoritaire ou très largement majoritaire) et une phase liquide éventuelle. La phase liquide est récoltée dans un réservoir 12 où elle s'accumule.  Referring to Figures 2 to 5, the invention provides a liquid-vapor separation device 6 between the evaporator 1 and the expansion member 2. It allows to separate the heated fluid and evaporated (and possibly superheated) in a vapor phase (in principle majority or very large majority) and a possible liquid phase. The liquid phase is collected in a reservoir 12 where it accumulates.
De préférence le séparateur liquide - vapeur 6 comprend simplement le réservoir 12, un tube plongeur relié à la sortie de l'évaporateur 1 plongé dans le liquide contenu dans le réservoir 12, et une sortie gaz reliée à l'entrée de l'organe de détente 2 disposée vers le haut du réservoir 12.  Preferably, the liquid-vapor separator 6 simply comprises the reservoir 12, a dip tube connected to the outlet of the evaporator 1 immersed in the liquid contained in the reservoir 12, and a gas outlet connected to the inlet of the trigger 2 disposed towards the top of the tank 12.
Alternativement, le séparateur liquide - vapeur 6 peut comporter un cyclone ou une membrane de coalescence ou tout autre dispositif de séparation, le réservoir 12 étant alors destiné à collecter la phase liquide précédemment séparée.  Alternatively, the liquid-vapor separator 6 may comprise a cyclone or a coalescence membrane or any other separation device, the reservoir 12 then being intended to collect the previously separated liquid phase.
Dans le mode de réalisation illustré, une ligne de recyclage de liquide 9 est connectée en sortie du réservoir 12 ; elle est avantageusement pourvue d'une vanne 10. La ligne de recyclage de liquide 9 peut notamment alimenter l'évaporateur 1 . Par exemple elle peut être connectée sur une conduite 7 située entre la pompe 4 et l'évaporateur 1 . Alternativement, la conduite 7 peut alimenter directement l'évaporateur 1 , en son entrée ou en un point intermédiaire.  In the illustrated embodiment, a liquid recycling line 9 is connected at the outlet of the tank 12; it is advantageously provided with a valve 10. The liquid recycling line 9 can in particular supply the evaporator 1. For example it can be connected to a pipe 7 located between the pump 4 and the evaporator 1. Alternatively, the pipe 7 can directly feed the evaporator 1, at its inlet or at an intermediate point.
Alternativement, la ligne de recyclage de liquide 9 peut être connectée entre l'organe de détente 2 et le condenseur 3, ou entre le condenseur 3 et la pompe 4.  Alternatively, the liquid recycling line 9 can be connected between the expansion device 2 and the condenser 3, or between the condenser 3 and the pump 4.
Dans le mode de réalisation illustré, un ou des capteurs de niveau de liquide sont prévus dans le réservoir 12, pour détecter l'arrivée du niveau de liquide à un seuil maximal de liquide 13 et à un seuil minimal de liquide 14 dans le réservoir 12. Ces capteurs de niveau de liquide sont reliés à un dispositif de contrôle 15.  In the illustrated embodiment, one or more liquid level sensors are provided in the reservoir 12 to detect the arrival of the liquid level at a maximum liquid threshold 13 and at a minimum liquid threshold 14 in the reservoir 12 These liquid level sensors are connected to a control device 15.
De préférence, le seuil maximal de liquide 13 est situé en dessous de l'extrémité supérieure du réservoir 12, et le seuil minimal de liquide 14 est situé au-dessus de l'extrémité inférieure du réservoir 12 - afin d'éviter que le réservoir 12 puisse être complètement vide ni complètement plein.  Preferably, the maximum liquid threshold 13 is located below the upper end of the reservoir 12, and the minimum liquid threshold 14 is located above the lower end of the reservoir 12 - to prevent the reservoir 12 can be completely empty or completely full.
Le dispositif de contrôle 15 commande avantageusement la vanne 10 ainsi que la pompe 4. Le dispositif de contrôle 15 assure la vidange du réservoir 12 si le niveau de liquide dans le réservoir atteint le seuil maximal 13. Cela permet d'éviter tout risque d'entraînement de liquide dans l'organe de détente 2. The control device 15 advantageously controls the valve 10 as well as the pump 4. The control device 15 ensures the emptying of the reservoir 12 if the level of liquid in the reservoir reaches the maximum threshold 13. This makes it possible to avoid any risk of liquid being drawn into the expansion element 2.
Par « vidange » on entend l'action consistant à vider en tout ou partie le réservoir 12 de liquide. De préférence, la vidange est seulement partielle.  By "draining" is meant the action of emptying all or part of the reservoir 12 of liquid. Preferably, the emptying is only partial.
La vidange du réservoir est opérée en ouvrant la vanne 10. Si le réservoir 12 est placé au-dessus de l'évaporateur 1 , la vidange du réservoir peut être accomplie simplement sous l'effet de la gravité. Alternativement, si nécessaire, on peut prévoir une pompe supplémentaire sur la ligne de recyclage de liquide 9, commandée par le dispositif de contrôle 15.  The emptying of the reservoir is effected by opening the valve 10. If the reservoir 12 is placed above the evaporator 1, the emptying of the reservoir can be accomplished simply under the effect of gravity. Alternatively, if necessary, an additional pump can be provided on the liquid recycling line 9, controlled by the control device 15.
De préférence, simultanément à l'ouverture de la vanne 10, le dispositif de contrôle 15 agit sur la pompe 4 pour en réduire le débit. La réduction du débit est effectuée jusqu'à une valeur nulle ou non-nulle. Dans le premier cas, réduire le débit signifie stopper le flux de fluide dans la pompe 4. Il est entendu que la même fonction peut être assurée en faisant commander par le dispositif de contrôle 15 une vanne située en amont ou en aval de la pompe 4.  Preferably, simultaneously with the opening of the valve 10, the control device 15 acts on the pump 4 to reduce the flow rate. The reduction of the flow is performed up to a zero or non-zero value. In the first case, reducing the flow rate means stopping the flow of fluid in the pump 4. It is understood that the same function can be ensured by having the control device 15 control a valve located upstream or downstream of the pump 4 .
Inversement, le dispositif de contrôle 15 est adapté pour mettre fin à la vidange du réservoir 12 si le niveau de liquide dans le réservoir atteint le seuil minimal 14, et ce notamment afin de faire en sorte que la quantité de liquide dans le réservoir 12 reste suffisante pour que le séparateur liquide - vapeur assure correctement sa fonction et afin de permettre le retour du système à son mode de fonctionnement normal. La fin de la vidange est opérée par une fermeture de la vanne 10. De préférence, simultanément, le dispositif de contrôle 15 agit sur la pompe 4 pour en augmenter le débit (c'est-à-dire remettre la pompe 4 en marche, si elle avait été précédemment arrêtée).  Conversely, the control device 15 is adapted to terminate the emptying of the tank 12 if the liquid level in the tank reaches the minimum threshold 14, and in particular to ensure that the amount of liquid in the tank 12 remains sufficient for the liquid - vapor separator to function properly and to allow the system to return to its normal operating mode. The end of the emptying is effected by a closure of the valve 10. Preferably, simultaneously, the control device 15 acts on the pump 4 to increase the flow rate (that is to say, to turn on the pump 4, if she had been previously arrested).
Les figures 2 à 5 représentent le système de l'invention dans différentes configuration.  Figures 2 to 5 show the system of the invention in different configurations.
Dans la figure 2, la pompe 4 assure le pompage du liquide, et la vanne 10 est fermée. Le niveau de liquide dans le réservoir 12 est situé entre le niveau minimal 14 et le niveau maximal 13. Ce niveau de liquide a tendance à monter au cours du temps, au fur et à mesure que de la phase liquide présente en sortie d'évaporateur est collectée dans le séparateur liquide - vapeur 6.  In FIG. 2, the pump 4 pumps the liquid, and the valve 10 is closed. The level of liquid in the reservoir 12 is located between the minimum level 14 and the maximum level 13. This liquid level tends to rise over time, as the liquid phase present at the evaporator outlet is collected in the liquid - vapor separator 6.
Dans la figure 3, le niveau de liquide dans le réservoir 12 atteint le seuil maximal 13. En réponse, le dispositif de contrôle 15 arrête la pompe 4 (ou en diminue le débit à une valeur non-nulle), et il ouvre la vanne 10.  In FIG. 3, the level of liquid in the reservoir 12 reaches the maximum threshold 13. In response, the control device 15 stops the pump 4 (or decreases the flow rate to a non-zero value), and it opens the valve 10.
Dans la figure 4, le liquide issu du réservoir est vidangé par la ligne de recyclage de liquide 9 (par exemple sous l'effet de la gravité). Ce liquide est chauffé, évaporé et le cas échéant surchauffé dans l'évaporateur 1 de sorte que le système continue à fonctionner et à produire du courant électrique pendant cette phase de vidange. Le niveau de liquide dans le réservoir 12 baisse lors de cette phase de vidange. In Figure 4, the liquid from the tank is drained by the liquid recycle line 9 (for example under the effect of gravity). This liquid is heated, evaporated and if necessary superheated in the evaporator 1 so that the system continues to operate and to produce electric current during this emptying phase. The level of liquid in the reservoir 12 decreases during this emptying phase.
Dans la figure 5, le niveau de liquide dans le réservoir 12 atteint le niveau minimal 14. En réponse, le dispositif de contrôle 15 met en route la pompe 4 (ou il en augmente le débit si cette pompe n'était pas précédemment arrêtée), et il ferme la vanne 10. Le système revient ainsi à l'état de la figure 2.  In FIG. 5, the level of liquid in the reservoir 12 reaches the minimum level 14. In response, the control device 15 starts up the pump 4 (or it increases the flow rate if this pump was not previously stopped) , and it closes the valve 10. The system thus returns to the state of FIG. 2.
A la place d'une ouverture et fermeture de la vanne 10, on peut également prévoir un débit non-nul de liquide dans la ligne de recyclage de liquide 9 même hors des phases de vidange. Dans ce cas, le dispositif de commande 15 permet d'augmenter le débit dans la ligne de recyclage de liquide 9 lors des phases de vidange. Cette variante peut être utile lorsqu'une proportion importante de liquide est présente en sortie de l'évaporateur 1 .  Instead of an opening and closing of the valve 10, it is also possible to provide a non-zero flow of liquid in the liquid recycling line 9 even out of the emptying phases. In this case, the control device 15 makes it possible to increase the flow rate in the liquid recycling line 9 during the emptying phases. This variant may be useful when a large proportion of liquid is present at the outlet of the evaporator 1.
Le mode de réalisation illustré dans les figures 2 à 5 présente l'avantage d'être particulièrement simple de conception et de mise en œuvre. Toutefois, il est également possible de fournir un système plus complexe, s'adaptant de manière plus fine aux variations des conditions d'utilisation, par exemple en prévoyant d'autres seuils de niveau en plus du seuil maximal 13 et du seuil minimal 14, le dispositif de commande 15 étant ainsi adapté pour réguler le débit de la pompe 4 et / ou le débit du recyclage de liquide issu du réservoir 12 en fonction du niveau de liquide dans le réservoir 12.  The embodiment illustrated in Figures 2 to 5 has the advantage of being particularly simple design and implementation. However, it is also possible to provide a more complex system, adapting more finely to variations in the conditions of use, for example by providing other level thresholds in addition to the maximum threshold 13 and the minimum threshold 14, the control device 15 being thus adapted to regulate the flow rate of the pump 4 and / or the flow rate of the liquid recycling coming from the reservoir 12 as a function of the level of liquid in the reservoir 12.

Claims

REVENDICATIONS
Système pour la production d'électricité, comprenant un circuit fermé de fluide de transfert de chaleur qui comporte un évaporateur (1 ), un organe de détente (2), un condenseur (3) et une pompe de circulation (4), un générateur (5) étant couplé à l'organe de détente (2), dans lequel un séparateur liquide - vapeur (6) pourvu d'un réservoir de liquide (12) est disposé entre l'évaporateur (1 ) et l'organe de détente (2), le système étant en outre pourvu d'un dispositif de contrôle (15) configuré pour vidanger le réservoir (12) si le niveau de liquide dans le réservoir atteint un seuil maximal (13). System for the production of electricity, comprising a closed circuit of heat transfer fluid which comprises an evaporator (1), an expansion member (2), a condenser (3) and a circulation pump (4), a generator (5) being coupled to the expansion member (2), wherein a liquid-vapor separator (6) provided with a liquid reservoir (12) is disposed between the evaporator (1) and the expansion member (2), the system being further provided with a control device (15) configured to drain the tank (12) if the liquid level in the tank reaches a maximum threshold (13).
Système selon la revendication 1 , dans lequel le fluide de transfert de chaleur est organique. The system of claim 1, wherein the heat transfer fluid is organic.
Système selon la revendication 1 ou 2, dans lequel la vidange du réservoir (12) est effectuée par une ligne de recyclage de liquide (9) alimentant l'évaporateur (1 ). System according to claim 1 or 2, wherein the emptying of the tank (12) is effected by a liquid recycling line (9) supplying the evaporator (1).
Système selon l'une des revendications 1 à 3, dans lequel le dispositif de contrôle (15) est configuré pour réduire le débit de la pompe de circulation (4) si le niveau de liquide dans le réservoir atteint le seuil maximal (13). System according to one of claims 1 to 3, wherein the control device (15) is configured to reduce the flow rate of the circulation pump (4) if the liquid level in the tank reaches the maximum threshold (13).
Système selon l'une des revendications 1 à 4, dans lequel le niveau de liquide dans le réservoir (12) est maintenu entre un seuil minimal (14) et le seuil maximal (13). System according to one of claims 1 to 4, wherein the liquid level in the reservoir (12) is maintained between a minimum threshold (14) and the maximum threshold (13).
Système selon la revendication 5, dans lequel le dispositif de contrôle (15) est configuré pour mettre fin à la vidange du réservoir (12) si le niveau de liquide dans le réservoir atteint le seuil minimal (14). The system of claim 5, wherein the control device (15) is configured to terminate the emptying of the reservoir (12) if the liquid level in the reservoir reaches the minimum threshold (14).
Système selon la revendication 5 ou 6, dans lequel le dispositif de contrôle (15) est configuré pour augmenter le débit de la pompe de circulation (4) si le niveau de liquide dans le réservoir atteint le seuil minimal (14). System according to claim 5 or 6, wherein the control device (15) is configured to increase the flow rate of the pump of circulation (4) if the level of liquid in the tank reaches the minimum threshold (14).
Procédé de production d'électricité, comprenant les étapes concurrentes suivantes : A method of generating electricity, comprising the following concurrent steps:
- chauffage et évaporation d'un fluide de transfert de chaleur grâce à une source de chaleur ;  heating and evaporation of a heat transfer fluid by means of a heat source;
- séparation du fluide de transfert de chaleur ayant subi l'évaporation en une phase liquide et une phase vapeur, la phase liquide étant stockée dans un réservoir de liquide ;  separating the evaporated heat transfer fluid into a liquid phase and a vapor phase, the liquid phase being stored in a liquid reservoir;
- détente de la phase vapeur permettant de générer un courant électrique ;  - Relaxing the vapor phase for generating an electric current;
- condensation de la phase vapeur détendue ; et  - condensation of the relaxed vapor phase; and
- pompage de la phase condensée ;  - pumping the condensed phase;
et comprenant en outre les étapes suivantes :  and further comprising the steps of:
- surveillance du niveau de liquide dans le réservoir de liquide ; et  - monitoring of the liquid level in the liquid tank; and
- vidange du réservoir de liquide lorsque le niveau de liquide dans ce réservoir atteint un seuil maximal.  - emptying the liquid tank when the liquid level in this tank reaches a maximum threshold.
Procédé selon la revendication 8, dans lequel le fluide de transfert de chaleur est organique. The method of claim 8, wherein the heat transfer fluid is organic.
Procédé selon la revendication 8 ou 9, dans lequel le liquide vidangé est recyclé à l'étape de chauffage et d'évaporation. The method of claim 8 or 9, wherein the drained liquid is recycled to the heating and evaporation step.
Procédé selon l'une des revendications 8 à 10, dans lequel le débit de pompage de la phase condensée est réduit lorsque le niveau de liquide dans ce réservoir atteint le seuil maximal. Method according to one of claims 8 to 10, wherein the pumping rate of the condensed phase is reduced when the liquid level in this reservoir reaches the maximum threshold.
Procédé selon l'une des revendications 8 à 1 1 , dans lequel le niveau de liquide dans le réservoir est constamment maintenu entre un seuil minimal et le seuil maximal. Method according to one of claims 8 to 11, wherein the level of liquid in the reservoir is constantly maintained between a minimum threshold and the maximum threshold.
13. Procédé selon la revendication 12, dans lequel l'étape de vidange du réservoir est interrompue si le niveau de liquide dans le réservoir atteint le seuil minimal. Procédé selon la revendication 12 ou 13, dans lequel le débit de pompage de la phase condensée est augmenté si le niveau de liquide dans le réservoir atteint le seuil minimal. 13. The method of claim 12, wherein the step of emptying the tank is interrupted if the liquid level in the tank reaches the minimum threshold. The method of claim 12 or 13, wherein the pumping rate of the condensed phase is increased if the liquid level in the reservoir reaches the minimum threshold.
PCT/FR2015/051504 2014-06-16 2015-06-08 System for controlling a rankine cycle WO2015193580A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020167035203A KR20170008808A (en) 2014-06-16 2015-06-08 System for controlling a rankine cycle
CN201580032428.7A CN106460573A (en) 2014-06-16 2015-06-08 System for controlling a rankine cycle
SG11201610029RA SG11201610029RA (en) 2014-06-16 2015-06-08 System for controlling a rankine cycle
AU2015275960A AU2015275960B2 (en) 2014-06-16 2015-06-08 System for controlling a rankine cycle
JP2016572819A JP2017524090A (en) 2014-06-16 2015-06-08 System that controls the Rankine cycle
CA2951358A CA2951358A1 (en) 2014-06-16 2015-06-08 System for controlling a rankine cycle
US15/319,202 US20170122134A1 (en) 2014-06-16 2015-06-08 System for controlling a rankine cycle
EP15738718.4A EP3155240A1 (en) 2014-06-16 2015-06-08 System for controlling a rankine cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455477A FR3022296B1 (en) 2014-06-16 2014-06-16 SYSTEM FOR CONTROLLING A RANKINE CYCLE
FR1455477 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015193580A1 true WO2015193580A1 (en) 2015-12-23

Family

ID=51485693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/051504 WO2015193580A1 (en) 2014-06-16 2015-06-08 System for controlling a rankine cycle

Country Status (10)

Country Link
US (1) US20170122134A1 (en)
EP (1) EP3155240A1 (en)
JP (1) JP2017524090A (en)
KR (1) KR20170008808A (en)
CN (1) CN106460573A (en)
AU (1) AU2015275960B2 (en)
CA (1) CA2951358A1 (en)
FR (1) FR3022296B1 (en)
SG (1) SG11201610029RA (en)
WO (1) WO2015193580A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111636937A (en) * 2020-06-22 2020-09-08 中国长江动力集团有限公司 ORC power generation device with automatic liquid level adjustment function and adjusting method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017019194A1 (en) * 2015-07-28 2017-02-02 The Chemours Company Fc, Llc Use of 1,3,3,4,4,4-hexafluoro-1-butene in power cycles
KR102243702B1 (en) * 2019-09-18 2021-04-27 한국에너지기술연구원 Generating cycle system with liquid recirculation loop

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954087A (en) * 1974-12-16 1976-05-04 Foster Wheeler Energy Corporation Integral separation start-up system for a vapor generator with variable pressure furnace circuitry
WO2007104970A2 (en) 2006-03-13 2007-09-20 City University Working fluid control in non-aqueous vapour power systems
US20080289313A1 (en) * 2005-10-31 2008-11-27 Ormat Technologies Inc. Direct heating organic rankine cycle
US7841306B2 (en) 2007-04-16 2010-11-30 Calnetix Power Solutions, Inc. Recovering heat energy
DE102011009280A1 (en) 2011-01-25 2012-07-26 Frank Eckert System i.e. combustion engine, for converting thermal energy into e.g. mechanical energy, has heat transfer medium circuit for transferring thermal energy of heat sources, where partial flow of medium is permitted
WO2012130421A2 (en) 2011-03-25 2012-10-04 Caterpillar Motoren Gmbh & Co. Kg Direct organic rankine cycle system, biomass combined cycle power generating system, and method for operating a direct organic rankine cycle
FR2976136A1 (en) 2011-05-30 2012-12-07 Enertime Rankine cycle system for producing electricity for non-infinite type local electricity network utilized to supply electric power to load, has controller controlling closing of switch to trigger supply according to information characteristic

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358929A (en) * 1974-04-02 1982-11-16 Stephen Molivadas Solar power system
ES8605328A1 (en) * 1983-06-13 1986-04-01 Mendoza Rosado Serafin Thermodynamic process approximating the Ericsson cycle.
JPH07217812A (en) * 1994-02-02 1995-08-18 Samuson:Kk Water level controller for vapor-water separator
US6125632A (en) * 1999-01-13 2000-10-03 Abb Alstom Power Inc. Technique for controlling regenerative system condensation level due to changing conditions in a Kalina cycle power generation system
US6155053A (en) * 1999-01-13 2000-12-05 Abb Alstom Power Inc. Technique for balancing regenerative requirements due to pressure changes in a Kalina cycle power generation system
WO2011008755A2 (en) * 2009-07-15 2011-01-20 Recurrent Engineering Llc Systems and methods for increasing the efficiency of a kalina cycle
JP5201227B2 (en) * 2011-02-17 2013-06-05 トヨタ自動車株式会社 Rankine cycle system abnormality detection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954087A (en) * 1974-12-16 1976-05-04 Foster Wheeler Energy Corporation Integral separation start-up system for a vapor generator with variable pressure furnace circuitry
US20080289313A1 (en) * 2005-10-31 2008-11-27 Ormat Technologies Inc. Direct heating organic rankine cycle
WO2007104970A2 (en) 2006-03-13 2007-09-20 City University Working fluid control in non-aqueous vapour power systems
US7841306B2 (en) 2007-04-16 2010-11-30 Calnetix Power Solutions, Inc. Recovering heat energy
DE102011009280A1 (en) 2011-01-25 2012-07-26 Frank Eckert System i.e. combustion engine, for converting thermal energy into e.g. mechanical energy, has heat transfer medium circuit for transferring thermal energy of heat sources, where partial flow of medium is permitted
WO2012130421A2 (en) 2011-03-25 2012-10-04 Caterpillar Motoren Gmbh & Co. Kg Direct organic rankine cycle system, biomass combined cycle power generating system, and method for operating a direct organic rankine cycle
FR2976136A1 (en) 2011-05-30 2012-12-07 Enertime Rankine cycle system for producing electricity for non-infinite type local electricity network utilized to supply electric power to load, has controller controlling closing of switch to trigger supply according to information characteristic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3155240A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111636937A (en) * 2020-06-22 2020-09-08 中国长江动力集团有限公司 ORC power generation device with automatic liquid level adjustment function and adjusting method thereof

Also Published As

Publication number Publication date
CN106460573A (en) 2017-02-22
FR3022296B1 (en) 2016-07-01
AU2015275960B2 (en) 2017-12-21
SG11201610029RA (en) 2017-01-27
US20170122134A1 (en) 2017-05-04
FR3022296A1 (en) 2015-12-18
EP3155240A1 (en) 2017-04-19
KR20170008808A (en) 2017-01-24
CA2951358A1 (en) 2015-12-23
AU2015275960A1 (en) 2016-12-22
JP2017524090A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
EP2805032B1 (en) Device for controlling a working fluid in a closed circuit operating according to the rankine cycle, and method using said device
RU2675987C2 (en) Device for oil separation and removal from organic working liquid
EP3475638B1 (en) Method and facility for recovering thermal energy on a furnace with tubular side members and for converting same into electricity by means of a turbine producing the electricity by implementing a rankine cycle
WO2015193580A1 (en) System for controlling a rankine cycle
US9771835B2 (en) Flow rate control of heat energy recovery device including oil separator
EP2360355B1 (en) Apparatus for controlling a working fluid with a low freezing point flowing through a closed cycle operating according to a Rankine cycle and method using such an apparatus
FR3016876A1 (en) INSTALLATION AND METHOD FOR TREATING EVAPORATION / CONDENSATION OF WATER PUMPED IN A NATURAL ENVIRONMENT
CN103670523A (en) Generating device and control method thereof
CN104185718A (en) Waste heat recovery ranking cycle system
FR3041420B1 (en) HOT WATER PRODUCTION DEVICE USING WASTEWATER HEAT RECOVERY, AN INSTALLATION AND A PROCESS FOR THE PRODUCTION THEREOF
FR2976136A1 (en) Rankine cycle system for producing electricity for non-infinite type local electricity network utilized to supply electric power to load, has controller controlling closing of switch to trigger supply according to information characteristic
WO2014195882A2 (en) Method for producing energy by burning materials, and facility for implementing the method
WO2014096736A1 (en) Device and method for evaporating a liquid, and applications of said device and method
KR101587253B1 (en) Domestic combined heat and power system where components are replaceable without loss of working fluid
KR101596486B1 (en) Domestic combined heat and power system having pump protection function
KR101596485B1 (en) Domestic combined heat and power system with oil separator
EP3848659B1 (en) Partitioned heat exchanger, thermal energy recovery unit and associated sterilisation device
JP6005586B2 (en) Binary drive
FR2937410A1 (en) Heat pump for transporting e.g. refrigerant, in e.g. building, has compressor protection kit collecting excess energy to protect movement setting unit, with temperature of fluid at suction compatible with characteristics of compressor
JP7099230B2 (en) Steam system
NO342899B1 (en) System adapted for heating a mixed hydrocarbon wellstream and a method for heating a mixed hydrocarbon wellstream
FR3017451A1 (en) HOT SOURCE COOLING SYSTEM
JP6003593B2 (en) Heat medium circulation system and operation method of heat medium circulation system
CH199568A (en) Process using a thermal cycle and installation for implementing this process.
FR3004486A1 (en) DEVICE FOR TRANSFORMING THERMAL ENERGY INTO MECHANICAL ENERGY BY MEANS OF A RANKINE ORGANIC RANKINE CYCLE WITH REGULATORY FRACTION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15738718

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015738718

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015738718

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2951358

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016572819

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167035203

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15319202

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015275960

Country of ref document: AU

Date of ref document: 20150608

Kind code of ref document: A