WO2016047379A1 - Extracorporeal circulation device - Google Patents

Extracorporeal circulation device Download PDF

Info

Publication number
WO2016047379A1
WO2016047379A1 PCT/JP2015/074474 JP2015074474W WO2016047379A1 WO 2016047379 A1 WO2016047379 A1 WO 2016047379A1 JP 2015074474 W JP2015074474 W JP 2015074474W WO 2016047379 A1 WO2016047379 A1 WO 2016047379A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
terminal
extracorporeal circulation
tube
conductive
Prior art date
Application number
PCT/JP2015/074474
Other languages
French (fr)
Japanese (ja)
Inventor
知樹 櫨田
強 長谷川
知明 橋本
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2016550073A priority Critical patent/JP6669659B2/en
Publication of WO2016047379A1 publication Critical patent/WO2016047379A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis

Definitions

  • the present invention relates to an extracorporeal circulation device that performs extracorporeal circulation of a patient's blood, for example.
  • PCPS percutaneous cardiopulmonary support
  • this percutaneous cardiopulmonary support generally uses a centrifugal pump and a membrane oxygenator.
  • Cardiopulmonary assistance is performed via the femoral arteriovenous device by means of an artificial cardiopulmonary device (extracorporeal circulation device) of a circuit.
  • an extracorporeal circulation apparatus having an artificial heart-lung machine or the like is used to circulate the patient's blood outside the body when blood supply to the patient is necessary during surgery or the like (for example, Patent Document 1).
  • Such an extracorporeal circulation apparatus needs to monitor the flow rate value of the circulating blood, and therefore, the tube in which the blood circulates has a flow sensor or the like for measuring the flow rate of the blood in the tube. Has been placed. Data measured by such a flow sensor is transmitted via a cable to a controller that manages the extracorporeal circulation device.
  • the present invention eliminates the complexity of handling cables and the like, and enables easy connection of communication between a measuring unit such as a flow sensor and an extracorporeal circulation management device such as a controller.
  • An object is to provide a circulation device.
  • the object is to provide an extracorporeal circulation management unit for managing the extracorporeal circulation of blood, a tube unit for guiding the blood flow in the extracorporeal circulation, and a measurement unit for measuring the blood in the tube unit.
  • the tube part is formed with an extracorporeal circulation apparatus in which a plurality of conductive parts for communication between the measurement part and the extracorporeal circulation management part are formed.
  • measuring parts such as a flow sensor
  • extracorporeal circulation management parts such as a controller
  • communication between measuring parts is performed via the electroconductive part of a tube part. That is, many parts such as a conventional cable can be replaced with a conductive part arranged in the tube part. For this reason, since it is not necessary to connect between a measurement part and an extracorporeal circulation management part with a cable etc. unlike the past, the complexity of handling of a cable etc. can be eliminated.
  • a management unit side communication unit for connecting to the conductive unit and transmitting a signal from the measurement unit to the extracorporeal circulation management unit is disposed, and the management unit side communication unit is connected to the conductive unit.
  • a communication unit side terminal portion including a plurality of terminals for, When the management unit side communication unit is attached to the tube unit, the specific signal is output from the specific terminal of the communication unit side terminal unit to the tube unit, and the specific signal is received or not received. Based on position information of other terminals of the communication unit side terminal unit, arrangement information of the plurality of conductive units with respect to the communication unit side terminal unit is specified.
  • the management part side communication part when the management part side communication part is mounted
  • the measurement unit includes a measurement unit side terminal unit including a plurality of terminals connectable to the conductive unit when the measurement unit is attached to the tube unit, and the management unit side communication unit is When the main body signal and the main body signal are transmitted by the different conductive parts, the measurement unit side terminal part of the measurement unit attached to the tube part is configured to receive the non-main body signal. Based on the terminal position information, the terminal of the measurement unit side terminal unit that receives the main body signal is specified, and the main body signal is received.
  • the management part side communication part transmits non-main body signals, such as a clock signal, and main body signals, such as transmission data, by a respectively different electroconductive part.
  • the measurement unit side terminal unit of the measurement unit attached to the tube unit is a terminal of the measurement unit side terminal unit that receives the main body signal based on the position information of the terminal of the measurement unit side terminal unit that has received the non-main body signal. And a main body signal is received. Therefore, it is possible to communicate with the extracorporeal circulation management device via the management unit side communication unit even if the measurement unit having the measurement unit side terminal unit is not attached to the tube unit at a specific position. For this reason, the person in charge of assembling the extracorporeal circulation device can automatically communicate without attaching the measuring unit to the tube unit at a specific position, so that the measuring unit can be easily connected to the tube unit. It can be carried out.
  • a pump unit that circulates blood in the tube unit and a motor unit that drives the pump unit
  • the pump unit is connected to the tube unit
  • the motor unit is connected to the external body.
  • the pump unit and the motor unit are detachably connected to the circulation management unit
  • the communication side terminal unit is formed on the side of the motor unit that contacts the pump unit
  • the motor of the pump unit The pump-side conductive part is formed on the side in contact with the part, the pump-side conductive part has the same shape as the conductive part, and the communication-side terminal part and the pump-side conductive part are respectively connected to the external body It is connected with the circulation management part and the conductive part of the tube part.
  • the communication between the extracorporeal circulation management unit and the measurement unit is transmitted to the measurement unit via the communication side terminal unit of the motor unit, the pump side conductive unit, the conductive unit of the tube unit, etc.
  • the communication side terminal unit of the motor unit the pump side conductive unit, the conductive unit of the tube unit, etc.
  • the person in charge or the like does not have to consider the handling of the cable or the like between the measurement unit and the extracorporeal circulation management unit.
  • the specific signal is a rectangular wave
  • one of the plurality of the conductive portions and / or one of the plurality of the pump-side conductive portions has one or two of the measurements. It is the structure which can be connected to the terminal of a part side terminal part, and the terminal of the said communication part side terminal part.
  • the troublesome handling of cables and the like is eliminated, and communication and the like are easily connected between the measurement unit such as the flow sensor and the extracorporeal circulation management device such as the controller. Therefore, there is an advantage that an extracorporeal circulation device that can be performed is provided.
  • FIG. 10 It is another schematic flowchart which shows the main operation examples etc. of the extracorporeal circulation apparatus of FIG.
  • FIG. 1 is a schematic diagram showing a main configuration of an extracorporeal circulation device 1 according to a first embodiment of the present invention.
  • the extracorporeal circulation apparatus 1 shown in FIG. 1 is an apparatus that extracorporeally circulates the blood of the patient P shown in FIG. 1.
  • This “extracorporeal circulation” includes “extracorporeal circulation operation” and “auxiliary circulation operation”. .
  • the “extracorporeal circulation operation” is performed by the extracorporeal circulation device 1 when blood cannot be exchanged in the patient P because the blood does not circulate in the heart of the patient (subject) P to which the extracorporeal circulation device 1 is applied.
  • a blood circulation operation and a gas exchange operation oxygen addition and / or carbon dioxide removal for the blood are performed.
  • the “auxiliary circulation operation” is a case where blood circulates in the heart of a patient (subject) P to which the extracorporeal circulation apparatus 1 is applied and gas exchange can be performed in the lungs of the patient P. Is also to assist blood circulation. Some devices have a function of performing a gas exchange operation on blood.
  • the extracorporeal circulation apparatus 1 shown in FIG. 1 is used, for example, when a patient P performs cardiac surgery.
  • the centrifugal pump 3 which is a pump unit of the extracorporeal circulation device 1 is operated, blood is removed from the vein (vena cava) of the patient P, and blood is exchanged by the artificial lung 2 to exchange blood.
  • the “artificial lung extracorporeal blood circulation” is performed in which the blood is returned to the artery (aorta) of the patient P again. That is, the extracorporeal circulation device 1 is a device that performs substitution of the heart and lungs.
  • the extracorporeal circulation apparatus 1 has the following configuration. That is, as shown in FIG. 1, the extracorporeal circulation device 1 has a “circulation circuit 1R” for circulating blood, and the circulation circuit 1R is an artificial heart-lung machine, for example, “artificial lung 2”, “centrifugal pump 3” ”, For example,“ drive motor 4 ”,“ venous side cannula (blood removal side cannula) 5 ”,“ arterial side cannula (blood feeding side cannula) 6 ”, and extracorporeal circulation management unit, for example, A controller 10 is included.
  • the centrifugal pump 3 is also called a blood pump, and pumps other than the centrifugal type can be used.
  • the venous cannula 5 is connected to the centrifugal pump 3 through a connector 8 using a blood removal tube 11.
  • a blood removal tube (also referred to as “blood removal line”) 11 is a conduit for sending blood.
  • the centrifugal pump 3 removes blood from the blood removal tube 11 and passed through the oxygenator 2 into the blood supply tube 12 (“liquid supply line”). It is also configured to return to the patient P via “.
  • the blood removal tube 11 and the blood supply tube 12 are examples of tube portions.
  • the artificial lung 2 is disposed between the centrifugal pump 3 and the blood supply tube 12.
  • the oxygenator 2 introduces oxygen gas as shown in FIG. 1 and performs a gas exchange operation (oxygen addition and / or carbon dioxide removal) on the blood.
  • the oxygenator 2 is, for example, a membrane oxygenator, and a hollow fiber membrane oxygenator is particularly preferably used.
  • the blood supply tube 12 is a conduit connecting the artificial lung 2 and the artery side cannula 6.
  • the blood removal tube 11 and the blood supply tube 12 are highly transparent and flexible synthetic resin conduits such as vinyl chloride resin and silicone rubber, and have an outer diameter of 14 mm and an inner diameter of about 10 mm.
  • the agent contains about 1 to 2% by weight of benzotriazole UVA (hindered amine light stabilizer) with excellent initial color tone and high UV absorption ability to prevent UV deterioration due to fluorescent lamps indoors. , Improve safety.
  • UVA hindered amine light stabilizer
  • the extracorporeal circulation device 1 has, for example, a “flow sensor 14” as a measurement unit in the blood supply tube 12.
  • the flow sensor 14 is a sensor for measuring the flow value of blood passing through the blood supply tube 12 and is a sensor for detecting an abnormality in the flow value. Electric power required for the operation of the flow sensor 14 is supplied from a power supply battery mounted on the flow sensor 14.
  • An abnormality in the flow rate value is caused by a kink in the tube of the circulation line 1R, a decrease in the rotation speed of the drive motor 4 and the centrifugal pump 3, an increase in pressure loss, and the like, causing poor circulation of blood in the circulation line 1R. This may cause hypoxia or the like in the patient. For this reason, it is necessary for the flow sensor 14 and the controller 10 to communicate quickly. Therefore, the flow sensor 14 and the controller 10 are configured to communicate with each other as described below.
  • FIG. 2 is a schematic cross-sectional view of the blood supply tube 12 and the blood removal tube 11 of FIG.
  • a conduit 12a for circulating blood is formed at the center thereof, and a plurality of, for example, two conductive portions 13a and 13b made of a conductive material are formed on the outer wall portion 12b. Buried.
  • the conductive portions 13a and 13b have a substantially arc shape in cross section, and are embedded throughout the longitudinal direction of the blood supply tube 12 and the blood removal tube 11. That is, the conductive portions 13a and 13b are configured to exhibit the same function as the communication cable.
  • the blood removal tube 11 and the blood supply tube 12 are connected to the venous cannula 5 and the arterial cannula 6 via connectors 8 and 9, as shown in FIG.
  • the conductive portions 13a and 13b arranged in the blood removal tube 11 and the blood supply tube 12 are isolated from the human body of the patient P by these connectors 8 and 9, and the safety is ensured. .
  • the conductive portions 13a and 13b are not in contact with each other, and even if one terminal to be described later is disposed between the conductive portions 13a and 13b, the conductive portions 13a and 13b are simultaneously in contact with the conductive portions 13a and 13b. It is preferable to arrange so that it does not. In other words, it is preferable that the angle formed by imaginary lines H1 and H2 connecting both ends of the conductive portions 13a and 13b and the center point of the blood feeding tube 12 is 90 degrees or more and less than 120 degrees.
  • the two conductive portions 13a and 13b are disposed because one is used for a signal line for transmitting a signal level and the other is used for a clock.
  • a controller-side sensor signal receiving unit 15 that is a management-unit-side communication unit that is connected to the controller 10 and can be attached to the blood feeding tube 12 is arranged. .
  • FIG. 3 is a schematic perspective view showing the controller-side sensor signal receiver 15 of FIG.
  • the controller-side sensor signal receiving unit 15 has an upper housing 15a and a lower housing 15b, and has a tube opening 15c into which the blood feeding tube 12 can be inserted at the center thereof. .
  • terminals A1, A2, B1, and B2 which are communication unit side terminal portions are arranged so as to protrude inside the tube opening 15c.
  • the terminal A2 used as a pair is formed in the opposite position which is the side facing the terminal A1.
  • a pair of terminals B2 are formed at opposite positions on the side facing the terminal B1. These terminals have a needle or blade-like shape at the tip oriented to the tube side.
  • these four terminals A1 and the like are inserted into the blood feeding tube 12, and depending on the arrangement state, they are connected to the conductive portions 13a and 13b in FIG. It has a possible configuration.
  • one or two terminals A1 or the like are provided for one of the conductive portions 13a and 13b in FIG. 2 when arranged in the tube opening 15c of the controller-side sensor signal receiving portion 15 in FIG. It has a connectable structure.
  • the terminal A2 and the like protrude from the lower housing 15b (or the upper housing 15a) to the tube opening 15c side by the spring 15d. It is energized.
  • a hinge 15e is disposed along the longitudinal direction of the blood feeding tube 12 on one side of a connection portion between the upper housing 15a and the lower housing 15. For this reason, the upper housing 15a and the lower housing 15 are configured such that the hinge 15e can be separated from the fulcrum.
  • two hooks 15f and 15f are formed on the upper casing 15a opposite to the hinge 15e.
  • the lower housing 15b is formed with two hook engaging portions 15g and 15g that engage with the two hooks 15f and 15f of the upper housing 15a. Therefore, when the person in charge or the like attaches the controller-side sensor signal receiving unit 15 to the blood feeding tube 12, the upper housing 15a is separated from the lower housing 15b with the hinge 15e as a fulcrum (opening direction). In this state, the blood feeding tube 12 is placed in the tube opening 15c.
  • the upper casing 15a is moved in a direction to close the hinge 15e as a fulcrum, and is moved until it comes into contact with the lower casing 15b. Thereby, the person in charge or the like can easily attach the controller-side sensor signal receiving unit 15 to the blood feeding tube 12.
  • the terminal A2 and the like are urged toward the blood supply tube 12 by the urging force of the spring 15d with respect to the blood supply tube 12 disposed in the tube opening 15c. Therefore, when the conductive portions 13a and 13b are disposed at the corresponding positions, the terminal A2 and the like can be reliably brought into contact with the conductive portions 13a and 13b.
  • the lower casing 15b is engaged with the hooks 15f and 15f of the upper casing 15a and the hook engaging portions 15g and 15g of the lower casing 15b.
  • Two release pieces 15h, 15h for releasing the are formed. Therefore, the person in charge or the like can easily open the upper housing 15a and the lower housing 15b when removing the controller-side sensor signal receiving unit 15 from the blood feeding tube 12, for example.
  • the side sensor signal receiver 15 can be detached from the blood supply tube 12.
  • the flow sensor 14 of FIG. 1 has a tube opening formed in the center thereof, similar to the controller-side sensor signal receiver 15 of FIG. 3, and can be connected to the conductive portions 13a and 13b in the blood feeding tube 12.
  • sensor side terminals E1, E2, F1, and F2 which are measurement side terminals, are arranged in the same manner as the terminals A1, A2, B1, and B2.
  • the controller 10 is configured to be able to communicate with the flow sensor 15 via the conductive portions 13a and 13b.
  • the relationship between the terminal A1 and the like, the sensor side terminal E1 and the like, and the conductive portions 13a and 13b will be described later.
  • the clamp 7 (tube occlusion device) in FIG. It becomes the structure which can be obstructed urgently using.
  • the controller 10 and the flow rate sensor 14 of the extracorporeal circulation apparatus 1 shown in FIG. 1 have a computer.
  • the computer includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read). These are connected via a bus.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read
  • FIG. 4 is a schematic block diagram showing the main configuration of the controller 10 of FIG.
  • the controller 10 includes a “controller control unit 21”, and the controller control unit 21 communicates with the controller-side sensor signal receiving unit 15 of FIG. To control.
  • the communication between the “controller-side communication device 22” and the “controller-side sensor signal receiving unit 15” is performed by wire or wireless. However, in the case of wired, it is preferably performed by RS232C which is strong against electromagnetic noise. Although it is preferable to use infrared communication, it is necessary to mount a power battery in the controller-side sensor signal receiver 15. Since the signal cable is not used, the entire apparatus is orderly.
  • the controller control unit 21 is configured to control a touch panel 23 formed of a color liquid crystal, an organic EL, or the like that serves as a display unit and an input unit.
  • the controller control unit 21 is also configured to control the “controller body 24”.
  • the controller body 24 is a device that controls blood circulation and the like of the extracorporeal circulation device 1.
  • the controller control unit 21 also controls a “rectangular wave detection device 25” for detecting a rectangular wave of a signal output from the terminal A1 or the like.
  • controller control unit 21 also controls the “first information storage unit 30” and the “second information storage unit 40” shown in FIG.
  • FIGS. 5 and 6 are schematic block diagrams showing main configurations of the first various information storage unit 30 and the second various information storage unit 40, respectively. Specific contents thereof will be described later.
  • FIG. 7 is a schematic block diagram showing the main configuration of the flow sensor 15 of FIG.
  • the flow sensor 15 has a “flow sensor control unit 51”
  • the flow sensor control unit 51 includes “sensor side communication device 52”, “sensor side terminals E 1, E 2, F1, F2 "are controlled.
  • the sensor-side control unit 51 controls the “sensor-side terminal signal detection device 53”, “clock signal input terminal storage unit 54”, “single line specifying unit 55”, and “reception data storage unit 56” shown in FIG.
  • these configurations will be described later.
  • step ST (hereinafter referred to as “ST”) 1 in FIG. 8, necessary information is stored in the controller 10 as a preliminary process. That is, the arrangement information of the terminal A1 and the like of the control side sensor signal receiving unit 15 in FIG. 3 and the conductive parts 13a and 13b on the blood feeding tube 12 side shown in FIG. To remember.
  • the person in charge or the like receives the controller side sensor signal so that the terminal A1 or the like of the controller side sensor signal receiving unit 15 is arranged at a specific position with respect to the conductive parts 13a and 13b of the blood supply tube 12. The part 15 is not attached to the blood feeding tube 12.
  • the terminal A1 and the conductive parts 13a and 13b when the controller-side sensor signal receiver 15 is attached to the blood feeding tube 12 so as to be able to cope with any arrangement are expected.
  • the information on the relative positional relationship is stored in advance.
  • FIG. 10 is a schematic cross-sectional view showing the relative positional relationship between the terminal A1 and the like and the conductive portions 13a and 13b when the controller-side sensor signal receiving portion 15 is attached to the blood feeding tube 12.
  • four patterns are stored in the “terminal and conductive part arrangement information storage unit 31” in FIG. 5. Note that the conductive portions 13a and 13b perform the same function even when their positions are reversed, so that the pattern is also included when the conductive portions 13a and 13b are replaced.
  • FIG. 10A is a schematic cross-sectional view showing “Pattern 1”. As shown in FIG. 10A, the terminal A1 and the terminal B1 are connected to one conductor 13a, and the terminal B2 and the terminal A2 are connected to the other conductor 13b.
  • FIG. 10B is a schematic cross-sectional view showing “Pattern 2”. As shown in FIG. 10B, only the terminal B1 is connected to one conductive portion 13a, only the terminal B2 is connected to the other conductive portion 13b, and the terminals A1 and A2 are not connected to the conductive portions 13a and 13b. It has become.
  • FIG. 10C is a schematic cross-sectional view showing “Pattern 3”. As shown in FIG.
  • FIG. 10D is a schematic sectional view showing “Pattern 4”. As shown in FIG. 10D, the terminal A1 and the terminal B2 are connected to one conductive portion 13b, and the terminal B1 and the terminal A2 are connected to the other conductive portion 13a.
  • the controller 10 stores information on the expected relative positional relationship between the terminal A1 and the like and the conductive portions 13a and 13b when the controller-side sensor signal receiving portion 15 is attached to the blood feeding tube 12.
  • the process proceeds to ST2 in FIG.
  • a person in charge or the like assembles the extracorporeal circulation device 1 as shown in FIG. 1 and attaches the controller-side sensor signal receiving unit 15 to the blood feeding tube 12.
  • the process proceeds to ST3.
  • ST3 it is unclear in which pattern in FIG. 10 the controller-side sensor signal receiving unit 15 is arranged with respect to the conductive parts 13a and 13b of the blood supply tube 12. Therefore, the arrangement state is automatically set in ST3 and below. judge.
  • the controller 10 sets the terminal A2 of the controller-side sensor signal receiving unit 15 in FIG. 3 in an unconnected state, and inputs a signal from the terminal A1 arranged on the opposite side facing the terminal A2.
  • the rectangular wave detection device 25 in FIG. 4 operates to detect, for example, a rectangular wave that is a signal output from another terminal in response to a signal (an example of a specific signal) input from the terminal A1. . Specifically, it is determined whether or not a rectangular wave is detected from the terminal B1 or the terminal B2 in FIG. If it is determined in ST4 that a rectangular wave is detected from the terminal B1 or B2, the process proceeds to ST5. In ST5, the rectangular wave detection device 25 stores the terminal that detected the rectangular wave, for example, the terminal B1 or the terminal B2 in the “rectangular wave detection terminal information storage unit 32” in FIG.
  • the process proceeds to ST6.
  • the rectangular wave detection device 25 stores information indicating that the rectangular wave is not detected in the “rectangular wave detection terminal information storage unit 32” in FIG.
  • the “pattern judgment unit (program) 33” in FIG. 5 operates and refers to the “rectangular wave detection terminal information storage unit 32” and the “terminal and conductive unit arrangement information storage unit 31” in FIG.
  • the connection patterns between the terminals 13a and 13b and the terminal A1 and the like are searched for and stored in the “search specified pattern storage unit 34” in FIG.
  • the controller 10 by outputting a signal from the terminal A1 and not detecting or detecting the rectangular wave from the other terminal B1 or the like, the controller 10 causes the controller-side sensor signal receiving unit 15 to send blood.
  • the relative positional relationship between the terminal A1 and the like and the conductive portions 13a and 13b when mounted on the tube 12 can be automatically specified.
  • the “use terminal determination unit (program) 41” in FIG. 6 operates and refers to the “search specific pattern storage unit 34” and the “pattern corresponding use terminal information storage unit 35”.
  • the pattern corresponding use terminal information storage unit 35 stores information about which terminal is assigned to a signal line or a clock line in each of the patterns 1 to 4 in FIG. Specifically, in the case of “Pattern 1” and “Pattern 4”, if the terminals A1 and A2 are used, the terminal A1 is used as a signal line, the terminal A2 is used as a clock, and the terminals B1 and B2 are not connected. It is remembered. In the case of “Pattern 2 and 3,” it is stored that the terminals A1, B1, B2 are used as signal lines and the terminals A2, B2 are used as clocks in the used terminals A1, A2, B1, B2.
  • the “use terminal determination unit (program) 41” specifies the use terminal, the signal line, and the clock based on the “search specific pattern storage unit 34” and the “pattern corresponding use terminal information storage unit 35”. Is stored in the “used terminal etc. information storage unit 42”. For example, in the case of “pattern 1”, the terminal A1 and the terminal A2 are selected, the terminal A1 is used as the signal line, the terminal A2 is used as the clock, and the terminals B1 and B2 are stored as unconnected.
  • the flow sensor 14 is attached to the blood supply tube 12 as shown in FIG.
  • the arrangement of the sensor side terminals E1, E2, F1, and F2 of the flow rate sensor 14 at this time is the same as that of the terminals A1, A2, B1, and B2 of the controller side sensor signal receiving unit 15 as described above.
  • the flow rate sensor 14 in which the sensor side terminal E1 and the like are arranged is not required to be positioned in the same manner as the controller side sensor signal receiving unit 15, and the mounting is completed simply by arranging it in the blood feeding tube 12. . For this reason, a person in charge or the like can easily attach the flow sensor 14, and the assembly of the extracorporeal circulation device 1 becomes easy.
  • the process proceeds to ST11.
  • the “controller side data transmission unit (program) 43” in FIG. 6 operates, and the “used terminal information storage unit 42”, “sensor identification information storage unit 44” and “sensor transmission data” in FIG. Refer to “Storage 45”.
  • This “sensor identification information storage unit 44” is identification information (sensor address) of the flow sensor 14 to be transmitted, and the flow sensor only when the sensor address of the flow sensor 14 that has received the signal corresponds to this sensor address. 14 is configured to respond.
  • the “sensor transmission data storage unit 45” is transmission data such as a command to the target flow sensor 14. In the present embodiment, for example, the flow rate sensor 14 has been described as an example of the measurement unit.
  • the “measurement unit” of the present invention is not limited to the flow rate sensor 14, and other than the clamp 7 in FIG.
  • Various sensors such as “pressure sensor”, “temperature sensor”, “blood gas sensor”, and “bubble sensor” which are used in the extracorporeal circulation apparatus 1 but are not particularly illustrated in FIG. 1 are included.
  • the controller-side data transmission unit (program) 43 refers to the used terminal information storage unit 42, the sensor identification information storage unit 44, and the sensor transmission data storage unit 45, for example, the terminal A2 as a clock, and the terminal A1.
  • a clock signal is transmitted at the terminal A2, and a target sensor identification signal (sensor address) and transmission data for the sensor are transmitted to the terminal A1.
  • This clock signal is an example of a non-main body signal
  • transmission data for a sensor is an example of a main body signal.
  • the process proceeds to ST12.
  • the “sensor side terminal signal detection device 53” of the flow sensor 14 of FIG. 7 operates, and the sensor side terminals E1, E2, F1, and F2 of the flow sensor 14 are clock signals (rectangular wave signals) from the controller 10. Is detected.
  • the process proceeds to ST13.
  • the sensor-side terminal signal detection device 53 identifies the sensor-side terminal F2 or the like to which the clock signal (rectangular wave) is input, and stores it in the “clock signal input terminal storage unit 54” in FIG.
  • the process proceeds to ST14.
  • the “signal line specifying unit (program) 55” of FIG. 7 operates, refers to the “clock signal input terminal storage unit 54”, and stores the terminal F2 and the like paired with the stored sensor terminal F1 etc. Wait for command input using the terminal located at) as the signal line.
  • the flow sensor 14 having the sensor side terminal E1 and the like is not mounted so as to be positioned at a specific position with the conductive portions 13a and 13b in the blood supply tube 12, but is simply mounted.
  • communication with the controller 10 can be automatically established. Therefore, the labor of the person in charge of assembling the extracorporeal circulation device 1 can be saved, and the flow sensor 14 can be easily attached to the blood supply tube 12.
  • transmission data is received from the sensor terminal F2 or the like determined as a signal line in ST14, and stored in the “reception data storage unit 56” in FIG. Next, the process proceeds to ST16.
  • the flow sensor 14 determines whether or not the received data command is valid. If it is determined in ST16 that it is valid, the process proceeds to ST17, and a response to the command is transmitted on the signal line such as the terminal F2. On the other hand, if the received command is not valid in ST16, the process proceeds to ST18 and the received data is discarded as abnormal data.
  • FIG. 11 is a schematic diagram illustrating a main configuration of the extracorporeal circulation device 100 according to the second embodiment of the present invention. Since many configurations of the extracorporeal circulation apparatus 100 according to the present embodiment are common to the extracorporeal circulation apparatus 1 according to the first embodiment described above, the description of the common configuration is omitted as the same reference numerals, Hereinafter, the difference will be mainly described.
  • the drive motor 104 and the centrifugal pump 103 are configured to be detachable by a magnet or the like.
  • terminals C1, C2, D1, and D2 are formed on the connection surface 104a of the drive motor 104 with the centrifugal pump 103.
  • FIG. 12 is a schematic diagram showing an arrangement state of the terminals C1 and the like on the connection surface 104a of the drive motor 104.
  • FIG. 12 As shown in FIG. 12, four terminals C1 and the like are formed, and these four terminals C1 and the like are arranged in the same manner as the terminals A1, A2, B1, and B2 of the first embodiment described above, and the terminals C1 and the like are formed so as to protrude toward the centrifugal pump 103 side.
  • arc-shaped conductive portions 130a and 130b (an example of a pump-side conductive portion) made of a conductive material are formed on the centrifugal pump 103 side of FIG. It can be connected to one or two.
  • FIG. 13 is a schematic diagram showing the conductive portions 130 a and 130 b formed on the connection surface of the centrifugal pump 103 with the drive motor 104.
  • the terminals C1 and the like are configured to be electrically connected to the controller 10, and the conductive portions 130a and 130b are artificial lungs that are mechanically and electrically connected to the housing of the centrifugal pump 103 and the centrifugal pump 103. It is possible to connect to the conductive portions 13a and 13b disposed inside the blood feeding tube 12 and the like through an electrical connection path disposed in the housing 2. That is, the connection between the terminal C1 and the like and the controller 10 is wired in the drive motor 104, while the conductive portions 130a and 130b of the centrifugal pump 103 and the conductive portions 13a and 13b disposed inside the blood feeding tube 12 are connected.
  • connection is also made by wiring inside or on the surface of the centrifugal pump 103, the artificial lung 2, or the like. Further, the wiring and each conductive portion of the blood feeding tube 12 are connected one-to-one (for example, 130a and 13a and 130b and 13b are connected to each other), and one end of each wiring on the blood feeding tube 12 side is blood feeding.
  • the tube 12 is configured not to be connected across a plurality of conductive portions.
  • terminal C1 and the like on the drive motor 104 side and the conductive parts 130a and 130b on the centrifugal pump 104 side are electrically connected to the terminal A1 and the like of the controller-side sensor signal receiving part 15 in the first embodiment described above. Since the relationship is the same as that of the unit 13a and the like, terminals that can communicate in the same manner are automatically determined.
  • FIG. 14 is a schematic diagram showing a pattern similar to the pattern shown in FIG. 10 of the first embodiment. 14 (a), (b), (c) and (d) are respectively “Pattern 1” in FIG. 10 (a), “Pattern 2” in (b), “Pattern 3” in (c) and The “pattern 4” of (d) is shown. Therefore, the communication between the controller 10 and the flow sensor 14 is performed through the same process as the first embodiment.
  • FIG. 15 is a schematic diagram illustrating a modification of the terminal A1 and the like according to the first embodiment. As illustrated in FIG. 15, the terminals G1, G2, I1, and I2 may be configured not to protrude from the controller-side sensor signal receiving unit 15.
  • FIG. 16 is a schematic diagram illustrating a modification of the conductive portion 13a and the like according to the first embodiment. As shown in FIG. 16, conductive portions 230 a and 230 b may be formed on the surface of the blood supply tube 12.
  • the number of terminals is four. However, the present invention is not limited to this, and six terminals, for example, may be provided. Furthermore, in the present embodiment, the number of the conductive portions is two, but the present invention may be three or more. In the case where a plurality of conductive portions are arranged, the following relationship is preferable. That is.
  • the angle ⁇ between H1 and H2 in FIG. 2 is 60 degrees or more and less than 120 degrees, and when the angle ⁇ of one conductive portion and the number of conductive portions are N, the angle ⁇ is less than “360 degrees / N”. 360 degrees / 2N "or more is required. That is, it is required that the conductive portion be arranged so as to be connectable to one or more and less than three terminals.
  • the present invention is not limited to the above-described embodiment.
  • You may form the exposed part which an electroconductive part exposes outside in the middle of the longitudinal direction, such as the blood supply tube 12 of the above-mentioned 1st Embodiment.
  • the conductive portion may be formed by applying a conductive plastic material to the surface of the blood supply tube 12 or the like.
  • Sensor side communication device 53 ... Sensor side terminal Signal detector 54, clock signal input terminal storage unit 55, signal line identification unit (program), 56 reception data storage unit 104a, connection surface, A1, A2, B1, B2 , C1, C2, D1, D2, G1, G2, I1, I2 ... terminals, E1, E2, F1, F2 ... sensor side terminals, 1R ... circulation circuit, P ... patient

Abstract

 The present invention is an extracorporeal circulation device wherein complexity of handling of cables and other components is overcome, and the extracorporeal circulation device is configured so that connection for communication and the like between a measurement part (14) such as a flow rate sensor and an extracorporeal circulation management part (10) such as a controller can be facilitated. The present invention has an extracorporeal circulation management part (10) for managing extracorporeal circulation of blood, a tube part (12) for guiding blood flow in extracorporeal circulation, and a measurement part (14) for measuring blood in the tube part, and a plurality of electroconductive parts (13a, 13b) for communication between the measurement part (14) and the extracorporeal circulation management part (10) are formed in the tube part (12).

Description

体外循環装置Extracorporeal circulation device
 本発明は、例えば、患者の血液の体外循環を行う体外循環装置に関するものである。 The present invention relates to an extracorporeal circulation device that performs extracorporeal circulation of a patient's blood, for example.
 従来から例えば、手術中において、経皮的心肺補助法(Parcutaneous cardiopulmonary support(PCPS)が用いられている。この経皮的心肺補助法は、一般的に遠心ポンプと膜型人工肺を用いた閉鎖回路の人工心肺装置(体外循環装置)により、大腿動静脈経由で心肺補助を行うものである。
 このため、手術中等において患者に対する血液の供給が必要なとき、患者の血液を体外で循環させるため人工心肺等を有する体外循環装置が用いられている(例えば、特許文献1)。
 このような体外循環装置は、循環している血液の流量値等をモニタリングする必要があり、そのため、血液が循環しているチューブには、チューブ内の血液の流量等を測定する流量センサ等が配置されている。
 このような流量センサが測定したデータは、体外循環装置を管理するコントローラにケーブルを介して送信される。
Conventionally, for example, during surgery, percutaneous cardiopulmonary support (PCPS) has been used, and this percutaneous cardiopulmonary support generally uses a centrifugal pump and a membrane oxygenator. Cardiopulmonary assistance is performed via the femoral arteriovenous device by means of an artificial cardiopulmonary device (extracorporeal circulation device) of a circuit.
For this reason, an extracorporeal circulation apparatus having an artificial heart-lung machine or the like is used to circulate the patient's blood outside the body when blood supply to the patient is necessary during surgery or the like (for example, Patent Document 1).
Such an extracorporeal circulation apparatus needs to monitor the flow rate value of the circulating blood, and therefore, the tube in which the blood circulates has a flow sensor or the like for measuring the flow rate of the blood in the tube. Has been placed.
Data measured by such a flow sensor is transmitted via a cable to a controller that manages the extracorporeal circulation device.
特開2006―325750号公報JP 2006-325750 A
 しかしながら、コントローラと流量センサ等を接続するケーブルをどのように配置させるかについての所謂、取り回しが煩雑となるという問題があった。
 一方、ケーブルを用いず無線通信とすると手術室等のシールドされた環境下では乱反射し易く、消費電力も大きくなるという問題があった。
 さらに、無線通信の場合、体外循環装置を飛行機の中で使用する場合、他の飛行機の機器に悪影響を与えるおそれがあった。
 また、体外循環装置は、コントローラ、チューブ、流量センサ等をそれぞれ組み合わせてから使用するため、流量センサとコントローラとの間の通信の接続の設定手順が簡易であることが好ましいという要望もあった。
However, there is a problem that the so-called handling of how to arrange the cable connecting the controller and the flow rate sensor becomes complicated.
On the other hand, when wireless communication is performed without using a cable, there is a problem that diffuse reflection easily occurs in a shielded environment such as an operating room and power consumption increases.
Further, in the case of wireless communication, when the extracorporeal circulation device is used in an airplane, there is a risk of adversely affecting other airplane equipment.
In addition, since the extracorporeal circulation device is used after being combined with a controller, a tube, a flow rate sensor, and the like, there has also been a demand that the communication connection setting procedure between the flow rate sensor and the controller is preferably simple.
 そこで、本発明は、ケーブル等の取り回しの煩雑さを解消し、且つ、流量センサ等の測定部と、コントローラ等の体外循環管理装置との間の通信等の接続を容易に行うことができる体外循環装置を提供することを目的とする。 Therefore, the present invention eliminates the complexity of handling cables and the like, and enables easy connection of communication between a measuring unit such as a flow sensor and an extracorporeal circulation management device such as a controller. An object is to provide a circulation device.
 上記目的は、本発明にあっては、血液の体外循環を管理する体外循環管理部と、前記体外循環における血液の流れを案内するチューブ部と、前記チューブ部内の血液を測定する測定部を有し、前記チューブ部には、前記測定部と前記体外循環管理部との間の通信のための複数の導電部が形成されることを特徴とする体外循環装置により達成される。 The object is to provide an extracorporeal circulation management unit for managing the extracorporeal circulation of blood, a tube unit for guiding the blood flow in the extracorporeal circulation, and a measurement unit for measuring the blood in the tube unit. The tube part is formed with an extracorporeal circulation apparatus in which a plurality of conductive parts for communication between the measurement part and the extracorporeal circulation management part are formed.
 前記構成によれば、流量センサ等の測定部とコントローラ等の体外循環管理部との間の通信は、チューブ部の導電部を介して行われる。
 すなわち、従来のケーブル等の多くの部分を、チューブ部に配置される導電部に置き換えることができる。
 このため、従来のように、測定部から体外循環管理部の間をケーブル等で接続させる必要がないので、ケーブル等の取り回しの煩雑さを解消することができる。
According to the said structure, communication between measuring parts, such as a flow sensor, and extracorporeal circulation management parts, such as a controller, is performed via the electroconductive part of a tube part.
That is, many parts such as a conventional cable can be replaced with a conductive part arranged in the tube part.
For this reason, since it is not necessary to connect between a measurement part and an extracorporeal circulation management part with a cable etc. unlike the past, the complexity of handling of a cable etc. can be eliminated.
 好ましくは、前記導電部と接続し、前記測定部からの信号を前記体外循環管理部へ送信するための管理部側通信部が配置され、この管理部側通信部は、前記導電部と接続するための複数の端子を含む通信部側端子部を有し、
 前記管理部側通信部が前記チューブ部に装着されたときに、前記通信部側端子部の特定の端子から前記チューブ部へ向け特定信号を出力し、前記特定信号を受信する、又は受信しない前記通信部側端子部の他の端子の位置情報に基づいて、前記通信部側端子部に対する前記複数の導電部の配置情報を特定することを特徴とする。
Preferably, a management unit side communication unit for connecting to the conductive unit and transmitting a signal from the measurement unit to the extracorporeal circulation management unit is disposed, and the management unit side communication unit is connected to the conductive unit. A communication unit side terminal portion including a plurality of terminals for,
When the management unit side communication unit is attached to the tube unit, the specific signal is output from the specific terminal of the communication unit side terminal unit to the tube unit, and the specific signal is received or not received. Based on position information of other terminals of the communication unit side terminal unit, arrangement information of the plurality of conductive units with respect to the communication unit side terminal unit is specified.
 前記構成によれば、管理部側通信部がチューブ部に装着されたときに、通信部側端子部の特定の端子からチューブ部へ向け特定信号を出力し、特定信号を受信する又は受信しない通信部側端子部の他の端子の位置情報に基づいて、通信部側端子部に対する複数の導電部の配置情報を特定する。
 したがって、通信部側端子部を有する管理部側通信部をチューブ部に装着するだけで、通信可能な導電部等を自動的に特定し、通信可能となる。
 このため、体外循環装置を組み立てる担当者は、管理部側通信部をチューブ部に装着するときに、管理部側通信部を特定の位置に配置する必要がないので、管理部側通信部とチューブ部の接続を容易に行うことができる。
According to the said structure, when the management part side communication part is mounted | worn with the tube part, the specific signal is output toward the tube part from the specific terminal of the communication part side terminal part, and the communication which receives or does not receive a specific signal Based on the positional information of the other terminals of the part side terminal part, the arrangement information of the plurality of conductive parts with respect to the communication part side terminal part is specified.
Therefore, it is possible to automatically identify a communicable conductive part and the like by simply attaching the management part side communication part having the communication part side terminal part to the tube part, thereby enabling communication.
For this reason, the person in charge of assembling the extracorporeal circulation device does not need to place the management unit side communication unit at a specific position when attaching the management unit side communication unit to the tube unit. The parts can be easily connected.
 好ましくは、前記測定部は、前記測定部を前記チューブ部に装着したときに前記導電部と接続可能な複数の端子を含む測定部側端子部を有し、前記管理部側通信部は、非本体信号及び本体信号をそれぞれ別の前記導電部で送信するとき、前記チューブ部に装着された前記測定部の前記測定部側端子部は、前記非本体信号を受信した前記測定部側端子部の端子の位置情報に基づいて、前記本体信号を受信する前記測定部側端子部の端子を特定して、前記本体信号を受信する構成となっていること特徴とする。 Preferably, the measurement unit includes a measurement unit side terminal unit including a plurality of terminals connectable to the conductive unit when the measurement unit is attached to the tube unit, and the management unit side communication unit is When the main body signal and the main body signal are transmitted by the different conductive parts, the measurement unit side terminal part of the measurement unit attached to the tube part is configured to receive the non-main body signal. Based on the terminal position information, the terminal of the measurement unit side terminal unit that receives the main body signal is specified, and the main body signal is received.
 前記構成によれば、管理部側通信部は、クロック信号等の非本体信号及び送信データ等の本体信号をそれぞれ別の導電部で送信する。
 一方、チューブ部に装着された測定部の測定部側端子部は、非本体信号を受信した測定部側端子部の端子の位置情報に基づいて、本体信号を受信する測定部側端子部の端子を特定して、本体信号を受信する構成となっている。
 したがって、測定部側端子部を有する測定部をチューブ部に対して、特定の位置に装着しなくても、管理部側通信部を介して、体外循環管理装置と通信することができる。
 このため、体外循環装置を組み立てる担当者は、測定部をチューブ部に対して特定の位置に装着しなくても、自動的に通信が可能となるので、測定部をチューブ部の接続を容易に行うことができる。
According to the said structure, the management part side communication part transmits non-main body signals, such as a clock signal, and main body signals, such as transmission data, by a respectively different electroconductive part.
On the other hand, the measurement unit side terminal unit of the measurement unit attached to the tube unit is a terminal of the measurement unit side terminal unit that receives the main body signal based on the position information of the terminal of the measurement unit side terminal unit that has received the non-main body signal. And a main body signal is received.
Therefore, it is possible to communicate with the extracorporeal circulation management device via the management unit side communication unit even if the measurement unit having the measurement unit side terminal unit is not attached to the tube unit at a specific position.
For this reason, the person in charge of assembling the extracorporeal circulation device can automatically communicate without attaching the measuring unit to the tube unit at a specific position, so that the measuring unit can be easily connected to the tube unit. It can be carried out.
 好ましくは、前記チューブ部内の血液を循環させるポンプ部と、前記ポンプ部を駆動させるモータ部と、を有し、前記ポンプ部が、前記チューブ部と接続されると共に、前記モータ部が、前記体外循環管理部と接続され、これらポンプ部とモータ部は着脱可能な構成となっており、前記モータ部の前記ポンプ部と当接する側に前記通信側端子部が形成され、前記ポンプ部の前記モータ部と当接する側に前記ポンプ側導電部が形成され、前記ポンプ側導電部は、前記導電部と同様の形状を成し、前記通信側端子部と前記ポンプ側導電部は、それぞれ、前記体外循環管理部と前記チューブ部の前記導電部と接続されていることを特徴とする。 Preferably, a pump unit that circulates blood in the tube unit and a motor unit that drives the pump unit, the pump unit is connected to the tube unit, and the motor unit is connected to the external body. The pump unit and the motor unit are detachably connected to the circulation management unit, the communication side terminal unit is formed on the side of the motor unit that contacts the pump unit, and the motor of the pump unit The pump-side conductive part is formed on the side in contact with the part, the pump-side conductive part has the same shape as the conductive part, and the communication-side terminal part and the pump-side conductive part are respectively connected to the external body It is connected with the circulation management part and the conductive part of the tube part.
 前記構成によれば、体外循環管理部と測定部との間の通信は、モータ部の通信側端子部、ポンプ側導電部、チューブ部の導電部を介して測定部へ送信等されるので、これらの間の通信を行うに際し、有線のケーブル等を介する必要がない。
 したがって、体外循環装置の組み立ての際、担当者等は、測定部から体外循環管理部の間のケーブル等の取り回し等を考慮する必要が全くない。
According to the above configuration, the communication between the extracorporeal circulation management unit and the measurement unit is transmitted to the measurement unit via the communication side terminal unit of the motor unit, the pump side conductive unit, the conductive unit of the tube unit, etc. There is no need to use a wired cable or the like when performing communication between them.
Therefore, when assembling the extracorporeal circulation device, the person in charge or the like does not have to consider the handling of the cable or the like between the measurement unit and the extracorporeal circulation management unit.
 好ましくは、前記特定信号が矩形波で、複数の前記導電部のうち1つの前記導電部及び/又は複数の前記ポンプ側導電部のうち1つの前記ポンプ側導電部が、1又は2の前記測定部側端子部の端子及び前記通信部側端子部の端子に接続可能な構成となっていることを特徴とする。 Preferably, the specific signal is a rectangular wave, and one of the plurality of the conductive portions and / or one of the plurality of the pump-side conductive portions has one or two of the measurements. It is the structure which can be connected to the terminal of a part side terminal part, and the terminal of the said communication part side terminal part.
 以上説明したように、本発明によれば、ケーブル等の取り回しの煩雑さを解消し、且つ、流量センサ等の測定部と、コントローラ等の体外循環管理装置との間の通信等の接続を容易に行うことができる体外循環装置を提供できるという利点がある。 As described above, according to the present invention, the troublesome handling of cables and the like is eliminated, and communication and the like are easily connected between the measurement unit such as the flow sensor and the extracorporeal circulation management device such as the controller. Therefore, there is an advantage that an extracorporeal circulation device that can be performed is provided.
本発明の第1の実施の形態に係る体外循環装置の主な構成を示す概略図である。It is the schematic which shows the main structures of the extracorporeal circulation apparatus which concerns on the 1st Embodiment of this invention. 図1の送血チューブ及び脱血チューブの概略断面図である。It is a schematic sectional drawing of the blood feeding tube and blood removal tube of FIG. 図1のコントローラ側センサ信号受信部を示す概略斜視図である。It is a schematic perspective view which shows the controller side sensor signal receiving part of FIG. 図1のコントローラの主な構成を示す概略ブロック図である。It is a schematic block diagram which shows the main structures of the controller of FIG. 第1の情報記憶部の主な構成を示す概略ブロック図である。It is a schematic block diagram which shows the main structures of a 1st information storage part. 第2の情報記憶部の主な構成を示す概略ブロック図である。It is a schematic block diagram which shows the main structures of a 2nd information storage part. 図1の流量センサの主な構成を示す概略ブロック図である。It is a schematic block diagram which shows the main structures of the flow sensor of FIG. 図1の体外循環装置の主な動作例等を示す概略フローチャートである。It is a schematic flowchart which shows the main operation examples etc. of the extracorporeal circulation apparatus of FIG. 図1の体外循環装置の主な動作例等を示す他の概略フローチャートである。It is another schematic flowchart which shows the main operation examples etc. of the extracorporeal circulation apparatus of FIG. コントローラ側センサ信号受信部が送血チューブに装着されたときの端子と導電部との相対位置関係を示す概略断面図である。It is a schematic sectional drawing which shows the relative positional relationship of a terminal and an electroconductive part when a controller side sensor signal receiving part is mounted | worn with the blood-feeding tube. 本発明の第2の実施の形態にかかる体外循環装置の主な構成を示す概略図である。It is the schematic which shows the main structures of the extracorporeal circulation apparatus concerning the 2nd Embodiment of this invention. ドライブモータの接続面における端子の配置状態を示す概略図である。It is the schematic which shows the arrangement | positioning state of the terminal in the connection surface of a drive motor. 遠心ポンプ側に形成された導電部を示す概略図である。It is the schematic which shows the electroconductive part formed in the centrifugal pump side. 第1の実施の形態の図10に示すパターンと同様のパターンを示す概略図である。It is the schematic which shows the pattern similar to the pattern shown in FIG. 10 of 1st Embodiment. 第1の実施の形態の端子の変形例を示す概略図である。It is the schematic which shows the modification of the terminal of 1st Embodiment. 第1の実施の形態等の導電部の変形例を示す概略図である。It is the schematic which shows the modification of electroconductive parts, such as 1st Embodiment.
 以下、この発明の好適な実施の形態を、添付図面等を参照しながら、詳細に説明する。
 尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The embodiments described below are preferred specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. Unless otherwise stated, the present invention is not limited to these embodiments.
(第1の実施の形態)
 図1は、本発明の第1の実施の形態に係る体外循環装置1の主な構成を示す概略図である。
 図1に示す、体外循環装置1は、図1に示す患者Pの血液の体外循環を行う装置であるが、この「体外循環」には「体外循環動作」と「補助循環動作」が含まれる。
 「体外循環動作」は、体外循環装置1の適用対象である患者(被術者)Pの心臓に血液が循環しないため患者Pの体内でガス交換ができない場合に、この体外循環装置1により、血液の循環動作と、この血液に対するガス交換動作(酸素付加及び/又は二酸化炭素除去)を行うことである。
 また、「補助循環動作」とは、体外循環装置1の適用対象である患者(被術者)Pの心臓に血液が循環し、患者Pの肺でガス交換を行える場合で、体外循環装置1によっても血液の循環動作の補助を行うことである。装置によっては血液に対するガス交換動作を行う機能を持つものもある。
(First embodiment)
FIG. 1 is a schematic diagram showing a main configuration of an extracorporeal circulation device 1 according to a first embodiment of the present invention.
The extracorporeal circulation apparatus 1 shown in FIG. 1 is an apparatus that extracorporeally circulates the blood of the patient P shown in FIG. 1. This “extracorporeal circulation” includes “extracorporeal circulation operation” and “auxiliary circulation operation”. .
The “extracorporeal circulation operation” is performed by the extracorporeal circulation device 1 when blood cannot be exchanged in the patient P because the blood does not circulate in the heart of the patient (subject) P to which the extracorporeal circulation device 1 is applied. A blood circulation operation and a gas exchange operation (oxygen addition and / or carbon dioxide removal) for the blood are performed.
The “auxiliary circulation operation” is a case where blood circulates in the heart of a patient (subject) P to which the extracorporeal circulation apparatus 1 is applied and gas exchange can be performed in the lungs of the patient P. Is also to assist blood circulation. Some devices have a function of performing a gas exchange operation on blood.
 ところで、本実施の形態に係る図1に示す体外循環装置1では、例えば患者Pの心臓外科手術を行う場合等に用いられる。
 具体的には、体外循環装置1のポンプ部である例えば、遠心ポンプ3を作動させ、患者Pの静脈(大静脈)から脱血して、人工肺2により血液中のガス交換を行って血液の酸素加を行った後に、この血液を再び患者Pの動脈(大動脈)に戻す「人工肺体外血液循環」を行う。すなわち、体外循環装置1は、心臓と肺の代行を行う装置となる。
By the way, the extracorporeal circulation apparatus 1 shown in FIG. 1 according to the present embodiment is used, for example, when a patient P performs cardiac surgery.
Specifically, for example, the centrifugal pump 3 which is a pump unit of the extracorporeal circulation device 1 is operated, blood is removed from the vein (vena cava) of the patient P, and blood is exchanged by the artificial lung 2 to exchange blood. After the oxygenation is performed, the “artificial lung extracorporeal blood circulation” is performed in which the blood is returned to the artery (aorta) of the patient P again. That is, the extracorporeal circulation device 1 is a device that performs substitution of the heart and lungs.
 また、体外循環装置1は、以下のような構成となっている。
 すなわち、図1に示すように、体外循環装置1は、血液を循環させる「循環回路1R」を有し、循環回路1Rは、人工心肺装置である例えば、「人工肺2」、「遠心ポンプ3」、モータ部である例えば、「ドライブモータ4」、「静脈側カニューレ(脱血側カニューレ)5」と、「動脈側カニューレ(送血側カニューレ)6」と、体外循環管理部である例えば、コントローラ10を有している。なお、遠心ポンプ3は、血液ポンプとも称し、遠心式以外のポンプも利用できる。
The extracorporeal circulation apparatus 1 has the following configuration.
That is, as shown in FIG. 1, the extracorporeal circulation device 1 has a “circulation circuit 1R” for circulating blood, and the circulation circuit 1R is an artificial heart-lung machine, for example, “artificial lung 2”, “centrifugal pump 3” ”, For example,“ drive motor 4 ”,“ venous side cannula (blood removal side cannula) 5 ”,“ arterial side cannula (blood feeding side cannula) 6 ”, and extracorporeal circulation management unit, for example, A controller 10 is included. The centrifugal pump 3 is also called a blood pump, and pumps other than the centrifugal type can be used.
 そして、図1の静脈側カニューレ(脱血側カニューレ)5は、大腿静脈より挿入され、静脈側カニューレ5の先端が右心房に留置される。動脈側カニューレ(送血側カニューレ)6は、図1のコネクター9を介して、大腿動脈より挿入される。静脈側カニューレ5は、コネクター8を介して、脱血チューブ11を用いて遠心ポンプ3に接続されている。脱血チューブ(「脱血ライン」とも称す。)11は、血液を送る管路である。
 ドライブモータ4がコントローラ10の指令SGにより遠心ポンプ3を操作させると、遠心ポンプ3は、脱血チューブ11から脱血して人工肺2に通した血液を、送血チューブ12(「送液ライン」とも称する。)を介して患者Pに戻す構成となっている。
 なお、これら脱血チューブ11及び送血チューブ12は、チューブ部の一例である。
1 is inserted through the femoral vein, and the distal end of the venous cannula 5 is placed in the right atrium. An artery side cannula (blood supply side cannula) 6 is inserted from the femoral artery via the connector 9 of FIG. The venous cannula 5 is connected to the centrifugal pump 3 through a connector 8 using a blood removal tube 11. A blood removal tube (also referred to as “blood removal line”) 11 is a conduit for sending blood.
When the drive motor 4 operates the centrifugal pump 3 according to the command SG of the controller 10, the centrifugal pump 3 removes blood from the blood removal tube 11 and passed through the oxygenator 2 into the blood supply tube 12 (“liquid supply line”). It is also configured to return to the patient P via “.
The blood removal tube 11 and the blood supply tube 12 are examples of tube portions.
 人工肺2は、遠心ポンプ3と送血チューブ12の間に配置されている。人工肺2は、図1に示すように酸素ガスを導入し、この血液に対するガス交換動作(酸素付加及び/又は二酸化炭素除去)を行う。
 人工肺2は、例えば、膜型人工肺であるが、特に好ましくは中空糸膜型人工肺を用いる。送血チューブ12は、人工肺2と動脈側カニューレ6を接続している管路である。
 脱血チューブ11と送血チューブ12は、例えば、塩化ビニル樹脂やシリコーンゴム等の透明性が高く、可撓性を有する合成樹脂製の管路で、外径14mm,内径10mm程度であり、可塑剤の他に、初期色調に優れ高い紫外線吸収能を有するベンゾトリアゾール系UVA(ヒンダードアミン系光安定剤)を1~2重量%程度含有させることで、室内での蛍光灯等による紫外線劣化を防止し、安全性を向上させている。
 脱血チューブ11内では、血液はV方向に流れ、送血チューブ12内では、血液はW方向に流れる。
The artificial lung 2 is disposed between the centrifugal pump 3 and the blood supply tube 12. The oxygenator 2 introduces oxygen gas as shown in FIG. 1 and performs a gas exchange operation (oxygen addition and / or carbon dioxide removal) on the blood.
The oxygenator 2 is, for example, a membrane oxygenator, and a hollow fiber membrane oxygenator is particularly preferably used. The blood supply tube 12 is a conduit connecting the artificial lung 2 and the artery side cannula 6.
The blood removal tube 11 and the blood supply tube 12 are highly transparent and flexible synthetic resin conduits such as vinyl chloride resin and silicone rubber, and have an outer diameter of 14 mm and an inner diameter of about 10 mm. In addition to the agent, it contains about 1 to 2% by weight of benzotriazole UVA (hindered amine light stabilizer) with excellent initial color tone and high UV absorption ability to prevent UV deterioration due to fluorescent lamps indoors. , Improve safety.
In the blood removal tube 11, blood flows in the V direction, and in the blood supply tube 12, blood flows in the W direction.
 また、体外循環装置1は、その送血チューブ12に、測定部である例えば、「流量センサ14」を有している。この流量センサ14は、送血チューブ12を通る血液の流量値を測定するセンサであり、流量値の異常を検知するためのセンサである。
 流量センサ14の稼働に要する電力は、流量センサ14に搭載の電源電池より供給される。
 流量値の異常は、循環管路1Rのチューブのキンク、ドライブモータ4及び遠心ポンプ3の回転数が低下、圧力損失の増大等で生じ、循環管路1R内の血液の循環不良を発生させ、これにより、患者に低酸素症等を招来させるおそれもある。
 このため、流量センサ14とコントローラ10は迅速に通信を行う必要がある、そこで、流量センサ14とコントローラ10とは、以下に説明するように、相互に通信可能な構成となっている。
Further, the extracorporeal circulation device 1 has, for example, a “flow sensor 14” as a measurement unit in the blood supply tube 12. The flow sensor 14 is a sensor for measuring the flow value of blood passing through the blood supply tube 12 and is a sensor for detecting an abnormality in the flow value.
Electric power required for the operation of the flow sensor 14 is supplied from a power supply battery mounted on the flow sensor 14.
An abnormality in the flow rate value is caused by a kink in the tube of the circulation line 1R, a decrease in the rotation speed of the drive motor 4 and the centrifugal pump 3, an increase in pressure loss, and the like, causing poor circulation of blood in the circulation line 1R. This may cause hypoxia or the like in the patient.
For this reason, it is necessary for the flow sensor 14 and the controller 10 to communicate quickly. Therefore, the flow sensor 14 and the controller 10 are configured to communicate with each other as described below.
 図2は、図1の送血チューブ12及び脱血チューブ11の概略断面図である。図2に示すように、その中央に血液を循環させる管路12aが形成されていると共に、その外側の壁部12bには、導電性材料からなる導電部13a、13bが複数、例えば、2個埋設されている。
 この導電部13a、13bは、断面が略円弧状となっており、送血チューブ12及び脱血チューブ11の長手方向の全体にわたり埋設されている。
 すなわち、この導電部13a、13bは、通信用のケーブルと同様の機能を発揮する構成となっている。
 また、本実施の形態では、脱血チューブ11及び送血チューブ12は、図1に示すように、コネクター8、9を介して、静脈側カニューレ5及び動脈側カニューレ6と接続されている。このため、脱血チューブ11及び送血チューブ12に配置されている導電部13a、13bは、これらコネクター8、9により、患者Pの人体と隔絶され、安全性が確保される構成となっている。
FIG. 2 is a schematic cross-sectional view of the blood supply tube 12 and the blood removal tube 11 of FIG. As shown in FIG. 2, a conduit 12a for circulating blood is formed at the center thereof, and a plurality of, for example, two conductive portions 13a and 13b made of a conductive material are formed on the outer wall portion 12b. Buried.
The conductive portions 13a and 13b have a substantially arc shape in cross section, and are embedded throughout the longitudinal direction of the blood supply tube 12 and the blood removal tube 11.
That is, the conductive portions 13a and 13b are configured to exhibit the same function as the communication cable.
In the present embodiment, the blood removal tube 11 and the blood supply tube 12 are connected to the venous cannula 5 and the arterial cannula 6 via connectors 8 and 9, as shown in FIG. For this reason, the conductive portions 13a and 13b arranged in the blood removal tube 11 and the blood supply tube 12 are isolated from the human body of the patient P by these connectors 8 and 9, and the safety is ensured. .
 本実施の形態では、導電部13a、13bは、相互に接触することなく、且つ、導電部13a、13bの間に後述する端子が1つ配置されても、これら導電部13a、13bに同時に接触しないように配置されるのが好ましい。
 これは、換言すると、導電部13a、13bの両端側と送血チューブ12の中心点とを結んだ仮想線H1、H2で形成される角度が90度以上120度未満となるのが好ましい。
In the present embodiment, the conductive portions 13a and 13b are not in contact with each other, and even if one terminal to be described later is disposed between the conductive portions 13a and 13b, the conductive portions 13a and 13b are simultaneously in contact with the conductive portions 13a and 13b. It is preferable to arrange so that it does not.
In other words, it is preferable that the angle formed by imaginary lines H1 and H2 connecting both ends of the conductive portions 13a and 13b and the center point of the blood feeding tube 12 is 90 degrees or more and less than 120 degrees.
 また、本実施の形態では、2つの導電部13a、13bが配置されているが、これらは、一方が信号レベルを伝えるシグナルライン用、他方をクロック用として使用するためである。
 また、図1に示すように、本実施の形態では、コントローラ10と接続され、送血チューブ12に装着可能な管理装置側通信部である例えば、コントローラ側センサ信号受信部15が配置されている。
In the present embodiment, the two conductive portions 13a and 13b are disposed because one is used for a signal line for transmitting a signal level and the other is used for a clock.
As shown in FIG. 1, in this embodiment, for example, a controller-side sensor signal receiving unit 15 that is a management-unit-side communication unit that is connected to the controller 10 and can be attached to the blood feeding tube 12 is arranged. .
 図3は、図1のコントローラ側センサ信号受信部15を示す概略斜視図である。
 図3に示すように、コントローラ側センサ信号受信部15は、上部筐体15aと下部筐体15bを有し、その中央部に送血チューブ12を挿入可能なチューブ用開口15cを有している。
FIG. 3 is a schematic perspective view showing the controller-side sensor signal receiver 15 of FIG.
As shown in FIG. 3, the controller-side sensor signal receiving unit 15 has an upper housing 15a and a lower housing 15b, and has a tube opening 15c into which the blood feeding tube 12 can be inserted at the center thereof. .
 また、チューブ用開口15cの内側には、突出するように通信部側端子部である例えば、4つの端子A1、A2、B1及びB2が配置されている。
 このうち、端子A1に対向する側である正反対の位置には、対となる端子A2が形成されている。また、端子B1に対向する側である正反対の位置には、対となる端子B2が形成されている。これらの端子は、チューブ側に配向する先端が針または刃様形状となっている。
Further, for example, four terminals A1, A2, B1, and B2 which are communication unit side terminal portions are arranged so as to protrude inside the tube opening 15c.
Among these, the terminal A2 used as a pair is formed in the opposite position which is the side facing the terminal A1. Also, a pair of terminals B2 are formed at opposite positions on the side facing the terminal B1. These terminals have a needle or blade-like shape at the tip oriented to the tube side.
 このため、このチューブ用開口15c内に送血チューブ12を配置すると、これら4つの端子A1等が送血チューブ12内に挿入され、その配置状態によっては、図2の導電部13a、13bに接続可能な構成となっている。
 本実施の形態では、図3のコントローラ側センサ信号受信部15のチューブ用開口15c内に配置されたときに、図2の導電部13a、13bの一方について、端子A1等が1つ又は2つが接続可能な構造となっている。
For this reason, when the blood feeding tube 12 is arranged in the tube opening 15c, these four terminals A1 and the like are inserted into the blood feeding tube 12, and depending on the arrangement state, they are connected to the conductive portions 13a and 13b in FIG. It has a possible configuration.
In the present embodiment, one or two terminals A1 or the like are provided for one of the conductive portions 13a and 13b in FIG. 2 when arranged in the tube opening 15c of the controller-side sensor signal receiving portion 15 in FIG. It has a connectable structure.
 具体的には、図3の端子A2の部分拡大断面図で示すように、端子A2等は、下部筐体15b(又は上部筐体15a)からバネ15dによってチューブ用開口15c側に突出するように付勢されている。
 また、上部筐体15aと下部筐体15の接続部分の一側に、送血チューブ12の長手方向に沿ってヒンジ15eが配置されている。このため、上部筐体15aと下部筐体15はヒンジ15eを支点に離間させることができる構成とっている。
Specifically, as shown in the partial enlarged cross-sectional view of the terminal A2 in FIG. 3, the terminal A2 and the like protrude from the lower housing 15b (or the upper housing 15a) to the tube opening 15c side by the spring 15d. It is energized.
In addition, a hinge 15e is disposed along the longitudinal direction of the blood feeding tube 12 on one side of a connection portion between the upper housing 15a and the lower housing 15. For this reason, the upper housing 15a and the lower housing 15 are configured such that the hinge 15e can be separated from the fulcrum.
 さらに、図3に示すように、ヒンジ15eの反対側の上部筐体15aには、2つのフック15f、15fが形成されている。一方、下部筐体15bには、上部筐体15aの2つのフック15f、15fと係合する2つのフック係合部15g、15gが形成されている。
 このため、担当者等が、コントローラ側センサ信号受信部15を送血チューブ12に装着するときは、上部筐体15aをヒンジ15eを支点に、下部筐体15bから離間する方向(開く方向)に移動し、この状態で、送血チューブ12をチューブ用開口15cに配置する。その後、上部筐体15aを、ヒンジ15eを支点に閉まる方向に移動させ、下部筐体15bと接触するまで移動させる。
 これにより、担当者等は、容易にコントローラ側センサ信号受信部15を送血チューブ12に装着させることができる。
Furthermore, as shown in FIG. 3, two hooks 15f and 15f are formed on the upper casing 15a opposite to the hinge 15e. On the other hand, the lower housing 15b is formed with two hook engaging portions 15g and 15g that engage with the two hooks 15f and 15f of the upper housing 15a.
Therefore, when the person in charge or the like attaches the controller-side sensor signal receiving unit 15 to the blood feeding tube 12, the upper housing 15a is separated from the lower housing 15b with the hinge 15e as a fulcrum (opening direction). In this state, the blood feeding tube 12 is placed in the tube opening 15c. Thereafter, the upper casing 15a is moved in a direction to close the hinge 15e as a fulcrum, and is moved until it comes into contact with the lower casing 15b.
Thereby, the person in charge or the like can easily attach the controller-side sensor signal receiving unit 15 to the blood feeding tube 12.
 このとき、チューブ用開口15c内に配置された送血チューブ12に対して、端子A2等が、バネ15dの付勢力により送血チューブ12に向かって付勢される。したがって、対応する位置に導電部13a、13bが配置されているときは、端子A2等を、確実に導電部13a、13bに接触させることができる。 At this time, the terminal A2 and the like are urged toward the blood supply tube 12 by the urging force of the spring 15d with respect to the blood supply tube 12 disposed in the tube opening 15c. Therefore, when the conductive portions 13a and 13b are disposed at the corresponding positions, the terminal A2 and the like can be reliably brought into contact with the conductive portions 13a and 13b.
 また、図3に示すように、本実施の形態では、例えば、下部筐体15bに、上部筐体15aのフック15f、15fと、下部筐体15bのフック係合部15g、15gとの係合を解除させる2つの解除片15h、15hが形成されている。
 したがって、担当者等は、例えば、コントローラ側センサ信号受信部15を送血チューブ12から取り外すとき等は、容易に上部筐体15aと下部筐体15bを開くことができ、これにより、容易にコントローラ側センサ信号受信部15を送血チューブ12から取り外すことができる。
As shown in FIG. 3, in the present embodiment, for example, the lower casing 15b is engaged with the hooks 15f and 15f of the upper casing 15a and the hook engaging portions 15g and 15g of the lower casing 15b. Two release pieces 15h, 15h for releasing the are formed.
Therefore, the person in charge or the like can easily open the upper housing 15a and the lower housing 15b when removing the controller-side sensor signal receiving unit 15 from the blood feeding tube 12, for example. The side sensor signal receiver 15 can be detached from the blood supply tube 12.
 また、図1の流量センサ14も図3のコントローラ側センサ信号受信部15と同様に、その中央部に、チューブ用開口が形成され、送血チューブ12内の導電部13a、13bと接続可能な測定部側端子部である例えば、センサ側端子E1、E2、F1、F2が、端子A1,A2,B1、B2と同様に配置されている。 Also, the flow sensor 14 of FIG. 1 has a tube opening formed in the center thereof, similar to the controller-side sensor signal receiver 15 of FIG. 3, and can be connected to the conductive portions 13a and 13b in the blood feeding tube 12. For example, sensor side terminals E1, E2, F1, and F2, which are measurement side terminals, are arranged in the same manner as the terminals A1, A2, B1, and B2.
 したがって、コントローラ10は、導電部13a、13bを介して流量センサ15と通信可能な構成となっている。
 これら端子A1等、センサ側端子E1等と導電部13a、13bとの関係については、後述する。
Therefore, the controller 10 is configured to be able to communicate with the flow sensor 15 via the conductive portions 13a and 13b.
The relationship between the terminal A1 and the like, the sensor side terminal E1 and the like, and the conductive portions 13a and 13b will be described later.
 ところで、送血チューブ12等内の血液に流量異常等が生じたときに、かかる異常な状態のままで血液が患者Pに送られるのを阻止するため、図1のクランプ7(チューブ閉塞装置)を使用して緊急に閉塞することができる構成となっている。 By the way, in order to prevent blood from being sent to the patient P in such an abnormal state when an abnormal flow rate occurs in the blood in the blood supply tube 12 or the like, the clamp 7 (tube occlusion device) in FIG. It becomes the structure which can be obstructed urgently using.
 図1に示す体外循環装置1のコントローラ10及び流量センサ14等は、コンピュータを有し、コンピュータは、図示しないCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read
 Only Memory)等を有し、これらは、バスを介して接続されている。
The controller 10 and the flow rate sensor 14 of the extracorporeal circulation apparatus 1 shown in FIG. 1 have a computer. The computer includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read).
These are connected via a bus.
 図4は、図1のコントローラ10の主な構成を示す概略ブロック図である。
 図4に示すように、コントローラ10は、「コントローラ制御部21」を有し、コントローラ制御部21は、図1のコントローラ側センサ信号受信部15と有線で通信するための「コントローラ側通信装置22」を制御する。
 なお、「コントローラ側通信装置22」と「コントローラ側センサ信号受信部15」との通信は、有線または無線で行うが、有線の場合は電磁ノイズに強いRS232Cで行うのが好ましく、無線の場合は赤外線通信で行うのが好ましいがコントローラ側センサ信号受信部15に電源電池を搭載する必要がある。信号ケーブルを用いないため装置全体が整然とする。
 また、コントローラ制御部21は、表示部と入力部を兼ねる、カラー液晶,有機EL等で形成されるタッチパネル23を制御する構成となっている。
FIG. 4 is a schematic block diagram showing the main configuration of the controller 10 of FIG.
As shown in FIG. 4, the controller 10 includes a “controller control unit 21”, and the controller control unit 21 communicates with the controller-side sensor signal receiving unit 15 of FIG. To control.
The communication between the “controller-side communication device 22” and the “controller-side sensor signal receiving unit 15” is performed by wire or wireless. However, in the case of wired, it is preferably performed by RS232C which is strong against electromagnetic noise. Although it is preferable to use infrared communication, it is necessary to mount a power battery in the controller-side sensor signal receiver 15. Since the signal cable is not used, the entire apparatus is orderly.
Further, the controller control unit 21 is configured to control a touch panel 23 formed of a color liquid crystal, an organic EL, or the like that serves as a display unit and an input unit.
 また、コントローラ制御部21は、「コントローラ本体24」も制御する構成となっている。このコントローラ本体24は、体外循環装置1の血液の循環等を制御する装置である。
 また、コントローラ制御部21は、端子A1等から出力される信号の矩形波を検出するための「矩形波検出装置25」も制御している。
The controller control unit 21 is also configured to control the “controller body 24”. The controller body 24 is a device that controls blood circulation and the like of the extracorporeal circulation device 1.
The controller control unit 21 also controls a “rectangular wave detection device 25” for detecting a rectangular wave of a signal output from the terminal A1 or the like.
 さらに、コントローラ制御部21は、図4に示す「第1の情報記憶部30」及び「第2の情報記憶部40」も制御する。
 図5及び図6は、それぞれ第1の各種情報記憶部30及び第2の各種情報記憶部40の主な構成を示す概略ブロック図である。これらの具体的な内容は後述する。
Furthermore, the controller control unit 21 also controls the “first information storage unit 30” and the “second information storage unit 40” shown in FIG.
FIGS. 5 and 6 are schematic block diagrams showing main configurations of the first various information storage unit 30 and the second various information storage unit 40, respectively. Specific contents thereof will be described later.
 図7は、図1の流量センサ15の主な構成を示す概略ブロック図である。
 図7に示すように、流量センサ15は、「流量センサ制御部51」を有し、流量センサ制御部51は、通信するための「センサ側通信装置52」、「センサ側端子E1、E2、F1,F2」を制御する。
 また、センサ側制御部51は、図7に示す「センサ側端子信号検知装置53」「クロック信号入力端子記憶部54」、「シングルライン特定部55」及び「受信データ記憶部56」を制御するが、これらの構成については後述する。
FIG. 7 is a schematic block diagram showing the main configuration of the flow sensor 15 of FIG.
As shown in FIG. 7, the flow sensor 15 has a “flow sensor control unit 51”, and the flow sensor control unit 51 includes “sensor side communication device 52”, “sensor side terminals E 1, E 2, F1, F2 "are controlled.
Further, the sensor-side control unit 51 controls the “sensor-side terminal signal detection device 53”, “clock signal input terminal storage unit 54”, “single line specifying unit 55”, and “reception data storage unit 56” shown in FIG. However, these configurations will be described later.
 図8及び図9は、図1の体外循環装置1の主な動作例等を示す概略フローチャートである。以下、これらのフローチャートに沿って説明すると共に、図1乃至図7等の構成等についても説明する。
 本実施の形態では、図1に示す体外循環装置1を担当者等が使用状態に組み上げて、使用を開始する例を用いて、以下説明する。
 先ず、図8のステップST(以下「ST」とする。)1では、事前工程としてコントローラ10に必要情報を記憶させる。
 すなわち、図3のコントロール側センサ信号受信部15の端子A1等と、図2に示す送血チューブ12側の導電部13a、13bの配置情報を図5の「端子及び導電部配置情報記憶部31」に記憶する。
8 and 9 are schematic flow charts showing main operation examples of the extracorporeal circulation device 1 of FIG. The following description will be made along these flowcharts, and the configuration of FIGS. 1 to 7 will be described.
In the present embodiment, a description will be given below using an example in which the person in charge or the like assembles the extracorporeal circulation device 1 shown in FIG.
First, in step ST (hereinafter referred to as “ST”) 1 in FIG. 8, necessary information is stored in the controller 10 as a preliminary process.
That is, the arrangement information of the terminal A1 and the like of the control side sensor signal receiving unit 15 in FIG. 3 and the conductive parts 13a and 13b on the blood feeding tube 12 side shown in FIG. To remember.
 具体的には、担当者等が、コントローラ側センサ信号受信部15を送血チューブ12に装着するときの端子A1、A2、B1、B2と導電部13a、13bとの位置関係を示す情報が記憶されている。
 本実施の形態では、担当者等は、コントローラ側センサ信号受信部15の端子A1等が送血チューブ12の導電部13a、13bに対し、特定位置に配置されるように、コントローラ側センサ信号受信部15を送血チューブ12に装着しない。すなわち、盲目的に装着するため、どのような配置で装着されても対応できるようコントローラ側センサ信号受信部15が送血チューブ12に装着されたときの端子A1等と導電部13a、13bの予想される相対位置関係の情報を予め記憶することになる。
Specifically, information indicating the positional relationship between the terminals A1, A2, B1, and B2 and the conductive portions 13a and 13b when the person in charge or the like attaches the controller-side sensor signal receiving unit 15 to the blood feeding tube 12 is stored. Has been.
In the present embodiment, the person in charge or the like receives the controller side sensor signal so that the terminal A1 or the like of the controller side sensor signal receiving unit 15 is arranged at a specific position with respect to the conductive parts 13a and 13b of the blood supply tube 12. The part 15 is not attached to the blood feeding tube 12. That is, since it is installed blindly, the terminal A1 and the conductive parts 13a and 13b when the controller-side sensor signal receiver 15 is attached to the blood feeding tube 12 so as to be able to cope with any arrangement are expected. The information on the relative positional relationship is stored in advance.
 図10は、コントローラ側センサ信号受信部15が送血チューブ12に装着されたときの端子A1等と導電部13a、13bとの相対位置関係を示す概略断面図である。
 図10に示すように、図5の「端子及び導電部配置情報記憶部31」には、4つのパターンが記憶されている。なお、導電部13a、13bは、これらの位置が逆になる場合でも同様の機能を発揮するので、導電部13a、13bを入れ替えた場合も当該パターンに含まれる。
FIG. 10 is a schematic cross-sectional view showing the relative positional relationship between the terminal A1 and the like and the conductive portions 13a and 13b when the controller-side sensor signal receiving portion 15 is attached to the blood feeding tube 12.
As shown in FIG. 10, four patterns are stored in the “terminal and conductive part arrangement information storage unit 31” in FIG. 5. Note that the conductive portions 13a and 13b perform the same function even when their positions are reversed, so that the pattern is also included when the conductive portions 13a and 13b are replaced.
 図10(a)は、「パターン1」を示す概略断面図である。図10(a)に示すように、一方の導電体13aに端子A1及び端子B1が接続し、他方の導電体13bに端子B2及び端子A2が接続されている。
 図10(b)は、「パターン2」を示す概略断面図である。図10(b)に示すように、一方の導電部13aに端子B1のみが接続、他方の導電部13bに端子B2のみを接続し、端子A1及び端子A2は導電部13a、13bと非接続となっている。
 図10(c)は、「パターン3」を示す概略断面図である。図10(c)に示すように、一方の導電部13bに端子A1のみが接続、他方の導電部13aに端子A2のみを接続し、端子B1及び端子B2は導電部13a、13bと非接続となっている。
 図10(d)は、「パターン4」を示す概略断面図である。図10(d)に示すように、一方の導電部13bに端子A1及び端子B2が接続し、他方の導電部13aに端子B1及び端子A2が接続されている。
FIG. 10A is a schematic cross-sectional view showing “Pattern 1”. As shown in FIG. 10A, the terminal A1 and the terminal B1 are connected to one conductor 13a, and the terminal B2 and the terminal A2 are connected to the other conductor 13b.
FIG. 10B is a schematic cross-sectional view showing “Pattern 2”. As shown in FIG. 10B, only the terminal B1 is connected to one conductive portion 13a, only the terminal B2 is connected to the other conductive portion 13b, and the terminals A1 and A2 are not connected to the conductive portions 13a and 13b. It has become.
FIG. 10C is a schematic cross-sectional view showing “Pattern 3”. As shown in FIG. 10C, only the terminal A1 is connected to one conductive portion 13b, only the terminal A2 is connected to the other conductive portion 13a, and the terminal B1 and the terminal B2 are not connected to the conductive portions 13a and 13b. It has become.
FIG. 10D is a schematic sectional view showing “Pattern 4”. As shown in FIG. 10D, the terminal A1 and the terminal B2 are connected to one conductive portion 13b, and the terminal B1 and the terminal A2 are connected to the other conductive portion 13a.
 このようにして、コントローラ10は、コントローラ側センサ信号受信部15が送血チューブ12に装着されたときの端子A1等と導電部13a、13bの予想される相対位置関係の情報を記憶する。
 次いで、図8のST2へ進む。ST2では、担当者等が、図1に示すように体外循環装置1を組み立てて、コントローラ側センサ信号受信部15を送血チューブ12に装着する。
 このとき、担当者等は、単にコントローラ側センサ信号受信部15を送血チューブ12に装着すれば足り、送血チューブ12内の導電部13a、13bの位置に合うように、特定の位置に位置合わせする必要がない。
 このため、担当者等は、コントローラ側センサ信号受信部15を簡易且つ容易送血チューブ12に装着することができる。
In this manner, the controller 10 stores information on the expected relative positional relationship between the terminal A1 and the like and the conductive portions 13a and 13b when the controller-side sensor signal receiving portion 15 is attached to the blood feeding tube 12.
Next, the process proceeds to ST2 in FIG. In ST2, a person in charge or the like assembles the extracorporeal circulation device 1 as shown in FIG. 1 and attaches the controller-side sensor signal receiving unit 15 to the blood feeding tube 12.
At this time, it is sufficient for the person in charge or the like to simply attach the controller-side sensor signal receiving unit 15 to the blood feeding tube 12, and to be positioned at a specific position so as to match the positions of the conductive portions 13 a and 13 b in the blood feeding tube 12. There is no need to match.
Therefore, the person in charge or the like can easily and easily attach the controller-side sensor signal receiving unit 15 to the blood feeding tube 12.
 次いで、ST3へ進む。ST3では、当該コントローラ側センサ信号受信部15が送血チューブ12の導電部13a、13bに対して、図10のどのパターンで配置されているか不明であるため、ST3以下で、その配置状態を自動判定する。
 先ず、ST3では、コントローラ10が、図3のコントローラ側センサ信号受信部15の端子A2を未接続状態として、端子A2と対向する反対側に配置される端子A1から信号を入力する。
Next, the process proceeds to ST3. In ST3, it is unclear in which pattern in FIG. 10 the controller-side sensor signal receiving unit 15 is arranged with respect to the conductive parts 13a and 13b of the blood supply tube 12. Therefore, the arrangement state is automatically set in ST3 and below. judge.
First, in ST3, the controller 10 sets the terminal A2 of the controller-side sensor signal receiving unit 15 in FIG. 3 in an unconnected state, and inputs a signal from the terminal A1 arranged on the opposite side facing the terminal A2.
 次いで、ST4へ進む。ST4では、図4の矩形波検知装置25が動作し、端子A1から入力された信号(特定信号の一例)に対応して、他の端子から出力された信号である例えば、矩形波を検知する。
 具体的には、図3の端子B1又は端子B2から矩形波が検出されたか否かを判断する。
 ST4で、端子B1又は端子B2から矩形波が検出されたと判断されたときは、ST5へ進む。ST5では、矩形波検知装置25が、図5の「矩形波検知端子情報記憶部32」に矩形波を検知した端子、例えば、端子B1又は端子B2を記憶する。
Next, the process proceeds to ST4. In ST4, the rectangular wave detection device 25 in FIG. 4 operates to detect, for example, a rectangular wave that is a signal output from another terminal in response to a signal (an example of a specific signal) input from the terminal A1. .
Specifically, it is determined whether or not a rectangular wave is detected from the terminal B1 or the terminal B2 in FIG.
If it is determined in ST4 that a rectangular wave is detected from the terminal B1 or B2, the process proceeds to ST5. In ST5, the rectangular wave detection device 25 stores the terminal that detected the rectangular wave, for example, the terminal B1 or the terminal B2 in the “rectangular wave detection terminal information storage unit 32” in FIG.
 ST4で、端子B1又は端子B2から矩形波が出力されないと判断されたときは、ST6へ進む。ST6では、矩形波検知装置25が、図5の「矩形波検知端子情報記憶部32」に矩形波が検出されない旨の情報を記憶する。 When it is determined in ST4 that a rectangular wave is not output from the terminal B1 or the terminal B2, the process proceeds to ST6. In ST6, the rectangular wave detection device 25 stores information indicating that the rectangular wave is not detected in the “rectangular wave detection terminal information storage unit 32” in FIG.
 次いで、ST7へ進む。ST7では、図5の「パターン判断部(プログラム)33」が動作し、図5の「矩形波検知端子情報記憶部32」及び「端子及び導電部配置情報記憶部31」を参照し、導電部13a、13bと端子A1等との接続パターンを検索特定し、図5の「検索特定パターン記憶部34」に記憶する。 Next, proceed to ST7. In ST7, the “pattern judgment unit (program) 33” in FIG. 5 operates and refers to the “rectangular wave detection terminal information storage unit 32” and the “terminal and conductive unit arrangement information storage unit 31” in FIG. The connection patterns between the terminals 13a and 13b and the terminal A1 and the like are searched for and stored in the “search specified pattern storage unit 34” in FIG.
 すなわち、矩形波が端子B1で検出されたときは、図10(a)に示すように、端子A1と端子B1は導電部13aに接続されているとして、「パターン1」であると判断し、「検索特定パターン記憶部34」に「パターン1」と記憶する。
 また、矩形波が端子B2で検出されたときは、図10(d)に示すように、端子A1と端子B2は導電部13bに接続されているとして、「パターン4」であると判断し、「検索特定パターン記憶部34」に「パターン4」と記憶する。
 一方、矩形波が端子から検出できなかった場合は、図10(b)又は(c)に示すように配置されているとして、「検索特定パターン記憶部34」に「パターン2及び3」と記憶する。
That is, when a rectangular wave is detected at the terminal B1, as shown in FIG. 10A, it is determined that the terminal A1 and the terminal B1 are connected to the conductive portion 13a and are “pattern 1”. “Pattern 1” is stored in the “search specific pattern storage unit 34”.
When a rectangular wave is detected at the terminal B2, as shown in FIG. 10 (d), it is determined that the terminal A1 and the terminal B2 are connected to the conductive portion 13b and are “pattern 4”. “Pattern 4” is stored in the “search specific pattern storage unit 34”.
On the other hand, when the rectangular wave cannot be detected from the terminal, “patterns 2 and 3” are stored in the “search specific pattern storage unit 34” as shown in FIG. 10B or 10C. To do.
 このように、本実施の形態では、端子A1から信号を出力し、他の端子B1等から、その矩形波を検出又は検出しないことで、コントローラ10は、コントローラ側センサ信号受信部15が送血チューブ12に装着されたときの端子A1等と導電部13a、13bとの相対位置関係を自動的に特定することができる。 As described above, in the present embodiment, by outputting a signal from the terminal A1 and not detecting or detecting the rectangular wave from the other terminal B1 or the like, the controller 10 causes the controller-side sensor signal receiving unit 15 to send blood. The relative positional relationship between the terminal A1 and the like and the conductive portions 13a and 13b when mounted on the tube 12 can be automatically specified.
 次いで、ST8へ進む。ST8では、図6の「使用端子判断部(プログラム)41」が動作し、「検索特定パターン記憶部34」及び「パターン対応使用端子情報記憶部35」を参照する。
 パターン対応使用端子情報記憶部35には、図10のパターン1乃至パターン4の各パターンにおいて、どの端子をシグナルラインやクロックラインに振り分けるかの情報が記憶されている。
 具体的には、「パターン1」及び「パターン4」のときは、使用端子A1、A2で、端子A1をシグナルライン、端子A2をクロックとして使用し、端子B1及び端子B2は未接続状態とすると記憶されている。
 また、「パターン2及び3」のときは、使用端子A1、A2、B1、B2で端子A1、B1をシグナルライン、端子A2、B2をクロックとして使用すると記憶されている。
Next, the process proceeds to ST8. In ST8, the “use terminal determination unit (program) 41” in FIG. 6 operates and refers to the “search specific pattern storage unit 34” and the “pattern corresponding use terminal information storage unit 35”.
The pattern corresponding use terminal information storage unit 35 stores information about which terminal is assigned to a signal line or a clock line in each of the patterns 1 to 4 in FIG.
Specifically, in the case of “Pattern 1” and “Pattern 4”, if the terminals A1 and A2 are used, the terminal A1 is used as a signal line, the terminal A2 is used as a clock, and the terminals B1 and B2 are not connected. It is remembered.
In the case of “Pattern 2 and 3,” it is stored that the terminals A1, B1, B2 are used as signal lines and the terminals A2, B2 are used as clocks in the used terminals A1, A2, B1, B2.
 このため、「使用端子判断部(プログラム)41」は、「検索特定パターン記憶部34」及び「パターン対応使用端子情報記憶部35」に基づき、使用端子及びシグナルラインとクロックを特定し、図6の「当該使用端子等情報記憶部42」に記憶する。
 例えば、「パターン1」の場合は、端子A1と端子A2を選択し、端子A1をシグナルライン、端子A2をクロックとして使用し、端子B1及び端子B2は未接続状態と記憶する。
Therefore, the “use terminal determination unit (program) 41” specifies the use terminal, the signal line, and the clock based on the “search specific pattern storage unit 34” and the “pattern corresponding use terminal information storage unit 35”. Is stored in the “used terminal etc. information storage unit 42”.
For example, in the case of “pattern 1”, the terminal A1 and the terminal A2 are selected, the terminal A1 is used as the signal line, the terminal A2 is used as the clock, and the terminals B1 and B2 are stored as unconnected.
 次いで、図1のコントローラ10と流量センサ14との通信工程等について図9のフローチャートを用いて説明する。
 先ず、流量センサ14を図1に示すように送血チューブ12に装着する。このときの流量センサ14のセンサ側端子E1、E2、F1、F2の配置は、上述のように、コントローラ側センサ信号受信部15の端子A1、A2、B1、B2と同様に配置されている。
 このようにセンサ側端子E1等が配置されている流量センサ14もコントローラ側センサ信号受信部15と同様に特定の位置合わせをする必要なく、送血チューブ12に配置するだけで、装着が完了する。
 このため、担当者等が容易に流量センサ14を装着することができ、体外循環装置1の組み立てが容易になる。
Next, the communication process between the controller 10 and the flow sensor 14 in FIG. 1 will be described with reference to the flowchart in FIG.
First, the flow sensor 14 is attached to the blood supply tube 12 as shown in FIG. The arrangement of the sensor side terminals E1, E2, F1, and F2 of the flow rate sensor 14 at this time is the same as that of the terminals A1, A2, B1, and B2 of the controller side sensor signal receiving unit 15 as described above.
As described above, the flow rate sensor 14 in which the sensor side terminal E1 and the like are arranged is not required to be positioned in the same manner as the controller side sensor signal receiving unit 15, and the mounting is completed simply by arranging it in the blood feeding tube 12. .
For this reason, a person in charge or the like can easily attach the flow sensor 14, and the assembly of the extracorporeal circulation device 1 becomes easy.
 次いで、ST11へ進む。ST11では、図6の「コントローラ側データ送信部(プログラム)43」が動作して、図6の「当該使用端子等情報記憶部42」、「センサ識別情報記憶部44」及び「センサ向け送信データ記憶部45」を参照する。
 この「センサ識別情報記憶部44」には、送信対象の流量センサ14の識別情報(センサアドレス)であり、信号を受信した流量センサ14のセンサアドレスが、このセンサアドレスに該当する場合のみ流量センサ14が返答する構成となっている。
 また、「センサ向け送信データ記憶部45」は、対象とする流量センサ14への指令等の送信データである。
 なお、本実施の形態では、測定部として、例えば、流量センサ14を例に説明したが、本発明の「測定部」には、流量センサ14に限らず、図1のクランプ7の他、通常、体外循環装置1で使用されるが、図1では特に図示していない「圧力センサ」「温度センサ」「血液ガスセンサ」「気泡センサ」等の各種センサが含まれる。
Next, the process proceeds to ST11. In ST11, the “controller side data transmission unit (program) 43” in FIG. 6 operates, and the “used terminal information storage unit 42”, “sensor identification information storage unit 44” and “sensor transmission data” in FIG. Refer to “Storage 45”.
This “sensor identification information storage unit 44” is identification information (sensor address) of the flow sensor 14 to be transmitted, and the flow sensor only when the sensor address of the flow sensor 14 that has received the signal corresponds to this sensor address. 14 is configured to respond.
The “sensor transmission data storage unit 45” is transmission data such as a command to the target flow sensor 14.
In the present embodiment, for example, the flow rate sensor 14 has been described as an example of the measurement unit. However, the “measurement unit” of the present invention is not limited to the flow rate sensor 14, and other than the clamp 7 in FIG. Various sensors such as “pressure sensor”, “temperature sensor”, “blood gas sensor”, and “bubble sensor” which are used in the extracorporeal circulation apparatus 1 but are not particularly illustrated in FIG. 1 are included.
 したがって、コントローラ側データ送信部(プログラム)43は、当該使用端子等情報記憶部42、センサ識別情報記憶部44及びセンサ向け送信データ記憶部45を参照して、例えば、端子A2をクロック、端子A1をシグナルラインとし、端子A2でクロック信号を送信し、端子A1に対象のセンサ識別信号(センサアドレス)及びセンサ向け送信データを送信する。
 このクロック信号が、非本体信号の一例で、センサ向け送信データ等が、本体信号の一例である。
Accordingly, the controller-side data transmission unit (program) 43 refers to the used terminal information storage unit 42, the sensor identification information storage unit 44, and the sensor transmission data storage unit 45, for example, the terminal A2 as a clock, and the terminal A1. Is a signal line, a clock signal is transmitted at the terminal A2, and a target sensor identification signal (sensor address) and transmission data for the sensor are transmitted to the terminal A1.
This clock signal is an example of a non-main body signal, and transmission data for a sensor is an example of a main body signal.
 次いで、ST12へ進む。ST12では、図7の流量センサ14の「センサ側端子信号検知装置53」が動作し、流量センサ14のセンサ側端子E1、E2、F1、F2が、コントローラ10からのクロック信号(矩形波信号)を受信したか否かを検知する。
 ST12で、センサ側端子E1、E2、F1、F2のいずれかがクロック信号を受信したときは、ST13へ進む。
 ST13では、センサ側端子信号検知装置53が、クロック信号(矩形波)が入力されたセンサ側端子F2等を特定し、図7の「クロック信号入力端子記憶部54」に記憶する。
Next, the process proceeds to ST12. In ST12, the “sensor side terminal signal detection device 53” of the flow sensor 14 of FIG. 7 operates, and the sensor side terminals E1, E2, F1, and F2 of the flow sensor 14 are clock signals (rectangular wave signals) from the controller 10. Is detected.
When any of the sensor side terminals E1, E2, F1, and F2 receives the clock signal in ST12, the process proceeds to ST13.
In ST13, the sensor-side terminal signal detection device 53 identifies the sensor-side terminal F2 or the like to which the clock signal (rectangular wave) is input, and stores it in the “clock signal input terminal storage unit 54” in FIG.
 次いで、ST14へ進む。ST14では、図7の「シグナルライン特定部(プログラム)55」が動作し、「クロック信号入力端子記憶部54」を参照し、記憶されているセンサ端子F1等とペアとなる端子F2等(正反対に位置する端子)をシグナルラインとしてコマンド入力を待つ。
 このように、本実施の形態では、センサ側端子E1等を有する流量センサ14を、送血チューブ12内の導電部13a、13bと特定位置に位置決めするように装着せず、単に、装着するだけで、自動的にコントローラ10との通信を確立させることができる。
 したがって、体外循環装置1を組み立てる担当者の手間を省くと共に、流量センサ14の送血チューブ12への装着が容易となる。
Next, the process proceeds to ST14. In ST14, the “signal line specifying unit (program) 55” of FIG. 7 operates, refers to the “clock signal input terminal storage unit 54”, and stores the terminal F2 and the like paired with the stored sensor terminal F1 etc. Wait for command input using the terminal located at) as the signal line.
Thus, in the present embodiment, the flow sensor 14 having the sensor side terminal E1 and the like is not mounted so as to be positioned at a specific position with the conductive portions 13a and 13b in the blood supply tube 12, but is simply mounted. Thus, communication with the controller 10 can be automatically established.
Therefore, the labor of the person in charge of assembling the extracorporeal circulation device 1 can be saved, and the flow sensor 14 can be easily attached to the blood supply tube 12.
 図9のST15では、ST14で、シグナルラインと判断されたセンサ端子F2等から送信データを受信し、図7の「受信データ記憶部56」に記憶する。
 次いで、ST16へ進む。ST16では、流量センサ14は、受信データのコマンドは有効か否かを判断する。
 ST16で、有効と判断したときは、ST17へ進み、コマンドに対する返答を端子F2等のシグナルラインに乗せて送信する。
 一方、ST16で、受信コマンドが有効でない場合は、ST18へ進み、異常データとして、受信データを破棄することになる。
In ST15 in FIG. 9, transmission data is received from the sensor terminal F2 or the like determined as a signal line in ST14, and stored in the “reception data storage unit 56” in FIG.
Next, the process proceeds to ST16. In ST16, the flow sensor 14 determines whether or not the received data command is valid.
If it is determined in ST16 that it is valid, the process proceeds to ST17, and a response to the command is transmitted on the signal line such as the terminal F2.
On the other hand, if the received command is not valid in ST16, the process proceeds to ST18 and the received data is discarded as abnormal data.
(第2の実施の形態)
 図11は、本発明の第2の実施の形態にかかる体外循環装置100の主な構成を示す概略図である。
 本実施の形態にかかる体外循環装置100の多くの構成は、上述の第1の実施の形態に係る体外循環装置1と共通しているため、共通の構成は同一符号等として説明を省略し、以下、相違点を中心に説明する。
 図11に示すように、ドライブモータ104と遠心ポンプ103はマグネット等により着脱可能な構成となっている。
 そして、図11に示すように、ドライブモータ104の遠心ポンプ103との接続面104aに、端子C1、C2、D1、D2が形成されている。
(Second Embodiment)
FIG. 11 is a schematic diagram illustrating a main configuration of the extracorporeal circulation device 100 according to the second embodiment of the present invention.
Since many configurations of the extracorporeal circulation apparatus 100 according to the present embodiment are common to the extracorporeal circulation apparatus 1 according to the first embodiment described above, the description of the common configuration is omitted as the same reference numerals, Hereinafter, the difference will be mainly described.
As shown in FIG. 11, the drive motor 104 and the centrifugal pump 103 are configured to be detachable by a magnet or the like.
As shown in FIG. 11, terminals C1, C2, D1, and D2 are formed on the connection surface 104a of the drive motor 104 with the centrifugal pump 103.
 図12は、ドライブモータ104の接続面104aにおける端子C1等の配置状態を示す概略図である。
 図12に示すように、端子C1等は4つ形成され、この4つの端子C1等は、上述の第1の実施の形態の端子A1、A2、B1、B2と同様に配置されると共に、端子C1等は、遠心ポンプ103側に突出するように形成されている。
 また、図7の遠心ポンプ103側には、図13に示すように、導電材料からなる円弧状の導電部130a、130b(ポンプ側導電部の一例)が形成され、図12の端子C1等の1つ又は2つと接続可能な構成となっている。
 図13は、遠心ポンプ103のドライブモータ104との接続面に形成された導電部130a、130bを示す概略図である。
FIG. 12 is a schematic diagram showing an arrangement state of the terminals C1 and the like on the connection surface 104a of the drive motor 104. FIG.
As shown in FIG. 12, four terminals C1 and the like are formed, and these four terminals C1 and the like are arranged in the same manner as the terminals A1, A2, B1, and B2 of the first embodiment described above, and the terminals C1 and the like are formed so as to protrude toward the centrifugal pump 103 side.
Further, as shown in FIG. 13, arc-shaped conductive portions 130a and 130b (an example of a pump-side conductive portion) made of a conductive material are formed on the centrifugal pump 103 side of FIG. It can be connected to one or two.
FIG. 13 is a schematic diagram showing the conductive portions 130 a and 130 b formed on the connection surface of the centrifugal pump 103 with the drive motor 104.
 また、端子C1等は、コントローラ10と電気的に接続可能な構成となっていると共に、導電部130a、130bは、遠心ポンプ103のハウジングおよび遠心ポンプ103と機械的かつ電気的に接続する人工肺2のハウジングに配された電気的な接続路を介して送血チューブ12等の内部に配置される導電部13a、13bと接続が可能な構成となっている。
 すなわち、端子C1等とコントローラ10との接続はドライブモータ104内に配線があり、一方、遠心ポンプ103の導電部130a、130bと送血チューブ12の内部に配置される導電部13a、13bとの接続も遠心ポンプ103や人工肺2等の内部または表面の配線で接続されている。
 また、この配線と送血チューブ12の各導電部は一対一で接続され(例えば130aと13a、130bと13bとが対応するように接続)、各配線の送血チューブ12側の一端が送血チューブ12の複数の導電部にまたがって接続されることがないように構成されている。
The terminals C1 and the like are configured to be electrically connected to the controller 10, and the conductive portions 130a and 130b are artificial lungs that are mechanically and electrically connected to the housing of the centrifugal pump 103 and the centrifugal pump 103. It is possible to connect to the conductive portions 13a and 13b disposed inside the blood feeding tube 12 and the like through an electrical connection path disposed in the housing 2.
That is, the connection between the terminal C1 and the like and the controller 10 is wired in the drive motor 104, while the conductive portions 130a and 130b of the centrifugal pump 103 and the conductive portions 13a and 13b disposed inside the blood feeding tube 12 are connected. The connection is also made by wiring inside or on the surface of the centrifugal pump 103, the artificial lung 2, or the like.
Further, the wiring and each conductive portion of the blood feeding tube 12 are connected one-to-one (for example, 130a and 13a and 130b and 13b are connected to each other), and one end of each wiring on the blood feeding tube 12 side is blood feeding. The tube 12 is configured not to be connected across a plurality of conductive portions.
 したがって、本実施の形態では、第1の実施の形態と異なり、コントローラ側センサ信号受信部15とコントローラ10との間にケーブル等の有線が外部に配置されることはない。
 すなわち、本実施の形態では、流量センサ14とコントローラ10との間の通信用のケーブル等が全く外部に露出することがないので、体外循環装置100の組み立てをする担当者等は、かかるケーブル等の引き回し等を全く考慮する必要がないので、極めて組み立て易い体外循環装置100となる。
Therefore, in the present embodiment, unlike the first embodiment, no wire such as a cable is arranged outside between the controller-side sensor signal receiving unit 15 and the controller 10.
That is, in this embodiment, since the communication cable between the flow sensor 14 and the controller 10 is not exposed to the outside at all, the person in charge of assembling the extracorporeal circulation device 100 has such a cable. Therefore, the extracorporeal circulation device 100 is extremely easy to assemble.
 また、ドライブモータ104側に端子C1等と遠心ポンプ104側の導電部130a、130bは、上述の第1の実施の形態のコントローラ側センサ信号受信部15の端子A1等と送血チューブ12の導電部13a等と同様の関係となるため、同様に通信可能な端子等を自動判定する。 Further, the terminal C1 and the like on the drive motor 104 side and the conductive parts 130a and 130b on the centrifugal pump 104 side are electrically connected to the terminal A1 and the like of the controller-side sensor signal receiving part 15 in the first embodiment described above. Since the relationship is the same as that of the unit 13a and the like, terminals that can communicate in the same manner are automatically determined.
 図14は、第1の実施の形態の図10に示すパターンと同様のパターンを示す概略図である。
 図14(a)、(b)、(c)及び(d)は、それぞれ、図10(a)の「パターン1」、(b)の「パターン2」、(c)の「パターン3」及び(d)の「パターン4」を示している。
 したがって、コントローラ10と流量センサ14との通信は、第1の実施の形態と同様の工程等を経て行われる。
FIG. 14 is a schematic diagram showing a pattern similar to the pattern shown in FIG. 10 of the first embodiment.
14 (a), (b), (c) and (d) are respectively “Pattern 1” in FIG. 10 (a), “Pattern 2” in (b), “Pattern 3” in (c) and The “pattern 4” of (d) is shown.
Therefore, the communication between the controller 10 and the flow sensor 14 is performed through the same process as the first embodiment.
(第1の実施の形態及び第2の実施の形態の変形例)
 図15は、第1の実施の形態の端子A1等の変形例を示す概略図である。
 図15に示すように、端子G1、G2、I1及びI2は、コントローラ側センサ信号受信部15から突出しない構成としても構わない。
 図16は、第1の実施の形態等の導電部13a等の変形例を示す概略図である。図16に示すように、送血チューブ12の表面に導電部230a、230bを形成しても良い。 
(Modification of the first embodiment and the second embodiment)
FIG. 15 is a schematic diagram illustrating a modification of the terminal A1 and the like according to the first embodiment.
As illustrated in FIG. 15, the terminals G1, G2, I1, and I2 may be configured not to protrude from the controller-side sensor signal receiving unit 15.
FIG. 16 is a schematic diagram illustrating a modification of the conductive portion 13a and the like according to the first embodiment. As shown in FIG. 16, conductive portions 230 a and 230 b may be formed on the surface of the blood supply tube 12.
 また、本実施の形態では、端子の数は4つとしたが、本発明はこれに限らず、端子を例えば、6個設けても構わない。
 さらに、本実施の形態では、導電部を2つとしたが、本発明は3個以上としても構わない。
 導電部を複数配置する場合は、以下の関係となることが好ましい。すなわち。図2のH1とH2の角度αが60度以上120度未満であり、一つの導電部の角度α、導電部の数をNとすると、角度αは、「360度/N」未満で、「360度/2N」以上であることが求められる。
 すなわち、必ず導電部は1以上3未満の端子と接続可能に配置されることが求められる。
In the present embodiment, the number of terminals is four. However, the present invention is not limited to this, and six terminals, for example, may be provided.
Furthermore, in the present embodiment, the number of the conductive portions is two, but the present invention may be three or more.
In the case where a plurality of conductive portions are arranged, the following relationship is preferable. That is. The angle α between H1 and H2 in FIG. 2 is 60 degrees or more and less than 120 degrees, and when the angle α of one conductive portion and the number of conductive portions are N, the angle α is less than “360 degrees / N”. 360 degrees / 2N "or more is required.
That is, it is required that the conductive portion be arranged so as to be connectable to one or more and less than three terminals.
 ところで、本発明は、上述の実施の形態に限定されない。上述の第1の実施の形態等の送血チューブ12等の長手方向の途中に導電部が外側に露出する露出部を形成しても良く。また、送血チューブ12等の表面に導電性プラスチック材料を塗布して導電部を形成しても構わない。 By the way, the present invention is not limited to the above-described embodiment. You may form the exposed part which an electroconductive part exposes outside in the middle of the longitudinal direction, such as the blood supply tube 12 of the above-mentioned 1st Embodiment. Alternatively, the conductive portion may be formed by applying a conductive plastic material to the surface of the blood supply tube 12 or the like.
 1、100・・・体外循環装置、2・・・人工肺、3、103・・・遠心ポンプ、4、104・・・ドライブモータ、5・・・静脈側カニューレ(脱血側カニューレ)、6・・・動脈側カニューレ(送血側カニューレ)、7・・・クランプ、8、9・・・コネクター、10・・・コントローラ、11・・・脱血チューブ、12・・・送血チューブ、12a・・・管路、12b・・・壁部、13a、13b、130a、130b、230a、230b・・・導電部、14・・・流量センサ、15・・・コントローラ側センサ信号受信部、15a・・・上部筐体、15b・・・下部筐体、15c・・・チューブ用開口、15d・・・バネ、15e・・・ヒンジ、15f・・・フック、15g・・・フック係合部、15h・・・解除片、21・・・コントローラ制御部、22・・・コントローラ側通信装置、23・・・タッチパネル、24・・・コントローラ本体、25・・・矩形波検出装置、30・・・第1の各種情報記憶部、31・・・端子及び導電部配置情報記憶部、32・・・矩形波検知端子情報記憶部、33・・・パターン判断部(プログラム)、34・・・検索特定パターン記憶部、35・・・パターン対応使用端子情報記憶部、40・・・第2の各種情報記憶部、41・・・使用端子判断部(プログラム)、42・・・当該使用端子等情報記憶部、43・・・コントローラ側データ送信部(プログラム)、44・・・センサ識別情報記憶部、45・・・センサ向け送信データ記憶部、51・・・流量センサ制御部、52・・・センサ側通信装置、53・・・センサ側端子信号検知装置、54・・・クロック信号入力端子記憶部、55・・・シグナルライン特定部(プログラム)、56・・・受信データ記憶部、104a・・・接続面、A1、A2、B1、B2、C1、C2、D1、D2、G1、G2、I1、I2・・・端子、E1、E2、F1、F2・・・センサ側端子、1R・・・循環回路、P・・・患者 DESCRIPTION OF SYMBOLS 1,100 ... Extracorporeal circulation apparatus, 2 ... Artificial lung, 3,103 ... Centrifugal pump, 4,104 ... Drive motor, 5 ... Vein side cannula (bleeding side cannula), 6 ... Arterial cannula (blood feeding cannula), 7 ... Clamp, 8, 9 ... Connector, 10 ... Controller, 11 ... Blood removal tube, 12 ... Blood feeding tube, 12a ... Pipe, 12b ... Wall, 13a, 13b, 130a, 130b, 230a, 230b ... Conducting part, 14 ... Flow sensor, 15 ... Controller-side sensor signal receiver, 15a .... Upper housing, 15b ... Lower housing, 15c ... Tube opening, 15d ... Spring, 15e ... Hinge, 15f ... Hook, 15g ... Hook engaging part, 15h ... Release piece, 21 ... Controller control unit, 22 ... controller side communication device, 23 ... touch panel, 24 ... controller body, 25 ... rectangular wave detection device, 30 ... first various information storage unit, 31 ...・ Terminal and conductive portion arrangement information storage unit, 32... Rectangular wave detection terminal information storage unit, 33... Pattern determination unit (program), 34... Search specific pattern storage unit, 35. Terminal information storage unit, 40... Second various information storage unit, 41... Used terminal determination unit (program), 42... Used terminal etc. information storage unit, 43. (Program), 44 ... Sensor identification information storage unit, 45 ... Transmission data storage unit for sensors, 51 ... Flow rate sensor control unit, 52 ... Sensor side communication device, 53 ... Sensor side terminal Signal detector 54, clock signal input terminal storage unit 55, signal line identification unit (program), 56 reception data storage unit 104a, connection surface, A1, A2, B1, B2 , C1, C2, D1, D2, G1, G2, I1, I2 ... terminals, E1, E2, F1, F2 ... sensor side terminals, 1R ... circulation circuit, P ... patient

Claims (5)

  1.  血液の体外循環を管理する体外循環管理部と、
     前記体外循環における血液の流れを案内するチューブ部と、
     前記チューブ部内の血液を測定する測定部を有し、
     前記チューブ部には、前記測定部と前記体外循環管理部との間の通信のための複数の導電部が形成されることを特徴とする体外循環装置。
    An extracorporeal circulation management unit for managing the extracorporeal circulation of blood;
    A tube portion for guiding blood flow in the extracorporeal circulation;
    Having a measuring part for measuring blood in the tube part;
    The extracorporeal circulation apparatus, wherein the tube portion is formed with a plurality of conductive portions for communication between the measurement unit and the extracorporeal circulation management unit.
  2.  前記導電部と接続し、前記測定部からの信号を前記体外循環管理部へ送信するための管理部側通信部が配置され、この管理部側通信部は、前記導電部と接続するための複数の端子を含む通信部側端子部を有し、
     前記管理部側通信部が前記チューブ部に装着されたときに、前記通信部側端子部の特定の端子から前記チューブ部へ向け特定信号を出力し、前記特定信号を受信する、又は受信しない前記通信部側端子部の他の端子の位置情報に基づいて、前記通信部側端子部に対する前記複数の導電部の配置情報を特定することを特徴とする請求項1に記載の体外循環装置。
    A management unit side communication unit for connecting to the conductive unit and transmitting a signal from the measurement unit to the extracorporeal circulation management unit is disposed, and the management unit side communication unit includes a plurality of communication units connected to the conductive unit. The communication unit side terminal portion including the terminal,
    When the management unit side communication unit is attached to the tube unit, the specific signal is output from the specific terminal of the communication unit side terminal unit to the tube unit, and the specific signal is received or not received. The extracorporeal circulation apparatus according to claim 1, wherein arrangement information of the plurality of conductive parts with respect to the communication part side terminal part is specified based on position information of other terminals of the communication part side terminal part.
  3.  前記測定部は、前記測定部を前記チューブ部に装着したときに前記導電部と接続可能な複数の端子を含む測定部側端子部を有し、
     前記管理部側通信部は、非本体信号及び本体信号をそれぞれ別の前記導電部で送信するとき、前記チューブ部に装着された前記測定部の前記測定部側端子部は、前記非本体信号を受信した前記測定部側端子部の端子の位置情報に基づいて、前記本体信号を受信する前記測定部側端子部の端子を特定して、前記本体信号を受信する構成となっていること特徴とする請求項1又は請求項2に記載の体外循環装置。
    The measurement part has a measurement part side terminal part including a plurality of terminals connectable to the conductive part when the measurement part is attached to the tube part,
    When the management unit side communication unit transmits the non-main body signal and the main body signal through different conductive parts, the measurement unit side terminal unit of the measurement unit attached to the tube unit transmits the non-main body signal. Based on the received positional information of the terminal of the measurement unit side terminal unit, the terminal of the measurement unit side terminal unit that receives the main unit signal is specified, and the main unit signal is received. The extracorporeal circulation apparatus according to claim 1 or 2.
  4.  前記チューブ部内の血液を循環させるポンプ部と、
     前記ポンプ部を駆動させるモータ部と、を有し、
     前記ポンプ部が、前記チューブ部と接続されると共に、前記モータ部が、前記体外循環管理部と接続され、
     これらポンプ部とモータ部は着脱可能な構成となっており、
     前記モータ部の前記ポンプ部と当接する側に前記通信側端子部が形成され、
     前記ポンプ部の前記モータ部と当接する側に前記ポンプ側導電部が形成され、
     前記ポンプ側導電部は、前記導電部と同様の形状を成し、
     前記通信側端子部と前記ポンプ側導電部は、それぞれ、前記体外循環管理部と前記チューブ部の前記導電部と接続されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の体外循環装置。
    A pump part for circulating the blood in the tube part;
    A motor unit for driving the pump unit,
    The pump unit is connected to the tube unit, and the motor unit is connected to the extracorporeal circulation management unit,
    These pump unit and motor unit are detachable,
    The communication side terminal portion is formed on the side of the motor portion that contacts the pump portion,
    The pump side conductive portion is formed on the side of the pump portion that contacts the motor portion,
    The pump side conductive portion has the same shape as the conductive portion,
    The communication side terminal part and the pump side conductive part are connected to the conductive part of the extracorporeal circulation management part and the tube part, respectively. The extracorporeal circulation apparatus described in 1.
  5.  前記特定信号が矩形波で、
     複数の前記導電部のうち1つの前記導電部及び/又は複数の前記ポンプ側導電部のうち1つの前記ポンプ側導電部が、1又は2の前記測定部側端子部の端子及び前記通信部側端子部の端子に接続可能な構成となっていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の体外循環装置。
    The specific signal is a rectangular wave,
    One of the plurality of conductive portions and / or one pump-side conductive portion of the plurality of pump-side conductive portions is one or two terminals of the measurement unit-side terminal unit and the communication unit side The extracorporeal circulation device according to any one of claims 1 to 4, wherein the extracorporeal circulation device is configured to be connectable to a terminal of the terminal portion.
PCT/JP2015/074474 2014-09-24 2015-08-28 Extracorporeal circulation device WO2016047379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550073A JP6669659B2 (en) 2014-09-24 2015-08-28 Extracorporeal circulation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-193897 2014-09-24
JP2014193897 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047379A1 true WO2016047379A1 (en) 2016-03-31

Family

ID=55580908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074474 WO2016047379A1 (en) 2014-09-24 2015-08-28 Extracorporeal circulation device

Country Status (2)

Country Link
JP (1) JP6669659B2 (en)
WO (1) WO2016047379A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368554A (en) * 1992-11-20 1994-11-29 Minnesota Mining And Manufacturing Company Blood pumping system with selective backflow warning
JP2005016539A (en) * 2003-06-23 2005-01-20 Medicalseed:Kk Tubular article having conductive path

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325750A (en) * 2005-05-24 2006-12-07 Senko Medical Instr Mfg Co Ltd Blood circulation system and its controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368554A (en) * 1992-11-20 1994-11-29 Minnesota Mining And Manufacturing Company Blood pumping system with selective backflow warning
JP2005016539A (en) * 2003-06-23 2005-01-20 Medicalseed:Kk Tubular article having conductive path

Also Published As

Publication number Publication date
JP6669659B2 (en) 2020-03-18
JPWO2016047379A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
CN102341796B (en) Identifying a Self-Powered Device Connected to a Medical Device
CN101991405B (en) Modules for monitoring patients and related systems and methods
CN107427618A (en) Heart pump installation and its operating method
US9211161B2 (en) Apparatus and methods for associating medical probes with connection ports
JP2008149184A (en) Medical perfusion system
EP2371411A1 (en) Visual status indicator for patient circuit
WO2016047379A1 (en) Extracorporeal circulation device
JP2016190011A (en) Optical connector for medical appliance
KR20180061541A (en) Clothe having Physiological signal sensing system
US20180325396A1 (en) Finger cuff connector
WO2015141622A1 (en) Alarm device, extracorporeal circulation device, and alarm-device control method
EP3398509B1 (en) Extracorporeal circulation device provided with cardiac function measurement system
CN115154890A (en) Percutaneous ventricular assist system
US20210236792A1 (en) Heart lung machine connection system
US20210106280A1 (en) Sensor arrangement for mounting on a guidewire or catheter
CN111345789A (en) Bleeding alarm device for hemodialysis and real-time bleeding monitoring system
JP6433212B2 (en) Extracorporeal circulation device
CN216822069U (en) Integrated bracelet for blood leakage detection and pipeline fixing
CN212651141U (en) Bleeding monitoring and alarming mechanism during hemodialysis and bleeding real-time monitoring system
JP6431802B2 (en) Medical device and medical device system
JP6396738B2 (en) Indwelling needle
CN219645672U (en) Insertion part and endoscope
BR112019017398A2 (en) SYSTEM FOR MONITORING PHYSIOLOGICAL PARAMETERS IN EXTRACORPOREAL CIRCULATION
CN111481762B (en) Extracorporeal membrane oxygenation system for lung
JP6630794B2 (en) Extracorporeal circulation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844575

Country of ref document: EP

Kind code of ref document: A1