WO2016056744A1 - Ligand compound, metallocene compound, and method for preparing olefin-based polymer by using same - Google Patents

Ligand compound, metallocene compound, and method for preparing olefin-based polymer by using same Download PDF

Info

Publication number
WO2016056744A1
WO2016056744A1 PCT/KR2015/008771 KR2015008771W WO2016056744A1 WO 2016056744 A1 WO2016056744 A1 WO 2016056744A1 KR 2015008771 W KR2015008771 W KR 2015008771W WO 2016056744 A1 WO2016056744 A1 WO 2016056744A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
compound
halogen
Prior art date
Application number
PCT/KR2015/008771
Other languages
French (fr)
Korean (ko)
Inventor
홍복기
이용호
한창완
최이영
이기수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150117300A external-priority patent/KR101784463B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/026,119 priority Critical patent/US9850326B2/en
Priority to JP2016516546A priority patent/JP6570517B2/en
Priority to EP15841031.6A priority patent/EP3064504B1/en
Priority to CN201580002342.XA priority patent/CN105705506B/en
Publication of WO2016056744A1 publication Critical patent/WO2016056744A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a novel ligand compound, a metallocene compound, and a method for preparing an olefinic polymer using the same.
  • CGC Constrained-Geometry Catalyst
  • US Pat. No. 5,064,802 ethylene and alpha-
  • CGC Constrained-Geometry Catalyst
  • US Pat. No. 5,064,802 ethylene and alpha-
  • the superiority of CGC in the copolymerization reaction of olefins compared to the metallocene catalysts known to the prior art can be summarized into two main categories: (1) The production of high molecular weight polymers with high activity even at high polymerization temperatures. And (2) the copolymerization of alpha-olefins with large steric hindrances such as 1-nuxene and 1-octene is also excellent.
  • various characteristics of CGC were gradually known in the case of addition reaction, and the derivatives thereof were actively synthesized in ' academia' and 'industrial industry ' to use as a polymerization catalyst.
  • a Group 4 metallocene compound having one or two cyclopentadienyl groups as a ligand can be activated as methylaluminoxane or boron compound to be used as a catalyst for leupin polymerization.
  • Such catalysts exhibit unique properties that conventional Ziegler-Natta catalysts cannot realize.
  • the polymer obtained using such a catalyst has a narrow molecular weight distribution, better response to a second monomer such as alpha olefin or cyclic olefin, and a uniform distribution of the second monomer of the polymer.
  • bridged catalysts have good reaction properties with respect to the second monomer.
  • the bridged catalysts studied so far can be classified into three types depending on the type of bridge.
  • the present invention has a wide molecular weight distribution because of the excellent polymerization activity, and excellent comonomer insertion ability, and thus a metallocene compound capable of producing a leupine-based polymer having excellent processability. And, to provide a method for producing an olefin-based polymer using the same. [Measures of problem]
  • Ri to R 16 are the same as or different from each other, and each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkylalkyl group having 4 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 5 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an arylalkyl group having 7 to 20 carbon atoms, wherein R! Two or more adjacent to each other to R 16 may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring, provided that R and R 16 are all hydrogen;
  • L is a direct bond or an alkylene group having 1 to 10 carbon atoms
  • R is a substituted or unsubstituted phenyl group, naphthyl group, a cycloalkyl group having 3 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms;
  • Ql and Q 2 are the same as or different from each other, and are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and carbon atoms
  • the present invention provides a metallocene compound represented by the following formula (2).
  • M is a Group 4 transition metal
  • Xi and 3 ⁇ 4 are the same as or different from each other, and each independently halogen, alkyl group of 1 to 20 carbon atoms, alkenyl group of 2 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, nitro group, amido group, alkyl of 1 to 20 carbon atoms A silyl group, an alkoxy group having 1 to 20 carbon atoms, or a sulfonate group having 1 to 20 carbon atoms;
  • R) to R 16 are the same as or different from each other, and each independently hydrogen, halogen, alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, cycloalkyl group having 3 to 20 carbon atoms, and cycloalkylalkyl group having 4 to 20 carbon atoms , 1 carbon To 20 alkoxy group, an aryl group having 6 to 20 carbon atoms of the aryl group, having 5 to 20 heteroaryl group, a C7 to C20 alkylaryl group, or a carbon number of 7 to 20 of, adjacent to each other of the to R 16 Two or more may be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring, except where all of R to 16 are hydrogen;
  • L is a direct bond or an alkylene group having 1 to 10 carbon atoms
  • R is a substituted or unsubstituted phenyl group, naphthyl group, a cycloalkyl group having 3 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms;
  • Q t and Q 2 are the same as or different from each other, and each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 20 carbon atoms or an arylalkyl group having 7 to 20 carbon atoms.
  • the present invention provides a method for producing an olefin-based polymer comprising the step of polymerizing a relefin-based monomer in the presence of a catalyst composition comprising the metallocene compound.
  • the metallocene compound having the new ligand can easily control the electronic and three-dimensional environment around the metal by introducing various substituents to the ligand to which the indeno indole derivative and the fluorene derivative are linked, and ultimately, the structure of the polyolefin produced.
  • the physical properties can be adjusted.
  • the metallocene compound according to the present invention or the catalyst composition including the same can be used in the preparation of the olepin-based polymer, and especially exhibits high activity even in the co-polymerization using a comonomer, can improve the comonomer insertion ability, It is possible to manufacture an leupin-based polymer having a molecular weight distribution and excellent in processability.
  • first and second are used to describe various components, which terms constitute one component to another component. It is only used to distinguish it from the element.
  • each layer or element when each layer or element is referred to as being formed “on” or “on” of each layer or element, it means that each layer or element is directly formed on each layer or element, or the other It is meant that a layer or element can additionally be formed between each layer, on the object, the substrate.
  • Ligand compound according to the invention is characterized in that represented by the formula (1).
  • Rt to R 16 are the same as or different from each other, and each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkylalkyl group having 4 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms of the aryl group, having 5 to 20 heteroaryl group, a C7 to C20 alkylaryl group, or a carbon number of 7 to 20 of the, each of said through R 16
  • Two or more adjacent groups may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring, except that the above R 16 are all hydrogen;
  • L is a direct bond or an alkylene group having 1 to 10 carbon atoms
  • R is a substituted or unsubstituted phenyl group, naphthyl group, a cycloalkyl group having 3 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms;
  • Qi and Q 2 are the same as or different from each other, and are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and carbon atoms An alkylaryl group having 7 to 20 or an arylalkyl group having 7 to 20 carbon atoms. When described in more detail with respect to the main substituents in the formula (1).
  • the alkyl group having 1 to 20 carbon atoms includes a linear or branched alkyl group, and specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nuclear group, heptyl group And an octyl group etc. are mentioned, but it is not limited to this.
  • the alkenyl group having 2 to 20 carbon atoms includes a straight or branched alkenyl group, and specifically includes an allyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, and the like, but is not limited thereto. .
  • the aryl group having 6 to 20 carbon atoms includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the heteroaryl group having 5 to 20 carbon atoms includes a monocyclic or condensed heteroaryl group, and includes a carbazolyl group, a pyridyl group, a quinoline group, an isoquinoline group, a thiophenyl group, a furanyl group, an imidazole group, an oxazolyl group, a thiazolyl Groups, triazine groups, tetrahydropyranyl groups, tetrahydrofuranyl groups, and the like, but are not limited thereto.
  • alkoxy group having 1 to 20 carbon atoms examples include mesophilic, ethoxy, phenyloxy, and cyclonucleooxy groups, but are not limited thereto.
  • the cycloalkyl group having 3 to 20 carbon atoms may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclonuxyl group, and the like, but is not limited thereto.
  • Examples of the cycloalkylalkyl group having 4 to 20 carbon atoms include a cyclopropylmethyl group, a cyclopropylethyl group, a cyclobutylmethyl group, a cyclobutylethyl group, a cyclopentylmethyl group : a cyclopentylethyl group, a cyclonuxylmethyl group, and a cyclonuxylethyl group. It is not limited.
  • R in Formula 1 is a phenyl group, a cyclopentyl group, a cyclonuxyl group, a fluorophenyl group, or a pentafluorophenyl group egg.
  • the functional groups can be introduced into the fluorene derivative of the ligand compound of the embodiment to control the molecular weight and molecular weight distribution of the produced olefin polymer, in particular, using a phenyl group, cyclohexyl group, fluorophenyl group, pentafluorophenyl group, etc.
  • the formula (1) can adjust the angle of the bite angle leading to the ligand, the central metal, and the ligand, depending on the substituent introduced into R, the above-described substituents to increase the bite angle of the compound of the chemical formula 1, comonomer It is easy to introduce and has the effect of improving copolymerizability.
  • R 2 and R 5 in Formula 1 may be the same as or different from each other, and each independently hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • the compound represented by Chemical Formula 1 may be synthesized by the same method as in Scheme 1 below.
  • the ligand compound of Formula 1 may prepare a metallocene compound described later through metallization with a transition metal.
  • a metallocene compound represented by the following Chemical Formula 2 is provided.
  • M is a Group 4 transition metal
  • X. and 3 ⁇ 4 are the same as or different from each other, and each independently a halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a nitro group, an amido group, a carbon group having 1 to 20 carbon atoms An alkylsilyl group, an alkoxy group having 1 to 20 carbon atoms, or a sulfonate group having 1 to 20 carbon atoms;
  • Ri to R 16 are the same as or different from each other, and each independently hydrogen, a halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkylalkyl group having 4 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 5 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an arylalkyl group having 1 to 20 carbon atoms, wherein Ri to R 16 Two or more adjacent to each other may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring, provided that R ! Except when R 16 are all hydrogen;
  • L is a direct bond or an alkylene group having 1 to 10 carbon atoms
  • R is a substituted or unsubstituted phenyl group, naphthyl group, 3 to 20 carbon atoms A cycloalkyl group or an alkoxy group having 1 to 20 carbon atoms;
  • Qi and Q 2 are the same as or different from each other, and are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and carbon atoms An alkylaryl group having 7 to 20 or an arylalkyl group having 7 to 20 carbon atoms.
  • Group 4 transition metal examples include titanium, zirconium, and hafnium, but are not limited thereto.
  • R in Formula 2 may be a phenyl group, a cyclopentyl group, a cyclonuxyl group, a fluorophenyl group, or a pentafluorophenyl group.
  • the functional groups may be introduced into the fluorene derivative of the metallocene compound of the embodiment to control the molecular weight and molecular weight distribution of the olefin polymer to be produced, in particular, a phenyl group, a cyclonuclear group, a fluorophenyl group, a pentafluorophenyl group, or the like.
  • the formula (1) can adjust the angle of the bite angle leading to the ligand, the central metal, and the ligand, depending on the substituents introduced into R, the above-mentioned substituents to increase the bite angle of the formula and the compound, It is easy to introduce
  • R 2 and R 5 in Formula 2 may be the same as or different from each other, and each independently hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • examples of the metallocene compound represented by Formula 2 include the following compounds, but are not limited thereto.
  • the metallocene compound of Chemical Formula 2 has an indeno indole derivative and a fluorene (fl uorene ) derivative as a basic skeleton, and these two derivatives form asymmetrically crosslinked structure by a silicon bridge.
  • a non-covalent electron pair capable of acting as a Lewis base in the ligand structure it is supported on the surface having the Lewis acid characteristic of the carrier and shows high polymerization activity even when supported.
  • the electronically rich indeno indole group and the fluorene group includes a high activity, due to the proper steric hindrance and the electronic effect of the ligand is not only low hydrogen response, but also maintains high activity in the presence of hydrogen.
  • the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown is stabilized by hydrogen bonding, thereby inhibiting beta-hydrogen elimination, thereby polymerizing ultra high molecular weight olepin-based polymer.
  • the metallocene compound of the embodiment may introduce various substituents to the fluorene group, thereby controlling the molecular weight and molecular weight distribution of the leupine copolymer prepared according to the type and bulky degree of the introduced substituents.
  • R in Formula 2 is a substituted or unsubstituted phenyl group, naphthyl group, a C3-C20 cycloalkyl group, or C1-C1
  • the alkoxy group of 20 is used, copolymerization ability can be improved and the comonomer insertion ability can be improved, thereby producing an olefinic polymer having a wide molecular weight distribution and a high molecular weight.
  • the metallocene compound of the present invention can realize excellent activity and high copolymerizability, and can prepare a polyolefin having a high molecular weight and a wide molecular weight distribution, thereby ultimately controlling the structure and physical properties of the resulting polyolefin. It is possible. .
  • the metallocene compound of Chemical Formula 2 according to the present invention may be used as a catalyst for polymerization of olefin monomers.
  • the metallocene compound represented by Chemical Formula 2 may be prepared by reacting the ligand compound represented by Chemical Formula 1 with a metal source according to the following reaction formula 2 and metallization thereof.
  • a catalyst composition comprising a metallocene compound of Formula 2
  • it provides a method for producing an olefinic polymer comprising the step of polymerizing the olefinic monomers /
  • the catalyst composition may further include at least one cocatalyst compound selected from the group consisting of a compound of Formula 3 , a compound of Formula 4, and a compound of Formula 5, in addition to the metallocene compound of Formula 2.
  • R 17 is a halogen radical, a hydrocarbyl radical having 1 to 20 carbon atoms, or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen, ⁇ is 2 Is an integer greater than or equal to
  • D is aluminum or boron
  • R 18 is hydrocarbyl having 1 to 20 carbon atoms or hydrocarbyl having 1 to 20 carbon atoms substituted with halogen
  • L is a neutral or divalent Lewis base
  • is a hydrogen atom
  • Z is a Group 13 element
  • E may be the same or different from each other, and each independently one or more hydrogen atoms is halogen, a hydrocarbon having 1 to 20 carbon atoms, alkoxy or Or an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with phenoxy.
  • the compound of Formula 3 and the compound of Formula 4 may alternatively be represented by an alkylating agent, and the compound of Formula 5 may be represented by an activator.
  • the compound represented by Chemical Formula 3 is not particularly limited as long as it is an alkyl aluminoxane, but preferred examples thereof include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, and butyl aluminoxane, and preferably methyl aluminoxane.
  • the alkyl metal compound represented by Formula 4 is not particularly limited. However, preferred examples include trimethylaluminum, triethylaluminum triisobutylaluminum, tripropylaluminum, tributylaluminum dimethylchloroaluminum, triisopropylaluminum, tri-S-butylaluminium tricyclopentylaluminum, tripentylaluminum and triiso Pentyl aluminum trinuclear aluminum, trioctyl aluminum, ethyl dimethyl aluminum methyl diethyl aluminum, triphenyl aluminum, tri-P-allyl aluminum dimethyl aluminum mesoxide, dimethyl aluminum ethoxy i, trimethyl boron triethyl boron, triisobutyl boron, Tripropyl boron tributyl boron, and the like, and preferably trimethyl aluminum, triethyl aluminum, triisobutyl aluminum and the like can be used.
  • Examples of the compound represented by Formula 5 include triethylammonium tetra (phenyl) boron, tributyl ammonium tetra (phenyl) boron, trimethyl ammonium tetra (phenyl) boron, tripropyl ammonium tetra (phenyl) boron, trimethyl Ammonium Tetra (P-lryl) boron, Trimethylammonium Tetra ( ⁇ , ⁇ -dimethylphenyl) boron, Tributylammonium Tetra ( ⁇ -trifluoromethylphenyl) boron, Trimethylammonium Tetra ( ⁇ -trifluoromethylphenyl )
  • Triphenylphosphoniumtetra (phenyl) aluminum Triphenylphosphoniumtetra (phenyl) aluminum, -trimethylphosphoniumtetra (phenyl) aluminum,
  • Triphenyl phosphonium tetra (phenyl) boron triphenyl carbonium tetra ( ⁇ - tripulomethylphenyl) boron, triphenyl carbonium tetra (pentapolourophenyl) boron, trityl tetra (pentafluorophenyl) Boron, etc., but is not limited thereto.
  • the catalyst composition may be used for olefin homopolymerization or copolymerization.
  • the following method can be used.
  • the metallocene compound of Formula 2 and the above formula A method of preparing the catalyst composition by contacting the compound of 3 may be used.
  • a method of preparing a catalyst composition by contacting the metallocene compound of Formula 2 and the compound of Formula 5 may be used.
  • the molar ratio of the compound of Formula 3 and the compound of Formula 4 to the metallocene compound of Formula 2 may be 1: 2 to 1: 5,000, preferably Preferably 1:10 to 1: 1,000, more preferably 1:20 to 1: 500.
  • the molar ratio of the metallocene compound of Formula 2 to the compound of Formula 5 may be 1: 1 to 1:25, preferably 1: 1 to 1:10, and more preferably 1: 2 to 1: 5.
  • the amount of the compound of Formula 3 and the compound of Formula 4 is less than 2 moles relative to 1 mole of the metallocene compound of Formula 2, the amount of the alkylating agent is very small so that alkylation of the metal compound may not proceed completely.
  • the amount of the compound of Formula 3 and the compound of Formula 4 is more than 5,000 moles relative to 1 mole of the metallocene compound of Formula 2, alkylation of the metal compound is performed, but the remaining alkylating agent
  • the amount of the compound of the formula (5) to 1 mole of the metallocene compound of the formula (2) may be less than 1 mole.
  • the amount of the activator is relatively small, resulting in incomplete activation of the metal compound. If the activity of the catalyst composition is inferior, and the amount of the compound of Formula 5 is more than 25 moles with respect to 1 mole of the metallocene compound of Formula 2, the activation of the metal compound is completely performed, There is a problem that the cost of the catalyst composition as an activator is not economical or the purity of the resulting polymer is poor.
  • the molar ratio of the metallocene compound of Formula 2 to the compound of Formula 3 may be 1:10 to 1: 10,000, preferably 1: 100 to 1: 5,000, more preferably 1: 500 to 1: 2,000.
  • the amount of the compound of Formula 3 is less than 10 moles with respect to 1 mole of the metallocene compound of Formula 2, Since the amount of the activator is relatively small, there is a problem in that the activity of the catalyst composition generated due to the incomplete activation of the metal compound is insufficient. If the molar excess exceeds the activation of the metal compound, there is a problem that the cost of the catalyst composition is not economically reduced or the purity of the resulting polymer is reduced due to the excess activator remaining.
  • the molar ratio of the metallocene compound of Chemical Formula 2 to the compound of Chemical Formula 5 may be 1: 1 to 1:25, and preferably 1: 1 to 1 : 10, More preferably, it is 1: 2-1: 5.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or an aromatic solvent such as benzene, toluene, or the like may be used as the reaction solvent, but the solvent is not necessarily limited thereto. Can be used.
  • the process of the olefinic polymer according to the invention can be carried out by contacting the catalyst composition with a monomer.
  • a monomer According to the method for producing the olefin polymer of the present invention, an olefin homopolymer or an olefin copolymer can be provided.
  • the polymerization method of the present invention may be carried out by a solution polymerization process, a slurry process or a gas phase process.
  • the catalyst composition eulre pin polymerization process having a carbon number of 5-12 aliphatic hydrocarbon solvents suitable for, for example, pentane, hexane, heptane, nonane, decane, and the, the and isomers thereof
  • Aromatic hydrocarbon solvents such as luene and benzene, hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene may be dissolved or diluted and injected.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a promoter.
  • olefin monomer examples include ethylene, alpha-olefin, cyclic olefin, and the like.
  • the diene olefin monomer or triene olefin monomer etc. which have two or more bonds can also superpose
  • the monomer examples include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dode Sen, 1-tetradecene, 1-nuxadecene, 1-aitocene, norbornene, norbornadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1, 5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, etc., These monomers may be mixed and copolymerized two or more kinds.
  • the olefin polymer is a copolymer of ethylene and other comonomers
  • the monomer constituting the copolymer is selected from the group consisting of propylene, 1-butene, 1-nuxene, and 4-methyl-1-pentene, and 1-octene It is preferred that it is at least one comonomer selected.
  • the catalyst composition is also capable of copolymerization reaction of ethylene and monomers having high steric hindrance, such as 1-nuxene or 1-octene, and various substituents on the basic skeleton of the fluorene derivative.
  • the weight average molecular weight (Mw) of the olefinic polymer may be about 100,000 to 1,000,000 g / mol.
  • the weight average molecular weight of the olepin-based polymer may vary depending on whether the metallocene compound used or the catalyst composition comprising the same is supported and polymerization conditions.
  • the olephine-based polymer prepared using the supported catalyst may be 800,000. It may have a very high weight average molecular weight of at least g / mol, preferably at least 850,000 g / mol.
  • the molecular weight distribution (PDI) of the olefin polymer may be about 1 to 20, preferably about 1 to 10.
  • the reaction group used in the process for producing the polymer according to the invention is continuous It is preferred that it is a stirred reactor (CSTR) or a continuous flow reactor (PFR).
  • the reactor is preferably arranged in two or more in series or in parallel.
  • the production method preferably further includes a separator for continuously separating the solvent and the unfung monomer from the reaction mixture.
  • the method of preparing the polymer according to the present invention is carried out in a continuous solution polymerization process, it may be composed of a catalytic process, a polymerization process, a solvent separation process, a rare water process step, more specifically as follows.
  • the catalyst composition according to the present invention may be injected by dissolving or diluting an aliphatic or aromatic solvent having 5 to 12 carbon atoms or unsubstituted with a halogen suitable for an olefin polymerization process.
  • aliphatic hydrocarbon solvents such as pentane, nucleic acid, heptane, nonane, decane, and isomers thereof, aromatic hydrocarbon solvents such as toluene, xylene, benzene, and hydrocarbon solvents substituted with chlorine atoms such as dichloromethane, chlorobenzene And the like can be used.
  • the solvent used here is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating with a small amount of alkylaluminum or the like, and can also be carried out using an excessive amount of a promoter.
  • the polymerization process is carried out by introduction of at least one olefin monomer and a catalyst composition comprising the organometallic compound of Formula 2 and a promoter in a reactor.
  • a solvent is injected onto the reactor.
  • a mixture of a solvent, a catalyst composition, and a monomer is present in the reaction vessel.
  • the molar ratio of monomer to solvent suitable for the reaction should be a ratio suitable for dissolving the raw material before the reaction and the polymer produced after the reaction.
  • a 20: a molar ratio of monomer to solvent is 10: 1 to 1: 10,000, preferably from 5: 1 to 1: 100, more preferably ⁇ : 1 to 1.
  • the molar ratio of the solvent is less than 10: 1, the amount of the solvent is too small to increase the viscosity of the fluid, which causes a problem in transferring the produced polymer.
  • the molar ratio of the solvent exceeds 1: 10,000, Since the amount is more than necessary, the equipment increase according to the recirculation of solvent purification and There are problems such as increased energy costs.
  • the solvent is preferably introduced into the reactor at a temperature of -40 to 150 ° C using a heater or a pulsator, whereby the polymerization reaction is started with the monomer and the catalyst composition.
  • the temperature of the solvent is -4 (less than C, there will be some differences depending on the reaction amount, but in general, the temperature of the solvent is too low, so the reaction temperature is also difficult to drop, and the temperature control is difficult, exceeding 150 ° C. In this case, the solvent temperature is too high, there is a problem that the heat removal of the reaction semi-heat due to reaction.
  • a high capacity pump raises the pressure above 50 bar to supply the feeds (solvent, monomer, catalyst composition, etc.), thereby providing a mixture of the feeds without additional pumping between the reaction vessel, pressure drop device and separator. Can be passed.
  • the internal temperature of the reaction vessel suitable for the present invention ie the polymerization reaction temperature, is -15 to 300 ° C, preferably 30 to 200 ° C, more preferably 70 to 200 ° C. If the internal temperature is less than -151, there is a problem that the productivity is low because the reaction rate is low, and if it exceeds 300 ° C, problems such as discoloration, such as generation of impurities and carbonization of the polymer due to side reactions may occur. .
  • the internal pressure of the reactor suitable in the present invention is 1 to 300 bar, preferably 10 to 200 bar, more preferably about 30 to 100 bar. If the internal pressure is less than lbar, the reaction rate is low to lower productivity : there is a problem due to evaporation of the solvent used, and if it exceeds 300 bar, there is a problem of an increase in equipment costs such as device cost according to high pressure.
  • the polymer produced in the reaction vessel is maintained at a concentration of less than 20 wt% in the solvent and is preferably transferred to the first solvent separation process for solvent removal after a short residence time.
  • the residence time in the reaction mixture of the resulting polymer is 1 minute to 10 hours, preferably 3 minutes to 1 hour, more preferably 5 minutes to 30 minutes. If the residence time is less than 3 minutes, there is a problem such as productivity loss and catalyst loss due to a short residence time, and increase in the manufacturing cost accordingly, if more than 1 hour, depending on the reaction over the appropriate active period of the catalyst, The reaction period increases and equipment costs increase accordingly there is a problem.
  • the solvent separation process is performed by varying the solution temperature and pressure to remove the solvent present with the polymer exiting the reactor.
  • the polymer solution transferred from the reactor is heated up to about 200 to 230 ° C through a heater and then the pressure is lowered through a pressure drop device to vaporize the raw materials and solvent in the first separator.
  • the pressure in the separator is suitably 1 to 30 bar, preferably 1 to 10 bar, more preferably 3 to 8 bar.
  • the temperature in the separator is suitably 150 to 250 ° C., preferably 170 to 230 ° C., more preferably 180 to 230 ° C.
  • the pressure in the separator is less than 1 bar, the content of the polymer is increased, there is a problem in the transfer, if it exceeds 30 bar there is a problem that the separation of the solvent used in the polymerization process is difficult.
  • the temperature in the separator is less than 150 ° C., the viscosity of the copolymer and its mixture is increased, and there is a problem in transporting.
  • the temperature is less than 250 ° C., there is a problem of discoloration due to carbonization of the polymer due to high temperature.
  • the solvent vaporized in the separator can be recycled to the reaction counter condensed in the overhead system.
  • the first step of solvent separation yields a polymer solution concentrated up to 65%, which is transferred to the second separator by a transfer pump through a heater, where the separation of residual solvent occurs.
  • a heat stabilizer is added and a reaction inhibitor is injected into the heater together with the heat stabilizer to suppress reaction of the polymer due to the residual activity of the activator present in the polymer solution.
  • the residual solvent in the polymer solution injected into the second separator is finally completely removed by a vacuum pump, and the granular polymer can be obtained by passing through the angle and the cutter.
  • the solvent and other unreacted monomers vaporized in the second separation process can be sent to a recovery process for purification and reuse.
  • the organic solvent added with the raw material to the polymerization process may be recycled to the polymerization process together with the non-banung raw material in the primary solvent separation process.
  • the solvent recovered in the secondary solvent separation process contains a large amount of water that acts as a catalyst poison in the solvent due to contamination by the reaction of an anti-inhibitor to stop the catalytic activity and steam supply from the vacuum pump, and is reused after purification in the recovery process. It is preferable.
  • Silica (SYLOPOL 948, manufactured by Grace Davison) was dehydrated under vacuum at 400 ° C. for 12 hours to prepare a silica carrier.
  • the supported catalyst was prepared in the same manner as in Preparation Example 4, except that the metallocene compound prepared in Preparation Example 2 (5. 5 mmd) was used. Prepared.
  • Preparation Example 6 Preparation of Supported Catalyst
  • the supported catalyst was prepared in the same manner as in Preparation Example 4, except that 0.5 mmd of the metallocene compound prepared in Preparation Example 3 was used.
  • Preparation Comparative Example 3 Preparation of Supported Catalyst
  • the supported catalyst was prepared in the same manner as in Preparation Example 4, except that 0.5 mm of the metallocene compound prepared in Preparation Comparative Example 1 was used.
  • Preparation Comparative Example 4 Preparation of Supported Catalyst
  • the supported catalyst was prepared in the same manner as in Preparation Example 4, except that 0.5 mm of the metallocene compound prepared in Preparation Comparative Example 2 was used.
  • a 100 mL Andrew bottle was prepared, assembled with an impeller part, and replaced with argon in a glove box. 70 mL of toluene containing a small amount of TMA was added into the Andrew bottle, and 10 mL of MAO (10 wt% in toluene) solution was added thereto.
  • the metallocene compound catalyst of Preparation Example 1 5 mL (5 ⁇ of catalyst) of 1 mM catalyst / luene solution dissolved in toluene was injected into an Andrew bottle.
  • the Andrew bottle was immersed in an oil bath heated to 90 ° C and the top of the bottle was fixed to the mechanical stirrer and stirred for 5 minutes until the reaction solution reached 90 ° C.
  • Example 3 Solution Polymerization
  • Example 5 Supported Catalytic Polymerization Except that the metallocene compound catalyst of Preparation Example 5 was used, ethylene-1-nuxene copolymerization was performed in the same manner as in Example 4, and the obtained polymer was analyzed.
  • Example 6 Supported Catalytic Polymerization
  • the olefin copolymerization was carried out in the same manner as in Example 4, except that 5 ⁇ of the metallocene compound of Preparation Comparative Example 2 was used.
  • the catalytic activity of Examples 1 to 6 and Comparative Examples 1 to 4 is determined by the ratio of the weight of the polymer produced per mass of catalyst used per unit time (h) and the content of metallocene compound in the catalyst. Calculated as the ratio of the weight of the resulting polymer.
  • the weight average molecular weight and molecular weight distribution of the polymers of Examples 1 to 6 and Comparative Examples 1 to 4 were measured by using a solid silver GPC apparatus, and the results are shown in Table 1 below.
  • the metallocene compound of the Preparation Example or the catalyst composition comprising the same shows high activity in copolymerization using a comonomer, and can improve the comonomer insertion ability. It is possible to prepare a polyolefin copolymer having a high molecular weight while having a high content of nucleene.

Abstract

The present invention relates to a novel ligand compound, a metallocene compound, and a method for preparing an olefin-based compound by using the same. According to the present invention, the metallocene compound and a catalyst composition containing the same have excellent comonomer insertion capacity while having excellent polymerization activity, and thus have a wide molecular weight distribution. Therefore, an olefin-based compound having excellent processability can be prepared.

Description

【명세서】  【Specification】
【발명의 명칭]  [Name of invention]
리간드 화합물, 메탈로센 화합물 및 이를 이용하는 올레핀계 중합체의 제조방법  Ligand compound, metallocene compound and method for producing olefin polymer using same
【관련 출원 (들)과의 상호 인용】 [Cross Citation with Related Application (s)]
본 출원은 2014년 10월 6일자 한국 특허 출원 제 10-2014-0134342호 및 2015년 8월 20일자 한국 특허 출원 제 10-2015-0117300호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0134342 dated October 6, 2014 and Korean Patent Application No. 10-2015-0117300 dated August 20, 2015. All content disclosed in the literature is included as part of this specification.
【기술분야】 Technical Field
본 발명은 신규한 리간드 화합물, 메탈로센 화합물 및 이를 이용하는 을레핀계 중합체의 제조방법에 관한 것이다.  The present invention relates to a novel ligand compound, a metallocene compound, and a method for preparing an olefinic polymer using the same.
【발명의 배경이 되는 기술】 [Technique to become background of invention]
다우 (Dow) 사가 년대 초반 [Me2Si(Me4C5)NtBu]TiCl2(Constrained- Geometry Catalyst, 이하에서 CGC로 약칭한다)를 발표하였는데 (미국 특허 등록 제 5,064,802호), 에틸렌과 알파-올레핀의 공중합 반웅에서 상기 CGC가 기존까지 알려진 메탈로센 촉매들에 비해 우수한 측면은 크게 다음과 같이 두 가지로 요약할 수 있다: (1) 높은 중합 온도에서도 높은 활성도를 나타내면서 고분자량의 중합체를 생성하며, (2) 1-핵센 및 1-옥텐과 같은 입체적 장애가 큰 알파-올레핀의 공중합성도 매우 뛰어나다는 점이다. 그 외에도 증합 반웅 시, CGC의 여러 가지 특성들이 점차 알려지면서 이의 유도체를 합성하여 ' 중합 촉매로 사용하고자 하는 노력아 학계 및 산업계에서 활발히 이루어졌다. Dow announced in the early 'Me 2 Si (Me 4 C 5 ) NtBu] TiCl 2 (Constrained-Geometry Catalyst, hereinafter abbreviated as CGC) (US Pat. No. 5,064,802), ethylene and alpha- The superiority of CGC in the copolymerization reaction of olefins compared to the metallocene catalysts known to the prior art can be summarized into two main categories: (1) The production of high molecular weight polymers with high activity even at high polymerization temperatures. And (2) the copolymerization of alpha-olefins with large steric hindrances such as 1-nuxene and 1-octene is also excellent. In addition, various characteristics of CGC were gradually known in the case of addition reaction, and the derivatives thereof were actively synthesized in ' academia' and 'industrial industry ' to use as a polymerization catalyst.
리간드로 시클로펜타디에닐기를 한 개 또는 두 개 가지고 있는 4족 메탈로센 화합물을 메틸알루미녹산이나 보론 화합물로 활성화시켜 을레핀 중합의 촉매로 이용할 수 있다. 이러한 촉매는 종래의 지글러 -나타 촉매가 구현할 수 없는 독특한 특성을 보여준다. 즉, 이러한 촉매를 이용하여 얻은 중합체는 분자량 분포가 좁고 알파올레핀이나 시클릭을레핀과 같은 제 2 단량체에 대한 반웅성이 더 좋고, 중합체의 제 2 단량체 분포도 균일하다. 또한, 메탈로센 촉매 내의 시클로펜타디에닐 리간드의 치환체를 변화시켜 줌으로써 알파을레핀을 중합할 때 고분자의 입체 선택성을 조절할 수 있으며, 에틸렌과 다른 올레핀을 공중합할 때 공중합 정도, 분자량, 및 게 2 단량체 분포 등을 용이하게 조절할 수 있다. A Group 4 metallocene compound having one or two cyclopentadienyl groups as a ligand can be activated as methylaluminoxane or boron compound to be used as a catalyst for leupin polymerization. Such catalysts exhibit unique properties that conventional Ziegler-Natta catalysts cannot realize. In other words, the polymer obtained using such a catalyst has a narrow molecular weight distribution, better response to a second monomer such as alpha olefin or cyclic olefin, and a uniform distribution of the second monomer of the polymer. In addition, by changing the substituent of the cyclopentadienyl ligand in the metallocene catalyst, it is possible to control the stereoselectivity of the polymer when polymerizing alpha lepin, and the degree of copolymerization, molecular weight, and crab monomer when copolymerizing ethylene and other olefins. Distribution and the like can be easily adjusted.
한편, 메탈로센 촉매는 종래의 지글러 -나타 촉매에 비해 가격이 비싸기 때문에 활성이 좋아야 경제적인 가치가 있다. 제 2 단량체에 대한 반웅성이 좋으면 적은 양의 제 2 단량체의 투입으로도 제 2 단량체가 많이 들어간 중합체를 얻을 수 있는 이점이 있다.  On the other hand, metallocene catalysts are expensive compared to conventional Ziegler-Natta catalysts, so they have good activity and are economically valuable. If the reaction properties to the second monomer are good, there is an advantage that a polymer containing a large amount of the second monomer can be obtained even with the addition of a small amount of the second monomer.
여러 연구자들이 다양한 촉매를 연구한 결과, 일반적으로 브리지된 촉매가 제 2 단량체에 대해 반웅성이 좋다는 것이 판명되었다. 지금까지 연구된 브리지된 촉매는 브리지 형태에 따라 크게 세 가지로 분류될 수 있다. 하나는 알킬 할라이드와 같은 친전자체와 인덴이나 플루오렌 등과의 반웅에 의해 두 개의 시클로펜타디에닐 리간드가 알킬렌디브리지로 연결된 촉매이고, 둘째는 -SiR2-에 의해서 연결된 실리콘 브리지된 촉매, 및 셋째는 풀벤과 인덴이나 플루오렌 등과의 반웅으로부터 얻어진 메틸렌브리지된 촉매가 그것이다.  Several researchers have studied various catalysts and found that generally bridged catalysts have good reaction properties with respect to the second monomer. The bridged catalysts studied so far can be classified into three types depending on the type of bridge. One is a catalyst in which two cyclopentadienyl ligands are linked to an alkylenedibridge by reaction with an electrophile such as an alkyl halide and indene or fluorene, and the second is a silicon bridged catalyst connected by -SiR 2-and Methylene bridged catalysts obtained from reactions of fulven and indene, fluorene and the like.
그러나, 상기 시도들 중에서 실제로 상업 공장에 적용되고 있는 촉매들은 소수이며, 보다 향상된 중합 성능을 보여주는 촉매의 제조가 여전히 요구된다.  However, among the above attempts, the catalysts actually applied in commercial plants are few, and there is still a need for the production of catalysts showing improved polymerization performance.
[발명의 내용] [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 우수한 중합 활성을 가지면서도, 공단량체 삽입능이 우수하므로 넓은 분자량 분포를 갖고, 이에 따라 가공성이 우수한 을레핀계 중합체를 제조할 수 있는 메탈로센 ~ 화합물, 및 이를 이용하는 올레핀계 증합체의 제조방법을 제공하고자 한다. 【과제의 해결 수단】 In order to solve the problems of the prior art, the present invention has a wide molecular weight distribution because of the excellent polymerization activity, and excellent comonomer insertion ability, and thus a metallocene compound capable of producing a leupine-based polymer having excellent processability. And, to provide a method for producing an olefin-based polymer using the same. [Measures of problem]
상기 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 하기 화학식 1로 표시되는 리간드 화합물을 제공한다:  According to an aspect of the present invention to achieve the above object, it provides a ligand compound represented by the following formula (1):
1]  One]
Figure imgf000004_0001
Figure imgf000004_0001
상기 화학식 1에서,  In Chemical Formula 1,
Ri 내지 R16 은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 4 내지 20의 시클로알킬알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 5 내지 20의 해테로아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이고, 상기 R! 내지 R16 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고, 단, 상기 R, 내지 R16가 모두 수소인 경우는 제외하며; Ri to R 16 are the same as or different from each other, and each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkylalkyl group having 4 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 5 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an arylalkyl group having 7 to 20 carbon atoms, wherein R! Two or more adjacent to each other to R 16 may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring, provided that R and R 16 are all hydrogen;
L은 직접결합 또는 탄소수 1 내지 10의 알킬렌기이고;  L is a direct bond or an alkylene group having 1 to 10 carbon atoms;
R은 치환 또는 치환되지 않은 페닐기, 나프틸기, 탄소수 3 내지 20의 시클로 알킬기, 또는 탄소수 1 내지 20의 알콕시기이고; Ql 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이다. R is a substituted or unsubstituted phenyl group, naphthyl group, a cycloalkyl group having 3 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms; Ql and Q 2 are the same as or different from each other, and are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and carbon atoms An alkylaryl group having 7 to 20 or an arylalkyl group having 7 to 20 carbon atoms.
또한, 본 발명은, 하기 화학식 2로 표시되는 메탈로센 화합물을 제공한다.  In addition, the present invention provides a metallocene compound represented by the following formula (2).
[화학식 2]  [Formula 2]
Figure imgf000005_0001
Figure imgf000005_0001
상기 화학식 2에 있어서,  In Chemical Formula 2,
M은 4족 전이금속이고;  M is a Group 4 transition metal;
Xi 및 ¾는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 니트로기, 아미도기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 1 내지 20의 술폰네이트기이고;  Xi and ¾ are the same as or different from each other, and each independently halogen, alkyl group of 1 to 20 carbon atoms, alkenyl group of 2 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, nitro group, amido group, alkyl of 1 to 20 carbon atoms A silyl group, an alkoxy group having 1 to 20 carbon atoms, or a sulfonate group having 1 to 20 carbon atoms;
R) 내지 R16 은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 4 내지 20의 시클로알킬알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 5 내지 20의 헤테로아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이고, 상기 내지 R16 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고, 단, 상기 내지 R16가 모두 수소인 경우는 제외하며; R) to R 16 are the same as or different from each other, and each independently hydrogen, halogen, alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, cycloalkyl group having 3 to 20 carbon atoms, and cycloalkylalkyl group having 4 to 20 carbon atoms , 1 carbon To 20 alkoxy group, an aryl group having 6 to 20 carbon atoms of the aryl group, having 5 to 20 heteroaryl group, a C7 to C20 alkylaryl group, or a carbon number of 7 to 20 of, adjacent to each other of the to R 16 Two or more may be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring, except where all of R to 16 are hydrogen;
. L은 직접결합 또는 탄소수 1 내지 10의 알킬렌기이고; . L is a direct bond or an alkylene group having 1 to 10 carbon atoms;
R은 치환 또는 치환되지 않은 페닐기, 나프틸기, 탄소수 3 내지 20의 시클로 알킬기, 또는 탄소수 1 내지 20의 알콕시기이고;  R is a substituted or unsubstituted phenyl group, naphthyl group, a cycloalkyl group having 3 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms;
Qt 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이다. Q t and Q 2 are the same as or different from each other, and each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 20 carbon atoms or an arylalkyl group having 7 to 20 carbon atoms.
또한, 본 발명은 상기 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에서 을레핀계 단량체를 중합하는 단계를 포함하는 올레핀계 중합체의 제조 방법을 제공한다.  In addition, the present invention provides a method for producing an olefin-based polymer comprising the step of polymerizing a relefin-based monomer in the presence of a catalyst composition comprising the metallocene compound.
【발명의 효과】 【Effects of the Invention】
상기 새로운 리간드를 가지는 메탈로센 화합물은 인데노 인돌 유도체와 플루오렌 유도체가 연결된 리간드에 다양한 치환체를 도입함으로써 금속 주위의 전자적, 입체적 환경을 쉽게 제어할 수 있고 궁극적으로는 생성되는 폴리을레핀의 구조 및 물성 등의 조절이 가능하다. 본 발명에 따른 메탈로센 화합물 또는 이를 포함하는 촉매 조성물은 을레핀계 중합체의 제조시 사용할 수 있으며, 특히 공단량체를 이용하는 공증합에 있어서도 높은 활성을 나타내고, 공단량체 삽입능을 향상시킬 수 있어, 넓은 분자량 분포를 갖고, 이에 따라 가공성이 우수한 을레핀계 중합체를 제조할 수 있다.  The metallocene compound having the new ligand can easily control the electronic and three-dimensional environment around the metal by introducing various substituents to the ligand to which the indeno indole derivative and the fluorene derivative are linked, and ultimately, the structure of the polyolefin produced. The physical properties can be adjusted. The metallocene compound according to the present invention or the catalyst composition including the same can be used in the preparation of the olepin-based polymer, and especially exhibits high activity even in the co-polymerization using a comonomer, can improve the comonomer insertion ability, It is possible to manufacture an leupin-based polymer having a molecular weight distribution and excellent in processability.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. , In the present invention, terms such as first and second are used to describe various components, which terms constitute one component to another component. It is only used to distinguish it from the element. ,
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징 , 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. .  In addition, the terminology used herein is for the purpose of describing example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "having" are intended to indicate that there is a feature, number, step, component, or combination thereof, and one or more other features, It is to be understood that the present invention does not exclude the possibility of adding or presenting numbers, steps, components, or a combination thereof. .
또한 본 발명에 있어서, 각 층 또는 요소가 각 층들 또는 요소들의 "상에" 또는 "위에" 형성되는 것으로 언급되는 경우에는 각 층 또는 요소가 직접 각 층들 또는 요소들의 위에 형성되는 것을 의미하거나, 다른 층 또는 요소가 각 층 사이, 대상체, 기재 상에 추가적으로 형성될 수 있음을 의미한다.  Also, in the present invention, when each layer or element is referred to as being formed "on" or "on" of each layer or element, it means that each layer or element is directly formed on each layer or element, or the other It is meant that a layer or element can additionally be formed between each layer, on the object, the substrate.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a particular disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하에서 본 발명에 대하여 상세히 설명한다. 본 발명에 따른 리간드 화합물은 하기 화학식 1로 표시되는 것을 특징으로 한다.  Hereinafter, the present invention will be described in detail. Ligand compound according to the invention is characterized in that represented by the formula (1).
[화학식 1]
Figure imgf000008_0001
[Formula 1]
Figure imgf000008_0001
상기 화학식 1에서,  In Chemical Formula 1,
Rt 내지 R16 은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 4 내지 20의 시클로알킬알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 5 내지 20의 헤테로아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이고, 상기 내지 R16 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고, 단, 상기 내지 R16가 모두 수소인 경우는 제외하며 ; Rt to R 16 are the same as or different from each other, and each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkylalkyl group having 4 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms of the aryl group, having 5 to 20 heteroaryl group, a C7 to C20 alkylaryl group, or a carbon number of 7 to 20 of the, each of said through R 16 Two or more adjacent groups may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring, except that the above R 16 are all hydrogen;
L은 직접결합 또는 탄소수 1 내자 10의 알킬렌기이고; ' L is a direct bond or an alkylene group having 1 to 10 carbon atoms; '
R은 치환 또는 치환되지 않은 페닐기, 나프틸기, 탄소수 3 내지 20의 시클로 알킬기, 또는 탄소수 1 내지 20의 알콕시기이고;  R is a substituted or unsubstituted phenyl group, naphthyl group, a cycloalkyl group having 3 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms;
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이다. 상기 화학식 1에서 주요한 치환기에 대하여 보다 구체적으로 설명하면 다음과 같다. Qi and Q 2 are the same as or different from each other, and are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and carbon atoms An alkylaryl group having 7 to 20 or an arylalkyl group having 7 to 20 carbon atoms. When described in more detail with respect to the main substituents in the formula (1).
상기 탄소수 1 내지 20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert- 부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다. - 상기 탄소수 2 내지 20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The alkyl group having 1 to 20 carbon atoms includes a linear or branched alkyl group, and specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nuclear group, heptyl group And an octyl group etc. are mentioned, but it is not limited to this. The alkenyl group having 2 to 20 carbon atoms includes a straight or branched alkenyl group, and specifically includes an allyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, and the like, but is not limited thereto. .
상기 탄소수 6 내지 20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The aryl group having 6 to 20 carbon atoms includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but is not limited thereto.
상기 탄소수 5 내지 20의 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드로피라닐기, 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The heteroaryl group having 5 to 20 carbon atoms includes a monocyclic or condensed heteroaryl group, and includes a carbazolyl group, a pyridyl group, a quinoline group, an isoquinoline group, a thiophenyl group, a furanyl group, an imidazole group, an oxazolyl group, a thiazolyl Groups, triazine groups, tetrahydropyranyl groups, tetrahydrofuranyl groups, and the like, but are not limited thereto.
상기 탄소수 1 내지 20의 알콕시기로는 메특시기, 에특시기, 페닐옥시기, 시클로핵실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  Examples of the alkoxy group having 1 to 20 carbon atoms include mesophilic, ethoxy, phenyloxy, and cyclonucleooxy groups, but are not limited thereto.
상기 탄소수 3 내지 20의 시클로알킬기로는 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로핵실기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The cycloalkyl group having 3 to 20 carbon atoms may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclonuxyl group, and the like, but is not limited thereto.
상기 탄소수 4 내지 20의 시클로알킬알킬기로는 시클로프로필메틸기, 시클로프로필에틸기, 시클로부틸메틸기, 시클로부틸에틸기, 시클로펜틸메틸기 : 시클로펜틸에틸기, 시클로핵실메틸기, 시클로핵실에틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다. Examples of the cycloalkylalkyl group having 4 to 20 carbon atoms include a cyclopropylmethyl group, a cyclopropylethyl group, a cyclobutylmethyl group, a cyclobutylethyl group, a cyclopentylmethyl group : a cyclopentylethyl group, a cyclonuxylmethyl group, and a cyclonuxylethyl group. It is not limited.
본 발명의 일 실시예에 따르면, 상기 화학식 1의 R은 페닐기, 시클로펜틸기, 시클로핵실기, 플루오로페닐기, 또는 펜타플루오로페닐기 알 수 있다. 상기 작용기들은 상기 일 구현예의 리간드 화합물의 플루오렌 유도체에 도입되어, 제조되는 올레핀 중합체의 분자량 및 분자량 분포를 조절할 수 있는데, 특히, 페닐기, 시클로헥실기, 플루오로페닐기, 펜타플루오로페닐기 등을 사용하는 경우 중심 금속의 산기를 높여, 리간드 화합물을 안정화시킬 수 있으므로, 촉매 활성을 향상시키는 효과가 있다. 또한, 상기 화학식 1은 R에 도입되는 치환기에 따라, 리간드, 중심금속, 그리고 리간드로 이어지는 bite angle의 각을 조절할 수 있는데, 상술한 치환기들은 화학샥 1의 화합물의 bite angle을 크게 하여, 공단량체의 도입을 용이하게 하고, 이쎄 따라 공중합성이 향상되는 효과가 있다. According to an embodiment of the present invention, R in Formula 1 is a phenyl group, a cyclopentyl group, a cyclonuxyl group, a fluorophenyl group, or a pentafluorophenyl group egg. Can be. The functional groups can be introduced into the fluorene derivative of the ligand compound of the embodiment to control the molecular weight and molecular weight distribution of the produced olefin polymer, in particular, using a phenyl group, cyclohexyl group, fluorophenyl group, pentafluorophenyl group, etc. In this case, since the acid group of the center metal can be increased to stabilize the ligand compound, there is an effect of improving the catalytic activity. In addition, the formula (1) can adjust the angle of the bite angle leading to the ligand, the central metal, and the ligand, depending on the substituent introduced into R, the above-described substituents to increase the bite angle of the compound of the chemical formula 1, comonomer It is easy to introduce and has the effect of improving copolymerizability.
그리고, 상기 화학식 1의 R2 및 R5 는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 탄소수 1 내지 5와 알킬기일 수 있다. In addition, R 2 and R 5 in Formula 1 may be the same as or different from each other, and each independently hydrogen or an alkyl group having 1 to 5 carbon atoms.
상기 화학식 1로 표시되는 화합물의 구체적인 예는 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 본 발명이 이에 한정되는 것은 아니다.  Specific examples of the compound represented by Formula 1 may be a compound represented by one of the following structural formulae, but the present invention is not limited thereto.
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000011_0001
Figure imgf000011_0001
상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 방법으로 합성할 수 있다.  The compound represented by Chemical Formula 1 may be synthesized by the same method as in Scheme 1 below.
[반웅식 1]  [Banungsik 1]
Figure imgf000011_0002
Figure imgf000011_0002
상기 반웅식 1에서 R, 내지 6, 및 Q2, L의 정의는 상기 화학식 1에서의 정의와 동일하고 , Αι 및 Α2는 할로겐이다. Banung in the formula R 1, to 6, and Q 2, the definition of L are the same and, Αι Α 2 and defined as in the general formula (1) is halogen.
더욱 구체적인 예는 이하 실시예에 기재하였으며, 당업자는 실시예에 기재된 내용을 참고하여 상기 화학식 1의 화합물을 제조할 수 있다.  More specific examples are described in the following Examples, and those skilled in the art may prepare the compound of Formula 1 with reference to the contents described in the Examples.
또한, 이러한 상기 화학식 1의 리간드 화합물은 전이금속과의 메탈레이션을 거쳐 후속하여 설명하는 메탈로센 화합물을 제조할 수 있다. 본 발명의 다른 일 측면에 의하면, 하기 화학식 2로 표시되는 메탈로센 화합물을 제공한다.  In addition, the ligand compound of Formula 1 may prepare a metallocene compound described later through metallization with a transition metal. According to another aspect of the present invention, a metallocene compound represented by the following Chemical Formula 2 is provided.
[화학식 2] [Formula 2]
Figure imgf000012_0001
Figure imgf000012_0001
상기 화학식 2에 있어서,  In Chemical Formula 2,
M은 4족 전이금속이고;  M is a Group 4 transition metal;
X. 및 ¾는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 니트로기, 아미도기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 1 내지 20의 술폰네이트기이고;  X. and ¾ are the same as or different from each other, and each independently a halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a nitro group, an amido group, a carbon group having 1 to 20 carbon atoms An alkylsilyl group, an alkoxy group having 1 to 20 carbon atoms, or a sulfonate group having 1 to 20 carbon atoms;
Ri 내지 R16 은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 4 내지 20의 시클로알킬알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 5 내지 20의 헤테로아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 1 내지 20의 아릴알킬기이고, 상기 Ri 내지 R16 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고, 단, 상기 R! 내지 R16가 모두 수소인 경우는 제외하며; Ri to R 16 are the same as or different from each other, and each independently hydrogen, a halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkylalkyl group having 4 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 5 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an arylalkyl group having 1 to 20 carbon atoms, wherein Ri to R 16 Two or more adjacent to each other may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring, provided that R ! Except when R 16 are all hydrogen;
L은 직접결합 또는 탄소수 1 내지 10의 알킬렌기이고;  L is a direct bond or an alkylene group having 1 to 10 carbon atoms;
R은 치환 또는 치환되지 않은 페닐기, 나프틸기, 탄소수 3 내지 20의 시클로 알킬기, 또는 탄소수 1 내지 20의 알콕시기이고; R is a substituted or unsubstituted phenyl group, naphthyl group, 3 to 20 carbon atoms A cycloalkyl group or an alkoxy group having 1 to 20 carbon atoms;
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이다. Qi and Q 2 are the same as or different from each other, and are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and carbon atoms An alkylaryl group having 7 to 20 or an arylalkyl group having 7 to 20 carbon atoms.
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  Examples of the Group 4 transition metal include titanium, zirconium, and hafnium, but are not limited thereto.
본 발명의 일 실시예에 따르면, 상기 화학식 2의 R은 페닐기, 시클로펜틸기, 시클로핵실기, 플루오로페닐기, 또는 펜타플루오로페닐기 일 수 있다. 상기 작용기들은 상기 일 구현예의 메탈로센 화합물의 플루오렌 유도체에 도입되어, 제조되는 올레핀 중합체의 분자량 및 분자량 분포를 조절할 수 있는데, 특히, 페닐기, 시클로핵실기, 플루오로페닐기, 펜타플루오로페닐기 등을 사용하는 경우 증심 금속의 산기를 높여, 리간드 화합물을 안정화시킬 수 있으므로, 촉매 활성을 향상시키는 효과가 있다. 또한, 상기 화학식 1은 R에 도입되는 치환기에 따라, 리간드, 중심금속, 그리고 리간드로 이어지는 bite angle의 각을 조절할 수 있는데, 상술한 치환기들은 화학식 1와 화합물의 bite angle을 크게 하여, 공단량체의 도입을 용이하게 하고, 이에 따라 공중합성이 향상되는 효과가 있다.  According to an embodiment of the present invention, R in Formula 2 may be a phenyl group, a cyclopentyl group, a cyclonuxyl group, a fluorophenyl group, or a pentafluorophenyl group. The functional groups may be introduced into the fluorene derivative of the metallocene compound of the embodiment to control the molecular weight and molecular weight distribution of the olefin polymer to be produced, in particular, a phenyl group, a cyclonuclear group, a fluorophenyl group, a pentafluorophenyl group, or the like. In the case of using, since the acid group of the core metal can be raised to stabilize the ligand compound, there is an effect of improving the catalytic activity. In addition, the formula (1) can adjust the angle of the bite angle leading to the ligand, the central metal, and the ligand, depending on the substituents introduced into R, the above-mentioned substituents to increase the bite angle of the formula and the compound, It is easy to introduce | transduce, and there exists an effect which improves copolymerization by this.
그리고, 상기 화학식 2의 R2 및 R5 는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 탄소수 1 내지 5의 알킬기일 수 있다. In addition, R 2 and R 5 in Formula 2 may be the same as or different from each other, and each independently hydrogen or an alkyl group having 1 to 5 carbon atoms.
또한, 상기 화학식 2로 표시되는 메탈로센 화합물의 예로는 하기 화합물 있으나, 이에 한정되는 것은 아니다.  In addition, examples of the metallocene compound represented by Formula 2 include the following compounds, but are not limited thereto.
Figure imgf000013_0001
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000014_0001
상기 화학식 2의 메탈로센 화합물은 인데노 인돌 (indeno indole) 유도체와, 플루오렌 (fluorene) 유도체를 기본 골격으로 하며, 이러한 2종의 유도체가 실리콘 브릿지에 의해 비대칭적으로 가교된 구조를 형성하고, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반웅성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 또한 인데노인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen elimination을 억제하여 초고분자량의 을레핀계 증합체를 중합할 수 있다. 또한, 상기 일 구현예의 메탈로센 화합물은 플루오렌기에 다양한 치환기를 도입하여, 도입된 치환기의 종류 및 벌키한 (bulky) 정도에 따라서 제조되는 을레핀 증합체의 분자량 및 분자량 분포를 조절할 수 있다. 본 발명의 일 실시예에 따르면, 상기 화학식 2의 R이 치환 또는 치환되지 않은 페닐기, 나프틸기, 탄소수 3 내지 20의 시클로 알킬기, 또는 탄소수 1 내지 20의 알콕시기일 때 공중합에 있어서도 높은 활성을 나타내고, 공단량체 삽입능을 향상시킬 수 있어, 넓은 분자량 분포 및 고분자량을 갖는 을레핀계 중합체를 제조할 수 있다. The metallocene compound of Chemical Formula 2 has an indeno indole derivative and a fluorene (fl uorene ) derivative as a basic skeleton, and these two derivatives form asymmetrically crosslinked structure by a silicon bridge. In addition, by having a non-covalent electron pair capable of acting as a Lewis base in the ligand structure, it is supported on the surface having the Lewis acid characteristic of the carrier and shows high polymerization activity even when supported. In addition, the electronically rich indeno indole group and the fluorene group includes a high activity, due to the proper steric hindrance and the electronic effect of the ligand is not only low hydrogen response, but also maintains high activity in the presence of hydrogen. In addition, the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown is stabilized by hydrogen bonding, thereby inhibiting beta-hydrogen elimination, thereby polymerizing ultra high molecular weight olepin-based polymer. In addition, the metallocene compound of the embodiment may introduce various substituents to the fluorene group, thereby controlling the molecular weight and molecular weight distribution of the leupine copolymer prepared according to the type and bulky degree of the introduced substituents. According to an embodiment of the present invention, R in Formula 2 is a substituted or unsubstituted phenyl group, naphthyl group, a C3-C20 cycloalkyl group, or C1-C1 When the alkoxy group of 20 is used, copolymerization ability can be improved and the comonomer insertion ability can be improved, thereby producing an olefinic polymer having a wide molecular weight distribution and a high molecular weight.
이와 같이 본 발명의 메탈로센 화합물은 우수한 활성과 높은 공중합성을 구현할 수 있고 높은 분자량 및 넓은 분자량 분포를 갖는 폴리올레핀을 제조할 수 있어, 궁극적으로는 생성되는 폴리을레핀의 구조 및 물성 등의 조절이 가능하다. .  As described above, the metallocene compound of the present invention can realize excellent activity and high copolymerizability, and can prepare a polyolefin having a high molecular weight and a wide molecular weight distribution, thereby ultimately controlling the structure and physical properties of the resulting polyolefin. It is possible. .
본 발명에 따른 상기 화학식 2의 메탈로센 화합물은 올레핀 단량체의 중합용 촉매로서 사용될 수 있다. ᅳ  The metallocene compound of Chemical Formula 2 according to the present invention may be used as a catalyst for polymerization of olefin monomers. ᅳ
상기 화학식 2로 표시되는 메탈로센 화합물은 하기와 같은 반웅식 2에 따라, 화학식 1로 표시되는 리간드 화합물을 금속 소스와 반웅시켜 메탈레이션함으로써 제조할 수 있다.  The metallocene compound represented by Chemical Formula 2 may be prepared by reacting the ligand compound represented by Chemical Formula 1 with a metal source according to the following reaction formula 2 and metallization thereof.
[반응식 2]  Scheme 2
Figure imgf000015_0001
Figure imgf000015_0001
상기 반웅식 2에서 R, R, 내지 R16, Q, 및 Q2, L, X( 및 X2의 정의는 상기 화학식 2에서의 정의와 동일하다. In Formula 2, the definitions of R, R, to R 16 , Q, and Q 2 , L, X ( and X 2 ) are the same as those defined in Chemical Formula 2.
더욱 구체적인 예는 이하 실시예에 기재하였으며, 당업자는 실시예에 기재된 내용을 참고하여 상기 화학식 2의 메탈로센 화합물을 제조할 수 있다. 본 발명의 다른 일 측면에 따르면, 상기 화학식 2의 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에, 을레핀계 단량체를 중합하는 단계를 포함하는 을레핀계 중합체의 제조 방법을 제공한다/ 상기 촉매 조성물은 상기 화학식 2의 메탈로센 화합물 이외에 하기 화학식 3의 화합물, 하기 화학식 4의 화합물 및 하기 화학식 5의 화합물로 이루어진 군에서 선택된 1종 이상의 조촉매 화합물을 추가로 포함할 수 있다. More specific examples are described in the following Examples, and those skilled in the art may prepare the metallocene compound of Formula 2 with reference to the contents described in the Examples. According to another aspect of the present invention, in the presence of a catalyst composition comprising a metallocene compound of Formula 2, it provides a method for producing an olefinic polymer comprising the step of polymerizing the olefinic monomers / The catalyst composition may further include at least one cocatalyst compound selected from the group consisting of a compound of Formula 3 , a compound of Formula 4, and a compound of Formula 5, in addition to the metallocene compound of Formula 2.
[화학식 3]  [Formula 3]
-[Al(R17)-0]n- 상기 화학식 3에서, R17는 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고 , η은 2 이상의 정수이며, -[Al (R 17 ) -0] n- In Formula 3, R 17 is a halogen radical, a hydrocarbyl radical having 1 to 20 carbon atoms, or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen, η is 2 Is an integer greater than or equal to
[화학식 4]  [Formula 4]
D( 18)3 D ( 18 ) 3
상기 화학식 4에서,  In Chemical Formula 4,
D는 알루미늄 또는 보론이고, R18은 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고, D is aluminum or boron, R 18 is hydrocarbyl having 1 to 20 carbon atoms or hydrocarbyl having 1 to 20 carbon atoms substituted with halogen,
[화학식 5]  [Formula 5]
[L-H]+[ZE4]-또는 [L]+[ZE4]ᅳ [LH] + [ZE 4 ] -or [L] + [ZE 4 ] ᅳ
상기 화학식 5에서,  In Chemical Formula 5,
L은 중성 또는 양이은성 루이스 염기이고, Ή는 수소 원자이며, Z는 13족 원소이고, E는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.  L is a neutral or divalent Lewis base, Ή is a hydrogen atom, Z is a Group 13 element, E may be the same or different from each other, and each independently one or more hydrogen atoms is halogen, a hydrocarbon having 1 to 20 carbon atoms, alkoxy or Or an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with phenoxy.
상기 조촉매 화합물들 중에서, 상기 화학식 3의 화합물 및 상기 화학식 4의 화합물은 다르게는 알킬화제로 표시될 수 있으며, 상기 화학식 5의 화합물은 활성화제로 표시될 수 있다.  Among the promoter compounds, the compound of Formula 3 and the compound of Formula 4 may alternatively be represented by an alkylating agent, and the compound of Formula 5 may be represented by an activator.
상기 화학식 3으로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않으나 바람직한 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 바람직하게는 메틸알루미녹산을 사용할 수 있다.  The compound represented by Chemical Formula 3 is not particularly limited as long as it is an alkyl aluminoxane, but preferred examples thereof include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, and butyl aluminoxane, and preferably methyl aluminoxane.
상기 화학식 4로 표시되는 알킬 금속 화합물은 특별히 한정되지 않으나 바람직한 예로는 트리메틸알루미늄, 트리에틸알루미늄 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리 -S-부틸알루口ᅵ늄 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P-를릴알루미늄 디메틸알루미늄메특시드, 디메틸알루미늄에톡 i, 트리메틸보론 트리에틸보론, 트리이소부틸보론, 트리프로필보론 트리부틸보론 등이 포함되며, 바람직하게는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 등을 사용할 수 있다. The alkyl metal compound represented by Formula 4 is not particularly limited. However, preferred examples include trimethylaluminum, triethylaluminum triisobutylaluminum, tripropylaluminum, tributylaluminum dimethylchloroaluminum, triisopropylaluminum, tri-S-butylaluminium tricyclopentylaluminum, tripentylaluminum and triiso Pentyl aluminum trinuclear aluminum, trioctyl aluminum, ethyl dimethyl aluminum methyl diethyl aluminum, triphenyl aluminum, tri-P-allyl aluminum dimethyl aluminum mesoxide, dimethyl aluminum ethoxy i, trimethyl boron triethyl boron, triisobutyl boron, Tripropyl boron tributyl boron, and the like, and preferably trimethyl aluminum, triethyl aluminum, triisobutyl aluminum and the like can be used.
상기 화학식 5로 표시되는 화합물의 예로는 트리에틸암모니움테트라 (페닐)보론, 트리부틸암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (페닐)보론, 트리프로필암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (P-를릴)보론, 트리메틸암모니움테트라 (ο,ρ- 디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론,  Examples of the compound represented by Formula 5 include triethylammonium tetra (phenyl) boron, tributyl ammonium tetra (phenyl) boron, trimethyl ammonium tetra (phenyl) boron, tripropyl ammonium tetra (phenyl) boron, trimethyl Ammonium Tetra (P-lryl) boron, Trimethylammonium Tetra (ο, ρ-dimethylphenyl) boron, Tributylammonium Tetra (Ρ-trifluoromethylphenyl) boron, Trimethylammonium Tetra (Ρ-trifluoromethylphenyl )
트리부틸암모니움테트라 (펜타플루오로페닐)보론, Ν,Ν- 디에틸아밀리디움테트라 (페닐)보론, Ν,Ν-디에틸아닐리디움테트라 (페닐)보론, Ν,Ν_디에틸아닐리니움테트라 (펜타플루오로페닐)보론, Tributylammonium tetra (pentafluorophenyl) boron, Ν, Ν-diethylamyldium tetra (phenyl) boron, Ν, Ν-diethylanilidedium tetra (phenyl) boron, Ν , Ν _diethylaniyl Liniumtetra (pentafluorophenyl) boron,
디에틸암모니움테트라 (펜타플루오로페닐)보론, Diethylammonium tetra (pentafluorophenyl) boron,
트리페닐포스포늄테트라 (페닐)보론, 트리메틸포스포늄테트라 (페닐)보론, 트리에틸암모니움테트라 (페닐)알루미늄, Triphenylphosphonium tetra (phenyl) boron, trimethyl phosphonium tetra (phenyl) boron, triethylammonium tetra (phenyl) aluminum,
트리부틸암모니움테트라 (페닐)알루미늄, Tributylammonium tetra (phenyl) aluminum ,
트리메틸암모니움테트라 (페닐)알루미늄, Trimethylammonium tetra (phenyl) aluminum ,
트리프로필암모니움테트라 (페닐)알루미늄, 트리메틸암모니움테트라 (Ρ- 를릴)알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)알루미늄, 트리에틸암모니움테트라 (ο,ρ-디메틸페닐)알루미늄, 트리부틸암모니움테트라 (Ρ- 트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라 (Ρ- 트리플루오로메틸페닐)알루미늄, Tripropyl Ammonium Tetra (phenyl) Aluminum, Trimethyl Ammonium Tetra (Ρ-rylryl) Aluminum, Tripropyl Ammonium Tetra (Ρ-rylryl) Aluminum, Triethyl Ammonium Tetra (ο, ρ-dimethylphenyl) Aluminum, Tributyl Ammonium tetra (Ρ-trifluoromethylphenyl) aluminum, trimethylammonium tetra (Ρ-trifluoromethylphenyl) aluminum,
트리부틸암모니움테트라 (펜타플루오로페닐)알루미늄, Ν,Ν- 디에틸아닐리니움테트라 (페닐)알루미늄, Ν,Ν- 디에틸아닐리니움테트라 (페닐)알루미늄, Ν,Ν- 디에틸아닐리니움테트라 (펜타플루오로페닐)알루미늄, Tributylammonium tetra (pentafluorophenyl) aluminum, Ν, Ν- Diethylanilinium tetra (phenyl) aluminum, Ν, Ν-diethylanilinium tetra (phenyl) aluminum, Ν, Ν-diethylanilinium tetra (pentafluorophenyl) aluminum,
디에틸암모니움테트라 (펜타플루오로페닐)알루미늄, Diethylammonium tetra (pentafluorophenyl) aluminum,
트리페닐포스포늄테트라 (페닐)알루미늄, - 트리메틸포스포늄테트라 (페닐)알루미늄, Triphenylphosphoniumtetra (phenyl) aluminum, -trimethylphosphoniumtetra (phenyl) aluminum,
트리에틸암모니움테트라 (페닐)알루미늄, Triethylammonium tetra (phenyl) aluminum,
트리부틸암모니움테트라 (페닐)알루미늄, 트리메틸암모니움테트라 (페닐)보론, 트리프로필암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (Ρ- 를릴)보론,트리프로필암모니움테트라 (Ρ-를릴)보론, Tributyl Ammonium Tetra (phenyl) aluminum, Trimethyl Ammonium Tetra (phenyl) boron, Tripropyl Ammonium Tetra (phenyl) boron, Trimethyl Ammonium Tetra (Ρ-rylryl) boron, Tripropyl Ammonium Tetra (Ρ-ryl) Boron,
트리에틸암모니움테트라 (ο,ρ-디메틸페닐)보론, 트리메틸암모니움테트라 (ο,ρ- 디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론, Triethylammonium tetra (ο, ρ-dimethylphenyl) boron, trimethylammonium tetra (ο, ρ-dimethylphenyl) boron, tributylammonium tetra (Ρ-trifluoromethylphenyl) boron, trimethylammoniumtetra (Ρ -Trifluoromethylphenyl) boron,
트리부틸암모니움테트라 (펜타플루오로페닐)보론, Ν,Ν- 디에틸아닐리니움테트라 (페닐)보론, Ν,Ν-다에틸아닐리니움테트라 (페닐)보론, Ν,Ν-디에틸아닐리니움테트라 (펜타플루오로페닐)보론, Tributylammonium tetra (pentafluorophenyl) boron, Ν, Ν- diethylanilinium tetra (phenyl) boron, Ν, Ν-daethylanilinium tetra (phenyl) boron, Ν, Ν-diethylaniyl Liniumtetra (pentafluorophenyl) boron,
디에틸암모니움테트라 (펜타플루오로페닐)보론, Diethylammonium tetra (pentafluorophenyl) borone ,
트리페닐포스포늄테트라 (페닐)보론, 트리페닐카보니움테트라 (Ρ- 트리풀로로메틸페닐)보론, 트리페닐카보니움테트라 (펜타폴루오로페닐)보론, 트리틸테트라 (펜타플루오로페닐)보론 등이 있으나 이에 한정되는 것은 아니다. Triphenyl phosphonium tetra (phenyl) boron, triphenyl carbonium tetra (Ρ- tripulomethylphenyl) boron, triphenyl carbonium tetra (pentapolourophenyl) boron, trityl tetra (pentafluorophenyl) Boron, etc., but is not limited thereto.
그리고, 상기 촉매 조성물은 올레핀 단일 중합 또는 공중합에 사용될 수 있다.  In addition, the catalyst composition may be used for olefin homopolymerization or copolymerization.
한편, 본 발명에 따른 촉매 조성물을 제조하는 방법으로서, 예컨대 하기의 방법을 이용할 수 있다.  On the other hand, as a method for producing the catalyst composition according to the present invention, for example, the following method can be used.
첫 번째로 상기 화학식 2의 메탈로센 화합물과 상기 화학식 3의 화합물 및 /또는 화학식 4의 화합물을 접촉시켜 흔합물을 얻는 단계; 및 상기 흔합물에 상기 화학식 5의 화합물을 첨가하는 단계를 포함하는 제조 방법을 이용할 수 있다.  First contacting the metallocene compound of Formula 2 with the compound of Formula 3 and / or the compound of Formula 4 to obtain a mixture; And adding a compound of Chemical Formula 5 to the mixture.
그리고, 두 번째로 상기 화학식 2의 메탈로센 화합물과 상기 화학식 3의 화합물을 접촉시켜 촉매 조성물을 제조하는 방법을 이용할 수 있다. 또, 세 번째로 상기 화학식 2의 메탈로센 화합물과 상기 화학식 5의 화합물을 접촉시켜 촉매 조성물을 제조하는 방법을 이용할 수 있다. Second, the metallocene compound of Formula 2 and the above formula A method of preparing the catalyst composition by contacting the compound of 3 may be used. In addition, a method of preparing a catalyst composition by contacting the metallocene compound of Formula 2 and the compound of Formula 5 may be used.
상기 촉매 조성물의 제조 방법들 중에서 첫 번째 방법의 경우에, 상기 화학식 2의 메탈로센 화합물 대비 상기 화학식 3의 화합물 및 상기 화학식 4의 화합물의 몰비는 1:2 내지 1:5,000 일 수 있고, 바람직하게는 1:10 내지 1:1,000 이며, 더욱 바람직하게는 1:20 내지 1:500 이다. 또한, 상기 화학식 2의 메탈로센 화합물 대 상기 화학식 5의 화합물의 몰비는 1:1 내지 1:25 일 수 있고, 바람직하게는 1:1 내지 1:10 이고, 더욱 바람직하게는 1:2 내지 1:5 이다.  In the first method of preparing the catalyst composition, the molar ratio of the compound of Formula 3 and the compound of Formula 4 to the metallocene compound of Formula 2 may be 1: 2 to 1: 5,000, preferably Preferably 1:10 to 1: 1,000, more preferably 1:20 to 1: 500. In addition, the molar ratio of the metallocene compound of Formula 2 to the compound of Formula 5 may be 1: 1 to 1:25, preferably 1: 1 to 1:10, and more preferably 1: 2 to 1: 5.
상기 화학식 2의 메탈로센 속 화합물 1몰에 대한 상기 화학식 3의 화합물 및 상기 화학식 4의 화합물의 양이 2몰 미만일 경우에는 알킬화제의 양이 매우 작아 금속 화합물의 알킬화가 완전히 진행되지 못하는 문제가 있다ᅳ 또한, 상기 화학식 2의 메탈로센 화합물 1몰에 대한 상기 화학식 3의 화합물 및 상기 화학식 4의 화합물의 양이 5,000몰을 초과하는 경우에는 금속 화합물의 알킬화는 이루어지지만, 남아있는 과량의 알킬화제와 상기 화학식 5의 활성화제 간의 부반웅으로 인하여 알킬화된 금속 화합물의 활성화가 완전히 이루어지지 못하는 문제가 있다ᅳ 또한 상기 화학식 2의 메탈로센 화합물 1몰에 대한 상기 화학식 5의 화합물의 양이 1몰 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고, 상기 화학식 2의 메탈로센 화합물 1몰에 대한 상기 화학식 5의 화합물의 양이 25몰을 초과하는 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.  When the amount of the compound of Formula 3 and the compound of Formula 4 is less than 2 moles relative to 1 mole of the metallocene compound of Formula 2, the amount of the alkylating agent is very small so that alkylation of the metal compound may not proceed completely. ᅳ Also, when the amount of the compound of Formula 3 and the compound of Formula 4 is more than 5,000 moles relative to 1 mole of the metallocene compound of Formula 2, alkylation of the metal compound is performed, but the remaining alkylating agent There is a problem that the activation of the alkylated metal compound is not fully achieved due to side reactions between the activators of the formula (5). Also, the amount of the compound of the formula (5) to 1 mole of the metallocene compound of the formula (2) may be less than 1 mole. In this case, the amount of the activator is relatively small, resulting in incomplete activation of the metal compound. If the activity of the catalyst composition is inferior, and the amount of the compound of Formula 5 is more than 25 moles with respect to 1 mole of the metallocene compound of Formula 2, the activation of the metal compound is completely performed, There is a problem that the cost of the catalyst composition as an activator is not economical or the purity of the resulting polymer is poor.
상기 촉매 조성물의 제조 방법들 중에서 두 번째 방법의 경우에, 상기 화학식 2의 메탈로센 화합물 대 상기 화학식 3의 화합물의 몰비는 1:10 내지 1:10,000 일 수 있고, 바람직하게는 1:100 내지 1:5,000 이며, 더욱 바람직하게는 1:500 내지 1:2,000 이다. 상기 화학식 2의 메탈로센 화합물 1몰에 대하여 상기 화학식 3의 화합물의 양이 10 몰 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고, 상기 화학식 2의 메탈로센 화합물 1몰에 대하여 상기 화학식 3의 화합물의 양이 10,000몰을 초과하는 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다. In the second method of preparing the catalyst composition, the molar ratio of the metallocene compound of Formula 2 to the compound of Formula 3 may be 1:10 to 1: 10,000, preferably 1: 100 to 1: 5,000, more preferably 1: 500 to 1: 2,000. When the amount of the compound of Formula 3 is less than 10 moles with respect to 1 mole of the metallocene compound of Formula 2, Since the amount of the activator is relatively small, there is a problem in that the activity of the catalyst composition generated due to the incomplete activation of the metal compound is insufficient. If the molar excess exceeds the activation of the metal compound, there is a problem that the cost of the catalyst composition is not economically reduced or the purity of the resulting polymer is reduced due to the excess activator remaining.
상기 촉매 조성물 제조 방법들 중에서 세 번째 방법의 경우에, 상기 화학식 2의 메탈로센 화합물 대 상기 화학식 5의 화합물의 몰비는 1 : 1 내지 1 :25 일 수 있고, 바람직하게는 1 :1 내지 1 :10 이며, 더욱 바람직하게는 1 :2 내지 1 :5 이다.  In the third method of preparing the catalyst composition, the molar ratio of the metallocene compound of Chemical Formula 2 to the compound of Chemical Formula 5 may be 1: 1 to 1:25, and preferably 1: 1 to 1 : 10, More preferably, it is 1: 2-1: 5.
상기 촉매 조성물의 제조 시에 반응 용매로서 펜탄, 핵산, 헵탄 등과 같은 탄화수소계 용매이거나 벤젠, 를루엔 등과 같은 방향족계 용매가 사용될 수 있으나, 반드시 이에 한정되지는 않으며 당해 기술 분야에서 사용 가능한 모든 용매가 사용될 수 있다.  In the preparation of the catalyst composition, a hydrocarbon solvent such as pentane, nucleic acid, heptane, or an aromatic solvent such as benzene, toluene, or the like may be used as the reaction solvent, but the solvent is not necessarily limited thereto. Can be used.
본 발명에 따른 올레핀계 중합체의 방법은 상기 촉매 조성물과 단량체를 접촉시키는 것에 의하여 수행될 수 있다. 본 발명의 을레핀 중합체의 제조방법에 따르면, 올레핀 단일 중합체 또는 올레핀 공증합체를 제공할 수 있다.  The process of the olefinic polymer according to the invention can be carried out by contacting the catalyst composition with a monomer. According to the method for producing the olefin polymer of the present invention, an olefin homopolymer or an olefin copolymer can be provided.
본 발명의 중합 방법은 용액 중합 공정, 슬러리 공정 또는 기상 공정에 의해 수행될 수 있다. ᅳ  The polymerization method of the present invention may be carried out by a solution polymerization process, a slurry process or a gas phase process. ᅳ
본 발명에 따른 중합체의 제조 방법에 있어서, 상기 촉매 조성물은 을레핀 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및, 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입 가능하다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. In the production method of the polymer according to the present invention, the catalyst composition eulre pin polymerization process having a carbon number of 5-12 aliphatic hydrocarbon solvents suitable for, for example, pentane, hexane, heptane, nonane, decane, and the, the and isomers thereof Aromatic hydrocarbon solvents such as luene and benzene, hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene may be dissolved or diluted and injected. The solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a promoter.
상기 메탈로센 화합물들과 조촉매를 사용하여 중합 가능한 올레핀계 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 있으며, 이증 결합을 2개 이상 가지고 있는 디엔 올레핀계 단량체 또는 트리엔 을레핀계 단량체 등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3- 클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종 이상 흔합하여 공중합할 수도 있다. 상기 올레핀 중합체가 에틸렌과 다른 공단량체의 공중합체인 경우에, 상기 공중합체를 구성하는 단량체는 프로필렌, 1-부텐, 1-핵센, 및 4- 메틸 -1-펜텐, 및 1-옥텐으로 이루어진 군에서 선택된 하나 이상의 공단량체인 것이 바람직하다. Examples of the olefin monomer that can be polymerized using the metallocene compounds and the cocatalyst include ethylene, alpha-olefin, cyclic olefin, and the like. The diene olefin monomer or triene olefin monomer etc. which have two or more bonds can also superpose | polymerize. Specific examples of the monomer include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dode Sen, 1-tetradecene, 1-nuxadecene, 1-aitocene, norbornene, norbornadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1, 5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, etc., These monomers may be mixed and copolymerized two or more kinds. When the olefin polymer is a copolymer of ethylene and other comonomers, the monomer constituting the copolymer is selected from the group consisting of propylene, 1-butene, 1-nuxene, and 4-methyl-1-pentene, and 1-octene It is preferred that it is at least one comonomer selected.
특히, 본 발명에 따른 을레핀 중합체의 제조 방법에 있어서, 상기 촉매 조성물은 에틸렌과, 1-핵센 또는 1-옥텐과 같은 입체적 장애가 큰 단량체의 공중합 반응도 가능하며, 플루오렌 유도체의 기본 골격에 다양한 치환체를 도입함으로써 금속 주위의 전자적, 입체적 환경을 쉽게 제어할 수 있고 궁극적으로는 생성되는 폴리올레핀의 구조 및 물성 등의 조절이 가능하다.  In particular, in the method for producing an ellepin polymer according to the present invention, the catalyst composition is also capable of copolymerization reaction of ethylene and monomers having high steric hindrance, such as 1-nuxene or 1-octene, and various substituents on the basic skeleton of the fluorene derivative. By introducing the E, it is possible to easily control the electronic and three-dimensional environment around the metal and ultimately to control the structure and physical properties of the resulting polyolefin.
본 발명의 일 실시예에 따르면, 상기 을레핀계 중합체의 중량 평균 분자량 (Mw)은 약 100,000 내지 1,000,000 g/mol 일 수 있다. 상기 을레핀계 중합체의 중량 평균 분자량은 사용되는 메탈로센 화합물 또는 이를 포함하는 촉매 조성물의 담지 유무 및 중합 조건에 따라 변할 수 있는데, 예를 들어, 담지 촉매를 이용하여 제조한 을레핀계 증합체는 800,000 g/mol 이상, 바람직하게는 850,000 g/mol 이상의 매우 높은 중량 평균 분자량을 가질 수 있다.  According to one embodiment of the present invention, the weight average molecular weight (Mw) of the olefinic polymer may be about 100,000 to 1,000,000 g / mol. The weight average molecular weight of the olepin-based polymer may vary depending on whether the metallocene compound used or the catalyst composition comprising the same is supported and polymerization conditions. For example, the olephine-based polymer prepared using the supported catalyst may be 800,000. It may have a very high weight average molecular weight of at least g / mol, preferably at least 850,000 g / mol.
또한, 상기 올레핀계 중합체의 분자량 분포 (PDI)가 약 1 내지 20, 바람직하게는 약 1 내지 10 일 수 있다.  In addition, the molecular weight distribution (PDI) of the olefin polymer may be about 1 to 20, preferably about 1 to 10.
이하에서 올레핀 중합체의 중합 공정을 예시하나, 이는 본 발명을 예시하기 위한 목적일 뿐이며, 하기 내용에 의하여 본 발명의 범위가 한정될 것을 의도한 것은 아니다.  Hereinafter, the polymerization process of the olefin polymer is exemplified, but this is only for the purpose of illustrating the present invention, and the scope of the present invention is not intended to be limited by the following contents.
본 발명에 따른 중합체의 제조 방법에서 사용되는 반웅기는 연속 교반식 반웅기 (CSTR) 또는 연속 흐름식 반웅기 (PFR)인 것이 바람직하다. 상기 반응기는 2개 이상 직렬 혹은 병렬로 배열되는 것이 바람직하다. 또한 상기 제조 방법은 반웅 흔합물로부터 용매 및 미반웅 단량체를 연속적으로 분리하기 위한 분리기를 추가적으로 포함하는 것이 바람직하다. The reaction group used in the process for producing the polymer according to the invention is continuous It is preferred that it is a stirred reactor (CSTR) or a continuous flow reactor (PFR). The reactor is preferably arranged in two or more in series or in parallel. In addition, the production method preferably further includes a separator for continuously separating the solvent and the unfung monomer from the reaction mixture.
본 발명에 따른 중합체의 제조 방법이 연속 용액 중합 공정으로 수행되는 경우, 이는 촉매공정, 중합공정, 용매 분리 공정, 희수 공정 단계로 구성될 수 있으며, 보다 구체적으로는 아래와 같다.  When the method of preparing the polymer according to the present invention is carried out in a continuous solution polymerization process, it may be composed of a catalytic process, a polymerization process, a solvent separation process, a rare water process step, more specifically as follows.
a) 촉매공정  a) catalytic process
본 발명에 따른 촉매 조성물은 올레핀 중합 공정에 적합한 할로겐으로 치환되거나 치환되지 않은 탄소수 5 내지 12의 지방족 또는 방향족 용매 등에 용해하거나 희석하여 주입 가능하다. 예를 들어, 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 같은 지방족 탄화수소 용매, 를루엔, 자일렌, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등이 사용될 수 있다. 여기에 사용되는 용매는 소량의 알킬알루미늄 등으로 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 과량으로 사용하여 실시하는 것도 가능하다.  The catalyst composition according to the present invention may be injected by dissolving or diluting an aliphatic or aromatic solvent having 5 to 12 carbon atoms or unsubstituted with a halogen suitable for an olefin polymerization process. For example, aliphatic hydrocarbon solvents such as pentane, nucleic acid, heptane, nonane, decane, and isomers thereof, aromatic hydrocarbon solvents such as toluene, xylene, benzene, and hydrocarbon solvents substituted with chlorine atoms such as dichloromethane, chlorobenzene And the like can be used. The solvent used here is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating with a small amount of alkylaluminum or the like, and can also be carried out using an excessive amount of a promoter.
b) 중합공정  b) polymerization process
중합 공정은 반응기 상에서 상기 화학식 2의 유기 금속 화합물 및 조촉매를 포함하는 촉매 조성물과 1종 이상의 올레핀 단량체의 도입에 의하여 진행된다. 용액상 및 슬러리상의 중합의 경우, 상기 반응기 상에 용매가 주입된다. 용액 중합의 경우 반웅기 내부에 용매, 촉매 조성물 및 단량체의 흔합액이 존재한다.  The polymerization process is carried out by introduction of at least one olefin monomer and a catalyst composition comprising the organometallic compound of Formula 2 and a promoter in a reactor. In the case of solution phase and slurry phase polymerization, a solvent is injected onto the reactor. In the case of solution polymerization, a mixture of a solvent, a catalyst composition, and a monomer is present in the reaction vessel.
상기 반웅에 적합한 단량체 대 용매의 몰비율은 반웅 전 원료와 반웅 후 생성되는 고분자를 용해하기에 적합한 비율이 되어야 한다. 구체적으로는: 단량체 대 용매의 몰비율은 10: 1 내지 1 : 10,000, 바람직하게는 5:1 내지 1 :100, 더욱 바람직하게는 ι: 1 내지 1 :20 이다. 상기 용매의 몰비율이 10: 1 미만인 경우에는 용매의 양이 너무 적어 유체의 점도가 증가하여 생성된 중합체의 이송에 문제가 있고, 상기 용매의 몰비율이 1 : 10,000을 초과하는 경우에는 용매의 양이 필요이상으로 많아 용매의 정제 재순환에 따른 설비증가 및 에너지 비용 증가 등의 .문제가 있다. The molar ratio of monomer to solvent suitable for the reaction should be a ratio suitable for dissolving the raw material before the reaction and the polymer produced after the reaction. Specifically: a 20: a molar ratio of monomer to solvent is 10: 1 to 1: 10,000, preferably from 5: 1 to 1: 100, more preferably ι: 1 to 1. When the molar ratio of the solvent is less than 10: 1, the amount of the solvent is too small to increase the viscosity of the fluid, which causes a problem in transferring the produced polymer. When the molar ratio of the solvent exceeds 1: 10,000, Since the amount is more than necessary, the equipment increase according to the recirculation of solvent purification and There are problems such as increased energy costs.
상기 용매는 히터 또는 넁동기를 사용하여 -40 내지 150°C의 온도로 반웅기로 투입되는 것이 바람직하며, 이에 의하여 단량체 및 촉매 조성물과 함께 중합반응이 시작된다. 상기 용매의 온도가 -4( C미만인 경우에는 반웅량에 따라 다소간의 차이가 있겠지만, 보편적으로 용매의 온도가 너무 낮아 반웅온도도 동반 하강하여 온도 제어가 어려운 문제가 있으며, 150°C를 초과하는 경우에는 용매의 온도가 너무 높아 반웅에 따른 반웅열의 제열이 어려운 문제가 있다. The solvent is preferably introduced into the reactor at a temperature of -40 to 150 ° C using a heater or a pulsator, whereby the polymerization reaction is started with the monomer and the catalyst composition. If the temperature of the solvent is -4 (less than C, there will be some differences depending on the reaction amount, but in general, the temperature of the solvent is too low, so the reaction temperature is also difficult to drop, and the temperature control is difficult, exceeding 150 ° C. In this case, the solvent temperature is too high, there is a problem that the heat removal of the reaction semi-heat due to reaction.
고용량 펌프가 압력을 50 bar 이상으로 상승시켜 공급물들 (용매, 단량체, 촉매 조성물 등)을 공급함으로써, 상기 반웅기 배열, 압력 강하 장치 및 분리기 사이에 추가적인 펌핑 (pumping)없이 상기 공급물들의 흔합물을 통과시킬 수 있다.  A high capacity pump raises the pressure above 50 bar to supply the feeds (solvent, monomer, catalyst composition, etc.), thereby providing a mixture of the feeds without additional pumping between the reaction vessel, pressure drop device and separator. Can be passed.
본 발명에 적합한 반웅기의 내부 온도, 즉 중합 반웅 온도는 -15 내지 300 °C, 바람직하게는 30 내지 200°C, 더욱 바람직하게는 70 내지 200°C이다. 상기 내부 온도가 -151 미만인 경우에는 반응속도가 낮아 생산성이 낮아지는 문제가 있으며, 300°C를 초과하는 경우에는 부반웅에 따른 불순물의 생성 및 증합체의 탄화 등의 변색의 문제가 발생할 수 있다. The internal temperature of the reaction vessel suitable for the present invention, ie the polymerization reaction temperature, is -15 to 300 ° C, preferably 30 to 200 ° C, more preferably 70 to 200 ° C. If the internal temperature is less than -151, there is a problem that the productivity is low because the reaction rate is low, and if it exceeds 300 ° C, problems such as discoloration, such as generation of impurities and carbonization of the polymer due to side reactions may occur. .
본 발명에서 적합한 반응기의 내부 압력은 1 내지 300 bar, 바람직하게는 10 내지 200 bar, 더욱 바람직하게는 30 내지 100 bar 정도이다. 상기 내부 압력이 lbar 미만인 경우에는 반웅속도가 낮아 생산성이 낮아지고: 사용 용매의 기화 등에 따른 문제가 있으며, 300 bar를 초과하는 경우에는 고압에 따른 장치 비용 등의 설비비 증가 문제가 있다. The internal pressure of the reactor suitable in the present invention is 1 to 300 bar, preferably 10 to 200 bar, more preferably about 30 to 100 bar. If the internal pressure is less than lbar, the reaction rate is low to lower productivity : there is a problem due to evaporation of the solvent used, and if it exceeds 300 bar, there is a problem of an increase in equipment costs such as device cost according to high pressure.
반웅기 내에서 생성되는 중합체는 용매 속에서 20wt%의 미만의 농도로 유지되며 짧은 체류 시간이 지난 후 용매 제거를 위해 첫번째 용매 분리 공정으로 이송되는 것이 바람직하다. 생성된 중합체의 반웅기 내 체류시간은 1분 내지 10시간, 바람직하게는 3분 내지 1시간, 더욱 바람직하게는 5분 내지 30분이다. 상기 체류 시간이 3분 미만인 경우에는 짧은 체류 시간에 따른 생산성 저하 및 촉매의 손실 등 및 이쎄 따른 제조비용 증가 등의 문제가 있으며, 1시간을 초과하는 경우에는 촉매의 적정 활성기간 이상의 반응에 따라, 반웅기가 커지고 이에 따라 설비비 증가 문제가 있다. The polymer produced in the reaction vessel is maintained at a concentration of less than 20 wt% in the solvent and is preferably transferred to the first solvent separation process for solvent removal after a short residence time. The residence time in the reaction mixture of the resulting polymer is 1 minute to 10 hours, preferably 3 minutes to 1 hour, more preferably 5 minutes to 30 minutes. If the residence time is less than 3 minutes, there is a problem such as productivity loss and catalyst loss due to a short residence time, and increase in the manufacturing cost accordingly, if more than 1 hour, depending on the reaction over the appropriate active period of the catalyst, The reaction period increases and equipment costs increase accordingly there is a problem.
C) 용매 분리 공정  C) Solvent Separation Process
반웅기를 빠져나온 중합체와 함께 존재하고 있는 용매의 제거를 위하여 용액 온도와 압력을 변화시킴으로써 용매 분리 공정이 수행된다. 예컨대 반응기로부터 이송된 고분자 용액은 히터를 통하여 약 200 에서 230 °C까지 승온시킨 후 압력 강하 장치를 거치면서 압력이 낮춰지며 첫번째 분리기에서 미반웅 원료 및 용매를 기화시킨다. The solvent separation process is performed by varying the solution temperature and pressure to remove the solvent present with the polymer exiting the reactor. For example, the polymer solution transferred from the reactor is heated up to about 200 to 230 ° C through a heater and then the pressure is lowered through a pressure drop device to vaporize the raw materials and solvent in the first separator.
이 때 분리기 내의 압력은 1 내지 30 bar, 바람직하게는 1 내지 10 bar, 더욱 바람직하게는 3 내지 8 bar가 적합하다. 분리기 내의 온도는 150 내지 250 °C , 바람직하게는 170 내지 230 °C , 더욱 바람직하게는 180 내지 230 °C 가 적합하다. At this time, the pressure in the separator is suitably 1 to 30 bar, preferably 1 to 10 bar, more preferably 3 to 8 bar. The temperature in the separator is suitably 150 to 250 ° C., preferably 170 to 230 ° C., more preferably 180 to 230 ° C.
상기 분리기 내의 압력이 1 bar 미만인 경우에는 중합물의 함량이 증가하여 이송에 문제가 있으며, 30 bar를 초과하는 경우에는 중합과정에 사용된 용매의 분리가 어려운 문제가 있다. 그리고, 상기 분리기 내의 온도가 150°C 미만인 경우에는 공중합체 및 이의 흔합물의 점도가 증가하여 이송에 문제가 있으며 250°C 미만인 경우에는 고온에 따른 변성으로 중합물의 탄화 등에 따른 변색의 문제가 있다. If the pressure in the separator is less than 1 bar, the content of the polymer is increased, there is a problem in the transfer, if it exceeds 30 bar there is a problem that the separation of the solvent used in the polymerization process is difficult. When the temperature in the separator is less than 150 ° C., the viscosity of the copolymer and its mixture is increased, and there is a problem in transporting. When the temperature is less than 250 ° C., there is a problem of discoloration due to carbonization of the polymer due to high temperature.
분리기에서 기화된 용매는 오버헤드 시스템에서 웅축된 반웅기로 재순환시킬 수 있다. 첫 단계 용매 분리 공정을 거치게 되면 65%까지 농축된 고분자 용액을 얻을 수 있으며, 이는 히터를 통하여 이송 펌프에 의해 두번째 분리기로 이송되며, 두번째 분리기에서 잔류 용매에 대한 분리 공정이 이루어진다. 히터를 통과하는 동안 고온에 의한 고분자의 변형을 방지하기 위하여 열안정제를 투입하고 아울러 고분자 용액속에 존재하는 활성화물의 잔류 활성에 의한 고분자의 반웅을 억제하기 위하여 반웅 금지제를 열안정제와 함께 히터로 주입한다ᅳ 두번째 분리기로 주입된 고분자 용액중의 잔류 용매는 최종적으로 진공 펌프에 의하여 완전히 제거되고, 넁각수와 절단기를 통과하면 입자화된 고분자를 얻을 수 있다. 두번째 분리 공정에서 기체화된 용매 및 기타 미반응 단량체들은 회수 공정으로 보내어 정제 후 재사용할 수 있다.  The solvent vaporized in the separator can be recycled to the reaction counter condensed in the overhead system. The first step of solvent separation yields a polymer solution concentrated up to 65%, which is transferred to the second separator by a transfer pump through a heater, where the separation of residual solvent occurs. In order to prevent the deformation of the polymer due to high temperature while passing through the heater, a heat stabilizer is added and a reaction inhibitor is injected into the heater together with the heat stabilizer to suppress reaction of the polymer due to the residual activity of the activator present in the polymer solution. The residual solvent in the polymer solution injected into the second separator is finally completely removed by a vacuum pump, and the granular polymer can be obtained by passing through the angle and the cutter. The solvent and other unreacted monomers vaporized in the second separation process can be sent to a recovery process for purification and reuse.
d) 회수공정 중합 공정에 원료와 함께 투입된 유기 용매는 1차 용매 분리 공정에서 미반웅 원료와 함께 중합공정으로 재순환 사용될 수 있다. 그러나,d) recovery process The organic solvent added with the raw material to the polymerization process may be recycled to the polymerization process together with the non-banung raw material in the primary solvent separation process. But,
2차 용매 분리 공정에서 회수된 용매는 촉매 활성을 정지시키기 위한 반웅 금지제 흔입으로 인한 오염 및 진공 펌프에서의 스팀 공급으로 용매속에 촉매독으로 작용하는 수분이 다량 함유되어 회수공정에서 정제 후 재사용되는 것이 바람직하다. The solvent recovered in the secondary solvent separation process contains a large amount of water that acts as a catalyst poison in the solvent due to contamination by the reaction of an anti-inhibitor to stop the catalytic activity and steam supply from the vacuum pump, and is reused after purification in the recovery process. It is preferable.
어하 하기 실시예에 의거하여 본 발명을 보다 구체적으로 설명한다. 단, 이들 실시예는 본 발명을 예시하기 위한 것일 뿐, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.  The present invention will be explained in more detail based on the following examples. However, these Examples are only for illustrating the present invention, and the scope of the present invention is not limited thereby.
<실시예 > <Example>
용어 "밤새 "는 대략 12 내지 16시간을 의미하며 "실온" 또는 "상은" 은 20 내지 25 °C의 온도를 일컫는다. 모든 금속 화합물의 합성 및 실험의 준비는 건조상자 기술을 사용하거나 건조상태 유지 유리기구를 사용하여 건조 아르곤 (Ar) 분위기 하에서 수행되었다. 사용되는 모든 용매는 anhydrous 등급이며 사용 전에 건조되었다. The term "overnight" means approximately 12 to 16 hours and "room temperature" or "phase" refers to a temperature of 20 to 25 ° C. Synthesis of all metal compounds and preparation of experiments were carried out under dry argon (Ar) atmosphere using dry box technology or using dry glass apparatus. All solvents used are anhydrous grade and dried before use.
<리간드 화합물 및 메탈로센 화합물의 제조 실시예 > <Production Example of Ligand Compound and Metallocene Compound>
제조 실시예 1 Preparation Example 1
Figure imgf000025_0001
Figure imgf000025_0001
(1) 리간드 화합물의 제조:  (1) Preparation of Ligand Compound:
2-Benzyl-9H-fluorene (BnFlu) 2.56g, 10mm이을 Hexane 100ml, MTBE 4.17ml(3.5eq)에 녹여 n-BuLi 2.5M hexane solution 4.6ml, 11.5mm이을 dryice/acetone bath에서 적가하였다. 그리고, 상온에서 밤새 반웅 후, 노란색의 슬러리를 얻었다. 글러브 박스에서 Si-tether bridge 화합물 2.98g, 11mm이을 준비하여 Hexane 100ml solution을 만들고, 여기에 BnFlu-Li solution을 dryice/acetone bath 에서 dropwise feeding 하였다. 상온에서 밤새 교반함에 따라 보라색으로 변했음을 확인하였다 (BnFlu-Si-tether). 2.56 g of 2-Benzyl-9H-fluorene (BnFlu) and 10 mm were dissolved in 100 ml of Hexane and 4.17 ml (3.5eq) of MTBE, and 4.6 ml and 11.5 mm of n-BuLi 2.5M hexane solution were added dropwise in a dryice / acetone bath. And, after reacting all night at room temperature, yellow A slurry was obtained. 2.98g, 11mm of Si-tether bridge compound was prepared in the glove box to make Hexane 100ml solution, and BnFlu-Li solution was dropwise fed in a dryice / acetone bath. It was confirmed that the solution turned purple by stirring at room temperature overnight (BnFlu-Si-tether).
Indenoindole (Inln) 2.33g, 10mm이을 THF 50ml에 녹여 n-BuLi 2.5M hexane solution 4.6ml, 11.5mmol 을 dryice/acetone bath 에서 적가하였다. 그리고, 상온에서 밤새 반응 후, 붉은 색의 슬러리를 얻었다. 준비된 BnFlu-Si-tether slurry에 Inln- Li . solution을 dryice/acetone bath에서 dropwise feeding하였다. 상온에서 밤새 교반함에 따라 진한 갈색으로 변했음을 확인하였다. 그리고, Water/ether work-up후 sticky oil 6.5g을 얻었다 (수율: 94.5%). 2.33 g, 10 mm of indenoindole (Inln) was dissolved in 50 ml of THF, and 4.6 ml of n-BuLi 2.5M hexane solution and 11.5 mmol were added dropwise in a dryice / acetone bath. Then, after reaction overnight at room temperature, a red slurry was obtained. Inln-Li in the prepared BnFlu-Si-tether slurry . The solution was dropwise fed in a dryice / acetone bath. It was confirmed that the solution turned dark brown by stirring at room temperature overnight. Then, 6.5 g of sticky oil was obtained after water / ether work-up (yield: 94.5%).
1H NMR (500 MHz, CDC13): -0.35 - -0.13 (3H, m), 0.23 - 1.57 (19H, m), 2.35 - 2.45 (3H, m), 3.21 - 3.27 (2H, m), 3.92 - 4.01 (2H, m), 4.03 - 4.11 (5H, m), 7.05 - 7.83 (19H, m) 1 H NMR (500 MHz, CDC1 3 ): -0.35--0.13 (3H, m), 0.23-1.57 (19H, m), 2.35-2.45 (3H, m), 3.21-3.27 (2H, m), 3.92- 4.01 (2H, m), 4.03-4.11 (5H, m), 7.05-7.83 (19H, m)
(2) 메탈로센 화합물의 제조:  (2) Preparation of Metallocene Compounds:
상기 (1)에서 합성한 리간드 화합물 4.82 g (7 mmol)을 toluene 100 mL에 녹이고, MTBE 3.3ml, 4.0eq.를 추가로 주입한 용액에 2.5 M n-BuLi hexane solution 6.2 mL를 dry ice/acetone bath에서 적가하고, 상온에서 밤새 교반하여 불그스름한 슬러리를 얻었다. 글러브 박스에서 ZrCl4(THF)2를 2.64g, 7mmol 준비하여 를루엔 100 mL 용액을 만들고, 여기에 ligand-Li 용액을 dry ice/acetone bath에서 dropwise feeding하였다. 그리고, 상온에서 밤새 교반함에 따라 보라색으로 변했음을 확인하였다. Toluene을 80% 정도 진공 건조한 후 hexane으로 재결정하고, 슬러리를 필터하여 여과된 짙은 보라색의 메탈로센 화합물 3.62g을 얻었다 (수율 : 61%). 4.82 g (7 mmol) of the ligand compound synthesized in the above (1) was dissolved in 100 mL of toluene, and 6.2 mL of 2.5 M n-BuLi hexane solution was added to a solution in which 3.3 mL of MTBE and 4.0 eq. It was added dropwise in the bath, stirred at room temperature overnight to obtain a reddish slurry. 2.64 g, 7 mmol of ZrCl 4 (THF) 2 was prepared in a glove box to prepare a 100 mL solution of toluene, and the ligand-Li solution was dropwise fed in a dry ice / acetone bath. Then, it was confirmed that the solution turned purple by stirring at room temperature overnight. Toluene was vacuum dried about 80%, recrystallized with hexane, and the slurry was filtered to obtain 3.62 g of a filtered dark purple metallocene compound (yield: 61%).
1H NMR (500 MHz, CDC13): 0.80 - 2.28 (22H, m), 2.43 (3H, d), 3.28一 3.32 (2H, m), 3.78 - 3.84 (3H, d), 3.90 (3H, s), 6.62ᅳ 7.90 (19H, m) 제조실시예 2 1 H NMR (500 MHz, CDC1 3 ): 0.80-2.28 (22H, m), 2.43 (3H, d), 3.28 1 3.32 (2H, m), 3.78-3.84 (3H, d), 3.90 (3H, s) 6.62 ° 7.90 (19H, m) Preparation Example 2
Figure imgf000027_0001
Figure imgf000027_0001
(1) 리간드 화합물의 제조:  (1) Preparation of Ligand Compound:
2-(cyclo exylmethyl)-9H-fluorene (CyhexmeFlu) 1.84g, 7mm이을 Hexane 100ml, MTBE 2.92ml(3.5eq)에 녹여 n-BuLi 2.5 M hexane solution 3.2ml, 8. lmm이을 dryice/acetone bath에서 적가하였다. 그리고, 상온에서 밤새 반웅 후, 오렌지색의 슬러리를 얻었다. 글러브 박스에서 Si-tether bridge 화합물 2.09g, 7.7mn l을 비하여 Hexane 100ml solution을 만들고, 여기에 CyhexmeFlu-Li solution을 dryice/acetone bath 에서 dropwise feeding 하였다. 상은에서' 밤새 교반함에 따라 보라색으로 변했음을 확인하였다 (CyhexmeFlu-Si-tether). 2- (cyclo exylmethyl) -9H-fluorene (CyhexmeFlu) 1.84 g, 7 mm, dissolved in 100 ml of Hexane, 2.92 ml (3.5 eq) of MTBE, n-BuLi 2.5 M hexane solution 3.2 ml, 8. lmm, dropwise in a dryice / acetone bath It was. Then, after reaction at room temperature overnight, an orange slurry was obtained. Hexane 100ml solution was prepared by comparing Si-tether bridge compound 2.09g and 7.7mn l in the glove box, and CyhexmeFlu-Li solution was dropwise fed in a dryice / acetone bath. In phase, it was confirmed that the change to purple, as by stirring overnight (CyhexmeFlu-Si-tether).
Indenoindole (Mn) 1.63g, 7mm이을 THF 50ml에 녹여 n-BuLi 2.5M hexane solution 3.2ml, 8.1mmol 을 dryice/acetone bath 에서 적가하였다. 그리고, 상온에서 밤새 반웅 후, 버건디색의 슬러리를 얻었다. 준비된 CyhexmeFlu-Si- tether slurry에 Inln-Li solution을 dryice/acetone bath에서 dropwise feeding하였다. 상온에서 밤새 교반함에 따라 진한 갈색으로 변했음을 확인하였다. 그리고, Water/ether work-up후 sticky oil 4.86g을 얻었다 (수율: 100%).  1.63 g of Indenoindole (Mn), 7 mm or less, was dissolved in 50 ml of THF, and 3.2 ml of n-BuLi 2.5M hexane solution and 8.1 mmol were added dropwise in a dryice / acetone bath. And, after reacting overnight at room temperature, a burgundy slurry was obtained. Inln-Li solution was dropwise fed to a prepared CyhexmeFlu-Si-etherether slurry in a dryice / acetone bath. It was confirmed that the solution turned dark brown by stirring at room temperature overnight. Then, 4.86 g of sticky oil was obtained after water / ether work-up (yield: 100%).
Ή NMR (500 MHz, CDC13): -0.36 - -0.23 (3H, m), 0.15 - 1.70 (29H, m), 1.98 - 2.06 (1H, m), 2.39 - 2.42 (3H, m), 2.55 - 2.60 (2H, m), 3.19 - 3.23 (2H, m), 3.96 (1H, d), 4.08 - 4.09 (3H, m), 4.11 - 4.13 (1H, m), 7.05 - 7.83 (14H, m) NMR (500 MHz, CDC1 3 ): -0.36--0.23 (3H, m), 0.15-1.70 (29H, m), 1.98-2.06 (1H, m), 2.39-2.42 (3H, m), 2.55- 2.60 (2H, m), 3.19-3.23 (2H, m), 3.96 (1H, d), 4.08-4.09 (3H, m), 4.11-4.13 (1H, m), 7.05-7.83 (14H, m)
(2) 메탈로센 화합물의 제조:  (2) Preparation of Metallocene Compounds:
상기 (1)에서 합성한 리간드 화합물 4.76 g (7 mmol)을 toluene 100 mL에 녹이고, MTBE 3.3ml, 4.0eq.를 추가로 주입한 용액에 2.5 M n-BuLi hexane solution 6.2 mL를 dry ice/acetone bath에서 적가하고, 상온에서 밤새 교반하여 불그스름한 슬러리를 얻었다. 글러브 박스에서 ZrCl4(THF)2를 2.64g, 7mmol 준비하여 를루엔 100 mL 용액을 만들고, 여기에 ligand-Li 용액을 4ry ice/acetone bath에서 dropwise feeding하였다. 그리고, 상은에서 밤새 교반함에 따라 진한 보라색으로 변했음을 확인하였다. Toluene을 80% 정도 진공 건조한 후 hexane으로 재결정하고, 슬러리를 필터하여 여과된 질은 보라색의 메탈로센 화합물 2.89g을 얻었다 (수율 : 49.1%). 4.76 g (7 mmol) of the ligand compound synthesized in the above (1) was dissolved in 100 mL of toluene, and 6.2 mL of 2.5 M n-BuLi hexane solution was added to a solution injected with 3.3 mL of MTBE and 4.0 eq., Dry ice / acetone. It was added dropwise in the bath, stirred at room temperature overnight to obtain a reddish slurry. Prepare 2.64g, 7mmol of ZrCl 4 (THF) 2 in the glove box to make a 100 mL solution of toluene, and add the ligand-Li solution to 4ry Dropwise feeding was performed in an ice / acetone bath. And it was confirmed that the phase turned dark purple by stirring overnight. The toluene was vacuum dried about 80% and then recrystallized with hexane. The slurry was filtered to obtain 2.89 g of a purple metallocene compound (yield: 49.1%).
1H NMR (500 MHz, CDC13): 0.84 - 2.20 (32H, m), 2.58 (3H, d), 3.37 - 3.41 (2H, m), 3.92 (3H, s), 6.63 - 7.94 (14H, m) 1 H NMR (500 MHz, CDC1 3 ): 0.84-2.20 (32H, m), 2.58 (3H, d), 3.37-3.41 (2H, m), 3.92 (3H, s), 6.63-7.94 (14H, m)
Figure imgf000028_0001
Figure imgf000028_0001
(1) 리간드 화합물의 제조:  (1) Preparation of Ligand Compound:
2-(2-Fluorobenzyl)-PH-fluorene (2-FBnFlu) 2.74g, 10mm이을 Hexane 100ml, MTBE 4.17ml(3.5eq)에 녹여 n-BuLi 2.5M hexane solution 4.6ml, 11.5mm이을 dryice/acetone bath에서 적가하였다. 그리고, 상은에서 밤새 반웅 후, 버건디색의 슬러리를 얻었다. 글러브 박스에서 Si-tether bridge 화합물 2.98g, l hnm이을 준비하여 Hexane 100ml solution을 만들고, 여기에 2-FBnFlu-Li solution을 dryice/acetone bath 에서 dropwise feeding 하였다 . 상은에서 밤새 교반함에 따라 보라색으로 변했음을 확인하였다 (2-FBnFlu-Si-tether).  2- (2-Fluorobenzyl) -PH-fluorene (2-FBnFlu) 2.74g, 10mm in Hexane 100ml, MTBE 4.17ml (3.5eq) dissolved in n-BuLi 2.5M hexane solution 4.6ml, 11.5mm in dryice / acetone bath Dropped at Then, after reacting all night in Sangeun, a burgundy slurry was obtained. 2.98g, l hnm of Si-tether bridge compound was prepared in the glove box to make Hexane 100ml solution, and 2-FBnFlu-Li solution was dropwise fed in a dryice / acetone bath. It was confirmed that the phase turned purple by stirring overnight at (2-FBnFlu-Si-tether).
Indenoindole (Inln) 2.33g, 10mm이을 THF 50ml에 녹여 n-BuLi 2.5M hexane solution 4.6ml, 11.5mmol 을 dryice/acetone bath 에서 적가하였다. 그리고, 상은에서 밤새 반웅 후, 버건디색의 슬러리를 얻었다. 준비된 2-FBnFlu-Si- tether slurry에 Inln-Li solution을 dryice/acetone bath에서 dropwise feeding하였다 . 상은에서 밤새 교반함에 따라 보라색으로 변했음을 확인하였다. 그리고, Water/ether work-up후 sticky oil 6.75g을 얻었다 (수율: 95.6%)·  2.33 g, 10 mm of indenoindole (Inln) was dissolved in 50 ml of THF, and 4.6 ml of n-BuLi 2.5M hexane solution and 11.5 mmol were added dropwise in a dryice / acetone bath. And then after an overnight reaction at Sangeun, I got a burgundy slurry. Inln-Li solution was dropwise fed to a prepared 2-FBnFlu-Si-etherether slurry in a dryice / acetone bath. It was confirmed that the phase turned purple with stirring overnight. Then, 6.75 g of sticky oil was obtained after water / ether work-up (yield: 95.6%)
Ή NMR (500 MHz, CDC13): -0.39 - -0.19 (3H, m), 0.16 - 1.54 (19H, m), 2.35 - 2.44 (3H, m), 3.20 - 3.25 (2H, m), 3.93 - 4.01 (3H, m), 4.02 - 4.08 (4H, m), 6.96 - 7.81 (18H, m) NMR (500 MHz, CDC1 3 ): -0.39--0.19 (3H, m), 0.16-1.54 (19H, m), 2.35 -2.44 (3H, m), 3.20-3.25 (2H, m), 3.93-4.01 (3H, m), 4.02-4.08 (4H, m), 6.96-7.81 (18H, m)
(2) 메탈로센 화합물의 제조: (2) Preparation of Metallocene Compounds:
상기 (1)에서 합성한 리간드 화합물 6.75 g (9.6 mm0l)을 toluene 100 mL에 녹이고, MTBE 4.6ml, 4.0eq.를 추가로 주입한 용액에 2.5 M hexane solution 8.4 ml, 2.2eq.를 dry ice/acetone bath에서 적가하고, 상온에서 밤새 교반하여 블그스름한 슬러리를 얻었다. 글러브 박스에서 ZrCl4(THF)2를 3.61g, 9.6mmol 준비하여 를루엔 100 mL 용액을 만들고, 여기에 ligand-Li 용액을 dry ice/acetone bath에서 dropwise feeding하였다. 그리고, 상온에서 밤새 교반함에 따라 진한 붉은색으로 변했음을 확인하였다. Toluene을 80% 정도 진공 건조한 후 hexane으로 재결정하고, 슬러리를 필터하여 여과된 적갈색 (reddish brown)의 메탈로센 화합물 5.45g을 얻었다 (수율: 64.3%). 6.75 g (9.6 mm0l) of the ligand compound synthesized in (1) above was dissolved in 100 mL of toluene, and 8.4 ml of 2.5 M hexane solution, 2.2 eq. It was added dropwise in an acetone bath and stirred at room temperature overnight to obtain a bluish slurry. 3.61 g of ZrCl 4 (THF) 2 was prepared in a glove box to prepare 9.6 mmol of toluene, and a ligand-Li solution was dropwise fed in a dry ice / acetone bath. And, it was confirmed that the solution turned dark red by stirring at room temperature overnight. The toluene was vacuum dried about 80%, recrystallized with hexane, and the slurry was filtered to obtain 5.45 g of a filtered reddish brown metallocene compound (yield: 64.3%).
1H NMR (500 MHz, CDCl3): 1.17 - 1.20 (12H, m), 1.47 - 2.35 (10H, m), 2.45 - 2.57 (3H, m), 3.35 - 3.40 (2H, m), 3.74 - 4.00 (5H, m), 6.82 - 7.93 (18H, m) 비교예 1 1 H NMR (500 MHz, CDCl 3 ): 1.17-1.20 (12H, m), 1.47-2.35 (10H, m), 2.45-2.57 (3H, m), 3.35-3.40 (2H, m), 3.74-4.00 ( 5H, m), 6.82-7.93 (18H, m) Comparative Example 1
Figure imgf000029_0001
Figure imgf000029_0001
(1) 리간드 화합물의 제조: (1) Preparation of Ligand Compound:
2,7-Bis(l , 1 -dimethylethyl)-9H-fluorene (tBuFlu) 1.95g, 7mm 을 Hexane 100ml, MTBE 2.92ml(3.5eq.)에 녹여 n-BuLi 2.5M hexane solution 3.2ml, 8.1mm이을 dryice/acetone bath에서 적가하였다. 그리고, 상온에서 밤새 반웅 후: 황토색의 슬러리를 얻었다. 글러브 박스에서 Si-tether bridge 화합물 2.09g, 7.7mn l을 준비하여 Hexane 100ml solution을 만들고, 여기에 tBuFlu-Li solution을 dryice/acetone bath 에서 dropwise feeding 하였다. 상은에서 밤새 교반함에 따라 보라색으로 변했음을 확인하였다 (tBuFlu-Si-tether). 2,7-Bis (l, 1 -dimethylethyl) -9H-fluorene (tBuFlu) 1.95g, 7mm dissolved in 100ml Hexane, 2.92ml (3.5eq.) MTBE, n-BuLi 2.5M hexane solution 3.2ml, 8.1mm Add dropwise in dryice / acetone bath. And after reaction overnight at room temperature : an ocher slurry was obtained. 2.09g Si-tether bridge compound in glove box, Hexane 100ml solution was prepared by preparing 7.7mn l, and tBuFlu-Li solution was dropwise fed in a dryice / acetone bath. It was confirmed that the phase turned purple by stirring overnight at (tBuFlu-Si-tether).
Indenoindole (Inln) 1.63g, 7mm 을 THF 50ml에 녹여 n-BuLi 2.5M hexane solution 3.2ml, 8.1mmol 을 dryice/acetone bath 에서 적가하였다. 그리고, 상온에서 밤새 반웅 후, 버건디색의 슬러리를 얻었다. 준비된 tBuFlu-Si-tether slurry에 Inln-Li solution을 dryice/acetone bath에서 dropwise feeding하였다ᅳ 상은에서 밤새 교반함에 따라 보라색으로 변했음을 확인하였다. 그리고, Water/ether work-up후 sticky oil 4.86g을 얻었다 (수율: 100%).  1.63 g of Indenoindole (Inln) was dissolved in 50 ml of THF, and 3.2 ml of n-BuLi 2.5M hexane solution and 8.1 mmol were added dropwise in a dryice / acetone bath. Then, after reacting overnight at room temperature, a burgundy slurry was obtained. Inln-Li solution was dropwise fed to a prepared tBuFlu-Si-tether slurry in a dryice / acetone bath. The phase was turned purple by stirring overnight. Then, 4.86 g of sticky oil was obtained after water / ether work-up (yield: 100%).
Ή NMR (500 MHz, d6-benzene): -0.30 - -0.18 (3 H, d), 0.40 (2H, m), 0.65 - NMR (500 MHz, d6-benzene): -0.30--0.18 (3H, d), 0.40 (2H, m), 0.65-
1.45 (8H, m), 1.12 (9H, d), 1.29 - 1.31 (18H, d), 2.36 - 2.40 (3H, d), 3.17 (2H, m), 3.41 - 3.43 (3H, d), 4.17 - 4.21 (1H, d), 4.34 - 4.38 (1H, d), 6.90 - 7.80 (13H, m) 1.45 (8H, m), 1.12 (9H, d), 1.29-1.31 (18H, d), 2.36-2.40 (3H, d), 3.17 (2H, m), 3.41-3.43 (3H, d), 4.17- 4.21 (1H, d), 4.34-4.38 (1H, d), 6.90-7.80 (13H, m)
(2) 메탈로센 화합물의 제조: (2) Preparation of Metallocene Compounds:
상기 (1)에서 합성한 리간드 화합물 4.97g (7 mmol)을 toluene 100 mL에 녹이고, MTBE 3.3ml, 4.0eq.를 추가로 주입한 용액에 2.5 M n-BuLi hexane solution 6.2 mL를 dry ice/acetone bath에서 적가하고, 상온에서 밤새 교반하여 불그스름한 슬러리를 얻었다. 글러브 박스에서 ZrCl4(THF)2를 2.64g, 7mmol 준비하여 를루엔 100 mL 용액을 만들고, 여기에 ligand-Li 용액을 dry ice/acetone bath에서 dropwise feeding하였다. 그리고, 상온에서 밤새 교반함에 따라 진한 보라색으로 변했음을 확인하였다. Toluene을 80% 정도 진공 건조한 후 hexane으로 재결정하고, 슬러리를 필터하여 여과된 질은 보라색의 메탈로센 화합물 5.22g을 얻었다 (수율 : 85.7%). 4.97 g (7 mmol) of the ligand compound synthesized in (1) was dissolved in 100 mL of toluene, and 6.2 mL of 2.5 M n-BuLi hexane solution was added to a solution injected with 3.3 mL of MTBE and 4.0 eq. Of dry ice / acetone. It was added dropwise in the bath, stirred at room temperature overnight to obtain a reddish slurry. 2.64 g, 7 mmol of ZrCl 4 (THF) 2 was prepared in a glove box to prepare a 100 mL solution of toluene, and the ligand-Li solution was dropwise fed in a dry ice / acetone bath. And, it was confirmed that the solution turned dark purple by stirring overnight at room temperature. The toluene was vacuum dried about 80% and then recrystallized with hexane. The slurry was filtered to obtain 5.22 g of a purple metallocene compound (yield: 85.7%).
1H NMR (500 MHz, CDC13): 0.96 - 1.22 (18H, d), 1.19 (9H, d), 1.71 (3H, d), 1.50 - 1.70 (4H, m), 1.79 (2H, m), 1.98 - 2.19 (4H, m), 2.58 (3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 - 7.88 (13H, m) 제조 비교예 2 1 H NMR (500 MHz, CDC1 3 ): 0.96-1.22 (18H, d), 1.19 (9H, d), 1.71 (3H, d), 1.50-1.70 (4H, m), 1.79 (2H, m), 1.98 2.19 (4H, m), 2.58 (3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66-7.88 (13H, m) Preparation Comparative Example 2
Figure imgf000031_0001
Figure imgf000031_0001
(1) 리간드 화합물의 제조:  (1) Preparation of Ligand Compound:
fluorene 2g을 5ml MTBE, hexane 100ml에 녹여 제조한 2.5M n-BuLi hexane solution 5.5ml를 dry ice/acetone bath에서 적가하여 상은에서 밤새 교반하였다. 그리고, (6-(tert-butoxy)hexyl)dichloro(methyl)silane 3.6g을 핵산 (hexane) 50ml에 녹이고, dry ice/acetone bath 하에서 fluorene-Li 슬러리를 30분 동안 transfer하여 상은에서 밤새 교반하였다. 이와 동시에 5,8-dimethyl- 5,10-dihydroindeno[ 1 ,2-b]indole (12 mmol, 2.8g) 또한 THF 60ml 어 1 녹여 제조한 2.5M n-BuLi hexane solution 5.5ml을 dry ice/acetone bath 에서 적가하여 상온에서 밤새 교반하였다.  5.5 ml of 2.5M n-BuLi hexane solution, prepared by dissolving 2 g of fluorene in 5 ml MTBE and 100 ml of hexane, was added dropwise in a dry ice / acetone bath and stirred overnight in silver. Then, 3.6 g of (6- (tert-butoxy) hexyl) dichloro (methyl) silane was dissolved in 50 ml of nucleic acid (hexane), and the fluorene-Li slurry was transferred for 30 minutes under a dry ice / acetone bath, followed by stirring overnight at phase silver. At the same time, 5.5 ml of 2.5M n-BuLi hexane solution prepared by dissolving 5,8-dimethyl-5,10-dihydroindeno [1, 2-b] indole (12 mmol, 2.8 g) in THF 60 ml and dry ice / acetone It was added dropwise in the bath and stirred overnight at room temperature.
Fluorene과 (6-(tert-butoxy)hexyl)dichloro(methyl)silane 과의 반웅 용액을 NMR 샘플링하여 반웅 완료를 확인한 후, 5,8-dimethyl-5,10-dihydroindeno[l,2- b]indole-Li solution을 dry ice/acetone bath하에서 transfer하였다. 상은에서 밤새 교반하고, 반웅 후 ether/water로 추출 (extraction)하여 유기층의 잔류수분을 MgS04 로 제거하여 리간드 화합물 (Mw 597.90, 12mmol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 1H-NMR에서 확인하였다. After NMR sampling the reaction solution of fluorene and (6- (tert-butoxy) hexyl) dichloro (methyl) silane to confirm reaction completion, 5,8-dimethyl-5,10-dihydroindeno [l, 2-b] indole Li solution was transferred under dry ice / acetone bath. The phase was stirred overnight, and the reaction was followed by extraction with ether / water to remove residual moisture of the organic layer with MgS0 4 to obtain a ligand compound (Mw 597.90, 12 mmol), and two isomers were generated in 1H-NMR. Confirmed.
1H NMR (500 MHz, d6-benzene): -0.30 - -0.18 (3H, d), 0.40 (2H, m), 0.65 - 1.45 (8H, m), 1.12 (9H, d), 2.36 - 2.40 (3H, d), 3.17 (2H, m), 3.41 - 3.43 (3H, d), 4.17 - 4.21 (1H, d), 4.34 - 4.38 (1H, d), 6.90 - 7.80 (15H, m)  1 H NMR (500 MHz, d6-benzene): -0.30--0.18 (3H, d), 0.40 (2H, m), 0.65-1.45 (8H, m), 1.12 (9H, d), 2.36-2.40 (3H , d), 3.17 (2H, m), 3.41-3.43 (3H, d), 4.17-4.21 (1H, d), 4.34-4.38 (1H, d), 6.90-7.80 (15H, m)
(2) 메탈로센 화합물의 제조:  (2) Preparation of Metallocene Compounds:
상기 (1)에서 합성한 리간드 화합물 7.2g (12 mmol)을 diethylether 50 mL에 녹여 제조한 2.5M n-BuLi hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하고, 상은에서 밤새 교반하여 갈색 (brown color)의 sticky oil을 얻었다. 이를 를루엔에 녹여 슬러리를 제조하였다. 그리고, ZrCl4(THF)2에 를루엔 50 mL을 넣어 ZrCl4(THF)2 를루엔 슬러리를 준비하고, ZrCl4(THF)2 를루엔 슬러리 50mL를 dry ice/acetone bath에서 transfer하였다. 그리고, 상온에서 밤새 교반함에 따라 보라색으로 변했음을 확인하였다. 반웅 후, 반웅 용액을 필터하여 LiCl을 제거하고, 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonication 하였다. 슬러리를 필터하여 여과된 고체 (filtered solid)인 짙은 보라색 (dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92mmol, yield 66mol%)을 얻었으며, 이성질체 (isomer) 두 개가 생성되었음을 1H-NMR에서 확인하였다. 7.2 g (12 mmol) of the ligand compound synthesized in (1) was added dropwise to 11.5 mL of 2.5M n-BuLi hexane solution prepared in 50 mL of diethylether in a dry ice / acetone bath, and the mixture was stirred overnight at brown. color sticky oil Got it. This was dissolved in toluene to prepare a slurry. And, in a ZrCl 4 (THF) 2 put in a 50 mL toluene was transfer to a ZrCl 4 (THF) 2 a prepared toluene slurry, and ZrCl 4 (THF) 2 in 50mL of toluene slurry dry ice / acetone bath. And, it was confirmed that the solution turned purple by stirring overnight at room temperature. After reaction, the reaction solution was filtered to remove LiCl, the toluene of the filtrate was removed by vacuum drying, and the nucleic acid was added and sonicated for 1 hour. The slurry was filtered to give 6 g (Mw 758.02, 7.92 mmol, yield 66 mol%) of a dark violet metallocene compound as a filtered solid, resulting in the formation of two isomers. Confirmed by NMR.
1H NMR (500 MHz, CDC13): 1.19 (9H, d), 1.71 (3H, d), 1.50 - 1.70 (4H, m),1 H NMR (500 MHz, CDC1 3 ): 1.19 (9H, d), 1.71 (3H, d), 1.50-1.70 (4H, m),
1.79 (2H, m), 1.98 - 2.19 (4H, m), 2.58 (3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 - 7.88 (15H, m) 제조실시예 4: 담지 촉매의 제조 1.79 (2H, m), 1.98-2.19 (4H, m), 2.58 (3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66-7.88 (15H, m) Preparation Example 4: Preparation of Supported Catalysts
실리카 (Grace Davison사 제조 SYLOPOL 948)를 400 °C의 은도에서 12 시간 동안 진공을 가한 상태에서 탈수하여 실리카 담체를 준비하였다. Silica (SYLOPOL 948, manufactured by Grace Davison) was dehydrated under vacuum at 400 ° C. for 12 hours to prepare a silica carrier.
실온의 유리반웅기에 를루엔 용액 100 mL를 넣고 상기에서 준비된 실리카 담체 10 g을 투입한 후, 반웅기 온도를 40°C로 을리면서 교반하였다. 실리카를 층분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액을 60.6 mL을 투입하고 80 °C로 온도를 올린 후 200 rpm으로 16시간 교반하였다. 이후 온도를 다시 40°C로 낮춘 후 충분한 양의 를루엔으로 세척하여 반응하지 않은 알루미늄화합물을 제거하였다. 다시 100 mL의 를루엔을 채워넣고 상기 제조 실시예 1 에서 제조한 메탈로센 화합물 으5 mm이을 투입하여 두 시간 동안 교반시켰다. 반웅이 끝난 후 교반을 멈추고 를루엔층을 분리하여 제거한 후 40°C 에서 감압하여 남아 있는 를루엔을 제거하여 담지 촉매를 제조하였다. 제조실시예 5: 담지 촉매의 제조 100 mL of a toluene solution was added to a glass reaction chamber at room temperature, 10 g of the silica carrier prepared above was added thereto, and the reaction mixture was stirred while stirring at 40 ° C. After the silica was dispersed well, 60.6 mL of a 10 wt% methylaluminoxane (MAO) / luene solution was added thereto, the temperature was raised to 80 ° C., and the mixture was stirred at 200 rpm for 16 hours. After lowering the temperature again to 40 ° C and washed with a sufficient amount of toluene to remove the unreacted aluminum compound. Again 100 mL of toluene was charged and 5 mm of the metallocene compound prepared in Preparation Example 1 was added thereto, followed by stirring for 2 hours. After the reaction was completed, the stirring was stopped, the toluene layer was separated and removed, and then the reduced pressure was removed at 40 ° C. to remove the remaining toluene to prepare a supported catalyst. Preparation Example 5 Preparation of Supported Catalyst
상기 제조 실시예 2에서 제조한 메탈로센 화합물 ().5 mmd을 사용한 것을 제외하고는 상기 제조 실시예 4와 동일한 방법으로 담지 촉매를 제조하였다. 제조 실시예 6: 담지 촉매의 제조 The supported catalyst was prepared in the same manner as in Preparation Example 4, except that the metallocene compound prepared in Preparation Example 2 (5. 5 mmd) was used. Prepared. Preparation Example 6 Preparation of Supported Catalyst
상기 제조 실시예 3에서 제조한 메탈로센 화합물 0.5 mmd을 사용한 것을 제외하고는 상기 제조 실시예 4와 동일한 방법으로 담지 촉매를 제조하였다. 제조 비교예 3: 담지 촉매의 제조  The supported catalyst was prepared in the same manner as in Preparation Example 4, except that 0.5 mmd of the metallocene compound prepared in Preparation Example 3 was used. Preparation Comparative Example 3: Preparation of Supported Catalyst
상기 제조 비교예 1에서 제조한 메탈로센 화합물 0.5 mm이을 사용한 것을 제외하고는 상기 제조 실시예 4와 동일한 방법으로 담지 촉매를 제조하였다. 제조 비교예 4: 담지 촉매의 제조  The supported catalyst was prepared in the same manner as in Preparation Example 4, except that 0.5 mm of the metallocene compound prepared in Preparation Comparative Example 1 was used. Preparation Comparative Example 4: Preparation of Supported Catalyst
상기 제조 비교예 2에서 제조한 메탈로센 화합물 0.5 mm이을 사용한 것을 제외하고는 상기 제조 실시예 4와 동일한 방법으로 담지 촉매를 제조하였다.  The supported catalyst was prepared in the same manner as in Preparation Example 4, except that 0.5 mm of the metallocene compound prepared in Preparation Comparative Example 2 was used.
<에틸렌 -1-핵센 공중합실시예 > <Ethylene-1-Nexene Copolymerization Example>
실시예 1: 용액 중합  Example 1: Solution Polymerization
100 mL 용량의 Andrew bottle을 준비하여 impeller part와 조립한 후 glove box 내에서 내부를 아르곤으로 치환하였다. Andrew bottle 의 내부에 소량의 TMA가 처방되어 있는 70 mL의 를루엔을 넣고 10 mL의 MAO (10 wt% in toluene) 용액을 가하였다. 상기 제조 실시예 1의 메탈로센 화합물 촉매를 를루엔에 용해시킨 1 mM의 촉매 /를루엔 용액 5 mL (촉매 5 μπιοΐ)을 Andrew bottle에 주입하였다. Andrew bottle 을 90°C로 가열된 oil bath에 담근 채 mechanical stirrer에 bottle의 상부를 고정시킨 후 반응액이 90°C에 도달할 때까지 5분간 교반하였다. 공단량체인 1-핵센 (1-hexen) 5 mL를 주입하고, Bottle 내부를 에틸렌 가스로 3회 퍼지 (purge)한 후, 에틸렌 밸브 (valve)를 열어 천천히 가압하였다. 소비된 에틸렌만큼 지속적으로 에틸렌이 공급되어 압력이 유지되도록 하면서 mechanical stirrer를 가동시켜 500 rpm에서 30분간 반웅시켰다. 반웅 종료 후 상온까지 온도를 내리고 에틸렌 밸브를 잠그고 교반을 중지시킨 후 반응기 내의 압력을 천천히 배기 (vent)시켰다. 반응물을 400 mL의 에탄올 /HC1 수용액 흔합액에 부어 넣고 1 시간 정도 교반한 후, 필터하여 얻어진 고분자를 60 °C의 진공 오븐에서 20시간 동안 건조시켰다. 얻어진 고분자의 무게를 측정하여 이로부터 촉매의 활성을 산출하고, 10 mg의 샘플을 취해 GPC 분석에 사용하였다. 실시예 2: 용액 중합 A 100 mL Andrew bottle was prepared, assembled with an impeller part, and replaced with argon in a glove box. 70 mL of toluene containing a small amount of TMA was added into the Andrew bottle, and 10 mL of MAO (10 wt% in toluene) solution was added thereto. The metallocene compound catalyst of Preparation Example 1, 5 mL (5 μπιοΐ of catalyst) of 1 mM catalyst / luene solution dissolved in toluene was injected into an Andrew bottle. The Andrew bottle was immersed in an oil bath heated to 90 ° C and the top of the bottle was fixed to the mechanical stirrer and stirred for 5 minutes until the reaction solution reached 90 ° C. 5 mL of comonomer 1-hexen was injected, and the inside of the bottle was purged three times with ethylene gas, and then the ethylene valve was opened and slowly pressurized. The mechanical stirrer is operated for 30 minutes at 500 rpm while maintaining the pressure by continuously supplying ethylene as much as the consumed ethylene. I responded. After the reaction was completed, the temperature was lowered to room temperature, the ethylene valve was closed, the stirring was stopped, and the pressure in the reactor was slowly vented. The reaction was poured into 400 mL of ethanol / HC1 aqueous solution mixture, stirred for about 1 hour, and the polymer obtained by filtration was dried in a vacuum oven at 60 ° C for 20 hours. The obtained polymer was weighed to calculate the activity of the catalyst from which the 10 mg sample was taken and used for GPC analysis. Example 2: Solution Polymerization
제조 실시예 2의 메탈로센 화합물 5 μη )1을 사용한 것을 제외하고는 상기 실시예 1와 동일한 방법으로 올레핀 공중합을 실시하였다. 실시예 3: 용액 중합  The olefin copolymerization was carried out in the same manner as in Example 1 except that the metallocene compound 5 μηt) 1 of Preparation Example 2 was used. Example 3: Solution Polymerization
제조 실시예 3의 메탈로센 화합물 5 μηιοΐ을 사용한 것을 제외하고는 상기 실시예 1와 동일한 방법으로 올레핀 공증합을 실시하였다. 실시예 4:담지 촉매 증합  Copolymerization of olefins was carried out in the same manner as in Example 1, except that 5 μηιοΐ of the metallocene compound of Preparation Example 3 was used. Example 4 Supported Catalyst Consolidation
제조 실시예 4에서 제조한 담지 촉매 30 mg을 드라이박스에서 정량하여 50 mL 의 유리병에 각각 담은 후 고무 격막으로 밀봉하여 드라이 박스에서 꺼내어 주입할 촉매를 준비하였다. 중합은 기계식 교반기가 장착된 온도조절이 가능하고 고압에서 이용되는 2L 금속합금 반웅기에서 수행하였다.  30 mg of the supported catalyst prepared in Preparation Example 4 was quantified in a dry box, and each was placed in a 50 mL glass bottle, sealed with a rubber diaphragm, and taken out of the dry box to prepare a catalyst to be injected. The polymerization was carried out in a 2 L metal alloy reactor, which was equipped with a mechanical stirrer and used at high pressure.
이 반응기에 1.0 mmol 트리에틸알루미늄 (triethylaluminum)이 들어 있는 핵산 1.2 L를 주입하고, 상기 준비한 담지 촉매를 반웅기에 공기 접촉 없이 투입한 후, 80°C에서 기체 에틸렌 단량체를 40 bar의 압력으로 계속적으로 가하면서 1 시간 동안 중합하였다. 중합의 종결은 먼저 교반을 멈춘 후 에틸렌을 배기시켜 제거함으로써 완료시켰다. 이로부터 얻어진 중합체는 중합 용매를 여과시켜 대부분을 제거한 후 80 °C 진공 오븐에서 12 시간 동안 건조시켰다. 실시예 5:담지 촉매 중합 제조 실시예 5의 메탈로센 화합물 촉매를 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 에틸렌 -1-핵센 공중합을 실시하고 얻어진 고분자를 분석하였다. 실시예 6:담지 촉매 중합 1.2 L of nucleic acid containing 1.0 mmol triethylaluminum was introduced into the reactor, the supported catalyst was introduced without reaction into the reactor, and gas ethylene monomer was continuously heated at a pressure of 40 bar at 80 ° C. The polymerization was carried out for 1 hour while adding. Termination of the polymerization was completed by first stopping stirring and then evacuating and removing ethylene. The polymer obtained therefrom was filtered to remove most of the polymerization solvent and then dried in an 80 ° C. vacuum oven for 12 hours. Example 5: Supported Catalytic Polymerization Except that the metallocene compound catalyst of Preparation Example 5 was used, ethylene-1-nuxene copolymerization was performed in the same manner as in Example 4, and the obtained polymer was analyzed. Example 6: Supported Catalytic Polymerization
제조 실시예 6의 메탈로센 화합물 촉매를 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 에틸렌 -1-핵센 공중합을 실시하고 얻어진 고분자를 분석하였다. 비교예 1: 용액 중합  Except that the metallocene compound catalyst of Preparation Example 6 was used, ethylene-1-nuxene copolymerization was performed in the same manner as in Example 4, and the obtained polymer was analyzed. Comparative Example 1: Solution Polymerization
제조 비교예 1의 메탈로센 화합물 5 μηι이을 사용한 것을 제외하고는 상기 실시예 1와 동일한 방법으로 올레핀 공중합을 실시하였다. 비교예 2: 용액 중합  The olefin copolymerization was carried out in the same manner as in Example 1, except that 5 μηι of the metallocene compound of Preparation Comparative Example 1 was used. Comparative Example 2: Solution Polymerization
제조 비교예 2의 메탈로센 화합물 5 μηι이을 사용한 것을 제외하고는 상기 실시예 1와 동일한 방법으로 올레핀 공중합을 실시하였다. 비교예 3:담지 촉매 중합  The olefin copolymerization was carried out in the same manner as in Example 1, except that 5 μηι of the metallocene compound of Preparation Comparative Example 2 was used. Comparative Example 3: Supported Catalyst Polymerization
제조 비교예 1의 메탈로센 화합물 5 μπιοΐ 을 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 올레핀 공중합을 실시하였다. 비교예 4:담지 촉매 중합  The olefin copolymerization was carried out in the same manner as in Example 4, except that 5 μπιοΐ of the metallocene compound of Preparation Comparative Example 1 was used. Comparative Example 4: Supported Catalyst Polymerization
제조 비교예 2의 메탈로센 화합물 5 μπιοΐ 을 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 올레핀 공중합을 실시하였다.  The olefin copolymerization was carried out in the same manner as in Example 4, except that 5 μπιοΐ of the metallocene compound of Preparation Comparative Example 2 was used.
<실험예 > Experimental Example
(1) 상기 실시예 1 내지 6 및 비교예 1 내지 4의 촉매 활성은 단위 시간 (h)을 기준으로 사용된 촉매 질량당 생성된 중합체의 무게의 비 및 촉매에 들어있는 메탈로센화합물 함량당 생성된 중합체의 무게의 비로 계산하였다. (2) 그리고, 상기 실시예 1 내지 6 및 비교예 1 내지 4의 중합체의 중량평균 분자량 및 분자량 분포를 고은 GPC 장치를 이용하여 측정하고 그 결과를 하기 표 1에 나타내었다. (1) The catalytic activity of Examples 1 to 6 and Comparative Examples 1 to 4 is determined by the ratio of the weight of the polymer produced per mass of catalyst used per unit time (h) and the content of metallocene compound in the catalyst. Calculated as the ratio of the weight of the resulting polymer. (2) And, the weight average molecular weight and molecular weight distribution of the polymers of Examples 1 to 6 and Comparative Examples 1 to 4 were measured by using a solid silver GPC apparatus, and the results are shown in Table 1 below.
(2) 상기 실시예 1 내지 6 및 비교예 1 내지 4에서 제조된 에틸렌 -1- 핵센 공중합체의 1-핵센의 함량을 1H NMR를 이용하여 측정하고 그 결과를 하기 표 1에 나타내었다.  (2) The content of 1-nuxene of the ethylene-1-nuxene copolymers prepared in Examples 1 to 6 and Comparative Examples 1 to 4 was measured using 1 H NMR, and the results are shown in Table 1 below.
【표 1】 Table 1
Figure imgf000036_0001
상기 표 1에 나타난 바와 같이, 상기 제조예의 메탈로센 화합물 또는 이를 포함하는 촉매 조성물은 공단량체를 이용하는 공중합에 있어서 높은 활성을 나타내면서도, 공단량체 삽입능을 향상시킬 수 있어, 공중합체의 1- 핵센의 함량이 높으면서도, 높은 분자량을 갖는 폴리올레핀계 공중합체를 제조할 수 있다.
Figure imgf000036_0001
As shown in Table 1, the metallocene compound of the Preparation Example or the catalyst composition comprising the same shows high activity in copolymerization using a comonomer, and can improve the comonomer insertion ability. It is possible to prepare a polyolefin copolymer having a high molecular weight while having a high content of nucleene.

Claims

【특허청구범위】 【청구항 1】 하기 화학식 1로 표시되는 리간드 화합물: 【Patent Claims】 【Claim 1】 A ligand compound represented by the following formula (1):
[ 1] [ One]
Figure imgf000037_0001
Figure imgf000037_0001
상기 화학식 1에서, In Formula 1,
Ri 내지 R16 은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 4 내지 20의 시클로알킬알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 5 내지 20의 해테로아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이고, 상기 내지 R16 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고, 단, 상기 내지 R16가 모두 수소인 경우는 제외하며; Ri to R 16 are the same or different from each other, and are each independently hydrogen, halogen, an alkyl group with 1 to 20 carbon atoms, an alkenyl group with 2 to 20 carbon atoms, a cycloalkyl group with 3 to 20 carbon atoms, a cycloalkylalkyl group with 4 to 20 carbon atoms, An alkoxy group with 1 to 20 carbon atoms, an aryl group with 6 to 20 carbon atoms, a heteroaryl group with 5 to 20 carbon atoms, an alkylaryl group with 7 to 20 carbon atoms, or an arylalkyl group with 7 to 20 carbon atoms, among the above to R 16 Two or more adjacent ones may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring, except for the case where all of the above to R 16 are hydrogen;
L은 직접결합 또는 탄소수 1 내지 10의 알킬렌기이고; L is a direct bond or an alkylene group having 1 to 10 carbon atoms;
R은 치환 또는 치환되지 않은 페닐기, 나프틸기, 탄소수 3 내지 20의 시클로 알킬기, 또는 탄소수 1 내지 20의 알콕시기이고; Ql 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이다. R is a substituted or unsubstituted phenyl group, a naphthyl group, a cycloalkyl group with 3 to 20 carbon atoms, or an alkoxy group with 1 to 20 carbon atoms; Ql and Q 2 are the same or different from each other, and are each independently hydrogen, halogen, an alkyl group with 1 to 20 carbon atoms, an alkenyl group with 2 to 20 carbon atoms, an alkoxy group with 1 to 20 carbon atoms, an aryl group with 6 to 20 carbon atoms, and a carbon number It is an alkylaryl group having 7 to 20 carbon atoms, or an arylalkyl group having 7 to 20 carbon atoms.
【청구항 2】 【Claim 2】
제 1항에 있어서, 상기 화학식 1의 R은 페닐기, 시클로펜틸기, 시클로핵실기, 플루오로페닐기, 또는 펜타플루오로페닐기인 리간드 화합물. The ligand compound according to claim 1, wherein R in Formula 1 is a phenyl group, cyclopentyl group, cyclohexyl group, fluorophenyl group, or pentafluorophenyl group.
【청구항 3】 【Claim 3】
게 1항에 있어서, 상기 화학식 1의 R2 및 R5는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 탄소수 1 내지 5의 알킬기인 리간드 화합물. The ligand compound according to claim 1, wherein R 2 and R 5 of Formula 1 are the same as or different from each other, and are each independently hydrogen or an alkyl group having 1 to 5 carbon atoms.
【청구항 4】 【Claim 4】
제 1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 구조식들 중 하나 리간드 화합물: The method of claim 1, wherein the compound represented by Formula 1 is a ligand compound of one of the following structural formulas:
Figure imgf000038_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000039_0001
【청구항 5】 【Claim 5】
하기 화학식 2로 표시되는 메탈로센 화합물: [화학식 2] Metallocene compound represented by the following Chemical Formula 2: [Formula 2]
Figure imgf000040_0001
Figure imgf000040_0001
상가화학식 2에 있어서, In general formula 2,
M은 4족 전이금속이고; M is a group 4 transition metal;
Xi 및 는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 니트로기, 아미도기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 1 내지 20의 술폰네이트기이고; Xi and are the same or different from each other, and are each independently halogen, an alkyl group with 1 to 20 carbon atoms, an alkenyl group with 2 to 20 carbon atoms, an aryl group with 6 to 20 carbon atoms, a nitro group, an amido group, and an alkylsilyl group with 1 to 20 carbon atoms. group, an alkoxy group having 1 to 20 carbon atoms, or a sulfonate group having 1 to 20 carbon atoms;
Ri 내지 R16 은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 4 내지 20의 시클로알킬알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 5 내지 20의 헤테로아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이고, 상기 내지 R16 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고, 단, 상기 내지 R16가 모두 수소인 경우는 제외하며; Ri to R 16 are the same or different from each other, and are each independently hydrogen, halogen, an alkyl group with 1 to 20 carbon atoms, an alkenyl group with 2 to 20 carbon atoms, a cycloalkyl group with 3 to 20 carbon atoms, a cycloalkylalkyl group with 4 to 20 carbon atoms, an alkoxy group with 1 to 20 carbon atoms, an aryl group with 6 to 20 carbon atoms, a heteroaryl group with 5 to 20 carbon atoms, an alkylaryl group with 7 to 20 carbon atoms, or an arylalkyl group with 7 to 20 carbon atoms, and each of the above to R 16 Two or more adjacent rings may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring, except for the case where all of the above to R 16 are hydrogen;
L은 직접결합 또는 탄소수 1 내지 10의 알킬렌기이고; L is a direct bond or an alkylene group having 1 to 10 carbon atoms;
R은 치환 또는 치환되지 않은 페닐기, 나프틸기, 탄소수 3 내지 20의 시클로 알킬기, 또는 탄소수 1 내지 20의 알콕시기이고; R is a substituted or unsubstituted phenyl group, naphthyl group, and having 3 to 20 carbon atoms. It is a cycloalkyl group or an alkoxy group having 1 to 20 carbon atoms;
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이다. Qi and Q 2 are the same or different from each other, and are each independently hydrogen, halogen, an alkyl group with 1 to 20 carbon atoms, an alkenyl group with 2 to 20 carbon atoms, an alkoxy group with 1 to 20 carbon atoms, an aryl group with 6 to 20 carbon atoms, and a carbon number It is an alkylaryl group having 7 to 20 carbon atoms, or an arylalkyl group having 7 to 20 carbon atoms.
【청구항 6】 【Claim 6】
제 5항에 있어서, 상기 화학식 2의 R은 페닐기, 시클로펜틸기, 시클로핵실기, 풀루오로페닐기, 또는 펜타플루오로페닐기인 메탈로센 화합물. The metallocene compound of claim 5, wherein R in Formula 2 is a phenyl group, cyclopentyl group, cyclohexyl group, fluorophenyl group, or pentafluorophenyl group.
【청구항 7】 【Claim 7】
제 5항에 있어서, 상기 화학식 2의 R2 및 R5 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 탄소수 1 내지 5의 알킬기인 메탈로센 화합물. The metallocene compound according to claim 5, wherein R2 and R5 of Formula 2 are the same as or different from each other, and are each independently hydrogen or an alkyl group having 1 to 5 carbon atoms.
【청구항 8】 【Claim 8】
게 5항에 있어서, 상기 화학식 2로 표시되는 화합물은 하기 구조식들 중 하 메탈로센 화합물: According to item 5, the compound represented by Formula 2 is a metallocene compound of the following structural formulas:
Figure imgf000041_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000042_0001
【청구항 9】 【Claim 9】
제 5항의 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에, 올레핀계 단량체를 중합하는 단계를 포함하는 을레핀계 중합체의 제조 방법. A method for producing an olefin-based polymer comprising the step of polymerizing an olefin-based monomer in the presence of a catalyst composition comprising the metallocene compound of claim 5.
【청구항 10】 【Claim 10】
제 9항에 있어서, 상기 촉매 조성물은 하기 화학식 3으로 표시되는 화합물, 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물로 이루어진 군에서 선택된 1 이상의 조촉매 화합물을 포함하는 을레핀계 중합체의 제조 방법: The method of claim 9, wherein the catalyst composition is an olefin-based polymer comprising at least one cocatalyst compound selected from the group consisting of a compound represented by the following formula (3), a compound represented by the following formula (4), and a compound represented by the following formula (5). Manufacturing method:
[화학식 3] [Formula 3]
-[Al(R17)-0]n- 상기 화학식 3에서, R17는 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고 , η은 2 이상와 정수이며, -[Al(R 17 )-0]n- In Formula 3, R 17 is a halogen radical, a hydrocarbyl radical with 1 to 20 carbon atoms, or a hydrocarbyl radical with 1 to 20 carbon atoms substituted with halogen, and η is 2. Ideal and integer,
[화학식 4] 상기 화학식 4에서, [Formula 4] In Formula 4 above,
D는 알루미늄 또는 보론이고, 1118은 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고, D is aluminum or boron, 11 18 is a hydrocarbyl having 1 to 20 carbon atoms or a hydrocarbyl having 1 to 20 carbon atoms substituted with halogen,
[화학식 5] [Formula 5]
[L-H]+[ZE4]- 또는 [L]+[ZE4]" [LH] + [ZE 4 ]- or [L] + [ZE 4 ] "
상기 화학식 5에서, In Formula 5 above,
L은 중성 또는 양이온성 루이스 염기이고, H는 수소 원자이며, Z는 13족 원소이고, E는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다. L is a neutral or cationic Lewis base, H is a hydrogen atom, Z is a group 13 element, and E may be the same or different from each other, and each independently, one or more hydrogen atoms are halogen, hydrocarbon with 1 to 20 carbon atoms, alkoxy or It is an aryl group with 6 to 20 carbon atoms or an alkyl group with 1 to 20 carbon atoms that is substituted or unsubstituted with phenoxy.
【청구항 11】 【Claim 11】
제 9항에 있어서, 상기 중합은 용액 중합 공정, 슬러리 공정 또는 기상 공정에 의해 수행되는 을레핀계 증합체의 제조 방법. The method of claim 9, wherein the polymerization is performed by a solution polymerization process, a slurry process, or a gas phase process.
【청구항 12】 【Claim 12】
제 9항에 있어서, 상기 을레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1- 펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1-핵사데센 및 1-아이토센으로 이루어진 군에서 선택되는 1 종 이상인 올레핀계 중합체의 제조 방법. The method of claim 9, wherein the olefinic monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undene. A method for producing at least one olefinic polymer selected from the group consisting of methylene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-itocene.
PCT/KR2015/008771 2014-10-06 2015-08-21 Ligand compound, metallocene compound, and method for preparing olefin-based polymer by using same WO2016056744A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/026,119 US9850326B2 (en) 2014-10-06 2015-08-21 Ligand compound, metallocene compound, and method for preparation of olefin-based polymer using the same
JP2016516546A JP6570517B2 (en) 2014-10-06 2015-08-21 Ligand compound, metallocene compound and method for producing olefin polymer using the same
EP15841031.6A EP3064504B1 (en) 2014-10-06 2015-08-21 Ligand compound, metallocene compound, and method for preparing olefin-based polymer by using same
CN201580002342.XA CN105705506B (en) 2014-10-06 2015-08-21 Ligand compound, metallocene compound and the method for preparing the polymer based on alkene using it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0134342 2014-10-06
KR20140134342 2014-10-06
KR1020150117300A KR101784463B1 (en) 2014-10-06 2015-08-20 Rigand compound, metallocene compound, and method for preparation of olefin-based polymer using the same
KR10-2015-0117300 2015-08-20

Publications (1)

Publication Number Publication Date
WO2016056744A1 true WO2016056744A1 (en) 2016-04-14

Family

ID=55653320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008771 WO2016056744A1 (en) 2014-10-06 2015-08-21 Ligand compound, metallocene compound, and method for preparing olefin-based polymer by using same

Country Status (1)

Country Link
WO (1) WO2016056744A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
US20030195306A1 (en) * 2002-04-16 2003-10-16 Tsuie Barbara M. Method for making polyolefins
US20030229188A1 (en) * 2002-05-31 2003-12-11 Sandor Nagy High-temperature solution process for polyolefin manufacture
KR20120087706A (en) * 2011-01-28 2012-08-07 주식회사 엘지화학 Metallocene compounds and olefin based polymer prepared by using the same
KR20150015789A (en) * 2013-08-01 2015-02-11 주식회사 엘지화학 Metallocene compound, catalyst composition comprising the same, and method for preparation of olefin-based polymer using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
US20030195306A1 (en) * 2002-04-16 2003-10-16 Tsuie Barbara M. Method for making polyolefins
US20030229188A1 (en) * 2002-05-31 2003-12-11 Sandor Nagy High-temperature solution process for polyolefin manufacture
KR20120087706A (en) * 2011-01-28 2012-08-07 주식회사 엘지화학 Metallocene compounds and olefin based polymer prepared by using the same
KR20150015789A (en) * 2013-08-01 2015-02-11 주식회사 엘지화학 Metallocene compound, catalyst composition comprising the same, and method for preparation of olefin-based polymer using the same

Similar Documents

Publication Publication Date Title
JP6469832B2 (en) Ligand compound, transition metal compound and catalyst composition containing the same
KR102002983B1 (en) Supported hybrid metallocene catalyst, and method for preparing polyolefin using the same
US11059917B2 (en) Ligand compound, transition metal compound, and catalyst composition including the same
KR101774615B1 (en) The catalysts consist of inden derivatives and cyclopentadiene derivatives, and their applications to olefine polymerization
CN106661072B (en) Metallocene compound, catalyst composition comprising the same, and method for preparing olefin-based polymer using the same
KR101722138B1 (en) Novel ligand compound, metallocene compound, and method for preparation of olefin-based polymer using the same
KR101588813B1 (en) Catalyst composition, method for preparing the same and method for preparing polyolefin using the same
KR101784463B1 (en) Rigand compound, metallocene compound, and method for preparation of olefin-based polymer using the same
KR101237467B1 (en) New post metallocene catalysts and metohd for preparing olefin polymers using the same
KR101617871B1 (en) Dinuclear metallocene compound, catalyst composition and method for preparing polyolefin using the same
KR102236921B1 (en) Catalystic composition comprising transition metal compound and alkylaluminoxane, preparing method for polymer using the same, and polymer prepared thereby
KR101153097B1 (en) Group 4 Transition Metal Complexes Based On New Cyclopentadienone Ligand
WO2016056744A1 (en) Ligand compound, metallocene compound, and method for preparing olefin-based polymer by using same
KR101785705B1 (en) Catalyst composition and method for preparing polyolefin using the same
US11618759B2 (en) Ligand compound, transition metal compound, and catalyst composition including the same
KR101563268B1 (en) Post metallocene organometallic compound and method for preparing the same
KR101725949B1 (en) The post metallocene catalyst based on thiophene
US20210179643A1 (en) Ligand Compound, Transition Metal Compound, and Catalyst Composition Comprising the Transition Metal Compound
KR20150003030A (en) Post metallocene compounds with phenanthroline backbone, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR20140070418A (en) Post metallocene ligand compound, method for preparing the same, organometallic compound and method for preparing the same
KR20150005104A (en) Novel post metallocene compounds with n, n, n, n type tetradentate ligand, catalyst composition comprising the same, and method for preparing olefin polymer using the same
KR20100070068A (en) Metal complex based on new tridentate ligands and metohd for preparing olefin polymers using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016516546

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015841031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015841031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15026119

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE