WO2016041676A1 - Whitening composition - Google Patents

Whitening composition Download PDF

Info

Publication number
WO2016041676A1
WO2016041676A1 PCT/EP2015/067274 EP2015067274W WO2016041676A1 WO 2016041676 A1 WO2016041676 A1 WO 2016041676A1 EP 2015067274 W EP2015067274 W EP 2015067274W WO 2016041676 A1 WO2016041676 A1 WO 2016041676A1
Authority
WO
WIPO (PCT)
Prior art keywords
detergent composition
laundry detergent
composition according
negatively charged
alkoxylated
Prior art date
Application number
PCT/EP2015/067274
Other languages
French (fr)
Inventor
Stephen Norman Batchelor
Original Assignee
Unilever Plc
Unilever N.V.
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Conopco, Inc., D/B/A Unilever filed Critical Unilever Plc
Priority to EP15741574.6A priority Critical patent/EP3194543B1/en
Priority to CN201580047015.6A priority patent/CN107207999B/en
Priority to BR112017005495-7A priority patent/BR112017005495B1/en
Publication of WO2016041676A1 publication Critical patent/WO2016041676A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • C11D1/831Mixtures of non-ionic with anionic compounds of sulfonates with ethers of polyoxyalkylenes without phosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/044Hydroxides or bases
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2041Dihydric alcohols
    • C11D3/2044Dihydric alcohols linear
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/008Polymeric surface-active agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • C11D1/721End blocked ethers
    • C11D2111/12

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention provides a domestic laundry whitening and brightening composition comprising a charged surfactant, a negatively charged alkoxylated polyalkylphenol and a perfume.

Description

WHITENING COMPOSITION
Field of Invention
The present invention concerns the use of whitening and brightening laundry compositions.
Background of the Invention
Maintaining and improving the whiteness and brightness of textiles during domestic laundry are desirable. A problem is the redeposition of soil removed from one garment onto another. The problem is exacerbated by the presence of human oils (sebum) on garments and in the wash which serves to enhance the deposition of soil in the wash. This process leads to an overall loss of whiteness and cleaning across the washing load. To ameliorate this problem, dispersing polymer such as an alkoxylated polyethylene imines have been widely added to washing detergents. Ethoxylated PEI (PEI = polyethylene imine) is known as an anti redeposition polymer from CA 121 0009. Certain Cellulase enzymes have also been used to prevent redeposition by altering the surface properties of cotton fabrics.
Novozymes describes in WO02/099091 and WO04/053039 cellulases for use in domestic laundry.
EP1321510 (Shipley) describes an industrial cleaning composition that contain an alkoxylated polyarylphenol for stripping organic chemical residues from photoresists that are used in the manufacture of semi-conductors and other electronic devices and circuits. The organic chemical residues are materials left over from the production process and include photointiators, thermoinitiators, acrylic and methacrylic monomers.
Summary of the Invention
There is a need for further technologies to reduce redeposition and enhance cleaning in domestic laundry products. We have found that negatively charged alkoxylated polyalkylphenols enhance whiteness and brightness of garments during domestic laundry.
In one aspect the present invention provides a laundry detergent composition comprising:
(i) charged surfactant, preferably the level of charged surfactant is from 4 to 50 wt%, more preferably 6 to 30 wt%, most preferably 8 to 20 wt%;
(ii) negatively charged alkoxylated polyalkylphenol, preferably at a level of from 0.1 to 20 wt%, more preferably 0.5 to 10wt%, most preferably 2 to 9 wt%; and.
(iii) perfume, preferably 0.05 to 0.5 wt% perfume.
In another aspect the present invention provides a laundry detergent composition comprising:
(i) from 4 to 50 wt%, preferably 6 to 30 wt%, more preferably 8 to 20 wt%, of anionic surfactant selected from: linear alkyl benzene sulphonates; alkyl sulphates; alkyl ether sulphates; and mixtures thereof.
(ii) from 0.5 to 10 wt%, preferably 2 to 9 wt%, of negatively charged alkoxylated
polyalkylphenol of the following structure:
Figure imgf000003_0001
preferably selected from selected wherein n is selected from: 6; 7; 8; 9; 10; 1 1 ; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 ; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31 ; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41 ; 42; 43; 44; 45; 46; 47; 48; 49; and, 50; and, (iii) perfume, preferably 0.05 to 0.5 wt% perfume.
In a further aspect the present invention provides a domestic method of treating a textile, the method comprising the steps of: (i) treating a textile with an aqueous solution of the negatively charged alkoxylated
polyalkylphenols, the aqueous solution comprising from 10 ppm to 5000 ppm of the negatively charged alkoxylated polyalkylphenol; and, from 0.0 g/L to 6 g/L, preferably 0.2 to 4 g/L, of one or more surfactants; and, (ii) optionally rinsing and drying the textile.
In the method the level of the perfume in the aqueous solution is preferably from 0.1 to 100 ppm, more preferably 1 to 10 ppm. In the method aspects of the present invention the surfactant used is preferably as preferred for the composition aspects of the present invention .
The textile is preferably an item of clothing, bedding or table cloth. Preferred items of clothing are cotton containing shirts, trousers, underwear and jumpers.
Detailed Description of the Invention Alkoxylated polyalkylphenol
Preferably the negatively charged alkoxylated polyalkylphenolis an negatively charged alkoxylated trialkylphenol, most preferably alkoxylated tri(n-butyl)phenol. Preferably the negatively charged alkoxylated trialkylphenol is a negatively charged polyethylene glycol mono(2,4,6-tris(n-butyl)phenyl) ether.
Preferably the negatively charged alkoxylated polyalkylphenol contains an average of 2 to 70 alkoxy groups, most preferably 6 to 50 alkoxy groups.
Preferably the alkoxylation is ethoxylation.
The alkyl group in the alkoxylated polyalkylphenol is preferably selected from, linear or branched C3 to C15 alkyl groups.
Preferably the negatively charged alkoxylated polyalkylphenolhas 3 alkyl groups attached to the phenol. Preferably they are in the 2,4,6 position on the phenol. The alkoxylate is attached to the 1 position.
Preferably the alkoxylate is capped by a negatively charged group selected from SO3" COO" , and PO32" , preferably selected from selected from SO3" and COO".
The alkyl group in the alkoxylated polyalkylphenol is preferably selected from, linear or branced C3 to C15 alkyl groups.
Most preferably the alkoxylated polyethylene glycol mono(2,4,6-tris(n-butyl)phenyl) is a negatively charged alkoxylatedpolyalkylphenol of the following structure:
Figure imgf000005_0001
wherein R is selected from SO3; COO" and PO32", preferably selected from selected from S03 " and COO", most preferably S03 ". Preferably n = 2 to 70, more preferably n = 6 to 50, even more preferably 6 to 18,
The designation n is the average numbers of moles of alkoxy units in the polyalkoxy chain. Compounds are available from industrial suppliers, for example Rhodia, Clariant; Aoki Oil; Stepan; TOHO Chemical Industry Co.
In the context of the current invention the negatively charged alkoxylated polyalkylphenol is not considered a surfactant and does not contribute numerically to the surfactant as defined herein.
Surfactant
The laundry composition comprises charged surfactant and it is most preferred that the charged surfactant is anionic surfactant (which includes a mixture of the same).
Suitable anionic detergent compounds which may be used are usually water- soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Cie alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to Ci5 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. The anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof. The most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof. Preferably the alkyl ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units. Sodium lauryl ether sulphate is particularly preferred (SLES). Preferably the linear alkyl benzene sulphonate is a sodium C11 to C15 alkyl benzene sulphonates. Preferably the alkyl sulphates is a linear or branched sodium C12 to C18 alkyl sulphates. Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate). The level of anionic surfactant in the laundry composition is preferably from 4 to 50 wt%, more preferably 6 to 30 wt%, and most preferably 8 to 20 wt%.
Preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
Preferably the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt% of alkyl
alkoxylated, preferably ethoxylated, non-ionic surfactant. Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are the condensation products of aliphatic Cs to C18 primary or secondary linear or branched alcohols with ethylene oxide.
Preferably the alkyl ethoxylated non-ionic surfactant is a Cs to C18 primary alcohol with an average ethoxylation of 7EO to 9EO units. The nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents" published by
Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
Preferably the surfactants used are saturated.
Also applicable are surfactants such as those described in EP-A-328 177
(Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides.
In another aspect the charged surfactant may be a cationic such that the
formulation is a fabric conditioner. The detergent compositions based on anionic or anionic/non-ionic surfactants is however the more preferred embodiment.
Cationic Compound
When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
Most preferred are quaternary ammonium compounds.
It is advantageous if the quaternary ammonium compound is a quaternary ammonium compound having at least one C12 to C22 alkyl chain.
It is preferred if the quaternary ammonium compound has the following formula:
R2
U
R1 -N-R3 X in which R1 is a C12 to C22 alkyl or alkenyl chain; R2, R3 and R4 are independently selected from Ci to C4 alkyl chains and X" is a compatible anion. A preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide. A second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R1 and R2 are independently selected from C12 to C22 alkyl or alkenyl chain; R3 and R4 are independently selected from Ci to C4 alkyl chains and X" is a compatible anion. The composition optionally comprises a silicone.
Builders or Complexing Agents
Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are the well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or
alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions. Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred builders with carbonates being particularly preferred.
The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w. Aluminosilicates are materials having the general formula:
0.8-1.5 M20. AI2O3. 0.8-6 Si02 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least
50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1 .
Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term 'phosphate' embraces diphosphate, triphosphate, and
phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
Preferably the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate. Preferably powder laundry detergent formulations are predominantly carbonate built.
Powders, should preferably give an in use pH of 9.5-1 1 .
Most preferably the laundry detergent is an aqueous liquid laundry detergent, preferably with a pH of from 7 to 9.
In the aqueous liquid laundry detergent it is preferred that mono propylene glycol is present at a level from 1 to 30 wt%, most preferably 2 to 18 wt%, to provide the formulation with appropriate, pourable viscosity. Fluorescent Agent
The composition preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino}stilbene-2-2' disulphonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1 ,3,5- triazin-2-yl)]amino} stilbene-2-2' disulphonate, and disodium 4,4'-bis(2- sulphostyryl)biphenyl.
Perfume The composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt %, more preferably 0.05 to 0.5wt%, most preferably 0.1 to 1 wt %. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance
Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
Preferably the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2- methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate. Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by
Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA).
It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
The International Fragrance Association has published a list of fragrance ingredients (perfums) in 201 1. (http://www.ifraorg.Org/en-us/ingredients#.U7Z4hPldWzk)
The Research Institute for Fragrance Materials provides a database of perfumes
(fragrances) with safety information.
Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
Some or all of the perfume may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also
advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0. These materials, of relatively low boiling point and relatively low CLog P have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole,
benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo- carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethyl amyl ketone, ethyl benzoate, ethyl butyrate, ethyl hexyl ketone, ethyl phenyl acetate, eucalyptol, eugenol, fenchyl acetate, flor acetate (tricyclo decenyl acetate) , frutene (tricyclco decenyl
propionate) , geraniol, hexenol, hexenyl acetate, hexyl acetate, hexyl formate, hydratropic alcohol, hydroxycitronellal, indone, isoamyl alcohol, iso menthone, isopulegyl acetate, isoquinolone, ligustral, linalool, linalool oxide, linalyl formate, menthone, menthyl acetphenone, methyl amyl ketone, methyl anthranilate, methyl benzoate, methyl benyl acetate, methyl eugenol, methyl heptenone, methyl heptine carbonate, methyl heptyl ketone, methyl hexyl ketone, methyl phenyl carbinyl acetate, methyl salicylate, methyl-n-methyl anthranilate, nerol, octalactone, octyl alcohol, p-cresol, p-cresol methyl ether, p-methoxy acetophenone, p-methyl acetophenone, phenoxy ethanol, phenyl acetaldehyde, phenyl ethyl acetate, phenyl ethyl alcohol, phenyl ethyl dimethyl carbinol, prenyl acetate, propyl bornate, pulegone, rose oxide, safrole, 4-terpinenol, alpha-terpinenol, and /or viridine. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
Another group of perfumes with which the present invention can be applied are the so- called aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium,
Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid. Polymers
The composition may comprise one or more further polymers. Examples are
carboxymethylcellulose, poly (ethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
Polymers present to prevent dye deposition may be present, for example
poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole).
Enzymes
One or more enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.
Preferably the level of each enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.
The enzyme is preferably selected from: proteases; lipases; and, cellulases, more preferably a protease.
Especially contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from
Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1 131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422). Other examples are lipase variants such as those described in WO 92/05249,
WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292,
WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and
WO 97/07202, WO 00/60063.
Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ and Lipoclean™ (Novozymes A/S).
The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1 .4 and/or EC 3.1.1.32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids.
Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.). The method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin. Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin.
Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of
B. lichen iformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060. Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™, Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International Inc.).
Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263,
US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
Commercially available cellulases include Celluzyme™, Carezyme™, Celluclean™, Endolase™, Renozyme™ (Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation). Celluclean™ is preferred.
Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include Guardzyme™ and Novozym™ 51004 (Novozymes A/S).
Further enzymes suitable for use are discussed in WO2009/087524, WO2009/090576, WO2009/107091 , WO2009/1 1 1258 and WO2009/148983. Enzyme Stabilizers
Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and
WO 92/19708. Where alkyi groups are sufficiently long to form branched or cyclic chains, the alkyi groups encompass branched, cyclic and linear alkyi chains. The alkyi groups are preferably linear or branched, most preferably linear.
The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise.
Experimental Example 1
An aqueous liquid laundry detergent was prepared of the following formulation:
Figure imgf000017_0001
The formulation was used to wash eight 5 x 5cm knitted cotton cloth pieces in a tergotometer set at 200rpm. A one hour wash was conducted in 800ml of 6° French Hard water at 20°C, with 2.3 g/L of the formulation. To simulate particulate soil 0.04g/L of 100% compressed carbon black (ex Sigma-Aldrich) was added to the wash liquor. To simulate oily soil (6.3 g) of an SBL2004 soil strip ( ex Warwick Equest) was added to the wash liquor. Once the wash had been completed the cotton monitors were removed and dried and the reflectance measured on a reflectometer. The greyness was assessed from the
reflectance value at 740nm, R740, (UV-excluded).
Formulations were tested containing 8.7wt% Sokalan HP20 (BASF), an ethoxylated polyethylene imine polymer PEI(600) 20EO, as a comparison polymer for anti-redeposition benefits.
Formulation were tested containing 8.7wt% negatively charged Alkoxylated polyalkylphenol (Hostapal BV CONC ex Clariant which is 2,4,6-tributyl phenol ether sulphate with 7 EO).
The results are summarised in the table below. The 95% confidence limits are also given calculated from the standard deviation on the measurements from the 8 monitors. The R740 value is the mean of the measurements from the 8 monitors.
Figure imgf000018_0001
The tributyl phenol ether sulphate sodium salt increased the R740 of the monitors. High R74o values equate to a cleaner whiter fabrics. The alkoxylated polyalkylphenol provides significantly better benefits than the ethoxylated polyethyleneimine, Sokalan HP20, which under current condition provided no significant benefit.

Claims

1. A laundry detergent composition comprising:
(i) from 4 to 50 wt% of a charged surfactant,
(ii) from 0.1 to 20 wt% of a negatively charged alkoxylated polyalkylphenol; and,
(iii) from 0.001 to 3 wt % of a perfume.
2. A laundry detergent composition according to claim 1 , wherein the negatively
charged alkoxylated polyalkylphenol is negatively alkoxylated tri(n-butyl)phenol.
3. A laundry detergent composition according to claim 1 , wherein the negatively
charged alkoxylated polyalkylphenol is negatively charged ethoxylated
polyalkylphenol.
4. A laundry detergent composition according to claim 2, wherein the negatively
charged alkoxylated trialkylphenol is negatively charged polyethylene glycol mono(2, 4,6-tris(n-butyl)phenyl) ether.
5. A laundry detergent composition according to any one of claim 1 to 4, wherein the negatively charged alkoxylated polyalkylphenolcontains an average of 2 to 70 alkoxy groups.
6. A laundry detergent composition according to claim 5, wherein the negatively
charged alkoxylated polyalkylphenol contains an average of 6 to 18 alkoxy groups.
7. A laundry detergent composition according to any one of the preceding claims, wherein negatively charged alkoxylated polyalkylphenol is present at a level of from 0.5 to 10 wt%, most preferably 2 to 9 wt%.
8. A laundry detergent composition according to any one of the preceding claims, wherein the charged surfactant is an anionic surfactant.
9. A laundry detergent composition according to claim 8, wherein the anionic surfactant is selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; methyl ester sulphonates and mixtures thereof.
10. A laundry detergent composition according to claim 9, wherein the anionic surfactant is selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
1 1 . A laundry detergent composition according to any one of the preceding claims,
wherein the level of anionic surfactant is from 4 to 50 wt%.
12. A laundry detergent composition according to any one of the preceding claims,
wherein the composition comprises from 2 to 8 wt% of alkyl ethoxylated non-ionic surfactant.
13. A laundry detergent composition according to any one of the preceding claims,
wherein perfume is present from 0.001 to 3 wt% and comprises one or more note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1- dimethylethyl)-, 1 -acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester;amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate.
A laundry detergent composition according to claim 1 comprising
(i) from 4 to 50 wt% of an anionic surfactant is selected from: linear alkyl benzene sulphonate; alkyl sulphate; and, alkyl ether sulphate,
(ii) from 0.5 to 10 wt% of an negatively charged alkoxylated alkoxylated
polyalkylphenol of the following structure:
Figure imgf000021_0001
wherein R is selected from SO3; COO" and PO32", and, wherein n is selected from: 6; 7; 8; 9; 10; 1 1 ; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 ; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31 ; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41 ; 42; 43; 44; 45; 46; 47; 48; 49; and 50; and,
(iii) perfume.
15. A laundry detergent composition according to any one of the preceding claims,
wherein the composition comprises from 0.0001 wt% to 0.1 wt% protein of an enzyme selected from: proteases; lipases; cellulases; and, mixtures thereof, preferably comprising a protease.
16. A laundry detergent composition according to any one of the preceding claims,
wherein the laundry detergent composition is a laundry aqueous liquid detergent composition.
17. A domestic method of treating a textile, the method comprising the steps of:
(i) treating said textile with an aqueous solution of a laundry detergent composition as defined in any one of claims 1 to 16, said aqueous solution comprising from 10 ppm to 5000 ppm of negatively charged alkoxylated polyalkylphenol; and, up to 6 g/L of a surfactant; and,
(ii) optionally rinsing and drying said textile.
18. A domestic method of treating a textile according to claim 17, wherein the aqueous solution comprises from 0.2 to 4 g/L of a surfactant.
PCT/EP2015/067274 2014-09-18 2015-07-28 Whitening composition WO2016041676A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15741574.6A EP3194543B1 (en) 2014-09-18 2015-07-28 Whitening composition
CN201580047015.6A CN107207999B (en) 2014-09-18 2015-07-28 Lightening compositions
BR112017005495-7A BR112017005495B1 (en) 2014-09-18 2015-07-28 DETERGENT COMPOSITION FOR WASHING CLOTHES AND DOMESTIC FABRIC TREATMENT METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14185265 2014-09-18
EP14185265.7 2014-09-18

Publications (1)

Publication Number Publication Date
WO2016041676A1 true WO2016041676A1 (en) 2016-03-24

Family

ID=51564532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/067274 WO2016041676A1 (en) 2014-09-18 2015-07-28 Whitening composition

Country Status (4)

Country Link
EP (1) EP3194543B1 (en)
CN (1) CN107207999B (en)
AR (1) AR101878A1 (en)
WO (1) WO2016041676A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085301A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco triphenylmethane colorants as bluing agents in laundry care compositions
WO2018085372A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085314A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Reactive leuco compounds and compositions comprising the same
WO2018085389A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085300A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2018085378A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085391A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085309A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085313A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2018085386A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085388A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085302A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085305A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085311A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085304A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085312A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco colorants as bluing agents in laundry care compositions
WO2018085382A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085394A1 (en) 2016-11-01 2018-05-11 Milliken & Company Reactive leuco compounds and compositions comprising the same
WO2018085306A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085303A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085308A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085380A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2019075230A1 (en) 2017-10-12 2019-04-18 Milliken & Company Leuco compounds and compositions comprising the same
WO2019075142A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2019075225A1 (en) 2017-10-12 2019-04-18 Milliken & Company Leuco colorants with extended conjugation
WO2019075223A1 (en) 2017-10-12 2019-04-18 Milliken & Company Leuco compounds
WO2019075141A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2019075232A1 (en) 2017-10-12 2019-04-18 Milliken & Company Triarylmethane leuco compounds and compositions comprising the same
WO2019075149A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Laundry care compositions comprising leuco compounds
WO2019075143A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Leuco colorants as bluing agents in laundry care compositions
WO2019075147A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2019075150A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Leuco colorants as bluing agents in laundry care compositions
WO2019075145A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Leuco colorants with extended conjugation as bluing agents in laundry care formulations
WO2019075139A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Laundry care compositions and methods for determining their age
WO2020023812A1 (en) 2018-07-27 2020-01-30 The Procter & Gamble Company Leuco colorants as bluing agents in laundry care compositions
WO2020023883A1 (en) 2018-07-27 2020-01-30 Milliken & Company Polymeric phenolic antioxidants
WO2020023892A1 (en) 2018-07-27 2020-01-30 Milliken & Company Polymeric amine antioxidants
WO2020023897A1 (en) 2018-07-27 2020-01-30 Milliken & Company Stabilized compositions comprising leuco compounds
WO2021076683A1 (en) 2019-10-15 2021-04-22 The Procter & Gamble Company Detergent compositions

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313944A (en) * 1960-11-22 1963-01-04 Gen Aniline & Film Corp New surfactants, and their preparation process
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
CA1210009A (en) 1982-12-23 1986-08-19 Eugene P. Gosselink Ethoxylated amine polymers having clay soil removal/anti-redeposition properties useful in detergent compositions
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
EP0384070A2 (en) 1988-11-03 1990-08-29 Unilever Plc Zeolite P, process for its preparation and its use in detergent compositions
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2002099091A2 (en) 2001-06-06 2002-12-12 Novozymes A/S Endo-beta-1,4-glucanase from bacillus
EP1321510A2 (en) 2001-12-18 2003-06-25 Shipley Company LLC Cleaning composition and method
US20040087458A1 (en) * 2002-11-01 2004-05-06 Nicca U.S.A., Inc. Surfactant blends for removing oligomer deposits from polyester fibers and polyester processing equipment
WO2004053039A2 (en) 2002-12-11 2004-06-24 Novozymes A/S Detergent composition comprising endo-glucanase
US20050107281A1 (en) * 2003-11-17 2005-05-19 Clariant Gmbh Ether carboxylic acids based on alkoxylated styrylphenols
WO2009087524A1 (en) 2008-01-04 2009-07-16 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
WO2009090576A2 (en) 2008-01-11 2009-07-23 Procter & Gamble International Operations Sa Cleaning and/or treatment compositions
WO2009107091A2 (en) 2008-02-29 2009-09-03 The Procter & Gamble Company Detergent composition comprising lipase
WO2009111258A2 (en) 2008-02-29 2009-09-11 The Procter & Gamble Company Detergent composition comprising lipase
WO2009148983A1 (en) 2008-06-06 2009-12-10 The Procter & Gamble Company Detergent composition comprising a variant of a family 44 xyloglucanase
WO2013011071A1 (en) * 2011-07-21 2013-01-24 Unilever Plc Liquid laundry composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2649418C (en) * 2006-04-03 2012-07-03 Stepan Company Substituted alkoxylated phenols and branched sulfates for use in emulsion polymer latexes
CN103781893A (en) * 2011-08-31 2014-05-07 阿克佐诺贝尔化学国际公司 Laundry detergent compositions comprising soil release agent

Patent Citations (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313944A (en) * 1960-11-22 1963-01-04 Gen Aniline & Film Corp New surfactants, and their preparation process
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
CA1210009A (en) 1982-12-23 1986-08-19 Eugene P. Gosselink Ethoxylated amine polymers having clay soil removal/anti-redeposition properties useful in detergent compositions
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
US5691178A (en) 1988-03-22 1997-11-25 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
EP0384070A2 (en) 1988-11-03 1990-08-29 Unilever Plc Zeolite P, process for its preparation and its use in detergent compositions
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2002099091A2 (en) 2001-06-06 2002-12-12 Novozymes A/S Endo-beta-1,4-glucanase from bacillus
EP1321510A2 (en) 2001-12-18 2003-06-25 Shipley Company LLC Cleaning composition and method
US20040087458A1 (en) * 2002-11-01 2004-05-06 Nicca U.S.A., Inc. Surfactant blends for removing oligomer deposits from polyester fibers and polyester processing equipment
WO2004053039A2 (en) 2002-12-11 2004-06-24 Novozymes A/S Detergent composition comprising endo-glucanase
US20050107281A1 (en) * 2003-11-17 2005-05-19 Clariant Gmbh Ether carboxylic acids based on alkoxylated styrylphenols
WO2009087524A1 (en) 2008-01-04 2009-07-16 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
WO2009090576A2 (en) 2008-01-11 2009-07-23 Procter & Gamble International Operations Sa Cleaning and/or treatment compositions
WO2009107091A2 (en) 2008-02-29 2009-09-03 The Procter & Gamble Company Detergent composition comprising lipase
WO2009111258A2 (en) 2008-02-29 2009-09-11 The Procter & Gamble Company Detergent composition comprising lipase
WO2009148983A1 (en) 2008-06-06 2009-12-10 The Procter & Gamble Company Detergent composition comprising a variant of a family 44 xyloglucanase
WO2013011071A1 (en) * 2011-07-21 2013-01-24 Unilever Plc Liquid laundry composition

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Fenaroli's Handbook of Flavor Ingredients", 1975, CRC PRESS
"McCutcheon's Emulsifiers and Detergents", MANUFACTURING CONFECTIONERS COMPANY
CTFA (COSMETIC, TOILETRY AND FRAGRANCE ASSOCIATION): "International Buyers Guide", 1992, CFTA PUBLICATIONS
DARTOIS ET AL., BIOCHEMICA ET BIOPHYSICA ACTA, vol. 1131, 1993, pages 253 - 360
H. STACHE: "Tenside-Taschenbuch, 2nd ed.", 1981, CARL HAUSER VERLAG
M. B. JACOBS: "Synthetic Food Adjuncts", 1947
OPD: "Chemicals Buyers Directory 80th Annual Edition", 1993, SCHNELL PUBLISHING CO
S. ARCTANDER: "Perfume and Flavor Chemicals", 1969
SCHWARTZ; PERRY: "Surface Active Agents", vol. 1, 1949, INTERSCIENCE
SCHWARTZ; PERRY; BERCH: "SURFACE ACTIVE AGENTS", vol. 2, INTERSCIENCE

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085301A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco triphenylmethane colorants as bluing agents in laundry care compositions
WO2018085372A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085314A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Reactive leuco compounds and compositions comprising the same
WO2018085389A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085300A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2018085378A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085391A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085309A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085313A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2018085386A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085388A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085302A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085305A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085311A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085304A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085312A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco colorants as bluing agents in laundry care compositions
WO2018085382A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2018085394A1 (en) 2016-11-01 2018-05-11 Milliken & Company Reactive leuco compounds and compositions comprising the same
WO2018085306A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085303A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085308A1 (en) 2016-11-01 2018-05-11 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085380A1 (en) 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2019075230A1 (en) 2017-10-12 2019-04-18 Milliken & Company Leuco compounds and compositions comprising the same
WO2019075142A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2019075225A1 (en) 2017-10-12 2019-04-18 Milliken & Company Leuco colorants with extended conjugation
WO2019075223A1 (en) 2017-10-12 2019-04-18 Milliken & Company Leuco compounds
WO2019075141A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2019075232A1 (en) 2017-10-12 2019-04-18 Milliken & Company Triarylmethane leuco compounds and compositions comprising the same
WO2019075149A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Laundry care compositions comprising leuco compounds
WO2019075143A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Leuco colorants as bluing agents in laundry care compositions
WO2019075147A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Methods of using leuco colorants as bluing agents in laundry care compositions
WO2019075150A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Leuco colorants as bluing agents in laundry care compositions
WO2019075145A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Leuco colorants with extended conjugation as bluing agents in laundry care formulations
WO2019075139A1 (en) 2017-10-12 2019-04-18 The Procter & Gamble Company Laundry care compositions and methods for determining their age
WO2020023812A1 (en) 2018-07-27 2020-01-30 The Procter & Gamble Company Leuco colorants as bluing agents in laundry care compositions
WO2020023883A1 (en) 2018-07-27 2020-01-30 Milliken & Company Polymeric phenolic antioxidants
WO2020023892A1 (en) 2018-07-27 2020-01-30 Milliken & Company Polymeric amine antioxidants
WO2020023897A1 (en) 2018-07-27 2020-01-30 Milliken & Company Stabilized compositions comprising leuco compounds
WO2021076683A1 (en) 2019-10-15 2021-04-22 The Procter & Gamble Company Detergent compositions

Also Published As

Publication number Publication date
CN107207999B (en) 2019-09-27
EP3194543B1 (en) 2018-04-04
BR112017005495A2 (en) 2017-12-19
EP3194543A1 (en) 2017-07-26
CN107207999A (en) 2017-09-26
AR101878A1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
EP3194543B1 (en) Whitening composition
EP3194546B1 (en) Whitening composition
EP3307862B1 (en) Laundry detergent composition
EP3194547A1 (en) Whitening composition
EP3194542B1 (en) Whitening composition
EP3194541B1 (en) Liquid whitening composition
EP3313968B1 (en) Laundry detergent composition
EP3529342B1 (en) Whitening composition
EP3417042B1 (en) Whitening composition
EP3417039B1 (en) Whitening composition
EP3194545B1 (en) Whitening composition
BR112017005495B1 (en) DETERGENT COMPOSITION FOR WASHING CLOTHES AND DOMESTIC FABRIC TREATMENT METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741574

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2015741574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015741574

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017005495

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017005495

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170317