WO2016035418A1 - Distance measurement system, distance measurement device, device that is measured, and position detection system - Google Patents

Distance measurement system, distance measurement device, device that is measured, and position detection system Download PDF

Info

Publication number
WO2016035418A1
WO2016035418A1 PCT/JP2015/067771 JP2015067771W WO2016035418A1 WO 2016035418 A1 WO2016035418 A1 WO 2016035418A1 JP 2015067771 W JP2015067771 W JP 2015067771W WO 2016035418 A1 WO2016035418 A1 WO 2016035418A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
distance
unit
distance measuring
phase
Prior art date
Application number
PCT/JP2015/067771
Other languages
French (fr)
Japanese (ja)
Inventor
前畠 貴
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2016035418A1 publication Critical patent/WO2016035418A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves

Definitions

  • the present invention relates to a distance measurement system, a distance measurement device, a device under measurement, and a position detection system using radio waves.
  • a distance measuring sensor using light such as laser light or electromagnetic waves may be used.
  • a distance measuring sensor projects light or electromagnetic waves on a measurement object and receives the reflected light, thereby obtaining a distance from the time until the reflected light is received, or the projected light and reflected light.
  • a distance measuring sensor projects light or electromagnetic waves on a measurement object and receives the reflected light, thereby obtaining a distance from the time until the reflected light is received, or the projected light and reflected light.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique capable of accurately measuring the distance to a measurement object.
  • a distance measurement system is a distance measurement system including a device under measurement and a distance measurement device that obtains a distance to the device under measurement, wherein the device under measurement has a first frequency of a predetermined frequency.
  • a transmission unit that wirelessly transmits a signal and a second signal having a frequency different from that of the first signal in phase synchronization, and the distance measuring device includes a reception unit that receives the first signal and the second signal;
  • a calculation unit that obtains a distance from the distance measuring device to the device under measurement based on a phase difference between the received first signal and the second signal.
  • a distance measuring device is a distance measuring device that determines a distance to a device under measurement, and is a wirelessly transmitted first signal having a predetermined frequency and a frequency different from the first signal and having a phase.
  • a receiving unit that receives the second signal synchronized with each other, and a calculation unit that obtains a distance from the device to the device to be measured based on a phase difference between the received first signal and the second signal. I have.
  • An apparatus to be measured is a device to be measured that causes a distance measurement device to obtain a distance to the distance measurement device, and is a distance from the distance measurement device to the device to be measured based on a mutual phase difference.
  • a transmitter that wirelessly transmits a first signal having a predetermined frequency for obtaining the second signal and a second signal having a frequency different from the first signal in phase synchronization.
  • a position detection system is a position detection system including a detected device and a position detecting device that detects a position of the detected device, and the detected device has a predetermined frequency.
  • a transmission unit configured to wirelessly transmit a first signal and a second signal having a frequency different from that of the first signal in a phase-synchronized manner;
  • the position detection device includes: a plurality of distance measurement units; and the plurality of distance measurement units A detection unit that detects the position of the device to be detected based on the distances from the plurality of distance measurement units to the detected device, respectively, and each of the plurality of distance measurement units has the first signal.
  • a reception unit that receives the second signal, and a calculation unit that obtains a distance from each distance measurement unit to the detected device based on a phase difference between the received first signal and the second signal.
  • the distance to the measurement object can be measured with high accuracy, and the position of the measurement object can be detected with high accuracy.
  • FIG. 1 is a diagram illustrating an overall configuration of a position detection system according to a first embodiment. It is a block diagram which shows the principal part structure of a to-be-detected apparatus. It is a figure which shows the aspect at the time of producing
  • the measurement target of the distance measurement is a mobile object
  • a known wireless signal is transmitted to the measurement target
  • the light from the measurement target can be transmitted without projecting light and receiving reflected light as in the conventional example.
  • a wireless signal is received and the distance can be obtained with high accuracy based on the phase of the wireless signal.
  • the power of the radio signal transmitted from the measurement target side has a correlation with the propagation distance
  • information on the distance can be obtained based on the received power of the received radio signal.
  • information about the distance can be obtained without performing time synchronization between the transmitting side and the receiving side, but the received power is easily influenced by factors other than the distance, and compared with the distance measurement based on the phase. Measurement accuracy is lowered.
  • a distance measurement system is a distance measurement system including a device under measurement and a distance measurement device for obtaining a distance to the device under measurement, wherein the device under measurement has a predetermined frequency. And a transmitter that wirelessly transmits a first signal of a frequency different from that of the first signal in phase synchronization, and the distance measuring device receives the first signal and the second signal.
  • a receiving unit; and a calculation unit that obtains a distance from the distance measuring device to the device under measurement based on a phase difference between the received first signal and the second signal.
  • the first signal and the second signal transmitted in phase synchronization with each other in the device under test are received, and the phase difference is obtained from the distance measuring device. Since the distance to the device under test is determined, the distance can be measured accurately even when there is an obstacle between the device under measurement and the device under test moving. it can. Further, since the distance is obtained based on the phase difference between the first signal and the second signal, it is not necessary to synchronize the time between the device under measurement and the distance measuring device, and the distance can be obtained with a simple configuration with high accuracy. be able to.
  • the transmission unit of the device under measurement has a signal pattern for outputting a first digital signal including the first signal and a second digital signal including the second signal.
  • the stored memory unit, and the first digital signal and the second digital signal based on the signal pattern are acquired from the memory unit, and the first signal and the second digital signal included in the first digital signal are obtained.
  • the first digital signal and the second digital signal are pulse signals obtained by performing ⁇ modulation on the first signal and the second signal.
  • the memory unit may store one signal pattern for outputting a pulse signal including both the first signal and the second signal as the signal pattern. In this case, since the first signal and the second signal are included in one modulation signal and output, the phase between the first signal and the second signal can be reliably synchronized. (5) In addition, the memory unit outputs a first signal pattern for outputting a pulse signal including the first signal and a pulse signal including the second signal as the signal pattern. Two signal patterns may be stored. In this case, it becomes easy to change the combination of the first signal pattern and the second signal pattern, and the combination of the first signal and the second signal can be easily changed according to the measurement distance or the like.
  • the frequency of the first signal and the frequency of the second signal are set to values at which the first signal and the second signal can be transmitted and received by a single antenna. .
  • the configuration can be simplified.
  • the frequency of the first signal and the frequency of the second signal are included in a relatively narrow band, it is possible to suppress the influence on the transmission path characteristics of the parent's name due to the difference in frequency, and to obtain the distance more accurately. be able to.
  • a distance measuring device is a distance measuring device that calculates a distance to a device under measurement, and is transmitted by a wirelessly transmitted first signal having a predetermined frequency and a frequency different from the first signal.
  • a receiving unit that receives a second signal that is synchronized in phase, and a calculation unit that obtains a distance from the device itself to the device under test based on a phase difference between the received first signal and the second signal. And.
  • a device under measurement is a device under measurement that causes a distance measurement device to obtain a distance to the distance measurement device, and is based on the phase difference between the distance measurement device and the device under measurement.
  • a transmission unit that wirelessly transmits a first signal having a predetermined frequency for obtaining the distance to the second signal and a second signal having a frequency different from that of the first signal in phase synchronization.
  • the distance from the distance measuring device to the device under measurement can be obtained with high accuracy.
  • the transmission unit of the device under measurement has a signal pattern for outputting a first digital signal including the first signal and a second digital signal including the second signal.
  • the stored memory unit, and the first digital signal and the second digital signal based on the signal pattern are acquired from the memory unit, and the first signal and the second digital signal included in the first digital signal are obtained. It is preferable to include a control unit that wirelessly transmits the second signal included in a phase-synchronized manner.
  • a position detection system is a position detection system including a detected device and a position detecting device that detects a position of the detected device, and the detected device has a predetermined frequency.
  • the first signal and a second signal having a frequency different from that of the first signal are wirelessly transmitted with their phases synchronized with each other, and the position detection device includes a plurality of distance measurement units, Each of the plurality of distance measurement units, and a detection unit that detects the position of the detected device based on the distance from the plurality of distance measurement units to the detected device, each of the plurality of distance measurement units, A receiving unit that receives the first signal and the second signal, a phase difference between the received first signal and the second signal, and a detected device from each distance measuring unit based on these phase differences An arithmetic unit for calculating the distance to It is provided.
  • the distance from the distance measuring unit to the detected device can be obtained with high accuracy, and therefore the position of the measured device can be detected with high accuracy.
  • FIG. 1 is a diagram illustrating an overall configuration of a position detection system according to the first embodiment.
  • the position detection system 1 includes a detected device 2 and a position detecting device 3 that detects the position of the detected device 2.
  • the detection device 2 includes a first signal frequency f 1 is a predetermined frequency and a second signal frequency f 1 and a different frequency f 2, the function of wirelessly transmitted to each other by phase-synchronized.
  • the position detecting device 3 receives the first signal and the second signal transmitted from the detected device 2 and obtains the distance to the detected device 2, and the detected device 2 obtained by the distance measuring unit 4.
  • a detection unit 5 that detects the position of the detected device 2 based on the distance up to.
  • the position detection device 3 includes a plurality of distance measuring units 4 (three in the illustrated example). Each distance measuring unit 4 has a function of receiving the first signal and the second signal from the detected device 2 and obtaining the distance to the detected device 2.
  • FIG. 2 is a block diagram illustrating a configuration of a main part of the detected device 2.
  • the device to be detected 2 includes a transmission unit 6 for transmitting the first signal and the second signal.
  • the transmission unit 6 includes a signal output unit 7, a first band pass filter (first BPF) 8 to which a signal output from the signal output unit 7 is provided, and a second band pass to which a signal output from the signal output unit 7 is provided.
  • a filter (second BPF) 9 and an antenna 10 are provided.
  • the signal output unit 7 includes a control unit 11 and a memory unit 12.
  • the memory unit 12 has a function of storing various data in the storage area.
  • the memory unit 12 stores a first pulse signal pattern 13 and a second pulse signal pattern 14.
  • the first pulse signal pattern 13 is a pattern in which the first pulse signal generated in advance is stored in the memory unit 12 as a pattern. Therefore, if the memory unit 12 outputs a signal according to the first pulse signal pattern 13, the memory unit 12 can output the first pulse signal.
  • the second pulse signal pattern 14 is a pattern in which a second pulse signal generated in advance is stored in the memory unit 12 as a pattern.
  • the memory unit 12 outputs a signal according to the second pulse signal pattern 14.
  • the second pulse signal can be output.
  • the first pulse signal (first digital signal) is a digital modulation signal obtained by subjecting the first signal to ⁇ modulation, and includes the first signal as a main signal component.
  • the second pulse signal (second digital signal) is a digital modulation signal obtained by subjecting the second signal to ⁇ modulation, and includes the second signal as a main signal component.
  • FIG. 3 is a diagram illustrating an aspect when the first pulse signal and the second pulse signal are generated.
  • the first pulse signal (second pulse signal) is generated in advance by applying a first signal (second signal) to a bandpass delta-sigma modulator (DSM: Band Pass Delta-Sigma Modulator) 15. Is done.
  • the ⁇ modulator 15 performs ⁇ modulation on the given first signal (second signal), and outputs a first pulse signal (second pulse signal) that is a quantized signal.
  • the sampling frequency f S of the ⁇ modulator 15 is set to be larger than the frequency f 1 of the first signal (frequency f 2 of the second signal) given to the ⁇ modulator 15 (f 1 (f 2 ) ⁇ f S ).
  • FIG. 4 is a diagram illustrating a part of the frequency spectrum of the first pulse signal.
  • the first pulse signal includes the first signal having the frequency f 1 as the main signal component. Further, the first pulse signal includes a quantization noise component generated by ⁇ modulation in a band other than the band near the frequency f 1 .
  • the frequency spectrum of the second pulse signal is also includes a second signal of frequency f 2 as the main signal component, in addition to the band other than the band of the frequency f 2 vicinity, including quantization noise component generated by the ⁇ modulation This is almost the same as FIG.
  • the memory unit 12 converts the first pulse signal and the second pulse signal into the first pulse signal and the second pulse signal generated by performing ⁇ modulation on the first signal and the second signal as described above. It is stored as a pattern for outputting as a signal.
  • the memory unit 12 outputs a first pulse signal and a second pulse signal by outputting a signal according to the first pulse signal pattern 13 and the second pulse signal pattern 14 according to the control of the control unit 11.
  • the signal output unit 7 in the transmission unit 6 of the device to be detected 2 outputs the first pulse signal including the first signal, thereby outputting the first signal as a digital signal.
  • the signal output unit 7 outputs the second signal as a digital signal by outputting a second pulse signal including the second signal.
  • the memory unit 12 gives the output first pulse signal to the first BPF 8 and gives the second pulse signal to the second BPF 9.
  • the 1BPF8 is a band-pass filter of the analog, among signal components included in the first pulse signal is a digital signal provided from the memory unit 12, the frequency f 1 of input signal components including a first signal as an analog signal It is configured to pass and block the passage of quantization noise components in other bands.
  • the antenna 10 is connected to the subsequent stage of the first BPF 8.
  • the first BPF 8 gives a passing signal that is an analog signal passing through the first BPF 8 to the antenna 10. Therefore, when the first pulse signal is given from the memory unit 12, the first BPF 8 passes the signal component near the frequency f 1 as a passing signal, and gives the first signal included in the passing signal to the antenna 10.
  • the second BPF 9 is an analog band-pass filter, and among the signal components included in the second pulse signal that is a digital signal supplied from the memory unit 12, a signal in the vicinity of the frequency f 2 including the second signal. The components are passed as analog signals, and the quantization noise components in other bands are blocked from passing.
  • An antenna 10 is connected to the subsequent stage of the second BPF 9.
  • the second BPF 9 gives the antenna 10 a passing signal that is an analog signal passing through the second BPF 9. Therefore, the 2BPF9, when the second pulse signal from the memory unit 12 is supplied, passed through a frequency f 2 near the signal component as a passing signal, providing a second signal included in the passing signal to the antenna 10.
  • the antenna 10 radiates the first signal and the second signal given from the first BPF 8 and the second BPF 9 to space.
  • the transmission unit 6 can wirelessly transmit the first signal and the second signal from the antenna 10.
  • the frequency f 1 of the first signal and the frequency f 2 of the second signal are set to values at which the first signal and the second signal can be transmitted and received by a single antenna.
  • the frequency f 1 of the first signal, in accordance with the frequency f 2 of the second signal are set so as to be able to both emit a first signal and a second signal.
  • the control unit 11 has a function of controlling the memory unit 12 and causing the memory unit 12 to output the first pulse signal and the second pulse signal.
  • the control unit 11 controls the memory unit 12 to output the first pulse signal and the second pulse signal simultaneously.
  • data is stored in units of 8 to 32 bits for each address (accessible unit).
  • the first pulse signal pattern 13 and the second pulse signal pattern 14 are stored in one unit of address 1, and the control unit 11 can read data from the address 1 of the memory unit 12.
  • both patterns 13 and 14 included in one unit of address 1 can be read out almost simultaneously, and the first pulse signal and the second pulse signal can be output in synchronization.
  • the memory unit 12 can always output the phase relationship between the first signal included in the first pulse signal and the second signal included in the second pulse signal in the same state.
  • the transmission unit 6 is configured to wirelessly transmit the phase-synchronized phase so that the phase of the first signal and the phase of the second signal are the same. That is, the control unit 11 of the transmission unit 6 acquires the first pulse signal and the second pulse signal from the memory unit 12, and phase-synchronizes the first signal and the second signal included in the first pulse signal and the second pulse signal. Wireless transmission.
  • FIG. 5 is a block diagram showing a configuration of the distance measuring unit 4. In the illustrated example, one distance measuring unit 4 is shown, but the other distance measuring units 4 have the same configuration.
  • the distance measurement unit 4 receives a reception signal 17 including a first signal and a second signal transmitted from the detected device 2 via the antenna 16, and based on the received first signal and second signal. And a calculation unit 18 for obtaining a distance to the detected device 2.
  • the reception unit 17 When the reception unit 17 receives the reception signal including the first signal and the second signal by the antenna 16 that is a single antenna, the reception unit 17 performs amplification processing, A / D conversion processing, and the like on the reception signal.
  • the receiving unit 17 gives the received signal that has undergone processing such as A / D conversion to the computing unit 18.
  • the calculation unit 18 includes a first phase detection unit 19 for detecting the phase of the first signal included in the reception signal, and a second phase detection unit 20 for detecting the phase of the second signal included in the reception signal. It has. A reception signal from the reception unit 17 is given to each of the first phase detection unit 19 and the second phase detection unit 20.
  • the first phase detector 19 has a function of detecting and outputting the phase of the first signal from the signal component of the first signal included in the received signal when the received signal is given.
  • the second phase detector 20 has a function of detecting and outputting the phase of the second signal from the signal component of the second signal included in the received signal when the received signal is given.
  • the calculation unit 18 is provided with the phase of the first signal output from the first phase detection unit 19 and the phase of the second signal output from the second phase detection unit 20, and obtains a phase difference between the two phases. 21 and a processing unit 22 that obtains the distance from the distance measuring unit 4 that is the device itself to the detected device 2 based on the phase difference between the two phases output from the adder 21.
  • Tx1 Acos ( ⁇ 1 t) (1)
  • t is the time
  • is the time required for the first signal to be transmitted and received
  • A is the amplitude
  • ⁇ 1 is the angular frequency of the first signal
  • r is the distance measurement.
  • the distance from the unit 4 to the detected device 2 ⁇ represents a constant indicating the attenuation characteristic of the signal according to the distance.
  • ⁇ 2 indicates the angular frequency of the second signal.
  • the first signal and the second signal are wirelessly transmitted from the detected apparatus 2 in a phase-synchronized state so as to be in phase with each other. It can be considered that the relationship between 2) and equation (4) is the same. Further, since both the first signal and the second signal are transmitted from the detected device 2 and received by the distance measuring unit 4, ⁇ is considered to be the same in the relationship between the equations (2) and (4). be able to.
  • r represents the distance from the distance measuring unit 4 to the detected device 2 as described above.
  • c shows the speed of electromagnetic waves. Therefore, if the phase difference ⁇ between the phase of Rx1 and the phase of Rx2 is obtained, r that is the distance from the distance measuring unit 4 to the detected device 2 can be obtained.
  • the first phase detection unit 19 detects the phase of the received first signal
  • the second phase detection unit 20 detects the phase of the received second signal.
  • the adder 21 obtains a phase difference from the phase of the first signal and the phase of the second signal given from the detection units 19 and 20. That is, the detection units 19 and 20 and the adder 21 obtain a phase difference ⁇ between the phase of Rx1 and the phase of Rx2.
  • the adder 21 gives the calculated phase difference ⁇ to the processing unit 22.
  • the processing unit 22 performs calculation according to the above formulas (5) and (6) using the given phase difference ⁇ , and obtains the distance r from the distance measuring unit 4 to the detected device 2.
  • the distance measuring unit 4 can obtain the distance from the distance measuring unit 4 to the detected device 2. That is, the device to be detected 2 as the device to be measured and the distance measuring unit 4 as the distance measuring device constitute a distance measuring system that obtains the distance from the distance measuring unit 4 to the device to be detected 2.
  • the distance measuring unit 4 receives the first signal and the second signal transmitted in phase-synchronized state with each other in the device to be detected 2 (device to be measured), and obtains the phase difference therebetween. Since the distance from the (distance measuring device) to the detected device 2 is obtained, even when there is an obstacle between the measured device 2 to be measured and the detected device 2 is moving The distance can be measured with high accuracy. In addition, since the distance is obtained based on the phase difference between the first signal and the second signal, it is not necessary to synchronize the time between the detected device 2 and the distance measuring unit 4, and the distance is accurate with a simple configuration. Can be requested.
  • the transmission unit 6 of the detected device 2 is based on the memory unit 12 that stores the first pulse signal pattern 13 and the second pulse signal pattern 14, and both signal patterns 13 and 14 from the memory unit 12.
  • the first pulse signal (first digital signal) and the second pulse signal (second digital signal) are acquired, and the first signal included in the first pulse signal and the second signal included in the second pulse signal are phase-shifted.
  • a control unit 11 that performs wireless transmission in synchronization. In this case, since the first pulse signal and the second pulse signal are output from the memory unit and the first signal and the second signal are wirelessly transmitted, the phase between the first signal and the second signal is transmitted in synchronization. It becomes easy.
  • the frequency f 1 of the first signal and the frequency f 2 of the second signal are set to values that allow the first signal and the second signal to be transmitted and received by a single antenna. Therefore, since the first signal and the second signal can be transmitted and received by the antennas 10 and 16 that are single antennas, the configuration can be simplified. Further, since the frequency f 1 of the first signal and the frequency f 2 of the second signal are included in a relatively narrow band, the influence on the transmission path characteristics of both signals due to the difference in frequency can be suppressed, and the accuracy is improved. You can often find the distance.
  • the memory unit 12 includes, as signal patterns, a first pulse signal pattern 13 (first signal pattern) for outputting a first pulse signal including the first signal, and a second signal.
  • the second pulse signal pattern 14 (second signal pattern) for outputting the second pulse signal is stored. For this reason, it becomes easy to change the combination of the 1st pulse signal pattern 13 and the 2nd pulse signal pattern 14, and it can change the combination of the 1st signal and the 2nd signal easily according to measurement distance etc. it can.
  • the phase difference ⁇ between the phase of Rx1 and the phase of Rx2 is displaced in the range of 0 to 2 ⁇ .
  • the phase of Rx1 or the phase of Rx2 may go around.
  • the calculation unit 18 recognizes that the phase of Rx1 or the phase of Rx2 has rounded only from the phase difference ⁇ . I can't.
  • an upper limit value of the distance r to be measured is set in advance, and the frequency difference between the first signal and the second signal is set so that the phase of Rx1 or the phase of Rx2 does not make a round even if the upper limit value is measured. Can be set in advance.
  • the distance r when measuring the distance r in the range of the upper limit value, the distance r can be measured in a range in which the phase of Rx1 or the phase of Rx2 goes around, and the distance r can be measured only by the phase difference ⁇ . .
  • the range of (f 2 ⁇ f 1 ) is expressed by the following formula (8). 0 ⁇ (f 2 ⁇ f 1 ) ⁇ 6 ⁇ 10 ⁇ 6 ⁇ 360 0 ⁇ (f 2 ⁇ f 1 ) ⁇ 10 ⁇ 6 ⁇ 60 0 ⁇ (f 2 ⁇ f 1 ) ⁇ 60 ⁇ 10 6 (Hz) ... (8)
  • the range of (f 2 ⁇ f 1 ) is a range of 0 to 60 MHz.
  • the phase difference of Rx1 is set if the frequency difference between the frequency f 1 of the first signal and the frequency f 2 of the second signal is set to 60 MHz or less.
  • the distance measurement can be performed within a range until the phase of Rx2 goes around. In this way, if the upper limit value of the distance r to be measured is set, the frequency f 1 of the first signal and the frequency f 2 of the second signal can be appropriately measured for a preset measurement range. A frequency difference can be set.
  • the calculation unit 18 recognizes that the phase of Rx1 or the phase of Rx2 has made one round from the phase difference ⁇ alone. However, if the attenuation of the received power is considered in addition to the phase difference ⁇ , it can be determined whether the phase of Rx1 or the phase of Rx2 has made one round. This is because the attenuation of the received power has a correlation with the distance r, and it can be determined by the attenuation of the received power whether or not the phase of Rx1 or the phase of Rx2 has made one round.
  • the distance measurement unit 4 gives the detection unit 5 distance information indicating the distance r from the distance measurement unit 4 to the detected device 2, which is obtained by the calculation unit 18.
  • the detection unit 5 can acquire the distance r from each distance measurement unit 4 to each detected device 2 obtained by each distance measurement unit 4 based on the distance information given from each distance measurement unit 4.
  • Each distance measuring unit 4 is installed at a different position, and measures the distance from each installation position to the detected device 2. Therefore, the detection unit 5 can detect the position of the detected device 2 based on the installation position of each distance measurement unit 4 and the distance r obtained by each distance measurement unit 4.
  • the detected device can be detected from each distance measuring unit.
  • the distance to 2 can be obtained with high accuracy, and the position of the detected device 2 can be detected with high accuracy.
  • the position detection system of this embodiment although the case where the three distance measurement parts 4 were provided was illustrated, if at least two distance measurement parts 4 were provided, the position of the to-be-detected apparatus 2 will be detected by the detection part 5. Can be detected. However, in order to detect the position of the device 2 to be detected with higher accuracy, it is preferable that three or more distance measuring units 4 are provided.
  • the signal output unit 7 of the device to be detected 2 outputs the first pulse signal and the second pulse signal from the memory unit 12 storing the first pulse signal pattern 13 and the second pulse signal pattern 14.
  • the signal output unit 7 includes a plurality of (two in the illustrated example) first memory unit 12 a and second memory unit 12 b
  • the first pulse signal pattern 13 is stored in the memory unit 12a
  • the second pulse signal pattern 14 is stored in the second memory unit 12b
  • the first pulse signal and the second pulse signal are output from the separate memory units 12a and 12b.
  • control unit 11 has the same phase as the phase of the first pulse signal output from the first memory unit 12a and the phase of the second pulse signal output from the second memory unit 12b. So that the phase is synchronized.
  • FIG. 7 is a block diagram illustrating a main configuration of the detected device 2 included in the position detection system according to the second embodiment.
  • one pulse signal pattern 25 is stored in the memory unit 12, and the pulse signal output from the memory unit 12 based on the pulse signal pattern 25 includes a first signal and a second signal. Both are different from the first embodiment in that both are included. Since other points are the same as those in the first embodiment, description thereof is omitted.
  • the memory unit 12 of the present embodiment stores one pulse signal pattern 25.
  • the pulse signal pattern 25 is obtained by storing a pulse signal generated in advance in the memory unit 12 as a pattern. Therefore, the memory unit 12 can output a pulse signal by outputting a signal according to the pulse signal pattern 25.
  • the pulse signal is a digital modulation signal obtained by ⁇ modulation of the first signal and the second signal, and includes both the first signal and the second signal as main signal components.
  • FIG. 8 is a diagram showing a part of the frequency spectrum of the pulse signal.
  • the pulse signal of the present embodiment includes a first signal having a frequency f 1 as a main signal component.
  • the pulse signal also includes a second signal having a frequency f2 as a main signal component.
  • the pulse signal includes a quantization noise component generated by ⁇ modulation in a band near the frequency f 1 and a band other than the band near the frequency f 2 .
  • Such a pulse signal is generated using a 2-input ⁇ modulator having two input ports for receiving a signal to be modulated.
  • the two-input ⁇ modulator will be described later.
  • the memory unit 12 stores a pulse signal generated by performing ⁇ modulation on the first signal and the second signal as a pattern for outputting as a pulse signal.
  • the memory unit 12 outputs a pulse signal by outputting a signal according to the pulse signal pattern 25 under the control of the control unit 11.
  • the signal output unit 7 outputs a pulse signal including both the first signal and the second signal.
  • the memory unit 12 provides the output pulse signal to each of the first BPF 8 and the second BPF 9.
  • the 1BPF8 as described above, the pulse signal from the memory unit 12 is provided and passed through the frequency f 1 of input signal components including a first signal as a pass signal, blocks passage of the signal components of other bands It is configured as follows. Therefore, the first BPF 8 blocks the passage of the first signal included in the passing signal by blocking the passage of the signal component of the other band including the second signal, the quantization noise component, and the like. To give.
  • the 2BPF9 as described above, the pulse signal from the memory unit 12 is supplied, passed through a frequency f 2 near the signal component including the second signal as a pass signal, blocks passage of the signal components of other bands It is configured as follows. Therefore, the second BPF 9 blocks the passage of the second signal included in the passing signal by blocking the passage of the signal component of the other band including the first signal, the quantization noise component, and the like. To give.
  • the antenna 10 radiates the first signal and the second signal given from the first BPF 8 and the second BPF 9 to space.
  • the transmission unit 6 of the detected device 2 wirelessly transmits the first signal and the second signal from the antenna 10.
  • the first signal and the second signal transmitted by the detected device 2 are received by the distance measuring unit 4 (FIG. 5) and used to obtain the distance from the distance measuring unit 4 to the detected device 2 or detected.
  • the unit 5 (FIG. 1) is used to detect the position of the device 2 to be detected.
  • the distance measurement unit 4 determines the distance from the distance measurement unit 4 to the detected device 2 based on the phase difference between the phase of the first signal and the phase of the second signal at the time of reception. Ask. Therefore, if the first signal and the second signal are not accurately phase-synchronized so that they have the same phase at the time of transmission, the distance measuring unit 4 accurately determines the distance from the distance measuring unit 4 to the detected device 2. I can't find it well.
  • the memory unit 12 stores a pulse signal pattern 25 that is one signal pattern for outputting a pulse signal including both the first signal and the second signal as a signal pattern.
  • the signal output unit 7 outputs a pulse signal including both the first signal and the second signal obtained by ⁇ modulation of the first signal and the second signal. And the second signal can be surely synchronized with each other in the phase between the first signal and the second signal. Thereby, it is possible to cause the distance measurement unit 4 to accurately obtain the distance from the distance measurement unit 4 to the detected device 2.
  • FIG. 9 shows a two-input ⁇ modulator 30 used to generate a pulse signal in the second embodiment.
  • ⁇ modulator 30 in FIG. 9 the first input port 31a of the first signal U 1 is input, single output port for outputting the second input port 31b of the second signal U 2 is input, and the pulse signal 31c.
  • the ⁇ modulator 30 includes a plurality of loop filters (a first loop filter 32 and a second loop filter 33) corresponding to each of the plurality of input ports 31a and 31b, an adder 34, and a quantizer 35. Yes.
  • the plurality of loop filters 32 and 33 are connected to the output side of the quantizer 35 via the first input sections 32a and 33a connected to the corresponding input ports 31a and 31b, respectively, and the feedback paths 36a and 36b. 2nd input part 32b, 33b.
  • Input signals U 1 and U 2 input to the corresponding input ports 31a and 31b are input to the first input units 32a and 33a.
  • the feedback signal V of the output V of the quantizer 35 is input to the second input units 32b and 33b.
  • the plurality of loop filters 32 and 33 are provided with differentiators 320a and 330a, respectively. Connected to the differentiators 320a and 330a are first paths 320d and 330d connected to the first input sections 32a and 33a and second paths 320e and 330e connected to the second input sections 32b and 33b, respectively. Has been.
  • the differentiators 320a and 330a obtain differences U 1 -V and U 2 -V between the input signals U 1 and U 2 and the feedback signal V from the quantizer 35, respectively.
  • Differences U 1 ⁇ V and U 2 ⁇ V obtained by the differentiators 320a and 330a are input to internal filters 320b and 330b provided in the loop filters 32 and 33, respectively.
  • the transfer function of the internal filter 320b of the first loop filter 32 is expressed as L 1 (z)
  • the transfer function of the internal filter 330b of the second loop filter 33 is expressed as L 2 (z).
  • the outputs L 1 (z) (U 1 (z) ⁇ V (z)) and L 2 (z) (U 2 (z) ⁇ V (z)) of the internal filters 320b and 330b are respectively connected to the loop filters 32, 33 is provided to the adders 320 c and 330 c provided in 33.
  • Feed forward paths 320f and 330f for inputting the input signals U 1 and U 2 input to the first input units 32a and 33a to the adders 320c and 330c are connected to the adders 320c and 330c, respectively.
  • each adder 320c, 330c receives the input signals U 1 , U 2 and the outputs L 1 (z) (U 1 (z) ⁇ V (z)), L 2 (z) ( U 2 (z) ⁇ V (z)) is added.
  • the outputs of the adders 320c and 330c (outputs of the loop filters 32 and 33) Y 1 and Y 2 are added by the adder 34.
  • the output Y of the adder 34 is given to the quantizer 35.
  • the quantizer 35 of the present embodiment is a two-level quantizer and outputs a 1-bit pulse train as a quantized signal ( ⁇ modulation signal) V. This quantized signal V becomes an output signal of the ⁇ modulator 30.
  • the output signal V is given to the loop filters 32 and 33 via the feedback paths 36a and 36b.
  • Equation 9 STF i (z) is the i-th signal transfer function for the i-th input signal U i (z), and NTF (z) is the noise transfer function for the entire ⁇ modulator 30.
  • E (z) is a noise transfer function.
  • the internal filter 320b of the first loop filter 32 has a transfer function L 1 (z) expressed using the first noise transfer function NTF 1 (z).
  • the first noise transfer function NTF 1 (z) has a characteristic (band stop characteristic) for suppressing quantization noise in a band near the frequency f 1 of the first signal input to the first loop filter 32.
  • the internal filter 330b of the second loop filter 33 has a transfer function L 2 (z) indicated by using the second noise transfer function NTF 2 (z).
  • the second noise transfer function NTF 2 (z) has a characteristic (band stop characteristic) for suppressing quantization noise in a band near the frequency f 2 of the second signal input to the second loop filter 33.
  • the ⁇ modulator 30 configured as described above simultaneously converts the first signal input to the first input port 31a and the second signal input to the second input port 31b into one single output signal. It can be included and output in a pulse signal of V (z). That is, the ⁇ modulator 30 can generate a pulse signal having a frequency spectrum shown in FIG.
  • the embodiment disclosed this time should be considered as illustrative in all points and not restrictive.
  • the detected apparatus 2 includes one antenna 10 and transmits both the first signal and the second signal from the antenna 10
  • the first signal may be transmitted from one antenna and the second signal may be transmitted from the other antenna.
  • the to-be-detected apparatus 2 outputs the pulse signal pattern memorize
  • the second pulse signal) is output as an example, but the detected device 2 is a pulse signal including either the first signal or the second signal, or a pulse signal including both the first signal and the second signal.

Abstract

This distance measurement system comprises a detected device 2 and a distance measurement device for calculating the distance to the detected device 2. The detected device 2 is provided with a transmission unit 6 which synchronizes the phases of and wirelessly transmits a first signal of frequency f1 and a second signal of frequency f2 different from that of the first signal. The distance measurement device is provided with a receiving unit which receives the first signal and the second signal, and a calculation unit which calculates the distance from the distance measurement device to the detected device 2 on the basis of the phase difference between the received first signal and second signal.

Description

距離測定システム、距離測定装置、被測定装置、及び、位置検出システムDistance measurement system, distance measurement device, device under measurement, and position detection system
 本発明は、無線波を用いた距離測定システム、距離測定装置、被測定装置、及び、位置検出システムに関する。 The present invention relates to a distance measurement system, a distance measurement device, a device under measurement, and a position detection system using radio waves.
 所定の測定対象までの距離を測定するために、レーザ光等の光や電磁波を利用した測距センサが用いられることがある。このような測距センサは、測定対象に光や電磁波を投光し、その反射光を受光することで、反射光を受光するまでの時間から距離を求めるものや、投光した光と反射光との間の位相差に基づいて距離を求めるものがある(例えば、特許文献1参照)。 In order to measure the distance to a predetermined measurement object, a distance measuring sensor using light such as laser light or electromagnetic waves may be used. Such a distance measuring sensor projects light or electromagnetic waves on a measurement object and receives the reflected light, thereby obtaining a distance from the time until the reflected light is received, or the projected light and reflected light. There is one that obtains the distance based on the phase difference between the two (see, for example, Patent Document 1).
特開平10-206544号公報JP-A-10-206544
 上記測距センサでは、測定対象に対して投光し、かつその反射光を受光する必要があるため、例えば、測定対象との間に障害物がある場合や、測定対象が移動体である場合には、精度よく測定することができない。 In the above distance measuring sensor, since it is necessary to project light to the measurement target and receive the reflected light, for example, when there is an obstacle between the measurement target and the measurement target is a moving object Therefore, it is impossible to measure accurately.
 本発明はこのような事情に鑑みてなされたものであり、測定対象までの距離を精度よく測定することができる技術を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a technique capable of accurately measuring the distance to a measurement object.
 一実施形態である距離測定システムは、被測定装置と、前記被測定装置までの距離を求める距離測定装置と、を備えた距離測定システムであって、前記被測定装置は、所定周波数の第1信号と、前記第1信号と異なる周波数の第2信号とを、位相同期させて無線送信する送信部を備え、前記距離測定装置は、前記第1信号及び前記第2信号を受信する受信部と、受信した前記第1信号と、前記第2信号との位相差に基づいて前記距離測定装置から前記被測定装置までの距離を求める演算部と、を備えている。 A distance measurement system according to an embodiment is a distance measurement system including a device under measurement and a distance measurement device that obtains a distance to the device under measurement, wherein the device under measurement has a first frequency of a predetermined frequency. A transmission unit that wirelessly transmits a signal and a second signal having a frequency different from that of the first signal in phase synchronization, and the distance measuring device includes a reception unit that receives the first signal and the second signal; A calculation unit that obtains a distance from the distance measuring device to the device under measurement based on a phase difference between the received first signal and the second signal.
 また、一実施形態である距離測定装置は、被測定装置までの距離を求める距離測定装置であって、無線送信された所定周波数の第1信号と、前記第1信号と異なる周波数であって位相が同期した第2信号とを受信する受信部と、受信した前記第1信号と、前記第2信号との位相差に基づいて自装置から前記被測定装置までの距離を求める演算部と、を備えている。 A distance measuring device according to an embodiment is a distance measuring device that determines a distance to a device under measurement, and is a wirelessly transmitted first signal having a predetermined frequency and a frequency different from the first signal and having a phase. A receiving unit that receives the second signal synchronized with each other, and a calculation unit that obtains a distance from the device to the device to be measured based on a phase difference between the received first signal and the second signal. I have.
 一実施形態である被測定装置は、距離測定装置に当該距離測定装置までの距離を求めさせる被測定装置であって、互いの位相差に基づいて前記距離測定装置から前記被測定装置までの距離を求めるための所定周波数の第1信号と、前記第1信号と異なる周波数の第2信号とを、位相同期させて無線送信する送信部を備えている。 An apparatus to be measured according to an embodiment is a device to be measured that causes a distance measurement device to obtain a distance to the distance measurement device, and is a distance from the distance measurement device to the device to be measured based on a mutual phase difference. A transmitter that wirelessly transmits a first signal having a predetermined frequency for obtaining the second signal and a second signal having a frequency different from the first signal in phase synchronization.
 また、一実施形態である位置検出システムは、被検出装置と、前記被検出装置の位置を検出する位置検出装置と、を備えた位置検出システムであって、前記被検出装置は、所定周波数の第1信号と、前記第1信号と異なる周波数の第2信号とを、位相同期させて無線送信する送信部を備え、前記位置検出装置は、複数の距離測定部と、前記複数の距離測定部それぞれが求めた前記複数の距離測定部から前記被検出装置までの距離に基づいて前記被検出装置の位置を検出する検出部とを備え、前記複数の距離測定部は、それぞれ、前記第1信号及び前記第2信号を受信する受信部と、受信した前記第1信号と、前記第2信号との位相差に基づいて各距離測定部から前記被検出装置までの距離を求める演算部と、を備えている。 A position detection system according to an embodiment is a position detection system including a detected device and a position detecting device that detects a position of the detected device, and the detected device has a predetermined frequency. A transmission unit configured to wirelessly transmit a first signal and a second signal having a frequency different from that of the first signal in a phase-synchronized manner; the position detection device includes: a plurality of distance measurement units; and the plurality of distance measurement units A detection unit that detects the position of the device to be detected based on the distances from the plurality of distance measurement units to the detected device, respectively, and each of the plurality of distance measurement units has the first signal. And a reception unit that receives the second signal, and a calculation unit that obtains a distance from each distance measurement unit to the detected device based on a phase difference between the received first signal and the second signal. I have.
 本発明によれば、測定対象までの距離を精度よく測定することができるとともに、測定対象の位置を精度よく検出することができる。 According to the present invention, the distance to the measurement object can be measured with high accuracy, and the position of the measurement object can be detected with high accuracy.
第1実施形態に係る位置検出システムの全体構成を示す図である。1 is a diagram illustrating an overall configuration of a position detection system according to a first embodiment. 被検出装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of a to-be-detected apparatus. 第1パルス信号及び第2パルス信号を生成する際の態様を示す図である。It is a figure which shows the aspect at the time of producing | generating a 1st pulse signal and a 2nd pulse signal. 第1パルス信号の周波数スペクトラムの一部を示す図である。It is a figure which shows a part of frequency spectrum of a 1st pulse signal. 距離測定部の構成を示すブロック図である。It is a block diagram which shows the structure of a distance measurement part. 変形例に係る被検出装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the to-be-detected apparatus which concerns on a modification. 第2実施形態に係る位置検出システムが備える被検出装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the to-be-detected apparatus with which the position detection system which concerns on 2nd Embodiment is provided. パルス信号の周波数スペクトラムの一部を示す図である。It is a figure which shows a part of frequency spectrum of a pulse signal. 第2実施形態においてパルス信号を生成するのに用いられる2入力ΔΣ変調器を示す図である。It is a figure which shows the 2 input delta-sigma modulator used in order to produce | generate a pulse signal in 2nd Embodiment.
[本願発明の実施形態の説明]
 距離測定の測定対象が移動体の場合、当該測定対象に既知の無線信号を送信させれば、上記従来例のように測定対象に投光しかつ反射光を受光せずとも、測定対象からの無線信号を受信し、この無線信号の位相に基づいて精度よく距離を求めることができる可能性がある。
[Description of Embodiment of Present Invention]
When the measurement target of the distance measurement is a mobile object, if a known wireless signal is transmitted to the measurement target, the light from the measurement target can be transmitted without projecting light and receiving reflected light as in the conventional example. There is a possibility that a wireless signal is received and the distance can be obtained with high accuracy based on the phase of the wireless signal.
 ここで、測定対象に既知の無線信号を送信させる場合、無線信号を送信する測定対象側(送信側)と、受信側との間で、時刻同期していることが必要となる。距離を求めるための基準となる、測定対象から送信されたときの無線信号の位相を特定する必要があるからである。 Here, when a known radio signal is transmitted to the measurement target, it is necessary that time is synchronized between the measurement target side (transmission side) that transmits the radio signal and the reception side. This is because it is necessary to specify the phase of the radio signal when transmitted from the measurement object, which is a reference for obtaining the distance.
 しかし、送信側と受信側との間で時刻同期を行う場合、送信側及び受信側の双方に時刻に関する情報の授受を行うための機能が必要となり、構成が複雑になる。 However, when time synchronization is performed between the transmission side and the reception side, a function for exchanging time information is required on both the transmission side and the reception side, and the configuration becomes complicated.
 また、測定対象側が送信する無線信号の電力は伝搬距離と相関があるため、受信した無線信号の受信電力に基づいて距離に関する情報を得ることができる。この場合、送信側と受信側との間で時刻同期を行うことなく距離に関する情報を得ることができるが、受信電力は距離以外の要因によって影響を受けやすく、位相に基づく距離測定と比較して測定精度が低くなる。 Also, since the power of the radio signal transmitted from the measurement target side has a correlation with the propagation distance, information on the distance can be obtained based on the received power of the received radio signal. In this case, information about the distance can be obtained without performing time synchronization between the transmitting side and the receiving side, but the received power is easily influenced by factors other than the distance, and compared with the distance measurement based on the phase. Measurement accuracy is lowered.
 このため、送信側と受信側との間で非同期であっても無線信号を用いて精度よく距離を測定できる方法が望まれる。 For this reason, there is a demand for a method that can accurately measure the distance using a radio signal even when the transmission side and the reception side are asynchronous.
 まず最初に本願発明の実施形態の内容を列記して説明する。
(1)一実施形態に係る距離測定システムは、被測定装置と、前記被測定装置までの距離を求める距離測定装置と、を備えた距離測定システムであって、前記被測定装置は、所定周波数の第1信号と、前記第1信号と異なる周波数の第2信号とを、位相同期させて無線送信する送信部を備え、前記距離測定装置は、前記第1信号及び前記第2信号を受信する受信部と、受信した前記第1信号と、前記第2信号との位相差に基づいて前記距離測定装置から前記被測定装置までの距離を求める演算部と、を備えている。
First, the contents of the embodiments of the present invention will be listed and described.
(1) A distance measurement system according to an embodiment is a distance measurement system including a device under measurement and a distance measurement device for obtaining a distance to the device under measurement, wherein the device under measurement has a predetermined frequency. And a transmitter that wirelessly transmits a first signal of a frequency different from that of the first signal in phase synchronization, and the distance measuring device receives the first signal and the second signal. A receiving unit; and a calculation unit that obtains a distance from the distance measuring device to the device under measurement based on a phase difference between the received first signal and the second signal.
 上記のように構成された距離測定システムによれば、被測定装置において互いに位相同期した状態で送信された第1信号と第2信号とを受信し、その位相差を求めることで距離測定装置から被測定装置までの距離を求めるので、測定対象である被測定装置との間に障害物がある場合や、被測定装置が移動している場合であっても、精度よく距離を測定することができる。
 また、第1信号と第2信号との位相差に基づいて距離を求めるので、被測定装置と距離測定装置との間で時刻同期している必要がなく、簡易な構成で精度よく距離を求めることができる。
According to the distance measuring system configured as described above, the first signal and the second signal transmitted in phase synchronization with each other in the device under test are received, and the phase difference is obtained from the distance measuring device. Since the distance to the device under test is determined, the distance can be measured accurately even when there is an obstacle between the device under measurement and the device under test moving. it can.
Further, since the distance is obtained based on the phase difference between the first signal and the second signal, it is not necessary to synchronize the time between the device under measurement and the distance measuring device, and the distance can be obtained with a simple configuration with high accuracy. be able to.
(2)上記距離測定システムにおいて、前記被測定装置の送信部は、前記第1信号を含んだ第1デジタル信号、及び前記第2信号を含んだ第2デジタル信号を出力するための信号パターンを記憶したメモリ部と、前記メモリ部から前記信号パターンに基づいた前記第1デジタル信号及び前記第2デジタル信号を取得し、前記第1デジタル信号に含まれる前記第1信号と前記第2デジタル信号に含まれる前記第2信号とを位相同期させて無線送信させる制御部と、を備えていることが好ましい。
 この場合、第1デジタル信号及び第2デジタル信号をメモリ部から出力させて第1信号及び第2信号を無線送信するので、第1信号と第2信号との間の位相を同期させて送信することが容易となる。
(2) In the distance measurement system, the transmission unit of the device under measurement has a signal pattern for outputting a first digital signal including the first signal and a second digital signal including the second signal. The stored memory unit, and the first digital signal and the second digital signal based on the signal pattern are acquired from the memory unit, and the first signal and the second digital signal included in the first digital signal are obtained. It is preferable to include a control unit that wirelessly transmits the second signal included in a phase-synchronized manner.
In this case, since the first digital signal and the second digital signal are output from the memory unit and the first signal and the second signal are wirelessly transmitted, the phase between the first signal and the second signal is transmitted in synchronization. It becomes easy.
(3)上記距離測定システムにおいて、前記第1デジタル信号及び前記第2デジタル信号は、前記第1信号及び前記第2信号をΔΣ変調することで得られるパルス信号であることが好ましい。 (3) In the distance measurement system, it is preferable that the first digital signal and the second digital signal are pulse signals obtained by performing ΔΣ modulation on the first signal and the second signal.
(4)前記メモリ部は、前記信号パターンとして、前記第1信号及び前記第2信号の両方を含むパルス信号を出力するための一つの信号パターンを記憶しているものであってもよい。
 この場合、第1信号及び第2信号は、一の変調信号に含められて出力されるので、第1信号と第2信号との間の位相を確実に同期させることができる。
(5)また、前記メモリ部は、前記信号パターンとして、前記第1信号を含んだパルス信号を出力するための第1信号パターン、及び前記第2信号を含んだパルス信号を出力するための第2信号パターンを記憶していてもよい。
 この場合、第1信号パターンと第2信号パターンとの組み合わせを変更するのが容易となり、測定距離等に応じて、第1信号及び第2信号の組み合わせを容易に変更することができる。
(4) The memory unit may store one signal pattern for outputting a pulse signal including both the first signal and the second signal as the signal pattern.
In this case, since the first signal and the second signal are included in one modulation signal and output, the phase between the first signal and the second signal can be reliably synchronized.
(5) In addition, the memory unit outputs a first signal pattern for outputting a pulse signal including the first signal and a pulse signal including the second signal as the signal pattern. Two signal patterns may be stored.
In this case, it becomes easy to change the combination of the first signal pattern and the second signal pattern, and the combination of the first signal and the second signal can be easily changed according to the measurement distance or the like.
(6)また、前記第1信号の周波数と、前記第2信号の周波数とは、前記第1信号と前記第2信号とが単一のアンテナで送受信可能な値に設定されていることが好ましい。
 この場合、単一のアンテナで第1信号及び第2信号を送受信できるので、構成を簡易にすることができる。
 さらに、第1信号の周波数と第2信号の周波数とが、比較的狭い帯域内に含まれるので、周波数の相違に起因する両親号の伝送路特性に対する影響を抑制でき、より精度よく距離を求めることができる。
(6) Moreover, it is preferable that the frequency of the first signal and the frequency of the second signal are set to values at which the first signal and the second signal can be transmitted and received by a single antenna. .
In this case, since the first signal and the second signal can be transmitted and received with a single antenna, the configuration can be simplified.
Further, since the frequency of the first signal and the frequency of the second signal are included in a relatively narrow band, it is possible to suppress the influence on the transmission path characteristics of the parent's name due to the difference in frequency, and to obtain the distance more accurately. be able to.
(7)また、一実施形態に係る距離測定装置は、被測定装置までの距離を求める距離測定装置であって、無線送信された所定周波数の第1信号と、前記第1信号と異なる周波数であって位相が同期した第2信号とを受信する受信部と、受信した前記第1信号と、前記第2信号との位相差に基づいて自装置から前記被測定装置までの距離を求める演算部と、を備えている。 (7) A distance measuring device according to an embodiment is a distance measuring device that calculates a distance to a device under measurement, and is transmitted by a wirelessly transmitted first signal having a predetermined frequency and a frequency different from the first signal. A receiving unit that receives a second signal that is synchronized in phase, and a calculation unit that obtains a distance from the device itself to the device under test based on a phase difference between the received first signal and the second signal. And.
(8)一実施形態に係る被測定装置は、距離測定装置に当該距離測定装置までの距離を求めさせる被測定装置であって、互いの位相差に基づいて前記距離測定装置から前記被測定装置までの距離を求めるための所定周波数の第1信号と、前記第1信号と異なる周波数の第2信号とを、位相同期させて無線送信する送信部を備えている。 (8) A device under measurement according to an embodiment is a device under measurement that causes a distance measurement device to obtain a distance to the distance measurement device, and is based on the phase difference between the distance measurement device and the device under measurement. A transmission unit that wirelessly transmits a first signal having a predetermined frequency for obtaining the distance to the second signal and a second signal having a frequency different from that of the first signal in phase synchronization.
 上記構成の距離測定装置及び被測定装置によれば、距離測定装置から被測定装置までの距離を精度よく求めることができる。 According to the distance measuring device and the device under measurement configured as described above, the distance from the distance measuring device to the device under measurement can be obtained with high accuracy.
(9)上記被測定装置において、前記被測定装置の送信部は、前記第1信号を含んだ第1デジタル信号、及び前記第2信号を含んだ第2デジタル信号を出力するための信号パターンを記憶したメモリ部と、前記メモリ部から前記信号パターンに基づいた前記第1デジタル信号及び前記第2デジタル信号を取得し、前記第1デジタル信号に含まれる前記第1信号と前記第2デジタル信号に含まれる前記第2信号とを位相同期させて無線送信させる制御部と、を備えていることが好ましい。 (9) In the device under measurement, the transmission unit of the device under measurement has a signal pattern for outputting a first digital signal including the first signal and a second digital signal including the second signal. The stored memory unit, and the first digital signal and the second digital signal based on the signal pattern are acquired from the memory unit, and the first signal and the second digital signal included in the first digital signal are obtained. It is preferable to include a control unit that wirelessly transmits the second signal included in a phase-synchronized manner.
(10)一実施形態に係る位置検出システムは、被検出装置と、前記被検出装置の位置を検出する位置検出装置と、を備えた位置検出システムであって、前記被検出装置は、所定周波数の第1信号と、前記第1信号と異なる周波数の第2信号とを、相互に位相を同期させて無線送信する送信部を備え、前記位置検出装置は、複数の距離測定部と、前記複数の距離測定部それぞれが求めた前記複数の距離測定部から前記被検出装置までの距離に基づいて前記被検出装置の位置を検出する検出部とを備え、前記複数の距離測定部は、それぞれ、前記第1信号及び前記第2信号を受信する受信部と、受信した前記第1信号と、前記第2信号との位相差を求め、これら位相差に基づいて各距離測定部から前記被検出装置までの距離を求める演算部と、を備えている。 (10) A position detection system according to an embodiment is a position detection system including a detected device and a position detecting device that detects a position of the detected device, and the detected device has a predetermined frequency. The first signal and a second signal having a frequency different from that of the first signal are wirelessly transmitted with their phases synchronized with each other, and the position detection device includes a plurality of distance measurement units, Each of the plurality of distance measurement units, and a detection unit that detects the position of the detected device based on the distance from the plurality of distance measurement units to the detected device, each of the plurality of distance measurement units, A receiving unit that receives the first signal and the second signal, a phase difference between the received first signal and the second signal, and a detected device from each distance measuring unit based on these phase differences An arithmetic unit for calculating the distance to It is provided.
 上記構成の位置検出システムによれば、距離測定部から被検出装置までの距離を精度よく求めることができるので、被測定装置の位置を精度よく検出することができる。 According to the position detection system having the above configuration, the distance from the distance measuring unit to the detected device can be obtained with high accuracy, and therefore the position of the measured device can be detected with high accuracy.
[本願発明の実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
 なお、以下に記載する各実施形態の少なくとも一部を任意に組み合わせてもよい。
〔1 第1実施形態について〕
 図1は、第1実施形態に係る位置検出システムの全体構成を示す図である。
 位置検出システム1は、被検出装置2と、被検出装置2の位置を検出する位置検出装置3とを備えている。
[Details of the embodiment of the present invention]
Hereinafter, preferred embodiments will be described with reference to the drawings.
Note that at least a part of each embodiment described below may be arbitrarily combined.
[1 About the first embodiment]
FIG. 1 is a diagram illustrating an overall configuration of a position detection system according to the first embodiment.
The position detection system 1 includes a detected device 2 and a position detecting device 3 that detects the position of the detected device 2.
 被検出装置2は、所定周波数である周波数fの第1信号と、周波数fと異なる周波数fの第2信号とを、相互に位相同期させて無線送信する機能を有している。
 位置検出装置3は、被検出装置2が送信する第1信号及び第2信号を受信して被検出装置2までの距離を求める距離測定部4と、距離測定部4が求めた被検出装置2までの距離に基づいて被検出装置2の位置を検出する検出部5とを備えている。
The detection device 2 includes a first signal frequency f 1 is a predetermined frequency and a second signal frequency f 1 and a different frequency f 2, the function of wirelessly transmitted to each other by phase-synchronized.
The position detecting device 3 receives the first signal and the second signal transmitted from the detected device 2 and obtains the distance to the detected device 2, and the detected device 2 obtained by the distance measuring unit 4. And a detection unit 5 that detects the position of the detected device 2 based on the distance up to.
 位置検出装置3は、距離測定部4を複数(図例では3つ)備えている。各距離測定部4は、それぞれが被検出装置2からの第1信号及び第2信号を受信して被検出装置2までの距離を求める機能を有している。 The position detection device 3 includes a plurality of distance measuring units 4 (three in the illustrated example). Each distance measuring unit 4 has a function of receiving the first signal and the second signal from the detected device 2 and obtaining the distance to the detected device 2.
 図2は、被検出装置2の要部構成を示すブロック図である。
 図に示すように、被検出装置2は、第1信号と、第2信号とを送信するための送信部6を備えている。
 送信部6は、信号出力部7と、信号出力部7が出力する信号が与えられる第1バンドパスフィルタ(第1BPF)8と、同じく信号出力部7が出力する信号が与えられる第2バンドパスフィルタ(第2BPF)9と、アンテナ10とを備えている。
FIG. 2 is a block diagram illustrating a configuration of a main part of the detected device 2.
As shown in the figure, the device to be detected 2 includes a transmission unit 6 for transmitting the first signal and the second signal.
The transmission unit 6 includes a signal output unit 7, a first band pass filter (first BPF) 8 to which a signal output from the signal output unit 7 is provided, and a second band pass to which a signal output from the signal output unit 7 is provided. A filter (second BPF) 9 and an antenna 10 are provided.
 信号出力部7は、制御部11と、メモリ部12とを備えている。
 メモリ部12は、その記憶領域に各種データを記憶する機能を有している。メモリ部12は、第1パルス信号パターン13と、第2パルス信号パターン14とを記憶している。
 第1パルス信号パターン13は、予め生成された第1パルス信号をパターンとしてメモリ部12に記憶させたものである。よって、メモリ部12は、第1パルス信号パターン13に従って信号を出力すれば、第1パルス信号を出力することができる。
 同様に、第2パルス信号パターン14も、予め生成された第2パルス信号をパターンとしてメモリ部12に記憶させたものであり、メモリ部12は、第2パルス信号パターン14に従って信号を出力すれば、第2パルス信号を出力することができる。
The signal output unit 7 includes a control unit 11 and a memory unit 12.
The memory unit 12 has a function of storing various data in the storage area. The memory unit 12 stores a first pulse signal pattern 13 and a second pulse signal pattern 14.
The first pulse signal pattern 13 is a pattern in which the first pulse signal generated in advance is stored in the memory unit 12 as a pattern. Therefore, if the memory unit 12 outputs a signal according to the first pulse signal pattern 13, the memory unit 12 can output the first pulse signal.
Similarly, the second pulse signal pattern 14 is a pattern in which a second pulse signal generated in advance is stored in the memory unit 12 as a pattern. The memory unit 12 outputs a signal according to the second pulse signal pattern 14. The second pulse signal can be output.
 第1パルス信号(第1デジタル信号)は、第1信号をΔΣ変調することによって得られたデジタル変調信号であり、主信号成分として第1信号を含んでいる。
 また、第2パルス信号(第2デジタル信号)は、第2信号をΔΣ変調することによって得られたデジタル変調信号であり、主信号成分として第2信号を含んでいる。
The first pulse signal (first digital signal) is a digital modulation signal obtained by subjecting the first signal to ΔΣ modulation, and includes the first signal as a main signal component.
The second pulse signal (second digital signal) is a digital modulation signal obtained by subjecting the second signal to ΔΣ modulation, and includes the second signal as a main signal component.
 図3は、第1パルス信号及び第2パルス信号が生成される際の態様を示す図である。
 図に示すように、第1パルス信号(第2パルス信号)は、バンドパス型ΔΣ変調器(DSM:Band Pass Delta-Sigma Modulator)15に第1信号(第2信号)を与えることによって予め生成される。
 ΔΣ変調器15は、与えられる第1信号(第2信号)に対してΔΣ変調を行い、量子化信号である第1パルス信号(第2パルス信号)を出力する。ΔΣ変調器15のサンプリング周波数fは、ΔΣ変調器15に与えられる第1信号の周波数f(第2信号の周波数f)よりも大きく設定される(f(f)<f)。
FIG. 3 is a diagram illustrating an aspect when the first pulse signal and the second pulse signal are generated.
As shown in the figure, the first pulse signal (second pulse signal) is generated in advance by applying a first signal (second signal) to a bandpass delta-sigma modulator (DSM: Band Pass Delta-Sigma Modulator) 15. Is done.
The ΔΣ modulator 15 performs ΔΣ modulation on the given first signal (second signal), and outputs a first pulse signal (second pulse signal) that is a quantized signal. The sampling frequency f S of the ΔΣ modulator 15 is set to be larger than the frequency f 1 of the first signal (frequency f 2 of the second signal) given to the ΔΣ modulator 15 (f 1 (f 2 ) <f S ).
 図4は、第1パルス信号の周波数スペクトラムの一部を示す図である。
 図に示すように、第1パルス信号は、周波数fの第1信号を主信号成分として含んでいる。また、第1パルス信号は、周波数f近傍の帯域以外の他の帯域において、ΔΣ変調によって生じた量子化雑音成分を含んでいる。
 なお、第2パルス信号の周波数スペクトラムも、周波数fの第2信号を主信号成分として含み、周波数f近傍の帯域以外の他の帯域に、ΔΣ変調によって生じた量子化雑音成分を含んでおり、図4とほぼ同様である。
FIG. 4 is a diagram illustrating a part of the frequency spectrum of the first pulse signal.
As shown in the figure, the first pulse signal includes the first signal having the frequency f 1 as the main signal component. Further, the first pulse signal includes a quantization noise component generated by ΔΣ modulation in a band other than the band near the frequency f 1 .
The frequency spectrum of the second pulse signal is also includes a second signal of frequency f 2 as the main signal component, in addition to the band other than the band of the frequency f 2 vicinity, including quantization noise component generated by the ΔΣ modulation This is almost the same as FIG.
 図2に戻って、メモリ部12は、上述のように第1信号及び第2信号をΔΣ変調することで生成された第1パルス信号及び第2パルス信号を、第1パルス信号及び第2パルス信号として出力するためのパターンとして記憶している。
 メモリ部12は、制御部11の制御に応じて、第1パルス信号パターン13及び第2パルス信号パターン14に従って信号を出力することで、第1パルス信号及び第2パルス信号を出力する。
 このように、被検出装置2の送信部6における信号出力部7は、第1信号を含む第1パルス信号を出力することで、第1信号をデジタル信号として出力する。また、信号出力部7は、第2信号を含む第2パルス信号を出力することで、第2信号をデジタル信号として出力する。
Returning to FIG. 2, the memory unit 12 converts the first pulse signal and the second pulse signal into the first pulse signal and the second pulse signal generated by performing ΔΣ modulation on the first signal and the second signal as described above. It is stored as a pattern for outputting as a signal.
The memory unit 12 outputs a first pulse signal and a second pulse signal by outputting a signal according to the first pulse signal pattern 13 and the second pulse signal pattern 14 according to the control of the control unit 11.
Thus, the signal output unit 7 in the transmission unit 6 of the device to be detected 2 outputs the first pulse signal including the first signal, thereby outputting the first signal as a digital signal. The signal output unit 7 outputs the second signal as a digital signal by outputting a second pulse signal including the second signal.
 メモリ部12は、出力した第1パルス信号を第1BPF8に与え、第2パルス信号を第2BPF9に与える。
 第1BPF8は、アナログのバンドパスフィルタであり、メモリ部12から与えられるデジタル信号である第1パルス信号に含まれる信号成分の内、第1信号を含む周波数f近傍の信号成分をアナログ信号として通過させ、その他の帯域の量子化雑音成分の通過を阻止するよう構成されている。
 第1BPF8の後段には、アンテナ10が接続されている。第1BPF8は、当該第1BPF8を通過するアナログ信号である通過信号をアンテナ10に与える。
 よって、第1BPF8は、メモリ部12から第1パルス信号が与えられると、周波数f近傍の信号成分を通過信号として通過させ、この通過信号に含まれる第1信号をアンテナ10に与える。
The memory unit 12 gives the output first pulse signal to the first BPF 8 and gives the second pulse signal to the second BPF 9.
The 1BPF8 is a band-pass filter of the analog, among signal components included in the first pulse signal is a digital signal provided from the memory unit 12, the frequency f 1 of input signal components including a first signal as an analog signal It is configured to pass and block the passage of quantization noise components in other bands.
The antenna 10 is connected to the subsequent stage of the first BPF 8. The first BPF 8 gives a passing signal that is an analog signal passing through the first BPF 8 to the antenna 10.
Therefore, when the first pulse signal is given from the memory unit 12, the first BPF 8 passes the signal component near the frequency f 1 as a passing signal, and gives the first signal included in the passing signal to the antenna 10.
 第2BPF9も、第1BPF8と同様、アナログのバンドパスフィルタであり、メモリ部12から与えられるデジタル信号である第2パルス信号に含まれる信号成分の内、第2信号を含む周波数f近傍の信号成分をアナログ信号として通過させ、その他の帯域の量子化雑音成分の通過を阻止するよう構成されている。
 第2BPF9の後段には、アンテナ10が接続されている。第2BPF9は、当該第2BPF9を通過するアナログ信号である通過信号をアンテナ10に与える。
 よって、第2BPF9は、メモリ部12から第2パルス信号が与えられると、周波数f近傍の信号成分を通過信号として通過させ、この通過信号に含まれる第2信号をアンテナ10に与える。
Similarly to the first BPF 8, the second BPF 9 is an analog band-pass filter, and among the signal components included in the second pulse signal that is a digital signal supplied from the memory unit 12, a signal in the vicinity of the frequency f 2 including the second signal. The components are passed as analog signals, and the quantization noise components in other bands are blocked from passing.
An antenna 10 is connected to the subsequent stage of the second BPF 9. The second BPF 9 gives the antenna 10 a passing signal that is an analog signal passing through the second BPF 9.
Therefore, the 2BPF9, when the second pulse signal from the memory unit 12 is supplied, passed through a frequency f 2 near the signal component as a passing signal, providing a second signal included in the passing signal to the antenna 10.
 アンテナ10は、第1BPF8及び第2BPF9から与えられた第1信号及び第2信号を空間に放射する。
 このように、送信部6は、第1信号及び第2信号をアンテナ10から無線送信することができる。
 なお、第1信号の周波数fと、第2信号の周波数fとは、第1信号と第2信号とが単一のアンテナで送受信可能な値に設定されている。また、アンテナ10においても、第1信号の周波数fと、第2信号の周波数fとに応じて、第1信号及び第2信号を共に放射することができるように設定されている。
The antenna 10 radiates the first signal and the second signal given from the first BPF 8 and the second BPF 9 to space.
As described above, the transmission unit 6 can wirelessly transmit the first signal and the second signal from the antenna 10.
Note that the frequency f 1 of the first signal and the frequency f 2 of the second signal are set to values at which the first signal and the second signal can be transmitted and received by a single antenna. Also in the antenna 10, the frequency f 1 of the first signal, in accordance with the frequency f 2 of the second signal are set so as to be able to both emit a first signal and a second signal.
 制御部11は、メモリ部12を制御し、当該メモリ部12に第1パルス信号及び第2パルス信号を出力させる機能を有している。
 制御部11は、メモリ部12が第1パルス信号と第2パルス信号とを同時に出力するように制御する。通常、メモリでは番地(アクセス可能な単位)ごとに、8~32ビットを一単位としてデータが記憶されている。この構造を利用して、例えば1番地の一単位の中に第1パルス信号パターン13及び第2パルス信号パターン14を記憶しておき、制御部11がメモリ部12の1番地からデータを読み出せば、1番地の一単位に含まれている両パターン13、14をほぼ同時に読み出すことができ、第1パルス信号及び第2パルス信号を同期して出力させる事ができる。
The control unit 11 has a function of controlling the memory unit 12 and causing the memory unit 12 to output the first pulse signal and the second pulse signal.
The control unit 11 controls the memory unit 12 to output the first pulse signal and the second pulse signal simultaneously. Usually, in the memory, data is stored in units of 8 to 32 bits for each address (accessible unit). Using this structure, for example, the first pulse signal pattern 13 and the second pulse signal pattern 14 are stored in one unit of address 1, and the control unit 11 can read data from the address 1 of the memory unit 12. For example, both patterns 13 and 14 included in one unit of address 1 can be read out almost simultaneously, and the first pulse signal and the second pulse signal can be output in synchronization.
 これにより、メモリ部12は、第1パルス信号に含まれる第1信号と、第2パルス信号に含まれる第2信号との間の位相の関係を常に同じ状態で出力することができる。
 これにより送信部6は、第1信号の位相と、第2信号の位相とが互いに同位相となるように位相同期させて無線送信するように構成されている。
 つまり、送信部6の制御部11は、メモリ部12から第1パルス信号及び第2パルス信号を取得し、第1パルス信号及び第2パルス信号に含まれる第1信号及び第2信号を位相同期させて無線送信させる。
Thereby, the memory unit 12 can always output the phase relationship between the first signal included in the first pulse signal and the second signal included in the second pulse signal in the same state.
Thereby, the transmission unit 6 is configured to wirelessly transmit the phase-synchronized phase so that the phase of the first signal and the phase of the second signal are the same.
That is, the control unit 11 of the transmission unit 6 acquires the first pulse signal and the second pulse signal from the memory unit 12, and phase-synchronizes the first signal and the second signal included in the first pulse signal and the second pulse signal. Wireless transmission.
 図5は、距離測定部4の構成を示すブロック図である。なお、図例では、一の距離測定部4を示しているが、他の距離測定部4も同様の構成である。
 距離測定部4は、アンテナ16を介して被検出装置2から送信される第1信号及び第2信号を含む受信信号を受信する受信部17と、受信した第1信号及び第2信号に基づいて被検出装置2までの距離を求める演算部18とを備えている。
FIG. 5 is a block diagram showing a configuration of the distance measuring unit 4. In the illustrated example, one distance measuring unit 4 is shown, but the other distance measuring units 4 have the same configuration.
The distance measurement unit 4 receives a reception signal 17 including a first signal and a second signal transmitted from the detected device 2 via the antenna 16, and based on the received first signal and second signal. And a calculation unit 18 for obtaining a distance to the detected device 2.
 受信部17は、単一のアンテナであるアンテナ16によって第1信号及び第2信号含む受信信号を受信すると、受信信号に対して増幅処理やA/D変換処理等を行う。受信部17は、A/D変換等の処理がなされた受信信号を演算部18に与える。 When the reception unit 17 receives the reception signal including the first signal and the second signal by the antenna 16 that is a single antenna, the reception unit 17 performs amplification processing, A / D conversion processing, and the like on the reception signal. The receiving unit 17 gives the received signal that has undergone processing such as A / D conversion to the computing unit 18.
 演算部18は、受信信号に含まれる第1信号の位相を検出するための第1位相検出部19と、受信信号に含まれる第2信号の位相を検出するための第2位相検出部20とを備えている。
 受信部17からの受信信号は、第1位相検出部19及び第2位相検出部20それぞれに与えられる。
 第1位相検出部19は、受信信号が与えられると、当該受信信号に含まれる第1信号の信号成分から第1信号の位相を検出し出力する機能を有している。
 第2位相検出部20は、受信信号が与えられると、当該受信信号に含まれる第2信号の信号成分から第2信号の位相を検出して出力する機能を有している。
The calculation unit 18 includes a first phase detection unit 19 for detecting the phase of the first signal included in the reception signal, and a second phase detection unit 20 for detecting the phase of the second signal included in the reception signal. It has.
A reception signal from the reception unit 17 is given to each of the first phase detection unit 19 and the second phase detection unit 20.
The first phase detector 19 has a function of detecting and outputting the phase of the first signal from the signal component of the first signal included in the received signal when the received signal is given.
The second phase detector 20 has a function of detecting and outputting the phase of the second signal from the signal component of the second signal included in the received signal when the received signal is given.
 また、演算部18は、第1位相検出部19が出力する第1信号の位相、及び第2位相検出部20が出力する第2信号の位相が与えられ、両位相の位相差を求める加算器21と、加算器21が出力する両位相の位相差に基づいて自装置である距離測定部4から被検出装置2までの距離を求める処理部22とを備えている。 Further, the calculation unit 18 is provided with the phase of the first signal output from the first phase detection unit 19 and the phase of the second signal output from the second phase detection unit 20, and obtains a phase difference between the two phases. 21 and a processing unit 22 that obtains the distance from the distance measuring unit 4 that is the device itself to the detected device 2 based on the phase difference between the two phases output from the adder 21.
 ここで、距離測定部4の演算部18において行われる、距離測定部4から被検出装置2までの距離を求めるための演算について説明する。 Here, the calculation for obtaining the distance from the distance measurement unit 4 to the detected device 2 performed in the calculation unit 18 of the distance measurement unit 4 will be described.
 第1信号が被検出装置2から送信されたときの信号Tx1を下記式(1)のように示すと、第1信号が距離測定部4において受信されたときの信号Rx1は、下記式(2)のように示すことができる。
 Tx1 = Acos(ωt)  ・・・(1)
 Rx1 = Ae-αrcos(ω(t-τ))
     = Ae-αrcos(ωt-ωτ)  ・・・(2)
When the signal Tx1 when the first signal is transmitted from the detected device 2 is expressed by the following formula (1), the signal Rx1 when the first signal is received by the distance measuring unit 4 is expressed by the following formula (2 ).
Tx1 = Acos (ω 1 t) (1)
Rx1 = Ae− αr cos (ω 1 (t−τ))
= Ae −αr cos (ω 1 t−ω 1 τ) (2)
 上記式(1)(2)中、tは時刻、τは第1信号が送信されてから受信されるまでに要する時間、Aは振幅、ωは第1信号の角周波数、rは距離測定部4から被検出装置2までの距離、αは距離に応じた信号の減衰特性を示す定数を示している。 In the above formulas (1) and (2), t is the time, τ is the time required for the first signal to be transmitted and received, A is the amplitude, ω 1 is the angular frequency of the first signal, and r is the distance measurement. The distance from the unit 4 to the detected device 2, α represents a constant indicating the attenuation characteristic of the signal according to the distance.
 また、同様に、第2信号が被検出装置2から送信されたときの信号Tx2を下記式(3)のように示すと、第2信号が距離測定部4において受信されたときの信号Rx2は、下記式(4)のように示すことができる。
 Tx2 = Acos(ωt)  ・・・(3)
 Rx2 = Ae-αrcos(ω(t-τ))
     = Ae-αrcos(ωt-ωτ)  ・・・(4)
Similarly, when the signal Tx2 when the second signal is transmitted from the detected device 2 is expressed by the following equation (3), the signal Rx2 when the second signal is received by the distance measuring unit 4 is The following equation (4).
Tx2 = Acos (ω 2 t) (3)
Rx2 = Ae− αr cos (ω 2 (t−τ))
= Ae −αr cos (ω 2 t−ω 2 τ) (4)
 上記式(3)(4)中、ωは第2信号の角周波数を示している。 In the above formulas (3) and (4), ω 2 indicates the angular frequency of the second signal.
 上記式(2)、及び式(4)において、第1信号と第2信号とは、互いに同位相となるように位相同期した状態で被検出装置2から無線送信されるので、tは式(2)と式(4)との関係においては同一と考えることができる。
 また、第1信号と第2信号とは、共に被検出装置2から送信されて距離測定部4で受信されるので、τも式(2)と式(4)との関係においては同一と考えることができる。
In the above formulas (2) and (4), the first signal and the second signal are wirelessly transmitted from the detected apparatus 2 in a phase-synchronized state so as to be in phase with each other. It can be considered that the relationship between 2) and equation (4) is the same.
Further, since both the first signal and the second signal are transmitted from the detected device 2 and received by the distance measuring unit 4, τ is considered to be the same in the relationship between the equations (2) and (4). be able to.
 よって、第1信号が距離測定部4において受信されたときの信号であるRx1の位相と、第2信号が距離測定部4において受信されたときの信号であるRx2の位相との位相差Δθは、上記式(2)及び式(4)より、下記式(5)のように示すことができる。
 位相差Δθ = ωτ-ωτ
       = (ω-ω)τ  ・・・(5)
Therefore, the phase difference Δθ between the phase of Rx1 which is a signal when the first signal is received by the distance measuring unit 4 and the phase of Rx2 which is the signal when the second signal is received by the distance measuring unit 4 is From the above formulas (2) and (4), the following formula (5) can be obtained.
Phase difference Δθ = ω 2 τ-ω 1 τ
= (Ω 2 −ω 1 ) τ (5)
 ω1及びω2は、既知の値である。また、τは、下記式(6)のように表すことができる。
 τ = r / c  ・・・(6)
ω1 and ω2 are known values. Further, τ can be expressed as in the following formula (6).
τ = r / c (6)
 上記式(6)中、rは、上述と同様、距離測定部4から被検出装置2までの距離を示している。cは、電磁波の速度を示している。
 よって、Rx1の位相と、Rx2の位相の位相差Δθが得られれば、距離測定部4から被検出装置2までの距離であるrを求めることができる。
In the above formula (6), r represents the distance from the distance measuring unit 4 to the detected device 2 as described above. c shows the speed of electromagnetic waves.
Therefore, if the phase difference Δθ between the phase of Rx1 and the phase of Rx2 is obtained, r that is the distance from the distance measuring unit 4 to the detected device 2 can be obtained.
 上述のように、演算部18において、第1位相検出部19は、受信した第1信号の位相を検出し、第2位相検出部20は、受信した第2信号の位相を検出する。
 さらに、加算器21は、両検出部19、20から与えられる第1信号の位相及び第2信号の位相から位相差を求める。
 つまり、両検出部19、20及び加算器21は、Rx1の位相と、Rx2の位相の位相差Δθを求める。
As described above, in the calculation unit 18, the first phase detection unit 19 detects the phase of the received first signal, and the second phase detection unit 20 detects the phase of the received second signal.
Further, the adder 21 obtains a phase difference from the phase of the first signal and the phase of the second signal given from the detection units 19 and 20.
That is, the detection units 19 and 20 and the adder 21 obtain a phase difference Δθ between the phase of Rx1 and the phase of Rx2.
 加算器21は、求めた位相差Δθを処理部22に与える。処理部22は、与えられた位相差Δθを用いて、上記式(5)及び式(6)に従って演算を行い、距離測定部4から被検出装置2までの距離rを求める。 The adder 21 gives the calculated phase difference Δθ to the processing unit 22. The processing unit 22 performs calculation according to the above formulas (5) and (6) using the given phase difference Δθ, and obtains the distance r from the distance measuring unit 4 to the detected device 2.
 以上のようにして、距離測定部4は、距離測定部4から被検出装置2までの距離を求めることができる。
 つまり、被測定装置としての被検出装置2と、距離測定装置としての距離測定部4とは、距離測定部4から被検出装置2までの距離を求める距離測定システムを構成している。
As described above, the distance measuring unit 4 can obtain the distance from the distance measuring unit 4 to the detected device 2.
That is, the device to be detected 2 as the device to be measured and the distance measuring unit 4 as the distance measuring device constitute a distance measuring system that obtains the distance from the distance measuring unit 4 to the device to be detected 2.
 上記距離測定システムによれば、被検出装置2(被測定装置)において互いに位相同期した状態で送信された第1信号と第2信号とを受信し、その位相差を求めることで距離測定部4(距離測定装置)から被検出装置2までの距離を求めるので、測定対象である被検出装置2との間に障害物がある場合や、被検出装置2が移動している場合であっても、精度よく距離を測定することができる。
 また、第1信号と第2信号との位相差に基づいて距離を求めるので、被検出装置2と距離測定部4との間で時刻同期している必要がなく、簡易な構成で精度よく距離を求めることができる。
According to the distance measuring system, the distance measuring unit 4 receives the first signal and the second signal transmitted in phase-synchronized state with each other in the device to be detected 2 (device to be measured), and obtains the phase difference therebetween. Since the distance from the (distance measuring device) to the detected device 2 is obtained, even when there is an obstacle between the measured device 2 to be measured and the detected device 2 is moving The distance can be measured with high accuracy.
In addition, since the distance is obtained based on the phase difference between the first signal and the second signal, it is not necessary to synchronize the time between the detected device 2 and the distance measuring unit 4, and the distance is accurate with a simple configuration. Can be requested.
 また、本実施形態では、被検出装置2の送信部6は、第1パルス信号パターン13及び第2パルス信号パターン14を記憶したメモリ部12と、メモリ部12から両信号パターン13、14に基づいた第1パルス信号(第1デジタル信号)及び第2パルス信号(第2デジタル信号)を取得し、第1パルス信号に含まれる第1信号と第2パルス信号に含まれる第2信号とを位相同期させて無線送信させる制御部11とを備えている。
 この場合、第1パルス信号及び第2パルス信号をメモリ部から出力させて第1信号及び第2信号を無線送信するので、第1信号と第2信号との間の位相を同期させて送信することが容易となる。
In the present embodiment, the transmission unit 6 of the detected device 2 is based on the memory unit 12 that stores the first pulse signal pattern 13 and the second pulse signal pattern 14, and both signal patterns 13 and 14 from the memory unit 12. The first pulse signal (first digital signal) and the second pulse signal (second digital signal) are acquired, and the first signal included in the first pulse signal and the second signal included in the second pulse signal are phase-shifted. And a control unit 11 that performs wireless transmission in synchronization.
In this case, since the first pulse signal and the second pulse signal are output from the memory unit and the first signal and the second signal are wirelessly transmitted, the phase between the first signal and the second signal is transmitted in synchronization. It becomes easy.
 また、本実施形態では、第1信号の周波数fと、第2信号の周波数fとが、第1信号と第2信号とが単一のアンテナで送受信可能な値に設定されている。
 よって、単一のアンテナであるアンテナ10、16によって第1信号及び第2信号を送受信できるので、構成を簡易にすることができる。
 さらに、第1信号の周波数fと第2信号の周波数fとが、比較的狭い帯域内に含まれるので、周波数の相違に起因する両信号の伝送路特性に対する影響を抑制でき、より精度よく距離を求めることができる。
In the present embodiment, the frequency f 1 of the first signal and the frequency f 2 of the second signal are set to values that allow the first signal and the second signal to be transmitted and received by a single antenna.
Therefore, since the first signal and the second signal can be transmitted and received by the antennas 10 and 16 that are single antennas, the configuration can be simplified.
Further, since the frequency f 1 of the first signal and the frequency f 2 of the second signal are included in a relatively narrow band, the influence on the transmission path characteristics of both signals due to the difference in frequency can be suppressed, and the accuracy is improved. You can often find the distance.
 また、本実施形態では、メモリ部12が、信号パターンとして、第1信号を含んだ第1パルス信号を出力するための第1パルス信号パターン13(第1信号パターン)、及び第2信号を含んだ第2パルス信号を出力するための第2パルス信号パターン14(第2信号パターン)を記憶している。
 このため、第1パルス信号パターン13と第2パルス信号パターン14との組み合わせを変更するのが容易となり、測定距離等に応じて、第1信号及び第2信号の組み合わせを容易に変更することができる。
In the present embodiment, the memory unit 12 includes, as signal patterns, a first pulse signal pattern 13 (first signal pattern) for outputting a first pulse signal including the first signal, and a second signal. The second pulse signal pattern 14 (second signal pattern) for outputting the second pulse signal is stored.
For this reason, it becomes easy to change the combination of the 1st pulse signal pattern 13 and the 2nd pulse signal pattern 14, and it can change the combination of the 1st signal and the 2nd signal easily according to measurement distance etc. it can.
 上記実施形態において、Rx1の位相と、Rx2の位相の位相差Δθは、0から2πの範囲で変位する。しかし、距離測定部4から被検出装置2までの距離rの値や、第1信号と第2信号の周波数差によっては、Rx1の位相又はRx2の位相が一周することがある。この場合、位相が一周したとしても、位相差Δθは0から2πの範囲で変位するため、演算部18は、位相差ΔθのみからではRx1の位相又はRx2の位相が一周したことを認識することができない。このため、測定する距離rの上限値を予め設定しておき、前記上限値の範囲で測定したとしてもRx1の位相又はRx2の位相が一周しないように、第1信号と第2信号の周波数差を予め設定しておくことができる。
 これによって、前記上限値の範囲で距離rを測定する場合、Rx1の位相又はRx2の位相が一周する範囲で距離rを測定することができ、位相差Δθのみで距離rを測定することができる。
In the above embodiment, the phase difference Δθ between the phase of Rx1 and the phase of Rx2 is displaced in the range of 0 to 2π. However, depending on the value of the distance r from the distance measuring unit 4 to the detected device 2 and the frequency difference between the first signal and the second signal, the phase of Rx1 or the phase of Rx2 may go around. In this case, since the phase difference Δθ is displaced in the range of 0 to 2π even if the phase makes one round, the calculation unit 18 recognizes that the phase of Rx1 or the phase of Rx2 has rounded only from the phase difference Δθ. I can't. For this reason, an upper limit value of the distance r to be measured is set in advance, and the frequency difference between the first signal and the second signal is set so that the phase of Rx1 or the phase of Rx2 does not make a round even if the upper limit value is measured. Can be set in advance.
As a result, when measuring the distance r in the range of the upper limit value, the distance r can be measured in a range in which the phase of Rx1 or the phase of Rx2 goes around, and the distance r can be measured only by the phase difference Δθ. .
 例えば、測定する距離rの上限値を5mに設定した場合、上記式(5)、式(6)から、位相差Δθは、電磁波の速度cを3×10m/sとすると、下記式(7)のよう表される。
 位相差Δθ = (ω-ω)τ
       = 360×(f-f)×(5/(3×10))
       = (f-f)×6×10-6      ・・・(7)
For example, when the upper limit value of the distance r to be measured is set to 5 m, from the above formulas (5) and (6), when the phase difference Δθ is set to 3 × 10 8 m / s of the electromagnetic wave velocity c, the following formula It is expressed as (7).
Phase difference Δθ = (ω 21 ) τ
= 360 × (f 2 −f 1 ) × (5 / (3 × 10 8 ))
= (F 2 −f 1 ) × 6 × 10 −6 (7)
 位相差Δθは、0から2πの範囲で変位させたいので、(f - f)の範囲は、下記式(8)のようになる。
 0 ≦ (f-f)×6×10-6 ≦ 360
 0 ≦ (f - f)×10-6 ≦ 60
 0 ≦ (f - f) ≦ 60×10 (Hz)
                           ・・・(8)
Since the phase difference Δθ is desired to be displaced in the range of 0 to 2π, the range of (f 2 −f 1 ) is expressed by the following formula (8).
0 ≦ (f 2 −f 1 ) × 6 × 10 −6 ≦ 360
0 ≦ (f 2 −f 1 ) × 10 −6 ≦ 60
0 ≦ (f 2 −f 1 ) ≦ 60 × 10 6 (Hz)
... (8)
 上記式(8)より、(f - f)の範囲は、0から60MHzの範囲となる。
 上記のように、測定する距離rの上限値を5mに設定した場合、第1信号の周波数fと第2信号の周波数fとの周波数差を、60MHz以下に設定すれば、Rx1の位相又はRx2の位相が一周するまでの範囲内で、距離測定を行うことができる。
 このように、測定する距離rの上限値を設定すれば、予め設定された測定範囲について適切に測定することができるように、第1信号の周波数fと第2信号の周波数fとの周波数差を設定することができる。
From the above equation (8), the range of (f 2 −f 1 ) is a range of 0 to 60 MHz.
As described above, when the upper limit value of the distance r to be measured is set to 5 m, the phase difference of Rx1 is set if the frequency difference between the frequency f 1 of the first signal and the frequency f 2 of the second signal is set to 60 MHz or less. Alternatively, the distance measurement can be performed within a range until the phase of Rx2 goes around.
In this way, if the upper limit value of the distance r to be measured is set, the frequency f 1 of the first signal and the frequency f 2 of the second signal can be appropriately measured for a preset measurement range. A frequency difference can be set.
 なお、測定する距離rに上限値を設定せずに距離rを測定する場合、上述のように、演算部18は、位相差ΔθのみからではRx1の位相又はRx2の位相が一周したことを認識することができないが、位相差Δθに加えて、受信電力の減衰も考慮すれば、Rx1の位相又はRx2の位相が一周したか否かを判定することができる。
 受信電力の減衰は距離rと相関があるからであり、Rx1の位相又はRx2の位相が一周したか否かを、受信電力の減衰によって判定できるからである。
When the distance r is measured without setting an upper limit value for the distance r to be measured, as described above, the calculation unit 18 recognizes that the phase of Rx1 or the phase of Rx2 has made one round from the phase difference Δθ alone. However, if the attenuation of the received power is considered in addition to the phase difference Δθ, it can be determined whether the phase of Rx1 or the phase of Rx2 has made one round.
This is because the attenuation of the received power has a correlation with the distance r, and it can be determined by the attenuation of the received power whether or not the phase of Rx1 or the phase of Rx2 has made one round.
 図1に戻って、距離測定部4は、演算部18が求めた、距離測定部4から被検出装置2までの距離rを示す距離情報を検出部5に与える。
 検出部5は、各距離測定部4から与えられる距離情報によって、各距離測定部4それぞれが求めた当該各距離測定部4から被検出装置2までの距離rを取得することができる。
 各距離測定部4は、互いに異なる位置に設置され、各設置位置から被検出装置2までの距離を測定している。よって、検出部5は、各距離測定部4の設置位置、及び各距離測定部4がそれぞれ求めた距離rに基づいて、被検出装置2の位置を検出することができる。
Returning to FIG. 1, the distance measurement unit 4 gives the detection unit 5 distance information indicating the distance r from the distance measurement unit 4 to the detected device 2, which is obtained by the calculation unit 18.
The detection unit 5 can acquire the distance r from each distance measurement unit 4 to each detected device 2 obtained by each distance measurement unit 4 based on the distance information given from each distance measurement unit 4.
Each distance measuring unit 4 is installed at a different position, and measures the distance from each installation position to the detected device 2. Therefore, the detection unit 5 can detect the position of the detected device 2 based on the installation position of each distance measurement unit 4 and the distance r obtained by each distance measurement unit 4.
 以上のように、本実施形態の位置検出システムによれば、各距離測定部4が求める距離rに基づいて被検出装置2の位置を検出することができるので、各距離測定部から被検出装置2までの距離を精度よく求めることができ、被検出装置2の位置を精度よく検出することができる。 As described above, according to the position detection system of the present embodiment, since the position of the detected device 2 can be detected based on the distance r obtained by each distance measuring unit 4, the detected device can be detected from each distance measuring unit. The distance to 2 can be obtained with high accuracy, and the position of the detected device 2 can be detected with high accuracy.
 なお、本実施形態の位置検出システムでは、距離測定部4を3つ備えている場合を例示したが、距離測定部4を少なくとも2つ備えていれば、検出部5によって被検出装置2の位置を検出することができる。
 ただし、より精度よく被検出装置2の位置を検出するためには、距離測定部4を3つ以上備えていることが好ましい。
In addition, in the position detection system of this embodiment, although the case where the three distance measurement parts 4 were provided was illustrated, if at least two distance measurement parts 4 were provided, the position of the to-be-detected apparatus 2 will be detected by the detection part 5. Can be detected.
However, in order to detect the position of the device 2 to be detected with higher accuracy, it is preferable that three or more distance measuring units 4 are provided.
 本実施形態に係る被検出装置2の信号出力部7は、第1パルス信号パターン13、及び第2パルス信号パターン14を記憶したメモリ部12から第1パルス信号、及び第2パルス信号を出力するように構成したが、例えば、図6に示すように、信号出力部7が、複数(図例では2つ)の第1メモリ部12a、及び第2メモリ部12bを備えている場合、第1メモリ部12aに第1パルス信号パターン13を記憶させ、第2メモリ部12bに第2パルス信号パターン14を記憶させ、第1パルス信号及び第2パルス信号を別々のメモリ部12a、12bから出力するように構成してもよい。 The signal output unit 7 of the device to be detected 2 according to the present embodiment outputs the first pulse signal and the second pulse signal from the memory unit 12 storing the first pulse signal pattern 13 and the second pulse signal pattern 14. For example, as illustrated in FIG. 6, when the signal output unit 7 includes a plurality of (two in the illustrated example) first memory unit 12 a and second memory unit 12 b, The first pulse signal pattern 13 is stored in the memory unit 12a, the second pulse signal pattern 14 is stored in the second memory unit 12b, and the first pulse signal and the second pulse signal are output from the separate memory units 12a and 12b. You may comprise as follows.
 ただし、この場合、制御部11は、第1メモリ部12aから出力される第1パルス信号の位相と、第2メモリ部12bから出力される第2パルス信号の位相とが、互いに同位相となるように位相同期するように制御する。 In this case, however, the control unit 11 has the same phase as the phase of the first pulse signal output from the first memory unit 12a and the phase of the second pulse signal output from the second memory unit 12b. So that the phase is synchronized.
〔2 第2実施形態について〕
 図7は、第2実施形態に係る位置検出システムが備える被検出装置2の要部構成を示すブロック図である。
 本実施形態の被検出装置2は、メモリ部12に1つのパルス信号パターン25が記憶され、このパルス信号パターン25に基づいてメモリ部12が出力するパルス信号には、第1信号及び第2信号の両方が含まれている点において、上記第1実施形態と相違している。その他の点については、第1実施形態と同様なので説明を省略する。
[2 About the second embodiment]
FIG. 7 is a block diagram illustrating a main configuration of the detected device 2 included in the position detection system according to the second embodiment.
In the detected device 2 of the present embodiment, one pulse signal pattern 25 is stored in the memory unit 12, and the pulse signal output from the memory unit 12 based on the pulse signal pattern 25 includes a first signal and a second signal. Both are different from the first embodiment in that both are included. Since other points are the same as those in the first embodiment, description thereof is omitted.
 図7において、本実施形態のメモリ部12は、1つのパルス信号パターン25を記憶している。パルス信号パターン25は、予め生成されたパルス信号をパターンとしてメモリ部12に記憶させたものである。よって、メモリ部12は、パルス信号パターン25に従って信号を出力することで、パルス信号を出力することができる。 In FIG. 7, the memory unit 12 of the present embodiment stores one pulse signal pattern 25. The pulse signal pattern 25 is obtained by storing a pulse signal generated in advance in the memory unit 12 as a pattern. Therefore, the memory unit 12 can output a pulse signal by outputting a signal according to the pulse signal pattern 25.
 パルス信号は、第1信号及び第2信号をΔΣ変調することによって得られたデジタル変調信号であり、主信号成分として第1信号及び第2信号の両方を含んでいる。 The pulse signal is a digital modulation signal obtained by ΔΣ modulation of the first signal and the second signal, and includes both the first signal and the second signal as main signal components.
 図8は、パルス信号の周波数スペクトラムの一部を示す図である。
 図に示すように、本実施形態のパルス信号は、周波数fの第1信号を主信号成分として含んでいる。また、パルス信号は、周波数fの第2信号も主信号成分として含んでいる。
 パルス信号は、周波数f近傍の帯域及び周波数f近傍の帯域以外の他の帯域において、ΔΣ変調によって生じた量子化雑音成分を含んでいる。
FIG. 8 is a diagram showing a part of the frequency spectrum of the pulse signal.
As shown in the figure, the pulse signal of the present embodiment includes a first signal having a frequency f 1 as a main signal component. The pulse signal also includes a second signal having a frequency f2 as a main signal component.
The pulse signal includes a quantization noise component generated by ΔΣ modulation in a band near the frequency f 1 and a band other than the band near the frequency f 2 .
 このようなパルス信号は、変調対象の信号を受け付けるための入力ポートを2つ有している2入力のΔΣ変調器を用いて生成される。
 なお、この2入力のΔΣ変調器については、後に説明する。
Such a pulse signal is generated using a 2-input ΔΣ modulator having two input ports for receiving a signal to be modulated.
The two-input ΔΣ modulator will be described later.
 図7に戻って、メモリ部12は、第1信号及び第2信号をΔΣ変調することで生成されたパルス信号を、パルス信号として出力するためのパターンとして記憶している。
 メモリ部12は、制御部11の制御に応じて、パルス信号パターン25に従って信号を出力することで、パルス信号を出力する。
 このように、信号出力部7は、第1信号及び第2信号の両方を含むパルス信号を出力する。
Returning to FIG. 7, the memory unit 12 stores a pulse signal generated by performing ΔΣ modulation on the first signal and the second signal as a pattern for outputting as a pulse signal.
The memory unit 12 outputs a pulse signal by outputting a signal according to the pulse signal pattern 25 under the control of the control unit 11.
Thus, the signal output unit 7 outputs a pulse signal including both the first signal and the second signal.
 メモリ部12は、出力したパルス信号を第1BPF8及び第2BPF9それぞれに与える。
 第1BPF8は、上述のように、メモリ部12からパルス信号が与えられると、第1信号を含む周波数f近傍の信号成分を通過信号として通過させ、他の帯域の信号成分の通過を阻止するよう構成されている。
 よって、第1BPF8は、第2信号や量子化雑音成分等が含まれる他の帯域の信号成分の通過を阻止し、通過信号に含まれる第1信号の通過を許容して第1信号をアンテナ10に与える。
The memory unit 12 provides the output pulse signal to each of the first BPF 8 and the second BPF 9.
The 1BPF8, as described above, the pulse signal from the memory unit 12 is provided and passed through the frequency f 1 of input signal components including a first signal as a pass signal, blocks passage of the signal components of other bands It is configured as follows.
Therefore, the first BPF 8 blocks the passage of the first signal included in the passing signal by blocking the passage of the signal component of the other band including the second signal, the quantization noise component, and the like. To give.
 第2BPF9は、上述のように、メモリ部12からパルス信号が与えられると、第2信号を含む周波数f近傍の信号成分を通過信号として通過させ、他の帯域の信号成分の通過を阻止するよう構成されている。
 よって、第2BPF9は、第1信号や量子化雑音成分等が含まれる他の帯域の信号成分の通過を阻止し、通過信号に含まれる第2信号の通過を許容して第2信号をアンテナ10に与える。
The 2BPF9, as described above, the pulse signal from the memory unit 12 is supplied, passed through a frequency f 2 near the signal component including the second signal as a pass signal, blocks passage of the signal components of other bands It is configured as follows.
Therefore, the second BPF 9 blocks the passage of the second signal included in the passing signal by blocking the passage of the signal component of the other band including the first signal, the quantization noise component, and the like. To give.
 アンテナ10は、第1BPF8及び第2BPF9から与えられた第1信号及び第2信号を空間に放射する。
 これにより、被検出装置2の送信部6は、第1信号及び第2信号をアンテナ10から無線送信する。
 上記被検出装置2が送信する第1信号及び第2信号は、距離測定部4(図5)に受信され、距離測定部4から被検出装置2までの距離を求めるのに用いられたり、検出部5(図1)によって被検出装置2の位置を検出するのに用いられる。
The antenna 10 radiates the first signal and the second signal given from the first BPF 8 and the second BPF 9 to space.
Thereby, the transmission unit 6 of the detected device 2 wirelessly transmits the first signal and the second signal from the antenna 10.
The first signal and the second signal transmitted by the detected device 2 are received by the distance measuring unit 4 (FIG. 5) and used to obtain the distance from the distance measuring unit 4 to the detected device 2 or detected. The unit 5 (FIG. 1) is used to detect the position of the device 2 to be detected.
 距離測定部4は、第1実施形態で説明したように、受信時の第1信号の位相と第2信号の位相との間の位相差によって距離測定部4から被検出装置2までの距離を求める。
 よって、第1信号と第2信号とが送信時において互いに同じ位相となるように精度よく位相同期されていなければ、距離測定部4は、距離測定部4から被検出装置2までの距離を精度よく求めることができない。
 この点、本実施形態では、メモリ部12が、信号パターンとして、第1信号及び第2信号の両方を含むパルス信号を出力するための一つの信号パターンであるパルス信号パターン25を記憶しており、信号出力部7が、第1信号及び第2信号をΔΣ変調することで得られる、第1信号及び第2信号の両方を含むパルス信号を出力するので、被検出装置2は、第1信号と第2信号とを無線送信する際に、第1信号と第2信号との間の位相を確実に同期させることができる。これにより、距離測定部4に、距離測定部4から被検出装置2までの距離を精度よく求めさせることができる。
As described in the first embodiment, the distance measurement unit 4 determines the distance from the distance measurement unit 4 to the detected device 2 based on the phase difference between the phase of the first signal and the phase of the second signal at the time of reception. Ask.
Therefore, if the first signal and the second signal are not accurately phase-synchronized so that they have the same phase at the time of transmission, the distance measuring unit 4 accurately determines the distance from the distance measuring unit 4 to the detected device 2. I can't find it well.
In this regard, in this embodiment, the memory unit 12 stores a pulse signal pattern 25 that is one signal pattern for outputting a pulse signal including both the first signal and the second signal as a signal pattern. The signal output unit 7 outputs a pulse signal including both the first signal and the second signal obtained by ΔΣ modulation of the first signal and the second signal. And the second signal can be surely synchronized with each other in the phase between the first signal and the second signal. Thereby, it is possible to cause the distance measurement unit 4 to accurately obtain the distance from the distance measurement unit 4 to the detected device 2.
〔3 第2実施形態における2入力ΔΣ変調器について〕
 図9は、第2実施形態においてパルス信号を生成するのに用いられる2入力ΔΣ変調器30を示している。
 図9のΔΣ変調器30は、第1信号Uが入力される第1入力ポート31a、第2信号Uが入力される第2入力ポート31b、及びパルス信号を出力する単一の出力ポート31cを備えている。ΔΣ変調器30は、複数の入力ポート31a,31bそれぞれに対応する複数のループフィルタ(第1ループフィルタ32、第2ループフィルタ33)と、加算器34と、量子化器35と、を備えている。
 複数のループフィルタ32,33は、それぞれ、対応する入力ポート31a,31bに接続された第1入力部32a,33aと、フィードバック経路36a,36bを介して量子化器35の出力側に接続された第2入力部32b,33bと、を備えている。
[3 2-input ΔΣ modulator in the second embodiment]
FIG. 9 shows a two-input ΔΣ modulator 30 used to generate a pulse signal in the second embodiment.
ΔΣ modulator 30 in FIG. 9, the first input port 31a of the first signal U 1 is input, single output port for outputting the second input port 31b of the second signal U 2 is input, and the pulse signal 31c. The ΔΣ modulator 30 includes a plurality of loop filters (a first loop filter 32 and a second loop filter 33) corresponding to each of the plurality of input ports 31a and 31b, an adder 34, and a quantizer 35. Yes.
The plurality of loop filters 32 and 33 are connected to the output side of the quantizer 35 via the first input sections 32a and 33a connected to the corresponding input ports 31a and 31b, respectively, and the feedback paths 36a and 36b. 2nd input part 32b, 33b.
 第1入力部32a,33aには、対応する入力ポート31a,31bに入力された入力信号U,Uが入力される。第2入力部32b,33bには、量子化器35の出力Vのフィードバック信号Vが入力される。 Input signals U 1 and U 2 input to the corresponding input ports 31a and 31b are input to the first input units 32a and 33a. The feedback signal V of the output V of the quantizer 35 is input to the second input units 32b and 33b.
 複数のループフィルタ32,33は、それぞれ、差分器320a,330aを備えている。差分器320a,330aには、それぞれ、第1入力部32a,33aに接続された第1経路320d,330dと、第2入力部32b,33bに接続された第2経路320e,330eと、が接続されている。差分器320a,330aは、それぞれ、入力信号U,Uと、量子化器35からのフィードバック信号Vとの差分U-V,U-Vを求める。 The plurality of loop filters 32 and 33 are provided with differentiators 320a and 330a, respectively. Connected to the differentiators 320a and 330a are first paths 320d and 330d connected to the first input sections 32a and 33a and second paths 320e and 330e connected to the second input sections 32b and 33b, respectively. Has been. The differentiators 320a and 330a obtain differences U 1 -V and U 2 -V between the input signals U 1 and U 2 and the feedback signal V from the quantizer 35, respectively.
 差分器320a,330aによって求められた差分U-V,U-Vは、各ループフィルタ32,33に設けられた内部フィルタ320b,330bに入力される。なお、第1ループフィルタ32の内部フィルタ320bの伝達関数をL(z)と表現し、第2ループフィルタ33の内部フィルタ330bの伝達関数をL(z)と表現する。 Differences U 1 −V and U 2 −V obtained by the differentiators 320a and 330a are input to internal filters 320b and 330b provided in the loop filters 32 and 33, respectively. The transfer function of the internal filter 320b of the first loop filter 32 is expressed as L 1 (z), and the transfer function of the internal filter 330b of the second loop filter 33 is expressed as L 2 (z).
 各内部フィルタ320b,330bの出力L(z)(U(z)-V(z)),L(z)(U(z)-V(z))は、各ループフィルタ32,33に設けられた加算器320c,330cに与えられる。
 各加算器320c,330cには、第1入力部32a,33aに入力される入力信号U,Uを加算器320c,330cに入力させるためのフィードフォワード経路320f,330fが接続されている。したがって、各加算器320c,330cは、入力信号U,Uと、内部フィルタ320b,330bの出力L(z)(U(z)-V(z)),L(z)(U(z)-V(z))と、を加算する。
The outputs L 1 (z) (U 1 (z) −V (z)) and L 2 (z) (U 2 (z) −V (z)) of the internal filters 320b and 330b are respectively connected to the loop filters 32, 33 is provided to the adders 320 c and 330 c provided in 33.
Feed forward paths 320f and 330f for inputting the input signals U 1 and U 2 input to the first input units 32a and 33a to the adders 320c and 330c are connected to the adders 320c and 330c, respectively. Therefore, each adder 320c, 330c receives the input signals U 1 , U 2 and the outputs L 1 (z) (U 1 (z) −V (z)), L 2 (z) ( U 2 (z) −V (z)) is added.
 各加算器320c,330cの出力(各ループフィルタ32,33の出力)Y,Yは、加算器34によって加算される。 The outputs of the adders 320c and 330c (outputs of the loop filters 32 and 33) Y 1 and Y 2 are added by the adder 34.
 加算器34の出力Yは、量子化器35に与えられる。本実施形態の量子化器35は、2レベル量子化器であり、1bitのパルス列を量子化信号(ΔΣ変調信号)Vとして出力する。この量子化信号VがΔΣ変調器30の出力信号となる。なお、出力信号Vは、フィードバック経路36a,36bを介して各ループフィルタ32,33に与えられる。 The output Y of the adder 34 is given to the quantizer 35. The quantizer 35 of the present embodiment is a two-level quantizer and outputs a 1-bit pulse train as a quantized signal (ΔΣ modulation signal) V. This quantized signal V becomes an output signal of the ΔΣ modulator 30. The output signal V is given to the loop filters 32 and 33 via the feedback paths 36a and 36b.
 図9のΔΣ変調器30の出力Vは、下記の式(9)のように表される(式(9)においてN=2の場合)。式(9)において、STF(z)は第i入力信号U(z)についての第i信号伝達関数であり、NTF(z)は、ΔΣ変調器30全体での雑音伝達関数であり、E(z)は雑音伝達関数である。
Figure JPOXMLDOC01-appb-M000001
ここで、
Figure JPOXMLDOC01-appb-M000002
The output V of the ΔΣ modulator 30 in FIG. 9 is expressed by the following equation (9) (when N = 2 in equation (9)). In Equation (9), STF i (z) is the i-th signal transfer function for the i-th input signal U i (z), and NTF (z) is the noise transfer function for the entire ΔΣ modulator 30. E (z) is a noise transfer function.
Figure JPOXMLDOC01-appb-M000001
here,
Figure JPOXMLDOC01-appb-M000002
 第1ループフィルタ32の内部フィルタ320bは、第1雑音伝達関数NTF(z)を用いて示される伝達関数L(z)を持つ。第1雑音伝達関数NTF(z)は、第1ループフィルタ32に入力される第1信号の周波数f近傍の帯域における量子化雑音を抑制する特性(バンドストップ特性)を有するものである。
 第2ループフィルタ33の内部フィルタ330bは、第2雑音伝達関数NTF(z)を用いて示される伝達関数L(z)を持つ。第2雑音伝達関数NTF(z)は、第2ループフィルタ33に入力される第2信号の周波数f近傍の帯域における量子化雑音を抑制する特性(バンドストップ特性)を有するものである。
The internal filter 320b of the first loop filter 32 has a transfer function L 1 (z) expressed using the first noise transfer function NTF 1 (z). The first noise transfer function NTF 1 (z) has a characteristic (band stop characteristic) for suppressing quantization noise in a band near the frequency f 1 of the first signal input to the first loop filter 32.
The internal filter 330b of the second loop filter 33 has a transfer function L 2 (z) indicated by using the second noise transfer function NTF 2 (z). The second noise transfer function NTF 2 (z) has a characteristic (band stop characteristic) for suppressing quantization noise in a band near the frequency f 2 of the second signal input to the second loop filter 33.
 以上のように構成されたΔΣ変調器30は、第1入力ポート31aに入力された第1信号と、第2入力ポート31bに入力された第2信号とを、同時に一つの単一の出力信号V(z)であるパルス信号に含めて出力することができる。
 つまり、上記ΔΣ変調器30によって、図8に示す周波数スペクトラムとなるパルス信号を生成することができる。
The ΔΣ modulator 30 configured as described above simultaneously converts the first signal input to the first input port 31a and the second signal input to the second input port 31b into one single output signal. It can be included and output in a pulse signal of V (z).
That is, the ΔΣ modulator 30 can generate a pulse signal having a frequency spectrum shown in FIG.
〔4 その他〕
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
 例えば、上記各実施形態では、被検出装置2が一つのアンテナ10を備え、このアンテナ10から第1信号及び第2信号の両方を送信する場合を示したが、被検出装置2に一対のアンテナを設け、一方のアンテナから第1信号を送信し、他方のアンテナから第2信号を送信するように構成してもよい。
 また、上記各実施形態では、被検出装置2が、メモリ部12(第1メモリ部12a、第2メモリ部12b)に記憶されたパルス信号パターンを出力することで、パルス信号(第1パルス信号、第2パルス信号)を出力する場合を例示したが、被検出装置2が、第1信号及び第2信号のいずれか一方を含むパルス信号、又は第1信号及び第2信号の両方含むパルス信号を生成するためのΔΣ変調器を備えていてもよい。この場合、被検出装置2は、パルス信号を生成しつつ第1信号及び第2信号を送信することができる。
[4 Others]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive.
For example, in each of the above embodiments, the case where the detected apparatus 2 includes one antenna 10 and transmits both the first signal and the second signal from the antenna 10 has been described. The first signal may be transmitted from one antenna and the second signal may be transmitted from the other antenna.
Moreover, in each said embodiment, the to-be-detected apparatus 2 outputs the pulse signal pattern memorize | stored in the memory part 12 (1st memory part 12a, 2nd memory part 12b), and a pulse signal (1st pulse signal) The second pulse signal) is output as an example, but the detected device 2 is a pulse signal including either the first signal or the second signal, or a pulse signal including both the first signal and the second signal. There may be provided a ΔΣ modulator for generating. In this case, the detected device 2 can transmit the first signal and the second signal while generating the pulse signal.
 また、本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。 In addition, the scope of the present invention is indicated not by the above-described meaning but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 1 位置検出システム
 2 被検出装置(被測定装置)
 3 位置検出装置
 4 距離測定部
 5 検出部
 6 送信部
 7 信号出力部
 8 第1バンドパスフィルタ
 9 第2バンドパスフィルタ
 10 アンテナ
 11 制御部
 12 メモリ部
 12a 第1メモリ部
 12b 第2メモリ部
 13 第1パルス信号パターン
 14 第2パルス信号パターン
 15 ΔΣ変調器
 16 アンテナ
 17 受信部
 18 演算部
 19 第1位相検出部
 20 第2位相検出部
 21 加算器
 22 処理部
 25 パルス信号パターン
 30 ΔΣ変調器
 31a 入力ポート
 31b 入力ポート
 31c 出力ポート
 32 第1ループフィルタ
 32a 第1入力部
 32b 第2入力部
 33 第2ループフィルタ
 33a 第1入力部
 33b 第2入力部
 34 加算器
 35 量子化器
 36a,36b フィードバック経路
 320a,330a 差分器
 320b,330b 内部フィルタ
 320c,330c 加算器
 320d,330d 第1経路
 320e,330e 第2経路
 320f,330f フィードフォーワード経路
1 position detection system 2 device to be detected (device to be measured)
DESCRIPTION OF SYMBOLS 3 Position detection apparatus 4 Distance measurement part 5 Detection part 6 Transmission part 7 Signal output part 8 1st band pass filter 9 2nd band pass filter 10 Antenna 11 Control part 12 Memory part 12a 1st memory part 12b 2nd memory part 13 1st 1 pulse signal pattern 14 second pulse signal pattern 15 ΔΣ modulator 16 antenna 17 receiving unit 18 calculating unit 19 first phase detecting unit 20 second phase detecting unit 21 adder 22 processing unit 25 pulse signal pattern 30 ΔΣ modulator 31a input Port 31b Input port 31c Output port 32 First loop filter 32a First input unit 32b Second input unit 33 Second loop filter 33a First input unit 33b Second input unit 34 Adder 35 Quantizers 36a and 36b Feedback path 320a , 330a Differentiator 320b, 330b Inside Filter 320c, 330c adder 320d, 330d first path 320 e, 330e second path 320f, 330f feedforward path

Claims (10)

  1.  被測定装置と、前記被測定装置までの距離を求める距離測定装置と、を備えた距離測定システムであって、
     前記被測定装置は、所定周波数の第1信号と、前記第1信号と異なる周波数の第2信号とを、位相同期させて無線送信する送信部を備え、
     前記距離測定装置は、前記第1信号及び前記第2信号を受信する受信部と、
     受信した前記第1信号と、前記第2信号との位相差に基づいて前記距離測定装置から前記被測定装置までの距離を求める演算部と、を備えている距離測定システム。
    A distance measurement system comprising: a device under measurement; and a distance measurement device that obtains a distance to the device under measurement,
    The device under test includes a transmission unit that wirelessly transmits a first signal having a predetermined frequency and a second signal having a frequency different from the first signal in phase synchronization with each other,
    The distance measuring device includes a receiving unit that receives the first signal and the second signal;
    A distance measurement system comprising: an arithmetic unit that obtains a distance from the distance measurement device to the device under measurement based on a phase difference between the received first signal and the second signal.
  2.  前記被測定装置の送信部は、前記第1信号を含んだ第1デジタル信号、及び前記第2信号を含んだ第2デジタル信号を出力するための信号パターンを記憶したメモリ部と、
     前記メモリ部から前記信号パターンに基づいた前記第1デジタル信号及び前記第2デジタル信号を取得し、前記第1デジタル信号に含まれる前記第1信号と前記第2デジタル信号に含まれる前記第2信号とを位相同期させて無線送信させる制御部と、を備えている請求項1に記載の距離測定システム。
    A transmission unit of the device under test, a memory unit storing a signal pattern for outputting a first digital signal including the first signal and a second digital signal including the second signal;
    The first digital signal and the second digital signal based on the signal pattern are acquired from the memory unit, and the first signal included in the first digital signal and the second signal included in the second digital signal. The distance measurement system according to claim 1, further comprising: a control unit that wirelessly transmits the signals in phase synchronization with each other.
  3.  前記第1デジタル信号及び前記第2デジタル信号は、前記第1信号及び前記第2信号をΔΣ変調することで得られるパルス信号である請求項2に記載の距離測定システム。 3. The distance measuring system according to claim 2, wherein the first digital signal and the second digital signal are pulse signals obtained by performing ΔΣ modulation on the first signal and the second signal.
  4.  前記メモリ部は、前記信号パターンとして、前記第1信号及び前記第2信号の両方を含むパルス信号を出力するための一つの信号パターンを記憶している請求項3に記載の距離測定システム。 The distance measuring system according to claim 3, wherein the memory unit stores one signal pattern for outputting a pulse signal including both the first signal and the second signal as the signal pattern.
  5.  前記メモリ部は、前記信号パターンとして、前記第1信号を含んだパルス信号を出力するための第1信号パターン、及び前記第2信号を含んだパルス信号を出力するための第2信号パターンを記憶している請求項3に記載の距離測定システム。 The memory unit stores, as the signal pattern, a first signal pattern for outputting a pulse signal including the first signal and a second signal pattern for outputting a pulse signal including the second signal. The distance measuring system according to claim 3.
  6.  前記第1信号の周波数と、前記第2信号の周波数とは、前記第1信号と前記第2信号とが単一のアンテナで送受信可能な値に設定されている請求項1から請求項5のいずれか一項に記載の距離測定システム。 The frequency of the first signal and the frequency of the second signal are set to values at which the first signal and the second signal can be transmitted and received by a single antenna. The distance measuring system according to any one of the above.
  7.  被測定装置までの距離を求める距離測定装置であって、
     無線送信された所定周波数の第1信号と、前記第1信号と異なる周波数であって位相が同期した第2信号とを受信する受信部と、
     受信した前記第1信号と、前記第2信号との位相差に基づいて自装置から前記被測定装置までの距離を求める演算部と、を備えている距離測定装置。
    A distance measuring device for obtaining a distance to a device under test,
    A receiving unit that receives a first signal of a predetermined frequency transmitted wirelessly and a second signal having a frequency different from that of the first signal and synchronized in phase;
    A distance measuring device comprising: a computing unit that obtains a distance from the device itself to the device under measurement based on a phase difference between the received first signal and the second signal.
  8.  距離測定装置に当該距離測定装置までの距離を求めさせる被測定装置であって、
     互いの位相差に基づいて前記距離測定装置から前記被測定装置までの距離を求めるための所定周波数の第1信号と、前記第1信号と異なる周波数の第2信号とを、位相同期させて無線送信する送信部を備えている被測定装置。
    A device under test for causing a distance measuring device to obtain a distance to the distance measuring device,
    A first signal having a predetermined frequency for obtaining a distance from the distance measuring device to the device to be measured based on a mutual phase difference and a second signal having a frequency different from the first signal are wirelessly synchronized in phase. A device under measurement including a transmission unit for transmission.
  9.  前記被測定装置の送信部は、前記第1信号を含んだ第1デジタル信号、及び前記第2信号を含んだ第2デジタル信号を出力するための信号パターンを記憶したメモリ部と、
     前記メモリ部から前記信号パターンに基づいた前記第1デジタル信号及び前記第2デジタル信号を取得し、前記第1デジタル信号に含まれる前記第1信号と前記第2デジタル信号に含まれる前記第2信号とを位相同期させて無線送信させる制御部と、を備えている請求項8に記載の被測定装置。
    A transmission unit of the device under test, a memory unit storing a signal pattern for outputting a first digital signal including the first signal and a second digital signal including the second signal;
    The first digital signal and the second digital signal based on the signal pattern are acquired from the memory unit, and the first signal included in the first digital signal and the second signal included in the second digital signal. 9. A device under measurement according to claim 8, further comprising: a control unit that wirelessly transmits the signals in phase synchronization with each other.
  10.  被検出装置と、前記被検出装置の位置を検出する位置検出装置と、を備えた位置検出システムであって、
     前記被検出装置は、所定周波数の第1信号と、前記第1信号と異なる周波数の第2信号とを、位相同期させて無線送信する送信部を備え、
     前記位置検出装置は、複数の距離測定部と、前記複数の距離測定部それぞれが求めた前記複数の距離測定部から前記被検出装置までの距離に基づいて前記被検出装置の位置を検出する検出部とを備え、
     前記複数の距離測定部は、それぞれ、前記第1信号及び前記第2信号を受信する受信部と、
     受信した前記第1信号と、前記第2信号との位相差に基づいて各距離測定部から前記被検出装置までの距離を求める演算部と、を備えている位置検出システム。
    A position detection system comprising: a detected device; and a position detecting device that detects a position of the detected device,
    The detected apparatus includes a transmission unit that wirelessly transmits a first signal having a predetermined frequency and a second signal having a frequency different from the first signal in phase synchronization,
    The position detecting device detects a position of the detected device based on a plurality of distance measuring units and distances from the plurality of distance measuring units obtained by the plurality of distance measuring units to the detected device. With
    The plurality of distance measuring units each receive the first signal and the second signal;
    A position detection system comprising: a calculation unit that obtains a distance from each distance measurement unit to the detected device based on a phase difference between the received first signal and the second signal.
PCT/JP2015/067771 2014-09-04 2015-06-19 Distance measurement system, distance measurement device, device that is measured, and position detection system WO2016035418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014180401A JP6299536B2 (en) 2014-09-04 2014-09-04 Distance measurement system, distance measurement device, device under measurement, position detection system, distance measurement method, transmission method, and position detection method
JP2014-180401 2014-09-04

Publications (1)

Publication Number Publication Date
WO2016035418A1 true WO2016035418A1 (en) 2016-03-10

Family

ID=55439489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067771 WO2016035418A1 (en) 2014-09-04 2015-06-19 Distance measurement system, distance measurement device, device that is measured, and position detection system

Country Status (2)

Country Link
JP (1) JP6299536B2 (en)
WO (1) WO2016035418A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016012101A1 (en) 2016-10-08 2018-04-12 Forschungszentrum Jülich GmbH Method and device for position determination
JP2019105895A (en) * 2017-12-11 2019-06-27 東芝テック株式会社 Radio tag reading apparatus and program
JP7151466B2 (en) * 2018-12-25 2022-10-12 株式会社デンソー rangefinder
WO2023100489A1 (en) * 2021-12-03 2023-06-08 アルプスアルパイン株式会社 Positioning device, and clock correcting method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366957A (en) * 1965-08-31 1968-01-30 Rosemount Eng Co Ltd Distance measurement method and means
JP2003207557A (en) * 2002-01-10 2003-07-25 Mitsubishi Electric Corp Mobile station and movable body communication system
US20040054471A1 (en) * 2000-11-15 2004-03-18 David Bartlett Tag tracking
JP2006042201A (en) * 2004-07-29 2006-02-09 Advanced Telecommunication Research Institute International Distance measurement system, distance measuring method and communication equipment
US20080291089A1 (en) * 2005-12-08 2008-11-27 Electronics And Telecommunications Research Institute Apparatus and Method for Computing Location of a Moving Beacon Using Time Difference of Arrival and Multi-Frequencies
WO2011087088A1 (en) * 2010-01-15 2011-07-21 大学共同利用機関法人情報・システム研究機構 Velocity/distance detection system, velocity/distance detection apparatus, and velocity/distance detection method
WO2013125522A1 (en) * 2012-02-20 2013-08-29 住友電気工業株式会社 Signal conversion method, signal transmission method, signal conversion device, and transmitter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494235B2 (en) * 2005-01-31 2010-06-30 富士重工業株式会社 Clutch lubrication equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366957A (en) * 1965-08-31 1968-01-30 Rosemount Eng Co Ltd Distance measurement method and means
US20040054471A1 (en) * 2000-11-15 2004-03-18 David Bartlett Tag tracking
JP2003207557A (en) * 2002-01-10 2003-07-25 Mitsubishi Electric Corp Mobile station and movable body communication system
JP2006042201A (en) * 2004-07-29 2006-02-09 Advanced Telecommunication Research Institute International Distance measurement system, distance measuring method and communication equipment
US20080291089A1 (en) * 2005-12-08 2008-11-27 Electronics And Telecommunications Research Institute Apparatus and Method for Computing Location of a Moving Beacon Using Time Difference of Arrival and Multi-Frequencies
WO2011087088A1 (en) * 2010-01-15 2011-07-21 大学共同利用機関法人情報・システム研究機構 Velocity/distance detection system, velocity/distance detection apparatus, and velocity/distance detection method
WO2013125522A1 (en) * 2012-02-20 2013-08-29 住友電気工業株式会社 Signal conversion method, signal transmission method, signal conversion device, and transmitter

Also Published As

Publication number Publication date
JP6299536B2 (en) 2018-03-28
JP2016053551A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
WO2016035418A1 (en) Distance measurement system, distance measurement device, device that is measured, and position detection system
JP6639782B2 (en) Doppler radar test system
KR102364110B1 (en) A method in a radar system, a radar system and an apparatus of a radar system
JP5163194B2 (en) Ultrasonic distance sensor system and ultrasonic distance sensor using the same
US6697300B1 (en) Method and apparatus for determining the positioning of volumetric sensor array lines
JP2008111743A5 (en)
WO2010059757A3 (en) Method and apparatus for radar signal processing
JP2018503833A5 (en) System for monitoring marine environment, method and computer program for monitoring marine environment
JP2015155897A5 (en)
US9612321B2 (en) Method for angle determination for moving assemblies, and apparatus
JP2019066192A5 (en)
KR20190127843A (en) How to determine the distance and speed of an object
JP2014006072A (en) Rader device, target data acquisition method, and target tracking system
JP4705532B2 (en) Distance measurement method using continuous wave type microwave sensor
KR101705532B1 (en) Frequency modulation radar and control method thereof
JP2019023577A (en) System and method for moving target detection
JP2007093313A (en) Position coordinate detection method and system device
CN103154767B (en) Distance measurement apparatus
JP2019531475A (en) Method and apparatus for measuring position
KR20120005586A (en) Location information acquisition method and apparaters in the bottom of the sea
KR101617433B1 (en) Apparatus and method for detecting intruder based on frequency modulated continuous wave
CA2874704C (en) Systems and methods for detecting a change in position of an object
KR101052050B1 (en) Method for detecting moving target and radar system thereof
KR20160057533A (en) Nosie detecting device of ultrasonic sensor for vehicle and noise detecting method thereof
KR20160002030A (en) Object detection method using a Doppler sensor and Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838153

Country of ref document: EP

Kind code of ref document: A1