WO2016020561A1 - Bioimpedance measurement system for wirelessly monitoring cell cultures in real time, based on an oscillation test using integrated circuits - Google Patents

Bioimpedance measurement system for wirelessly monitoring cell cultures in real time, based on an oscillation test using integrated circuits Download PDF

Info

Publication number
WO2016020561A1
WO2016020561A1 PCT/ES2015/000101 ES2015000101W WO2016020561A1 WO 2016020561 A1 WO2016020561 A1 WO 2016020561A1 ES 2015000101 W ES2015000101 W ES 2015000101W WO 2016020561 A1 WO2016020561 A1 WO 2016020561A1
Authority
WO
WIPO (PCT)
Prior art keywords
bioimpedance
cell
measurement system
cell cultures
micro
Prior art date
Application number
PCT/ES2015/000101
Other languages
Spanish (es)
French (fr)
Inventor
José Andrés MALDONADO JACOBI
Alberto Yufera Garcia
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2016020561A1 publication Critical patent/WO2016020561A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body

Definitions

  • Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on an oscillation test using integrated circuits
  • the object of the present invention relates to a new bioimpedance measurement system for real-time and wireless monitoring of cell cultures.
  • the system uses electrodes as bioimpedance sensors and implements a "biological oscillator” measuring circuit with integrated circuits. It is proposed to use the oscillation parameters (frequency, amplitude, phase, etc.) as empirical markers to perform a proper interpretation in terms of identification of cell size, cell count, cell growth, growth rate, etc.
  • the invention is framed within the measure of electrical impedance of biological material. It also refers to an electronic sensor device and all the circuitry necessary to carry out said measurement.
  • the density of the cells in the dish or culture vessel will affect the success of many different techniques, including transfection, infection, reaction to many chemicals, drugs, motility, etc.
  • the knowledge in time of the cell density of cell cultures and its temporal evolution can help improve the quality of experiments performed by professionals in biomedical laboratories, as well as reduce material and human resources costs.
  • bioimpedance measurement system was registered in 2005 by B. Rubinsky et al. [8]. This system uses two electrodes between which a potential difference is applied and a dielectric membrane with micro-holes through which it is forced The passage of electric current. In Spain, methods have also been recorded for the simultaneous determination and visualization of electrical bioimpedance signals in biological material at various frequencies [9], using a treatment of the excitation and response signal as two independent functions in the time domain, and applying signal processing techniques (cross correlation and Fourier transformation) to obtain better results.
  • This paper presents a new impedance measurement system for biological samples useful for obtaining information from a cell culture in real time and wirelessly. It is based on the use of a two-dimensional array of electrodes as bioimpedance sensors, integrated circuits for the implementation of the measurement circuit (oscillator) and on the use of the resulting electrical signals (oscillations) as parameters of interpretation of the culture status.
  • any technical input that facilitates the monitoring of cell progression has an immediate impact on the biological sciences; more particularly those that reduce the negative effects on the cells and allow to continuously measure the number of cells in a plate.
  • measurement techniques that allow researchers to monitor the evolution of their experiments in real time, with a simple and autonomous assembly, as is the case with this invention.
  • FIG. 1 Bio-electronic measurement system.
  • Figure 4 (a) Relationship between the amplitude of the secondary output and the frequency of oscillation, (b) Dependence of the amplitude of the secondary output (A 0SC 2) with the cell-electrode overlap defined with ff. The approximate sensitivity is 0.2mV ⁇ m 2 for the secondary output, V out2 , using a 50 ⁇ side electrode.
  • Figure 5. Schematic example of the filter used in the invention.
  • Figure 6. Schematic example of the high pass filter plus comparator used in the invention.
  • Figure 7. Schematic example of the AGC used in the invention.
  • FIG. 1 Block diagram of the overall system used in the invention.
  • the impedance of a two electrode system has been widely estimated [3, 13, 14]. Particularly, in this work, a micro-electrode that can be totally or partially covered by cells in the culture has been considered.
  • ce ii -e iectrode (s) can be obtained from the assembly of Figure 1 (c).
  • the R in resistor allows the current flowing through the electrode-cell system to be maintained at adequate signal levels (1-20 ⁇ to protect the cell and 10-50mV for restrictions on electrode modeling [3]).
  • the system object of the present invention carries out the measurements of the bio-electronic system (Z ce n-eiectrode), which we will now call CCUT (Cell-Culture Under Test, that is, cell culture under test).
  • CCUT Cell-Culture Under Test, that is, cell culture under test.
  • This bio-system is transformed into a robust oscillator, adding some components ( Figure 2).
  • Figure 2 To force oscillations, a positive feedback loop has been implemented.
  • the technique requires accurately predicting the oscillation parameters (frequency and amplitude), either analytically or through simulations [15-17].
  • the DF function will in this case be N (a), while H (s) is the transfer function of the open loop system.
  • N (a) is the DF of the comparator and H (s) the modified system.
  • the main oscillation parameters are a function of the area of the cell culture occupied. This dependence is shown in Figure 3, for the frequency and amplitude of the oscillations.
  • the output of the biological filter (the input to the comparator in Figure 2) is approximately sinusoidal due to the characteristic band pass of the overall structure. This fact allows us to use the linear approximation established by the method of the function of descriptive [15-17] for the linear treatment of the non-linear element.
  • the transfer function of the comparator according to this, will be given by:
  • N ( MC ) - ⁇
  • V ref is the reference voltage of the comparator (whose value can be swept to obtain appropriate signal levels) and osc is the amplitude of the oscillations.
  • the gain of the bandpass filter with respect to the oscillation frequency is:
  • FIG. 6 shows the comparator used. It is composed of three blocks, the comparator itself, a high pass filter and an amplifier in a non-inverting configuration.
  • the bioimpedance output signal is first filtered to reduce low frequency noise (mainly 50Hz of the mains) with a high pass filter Sallen-Key adjustable to 1 kHz and with variable Q to allow accurate selection of the phase deviation in the resonance frequency of the bandpass filter.
  • the signal is amplified x20 with a non-inverting configuration and passes to the comparator where thanks to the 6mV hysteresis noise cancellation is achieved. Also, its rapid response guarantees phase deviation low.
  • AGC Automatic gain control
  • This element ( Figure 7) is included because of the advantage of guaranteeing a constant output voltage for different occupancy levels.
  • the AGC allows a higher level of tension to be used through bioimpedance at a low level of occupancy and a lower level of tension at high levels of occupancy. This makes the system less sensitive to noise and solves the problems we face with signals of tens of millivolts obtained for the lowest occupancy levels.
  • the information on the occupancy level resides in the voltage applied to the programmable gain amplifier, which we will call Vg from now on.
  • This component is composed of three blocks: a variable gain amplifier, a precision inverter rectifier and a non-inverting amplifier (Figure 7).
  • the system object of the present invention is composed of electrodes, on which cell culture is carried out, the circuitry necessary to construct the oscillator and measure the impedance, a radio frequency transmitter circuit for wireless data transmission, and a micro-controller To process the data.
  • the scheme of the system architecture is shown in Figure 8.
  • the digital part is composed of a micro controller responsible for activating the bio-oscillator, choosing the multiplexed output ( Figure 9) (if we particularize the system for measurement to through electrodes, 50 ⁇ x 50 ⁇ ) and interact with users.
  • the MCU needs to have an ADC of at least 6 bits to have a 1.56% accuracy when measuring Vg, timer with external trip and counter, multiplier module, serial port, usb port and enough general purpose inputs and outputs to connect buttons, a display, a temperature and humidity sensor, a piezoelectric buzzer and other devices or peripherals that are considered necessary or important.
  • the MCU activates the bio-oscillator, chooses the desired cell by means of the multiplexer, measures the oscillation frequency of the system and the value of the voltage at Vg in the AGC module and calculates the value of the fill factor.
  • the system can be configured to send it via its serial port to a wireless connection (Bluetooth for example) to a device that accepts that connection (mobile phone, computer 7)
  • a wireless connection Bluetooth for example
  • the system also measures and sends information on temperature and humidity, on battery status, elapsed time, as well as any other information deemed important.
  • the wireless connection also allows the user to configure the device.
  • a piezoelectric buzzer acts as an alarm and alerts the user when situations occur that he himself has established.
  • a USB connection can be used to access the data record of experiments performed and also to update the system firmware.
  • the system is also provided with a display that allows you to display information about the fill factor and other data if the wireless connection cannot be used.
  • the radio frequency signal transmitter and receiver circuit allows the wireless programming of the bio-oscillator and the control and measurement parameters described above can be remotely established.
  • This radio frequency signal transmitter and receiver circuit may be implemented so that the data is transmitted at a frequency of 2.4 Ghz or other available bands, and so that it is compatible with 802.11, 802.15 or similar standards.
  • This monitoring system allows to obtain wirelessly the measurements that show the evolution of cell culture over time, without the need to perform a visual inspection of the culture, with the consequent saving of time and with the possibility of implementing automatic alarm signals before changes Unexpected Similarly, automation in obtaining information in digital form allows further processing of the data for a more advanced study of crop evolution.

Abstract

The invention relates to a novel bioimpedance measurement system for wirelessly monitoring cell cultures in real time. The system uses electrodes as bioimpedance sensors and implements a "biological oscillator" circuit for measurement with integrated circuits. The invention uses oscillation parameters (frequency, amplitude, phase etc.) as empirical markers for carrying out a suitable interpretation in terms of identification of cell size, cell count, cell growth, growth rate, etc.

Description

Título  Title
Sistema de medida de bioimpedancia para la monitorización en tiempo real e inalámbrica de cultivos celulares basado en un test de oscilación utilizando circuitos integrados  Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on an oscillation test using integrated circuits
Objeto de la invención Object of the invention
El objeto de la presente invención se refiere a un nuevo sistema de medida de bioimpedancia para la monitorización en tiempo real y de forma inalámbrica de cultivos celulares. El sistema usa electrodos como sensores de bioimpedancia e implementa un circuito "oscilador biológico" de medida con circuitos integrados. Se propone utilizar los parámetros de oscilación (frecuencia, amplitud, fase, etc.) como marcadores empíricos para realizar una interpretación adecuada en términos de identificación del tamaño de las células, conteo de células, crecimiento celular, ritmo de crecimiento, etc..  The object of the present invention relates to a new bioimpedance measurement system for real-time and wireless monitoring of cell cultures. The system uses electrodes as bioimpedance sensors and implements a "biological oscillator" measuring circuit with integrated circuits. It is proposed to use the oscillation parameters (frequency, amplitude, phase, etc.) as empirical markers to perform a proper interpretation in terms of identification of cell size, cell count, cell growth, growth rate, etc.
La invención se enmarca dentro de la medida de impedancia eléctrica de material biológico. También se refiere a un dispositivo electrónico sensor y toda la circuitería necesaria para llevar a cabo dicha medida. The invention is framed within the measure of electrical impedance of biological material. It also refers to an electronic sensor device and all the circuitry necessary to carry out said measurement.
Estado de la técnica State of the art
Caracterizar en detalle el número de células en un cultivo en un momento específico, así como medir la razón de proliferación de las células, tiene amplia implicación en biomedicina, tanto a nivel técnico cómo biológico. La densidad de las células en el plato o recipiente de cultivo afectará el éxito de muchas técnicas diferentes, incluyendo transfección, infección, reacción a muchos productos químicos, drogas, motilidad, etc .. El conocimiento en el tiempo de la densidad celular de cultivos celulares y su evolución temporal puede ayudar a mejorar la calidad de los experimentos realizados por profesionales en laboratorios biomédicos, así como a reducir los costes materiales y de recursos humanos. Desde un punto de vista biológico, se trata de una herramienta potente para el estudio de una célula: la excesiva proliferación es el sello de célula cancerígena y cualquier tratamiento físico o químico que reduzca la velocidad del crecimiento celular conduce a la potencial terapia oncológica; La falta de proliferación normalmente indica la muerte excesiva de células, debido a mecanismos extrínsecos o intrínsecos, o la activación de caminos celulares envejecidos (la senectud celular). Así, la comprensión de los procesos que reducen o aceleran la velocidad de proliferación de un cultivo es un instrumento potente de investigación. Characterizing in detail the number of cells in a culture at a specific time, as well as measuring the rate of cell proliferation, has wide involvement in biomedicine, both technically and biologically. The density of the cells in the dish or culture vessel will affect the success of many different techniques, including transfection, infection, reaction to many chemicals, drugs, motility, etc. The knowledge in time of the cell density of cell cultures and its temporal evolution can help improve the quality of experiments performed by professionals in biomedical laboratories, as well as reduce material and human resources costs. From a biological point of view, it is a powerful tool for the study of a cell: excessive proliferation is the hallmark of a cancer cell and any physical or chemical treatment that reduces the speed of cell growth leads to potential cancer therapy; The lack of proliferation usually indicates excessive cell death due to extrinsic or intrinsic mechanisms, or the activation of aging cell pathways (the cellular senescence). Thus, understanding the processes that reduce or accelerate the proliferation rate of a crop is a powerful research tool.
Sin embargo, a pesar de su importancia, los biólogos no pueden supervisar la proliferación celular en detalle. A este nivel, se han de afrontar dos problemas técnicos importantes. En primer lugar, los protocolos para estimar el número de células en una placa de cultivo convencional son altamente invasivos, y afectan profundamente la biología de las células. En la mayoría de los casos las células más largas no pueden ser usadas para experimentos subsecuentes. En segundo lugar, los científicos sólo pueden tomar instantáneas del cultivo en puntos específicos. Así, para la mayor parte de investigadores que usan células mamíferas, la única alternativa es establecer experimentos paralelos y reconstituir la progresión de un cultivo usando dichos experimentos. En muchos casos esta metodología conduce a un análisis retrospectivo, y la comprensión de cómo se han comportado las células sólo puede hacerse al final del experimento, como un agregado de varios sub-experimentos similares. However, despite its importance, biologists cannot monitor cell proliferation in detail. At this level, two important technical problems have to be addressed. First, the protocols for estimating the number of cells in a conventional culture dish are highly invasive, and profoundly affect the biology of the cells. In most cases, longer cells cannot be used for subsequent experiments. Second, scientists can only take snapshots of the crop at specific points. Thus, for the majority of researchers using mammalian cells, the only alternative is to establish parallel experiments and reconstitute the progression of a culture using such experiments. In many cases this methodology leads to retrospective analysis, and the understanding of how cells have behaved can only be done at the end of the experiment, as an aggregate of several similar sub-experiments.
Muchos parámetros biológicos y procesos pueden ser detectados y controlados mediante la medida de su bioimpedancia, con la ventaja de ser una técnica no invasiva y relativamente barata. El crecimiento de una célula, los cambios en la composición celular o los cambios en la ubicación de la célula son sólo algunos ejemplos de procesos que pueden ser detectados por micro-electrodos mediante cambios de impedancia [1-4]. Esta técnica (Electrical Cell-substrate Impedance Spectroscopy, ECIS) fue inventada por Ivar Giaever y Charles Keese en 1986 [1], registrando en una patente un aparato para la monitorización de cultivos celulares, basado en una serie de pocilios donde se realiza el cultivo celular, cada uno de ellos con un array de micro-electrodos por los que se introduce una corriente alterna, midiéndose la impedancia eléctrica resultante. Esta patente inicial [5] fue completada con una serie de patentes relacionadas, aplicadas al tema del estudio de la movilidad celular [6] o de la actividad metastásica de células cancerígenas [7]. Many biological parameters and processes can be detected and controlled by measuring their bioimpedance, with the advantage of being a non-invasive and relatively cheap technique. The growth of a cell, changes in cell composition or changes in cell location are just a few examples of processes that can be detected by micro-electrodes through impedance changes [1-4]. This technique (Electrical Cell-substrate Impedance Spectroscopy, ECIS) was invented by Ivar Giaever and Charles Keese in 1986 [1], registering in a patent an apparatus for cell culture monitoring, based on a series of wells where the culture is performed cell, each of them with an array of micro-electrodes through which an alternating current is introduced, measuring the resulting electrical impedance. This initial patent [5] was completed with a series of related patents, applied to the subject of the study of cell mobility [6] or metastatic activity of cancer cells [7].
Otro sistema de medida de bioimpedancia fue registrado en 2005 por B. Rubinsky et al. [8]. Este sistema utiliza dos electrodos entre los que se aplica una diferencia de potencial y una membrana dieléctrica con micro-agujeros por los que se fuerza el paso de la corriente eléctrica. En España también se han registrado métodos para la determinación y visualización simultánea de señales de bioimpedancia eléctrica en material biológico a varias frecuencias [9], utilizando un tratamiento de la señal de excitación y de respuesta como dos funciones independientes en el dominio del tiempo, y aplicando técnicas de procesamiento de señal (correlación cruzada y transformación de Fourier) para obtener mejores resultados. Another bioimpedance measurement system was registered in 2005 by B. Rubinsky et al. [8]. This system uses two electrodes between which a potential difference is applied and a dielectric membrane with micro-holes through which it is forced The passage of electric current. In Spain, methods have also been recorded for the simultaneous determination and visualization of electrical bioimpedance signals in biological material at various frequencies [9], using a treatment of the excitation and response signal as two independent functions in the time domain, and applying signal processing techniques (cross correlation and Fourier transformation) to obtain better results.
En general, para el problema de medir una impedancia Zx dada, de magnitud Zxo y fase Φ, se han descrito varios métodos, los cuales requieren circuitos de excitación y de procesamiento. La excitación se suele implementar con corriente alterna (AC), mientras que el procesamiento se basa en el principio de demodulación coherente [10] o muestreo síncrono [11-12]. En ambos, el procesamiento de circuitos debe estar sincronizado con las señales de excitación, como un requisito para que la técnica funcione, obteniendo el mejor ruido el rendimiento cuando se incorporan las funciones de filtro adecuado (High-Pass (HP) o Low-Pass (LP)). In general, for the problem of measuring a given impedance Z x , of magnitude Z xo and phase Φ, several methods have been described, which require excitation and processing circuits. The excitation is usually implemented with alternating current (AC), while the processing is based on the principle of coherent demodulation [10] or synchronous sampling [11-12]. In both, the circuit processing must be synchronized with the excitation signals, as a requirement for the technique to work, obtaining the best noise performance when the appropriate filter functions (High-Pass (HP) or Low-Pass are incorporated) (LP)).
Este trabajo presenta un nuevo sistema de medida de impedancia para muestras biológicas útil para obtener información de un cultivo celular en tiempo real y de forma inalámbrica. Se basa en el uso de un array bidimensional de electrodos como sensores de bioimpedancia, circuitos integrados para la implementación del circuito de medida (oscilador) y en la utilización de las señales eléctricas resultantes (oscilaciones) como parámetros de interpretación del estado del cultivo. This paper presents a new impedance measurement system for biological samples useful for obtaining information from a cell culture in real time and wirelessly. It is based on the use of a two-dimensional array of electrodes as bioimpedance sensors, integrated circuits for the implementation of the measurement circuit (oscillator) and on the use of the resulting electrical signals (oscillations) as parameters of interpretation of the culture status.
La idea es conceptualmente distinta a los métodos anteriormente reportados, ya que no usa señales de excitación. Se trata de convertir el "circuito biológico" (formado por el cultivo celular, los electrodos y unos pocos componentes electrónicos añadidos) en un oscilador. Cualquier modificación de la parte biológica (por ejemplo un cambio en el número de células) producirá cambios tanto en la frecuencia como la amplitud de las oscilaciones y esta alteración llegará a ser observable para sacar conclusiones sobre el comportamiento del cultivo en tiempo real. The idea is conceptually different from the previously reported methods, since it does not use excitation signals. It is about converting the "biological circuit" (formed by cell culture, electrodes and a few added electronic components) into an oscillator. Any modification of the biological part (for example a change in the number of cells) will produce changes in both the frequency and amplitude of the oscillations and this alteration will become observable to draw conclusions about the behavior of the culture in real time.
Por todas estas razones, cualquier aportación técnica que facilite la monitorización de la progresión celular, especialmente una monitorización a tiempo real, tiene un impacto inmediato en las ciencias biológicas; más en particular aquellas que reduzcan los efectos negativos sobre las células y que permitan medir de forma continua el número de células en un plato. De esta forma, vale la pena desarrollar técnicas de medida que permitan a investigadores supervisar la evolución de sus experimentos en tiempo real, con un montaje sencillo y autónomo, como es el caso de esta invención. For all these reasons, any technical input that facilitates the monitoring of cell progression, especially real-time monitoring, has an immediate impact on the biological sciences; more particularly those that reduce the negative effects on the cells and allow to continuously measure the number of cells in a plate. Thus, it is worth developing measurement techniques that allow researchers to monitor the evolution of their experiments in real time, with a simple and autonomous assembly, as is the case with this invention.
DOCUMENTOS RELEVANTES RELEVANT DOCUMENTS
[I ] I. Giaever et al., Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behaviour in Tissue Culture, IEEE Transaction on Biomedical Engineering, vol BME-33, n° 2, pp: 242-247, Feb. 1986.  [I] I. Giaever et al., Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behavior in Tissue Culture, IEEE Transaction on Biomedical Engineering, vol BME-33, No. 2, pp: 242-247, Feb. 1986 .
[2] S. M. Radke and E. C. Alocilja, Design and Fabrication of a Microimpedance Biosensor for Bacterial Detection, IEEE Sensor Journal, vol 4, n° 4, pp: 434-440, Aug. 2004.  [2] S. M. Radke and E. C. Alocilja, Design and Fabrication of a Microimpedance Biosensor for Bacterial Detection, IEEE Sensor Journal, vol 4, n ° 4, pp: 434-440, Aug. 2004.
[3] D. A. Borkholder: Cell-Based Biosensors Using Microelectrodes, PhD Thesis, Stanford University. Nov. 1998. [3] D. A. Borkholder: Cell-Based Biosensors Using Microelectrodes, PhD Thesis, Stanford University. Nov. 1998.
[4] A. Yúfera et al., A Tissue Impedance Measurement Chip for Myocardial Ischemia Detection. IEEE transaction on Circuits and Systems: Part I. vol.52, n°: 12, pp: 2620-2628. Dec. 2005.  [4] A. Yúfera et al., A Tissue Impedance Measurement Chip for Myocardial Ischemia Detection. IEEE transaction on Circuits and Systems: Part I. vol.52, no .: 12, pp: 2620-2628. Dec. 2005.
[5] I. Giaever, C. R. Keese, Cell substrate electrical impedance sensor with múltiple electrode array, US 5, 187,096, Feb. 16, 1993.  [5] I. Giaever, C. R. Keese, Cell substrate electrical impedance sensor with multiple electrode array, US 5, 187,096, Feb. 16, 1993.
[6] I. Giaever, C. R. Keese, Electrical wounding assay for cells in vitro, US 7,332,313 Feb. 19, 2008.  [6] I. Giaever, C. R. Keese, Electrical wounding assay for cells in vitro, US 7,332,313 Feb. 19, 2008.
[7] I. Giaever, C. R. Keese, Real-time impedance assay to follow the invasive activities of metastatic cells in culture, US 7,399,631 , July 15, 2008.  [7] I. Giaever, C. R. Keese, Real-time impedance assay to follow the invasive activities of metastatic cells in culture, US 7,399,631, July 15, 2008.
[8] B. Rubinsky, Y. Huang, Cell viability detection using electrical measurements, US 6,927,049 B2, Aug. 9, 2005.  [8] B. Rubinsky, Y. Huang, Cell viability detection using electrical measurements, US 6,927,049 B2, Aug. 9, 2005.
[9] P. Owen Whiters, Método y aparato para mostrar bio-impedancia en múltiples frecuencias, ES 2 1 18 133 T3. [9] P. Owen Whiters, Method and apparatus for displaying bio-impedance at multiple frequencies, ES 2 1 18 133 T3.
[10] J. J. Ackmann, Complex bioelectric impedance measurement system for the frequency range from 5-1 MHz, Annals of Biomedical Engineering 21 (1993) 135— 146.  [10] J. J. Ackmann, Complex bioelectric impedance measurement system for the frequency range from 5-1 MHz, Annals of Biomedical Engineering 21 (1993) 135-146.
[I I ] R.Pallas, J.G.Webster, Bioelectric impedance measurements using synchronous sampling, IEEE Transactions on Biomedical Engineering 40 (8) (1993) 824-829.  [I I] R.Pallas, J.G. Webbster, Bioelectric impedance measurements using synchronous sampling, IEEE Transactions on Biomedical Engineering 40 (8) (1993) 824-829.
[12] M. Min, A. Kink, R. Land and T. Parve, Method and device for measurement of electrical bioimpedance, US 7,706,872 B2, Apr 27, 2010.  [12] M. Min, A. Kink, R. Land and T. Parve, Method and device for measurement of electrical bioimpedance, US 7,706,872 B2, Apr 27, 2010.
[13] X.Huang et al., Simulation of Microelectrode Impedance Changes Due to Cell Growth, IEEE Sensors Journal, vol.4, n°5, pp: 576-583. 2004. [14] P. Daza, A. Olmo, D. Cañete, and A. Yúfera. Monitoring Living Cell Assays with Bio-lmpedance Sensors. Sensors and Actuators B: Chemical. Elsevier, pp: 605-610: vol.176. January. 2013. [15] G. Huertas et al. Oscillation-Based Test in Mixed-Signal Circuits (Frontiers in Electronic Testing). Springer. 2006. [13] X. Huang et al., Simulation of Microelectrode Impedance Changes Due to Cell Growth, IEEE Sensors Journal, vol.4, n ° 5, pp: 576-583. 2004 [14] P. Daza, A. Olmo, D. Cañete, and A. Yúfera. Monitoring Living Cell Assays with Bio-lmpedance Sensors. Sensors and Actuators B: Chemical. Elsevier, pp: 605-610: vol. 176. January. 2013. [15] G. Huertas et al. Oscillation-Based Test in Mixed-Signal Circuits (Frontiers in Electronic Testing). Springer 2006
[16] J. Gibson. Nonlinear Automatic Control. McGraw-Hill. Japan, 1963. [16] J. Gibson. Nonlinear Automatic Control. McGraw-Hill Japan, 1963.
[17] P. Fleischer, A. Ganesan and K. Laker, A Switched Capaci-tor Oscillator with Precisión Amplitude Control and Guar-anteed Start-Up, IEEE Journal of Solid- State Circuits, Vol. SC-20, No. 2, April 1985. [17] P. Fleischer, A. Ganesan and K. Laker, A Switched Capacitor Oscillator with Precision Amplitude Control and Guar-anteed Start-Up, IEEE Journal of Solid-State Circuits, Vol. SC-20, No. 2 , April 1985.
[18] N. Joye, et al., An Electrical Model of the Cell-Electrode Interface for High- density Microelectrode Arrays, IEEE EMBS, pp: 559-562. 2008.  [18] N. Joye, et al., An Electrical Model of the Cell-Electrode Interface for High-density Microelectrode Arrays, IEEE EMBS, pp: 559-562. 2008
Descripción del contenido de las figuras Description of the content of the figures
Figura 1. Sistema de medida bio-electrónico. (a) Modelo eléctrico de un electrodo. (b) Modelo eléctrico de un electrodo parcialmente cubierto por células (ff = A/ACi siendo A el área del electrodo y Ac el área del electrodo cubierta por células), (c) Circuito para el testado de la bioimpedancia célula-electrodo. Valores para un electrodo de tamaño 50x50 μηι2: Rs=5.4 kQ, Ζ(ω) = C,||RP, con C|= 0.37nF and Rp= 25ΜΩ. Rgap=75kQ. Figure 1. Bio-electronic measurement system. (a) Electric model of an electrode. (b) Electrical model of an electrode partially covered by cells (ff = A / A Ci where A is the area of the electrode and Ac is the area of the electrode covered by cells), (c) Circuit for cell-electrode bioimpedance testing. Values for an electrode of size 50x50 μηι 2 : R s = 5.4 kQ, Ζ (ω) = C, || R P , with C | = 0.37nF and R p = 25ΜΩ. R gap = 75kQ.
Figura 2. Diagrama de bloques del sistema de medida propuesto objeto de esta invención. Figure 2. Block diagram of the proposed measurement system object of this invention.
Figura 3. Dependencia de los parámetros de oscilación (fosc, aosc) con el solapamiento del área de la célula con el electrodo definido por el factor de llenado, ff. La sensibilidad aproximada es Ο.Ι δΗζ/μιη2 para f0Sc, usando un micro- electrodo cuadrado de 50μιη de lado. Figure 3. Dependence of the oscillation parameters (f osc , a osc ) with the overlap of the cell area with the electrode defined by the filling factor, ff. The approximate sensitivity is Ο.Ι δΗζ / μιη 2 for f 0S c, using a square microelectrode 50μιη on the side.
Figura 4. (a) Relación entre la amplitud de la salida secundaria y la frecuencia de oscilación, (b) Dependencia de la mplitud de la salida secundaria (A0SC2) con el solapamiento célula-electrodo definido con ff. La sensibilidad aproximada es 0.2mV^m2 para la salida secundaria, Vout2, usando un micro-electrodo de 50μιη de lado. Figura 5. Ejemplo esquemático del filtro usado en la invención. Figura 6. Ejemplo de esquemático del filtro paso de alta más comparador usado en la invención. Figura 7. Ejemplo de esquemático del AGC usado en la invención. Figure 4. (a) Relationship between the amplitude of the secondary output and the frequency of oscillation, (b) Dependence of the amplitude of the secondary output (A 0SC 2) with the cell-electrode overlap defined with ff. The approximate sensitivity is 0.2mV ^ m 2 for the secondary output, V out2 , using a 50μιη side electrode. Figure 5. Schematic example of the filter used in the invention. Figure 6. Schematic example of the high pass filter plus comparator used in the invention. Figure 7. Schematic example of the AGC used in the invention.
Figura 8. Diagrama de bloques del sistema global usado en la invención. Figura 9. Diagrama de la multiplexación. Figure 8. Block diagram of the overall system used in the invention. Figure 9. Multiplexing diagram.
Descripción de la invención Description of the invention
La impedancia de un sistema de dos electrodos (Figura 1 (a)) ha sido ampliamente estimada [3, 13, 14]. Particularmente, en este trabajo, se ha considerado un micro- electrodo que puede estar total o parcialmente cubierto por células en el cultivo. El factor de relleno (ff) representa la cantidad de área del electrodo (A) cubierta de células. Variando desde ff=0, si no se detecta la presencia de ninguna célula, hasta ff=1 , con la totalidad del área ocupada por células.  The impedance of a two electrode system (Figure 1 (a)) has been widely estimated [3, 13, 14]. Particularly, in this work, a micro-electrode that can be totally or partially covered by cells in the culture has been considered. The fill factor (ff) represents the amount of cell electrode area (A) covered. Varying from ff = 0, if the presence of any cell is not detected, up to ff = 1, with the entire area occupied by cells.
Nuestro objetivo es, usando el modelo eléctrico para la bioimpedancia (Figura 1 (b)) anteriormente reportado [3, 13, 14], obtener el área de solapamiento de las células con el electrodo (Ac) empleando las medidas realizadas con la circuitería propuesta. Our objective is, using the electric model for bioimpedance (Figure 1 (b)) previously reported [3, 13, 14], to obtain the area of overlap of the cells with the electrode (A c ) using the measurements made with the circuitry proposal.
La respuesta en magnitud y fase para ceii-eiectrode(s) se puede obtener a partir del montaje de la Figura 1 (c). El resistor Rin permite mantener la corriente que fluye a través del sistema electrodo-célula en niveles de señal adecuados (1-20μΑ para proteger la célula y 10-50mV para las restricciones del modelado del electrodo [3]). The magnitude and phase response for ce ii -e iectrode (s) can be obtained from the assembly of Figure 1 (c). The R in resistor allows the current flowing through the electrode-cell system to be maintained at adequate signal levels (1-20μΑ to protect the cell and 10-50mV for restrictions on electrode modeling [3]).
El sistema objeto de la presente invención realiza las medidas del sistema bio- electrónico (Zcen-eiectrode), lo que llamaremos de ahora en adelante CCUT (del inglés Cell-Culture Under Test, es decir, cultivo celular bajo testado). Este bio-sistema se transforma en un oscilador robusto, añadiéndole algunos componentes (Figura 2). Para forzar las oscilaciones, se ha implementado un lazo de realimentación positiva. La técnica, exige predecir con exactitud los parámetros de oscilación (frecuencia y amplitud), tanto analíticamente o por medio de simulaciones [15-17]. También es necesario evitar la dependencia de estos parámetros con la característica de saturación de los elementos activos, como ocurre en los osciladores comunes. Una solución a este problema es usar un elemento no lineal (un simple comparador) cerrando un lazo de realimentación para garantizar las oscilaciones auto mantenidas [15-17]. Este elemento no lineal también proporciona un control preciso de la amplitud de las oscilaciones. Por otro lado, necesitamos asegurar que este sistema cumpla con un conjunto (relativamente) simple de condiciones de oscilación que pueda dar información sobre los parámetros de oscilación. Una manera simple de obtener este objetivo es emplear un filtro paso de banda en el lazo, como planteamos en el bloque general de circuito en la Figura 2. The system object of the present invention carries out the measurements of the bio-electronic system (Z ce n-eiectrode), which we will now call CCUT (Cell-Culture Under Test, that is, cell culture under test). This bio-system is transformed into a robust oscillator, adding some components (Figure 2). To force oscillations, a positive feedback loop has been implemented. The technique requires accurately predicting the oscillation parameters (frequency and amplitude), either analytically or through simulations [15-17]. It is also necessary to avoid the dependence of these parameters with the saturation characteristic of the active elements, as in the case of common oscillators One solution to this problem is to use a nonlinear element (a simple comparator) by closing a feedback loop to ensure self-maintained oscillations [15-17]. This non-linear element also provides precise control of the amplitude of the oscillations. On the other hand, we need to ensure that this system complies with a (relatively) simple set of oscillation conditions that can give information about the oscillation parameters. A simple way to achieve this objective is to use a bandpass filter in the loop, as we propose in the general circuit block in Figure 2.
Por simplicidad, consideramos el caso de un filtro paso de banda de segundo orden y un comparador con niveles de saturación ±Vref. Este sistema de lazo cerrado verifica las premisas requeridas: es autónomo, la no linealidad es separable e independiente de la frecuencia y la función de transferencia lineal contiene el suficiente filtrado paso de baja para despreciar los armónicos de alto orden en la salida del comparador. De esta forma, las ecuaciones que gobiernan las condiciones de oscilación pueden manejarse fácilmente. For simplicity, we consider the case of a second-order bandpass filter and a comparator with saturation levels ± V ref . This closed loop system verifies the required premises: it is autonomous, the nonlinearity is separable and independent of the frequency and the linear transfer function contains enough low pass filtering to neglect high order harmonics at the comparator output. In this way, the equations that govern the oscillation conditions can be easily handled.
Eligiendo adecuadamente el filtro paso de banda, el sistema de lazo cerrado de la Figura 2 se puede forzar a oscilar y su ecuación de descripción (DF) de primer orden [15], N(a)+1/H(s)=0, tiene una solución oscilatoria ( oOSc, aosc), siendo oosc la frecuencia de oscilación y aosc la amplitud de oscilación. La función DF será en este caso N(a), mientras que H(s) es la función de transferencia del sistema de lazo abierto. By properly choosing the bandpass filter, the closed loop system of Figure 2 can be forced to oscillate and its first order description equation (DF) [15], N (a) + 1 / H (s) = 0 , has an oscillatory solution (or OS c, to osc), with or osc the oscillation frequency and the oscillation amplitude osc. The DF function will in this case be N (a), while H (s) is the transfer function of the open loop system.
Matemáticamente, la ecuación característica es: Mathematically, the characteristic equation is:
(1) donde, N(a) es la DF del comparador y H(s) el sistema modificado. (1) where, N (a) is the DF of the comparator and H (s) the modified system.
La función BP general vendrá dada por, The general BP function will be given by,
Figure imgf000008_0001
Figure imgf000008_0001
siendo ω0*, Q* y ki* los parámetros BPF. La función de transferencia V0UtA ¡n del sistema bio-electrónico de la Figura 1 (c) la llamaremos, Hz(s),
Figure imgf000009_0001
where ω 0 *, Q * and ki * are the BPF parameters. The transfer function V 0U tA ¡ n of the bio-electronic system of Figure 1 (c) we will call it, H z (s),
Figure imgf000009_0001
Donde los parámetros constantes (ω0, Q y k0, ki, k2) están directamente relacionados con el tamaño del electrodo, la tecnología y el material biológico (ff). La expresión de la función total estará dada por,
Figure imgf000009_0002
Where the constant parameters (ω 0 , Q and k 0 , ki, k 2 ) are directly related to the electrode size, technology and biological material (ff). The expression of the total function will be given by,
Figure imgf000009_0002
Para forzar las oscilaciones, un par de polos complejos conjugados del sistema global tienen que estar ubicados sobre los ejes imaginarios. El camino para determinar las condiciones de oscilación (ganancia, frecuencia y amplitud) es resolver la ecuación (1 ). To force the oscillations, a pair of complex conjugate poles of the global system must be located on the imaginary axes. The way to determine the oscillation conditions (gain, frequency and amplitude) is to solve equation (1).
Esto es equivalente a encontrar una solución del conjunto de ecuaciones This is equivalent to finding a solution to the set of equations.
Siendo los coeficientes dados por las ecuaciones, Being the coefficients given by the equations,
B = ^+ + N(fl∞c)fc fc2 I B = ^ + + N (fl∞c) fc fc2 I
Q
Figure imgf000009_0003
Q
Figure imgf000009_0003
(6)  (6)
Existe una solución de oscilación. Los parámetros de oscilación principales son función del área del cultivo celular ocupada. Esta dependencia se muestra en la Figura 3, para la frecuencia y la amplitud de las oscilaciones. La salida del filtro biológico (la entrada al comparador en la Figura 2) es aproximadamente sinusoidal debido a la característica paso de banda de la estructura global. Este hecho permite usa la aproximación lineal establecida por el método de la función de descriptiva [15-17] para el tratamiento lineal del elemento no lineal. La función de transferencia del comparador, según esto, vendrá dada por: There is a swing solution. The main oscillation parameters are a function of the area of the cell culture occupied. This dependence is shown in Figure 3, for the frequency and amplitude of the oscillations. The output of the biological filter (the input to the comparator in Figure 2) is approximately sinusoidal due to the characteristic band pass of the overall structure. This fact allows us to use the linear approximation established by the method of the function of descriptive [15-17] for the linear treatment of the non-linear element. The transfer function of the comparator, according to this, will be given by:
N( MC) =— ^ N ( MC ) = - ^
(7) (7)
Donde, como ya se dijo, Vref es la referencia de tensión del comparador (cuyo valor puede ser barrido para obtener niveles de señal adecuados) y aosc es la amplitud de las oscilaciones. Where, as noted, V ref is the reference voltage of the comparator (whose value can be swept to obtain appropriate signal levels) and osc is the amplitude of the oscillations.
Obsérvese que para nuestro ejemplo (Figura 3), la frecuencia de oscilación incrementa monótonamente en el rango [7560, 7920] Hz (0.16Ηζ/μιη2 del área de electrodo ocupada por células) y las amplitudes de oscilación [0, 40] mV, a medida que crece el solapamiento del área de la célula en el electrodo. Debido a que el nivel de señal de salida Vout (ver Figura 2) es muy pequeño por las restricciones del modelo del electrodo, consideramos la señal secundaria (Vout2 en la Figura 2) como salida potencial (cuyo valor está relacionado con la frecuencia de oscilación), lográndose una mejora en el rango dinámico. Note that for our example (Figure 3), the oscillation frequency increases monotonously in the range [7560, 7920] Hz (0.16Ηζ / μιη 2 of the electrode area occupied by cells) and the oscillation amplitudes [0, 40] mV , as the overlap of the cell area in the electrode grows. Because the output signal level V out (see Figure 2) is very small due to the restrictions of the electrode model, we consider the secondary signal (V out2 in Figure 2) as a potential output (whose value is related to the frequency oscillation), achieving an improvement in the dynamic range.
Si f(t) es la salida cuadrada del comparador, puede expresarse en términos de su desarrollo en serie de Fourier:  If f (t) is the square output of the comparator, it can be expressed in terms of its Fourier series development:
4 1 1  4 1 1
f(t) = - Vref [sen(caosct) + - sen(3«OÍC + - sen(5wosct) + ...] f (t) = - V ref [sen (ca osc t) + - sen (3 « OIC + - sen (5w osc t) + ...]
π 3 5  π 3 5
Por otro lado, la ganancia del filtro paso de banda con respecto a la frecuencia de oscilación es:
Figure imgf000010_0001
On the other hand, the gain of the bandpass filter with respect to the oscillation frequency is:
Figure imgf000010_0001
Resultado la siguiente expresión de la amplitud de la salida secundaria:
Figure imgf000010_0002
Result the following expression of the amplitude of the secondary output:
Figure imgf000010_0002
Mostramos en la Figura 4 (a), cómo es esta dependencia y en la Figura 4 (b) cómo se mejora el rango dinámico si usamos la salida secundaria. We show in Figure 4 (a), how is this dependence and in Figure 4 (b) how the dynamic range is improved if we use the secondary output.
Las razones que hacen atractiva esta invención son: el concepto es muy simple, evita la necesidad de un equipamiento complejo y caro para la generación de estímulos (de hecho, no requiere ninguna señal externa de entrada) y para la interpretación de la respuesta (las medidas a realizar son relativamente simples [15]). Estas características son las que abren la puerta para extender el concepto a monitorización en tiempo real como proponemos aquí. The reasons that make this invention attractive are: the concept is very simple, avoids the need for complex and expensive equipment for the generation of stimuli (in fact, it does not require any external input signal) and for the interpretation of the response (the measures to be taken are relatively simple [fifteen]). These characteristics are what open the door to extend the concept to real-time monitoring as we propose here.
Modo de realización de la invención Embodiment of the invention
El esquemático del sistema principal (oscilador para las medidas) se mostró previamente en la Figura 2. Está compuesto, como dijimos, de tres bloques fundamentales: un filtro paso de banda (BP), el bloque de bioimpedancia y un comparador. Se requiere también de algún tipo de mecanismo de start-up. Filtro paso de banda: The schematic of the main system (oscillator for measurements) was previously shown in Figure 2. It is composed, as we said, of three fundamental blocks: a bandpass filter (BP), the bioimpedance block and a comparator. It also requires some kind of start-up mechanism. Band pass filter:
Un estudio teórico en profundidad de nuestro "oscilador biológico" (cuando se considera el caso particular de un micro-electrodo de oro, cuadrado, de 50 μιη de lado, que puede estar cubierto parcial o totalmente de células en el cultivo) revela que la frecuencia óptima para el filtro paso de banda en orden a conseguir un modo de oscilación adecuado está alrededor de 8kHz. Sin embargo, de cara a obtener mayor flexibilidad, debido a la naturaleza de diferentes clases de electrodos, se ha implementado un filtro ajustable. Se eligió un filtro de variable de estado porque con esta topología se puede ajusfar independientemente la frecuencia de resonancia, ω0, y el factor de calidad, Q. La Figura 5 muestra la implementación del filtro completo. An in-depth theoretical study of our "biological oscillator" (when considering the particular case of a gold micro-electrode, square, 50 μιη on the side, which may be partially or totally covered with cells in the culture) reveals that the Optimal frequency for the bandpass filter in order to achieve a proper oscillation mode is around 8kHz. However, in order to obtain greater flexibility, due to the nature of different kinds of electrodes, an adjustable filter has been implemented. A state variable filter was chosen because with this topology the resonance frequency, ω 0 , and the quality factor, Q can be adjusted independently. Figure 5 shows the implementation of the complete filter.
Por simulación se pueden obtener los posibles valores de resistencia y, con ello, los valores de ω0 (una vez seleccionados los valores de Rm y C en la Figura 5). Estos valores tienen que ser elegidos para tener un rango de frecuencias desde 6.5kHz a 13kHz y una variación casi lineal sobre el rango completo. Este se consigue tomando Rm=10kQ and C=1.2nF. By simulation the possible resistance values can be obtained and, with it, the values of ω 0 (after selecting the values of R m and C in Figure 5). These values have to be chosen to have a frequency range from 6.5kHz to 13kHz and an almost linear variation over the entire range. This is achieved by taking R m = 10kQ and C = 1.2nF.
Comparador Comparator
La Figura 6 muestra el comparador usado. Está compuesto de tres bloques, el comparador en sí mismo, un filtro paso de alta y un amplificador en configuración no inversora. La señal de salida de la bioimpedancia se filtra primero para reducir el ruido de baja frecuencia (principalmente los 50Hz de la red eléctrica) con un filtro paso de alta Sallen-Key ajustable a 1 kHz y con Q variable para permitir una selección precisa de la desviación de fase en la frecuencia de resonancia del filtro paso de banda. Entonces, la señal se amplifica x20 con una configuración no inversora y pasa al comparador donde gracias a los 6mV de histéresis se consigue la anulación del ruido. También, su rápida respuesta garantiza desviación de fase baja. Además, debido a su entrada enable podemos mantener el sistema en standby mientras cambia la bioimpedancia o mientras el sistema está en su modo normal. Control automático de ganancia (AGC): Figure 6 shows the comparator used. It is composed of three blocks, the comparator itself, a high pass filter and an amplifier in a non-inverting configuration. The bioimpedance output signal is first filtered to reduce low frequency noise (mainly 50Hz of the mains) with a high pass filter Sallen-Key adjustable to 1 kHz and with variable Q to allow accurate selection of the phase deviation in the resonance frequency of the bandpass filter. Then, the signal is amplified x20 with a non-inverting configuration and passes to the comparator where thanks to the 6mV hysteresis noise cancellation is achieved. Also, its rapid response guarantees phase deviation low. In addition, due to its enable input we can keep the system in standby while changing the bioimpedance or while the system is in its normal mode. Automatic gain control (AGC):
Este elemento (Figura 7) se incluye por la ventaja de garantizar una tensión de salida constante para diferentes niveles de ocupación. El AGC permite usar un nivel de tensión mayor a través de la bioimpedancia a bajo nivel de ocupación y un nivel de tensión menor a altos niveles de ocupación. Esto hace al sistema menos sensible al ruido y resuelve los problemas que debemos afrontar con señales de decenas de milivoltios obtenidas para los niveles más bajo de ocupación. Con el uso del AGC la información sobre el nivel de ocupación reside en la tensión aplicada al amplificador de ganancia programable, que llamaremos Vg a partir de ahora. Este componente está compuesto de tres bloques: un amplificador de ganancia variable, un rectificador inversor de precisión y un amplificador no inversor (Figura 7).  This element (Figure 7) is included because of the advantage of guaranteeing a constant output voltage for different occupancy levels. The AGC allows a higher level of tension to be used through bioimpedance at a low level of occupancy and a lower level of tension at high levels of occupancy. This makes the system less sensitive to noise and solves the problems we face with signals of tens of millivolts obtained for the lowest occupancy levels. With the use of the AGC the information on the occupancy level resides in the voltage applied to the programmable gain amplifier, which we will call Vg from now on. This component is composed of three blocks: a variable gain amplifier, a precision inverter rectifier and a non-inverting amplifier (Figure 7).
Circuito digital: Digital circuit:
El sistema objeto de la presente invención se compone de electrodos, sobre los cuales se realiza el cultivo celular, la circuitería necesaria para construir el oscilador y medir la impedancia, un circuito transmisor de radiofrecuencia para el envío inalámbrico de datos, y un micro-controlador para procesar los datos. El esquema de la arquitectura del sistema se muestra en la Figura 8. La parte digital está compuesta por un m i croco ntrol ador responsable de activar el bio-oscilador, elegir la salida multiplexada (Figura 9) (si particularizamos el sistema para la medida a través de electrodos, de 50μιη x 50μιη) e interactuar con los usuarios. El MCU necesita tener un ADC de al menos 6 bits para tener un 1 ,56% de precisión al medir Vg, temporizador con disparo externo y contador, modulo multiplicador, puerto serie, puerto usb y suficientes entradas y salidas de propósito general para poder conectar unos pulsadores, un display, un sensor de temperatura y humedad, un zumbador piezoelectrico y otros dispositivos o periféricos que se consideren necesarios o importantes. El MCU activa el bio-oscilador, elige la celda deseada por medio del multiplexor, mide la frecuencia de oscilación del sistema y el valor del voltaje a Vg en el módulo AGC y calcula el valor del factor de relleno. Éste se muestra en el display o puede configurarse el sistema para enviarlo por medio de su puerto serie a una conexión inalámbrica (Bluetooth por ejemplo) a algún dispositivo que acepte dicha conexión (teléfono móvil, ordenador...) El sistema también mide y envía información sobre la temperatura y la humedad, sobre el estado de la batería, el tiempo transcurrido, así como cualquier otra información que se considere importante. La conexión inalámbrica también permite al usuario configurar el dispositivo. The system object of the present invention is composed of electrodes, on which cell culture is carried out, the circuitry necessary to construct the oscillator and measure the impedance, a radio frequency transmitter circuit for wireless data transmission, and a micro-controller To process the data. The scheme of the system architecture is shown in Figure 8. The digital part is composed of a micro controller responsible for activating the bio-oscillator, choosing the multiplexed output (Figure 9) (if we particularize the system for measurement to through electrodes, 50μιη x 50μιη) and interact with users. The MCU needs to have an ADC of at least 6 bits to have a 1.56% accuracy when measuring Vg, timer with external trip and counter, multiplier module, serial port, usb port and enough general purpose inputs and outputs to connect buttons, a display, a temperature and humidity sensor, a piezoelectric buzzer and other devices or peripherals that are considered necessary or important. The MCU activates the bio-oscillator, chooses the desired cell by means of the multiplexer, measures the oscillation frequency of the system and the value of the voltage at Vg in the AGC module and calculates the value of the fill factor. This is shown on the display or the system can be configured to send it via its serial port to a wireless connection (Bluetooth for example) to a device that accepts that connection (mobile phone, computer ...) The system also measures and sends information on temperature and humidity, on battery status, elapsed time, as well as any other information deemed important. The wireless connection also allows the user to configure the device.
Un zumbador piezoeléctrico actúa a modo de alarma y avisa al usuario cuando se produzcan situaciones que él mismo haya establecido. Una conexión USB puede usarse para acceso al registro de datos de experimentos realizados y también para actualizar el firmware del sistema. También se dota al sistema de un display que permite mostrar la información sobre el factor de relleno y otros datos si la conexión inalámbrica no puede usarse.  A piezoelectric buzzer acts as an alarm and alerts the user when situations occur that he himself has established. A USB connection can be used to access the data record of experiments performed and also to update the system firmware. The system is also provided with a display that allows you to display information about the fill factor and other data if the wireless connection cannot be used.
Todo esto permite la monitorización de forma inalámbrica del cultivo celular, sin necesidad de extraer las muestras de la incubadora o de interferir en los procesos propios del cultivo celular. De igual forma, el circuito transmisor y receptor de señales de radiofrecuencia permite la programación inalámbrica del bio-oscilador pudiendo ser establecidos remotamente los parámetros de control y medida descritos anteriormente. Este circuito transmisor y receptor de señales de radiofrecuencia podrá ser implementado de forma que los datos se transmitan a una frecuencia de 2.4 Ghz u otras bandas disponibles, y de forma que sea compatible con los estándares 802.11 , 802.15 o similares. Este sistema de monitorización permite obtener de forma inalámbrica las medidas que muestran la evolución del cultivo celular en el tiempo, sin necesidad de realizar una inspección visual del cultivo, con el consiguiente ahorro de tiempo y con la posibilidad de implementar señales de alarma automáticas ante cambios inesperados. De igual forma, la automatización en la obtención de la información en forma digital permite un posterior procesado de los datos para un estudio más avanzado de la evolución del cultivo. All this allows the wireless monitoring of the cell culture, without the need to extract the samples from the incubator or to interfere with the processes of the cell culture. Similarly, the radio frequency signal transmitter and receiver circuit allows the wireless programming of the bio-oscillator and the control and measurement parameters described above can be remotely established. This radio frequency signal transmitter and receiver circuit may be implemented so that the data is transmitted at a frequency of 2.4 Ghz or other available bands, and so that it is compatible with 802.11, 802.15 or similar standards. This monitoring system allows to obtain wirelessly the measurements that show the evolution of cell culture over time, without the need to perform a visual inspection of the culture, with the consequent saving of time and with the possibility of implementing automatic alarm signals before changes Unexpected Similarly, automation in obtaining information in digital form allows further processing of the data for a more advanced study of crop evolution.

Claims

Reivindicaciones  Claims
Sistema de medida de bioimpedancia para la monitorización en tiempo real y de forma inalámbrica de cultivos celulares formado esencialmente por un conjunto de electrodos como sensores de bioimpedancia donde se convierte el "circuito biológico" en un oscilador y se usa las señales eléctricas (oscilaciones) como parámetros de interpretación del estado del cultivo. El sistema está compuesto por: Bioimpedance measurement system for real-time and wireless monitoring of cell cultures consisting essentially of a set of electrodes as bioimpedance sensors where the "biological circuit" is converted into an oscillator and electrical signals (oscillations) are used as Interpretation parameters of the state of the crop. The system is composed of:
a) micro-electrodos como sensores de bioimpedancia  a) micro-electrodes as bioimpedance sensors
b) que forman parte de un circuito oscilador de medida de bioimpedancia en bucle cerrado,  b) that are part of a closed loop bioimpedance measuring oscillator circuit,
c) que se conecta a un circuito de transmisión y recepción de señales de radiofrecuencia y  c) which is connected to a radio frequency signal transmission and reception circuit and
d) un micro-controlador para la monitorización e interpretación de datos.  d) a micro-controller for monitoring and interpretation of data.
Sistema de medida de bioimpedancia para la monitorización en tiempo real y de forma inalámbrica de cultivos celulares según la reivindicación 1 , caracterizado porque los micro-electrodos se implementan a través de procesos CMOS. Bioimpedance measurement system for real-time and wireless monitoring of cell cultures according to claim 1, characterized in that the micro-electrodes are implemented through CMOS processes.
3. Sistema de medida de bioimpedancia para la monitorización en tiempo real y de forma inalámbrica de cultivos celulares según la reivindicación 1 , caracterizado por la utilización de un filtro paso de banda y un comparador en bucle cerrado para la construcción del oscilador que genera las señales de información del estado del cultivo celular, un bloque AGC para el control de los niveles de señal adecuados y para la interpretación de las medidas, un filtro paso de alta para eliminar señales de ruido que puedan invalidar los datos, un micro-controlador para la monitorización y procesamiento de la información y sensores de temperatura y humedad para el control del proceso. 3. Bioimpedance measurement system for real-time and wireless monitoring of cell cultures according to claim 1, characterized by the use of a bandpass filter and a closed loop comparator for the construction of the oscillator that generates the signals of information of the state of the cell culture, an AGC block for the control of the appropriate signal levels and for the interpretation of the measurements, a high pass filter to eliminate noise signals that could invalidate the data, a micro-controller for the information monitoring and processing and temperature and humidity sensors for process control.
4. Sistema de medida de bioimpedancia para la monitorización en tiempo real y de forma inalámbrica de cultivos celulares según la reivindicación 1 , caracterizado porque el circuito transmisor y receptor de señales de radiofrecuencia es compatible con los estándares 802.1 1 , 802.15 o similares. 4. Bioimpedance measurement system for real-time and wireless monitoring of cell cultures according to claim 1, characterized in that the radio frequency signal transmitter and receiver circuit is compatible with 802.1 1, 802.15 or similar standards.
PCT/ES2015/000101 2014-08-06 2015-07-30 Bioimpedance measurement system for wirelessly monitoring cell cultures in real time, based on an oscillation test using integrated circuits WO2016020561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201400682A ES2562810B1 (en) 2014-08-06 2014-08-06 Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on an oscillation test using integrated circuits
ESP201400682 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016020561A1 true WO2016020561A1 (en) 2016-02-11

Family

ID=55263207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/000101 WO2016020561A1 (en) 2014-08-06 2015-07-30 Bioimpedance measurement system for wirelessly monitoring cell cultures in real time, based on an oscillation test using integrated circuits

Country Status (2)

Country Link
ES (1) ES2562810B1 (en)
WO (1) WO2016020561A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109431503A (en) * 2018-10-11 2019-03-08 南京邮电大学 A kind of miniature EIT device of wireless transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051774A1 (en) * 2000-02-28 2001-12-13 Peter Littrup Multidimensional bioelectrical tissue analyzer
US20100312188A1 (en) * 2008-12-15 2010-12-09 Timothy Robertson Body-Associated Receiver and Method
WO2013167185A1 (en) * 2012-05-09 2013-11-14 Universitat Politècnica De Catalunya Electrode assembly for generating electric field pulses to perform electroporation to a biological sample

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051774A1 (en) * 2000-02-28 2001-12-13 Peter Littrup Multidimensional bioelectrical tissue analyzer
US20100312188A1 (en) * 2008-12-15 2010-12-09 Timothy Robertson Body-Associated Receiver and Method
WO2013167185A1 (en) * 2012-05-09 2013-11-14 Universitat Politècnica De Catalunya Electrode assembly for generating electric field pulses to perform electroporation to a biological sample

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALBERTO YUFERA; ET AL.: "A method for bioimpedance measure with four and two-electrode sensor systems.", ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, 2008. EMBS 2008., 20 August 2008 (2008-08-20), pages 238 - 2321., ISBN: 978-1-4244-1814-5 *
ALBERTO YUFERA; ET AL.: "Design of A CMOS closed-loop system useful for bio-impedance measurements. Electronics", CIRCUITS, AND SYSTEMS, 2009. ICECS 2009. 16TH IEEE INTERNATIONAL CONFERENCE, 13 December 2009 (2009-12-13), pages 948 - 951., ISBN: 978-1-4244-5090-9 *
YUFERA A; ET AL.: "A CMOS bio-impedance measurement system. Design and Diagnostics of Electronic Circuits&Systems, 2009.", DDECS '09. 12TH INTERNATIONAL SYMPOSIUM, 15 April 2009 (2009-04-15) *

Also Published As

Publication number Publication date
ES2562810A1 (en) 2016-03-08
ES2562810B1 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
Daza et al. Monitoring living cell assays with bio-impedance sensors
Pérez et al. Sensing cell-culture assays with low-cost circuitry
Zhang et al. The influence of the electrode dimension on the detection sensitivity of electric cell–substrate impedance sensing (ECIS) and its mathematical modeling
CN105916433A (en) Sweat sensing with chronological assurance
Bera et al. A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging
Jose et al. Monitoring body fluids in textiles: Combining impedance and thermal principles in a printed, wearable, and washable sensor
ES2562810B1 (en) Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on an oscillation test using integrated circuits
Pérez et al. Remote sensing of cell-culture assays
Frydrysiak et al. Health monitoring system for protecting elderly people
Yun et al. Flexible pH sensor and system fabricated using PET film
McGlennen et al. Using electrochemical impedance spectroscopy to study biofilm growth in a 3D-printed flow cell system
Narayanan et al. Analysis of the passivation layer by testing and modeling a cell impedance micro-sensor
Thulasi et al. Portable impedance measurement device for sweat based glucose detection
Vavrinsky et al. Design of sensor systems for long time electrodermal activity monitoring
Serrano et al. Practical characterization of cell-electrode electrical models in bio-impedance assays
Liu et al. Characterization of endothelial cells using electrochemical impedance spectroscopy
Pérez García et al. Towards bio-impedance based labs: A review
ES2551249B1 (en) Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling
Pérez-García et al. Towards bio-impedance based labs: A review
Maldonado et al. Cell-culture measurements using voltage oscillations
CN203849921U (en) Biological multi-frequency electrical impedance experiment instrument
Frydrysiak et al. Wearable textronic system for protecting elderly people
Maldonado et al. Monitoring tissue evolution on electrodes with bio-impedance test
Rieger et al. Concept and development of an electronic framework intended for electrode and surrounding environment characterization in vivo
WO2014076667A1 (en) Electronic system for the on-line detection and monitoring of the growth / death of cells in a culture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829625

Country of ref document: EP

Kind code of ref document: A1