WO2016054367A1 - Method of making hollow fiber membrane modules with a curable composition and modules made therefrom - Google Patents

Method of making hollow fiber membrane modules with a curable composition and modules made therefrom Download PDF

Info

Publication number
WO2016054367A1
WO2016054367A1 PCT/US2015/053477 US2015053477W WO2016054367A1 WO 2016054367 A1 WO2016054367 A1 WO 2016054367A1 US 2015053477 W US2015053477 W US 2015053477W WO 2016054367 A1 WO2016054367 A1 WO 2016054367A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
michael
functional
hollow fiber
polyol
Prior art date
Application number
PCT/US2015/053477
Other languages
French (fr)
Inventor
Joel M. Harris
Dorian P. NELSON
Michael S. MOREN
Christine M. GRIESE
Albert M. Giorgini
Brian W. Carlson
Original Assignee
H.B. Fuller Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H.B. Fuller Company filed Critical H.B. Fuller Company
Priority to EP15778570.0A priority Critical patent/EP3200903A1/en
Priority to CN201580052680.4A priority patent/CN106714944A/en
Priority to JP2017516083A priority patent/JP2017533088A/en
Priority to SG11201701664TA priority patent/SG11201701664TA/en
Publication of WO2016054367A1 publication Critical patent/WO2016054367A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/023Encapsulating materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J165/00Adhesives based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule

Definitions

  • the invention relates to a multi-pack, solvent-free curable composition that is obtainable by a Michael reaction of a Michael donor with a Michael acceptor m the presence of a suitable catalyst, its use in the field of filtration technology, specifically in making hollow fiber filtration applications, and method, of making the same.
  • a hollow fiber membrane module is a filtration device that can be used in precision filtration and ultrafiltration.
  • the module includes a plurality of porous hollow fiber' membranes that are introduced into a. cylindrical container (housing), and potted at least one, or both end portions of the membranes inside the housing or a predetermined fixing container e.g., cartridge head) with a cured resin material known as a potting
  • Two-part curable compositions based on polyurethane and epoxy chemistries have bee used as potting compositions for making hollow liber membrane modules.
  • the present invention relates io a multi-pack, solvent-free, ambient temperature curable composition that has low toxicity (i.e., isocyanate-free) and has appropriate characteristics (e.g., foanvfree and low exotherrn) when cured, making it suitable for use in filtration applications and in particular as a potting composition for potting hollow fiber membrane modules.
  • low toxicity i.e., isocyanate-free
  • appropriate characteristics e.g., foanvfree and low exotherrn
  • the invention features a method of making a hollow fiber membrane module,
  • the method includes preparing a mixture of a multi-pack sol vent- free curable composition by combining a multi-functional Michael donor, a multi-functional Michael acceptor, and a Michael reaction catalyst; introducing the mixture of the curable composition into at least one end portion of a plurality of hollow fiber membranes; and allowing the curable composition to solidify and cure, thereby potting the end portion of the plurality of hollow fiber membranes,
  • the curable composition further includes up to less than 10% by weight of a filler.
  • the curable composition exhibits an initial viscosity from 200 centipoise (cP) to 10,000 cP at 25°C, and a Shore A hardness of no less than 50 after cured for 7 days at 25°C and 50% relative humidity.
  • the catalyst has a conjugate acid that has a pKa of greater than 11.
  • the invention features a hollow fiber membrane module.
  • the module includes a plurality of hollow fiber membranes having at least one end portion potted with a potting composition.
  • the potting composition includes a reaction product of a multi-functional Michael donor, a multi-functional Michael acceptor, and a Michael reaction catalyst.
  • the multi- pack solvent- free curable composition of the invention also exhibits low exotherrn temperature, and non-foaming behavior in the presence of moisture.
  • Fig. 1 is a cross-sectionai view of one embodiment of the hollow fiber membrane module of the invention.
  • ichael reaction refers to the addition reaction of a carbanion or nucleophtle and an activated ⁇ , ⁇ -imsaturated carbonyi compound or group.
  • a “Michael reaction” is a well-known reaction for the formation of carbon-carbon bonds and involves the 1 ,4-addition of a stabilized carbanion to a ⁇ , ⁇ -nnsaturated carbonyi compound,
  • “Michael acceptor” refers to a compound with a least one Michael acceptor functional group with the structure (I): where R ⁇ k R * and R 4 are, independently, hydrogen or organic radicals such as alkyl (linear, branched, or cyclic), aryl, alkaryi, and derivatives and subsdtuted versions thereof. R 1 , R . " R 4 may or may not, independently, contain alkoxy, aryloxy, ether linkages, carboxyi groups, further carbonyl groups, thio analogs thereof, nitrogen-contaimng groups, or combinations thereof.
  • Michael acceptor also refers to a compound with at least one Michael acceptor functional group with the structure (II):
  • R 3 ⁇ 4 is an organic radical such as alkyl (linear, branched, or cyclic), aryl, heteroaryh alkaryi, aikheteroaryl, and derivatives and substituted versions thereof, R s may or may not,
  • Gel time refers to the time for a curable composition to achieve a gelled state at which the composition is no longer workable.
  • “Equivalent weight” is defined as the molecular weight of a compound divided by the number of reactivities or functionalities of the compound that are relevant to the Michael reaction.
  • Ambient temperature refers to a temperature of 25°C +/- 5°C.
  • (Meth)acrylate refers to aery late or methaciylate; and “(meth)acryUc” refers to acrylic or methacrylic.
  • the present disclosure relates to a multi-pack, solvent-free curable composition as a potting compound and its use for potting at least one end portion of a plurality of hollow fiber membranes.
  • the curable composition includes a Michael donor, a Michael acceptor, and a Michael reaction catalyst, and is a multi-pack system. That is, the composition includes two or more parts as herein described. The ingredient(s) in each part is stored in a container (pack) separate from the others until the contents of all the containers are mixed together to form the mixture of the curable composition prior to the application. Upon applying and curing, a solid adhesive forms that adheres hollow fiber membranes together.
  • the phrase "multi-pack" is interchangeable herein with the phrase "multi-part”.
  • the curable composition is an isocyanaie-free (NCO-free) and solvent- free composition based on acetoacetylated polymers obtainable through a Michael reaction between a Michael donor (e.g., acetoacety!aied compound(s)) and a Michael acceptor (e.g., (meth)acrylate(s)) in the presence of a Michael reaction catalyst.
  • a Michael donor e.g., acetoacety!aied compound(s)
  • a Michael acceptor e.g., (meth)acrylate(s)
  • the curable composition is a l iquid right after all the parts of the composition are mixed at an ambient temperature, e.g., 25°C +/-5°C.
  • a composition or a component is considered to be a liquid if it is liquid at an ambient temperature, e.g., 25°C+/-5°C.
  • the curable composition is formulated to exhibit an initial viscosity of no greater than
  • centipoise or from 200 cl ⁇ or from 400 cP, or from 500 cP to no greater than
  • Initial viscosity of the curable composition herein refers to the viscosity determined within
  • the curable composition exhibits a gel time of from 5 minutes
  • the curable composition is formulated to be foam-free and exhibits low exotherm temperature. In some embodiments, the curable composition exhibits a maximum exotherm temperature of no greater than 120°C, or no greater than 100°C, or no greater than 80°C.
  • the curable composition is also formulated to exhibit high hardness.
  • the curable composition exhibits a Shore A hardness of no less than 50, or no less than 60, or no less than 70 after cured for 7 days at 25°C and 50% relative humidity. In some embodiments, the curable composition exhibits a Shore D hardness of no less than 40, or no less than 50 after cured for 7 days at 25°C and 50% relative humidity.
  • the curable composition is also formulated to exhibit resistance to chemicals such as cleaning/sanitizing reagents e.g., caustic, bleach, acidic or peroxide reagents during harsh chemical cleaning cycles.
  • the curable composition exhibits less than 5% weight change after soaking in an acidic or a caustic solution for 28 days according to the herein described Chemical Resistance Test Method.
  • the curable composition has other advantages.
  • the curable composition is solvent-free, therefore, it does not include any volatile organic compounds (VOCs).
  • VOCs volatile organic compounds
  • the curable composition has a workable viscosity and pot life and also cures quickly to develop a high hardness within 24 hours after the multi parts are combined. Finally, the curable composition provides a strong adhesive bond that is resistant to humidity and chemicals.
  • the relative proportion of multi- functional Michael acceptor(s) to multi-functional Michael donor(s) can be characterized by the reactive equivalent ratio, which is the ratio of the number of all the functional groups (e.g., in Structure I and/or Structure II) in the curable mixture to the number of Michael active hydrogen atoms in the mixture.
  • the Michael donor component and the Michael acceptor component are blended together immediately prior to the appl ication such that the equivalent ratio of the Michael acceptor functional acrylate groups to the Michael donor active hydrogens is from 0.3, or from 0.5 to 1.5, or to 1.
  • the Part A of the curable composi tion includes at least one multi-functional Michael donor. In some embodiments, Part A includes more than one multi -functional Michael donors. In some embodiments, Part A is a liquid at ambient temperature.
  • Suitable Michael donors include those that are in a liquid form at ambient temperature. Suitable Michael donors also include those that are in a solid form at ambient temperature. When a Michael donor in solid form is included in Part A, it is preferably mixed with a Michael donor in liquid form such that the Part A is a liquid at ambient temperature.
  • a “Michael donor” is a compound with at least one Michael donor functional group.
  • Michael donor functional groups include malonate esters, acetoacetate esters, malonamides, acetoacetamides (in which Michael active hydrogens are attached to the carbon atom between two carbonyl groups), cvanoacetate esters and cyanoacetamides (in which Michael active hydrogens are attached to the carbon atom between the carbonyl group and the cyano group),
  • a Michael donor may have one, two, three, or more separate Michael donor functional groups. Each Michael donor functional group may have one or two Michael active hydrogen atoms.
  • a compound with two or more Michael active hydrogen atoms is known herein as a multi-functional Michael donor.
  • a Michael donor is a compound composed of Michael donor functional group(s) and a skeleton (or core).
  • the "skeleton (or core) of Michael donor” is the portion of the donor molecule other than the Michael donor functional group(s).
  • Particularly preferred nnuti --functional Michael donors include acetoaeetylated polyols.
  • the polyols being acetoaeetylated have at least one hydroxyl group, and. preferably have two or more hydroxy! groups.
  • the conversion of hydroxy! groups to acetoaceiate groups should be between SO mol% and 100 mol% and more preferably between 85 mol% and 100 mol%.
  • acetoaeetylated polyols A method for making acetoaeetylated polyols is well known m the art, such as Journal of Organic Chemistry 1991 , 56, 1713 - 1 718, ' ransacetoacetylation with tert-Butyl Acetoaceiate Synthetic Applications", in which the acetoaeetylated polyol can be prepared by
  • transesterificaiion with an alkyl acetoaceiate e.g., tert-butyl acetoaceiate.
  • the multi-functional Michael donor is an acetoaeetylated polyol that includes at least one acetoacetoxy functional group, and a skeleton of Michael donor selected from the group consisting of a poiyether polyol, a polyester polyol, a polycarbonate polyol, a polybutadiene polyol, polyurethane polyol, urethane polyol, a glycol, a mono-hydric alcohol, a polyhydric alcohol, a natural oil polyol, and modifications thereof, and combinations thereof.
  • Suitable polyhydric alcohols as skeletons for the multi-functional Michael donor include e.g., alkarse diols, alkylene glycols, glycerols, sugars, pentaerythritols, polyhydric derivatives thereof, cyclohexane drmethano!, hexane diol, castor oil, castor wax, trimethylol propane, ethylene glycol, propylene glycol, pentaerythntol, tnmethylolethane, ditrimethyioipropane, dipentaeryihritoi, glycerin, dipropylene glycol, N,N,N' J N i - etrakis(2--hydroxypropyl)ethylendiamine J neopentyi glycol, propanediol, butanedioi, diethyl
  • alkarse diols alkylene glycols, gly
  • polystyrene resin examples include trimethylolpropane (TMP), isosorbide, glycerol, neopentyl glycol (NPG), butyl ethyl propane diol (BEPD), tricyclodecane dimetbanol, 1 ,4-cyelohexanedimethanol, hydroquinone bis(2-hydroxyethyl) ether, castor oil, castor wax, polybutadiene, polyester polyols, and polyether polyols.
  • TMP trimethylolpropane
  • NPG neopentyl glycol
  • BEPD butyl ethyl propane diol
  • tricyclodecane dimetbanol examples include 1,4-cyelohexanedimethanol, hydroquinone bis(2-hydroxyethyl) ether, castor oil, castor wax, polybutadiene, polyester polyols, and polyether polyols.
  • Michael donors include but are not limited to methyl acetoacetate, ethy l acetoacetate, n-propyl acetoacetate, isopropyl acetoacetate, n-butyl acetoacetate, t-butyl acetoacetate, ethylene glycol bisacetoacetate, 1,2 propanediol bisacetoacetate, 1 ,3 propanediol bisacetoacetate, 1 ,4 butanedioi bisacetoacetate, neopentyl glycol bisacetoacetate, isosorbide bisacetoacetate, trimethylolpropane Iris acetoacetate, glycerol tris acetoacetate, castor oil tris acetoacetate, castor wax tris acetoacetate, glucose tris acetoacetate, glucose tetraacetoacetate, sucrose acetoacetates, sorbitol tris acetoacetate, sorbitol ace
  • the Part B of the curable composition includes at least one multi-functional Michael acceptor. In some embodiments, Part B includes more than one multi-functional Michael acceptors. In some embodiments, Part B is a liquid at ambient temperature,
  • a “Michael acceptor” is a compound having at least one acceptor functional group as described above.
  • a compound with two or more Michael acceptor functional groups is known herein as a multi-functional Michael acceptor.
  • the number of functional groups on the acceptor molecule is the functionality of the Michael acceptor.
  • the "skeleton of the Michael acceptor” is the portion of the acceptor molecule other than the functional groupis).
  • the multi-functional Michael acceptor may have any of a wide variety of skeletons.
  • the skeleton of the multi-functional Michael acceptor include a polyhydric alcohol (such as, those listed herein above m Part A Michael donor section); a polymer such as, a poly alkylene oxide, a poiyurethane, a polyethylene vinyl acetate, a polyvinyl alcohol, a
  • poly butadiene a bydrogenated polybutadiene, an aikyd, an a Iky d polyester, a (rneth)acrylic polymer, a polyolefin, a polyester, a halogenated polyolefin, a halogenated polyester, or combinations thereof.
  • the multi-functional Michael acceptor is a multi-functional (meth)acryiate, which includes monomers, oligomers, polymers of the niidti ⁇ functional_(meth)acr date, and combinations thereof.
  • multi-functional (meth)acrylates suitable as the multi-functional Michael acceptor include 1 ,4-butanediol diacrylate, 1 ,6-hexanediol diacrylate, neopentyl glycol diacrylate, diethyl ene glycol diacrylate, methylene glycol diacrylate, ietraethyiene glycol diaciylate, polyethylene glycol diacrylate, dipropylene glycol diacrylate, tri propylene glycol diacrylate, cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated cyclohexane dimethanol diaciylate, propoxylated neopentyl glycol diacrylate,
  • irirnethylolpropane triacrylate ethoxyiated trimethylolpropane tnacryiate, propoxylated trimethylolpropane triacrylate, acrylated polyester oligomer, bisphenol A diacrylate, ethoxyiated bisphenol A diacrylate, tns(2-hydroxyethyl) isocyauurate triacrylate, acrylated aliphatic urethane oligomer, acrylated aromatic urethane oligomer, and the like, and combinations thereof
  • Suitable multi-functional (meth)acrylates include tetraethyiene glycol dimethacrylate, trimethylolpropane trirnethacry!aie, ditrimethylolpropane-tetraacryiate, ditrimeth I ol propane-tetrarnethacr l te, pentaerythri to! tetra ciylate, pentaerytliritol
  • a curable composition can additionally contain mono , ⁇ -unsaturated compounds such as a rnonoacrylate.
  • suitable multi-functional Michael acceptors include multi-functional (meth)acryiates in which the skeleton is polymeric.
  • the (meih)acryiate groups may be attached to the polymeric skeleton in a wide variety of ways.
  • a (meth)acryiate ester monomer may be attached to a polyrnerizable functional group through the ester linkage, and that polyrnerizable functional group may be polymerized it other monomers in a way that leaves the d le bond of the (meth)acryiate group intact.
  • a polymer may be made with functional groups (such as, a polyester with residual hydroxyis), which may be reacted with a (meth)acrylate ester (for example, by transestenfication) to yield a polymer with pendant (meth)acrylate groups.
  • a homopoiymer or copolymer may be made that includes a multi-functional (meth)acrylate monomer (such as trimethyloipropane tri acrylate) in such a way that not all the acrylate groups react.
  • Suitable commercially available multi-functional Michael acceptors include multi-functional polyester acryiates under the trade designations CN292, CN2283, CN2207, and CN2203: polyethylene glycol diacrylate under the trade designation SR344; ethoxylated bisphenol A diacrylates under the trade designations SR349, SR60!
  • the skeleton of the multi-functional Michael acceptor may be the same or different from the skeleton of the multi-functional Michael donor.
  • the curable composition also includes a Michael reaction catalyst.
  • a Michael reaction catalyst is a catalyst that is capable of initiating a Michael reaction.
  • the catalyst may be included in Part A, or Part B, or combination thereof. Alternatively, the catalyst may be provided to the curable composition as a separate component, such as a Part C.
  • the catalyst is present in the curable composition in an amount from 0.1 %, or from 0,5% lo 10%, or to 1.5%. based on the mole of Michael, active hydrogen atoms.
  • Useful Michael reaction catalysts include both strong base catalysts, of which the conjugated acid has a pK.a of grea ter than 1 1 ; and. we k base catalysts, of which the conjugated acid has a pKa of from 4 to 11.
  • suitable strong base catalysis include guanidin.es, arnidines, and combinations thereof such as 1, 1 ,3,3-tetraniethylguarstdme (TMG), 1,8- Dia abicyclo(5,4,0 ⁇ undec-7-ene (DBU), and L54>ia abicyclo(4,3,0 ⁇ non ⁇ 5-ene (DBN),
  • Suitable weak base catalysts include tertiary amines, alkali metal carbonates, alkali metal bicarbonates, alkali metal hydrogen phosphates, phosphines, alkali metal salts of carboxy!ic acids including but not limited to triethyiamine, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, potassium hydrogen phosphate (monobasic and dhbasic), and potassium acetate.
  • Examples of other Michael reaction catalysts include triphenyl phosphine, triethy! phosphine, and tributyl phosphinc,
  • the Michael reaction catalyst is a strong base catalyst of which the conjugated acid preferably has a p a of greater than I 1 , or from 12 to 14.
  • the bases are organic. Examples of such bases include amindines and guanidines, More preferred catalysts include 1, 1 ,3,3-tetramethylguanidine (TMG), 1 ,8-diazabicyclo-[5.4.0]undes-7-ene (DBU), and l,5-diazabicyclo[4 5 3.0]non-5-ene (DBN).
  • the multi-functional Michael donor(s) and acceptor(s) can be placed together in one pack, and the Michael reaction catalyst ca be placed in another pack. The two packs are mixed together immediately before the application.
  • the adhesive composition includes a Part D and a Part C.
  • Part D inc ludes a combination of any one of the herein described Part A and any one of the herein described Part B.
  • Part. C includes any one of the herein described Michael reaction catalysts.
  • the Part D and Part C are mixed together immediately before the application.
  • Part D includes a dual functional compound that includes a Michael donor functionality and a Michael acceptor functionality.
  • the dual functional compound can be a dual functional monomer, a dual functional oligomer, a dual functional polymer, and combinations thereof.
  • the curable composition may also include other optional additives in any part(s) of the multi-pack curable composition, which include antioxidants, plasticizers, adhesion promoters, catalysts, catalyst deactivators, colorants (e.g., pigments and dyes), surfactants, waxes, defoamers, diluents (including reactive diluents), tackifiers, reinforcing fillers, tougheners, impact modifiers, stabilizers e.g., triethyi phosphate, and combinations thereof.
  • additives include antioxidants, plasticizers, adhesion promoters, catalysts, catalyst deactivators, colorants (e.g., pigments and dyes), surfactants, waxes, defoamers, diluents (including reactive diluents), tackifiers, reinforcing fillers, tougheners, impact modifiers, stabilizers e.g., triethyi phosphate, and combinations thereof.
  • the curable composition may include up to less than 10%, or up to less than 5%, or from 1% to 3% by weight of a filler, based on the weight of the curable composition.
  • the filler may be included in any parti s) of the multi-pack curable composition. Examples of suitable fillers include fume silica, calcium carbonate, and combinations thereof.
  • the curable composition of the invention is a multi-pack composition, That is, the composition includes two or more parts; the ingredients) in each part is stored in a container (pack) separate from the others until the contents of all the containers are mixed together to form the mixture of the curable composition prior to the application.
  • Each individual pack of the multi-pack composition is storage stable. Mixing of all the packs together may be performed at ambient temperature or at elevated temperature.
  • the curable composition of the invention is useful for potting porous hollow fiber membranes together to make hollow fiber membrane modules.
  • the hollow fiber membranes typically have two end portions.
  • the hollow fiber membranes are potted at one end portion of the membranes with a potting composition that is a reaction product of any one of the
  • the potting composition inciudes a reaction product of a multi-functional Michael donor, a multifunctional Michael acceptor, and a Michael reaction catalyst.
  • the hollow fiber membranes are potted at both end portions of the membranes with a potting composition that is a reaction product of a multi-functional Michael donor, a multi-functional Michael acceptor, and a Michael reaction catalyst.
  • the hollow fiber membranes may be potted with one layer of the potting composition that is a reaction product of a multi-functional Michael donor, a multifunctional Michael acceptor, and a Michael reaction catalyst.
  • the hollow liber membranes may be potted with more than one layer of the potting compositions, in which at least one of the potting compositions is the potting composition that is a reaction product of a multi-functional Michael donor, a multi-functional Michael acceptor, and a Michael reaction catalyst.
  • Fig. 1 illustrates a hollow fiber membrane module I .
  • the module 1 includes a plurality of porous hollow fiber membranes 3 contained in a cy lindrical housing 4.
  • the hollow fiber membranes 3 are potted inside the housing 4 at both end portions of the membranes 3 with a potting composition 2.
  • the potting composition 2 includes a reaction product of any one of the aforementioned multi-pack, solvent-free curable compositions of the in vention.
  • Any suitable method of potting at least one end portion of a plurality of hollow fiber membranes can be used to make the membrane modules.
  • a hollow fiber membrane module is fabricated including the steps oi * introducing end portions of a plurality of porous hollow fiber membranes into a predetermined container (e.g., housing), preparing a mixture of the curable composition of the invention, introducing the mixture of the curable composition into the container, allowing the curable composition to flo and permeate around the end portion, solidifying and curing the curable composition, thereby potting the end portion of the hollow fiber membranes.
  • the preparation of the mixture inciudes combining ail parts of the curable composition together immediately before the curable composition is applied.
  • Useful application temperatures range from 20°C to 50°C or from 20°C to 35°C. Lower temperatures are preferred during the application process in order to extend the working life of the curable composition.
  • the invention encompasses various hollow fiber membrane filtration modules along with methods for making and using the same through any of the aforementioned curable compositions of the invention.
  • the configuration of the hollow fiber membrane module is not particularly limited.
  • Examples of various hollow fiber membrane filtration modules in which the curable composition of the present invention is particularly useful include those constructions and methods of making thereof described in, e.g., US8,758,621 ; US8.518.256; 1187,931463;
  • the viscosity is determined using a Brookfield DV-II+ Pro viscometer from Brookfield Engineering, USA, using Spindle # 27 at 2 rpm (revolutions per minute) and 12 grams of a sample material at 25°C + 5°C or 30°C + 5°C, and 50% relative humidity.
  • the glass transition temperature (T g ) of a cured composition is determined according to ASTM D-3418-83 entitled "Standard Test Method for Transition Temperatures of Polymers by Differential Scanning Calorimetry (DSC)" with conditioning a sample at 140°C for two minutes, quench cooling the sample to -60°C and then heating the sample to 140°C at a rate of 20°C per minute.
  • the reported T g is the temperature at which onset of the phase change occurs.
  • Shore A hardness of a cured composition is determined using a hand held hardness meter from Paul N. Gardner Company, Inc. USA, and Shore A scale at 25°C + 5°C and 50% relative humidity.
  • the cured composition is cured for 7 days at 25°C + 5°C and 50% relative humidity,
  • Shore D hardness of a cured composition is determined using a hand held hardness meter from Paul N. Gardner Company, Inc. USA, and Shore D scale at 25°C + 5°C and 50% relative humidity. The cured composition is cured for 7 days at 25°C + 5°C and 50% relative humidity.
  • the gel time of a multi-pack curable composition is determined using a Gardco Standard Gel Timer (from Paul N. Gardner Company, Inc., USA) at 25°C ⁇ 5°C and 50% relative humidity.
  • a 1 10 gram mixture of Part A (Michael donor and Michael reaction catalyst) and Part B (Michael acceptor) is mixed and deposited in an aluminum dish in the timer unit, a wire stirrer is inserted, the display is set to zero and the timer is turned on.
  • the gel timer stirs until gel occurs (the viscosity of the mixture increases to a point where the drag exceeds the torque of the motor and the motor stops), stopping the timer and stirrer.
  • the time on the timer is recorded as the gel time in minutes.
  • Test specimens are prepared by making 10 gram pucks of a curable two-part (Michael donor and Michael acceptor) composition. The pucks of the composition are cured at 25°C + 5°C and 50°/» relative humidity for 7 days. The cured specimens are weighed and the initial weight is recorded. The cured specimens are soaked in either acidic or basic conditions for a duration of 28 days. For acidic conditions three cured puck specimens are soaked in a pH 1 solution (0.1M HCI) at 25°C + 5°C and 50% relative humidity for 28 days. For basic conditions the three cured puck specimens are soaked in a pH 12 solution (NaQHaq) at 40°C + 5°C and 50% relative humidity.
  • a pH 1 solution 0.1M HCI
  • NaQHaq pH 12 solution
  • the pucks are removed from the test solution, rinsed off with deionized water at ambient temperature, dried for one hour, weight recorded, and re-soaked in the appropriate fresh solution. Chemical resistance is repotted as the percent % weight change (weight loss or weight gain) of the cured puck specimens
  • the exotherm of a multi-pack curable composition is determined by mixing in a plastic beaker a 100 gram mixture of Part A (Michael donor and Michael reaction catalyst) and Part B (Michael acceptor) and measuring, after mixing, the temperature and time of the mixture using a standard digital thermometer. The exotherm is recorded as the maximum (max) temperature (°C) the mixture achieves as it cures.
  • the formation of bubbles of a multi-pack, solvent-free adhesive composition is determined by mixing a 1 OOg mixture of part A (donor and catalyst) and part B (acceptor) and allowing the mixture to cure at 25°C ⁇ 5°C and 50% relative humidity for 7 days. After cure the composition is visually inspected for the formation of bubbles. The absence of bubbles within the cured composition is a pass. The appearance of bubbles within the cured composition constitutes a fail.
  • Donor 1 (D ⁇ l ) (Acetoacetoxy trimethylolpropane (AA.TMP)
  • Donor 1 was prepared by adding trimethylolpropane and tert-butyl acetoacetaie (TBAA) to a reaction kettle equipped with a stirrer and a distillation column connected, to a vacuum line. Amounts of the po!yo! and TBAA were used to provide a desired conversion degree of the polyol with 100 rnol% conversion using TBAA in a molar excess of 1/3. 1 he reaction was carried out at 120°C for 2 hours arid teit-butanol by-product, was collected by distillation. The reaction was continued at this temperature until no more teri-butanol was collected.
  • TBAA trimethylolpropane and tert-butyl acetoacetaie
  • the reaction was cooled to ambient temperature, vacuum was applied and the reaction was heated, to 120°C over 1 hour to collect any residual tert-butanol and tert-butylacetoacetate.
  • the reaction was heated at 125°C for 3-4 hours or until no further teri-butanol. or tert-butylacetoacetate was collected.
  • the acetoacetylated polyol was cooled and stored for use.
  • Donor 2 (D-2) (tri-acetoacetate of VORANOL 230-660)
  • Donor 2 was prepared according to the procedure as that in D-l, except that_VORANOL 230-660 (polyetiier polyol, commercially available from Dow Chemical) was used instead of trimethyloipropane.
  • _VORANOL 230-660 polyetiier polyol, commercially available from Dow Chemical
  • D-3 (a mixture of 75% by w r eight of D-l and 25% by weight of di-acetoacetate of VORANOL 220-056N)
  • Donor 3 was prepared by mixing 75% by weight of D-l and 25% by weight of di- acetoacetate of VORANOL 220-056N.
  • Di-acetoacetate of VORANOL 220-056N was prepared according to the procedure as that in D-l, except that VORANOL 220-056N (polyetiier polyol, commercially available from Dow Chemical) was used instead of trimethyloipropane.
  • Donor 4 was prepared according to the procedure as that in D-l, except that KEFLEX ⁇ UD-320-100 (a polyurethane diol commercially available from King Industries (N orwalk, CT)) w r as used instead of trimethyloipropane.
  • Acceptor 1 (A- 1): Multi-flractional polyester aery [ate oligomer (CN 292 availabie from Sartomer USA, LLC),
  • Acceptor 2 Ethoxylated (10) bisphenol A diacrylate (SR 602 availabie from Sartomer USA, LLC).
  • Acceptor 4 Ethoxylated (4) bisphenol A diacrylate (SR 601 available from Sartomer USA, LLC).
  • Acceptor 5 (A-5): 90% SR 602 and 10% aliphatic polyester based urethane hexaacrylate oligomer (CN968 availabie from Sartomer USA, LLC).
  • Acceptor 6 (A -6): 90% SR 602 and 10% hexafunctional aromatic urethane acrylate oligomer (CN975 available from Sartomer USA, LLC).
  • Acceptor 7 20% CN 292, 60% SR833 S (tricyclodecane dimethanol diacrylate, available from Sartomer LISA, LLC), and 20% CN 929 (trifuiictionai urethane acrylate available from Sartomer USA, LLC).
  • Acceptor 8 20% CN 292, 75% SR833 S, and 5% CN 929.
  • Acceptor 9 (A-9): 25% CN 292, 50% SR833 S, and 25% CN 929.

Abstract

A method of making hollow fiber filtration modules including potting an end portion of a plurality of hollow fiber membranes with a multi-pack, solvent- free curable composition. The curable composition includes a Michael donor, a Michael acceptor, and a Michael reaction catalyst.

Description

METHOD OF MAKING HOLLOW FIBER MEMBRA N E MODULES WITH A CURABLE
COMPOSITION AND MODULES MADE THEREFROM
This application claims the benefit of U.S. Provisional Application No. 62/058,464 filed October 1 , 2014, which is incorporated herein.
FIELD OF THE INVENTION
The invention relates to a multi-pack, solvent-free curable composition that is obtainable by a Michael reaction of a Michael donor with a Michael acceptor m the presence of a suitable catalyst, its use in the field of filtration technology, specifically in making hollow fiber filtration applications, and method, of making the same.
BACKGROUND OF THE INVENTION
A hollow fiber membrane module is a filtration device that can be used in precision filtration and ultrafiltration. In one exemplified configuration, the module includes a plurality of porous hollow fiber' membranes that are introduced into a. cylindrical container (housing), and potted at least one, or both end portions of the membranes inside the housing or a predetermined fixing container e.g., cartridge head) with a cured resin material known as a potting
composition.
Two-part curable compositions based on polyurethane and epoxy chemistries have bee used as potting compositions for making hollow liber membrane modules.
SUMMARY OF THE INVENTION
The present invention relates io a multi-pack, solvent-free, ambient temperature curable composition that has low toxicity (i.e., isocyanate-free) and has appropriate characteristics (e.g., foanvfree and low exotherrn) when cured, making it suitable for use in filtration applications and in particular as a potting composition for potting hollow fiber membrane modules. In one aspect, the invention features a method of making a hollow fiber membrane module, The method includes preparing a mixture of a multi-pack sol vent- free curable composition by combining a multi-functional Michael donor, a multi-functional Michael acceptor, and a Michael reaction catalyst; introducing the mixture of the curable composition into at least one end portion of a plurality of hollow fiber membranes; and allowing the curable composition to solidify and cure, thereby potting the end portion of the plurality of hollow fiber membranes,
In one embodiment, the curable composition further includes up to less than 10% by weight of a filler.
In some embodiments, the curable composition exhibits an initial viscosity from 200 centipoise (cP) to 10,000 cP at 25°C, and a Shore A hardness of no less than 50 after cured for 7 days at 25°C and 50% relative humidity.
In one embodiment, the catalyst has a conjugate acid that has a pKa of greater than 11. In another aspect, the invention features a hollow fiber membrane module. The module includes a plurality of hollow fiber membranes having at least one end portion potted with a potting composition. The potting composition includes a reaction product of a multi-functional Michael donor, a multi-functional Michael acceptor, and a Michael reaction catalyst.
Conventional polyurethane based potting compositions for potting hollow fiber membranes require that the hollow fibers be dried prior to potting to remove residual moisture, which causes bubbling (or foaming) in the compositions once the compositions are applied to the end poriion(s) of the membranes and prior to cure. Foaming decreases the filtration capabilities and can lead, to failure of the module. To dry the fibers first prior to potting is cosily and sometimes not even allowed with certain fibers that require a large amount of glycerin to sustain pore openings as the glyceri interferes with the reaction between isocyanates and polyols. Epoxy based potting systems have the limitation of producing a high exotherm (e.g., greater than 120°C) cure profile causing charring of the hollow fibers or breakage of the filtration module.
In addition to meeting the requirements generally imposed in filtration applications and in particular, potting hollow fiber membranes, such as, appropriate initial viscosity and gel time to allow for the penetration of the composition into the hollow fiber membranes once the composition is applied to at least one end portion of the membranes, excellent chemical resistance to strong acidic and basic solutions, appropriate pot life, high hardness, etc., the multi- pack solvent- free curable composition of the invention also exhibits low exotherrn temperature, and non-foaming behavior in the presence of moisture. These characteristics are especially beneficial in the manufacture of hollow fiber membrane modules for water filtration
applications.
Further objects of the present invention will become clear from the further description hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a cross-sectionai view of one embodiment of the hollow fiber membrane module of the invention.
GLOSSARY
hi reference to the invention, these terms have the meanings set forth below:
"Michael reaction" refers to the addition reaction of a carbanion or nucleophtle and an activated α,β-imsaturated carbonyi compound or group. A "Michael reaction" is a well-known reaction for the formation of carbon-carbon bonds and involves the 1 ,4-addition of a stabilized carbanion to a α,β-nnsaturated carbonyi compound,
"Michael donor'" refers to a compound with at least one Michael donor functional group, which is a funcdonai group containing at least one Michael active hydrogen atom, which is a hydrogen atom attached to a carbon atom that is located between two electron-withdrawing groups such as C— O and/or C;≡=N, and/or NO2 initio), and/or SO5R (sulfone, R is an organic radical such as alkyl (linear, branched, or cyclic), aryl, heieroaryi, alkaryl, alkhcteroaryl, and derivatives and substituted versions thereof).
"Michael acceptor" refers to a compound with a least one Michael acceptor functional group with the structure (I):
Figure imgf000004_0001
where R\ k R * and R4 are, independently, hydrogen or organic radicals such as alkyl (linear, branched, or cyclic), aryl, alkaryi, and derivatives and subsdtuted versions thereof. R1, R . " R4 may or may not, independently, contain alkoxy, aryloxy, ether linkages, carboxyi groups, further carbonyl groups, thio analogs thereof, nitrogen-contaimng groups, or combinations thereof.
"Michael acceptor" also refers to a compound with at least one Michael acceptor functional group with the structure (II):
.S02R5
where R¾ is an organic radical such as alkyl (linear, branched, or cyclic), aryl, heteroaryh alkaryi, aikheteroaryl, and derivatives and substituted versions thereof, Rs may or may not,
independently, contain ether linkages, carboxyi groups, further carbonyl groups, sulfonyl groups, thio analogs thereof, nitrogen-containing groups, or combinations thereof
"Gel time" refers to the time for a curable composition to achieve a gelled state at which the composition is no longer workable.
"Equivalent weight" is defined as the molecular weight of a compound divided by the number of reactivities or functionalities of the compound that are relevant to the Michael reaction.
"Ambient temperature" refers to a temperature of 25°C +/- 5°C.
"(Meth)acrylate" refers to aery late or methaciylate; and "(meth)acryUc" refers to acrylic or methacrylic.
DETAILED DESCRIPTION OF THE INVENTION
The present disclosure relates to a multi-pack, solvent-free curable composition as a potting compound and its use for potting at least one end portion of a plurality of hollow fiber membranes.
Curable Composition
The curable composition includes a Michael donor, a Michael acceptor, and a Michael reaction catalyst, and is a multi-pack system. That is, the composition includes two or more parts as herein described. The ingredient(s) in each part is stored in a container (pack) separate from the others until the contents of all the containers are mixed together to form the mixture of the curable composition prior to the application. Upon applying and curing, a solid adhesive forms that adheres hollow fiber membranes together. The phrase "multi-pack" is interchangeable herein with the phrase "multi-part".
The curable composition is an isocyanaie-free (NCO-free) and solvent- free composition based on acetoacetylated polymers obtainable through a Michael reaction between a Michael donor (e.g., acetoacety!aied compound(s)) and a Michael acceptor (e.g., (meth)acrylate(s)) in the presence of a Michael reaction catalyst.
The curable composition is a l iquid right after all the parts of the composition are mixed at an ambient temperature, e.g., 25°C +/-5°C. Herein, a composition or a component is considered to be a liquid if it is liquid at an ambient temperature, e.g., 25°C+/-5°C.
The curable composition is formulated to exhibit an initial viscosity of no greater than
10,000 centipoise (cP), or from 200 cl\ or from 400 cP, or from 500 cP to no greater than
10,000 cP, or no greater than 4,000 cP, or no greater than 2,500 cP, or no greater than 1 ,500 cP at 25°C. Initial viscosity of the curable composition herein refers to the viscosity determined within
1 minute (min) to 5 min after all the parts of the composition are combined.
In some embodiments, the curable composition exhibits a gel time of from 5 minutes
(min), or from 15 min to 120 min, or to 60 min, or to 30 min from the combination of all the parts of the composition.
The curable composition is formulated to be foam-free and exhibits low exotherm temperature. In some embodiments, the curable composition exhibits a maximum exotherm temperature of no greater than 120°C, or no greater than 100°C, or no greater than 80°C.
The curable composition is also formulated to exhibit high hardness. In some
embodiments, the curable composition exhibits a Shore A hardness of no less than 50, or no less than 60, or no less than 70 after cured for 7 days at 25°C and 50% relative humidity. In some embodiments, the curable composition exhibits a Shore D hardness of no less than 40, or no less than 50 after cured for 7 days at 25°C and 50% relative humidity.
The curable composition is also formulated to exhibit resistance to chemicals such as cleaning/sanitizing reagents e.g., caustic, bleach, acidic or peroxide reagents during harsh chemical cleaning cycles. In some embodiments, the curable composition exhibits less than 5% weight change after soaking in an acidic or a caustic solution for 28 days according to the herein described Chemical Resistance Test Method.
In addition, the curable composition has other advantages. For example, the curable composition is solvent-free, therefore, it does not include any volatile organic compounds (VOCs).
The curable composition has a workable viscosity and pot life and also cures quickly to develop a high hardness within 24 hours after the multi parts are combined. Finally, the curable composition provides a strong adhesive bond that is resistant to humidity and chemicals.
In the curable compositions of the present invention, the relative proportion of multi- functional Michael acceptor(s) to multi-functional Michael donor(s) can be characterized by the reactive equivalent ratio, which is the ratio of the number of all the functional groups (e.g., in Structure I and/or Structure II) in the curable mixture to the number of Michael active hydrogen atoms in the mixture. The Michael donor component and the Michael acceptor component are blended together immediately prior to the appl ication such that the equivalent ratio of the Michael acceptor functional acrylate groups to the Michael donor active hydrogens is from 0.3, or from 0.5 to 1.5, or to 1.
Part A Multi-functional Michael Donor
The Part A of the curable composi tion includes at least one multi-functional Michael donor. In some embodiments, Part A includes more than one multi -functional Michael donors. In some embodiments, Part A is a liquid at ambient temperature.
Suitable Michael donors include those that are in a liquid form at ambient temperature. Suitable Michael donors also include those that are in a solid form at ambient temperature. When a Michael donor in solid form is included in Part A, it is preferably mixed with a Michael donor in liquid form such that the Part A is a liquid at ambient temperature.
A "Michael donor" is a compound with at least one Michael donor functional group. Examples of Michael donor functional groups include malonate esters, acetoacetate esters, malonamides, acetoacetamides (in which Michael active hydrogens are attached to the carbon atom between two carbonyl groups), cvanoacetate esters and cyanoacetamides (in which Michael active hydrogens are attached to the carbon atom between the carbonyl group and the cyano group), A Michael donor may have one, two, three, or more separate Michael donor functional groups. Each Michael donor functional group may have one or two Michael active hydrogen atoms. A compound with two or more Michael active hydrogen atoms is known herein as a multi-functional Michael donor. The total number of M ichael active hy drogen atoms on the donor molecule is known as the functionality of the Michael donor. A Michael donor is a compound composed of Michael donor functional group(s) and a skeleton (or core). As used herein, the "skeleton (or core) of Michael donor" is the portion of the donor molecule other than the Michael donor functional group(s).
Particularly preferred nnuti --functional Michael donors include acetoaeetylated polyols. The polyols being acetoaeetylated have at least one hydroxyl group, and. preferably have two or more hydroxy! groups. The conversion of hydroxy! groups to acetoaceiate groups should be between SO mol% and 100 mol% and more preferably between 85 mol% and 100 mol%.
A method for making acetoaeetylated polyols is well known m the art, such as Journal of Organic Chemistry 1991 , 56, 1713 - 1 718, ' ransacetoacetylation with tert-Butyl Acetoaceiate Synthetic Applications", in which the acetoaeetylated polyol can be prepared by
transesterificaiion with an alkyl acetoaceiate. e.g., tert-butyl acetoaceiate.
in some embodiments, the multi-functional Michael donor is an acetoaeetylated polyol that includes at least one acetoacetoxy functional group, and a skeleton of Michael donor selected from the group consisting of a poiyether polyol, a polyester polyol, a polycarbonate polyol, a polybutadiene polyol, polyurethane polyol, urethane polyol, a glycol, a mono-hydric alcohol, a polyhydric alcohol, a natural oil polyol, and modifications thereof, and combinations thereof.
Examples of suitable polyhydric alcohols as skeletons for the multi-functional Michael donor (as well as for the belo multi-functional Michael acceptor in Part 13) include e.g., alkarse diols, alkylene glycols, glycerols, sugars, pentaerythritols, polyhydric derivatives thereof, cyclohexane drmethano!, hexane diol, castor oil, castor wax, trimethylol propane, ethylene glycol, propylene glycol, pentaerythntol, tnmethylolethane, ditrimethyioipropane, dipentaeryihritoi, glycerin, dipropylene glycol, N,N,N'JNi- etrakis(2--hydroxypropyl)ethylendiamineJ neopentyi glycol, propanediol, butanedioi, diethyl en e glycol, and the like. Examples of more preferred polyols include trimethylolpropane (TMP), isosorbide, glycerol, neopentyl glycol (NPG), butyl ethyl propane diol (BEPD), tricyclodecane dimetbanol, 1 ,4-cyelohexanedimethanol, hydroquinone bis(2-hydroxyethyl) ether, castor oil, castor wax, polybutadiene, polyester polyols, and polyether polyols.
Examples of Michael donors include but are not limited to methyl acetoacetate, ethy l acetoacetate, n-propyl acetoacetate, isopropyl acetoacetate, n-butyl acetoacetate, t-butyl acetoacetate, ethylene glycol bisacetoacetate, 1,2 propanediol bisacetoacetate, 1 ,3 propanediol bisacetoacetate, 1 ,4 butanedioi bisacetoacetate, neopentyl glycol bisacetoacetate, isosorbide bisacetoacetate, trimethylolpropane Iris acetoacetate, glycerol tris acetoacetate, castor oil tris acetoacetate, castor wax tris acetoacetate, glucose tris acetoacetate, glucose tetraacetoacetate, sucrose acetoacetates, sorbitol tris acetoacetate, sorbitol tetra acetoacetate, acetoacetates of ethoxylated and propoxylated diols, triols and polyols such as ethoxy!ated neopentyl glycol bisacetoacetate, propoxylated glucose acetoacetates, propoxylated sorbitol acetoacetates, propoxylated sucrose acetoacetates, polyester acetoacetates in which the polyester is derived from at least one diacid and at least one diol, polyesteramide acetoacetates in which the polyesteramide is derived from at least one diacid and at least one diamine, 1,2 ethylene bisacetamide, 1,4 butane bisacetamide, 1 ,6 hexane bisacetoacetamide, piperazine bisacetamide, acetamides of amine terminated polypropylene glycols, acetamides of polyesteramides acetoacetates in which the polyesteramide is derived from at least one diacid and at least one diamine, polyacrylates containing comonomers with acetoacetoxy functionality (such as derived from acetoacetoxyethyl methacrylate), and polyacrylates containing acetoacetoxy functionality and silylated comonomers (such as vinyl trimethoxysilane).
Part B Multi-functional Michael Acceptor
The Part B of the curable composition includes at least one multi-functional Michael acceptor. In some embodiments, Part B includes more than one multi-functional Michael acceptors. In some embodiments, Part B is a liquid at ambient temperature,
A "Michael acceptor" is a compound having at least one acceptor functional group as described above. A compound with two or more Michael acceptor functional groups is known herein as a multi-functional Michael acceptor. 'The number of functional groups on the acceptor molecule is the functionality of the Michael acceptor. As used herein, the "skeleton of the Michael acceptor" is the portion of the acceptor molecule other than the functional groupis).
The multi-functional Michael acceptor may have any of a wide variety of skeletons. Examples of the skeleton of the multi-functional Michael acceptor include a polyhydric alcohol (such as, those listed herein above m Part A Michael donor section); a polymer such as, a poly alkylene oxide, a poiyurethane, a polyethylene vinyl acetate, a polyvinyl alcohol, a
poly butadiene, a bydrogenated polybutadiene, an aikyd, an a Iky d polyester, a (rneth)acrylic polymer, a polyolefin, a polyester, a halogenated polyolefin, a halogenated polyester, or combinations thereof.
Preferably, the multi-functional Michael acceptor is a multi-functional (meth)acryiate, which includes monomers, oligomers, polymers of the niidti~functional_(meth)acr date, and combinations thereof.
Examples of multi-functional (meth)acrylates suitable as the multi-functional Michael acceptor include 1 ,4-butanediol diacrylate, 1 ,6-hexanediol diacrylate, neopentyl glycol diacrylate, diethyl ene glycol diacrylate, methylene glycol diacrylate, ietraethyiene glycol diaciylate, polyethylene glycol diacrylate, dipropylene glycol diacrylate, tri propylene glycol diacrylate, cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated cyclohexane dimethanol diaciylate, propoxylated neopentyl glycol diacrylate,
irirnethylolpropane triacrylate, ethoxyiated trimethylolpropane tnacryiate, propoxylated trimethylolpropane triacrylate, acrylated polyester oligomer, bisphenol A diacrylate, ethoxyiated bisphenol A diacrylate, tns(2-hydroxyethyl) isocyauurate triacrylate, acrylated aliphatic urethane oligomer, acrylated aromatic urethane oligomer, and the like, and combinations thereof
Other examples of suitable multi-functional (meth)acrylates include tetraethyiene glycol dimethacrylate, trimethylolpropane trirnethacry!aie, ditrimethylolpropane-tetraacryiate, ditrimeth I ol propane-tetrarnethacr l te, pentaerythri to! tetra ciylate, pentaerytliritol
tetxamethacrylate and the like, In accordance with the present invention, a curable composition can additionally contain mono ,β-unsaturated compounds such as a rnonoacrylate.
Further examples of suitable multi-functional Michael acceptors include multi-functional (meth)acryiates in which the skeleton is polymeric. The (meih)acryiate groups may be attached to the polymeric skeleton in a wide variety of ways. For example, a (meth)acryiate ester monomer may be attached to a polyrnerizable functional group through the ester linkage, and that polyrnerizable functional group may be polymerized it other monomers in a way that leaves the d le bond of the (meth)acryiate group intact. For another example, a polymer may be made with functional groups (such as, a polyester with residual hydroxyis), which may be reacted with a (meth)acrylate ester (for example, by transestenfication) to yield a polymer with pendant (meth)acrylate groups. For yet another example, a homopoiymer or copolymer may be made that includes a multi-functional (meth)acrylate monomer (such as trimethyloipropane tri acrylate) in such a way that not all the acrylate groups react.
Mixtures or combinations of suitable multi-functional Michael acceptors are also suitable.
Examples of suitable commercially available multi-functional Michael acceptors include multi-functional polyester acryiates under the trade designations CN292, CN2283, CN2207, and CN2203: polyethylene glycol diacrylate under the trade designation SR344; ethoxylated bisphenol A diacrylates under the trade designations SR349, SR60! and SR602; tricyclodecane dimethanol diacrylate under the trade designation SR833 8; hexafimctional aromatic urethane acrylate under the trade designation CN 975; trifunctional urethane acrylate under the trade designation CN 929; and aliphatic polyester based urethane hexa-aerylate under the trade designation CN968, all of which are available from Sartomer USA, LLC (Exton, PA).
It is believed that reacting a Michael donor having functionality of 2 with a Michael acceptor having a functionality of 2 will lead to linear molecular structures. To create molecular structures that are branched and/or crosshnked, one would use at least one ingredient having a functionality of 3 or greater. Therefore, it is preferred that either the multi-functional Michael donor or the multi-functional Michael acceptor or both have a functionality of 3 or greater.
In the practice of the present invention, the skeleton of the multi-functional Michael acceptor may be the same or different from the skeleton of the multi-functional Michael donor.
Figure imgf000011_0001
The curable composition also includes a Michael reaction catalyst. A Michael reaction catalyst is a catalyst that is capable of initiating a Michael reaction. The catalyst may be included in Part A, or Part B, or combination thereof. Alternatively, the catalyst may be provided to the curable composition as a separate component, such as a Part C.
The catalyst is present in the curable composition in an amount from 0.1 %, or from 0,5% lo 10%, or to 1.5%. based on the mole of Michael, active hydrogen atoms.
Useful Michael reaction catalysts include both strong base catalysts, of which the conjugated acid has a pK.a of grea ter than 1 1 ; and. we k base catalysts, of which the conjugated acid has a pKa of from 4 to 11. Examples of suitable strong base catalysis include guanidin.es, arnidines, and combinations thereof such as 1, 1 ,3,3-tetraniethylguarstdme (TMG), 1,8- Dia abicyclo(5,4,0}undec-7-ene (DBU), and L54>ia abicyclo(4,3,0}non~5-ene (DBN),
Examples of suitable weak base catalysts include tertiary amines, alkali metal carbonates, alkali metal bicarbonates, alkali metal hydrogen phosphates, phosphines, alkali metal salts of carboxy!ic acids including but not limited to triethyiamine, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, potassium hydrogen phosphate (monobasic and dhbasic), and potassium acetate. Examples of other Michael reaction catalysts include triphenyl phosphine, triethy! phosphine, and tributyl phosphinc,
In some embodiments, the Michael reaction catalyst is a strong base catalyst of which the conjugated acid preferably has a p a of greater than I 1 , or from 12 to 14. Preferably the bases are organic. Examples of such bases include amindines and guanidines, More preferred catalysts include 1, 1 ,3,3-tetramethylguanidine (TMG), 1 ,8-diazabicyclo-[5.4.0]undes-7-ene (DBU), and l,5-diazabicyclo[453.0]non-5-ene (DBN).
Part D Combination of Multi-functional Michael Donor and Multi-functional Michael Acceptor
In some embodiments, the multi-functional Michael donor(s) and acceptor(s) can be placed together in one pack, and the Michael reaction catalyst ca be placed in another pack. The two packs are mixed together immediately before the application.
Therefore, in some embodiments, the adhesive composition includes a Part D and a Part C. Part D inc ludes a combination of any one of the herein described Part A and any one of the herein described Part B. Part. C includes any one of the herein described Michael reaction catalysts. The Part D and Part C are mixed together immediately before the application. In some embodiments, Part D includes a dual functional compound that includes a Michael donor functionality and a Michael acceptor functionality. The dual functional compound can be a dual functional monomer, a dual functional oligomer, a dual functional polymer, and combinations thereof.
Other Additives
The curable composition may also include other optional additives in any part(s) of the multi-pack curable composition, which include antioxidants, plasticizers, adhesion promoters, catalysts, catalyst deactivators, colorants (e.g., pigments and dyes), surfactants, waxes, defoamers, diluents (including reactive diluents), tackifiers, reinforcing fillers, tougheners, impact modifiers, stabilizers e.g., triethyi phosphate, and combinations thereof.
In some embodiments, the curable composition may include up to less than 10%, or up to less than 5%, or from 1% to 3% by weight of a filler, based on the weight of the curable composition. The filler may be included in any parti s) of the multi-pack curable composition. Examples of suitable fillers include fume silica, calcium carbonate, and combinations thereof.
Method of Making and Using
The curable composition of the invention is a multi-pack composition, That is, the composition includes two or more parts; the ingredients) in each part is stored in a container (pack) separate from the others until the contents of all the containers are mixed together to form the mixture of the curable composition prior to the application. Each individual pack of the multi-pack composition is storage stable. Mixing of all the packs together may be performed at ambient temperature or at elevated temperature.
The curable composition of the invention is useful for potting porous hollow fiber membranes together to make hollow fiber membrane modules.
The hollow fiber membranes typically have two end portions.
In one embodiment, the hollow fiber membranes are potted at one end portion of the membranes with a potting composition that is a reaction product of any one of the
aforementioned multi-pack, solvent-free curable compositions of the invention. In particular, the potting composition inciudes a reaction product of a multi-functional Michael donor, a multifunctional Michael acceptor, and a Michael reaction catalyst.
In another embodiment, the hollow fiber membranes are potted at both end portions of the membranes with a potting composition that is a reaction product of a multi-functional Michael donor, a multi-functional Michael acceptor, and a Michael reaction catalyst.
In some embodiments, the hollow fiber membranes may be potted with one layer of the potting composition that is a reaction product of a multi-functional Michael donor, a multifunctional Michael acceptor, and a Michael reaction catalyst.
In some embodiments, the hollow liber membranes may be potted with more than one layer of the potting compositions, in which at least one of the potting compositions is the potting composition that is a reaction product of a multi-functional Michael donor, a multi-functional Michael acceptor, and a Michael reaction catalyst.
As one embodiment, Fig. 1 illustrates a hollow fiber membrane module I . The module 1 includes a plurality of porous hollow fiber membranes 3 contained in a cy lindrical housing 4. In this embodiment, the hollow fiber membranes 3 are potted inside the housing 4 at both end portions of the membranes 3 with a potting composition 2. The potting composition 2 includes a reaction product of any one of the aforementioned multi-pack, solvent-free curable compositions of the in vention.
Any suitable method of potting at least one end portion of a plurality of hollow fiber membranes can be used to make the membrane modules.
In one embodiment, a hollow fiber membrane module is fabricated including the steps oi* introducing end portions of a plurality of porous hollow fiber membranes into a predetermined container (e.g., housing), preparing a mixture of the curable composition of the invention, introducing the mixture of the curable composition into the container, allowing the curable composition to flo and permeate around the end portion, solidifying and curing the curable composition, thereby potting the end portion of the hollow fiber membranes. The preparation of the mixture inciudes combining ail parts of the curable composition together immediately before the curable composition is applied. Useful application temperatures range from 20°C to 50°C or from 20°C to 35°C. Lower temperatures are preferred during the application process in order to extend the working life of the curable composition.
The invention encompasses various hollow fiber membrane filtration modules along with methods for making and using the same through any of the aforementioned curable compositions of the invention. The configuration of the hollow fiber membrane module is not particularly limited. Examples of various hollow fiber membrane filtration modules in which the curable composition of the present invention is particularly useful include those constructions and methods of making thereof described in, e.g., US8,758,621 ; US8.518.256; 1187,931463;
US7,022,231; US7,005,100; US6,974,554; US6,648,945; US6,290,756; US2006/0150373; which are incorporated herein by reference in their entirety.
The present disclosure may be further understood with reference to the following examples. These examples are intended to be representative of specific embodiments of the disclosure and are not intended to be limiting to the scope of the disclosure.
All parts, ratios, percents, and amounts stated herein and in the examples are by weight unless otherwise specified.
EXAMPLES
Test Methods Viscosity
The viscosity is determined using a Brookfield DV-II+ Pro viscometer from Brookfield Engineering, USA, using Spindle # 27 at 2 rpm (revolutions per minute) and 12 grams of a sample material at 25°C + 5°C or 30°C + 5°C, and 50% relative humidity.
Glass Transition Temperature (Tg)
The glass transition temperature (Tg) of a cured composition is determined according to ASTM D-3418-83 entitled "Standard Test Method for Transition Temperatures of Polymers by Differential Scanning Calorimetry (DSC)" with conditioning a sample at 140°C for two minutes, quench cooling the sample to -60°C and then heating the sample to 140°C at a rate of 20°C per minute. The reported Tg is the temperature at which onset of the phase change occurs.
Shore A Hardness
Shore A hardness of a cured composition is determined using a hand held hardness meter from Paul N. Gardner Company, Inc. USA, and Shore A scale at 25°C + 5°C and 50% relative humidity. The cured composition is cured for 7 days at 25°C + 5°C and 50% relative humidity,
Shore D Hardness
Shore D hardness of a cured composition is determined using a hand held hardness meter from Paul N. Gardner Company, Inc. USA, and Shore D scale at 25°C + 5°C and 50% relative humidity. The cured composition is cured for 7 days at 25°C + 5°C and 50% relative humidity.
Gel Time
The gel time of a multi-pack curable composition is determined using a Gardco Standard Gel Timer (from Paul N. Gardner Company, Inc., USA) at 25°C ± 5°C and 50% relative humidity. A 1 10 gram mixture of Part A (Michael donor and Michael reaction catalyst) and Part B (Michael acceptor) is mixed and deposited in an aluminum dish in the timer unit, a wire stirrer is inserted, the display is set to zero and the timer is turned on. The gel timer stirs until gel occurs (the viscosity of the mixture increases to a point where the drag exceeds the torque of the motor and the motor stops), stopping the timer and stirrer. The time on the timer is recorded as the gel time in minutes.
Chemical Resistance Test Method
Chemical resistance is determined as follows:
Test specimens are prepared by making 10 gram pucks of a curable two-part (Michael donor and Michael acceptor) composition. The pucks of the composition are cured at 25°C + 5°C and 50°/» relative humidity for 7 days. The cured specimens are weighed and the initial weight is recorded. The cured specimens are soaked in either acidic or basic conditions for a duration of 28 days. For acidic conditions three cured puck specimens are soaked in a pH 1 solution (0.1M HCI) at 25°C + 5°C and 50% relative humidity for 28 days. For basic conditions the three cured puck specimens are soaked in a pH 12 solution (NaQHaq) at 40°C + 5°C and 50% relative humidity. After 7, 14, 21 , and 28 days the pucks are removed from the test solution, rinsed off with deionized water at ambient temperature, dried for one hour, weight recorded, and re-soaked in the appropriate fresh solution. Chemical resistance is repotted as the percent % weight change (weight loss or weight gain) of the cured puck specimens
Exotherm
The exotherm of a multi-pack curable composition is determined by mixing in a plastic beaker a 100 gram mixture of Part A (Michael donor and Michael reaction catalyst) and Part B (Michael acceptor) and measuring, after mixing, the temperature and time of the mixture using a standard digital thermometer. The exotherm is recorded as the maximum (max) temperature (°C) the mixture achieves as it cures.
Bubble Formation 'Test Method
The formation of bubbles of a multi-pack, solvent-free adhesive composition is determined by mixing a 1 OOg mixture of part A (donor and catalyst) and part B (acceptor) and allowing the mixture to cure at 25°C ± 5°C and 50% relative humidity for 7 days. After cure the composition is visually inspected for the formation of bubbles. The absence of bubbles within the cured composition is a pass. The appearance of bubbles within the cured composition constitutes a fail.
Michael Donor
The following Michael donors were used for making the curable composition to be tested in the Examples:
Donor 1 (D~l ) (Acetoacetoxy trimethylolpropane (AA.TMP)
Donor 1 was prepared by adding trimethylolpropane and tert-butyl acetoacetaie (TBAA) to a reaction kettle equipped with a stirrer and a distillation column connected, to a vacuum line. Amounts of the po!yo! and TBAA were used to provide a desired conversion degree of the polyol with 100 rnol% conversion using TBAA in a molar excess of 1/3. 1 he reaction was carried out at 120°C for 2 hours arid teit-butanol by-product, was collected by distillation. The reaction was continued at this temperature until no more teri-butanol was collected. The reaction was cooled to ambient temperature, vacuum was applied and the reaction was heated, to 120°C over 1 hour to collect any residual tert-butanol and tert-butylacetoacetate. The reaction was heated at 125°C for 3-4 hours or until no further teri-butanol. or tert-butylacetoacetate was collected. The acetoacetylated polyol was cooled and stored for use.
Donor 2 (D-2) (tri-acetoacetate of VORANOL 230-660)
Donor 2 was prepared according to the procedure as that in D-l, except that_VORANOL 230-660 (polyetiier polyol, commercially available from Dow Chemical) was used instead of trimethyloipropane.
Donor 3 (D-3) (a mixture of 75% by wreight of D-l and 25% by weight of di-acetoacetate of VORANOL 220-056N)
Donor 3 was prepared by mixing 75% by weight of D-l and 25% by weight of di- acetoacetate of VORANOL 220-056N. Di-acetoacetate of VORANOL 220-056N was prepared according to the procedure as that in D-l, except that VORANOL 220-056N (polyetiier polyol, commercially available from Dow Chemical) was used instead of trimethyloipropane.
Donor 4 (D-4)
Donor 4 (D-4) was prepared according to the procedure as that in D-l, except that KEFLEX© UD-320-100 (a polyurethane diol commercially available from King Industries (N orwalk, CT)) wras used instead of trimethyloipropane.
Michael Acceptor
The following Michael acceptors were used for making the curable composition to be tested in the Examples: Acceptor 1 (A- 1): Multi-flractional polyester aery [ate oligomer (CN 292 availabie from Sartomer USA, LLC),
Acceptor 2 (A-2): Ethoxylated (10) bisphenol A diacrylate (SR 602 availabie from Sartomer USA, LLC).
Acceptor 3 (A-3): Multi-functional polyester acrylate oligomer (CN 2283 available from
Sartomer USA, LLC).
Acceptor 4 (A-4): Ethoxylated (4) bisphenol A diacrylate (SR 601 available from Sartomer USA, LLC).
Acceptor 5 (A-5): 90% SR 602 and 10% aliphatic polyester based urethane hexaacrylate oligomer (CN968 availabie from Sartomer USA, LLC). Acceptor 6 (A -6): 90% SR 602 and 10% hexafunctional aromatic urethane acrylate oligomer (CN975 available from Sartomer USA, LLC).
Acceptor 7 (A-7): 20% CN 292, 60% SR833 S (tricyclodecane dimethanol diacrylate, available from Sartomer LISA, LLC), and 20% CN 929 (trifuiictionai urethane acrylate available from Sartomer USA, LLC).
Acceptor 8 (A-8): 20% CN 292, 75% SR833 S, and 5% CN 929.
Acceptor 9 (A-9): 25% CN 292, 50% SR833 S, and 25% CN 929.
Michael Reaction Catalyst
The following Michael reaction catalyst was used for making the curable composition to be tested in the Examples:
l,8-diazabicyclo[5.4.0.]undec-7-ene (DBU, availabie from Air Products). Examples 1- 15 and Comparative Examples 1-2
Each curable composition of Examples 1-15 and Comparative Examples 1-2 was prepared by combining Part A and Part B according to Table 1 at ambient temperature prior to the testing, and then was tested according to the herein described various test methods. The results are listed in Tables 1 and 2,
Table 1
Part A Part B Mix Ratio Shore A Shore D Tg (°C) by Weight (± 5) (± 5)
(A:B)
Comp. Ex. *UR2187A *UR2187B 1 :0.625 90 54 15 1
Comp. Ex. **FE781 1 A **FE781 1B 1 :0.53 N/A*** 80
Ex. I D-1, A-l 1 :3.21 96 17
1.5% DBU
Ex. 2 D-1, A-l 1 :3.15 94 42 16
1.5% DBU
2% fumed
silica
Ex. 3 D-1 A-2 1 :5.93 86 30 -3
1.5% DBU
Ex. 4 D-1 A-2 1 :5.82 83 26
1 .5% DBU
2% fumed
silica
Ex. 5 D-1 A-l 1 :3.05 96 55
1 .5% DBU
2% fumed
silica
Ex. 6 D-2 A-l 1 :2.45 89 44 -18
1 .5% DBU
Ex. 7 D-2 A-3 1 :3.15 81 20 -26
1.5% DBU
Ex. 8 D-3 A-4 1 :2.15 95 62 24
1.5% DBU
Ex. 9 D-1 A-5 1 :5.55 83 25 -8
1 .25%
DBU
Ex. 10 D-1 A-6 1 :5,55 79 20 T 1.25%
DBU
Ex. 1 1 D-1 A-7 1 : 3.3 100 84 37
1.2% DBU
Ex. 12 D-4 A-7 1 I 1.8 100 70 24
1 .2% DBU
Ex. 13 D-1 A-8 1 : 2.5 100 84 40
1.2% DBU
Ex. 14 D-1 A-9 1 : 3.6 100 74 33
1.2% DBU
Ex. 15 D-1 A-7 1 I 1.75 95 50
1 .2% DBU
* Two-part polyurethane ad lesive commercially avail ab le from H .B. Fuller (St. Pau L, M ).
** Two-part epoxy adhesive commercially available from H.B.Fuller.
*** Not applicable.
Table 2
Figure imgf000021_0001
Ex.13 1100 44 82 pass pass no
Ex. 14 1900 42 60 pass pass no
Ex. 15 1050 65 81 pass pass no
* Pass: less than 5% weight gain or loss.
** NT: not tested.
The above specification, examples and data provide a complete description of the disclosure. Since many embodiments can be made without departing from the spirit and scope of the disclosure, the invention resides in the claims hereinafter appended.

Claims

WE CLAIM:
A method of making a hollow fiber membrane module, comprising: preparing a mixture of a multi-pack, solvent-free curable composition by combining a multi-functional Michael donor, a multi-functional Michael acceptor, and a Michael reaction catalyst,
introducing the mixture of the curable composition into at least one end portion of a plurality of hollow fiber membranes, and
allowing the curable composition to solidify and cure, thereby potting the end portion of the plurality of hollow fiber membranes.
The method of claim 1 , wherein the curable composition further comprises from 0 to less than 10% by weight filler, based on the weight of the curable composition. 3. The method of claim 1 , wherein the curable composition exhibits an initial viscosity of from 200 centipoise (cP) to 10,000 cP at 25°C.
The method of claim 1, wherein the multi-functional Michael donor comprises an acetoacetylated polyol that has at least one acetoacetoxy functional group, and a skeleton selected from the group consisting of a polyether polyol, a polyester polyol, a polycarbonate polyol, polyurethane polyol, urethane polyol, a polybutadiene polyol, a glycol, a mono-hydric alcohol, a polyhydric alcohol, a natural oil polyol, and modifications thereof, and combinations thereof.
The method of claim 1, wherein the multi-functional Michael acceptor is selected from the group consisting of monomers, oligomers, and polymers of multi-functional (meth)acrylate, and combinations thereof.
6. The method of claim 5, wherein the multi-functional Michael acceptor comprises multi-functional polyester acrylates, ethoxylated bisphenol A diacrylates, urethane acrylate oligomers, polyethylene glycol diacrylates, tricyclodecane dimethanol diacrylates, and combinations thereof. 7. The method of claim 6, wherein the curable composition exhibits, upon cure, non-foaming behavior in the presence of moisture.
8. The method of claim 6, wherem urethane acrylate oligomers comprises
hexafunctional aromatic urethane acrylate oligomers, aliphatic polyester based urethane hexa-acrylate oligomers, and combinations thereof.
9. The method of claim 1 , wherem the catalyst is a strong base catalyst having a conjugate acid that has a pKa of greater than 1 1 . 10. The method of claim 1 , wherein the catalyst comprises amindines and
guanidines.
1 1. The method of claim 9, wherein the catalyst comprises 1 , 1 ,3,3- tetramethylguamdine (TMG), 1 ,8-diazabicyclo-[5 A .0]undes-7-ene (DBU), and 1 ,5-diazabicyclo[4,3,0]non-5-ene (DBN).
12. The method of claim 1 , wherein the curable composition exhibits a maximum exotherm temperature of no greater than 120°C.
13. The method of claim 1 , wherein the equivalent ratio of Michael acceptor functional group acrylates to Michael donor active hydrogens is from 0.3: 1 to
14. The method of claim 1, wherein the catalyst is in an amount of from 0, 1% to 10% based on the mole of Michael active hydrogen atoms,
15. The method of claim 1, wherem the curable composition exhibits a gel time of from 3 minutes to 120 minutes.
16. The method of claim 1 , wherein the curable composition exhibits a Shore A hardness of no less than 50 after cured for 7 days at 25°C and 50%» relative humidity.
17. The method of claim 1, wherein the curable composition exhibits a Shore D hardness of no less than 40 after cured for 7 days at 25°C and 50% relative humidity.
18. A hollow fiber membrane module, comprising
a plurality of hollow liber membranes having at least one end portion potted with a potting composition,
wherein the potting composition comprises a reaction product of
a multi-functional Michael donor,
a multi-functional Michael acceptor, and
a Michael reaction catalyst.
19. The hollowr fiber membrane module of claim 18, wherein the potting
composition exhibits a Shore A hardness of no less than 50 after cured for 7 days at 25°C and 50% relative humidity.
The hollow fiber membrane module of claim 18, wherem the potting composition exhibits non-foaming behavior in the presence of moisture.
PCT/US2015/053477 2014-10-01 2015-10-01 Method of making hollow fiber membrane modules with a curable composition and modules made therefrom WO2016054367A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15778570.0A EP3200903A1 (en) 2014-10-01 2015-10-01 Method of making hollow fiber membrane modules with a curable composition and modules made therefrom
CN201580052680.4A CN106714944A (en) 2014-10-01 2015-10-01 Method of making hollow fiber membrane modules with a curable composition and modules made therefrom
JP2017516083A JP2017533088A (en) 2014-10-01 2015-10-01 Method for producing hollow fiber membrane module using curable composition, and module produced therefrom
SG11201701664TA SG11201701664TA (en) 2014-10-01 2015-10-01 Method of making hollow fiber membrane modules with a curable composition and modules made therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462058464P 2014-10-01 2014-10-01
US62/058,464 2014-10-01

Publications (1)

Publication Number Publication Date
WO2016054367A1 true WO2016054367A1 (en) 2016-04-07

Family

ID=55631513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/053477 WO2016054367A1 (en) 2014-10-01 2015-10-01 Method of making hollow fiber membrane modules with a curable composition and modules made therefrom

Country Status (5)

Country Link
EP (1) EP3200903A1 (en)
JP (1) JP2017533088A (en)
CN (1) CN106714944A (en)
SG (1) SG11201701664TA (en)
WO (1) WO2016054367A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019120923A1 (en) 2017-12-21 2019-06-27 Henkel Ag & Co. Kgaa Potting or bonding composition for filtration membrane modules
US10525406B2 (en) 2017-05-30 2020-01-07 Saudi Arabian Oil Company Polymer blended membranes for sour gas separation
EP3663326A1 (en) * 2018-12-04 2020-06-10 Allnex Netherlands B.V. Rma crosslinkable polymer
US10759962B2 (en) 2015-04-17 2020-09-01 Allnex Netherlands B.V. Method for applying RMA crosslinkable coating on modified epoxy primer coating
US10767074B2 (en) 2015-04-17 2020-09-08 Allnex Netherlands B.V. Process for the manufacture of a crosslinkable composition
US10774238B2 (en) 2015-04-17 2020-09-15 Allnex Netherlands B.V. Method for curing a RMA crosslinkable resin coating, RMA crosslinkable compositions and resins for use therein
EP3889222A1 (en) 2020-03-30 2021-10-06 Henkel AG & Co. KGaA Curable potting composition free of substances of very high concern
US11814536B2 (en) 2015-04-17 2023-11-14 Allnex Netherlands B.V. Floor coating compositions

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0920904A2 (en) * 1997-12-03 1999-06-09 Praxair Technology, Inc. Multicomponent hollow fiber membrane tubesheets
US6025410A (en) * 1997-09-19 2000-02-15 Ashland Inc. Liquid oligomers containing acrylate unsaturation
WO2001043855A1 (en) * 1999-12-17 2001-06-21 Millipore Corporation Spiral wound hollow fiber potting
US6648945B1 (en) 1999-04-02 2003-11-18 Mitsubishi Rayon Co., Ltd. Hollow yarn membrane module, potting agent therefor and method for deaeration of liquid chemicals
US6974554B2 (en) 2001-04-04 2005-12-13 U.S. Filter Wastewater Group, Inc. Potting method
US7022231B2 (en) 1995-08-11 2006-04-04 Zenon Environmental Inc. Apparatus incorporating potted hollow fiber membranes
US20060150373A1 (en) 2001-02-13 2006-07-13 Hoover Donald L Apparatus and method for splicing sliver of yarn during yarn formation and processing
WO2011143530A1 (en) * 2010-05-13 2011-11-17 Air Products And Chemicals, Inc. Polymers, polymer membranes and methods of producing the same
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050081994A1 (en) * 2003-01-02 2005-04-21 Beckley Ronald S. Methods of using Michael addition compositions
CN104028107A (en) * 2014-06-19 2014-09-10 杭州求是膜技术有限公司 Hollow fiber membrane encapsulation technology

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022231B2 (en) 1995-08-11 2006-04-04 Zenon Environmental Inc. Apparatus incorporating potted hollow fiber membranes
US6025410A (en) * 1997-09-19 2000-02-15 Ashland Inc. Liquid oligomers containing acrylate unsaturation
EP0920904A2 (en) * 1997-12-03 1999-06-09 Praxair Technology, Inc. Multicomponent hollow fiber membrane tubesheets
US6290756B1 (en) 1997-12-03 2001-09-18 Praxair Technology, Inc. Hollow fiber membrane tubesheets of variable epoxy composition and hardness
US6648945B1 (en) 1999-04-02 2003-11-18 Mitsubishi Rayon Co., Ltd. Hollow yarn membrane module, potting agent therefor and method for deaeration of liquid chemicals
US7005100B2 (en) 1999-12-17 2006-02-28 Millipore Corporation Method for manufacturing a potted bundle of hollow fibers
WO2001043855A1 (en) * 1999-12-17 2001-06-21 Millipore Corporation Spiral wound hollow fiber potting
US20060150373A1 (en) 2001-02-13 2006-07-13 Hoover Donald L Apparatus and method for splicing sliver of yarn during yarn formation and processing
US6974554B2 (en) 2001-04-04 2005-12-13 U.S. Filter Wastewater Group, Inc. Potting method
US7931463B2 (en) 2001-04-04 2011-04-26 Siemens Water Technologies Corp. Apparatus for potting membranes
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
WO2011143530A1 (en) * 2010-05-13 2011-11-17 Air Products And Chemicals, Inc. Polymers, polymer membranes and methods of producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Transacetoacetylation with tert-Butyl Acetoacetate Synthetic Applications", JOURNAL OF ORGANIC CHEMISTRY, vol. 56, 1991, pages 1713 - 1718

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11674055B2 (en) 2015-04-17 2023-06-13 Allnex Netherlands B.V. RMA crosslinkable compositions and RMA crosslinkable resins for easy to clean coatings
US11713402B2 (en) 2015-04-17 2023-08-01 Allnex Netherlands B.V. RMA crosslinkable compositions and RMA crosslinkable resins for easy to clean coatings
US11072724B2 (en) 2015-04-17 2021-07-27 Allnex Netherlands B.V. Adhesion promotor for real michael addition crosslinkable compositions
US11814536B2 (en) 2015-04-17 2023-11-14 Allnex Netherlands B.V. Floor coating compositions
US10759962B2 (en) 2015-04-17 2020-09-01 Allnex Netherlands B.V. Method for applying RMA crosslinkable coating on modified epoxy primer coating
US10767074B2 (en) 2015-04-17 2020-09-08 Allnex Netherlands B.V. Process for the manufacture of a crosslinkable composition
US10774238B2 (en) 2015-04-17 2020-09-15 Allnex Netherlands B.V. Method for curing a RMA crosslinkable resin coating, RMA crosslinkable compositions and resins for use therein
US11674054B2 (en) 2015-04-17 2023-06-13 Allnex Netherlands B.V. Method for curing a RMA crosslinkable resin coating, RMA crosslinkable compositions and resins for use therein
US11414565B2 (en) 2015-04-17 2022-08-16 Allnex Netherlands B.V. Process for the manufacture of a crosslinkable composition
US10920101B2 (en) 2015-04-17 2021-02-16 Allnex Netherlands B.V. RMA crosslinkable compositions and RMA crosslinkable resins for easy to clean coatings
US10525406B2 (en) 2017-05-30 2020-01-07 Saudi Arabian Oil Company Polymer blended membranes for sour gas separation
US11311837B2 (en) 2017-05-30 2022-04-26 Saudi Arabian Oil Company Polymer blended membranes for sour gas separation
US11433357B2 (en) 2017-12-21 2022-09-06 Henkel Ag & Co. Kgaa Potting or bonding composition for filtration membrane modules
WO2019120923A1 (en) 2017-12-21 2019-06-27 Henkel Ag & Co. Kgaa Potting or bonding composition for filtration membrane modules
WO2020115153A1 (en) 2018-12-04 2020-06-11 Allnex Netherlands B.V. Rma crosslinkable polymer
EP3663326A1 (en) * 2018-12-04 2020-06-10 Allnex Netherlands B.V. Rma crosslinkable polymer
CN115335467B (en) * 2020-03-30 2024-03-15 汉高股份有限及两合公司 Curable potting composition free of highly interesting substances
CN115335467A (en) * 2020-03-30 2022-11-11 汉高股份有限及两合公司 Curable potting composition free of highly interesting substances
WO2021197856A1 (en) 2020-03-30 2021-10-07 Henkel Ag & Co. Kgaa Curable potting composition free of substances of very high concern
EP3889222A1 (en) 2020-03-30 2021-10-06 Henkel AG & Co. KGaA Curable potting composition free of substances of very high concern

Also Published As

Publication number Publication date
JP2017533088A (en) 2017-11-09
SG11201701664TA (en) 2017-04-27
EP3200903A1 (en) 2017-08-09
CN106714944A (en) 2017-05-24

Similar Documents

Publication Publication Date Title
EP3200903A1 (en) Method of making hollow fiber membrane modules with a curable composition and modules made therefrom
US20160096142A1 (en) Method of making hollow fiber membrane modules with a curable composition and modules made therefrom
Tillet et al. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature
US20160096144A1 (en) Method of making spiral wound filtration modules with a curable adhesive composition and modules made thereby
DK2985308T3 (en) CIRCUIT COMPOSITION
JP4377866B2 (en) Biomass-based Michael additive composition
EP3191561B1 (en) Fast and elastic adhesive
US7473734B2 (en) Michael addition compositions
CN104955865B (en) Thiol-cured elastomeric epoxy
CN1322055C (en) Radiation-curable resins based on ketone-aldehyde and/or urea-aldehyde resins and a process for preparing them
CN111225932A (en) Bi-component polyurethane adhesive
KR102021621B1 (en) Biodegradable compositions having pressure sensitive adhesive properties
JP2019035088A (en) 2k polyurethane system having phase separation
ES2162077T5 (en) MASS FOR THE STICKER, OBTURATION AND COATING.
TWI617640B (en) Uv-curing hot melt adhesive containing low content of oligomers
US8802808B2 (en) Casting compounds based on polyurethane
KR20190039746A (en) Compounds containing cyclic structural elements, urethane / ureido linkages and free radical-polymerizable functional groups
CN105658602A (en) Concrete repair material
JP7308723B2 (en) silylamine compound
WO2010092630A1 (en) Fast cure resin composition
US10513638B2 (en) Adhesive composition comprising polyether carbonate polyols
JP4190225B2 (en) 2-Cyanoacrylate adhesive composition
JP7358916B2 (en) Latent curing agent containing silylamine compounds
CN112930352B (en) Silylamine compounds and latent curing agents containing the same
KR20210043148A (en) Biodegradable hot melt adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15778570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017516083

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015778570

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015778570

Country of ref document: EP