WO2016143943A1 - Magnetic resonance susceptibility difference compensation filter and method for compensating for magnetic susceptibility difference using same - Google Patents

Magnetic resonance susceptibility difference compensation filter and method for compensating for magnetic susceptibility difference using same Download PDF

Info

Publication number
WO2016143943A1
WO2016143943A1 PCT/KR2015/004323 KR2015004323W WO2016143943A1 WO 2016143943 A1 WO2016143943 A1 WO 2016143943A1 KR 2015004323 W KR2015004323 W KR 2015004323W WO 2016143943 A1 WO2016143943 A1 WO 2016143943A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
silicon
magnetic resonance
silicone
human body
Prior art date
Application number
PCT/KR2015/004323
Other languages
French (fr)
Korean (ko)
Inventor
서대건
이정현
최관우
이호범
Original Assignee
재단법인 아산사회복지재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 아산사회복지재단 filed Critical 재단법인 아산사회복지재단
Publication of WO2016143943A1 publication Critical patent/WO2016143943A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material

Definitions

  • the present invention relates to a magnetic resonance susceptibility difference compensation filter and a method for compensating the susceptibility difference using the same.
  • it is very important to maintain uniformity in the MR image, but the higher the magnetic field intensity, the lower the anatomical density of hydrogen in the human body.
  • a silicon resin component synthesized with a silicon material similar to human tissue density and a weak signal or a silicone pad with a curing agent added to the silicon resin component can be changed in shape.
  • Imaging methods for diagnosing thyroid disease include ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI).
  • CT computed tomography
  • MRI magnetic resonance imaging
  • the thyroid disease including the test method is performed by using a simple ultrasound, but the ultrasound is difficult to distinguish between benign and malignant lesions, the spatial resolution is poor, and lymph node metastasis There is difficulty in diagnosis.
  • Computed tomography scans have better spatial resolution and easier calcification detection than ultrasound scans, but they also have difficulty in determining whether they have metastases due to low contrast and invasive tests using radiation.
  • magnetic resonance imaging has excellent contrast and excellent spatial resolution, so it is possible to obtain useful information to determine staging of thyroid disease and to determine lymph node metastasis. have.
  • Thyroid examination using magnetic resonance imaging includes conventional T1 and T2 weighted image (WI) tests using spin echo (SE) and diffuse emphasis using echo planar imaging (EPI) pulse trains.
  • WI spin echo
  • EPI echo planar imaging
  • DWI diffusion weighted imaging
  • T1 and T2 weighted images provide accurate morphological characteristics such as the shape of discontinuous capsules with low signal intensity around the tumor, irregular signals, and irregular shapes, but do not assess the functional status of the thyroid gland, and differentiate between benign and malignant lesions. There is a limit to.
  • diffusion-enhanced images can be evaluated functionally, and are useful for distinguishing benign from malignant lesions using apparent diffusion coefficient (ADC) images according to differences in diffusion coefficient values.
  • ADC apparent diffusion coefficient
  • Diffusion-weighted images are highly sensitive pulse trains for artifacts, and present various problems such as geometric distortion due to the inhomogeneity of the main magnetic field, loss due to dephase, and low resolution due to T2 * attenuation.
  • the biggest problem is the geometric distortion caused by the nonuniformity of the main magnetic field.
  • the main reason for the nonuniformity of the magnetic field in space is the non-uniformity of the main magnetic field itself and the difference in magnetization, that is, the susceptibility between the image target tissues.
  • the difference in magnetization that is, the susceptibility between the image target tissues.
  • the teeth and bones are in contact with the air, so the warpage of the image is more severe. It is located adjacent to the air, and the larynx and trachea are located around it, so the phase difference of the spindle due to the difference in susceptibility increases further, which causes a lot of strong image distortion.
  • the strength of the main magnetic field and the effect of susceptibility on the magnetic resonance images are linearly proportional.
  • the intensity of the magnetic field increases, the effect by the susceptibility increases, and the signal at the interface between tissues decreases rapidly.
  • high-magnetism equipment which is highly preferred in recent years due to high signal-to-noise ratio, has become a big problem when image of thyroid gland, etc., in which several microstructures are complex, shows distortion of image due to different susceptibility than other parts. .
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to solve the fundamental problem while compensating for a part of a curved human part in contact with air by using a material that does not affect the contrast of magnetic resonance signals.
  • an object thereof is to solve the fundamental problem while compensating for a part of a curved human part in contact with air by using a material that does not affect the contrast of magnetic resonance signals.
  • the magnetic resonance susceptibility difference compensation filter of the present invention includes a silicon pad made of a silicon base of a silicon resin component, and the silicone pad is applied to a human body part, but at least in the external space of the human body. Filled in part to compensate for the difference in susceptibility between human tissue and the outside of the human body.
  • the silicone pad is preferably added to the silicone base of the silicon resin component to prevent the shape change is possible.
  • the silicon pad is capable of compressive deformation or close contact so as not to create a space between the applied human body parts.
  • the magnetic resonance susceptibility difference compensation filter of the present invention by compensating for the bent portion in contact with the air using a silicon pad can reduce the susceptibility difference between the tissue and air without affecting the contrast of the magnetic resonance signal, the thyroid gland Diffusion-enhanced imaging of the human body, such as the image distortion is reduced to obtain a high diagnostic value image can be obtained.
  • the shape of the silicone pad can be freely changed, there is an effect that can be custom made and used in advance to be in close contact with each part of the body of the patient.
  • 1 is a flowchart for solving the problem for the present invention.
  • Figure 2 is an exemplary view of a silicon pad according to the present invention (a) plane (b) front
  • 3 shows an example of application of a silicon pad for thyroid MR imaging
  • FIG. 5 shows an imaging method (a) T2 (b) b0 (c) b800 (d) ADC
  • FIG. 6 is a view showing an example of the shape of the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention.
  • FIG. 7 is a diagram showing an example of using the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention to the forefoot portion
  • FIG. 8 is a diagram showing the use of the silicone pad of the magnetic resonance susceptibility difference compensation filter according to the present invention applied to the knee
  • 9 to 12 are examples of the use of the silicone pad of the magnetic resonance susceptibility difference compensation filter according to the present invention applied to the wrist, elbow, ankle and shoulder
  • FIGS. 13 and 14 are diagrams illustrating a pillow-type silicon pad and a use example thereof when the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention is applied to the neck area;
  • FIG. 1 a study for the present invention is classified into eight motion frames, and the detailed motions of each classified frame are as follows (wherein, corresponding drawings for each detailed motion are described in detail for each frame). Quoted as is).
  • the self-made phantom has a bottom surface that can be filled to form a material in the form of a double cylindrical cylinder in which one side of the inner rectangle of 50 ⁇ 00 mm2 and the outer rectangle of 70 ⁇ 100 mm2 is used as the rotation axis. It has an inner cylinder and an outer cylinder.
  • T2 mapping, T2 * mapping, and T1 mapping images are acquired, and the same image is obtained by filling each study material in an external cylinder.
  • the imaging technique used is spin echo technique for T2 mapped image, fast low angle shot (FLASH) technique for T2 * mapped image, and inversion recovery (IR) fast spin echo (TSE) for T1 mapped image. ) Technique was used.
  • R2 'value post-processed image is generated using Matlab (Ver.7.10, Mathworks, USA) program.
  • the R2 'post-processing image which represents the susceptibility difference due to external influences, is obtained by reversing the values of the generated T2' post-processing image, T2 mapping image, and T2 * mapping image. , , , Create via
  • the R2 post-processed image generated as described above was measured using Image J to measure the signal intensity according to the change of the cross-sectional position of each image at the same location within the preset region of interest of the same size, and to compare and evaluate the difference in susceptibility.
  • the susceptibility between air among the most effective materials that can reduce the difference between susceptibility between tissue and air among the materials that give a weak signal in the range that does not affect the volumetric volume.
  • the present invention proceeds using silicon in the determination that silicon is the best in consideration of processability, ease of use, and reusability in selecting a material having the greatest effect to reduce the difference.
  • the silicon used in the present invention is a silicon resin component synthesized from a silicon raw material that produces a weak signal similar to the human tissue density, and is made of various materials based on silicon so that it can be reused many times through shape change.
  • a curing agent is added to the base, and the main component, silicone base, is a mixture of polydimethylsiloxane, silica and silicone oil in a silicone polymer, and the curing agent is a mixture of methyl vinyl silicone gum and silicone oil. / Cm 3.
  • combined the silicon raw material, methyl vinyl silicone gum, etc. is mixed and used by volume ratio of 3: 1-4: 1.
  • the method of the present invention for improving the susceptibility difference using silicon is located directly below the skin, adjacent to the air, and the larynx and trachea are located in the periphery of the thyroid gland, which causes a lot of warpage.
  • the amount of silicone used was 200 g, and the silicone pad was applied to completely compensate for the curved part of the neck when the silicone pad was applied, so that a part of the external space such as the neck was filled to fill the tissue of the neck and the body of the neck.
  • the curved part between the chest and the jaw was leveled with silicon compensation (FIG. 3).
  • the optimum thickness of silicon was investigated to improve the susceptibility difference.
  • the thickness of the silicon pad is changed by only changing the thickness of 1cm to 5cm in 1cm intervals in a rectangle of 18.5cm length and 7cm width (Fig. 4).
  • Diffusion-weighted images and T2-weighted images were acquired in the same manner as the method of the present invention for improving the susceptibility difference, and then the distortion and error rate change according to the thickness of the diffuse-weighted images based on the T2-weighted images were evaluated.
  • the amount of silicon used was 100 g when the thickness of the pad was 1 cm, 200 g when the thickness was 2 cm, 300 g when the thickness was 3 cm, 400 g when the thickness was 4 cm, and 500 g when the thickness was 5 cm. The same as the method of the present invention for whether or not.
  • Image distortion is based on the left and right lobe areas of the thyroid gland of the T2-weighted image, which are relatively unaffected by magnetic field unevenness, respectively.
  • B 0 b-value 0
  • b 800 b-value 800
  • the left and right lobe areas of the thyroid gland were measured and compared (FIG. 5).
  • the error rate due to distortion of the image is a known distortion calculation formula ( ) And then compared and analyzed.
  • the distortion of the left and right lobes of the thyroid gland with the thickness of the silicone compensator decreased as the thickness of the silicone compensator increased in both the left and right lobes.
  • the R2 'value representing the difference in susceptibility due to external influence is graphite (125.78 ⁇ 17.32), silicon Powder (100.01 ⁇ 42.57), air (29.16 ⁇ 23.99), flour (21.96 ⁇ 19.07), silicone pad (19.77 ⁇ 16.49), saline (18.99 ⁇ 17.85), borax (17.35 ⁇ 15.26), sulfur (17.31 ⁇ 15.26).
  • R2 The smaller value of R2 'means that the difference in susceptibility due to external influences is smaller.
  • the air is regarded as the same condition of thyroid, graphite and silicon powder show larger susceptibility difference than standard.
  • Physiological saline, borax, sulfur, etc. have a smaller susceptibility difference than the reference value, meaning that the use of the above material can reduce the susceptibility difference between tissue and air.
  • the sections were divided into three sections (top (sections 1 to 7), middle (sections 8 to 13), and bottom (sections 14 to 20). As a result, all three sections were graphite, silicon powder, air, flour, and silicon pads. , Physiological saline, borax, and sulfur in the same order as the overall analysis. Duncan's ex post analysis was performed to determine which of the divided R2 'values did not match the air-based R2' values. There was a difference between the three groups in the middle and bottom.
  • the difference in susceptibility between borax, sulfur, and silicon pads is smaller than that of air as a reference material when considering group 1 and group 2 in the upper part, and in the middle, the magnetic field is homogeneous and graphite and silicon powder It can be seen that all materials except the group have no significant difference, and in the lower case, the difference in susceptibility of borax, sulfur, silicon pad, and saline solution is smaller than that of air as a reference material. Therefore, when all three parts are considered, borax, sulfur, and silicon pads are useful because they have a smaller susceptibility difference than air as a reference material. The above results can also be seen in the Bland-Atman plot.
  • T1 values of the most effective substances that can reduce the difference in susceptibility between tissue and air among human equivalents are shown in Table 2.
  • Table 2 The T1 values of the most effective substances that can reduce the difference in susceptibility between tissue and air among human equivalents.
  • the ideal material to which the present invention is directed It was calculated on the Likert 5-point scale (1: very unsuitable, 2: unsuitable, 3: normal, 4: suitable, 5: very suitable) in consideration of the conditions of.
  • the silicon pads were very high in all items, with 37 out of 45 (82.22%), and the silicone pad was selected as the most effective material to reduce the difference in susceptibility between tissue and air. Table 3).
  • the distortion of the left and right lobes of the thyroid gland of the subject before and after the application of the silicon pad was determined after the application of the silicon pad in the left lobe (b0).
  • both the left and right lobes of the thyroid gland were significantly (p ⁇ 0.05), and at least the area coincided with the reference T2-weighted image.
  • One or more significant measurements are included, and the left lobe is not significant (p> 0.05) but the right lobe is significant (p ⁇ 0.05) when the silicone pad is applied at 1 cm thickness. It can be seen that the value of exists in the right lobe. Since the thickness of the silicon pad was more than 2 cm, the left and right lobes were not statistically significant (p> 0.05).
  • Fat saturation is often used as a clinical image to improve tissue contrast and lesion characteristics.
  • the acquisition of uniform fat suppression is often challenged by the complex magnetic environment encountered during imaging of the clinical musculoskeletal, in particular hand and foot imaging.
  • silicone pads are more cost effective than instruments filled with commercial perfluorocarbon liquids or perfluoro-compounds. Therefore, it is an object of another embodiment of the present invention to evaluate the effectiveness of a silicone pad for uniform fat inhibition during a 3T MRI scan of the foot.
  • SNR and CNR were measured at four ROIs with an area of 10 mm 2.
  • ROI 1 and 2 were selected from the toe flank bones and soft tissues with incomplete fat suppression, while ROI 3 and 4 were selected from the relatively basal bones and soft tissues with complete fat suppression.
  • ROIs were as follows: (1) ROI on the first phalanx; (2) the ROI below the first phalanx; (3) ROI on the first metatarsals; And (4) ROI under the first metatarsal phalanx joint.
  • SNR (lesion SI / background SD) ⁇ 100
  • CNR
  • the images obtained from group B improved the heterogeneity of the first phalanx (ROI 1) and the soft tissue below the first phalanx (ROI 2), while ROI 3 and 4 showed an improvement in the image heterogeneity compared to group A. Did not give.
  • CNR has been significantly reduced in ROI 1 and 2 of Group B.
  • CNR meant the degree of heterogeneity between ROIs where fat inhibition was complete and incomplete.
  • ROI 1 and 2 were chosen where fat inhibition was incomplete.
  • ROI 3 and 4 were chosen where fat inhibition was complete.
  • the molecule is the signal strength of the lesion minus the signal strength of the surrounding tissue. The signal intensity of the lesions was smaller as a result of better fat inhibition in group B. As a result, the CNRs were reduced in ROI 1 and 2.
  • silicone pads do not cause chemical reactions with other chemicals. It also does not contain toxic substances. It also does not cause allergic reactions. Therefore, it is not harmful to the human body. Silicone pads cannot be washed or cleaned, but the pads contain antifungal agents. This is proved by Korea Testing & Research Institute.
  • the antimicrobial activity level (R) of the silicone pad was greater than 5 for the following three bacteria; Escherichia coli, Staphylococcus aureus, Salmonella. Antimicrobial activity levels (R) above 2 were considered effective.
  • Silicone pads have the advantage of rapid imaging with high magnetic field MRI scans and are useful for providing more active fat suppression, enabling high quality MRI scans with reduced susceptibility artifacts located near the surface of the foot. Another embodiment of the present invention has shown that the application of silicone pads can be an effective way to improve the homogeneity of fat inhibition in the foot.
  • silicone pads can provide uniform fat inhibition in the 3T MRI of the foot and significantly improve the image both quantitatively and qualitatively.
  • FIG. 6 is a view showing an example of the shape of the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention.
  • the silicon pad 10 of the magnetic resonance susceptibility difference compensation filter according to the present invention can be freely deformed shape, so when applied to the bent portion, such as the neck, is in close contact with the front of the neck It is composed of two types of silicon pads 10a having a ⁇ shape so as to be covered, and two silicon pads 10b having a straight shape so as to be covered in close contact with the back of the neck. That is, the silicon pad 10 is composed of a ⁇ -shaped silicon pad 10a and a straight silicon pad 10b separately applied to the front and back of the neck area.
  • the straight silicone pad 10b may be applied in close contact with the chest because it is in a straight form in addition to the neck.
  • the silicone pad 10b may be freely deformed into a shape that fits the part of the human body, such as a neck area, and may be deformed when the silicon pad 10b is in close contact with the part of the human body. It is preferable to prevent this from occurring.
  • FIG. 7 is a diagram showing an example of using the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention in the forefoot part.
  • the front pad portion of the magnetic resonance susceptibility difference compensation filter according to the present invention is covered with the silicon pad 10.
  • the front of the foot when the front portion of the foot is applied in a form that surrounds the front part of the foot and the silicon pads may affect the compensation of the susceptibility difference, the front of the foot by wrapping and tightening the silicone pad 10 so as not to create a gap between It is desirable to use a band 20 that can be in close contact with the part.
  • FIG. 8 is a diagram showing an example of use when the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention is applied to a knee.
  • the pad 10 of the magnetic resonance susceptibility difference compensation filter according to the present invention when the silicon pad 10 of the magnetic resonance susceptibility difference compensation filter according to the present invention is to be applied to a bent portion such as the back of the knee, the pad 10 is disposed in an empty space behind the knee. It is configured in the form of an oblique inclined plate to fill the (), but the silicone pad 10 is inserted into the pedestal 30 to support the knee while supporting the knee in close contact with the silicone pad 10 behind the knee. It is desirable to be positioned.
  • the silicon pad 10 according to the present invention can be freely changed in shape, it can be used in the form of a protector wrapped in close contact with the wrist, elbow, ankle and shoulder.
  • FIGS. 13 and 14 are diagrams illustrating a pillow-type silicon pad and an example of using the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention.
  • the silicone pad 10 used in various forms is in contact with the skin of the human body for about an hour, and thus may cause unnecessary skin troubles such as allergies. It is preferable to cover the cotton material. The cover can be reused several times by washing, and can also be used for disposable use by hygiene needs.
  • Compensating the curved portion in contact with the air using the silicon pad of the present invention can reduce the susceptibility difference between the tissue and the air without affecting the contrast of the magnetic resonance signal, during the inspection of the diffuse emphasis image of the human body, such as the thyroid gland It can be usefully used as a magnetic resonance susceptibility difference compensation filter that can obtain a high diagnostic value image with reduced distortion.
  • the cover of disposable cotton material that does not cause allergy to the silicon pad that comes into contact with the skin, it can be usefully used as a magnetic resonance susceptibility difference compensation filter that can reduce the burden on patients who need to contact the silicon pad for a long time during the examination. Can be.
  • the shape of the silicon pad can be freely changed, it can be usefully used as a magnetic resonance susceptibility difference compensation filter that can be custom made and used in a shape that closely adheres to each part of the patient's body.

Abstract

The present invention relates to a magnetic resonance susceptibility difference compensation filter and a method for compensating for a magnetic susceptibility difference using the same. When a silicone pad having a silicone base with an added anti-curing agent is applied to a thyroid diffusion-weighted imaging test on a subject of invention, the improvement in the magnetic susceptibility difference and the optimal thickness at the time of the improvement were investigated through the changes in the distortion and error rate. As a result, with respect to the error rates in left and right lobes of the thyroid of the subject of invention before and after the application of the silicone pad, the error rates in both of the left and right lobes were smaller after the application of the silicone pad rather than before the application of the silicone pad, and with respect to the optimal thicknesses of the left and right lobes of the thyroid according to the thickness change of the silicone pad, the one-way analysis of variance results showed that the thickness of the silicone pad was not statistically significant in either of the left or right lobes when 2 cm or greater, and thus it can be seen that the optimal thickness is 2 cm. In conclusion, as shown in the present invention, the compensation of the curve portion of the human body, which is in contact with air, using the silicone pad can reduce the magnetic susceptibility difference between the tissue and the air without affecting the contrast of the magnetic resonance signal, thereby obtaining images having high diagnostic values and reduced image distortion at the time of thyroid diffusion-weighted imaging.

Description

자기공명 자화율 차이 보상필터 및 이를 이용한 자화율 차이 보상방법Magnetic resonance susceptibility difference compensation filter and magnetic susceptibility difference compensation method using the same
본 발명은 자기공명 자화율 차이 보상필터 및 이를 이용한 자화율 차이 보상방법에 관한 것으로서, 상세히는 MR 영상에서 균일도를 유지하는 것이 매우 중요하나, 자장의 세기가 높아질수록 상대적으로 인체에 수소밀도가 낮은 해부학적 부위에서는 영상의 균일도가 낮은 것을 개선하기 위해, 인체조직 밀도와 유사하면서 미약한 신호를 내는 규소원료를 합성한 규소 수지성분 또는 상기 규소 수지성분에 형상변경이 가능하도록 경화방지제를 첨가한 실리콘 패드로 된 자기공명 자화율 차이 보상필터 및 이를 이용한 자화율 차이 보상방법에 관한 것이다.The present invention relates to a magnetic resonance susceptibility difference compensation filter and a method for compensating the susceptibility difference using the same. In detail, it is very important to maintain uniformity in the MR image, but the higher the magnetic field intensity, the lower the anatomical density of hydrogen in the human body. In order to improve the low uniformity of the image at the site, a silicon resin component synthesized with a silicon material similar to human tissue density and a weak signal or a silicone pad with a curing agent added to the silicon resin component can be changed in shape. Magnetic resonance susceptibility difference compensation filter and a susceptibility difference compensation method using the same.
갑상선 암을 포함한 갑상선 질환 등을 진단하는 영상검사방법에는 초음파(ultra sonography) 검사와 전산화 단층촬영(computed tomo graphy, CT) 검사 그리고 자기공명영상(magnetic resonance imaging, MRI) 검사가 있다. Imaging methods for diagnosing thyroid disease, including thyroid cancer, include ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI).
상기 갑상선 질환의 검사방법을 포함한 대부분은 검사방법이 간단한 초음파 검사를 이용하여 검사를 시행하고 있으나, 초음파 검사는 양성과 악성 병변의 구분이 어렵고, 공간해상도가 떨어지며, 림프절의 검사를 통한 전이 여부의 진단에 어려움이 있다. 초음파 검사에 비해 전산화 단층촬영 검사는 공간해상도가 우수하고 석회화(calcification) 검출이 용이하나, 이 역시 낮은 대조도로 인한 전이 여부를 판별하기 어렵다는 점과, 방사선을 이용한 침습적인 검사라는 한계점이 있다. 반면 자기공명영상 검사의 경우 대조도가 우수하고, 공간해상도가 뛰어나 갑상선 질환의 병기(staging) 결정과 림프절(lymph node)의 전이 여부 판단에 유용한 정보를 획득할 수 있어 검사의 중요성이 점차 증가하고 있다.Most of the thyroid disease, including the test method is performed by using a simple ultrasound, but the ultrasound is difficult to distinguish between benign and malignant lesions, the spatial resolution is poor, and lymph node metastasis There is difficulty in diagnosis. Computed tomography scans have better spatial resolution and easier calcification detection than ultrasound scans, but they also have difficulty in determining whether they have metastases due to low contrast and invasive tests using radiation. On the other hand, magnetic resonance imaging has excellent contrast and excellent spatial resolution, so it is possible to obtain useful information to determine staging of thyroid disease and to determine lymph node metastasis. have.
자기공명영상을 이용한 갑상선 검사에는 스핀에코(spin echo, SE)를 이용한 고식적인 T1, T2 강조영상(weighted image, WI) 검사와, 에코평면영상(echo planar imaging, EPI) 펄스 열을 이용한 확산강조영상(diffusion weighted imaging, DWI) 검사가 있다. T1, T2 강조영상은 종양주변의 낮은 신호강도가 있는 불연속적인 캡슐의 모양과 불균일한 신호, 불규칙한 모양 등 정확한 형태학적 특성을 제공하지만 갑상선의 기능적인 상태를 평가하지 못하며, 양성 및 악성 병변의 감별에 한계가 있다. 이에 반해 확산강조영상은 기능적 평가가 가능하며, 확산계수 값의 차이에 따른 겉보기 확산계수(apparent diffusion coefficient, ADC) 영상을 이용하여 양성과 악성 병변을 구별하는데 유용하다. Thyroid examination using magnetic resonance imaging includes conventional T1 and T2 weighted image (WI) tests using spin echo (SE) and diffuse emphasis using echo planar imaging (EPI) pulse trains. There is a diffusion weighted imaging (DWI) test. T1 and T2 weighted images provide accurate morphological characteristics such as the shape of discontinuous capsules with low signal intensity around the tumor, irregular signals, and irregular shapes, but do not assess the functional status of the thyroid gland, and differentiate between benign and malignant lesions. There is a limit to. In contrast, diffusion-enhanced images can be evaluated functionally, and are useful for distinguishing benign from malignant lesions using apparent diffusion coefficient (ADC) images according to differences in diffusion coefficient values.
그러나 확산강조영상은 인공물(artifact)에 대해서는 매우 민감한 펄스 열로 주자기장의 비균일성(inhomogeneity)에 따른 기하학적 왜곡, 탈위상에 따른 손실, T2* 감쇠에 따른 낮은 분해능 등 여러 가지 문제점이 나타난다. 그 중 가장 큰 문제점은 주자기장의 비균일성에 따른 기하학적 왜곡인데, 공간상의 자기장이 비균일한 주요 원인은 주자기장 자체의 비균일성과 영상대상 조직 간에 자성, 즉 자화율 차이를 들 수 있다. 특히, 조직구성이 불균질한 경우 자화율 차이에 의해 영상의 뒤틀림 자화감수성 인공물이 많이 발생하는데, 두경부의 경우 치아와 뼈가 공기와 맞닿은 부분이 많아 영상의 뒤틀림이 더욱 심하며, 갑상선 또한, 피부 바로 아래 위치하여 공기와 인접해 있고, 그 주변으로 후두와 기관이 자리 잡고 있어 자화율 차이로 인한 스핀들의 위상 차가 더욱 증가하여 강한 영상의 뒤틀림이 많이 발생한다. Diffusion-weighted images, however, are highly sensitive pulse trains for artifacts, and present various problems such as geometric distortion due to the inhomogeneity of the main magnetic field, loss due to dephase, and low resolution due to T2 * attenuation. The biggest problem is the geometric distortion caused by the nonuniformity of the main magnetic field. The main reason for the nonuniformity of the magnetic field in space is the non-uniformity of the main magnetic field itself and the difference in magnetization, that is, the susceptibility between the image target tissues. In particular, in the case of heterogeneous tissue composition, there are many susceptible artifacts of warpage due to the difference in susceptibility. In the head and neck area, the teeth and bones are in contact with the air, so the warpage of the image is more severe. It is located adjacent to the air, and the larynx and trachea are located around it, so the phase difference of the spindle due to the difference in susceptibility increases further, which causes a lot of strong image distortion.
영상의 뒤틀림은 형태 및 주변 위치와의 관계를 왜곡(distortion)시켜, 정확한 기능적 평가에 어려움을 주며 그로 인해 진단 및 치료에 지장을 초래한다. 그러나 이러한 문제점에도 불구하고 대부분의 병원에서는 근본적인 개선안 없이 검사를 시행하고 있는 실정이며, 발과 손 등 두께가 얇고 구조가 복잡한 부위의 자화율 차이에 의한 균등한 지방소거에만 국한되어 발명되고 있을 뿐, 갑상선 등과 같이 공기가 포함된 구조물의 뒤틀림 개선에 관한 모델 제시나 그에 관한 발명은 전무한 실정이다.Distortion of the image distorts the relationship between shape and surrounding position, making it difficult to accurately evaluate the function, thereby disrupting diagnosis and treatment. In spite of these problems, most hospitals are conducting tests without fundamental improvement, and they are invented only for equal fat elimination due to the difference in susceptibility between thin and complex parts such as feet and hands. For example, there is no current model or the invention related to the distortion improvement of the structure containing the air.
한편, 자기공명영상에서의 주 자기장의 세기와 자화율 효과는 선형적으로 비례한다. 즉, 자장의 세기가 높아질수록 자화율에 의한 효과도 증가하고, 조직 간 경계면에서의 신호도 급격히 감소한다. 특히 높은 신호대 잡음비로 인해 최근 들어 매우 선호되고 있는 고자장 장비의 경우, 여러 미세한 구조물이 복합적으로 이루어진 갑상선 등의 영상화 시, 자화율 차이에 의한 영상의 왜곡이 다른 부위보다 심하게 나타나 큰 문제점으로 대두되고 있다.On the other hand, the strength of the main magnetic field and the effect of susceptibility on the magnetic resonance images are linearly proportional. In other words, as the intensity of the magnetic field increases, the effect by the susceptibility increases, and the signal at the interface between tissues decreases rapidly. In particular, high-magnetism equipment, which is highly preferred in recent years due to high signal-to-noise ratio, has become a big problem when image of thyroid gland, etc., in which several microstructures are complex, shows distortion of image due to different susceptibility than other parts. .
본 발명은 상기한 바와 같은 제반 문제점을 개선하기 위해 안출된 것으로서, 그 목적은 자기공명신호의 대조도에 영향을 주지 않는 물질을 이용하여, 공기와 맞닿은 굴곡진 인체 부위의 일부분을 보상하면서 근본적인 문제인 조직과 공기 간 자화율 차이를 줄임으로써, 인체의 확산강조영상 검사 시 영상의 뒤틀림 감소를 통해 진단적 가치가 높은 영상을 획득하고자 한 자기공명 자화율 차이 보상필터 및 이를 이용한 자화율 차이 보상방법을 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object thereof is to solve the fundamental problem while compensating for a part of a curved human part in contact with air by using a material that does not affect the contrast of magnetic resonance signals. By reducing the difference in susceptibility between tissue and air, it provides a magnetic resonance susceptibility difference compensation filter and a method of compensating susceptibility difference using the same to obtain a high diagnostic value image by reducing distortion of the image when the human body diffuses the image. .
상기한 바와 같은 목적을 달성하기 위해 본 발명의 자기공명 자화율 차이 보상필터는, 규소 수지성분의 실리콘 베이스로 구성된 실리콘 패드를 포함하며, 상기 실리콘 패드를 인체 부위에 적용하되, 상기 인체 외부 공간의 적어도 일부를 채워 인체 조직과 상기 인체 외부의 자화율 차이를 보상하도록 한 것을 특징으로 하고 있다.In order to achieve the above object, the magnetic resonance susceptibility difference compensation filter of the present invention includes a silicon pad made of a silicon base of a silicon resin component, and the silicone pad is applied to a human body part, but at least in the external space of the human body. Filled in part to compensate for the difference in susceptibility between human tissue and the outside of the human body.
또 상기 실리콘 패드는 규소 수지성분의 실리콘 베이스에 경화방지제가 첨가되어 형상변형이 가능하도록 하는 것이 바람직하다.In addition, the silicone pad is preferably added to the silicone base of the silicon resin component to prevent the shape change is possible.
또 상기 실리콘 패드는 적용된 상기 인체 부위와의 사이 공간이 생기지 않도록 압박변형 또는 밀착 가능하도록 하는 것이 바람직하다.In addition, it is preferable that the silicon pad is capable of compressive deformation or close contact so as not to create a space between the applied human body parts.
또 상기 실리콘 패드의 표면을 덮는 커버를 더 포함하는 것이 바람직하다.In addition, it is preferable to further include a cover covering the surface of the silicon pad.
본 발명의 자기공명 자화율 차이 보상필터에 의하면, 실리콘 패드를 이용하여 공기와 맞닿은 굴곡진 부분을 보상하면 자기공명 신호의 대조도에 영향을 주지 않으면서 조직과 공기 간 자화율 차이를 줄일 수 있어, 갑상선 등의 인체의 확산강조영상 검사 시 영상의 뒤틀림이 감소한 진단적 가치가 높은 영상을 획득할 수 있는 효과가 있다.According to the magnetic resonance susceptibility difference compensation filter of the present invention, by compensating for the bent portion in contact with the air using a silicon pad can reduce the susceptibility difference between the tissue and air without affecting the contrast of the magnetic resonance signal, the thyroid gland Diffusion-enhanced imaging of the human body, such as the image distortion is reduced to obtain a high diagnostic value image can be obtained.
또 알레르기가 발생하지 않는 1회용 면 소재의 커버를 피부와 맞닿는 실리콘 패드에 적용함으로써, 검사 시 장시간 상기 실리콘 패드와 접촉해야 하는 환자의 부담을 줄여줄 수 있는 효과가 있다.In addition, by applying a cover of disposable cotton material that does not cause allergies to the silicone pad in contact with the skin, there is an effect that can reduce the burden on the patient to be in contact with the silicone pad for a long time during the test.
또한 실리콘 패드의 형상을 자유롭게 변경시킬 수 있으므로 환자의 신체 각 부위에 정확하게 밀착되는 형상으로 미리 맞춤 제작하여 사용할 수 있는 효과가 있다.In addition, since the shape of the silicone pad can be freely changed, there is an effect that can be custom made and used in advance to be in close contact with each part of the body of the patient.
도 1은 본 발명을 위한 과제 해결 순서도1 is a flowchart for solving the problem for the present invention.
도 2은 본 발명에 따른 실리콘 패드의 예시도 (a) 평면 (b) 전면Figure 2 is an exemplary view of a silicon pad according to the present invention (a) plane (b) front
도 3는 갑상선 MR 이미징을 위한 실리콘 패드의 적용 예시도3 shows an example of application of a silicon pad for thyroid MR imaging
도 4은 다양한 두께의 실리콘 패드를 보여주는 예시도4 is an exemplary view showing silicon pads of various thicknesses
도 5는 이미징 방법을 보여주는 영상 (a) T2 (b) b0 (c) b800 (d) ADC5 shows an imaging method (a) T2 (b) b0 (c) b800 (d) ADC
도 6는 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드의 형상 예를 도시한 도면6 is a view showing an example of the shape of the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention;
도 7은 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드를 발 앞 부분에 적용하였을 때의 사용 예 도면7 is a diagram showing an example of using the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention to the forefoot portion
도 8은 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드를 무릎에 적용하였을 때의 사용 예 도면8 is a diagram showing the use of the silicone pad of the magnetic resonance susceptibility difference compensation filter according to the present invention applied to the knee
도 9 내지 12은 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드를 손목, 팔꿈치, 발목 및 어깨에 적용하였을 때의 사용 예 도면9 to 12 are examples of the use of the silicone pad of the magnetic resonance susceptibility difference compensation filter according to the present invention applied to the wrist, elbow, ankle and shoulder
도 13 및 도 14는 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드를 목 부위에 적용하였을 때의 베게 형태 실리콘 패드와 그 사용 예 도면 13 and 14 are diagrams illustrating a pillow-type silicon pad and a use example thereof when the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention is applied to the neck area;
이하, 본 발명에 따른 자기공명 자화율 차이 보상필터의 바람직한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다. 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.Hereinafter, a preferred embodiment of a magnetic resonance susceptibility difference compensation filter according to the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, only this embodiment to make the disclosure of the present invention complete and to those skilled in the art to fully understand the scope of the invention It is provided to inform you.
본 발명의 본격적인 설명에 앞서 우선, 본 발명은 물질 선정부터 과학적 실험 및 이에 따른 결과를 도 1의 순서도를 통해 살펴보면 하기와 같다.Prior to the full description of the present invention, first, the present invention will be described with reference to the flow chart of Figure 1 from the selection of materials to scientific experiments and the results thereof.
도 1에 도시된 바와 같이, 본 발명을 위한 연구는 총 8개의 동작 프레임으로 분류되며, 분류된 프레임별 상세 동작을 살펴보면 하기와 같다(여기서, 각 상세 동작 별 대응하는 도면은 프레임별 상세 설명에 포함하여 그대로 인용하였음).As shown in FIG. 1, a study for the present invention is classified into eight motion frames, and the detailed motions of each classified frame are as follows (wherein, corresponding drawings for each detailed motion are described in detail for each frame). Quoted as is).
1.자화율 차이를 측정할 수 있는 팬텀 제작1.Create a phantom that can measure the difference in susceptibility
표 1에 도시된 인자 값을 기반으로 자화율 효과를 극대화하기 위해 자체 제작되어 자화율 차이를 측정 가능한 팬텀 제작을 수행한다.In order to maximize the susceptibility effect based on the parameter values shown in Table 1, a phantom is produced to measure the susceptibility difference.
표 1 -자체 제작된 팬텀의 규격
원기둥 반경 높이 바닥 치수 측면 치수 부피
내부 50㎜ 100㎜ 78.50㎠ 314.0㎠ 785.0㎖
외부 20㎜ 100㎜ 12.56㎠ 125.6㎠ 125.6㎖
Table 1 Self-made phantom specifications
Cylinder Radius Height Floor dimension Side dimensions volume
inside 50 mm 100 mm 78.50㎠ 314.0㎠ 785.0 ml
Out 20 mm 100 mm 12.56㎠ 125.6㎠ 125.6 ml
자체 제작한 팬텀의 구조는, 50×00㎟의 안쪽 직사각형과 70×100㎟의 바깥쪽 직사각형의 한 변을 회전축으로 하여 1회전 시킨 이중 원기둥(circular cylinder) 형태로 물질을 채울 수 있도록 밑면이 막혀있는 내부 원기둥과 외부 원기둥으로 되어있다.The self-made phantom has a bottom surface that can be filled to form a material in the form of a double cylindrical cylinder in which one side of the inner rectangle of 50 × 00 mm2 and the outer rectangle of 70 × 100 mm2 is used as the rotation axis. It has an inner cylinder and an outer cylinder.
2.자화율 차이를 줄일 수 있는 물질 실험2. Experiment with substances that can reduce the susceptibility difference
연구 물질 중 조직과 공기 간 자화율 차이를 줄일 수 있는 가장 효과가 큰 물질의 선정 실험은 갑상선의 상태와 같은 기준영상을 확보하기 위해, 내부의 아가로스 용질을 감싸고 있는 외부 원기둥에 아무것도 채우지 않은 상태로 T2 매핑(mapping)과 T2* 매핑, T1 매핑 영상을 획득한 다음 외부 원기둥에 각각의 연구 물질을 채워 넣어 동일 영상을 획득한다. 사용된 영상기법은 T2 매핑 영상의 경우 스핀에코 기법, T2* 매핑 영상의 경우 FLASH(Fast Low Angle Shot)기법, T1매핑 영상은 반전회복 (Inversion Recovery, IR) 고속 스핀에코 (Turbo Spin Echo, TSE) 기법이 사용되었다.The experiment that selected the most effective material to reduce the difference of susceptibility between tissue and air was conducted without filling the outer cylinder surrounding the agarose solute to obtain the reference image such as the thyroid. T2 mapping, T2 * mapping, and T1 mapping images are acquired, and the same image is obtained by filling each study material in an external cylinder. The imaging technique used is spin echo technique for T2 mapped image, fast low angle shot (FLASH) technique for T2 * mapped image, and inversion recovery (IR) fast spin echo (TSE) for T1 mapped image. ) Technique was used.
획득영상에서는 R2값을 직접 측정할 수 없기 때문에, Matlab(Ver.7.10, Mathworks, USA) 프로그램을 이용하여 R2' 값 후처리 영상을 생성한다.Since R2 value cannot be measured directly in the acquired image, R2 'value post-processed image is generated using Matlab (Ver.7.10, Mathworks, USA) program.
이를 살펴보면, T2' 후처리 영상은, T2 매핑 영상 및 T2* 매핑 영상을 식
Figure PCTKR2015004323-appb-I000001
Figure PCTKR2015004323-appb-I000002
를 통해 생성하고, 외부 영향으로 인한 자화율 차이를 나타내는 R2' 후처리 영상은 상기 생성된 T2' 후처리 영상 및 T2 매핑 영상, T2* 매핑 영상의 값에 역수를 취하여
Figure PCTKR2015004323-appb-I000003
,
Figure PCTKR2015004323-appb-I000004
,
Figure PCTKR2015004323-appb-I000005
,
Figure PCTKR2015004323-appb-I000006
를 통해 생성한다.
Looking at this, the T2 'post-processing image, the T2 mapping image and T2 * mapping image
Figure PCTKR2015004323-appb-I000001
And
Figure PCTKR2015004323-appb-I000002
The R2 'post-processing image, which represents the susceptibility difference due to external influences, is obtained by reversing the values of the generated T2' post-processing image, T2 mapping image, and T2 * mapping image.
Figure PCTKR2015004323-appb-I000003
,
Figure PCTKR2015004323-appb-I000004
,
Figure PCTKR2015004323-appb-I000005
,
Figure PCTKR2015004323-appb-I000006
Create via
이와 같이 생성된 R2후처리 영상을 Image J를 이용하여 기설정된 동일한 크기의 관심 영역 내, 동일한 위치에서 각 영상의 단면 위치 변화에 따른 신호 강도를 측정하고, 자화율 차이를 비교평가 하였다.The R2 post-processed image generated as described above was measured using Image J to measure the signal intensity according to the change of the cross-sectional position of each image at the same location within the preset region of interest of the same size, and to compare and evaluate the difference in susceptibility.
3. 이상적인 물질의 조건을 고려하여 물질 선정3. Material selection considering the ideal material conditions
이러한 팬텀 제작 및 실험(1 및 2) 결과를 기반으로, 체적소에 영향을 주지 않는 범위에서 미약한 신호를 내는 물질 중 조직과 공기 간 자화율 차이를 줄일 수 있는 가장 효과가 큰 물질 중 공기 간 자화율 차이를 줄일 수 있는 가장 효과가 큰 물질 선정 시 가공성과 적용 시 편의성, 그리고 재사용성을 고려하였을 때 실리콘이 가장 우수하다는 판단 하에, 본 발명은 실리콘을 사용하여 진행한다.Based on the results of phantom fabrication and experiments (1 and 2), the susceptibility between air among the most effective materials that can reduce the difference between susceptibility between tissue and air among the materials that give a weak signal in the range that does not affect the volumetric volume. The present invention proceeds using silicon in the determination that silicon is the best in consideration of processability, ease of use, and reusability in selecting a material having the greatest effect to reduce the difference.
4. 선정된 물질 가공4. Processing selected materials
본 발명에 사용된 실리콘은 인체 조직밀도와 유사하면서 미약한 신호를 내는 규소 원료를 합성한 규소 수지 성분으로, 형상변경을 통해 여러 번의 재사용이 가능하도록 실리콘을 기본물질로 하는 여러 가지 물질로 된 실리콘 베이스에 상온 경화방지제가 첨가되어 있으며, 주성분인 실리콘 베이스는 실리콘 중합체에 폴리디메틸실록산과 실리카 및 실리콘 오일이 혼합되어 있고, 경화방지제는 메틸 비닐 실리콘 검과 실리콘 오일이 혼합된 제품으로 밀도는 2.336g/㎤이다. 규소원료를 합성한 규소 성분으로 된 상기 실리콘 베이스와 메틸 비닐 실리콘 검 등을 포함하고 있는 경화방지제는 3:1~4:1의 부피비로 혼합하여 사용한다.The silicon used in the present invention is a silicon resin component synthesized from a silicon raw material that produces a weak signal similar to the human tissue density, and is made of various materials based on silicon so that it can be reused many times through shape change. At room temperature, a curing agent is added to the base, and the main component, silicone base, is a mixture of polydimethylsiloxane, silica and silicone oil in a silicone polymer, and the curing agent is a mixture of methyl vinyl silicone gum and silicone oil. / Cm 3. The hardening | curing agent containing the said silicon base which consists of the silicon component which synthesize | combined the silicon raw material, methyl vinyl silicone gum, etc. is mixed and used by volume ratio of 3: 1-4: 1.
5. 갑상선 확산강조 영상 검사에 적용5. Applied to thyroid diffuse emphasis imaging
실리콘을 이용한 자화율 차이의 개선 여부를 위한 본 발명의 방법은 피부 바로 아래 위치하여 공기와 인접해 있고, 주변에 후두와 기관이 자리 잡고 있어 뒤틀림이 많이 발생하는 갑상선을 대상으로, 가로 18.5㎝ 세로 7㎝, 두께 2㎝의 직사각형으로 실리콘 패드를 제작한 후, 갑상선 검사 시 실리콘 패드의 적용 전ㆍ후 확산강조영상과 T2 강조영상을 획득하여, T2 강조영상을 기준으로 한 확산강조영상의 뒤틀림과 오차율을 비교평가 하였다(도 2).The method of the present invention for improving the susceptibility difference using silicon is located directly below the skin, adjacent to the air, and the larynx and trachea are located in the periphery of the thyroid gland, which causes a lot of warpage. After fabricating the silicon pads with a rectangle of 2 cm and a thickness of 2 cm, during the thyroid examination, before and after the application of the silicon pads, diffusion-weighted images and T2-weighted images were obtained, and the distortion and error rate of the diffuse-weighted images based on the T2-weighted images. Was compared (Fig. 2).
사용된 실리콘의 양은 200g이었으며, 실리콘 패드의 적용 시 목의 굴곡진 부분을 완전히 보상할 수 있도록 실리콘을 적용하여, 목과 같은 상기 인체 외부 공간의 일부분을 채워 목 쪽의 인체 조직과 상기 목 쪽의 인체 외부의 자화율 차이를 보상하도록 가슴과 턱 사이 굴곡진 부분이 실리콘 보상으로 수평이 되도록 하였다(도 3).The amount of silicone used was 200 g, and the silicone pad was applied to completely compensate for the curved part of the neck when the silicone pad was applied, so that a part of the external space such as the neck was filled to fill the tissue of the neck and the body of the neck. In order to compensate for the external susceptibility difference, the curved part between the chest and the jaw was leveled with silicon compensation (FIG. 3).
위 결과를 바탕으로 자화율 차이의 개선 시 실리콘의 최적의 두께를 알아보았다. 본 발명의 방법은 가로 18.5㎝ 세로 7㎝의 직사각형에 1㎝부터 5㎝까지 1㎝ 간격으로 두께만 변화시켜 실리콘 패드를 제작한 후(도 4), 갑상선 검사 시 실리콘 패드의 두께를 변화시켜가며 자화율 차이의 개선 여부를 위한 본 발명의 방법과 동일하게 확산강조영상과 T2 강조영상을 획득한 다음, T2 강조영상을 기준으로 한 확산강조영상의 두께에 따른 뒤틀림과 오차율 변화를 평가하였다.Based on the above results, the optimum thickness of silicon was investigated to improve the susceptibility difference. According to the method of the present invention, the thickness of the silicon pad is changed by only changing the thickness of 1cm to 5cm in 1cm intervals in a rectangle of 18.5cm length and 7cm width (Fig. 4). Diffusion-weighted images and T2-weighted images were acquired in the same manner as the method of the present invention for improving the susceptibility difference, and then the distortion and error rate change according to the thickness of the diffuse-weighted images based on the T2-weighted images were evaluated.
6. 자화율 차이의 개선 여부 확인6. Determine if the susceptibility difference is improved
사용된 실리콘의 양은 패드의 두께가 1㎝일 경우 100g, 2㎝일 경우 200g, 3㎝일 경우 300g, 4㎝일 경우 400g, 5㎝일 경우 500g이었으며, 실리콘 패드의 적용 방법은 자화율 차이의 개선 여부를 위한 본 발명의 방법과 동일하게 하였다.The amount of silicon used was 100 g when the thickness of the pad was 1 cm, 200 g when the thickness was 2 cm, 300 g when the thickness was 3 cm, 400 g when the thickness was 4 cm, and 500 g when the thickness was 5 cm. The same as the method of the present invention for whether or not.
영상의 뒤틀림은 자장의 불균일에 비교적 영향을 받지 않는 T2 강조영상의 갑상선 좌엽과 우엽 면적을 기준으로, 확산강조영상 검사 시 각각 획득한 b 0(b-값 0), b 800(b-값 800), ADC 영상에서, 갑상선의 좌엽과 우엽 면적을 측정하여 비교 분석하였다(도 5).Image distortion is based on the left and right lobe areas of the thyroid gland of the T2-weighted image, which are relatively unaffected by magnetic field unevenness, respectively. B 0 (b-value 0) and b 800 (b-value 800) In the ADC image, the left and right lobe areas of the thyroid gland were measured and compared (FIG. 5).
상기 영상의 뒤틀림에 인한 오차율은 공지된 뒤틀림 계산식(
Figure PCTKR2015004323-appb-I000007
)에 근거하여 산출한 후 비교 분석하였다.
The error rate due to distortion of the image is a known distortion calculation formula (
Figure PCTKR2015004323-appb-I000007
) And then compared and analyzed.
7. 개선 시 최적의 두께 측정7. Optimum thickness measurement when improving
실리콘 보정물의 두께 변화에 따른 연구 대상자의 갑상선 좌엽과 우엽의 뒤틀림은 좌엽과 우엽 모두 실리콘 보정물의 두께가 증가할수록 뒤틀림이 감소하였다.The distortion of the left and right lobes of the thyroid gland with the thickness of the silicone compensator decreased as the thickness of the silicone compensator increased in both the left and right lobes.
8. 유용성 증명8. Proof of Usability
본 발명이 지향하는 이상적인 물질의 조건은 다음과 같다.The conditions of the ideal material to which the present invention is directed are as follows.
첫째, 인체조직과 유사한 밀도를 가져 자기공명검사 시 자장과 RF펄스에 인체조직과 반응하는 방법 동일할 것. 둘째, 자기공명영상의 대조도에 영향을 주지 않을 것. 셋째, 환자에게 적용 시 위해성이 없을 것. 넷째, 환자에게 손쉽게 적용할 수 있을 것(편의성). 다섯째, 환자에 따른 맞춤 제작이 용이할 것(가공성). 여섯째, 환자에게 적용 시 불편함을 주지 않을 것. 일곱째, 환자에게 적용 후 재사용이 가능할 것(재 사용성). 여덟째, 충격이나 환경에 영향이 없고, 기계적으로 견고할 것. 아홉째, 가격이 저렴할 것의 조건을 만족해야 한다.First, it should have the same density as that of human tissue and react with human tissue in magnetic field and RF pulse during magnetic resonance test. Second, it should not affect the contrast of magnetic resonance imaging. Third, there should be no risk when applied to patients. Fourth, easy to apply to patients (convenience). Fifth, it should be easy to customize according to the patient (processability). Sixth, do not cause inconvenience to the patient. Seventh, the patient should be able to reuse after application (reusability). Eighth, it should be mechanically robust without impact or environment. Ninth, the condition that the price is low must be satisfied.
이하, 도 1의 순서도를 수행한 결과를 기초로 하여 본 발명의 일 실시 예에 따른 자기공명 자화율 차이 보상필터 및 이를 이용한 자화율 차이 보상 방법에 대해 도 2 내지 14을 참조하여 자세히 살펴보기로 한다.Hereinafter, a magnetic resonance susceptibility difference compensation filter and a susceptibility difference compensation method using the same will be described in detail with reference to FIGS. 2 to 14 based on the result of performing the flowchart of FIG. 1.
도 1에 따른 인체등가물질 중 조직과 공기 간 자화율 차이를 줄일 수 있는 가장 효과가 큰 물질의 선정에 관한 실험 결과, 외부영향으로 인한 자화율 차이를 나타내는 R2' 값은 흑연(125.78±17.32), 실리콘 분말(100.01±42.57), 공기(29.16±23.99), 밀가루(21.96±19. 07), 실리콘 패드(19.77±16.49), 생리식염수(18.99±17.85), 붕사(17.35±15.26), 황(17.31±15.26) 순으로 나타났다.Experimental results on the selection of the most effective material that can reduce the susceptibility difference between the tissue and the air of the human body equivalent according to Figure 1, the R2 'value representing the difference in susceptibility due to external influence is graphite (125.78 ± 17.32), silicon Powder (100.01 ± 42.57), air (29.16 ± 23.99), flour (21.96 ± 19.07), silicone pad (19.77 ± 16.49), saline (18.99 ± 17.85), borax (17.35 ± 15.26), sulfur (17.31 ± 15.26).
R2' 값이 작다는 것은 외부영향으로 인한 자화율 차이가 작다는 것으로 실험결과, 공기를 갑상선의 상태와 동일한 기준으로 봤을 때 흑연과 실리콘 분말은 기준보다 더 큰 자화율 차이를 나타내고, 밀가루, 실리콘 패드, 생리식염수, 붕사, 황 등은 기준보다 작은 자화율 차이를 나타내 위 물질을 이용할 경우 조직과 공기 간 자화율 차이를 줄일 수 있음을 의미한다.The smaller value of R2 'means that the difference in susceptibility due to external influences is smaller. When the air is regarded as the same condition of thyroid, graphite and silicon powder show larger susceptibility difference than standard. Physiological saline, borax, sulfur, etc. have a smaller susceptibility difference than the reference value, meaning that the use of the above material can reduce the susceptibility difference between tissue and air.
각각의 R2' 값 중 공기를 기준으로 한 R2' 값과 일치하지 않는 물질을 알아보기 위해 Duncan의 사후분석을 실시한 결과, 유의수준 0.05에 대한 4개의 그룹 간 차이가 존재하였다. 기준물질인 공기보다 큰 자화율 차이를 나타내는 흑연과 실리콘 분말이 속해 있는 3, 4 그룹을 제외한 그룹 1은 황, 붕사, 생리식염수, 실리콘 패드, 밀가루가 그룹 내 유의한 차이가 없어 동일한 자화율 차이를 나타내는 것을 알 수 있으나, 그룹 2는 생리식염수, 실리콘 패드, 밀가루가 기준상태인 공기와 그룹 내 차이가 없는 것으로 나타났다.As a result of Duncan's ex post analysis to find out which of the R2 'values did not coincide with the R2' values based on air, there was a difference between four groups with a significance level of 0.05. Except for groups 3 and 4, which contain graphite and silicon powders, which show greater susceptibility differences than air as reference materials, Group 1 shows the same susceptibility difference because sulfur, borax, saline, silicon pads, and flour are not significantly different in the group. As can be seen, Group 2 was found to have no difference in the group with air, which is the reference state of physiological saline, silicone pad, and flour.
단면을 세 부분으로 분할[위쪽(단면 1∼7), 중간(단면 8∼13), 아래쪽(단면 14∼20)]하여 분석한 결과, 세 부분 모두 흑연, 실리콘 분말, 공기, 밀가루, 실리콘 패드, 생리식염수, 붕사, 황 순으로 전체 단면을 종합하여 분석하는 것과 동일하게 나타났다. 분할된 각각의 R2' 값 중 공기를 기준으로 한 R2' 값과 일치하지 않는 물질을 알아보기 위해 Duncan의 사후분석을 실시한 결과, 위쪽의 경우 유의수준 0.05에 대한 부 그룹이 4개의 그룹 간 차이가 존재하였으며, 중간과 아래쪽의 경우 3개의 그룹 간 차이가 존재하였다. 각각의 부 그룹을 살펴보면 위쪽의 경우 그룹 1과 그룹 2를 고려했을 때 붕사, 황, 실리콘 패드가 기준물질인 공기보다 자화율 차이가 적은 것을 알 수 있고, 중간의 경우 자장이 균질하여 흑연과 실리콘 분말을 제외한 모든 물질이 그룹 내 유의한 차이가 없음을 알 수 있으며, 아래쪽의 경우 붕사, 황, 실리콘 패드, 생리식염수가 기준물질인 공기보다 자화율 차이가 적은 것을 알 수 있다. 따라서 세 부분을 모두 고려했을 때 붕사, 황, 실리콘 패드가 기준물질인 공기보다 자화율 차이가 적어 유용한 것을 알 수 있다. 위 결과는 Bland-Atman plot으로도 알 수 있는데, 기준물질인 공기와 각각의 본 발명을 위한 물질들의 관계를 살펴보면, 세 부분 모두 흑연과 실리콘 분말의 경우 평균값이 음의 값을 가져 공기보다 자화율 차이를 크게 나타내는 것을 볼 수 있으며, 밀가루, 실리콘 패드, 생리식염수, 붕사, 황 등은 평균값이 양의 값을 가져 기준물질인 공기보다 자화율 차이를 적게 나타내는 것을 볼 수 있다. 또한 흑연과 실리콘 분말을 제외한 밀가루, 실리콘 패드, 생리식염수, 붕사, 황 등은 표준편차가 적어 자화율 차이를 극복하기 위해 물질을 적용할 경우 균일한 성능을 보임을 알 수 있다.The sections were divided into three sections (top (sections 1 to 7), middle (sections 8 to 13), and bottom (sections 14 to 20). As a result, all three sections were graphite, silicon powder, air, flour, and silicon pads. , Physiological saline, borax, and sulfur in the same order as the overall analysis. Duncan's ex post analysis was performed to determine which of the divided R2 'values did not match the air-based R2' values. There was a difference between the three groups in the middle and bottom. Looking at each of the subgroups, the difference in susceptibility between borax, sulfur, and silicon pads is smaller than that of air as a reference material when considering group 1 and group 2 in the upper part, and in the middle, the magnetic field is homogeneous and graphite and silicon powder It can be seen that all materials except the group have no significant difference, and in the lower case, the difference in susceptibility of borax, sulfur, silicon pad, and saline solution is smaller than that of air as a reference material. Therefore, when all three parts are considered, borax, sulfur, and silicon pads are useful because they have a smaller susceptibility difference than air as a reference material. The above results can also be seen in the Bland-Atman plot. Looking at the relationship between the reference material air and the materials for the present invention, all three parts have a negative value in the case of graphite and silicon powder, so that the susceptibility difference is higher than that of air. It can be seen that large, flour, silicon pads, saline, borax, sulfur, etc., the average value has a positive value can be seen to show less difference in susceptibility than air as a reference material. In addition, the flour, silicon pads, physiological saline, borax, sulfur, etc., except graphite and silicon powder, have a small standard deviation, and thus, even when the material is applied to overcome the difference in susceptibility, it can be seen that uniform performance is shown.
인체 등가 물질 중 조직과 공기 간 자화율 차이를 줄일 수 있는 가장 효과가 큰 물질의 T1 값은 표 2과 같이 나타났다. 그 결과, 본 발명을 위한 각 물질 간 T1 값의 차이는 존재하나 통계적으로 유의하지 않아 본 발명을 위한 각 물질 간 T1 값의 차이가 있다고 할 수 없다. 따라서 본 발명을 위해 어떤 물질을 사용해도 그 물질로 인한 조직의 고유 T1 값은 변하지 않음을 알 수 있다.The T1 values of the most effective substances that can reduce the difference in susceptibility between tissue and air among human equivalents are shown in Table 2. As a result, there is a difference in the T1 value between the substances for the present invention, but it is not statistically significant, and thus there is no difference in the T1 value between the substances for the present invention. Therefore, it can be seen that any material used for the present invention does not change the intrinsic T1 value of the tissue due to the material.
표 2 -다양한 물질들의 T1 이완 시간
물질 T1(msec) R1(sec-1)
흑연 분말 2689.78 0.37
실리콘 분말 2676.64 0.37
공기 2860.76 0.35
밀가루 2706.27 0.37
실리콘 패드 2722.76 0.37
생리식염수 용액 2866.62 0.35
붕사 분말 2806.48 0.36
황 분말 2806.51 0.36
TABLE 2 T1 relaxation time for various materials
matter T1 (msec) R1 (sec -1 )
Graphite powder 2689.78 0.37
Silicon powder 2676.64 0.37
air 2860.76 0.35
flour 2706.27 0.37
Silicone pad 2722.76 0.37
Physiological Saline Solution 2866.62 0.35
Borax Powder 2806.48 0.36
Sulfur powder 2806.51 0.36
위 결과를 바탕으로 기준물질인 공기보다 자화율 차이가 적은 붕사, 황, 실리콘 패드를 대상으로 조직과 공기 간 자화율 차이를 줄일 수 있는 가장 효과가 큰 물질을 선정하기 위해, 본 발명이 지향하는 이상적인 물질의 조건을 고려하여 리커트(Likert) 5점 척도(1: 매우 부적합, 2: 부적합, 3: 보통, 4: 적합, 5: 매우 적합)로 산출하였다. Based on the above results, in order to select the most effective material that can reduce the susceptibility difference between the tissue and the air targeting borax, sulfur, and silicon pad having a smaller susceptibility difference than the reference material air, the ideal material to which the present invention is directed It was calculated on the Likert 5-point scale (1: very unsuitable, 2: unsuitable, 3: normal, 4: suitable, 5: very suitable) in consideration of the conditions of.
표 3 -이상적인 물질들의 리커트 척도 결과
(1) (2) (3) (4) (5) (6) (7) (8) (9) Total
흑연 분말 1 1 1 1 1 1 1 1 3 11
실리콘 분말 1 1 1 1 1 1 1 1 3 11
밀가루 4 5 5 1 1 1 1 1 4 23
실리콘 패드 5 3 5 4 5 4 4 4 3 37
생리식염수 용액 4 1 5 1 1 1 1 1 4 19
붕사 분말 5 5 1 1 1 1 1 1 3 19
황 분말 5 5 1 1 1 1 1 1 3 19
TABLE 3 Likert scale results for ideal materials
(One) (2) (3) (4) (5) (6) (7) (8) (9) Total
Graphite powder One One One One One One One One 3 11
Silicon powder One One One One One One One One 3 11
flour 4 5 5 One One One One One 4 23
Silicone pad 5 3 5 4 5 4 4 4 3 37
Physiological Saline Solution 4 One 5 One One One One One 4 19
Borax Powder 5 5 One One One One One One 3 19
Sulfur powder 5 5 One One One One One One 3 19
(1) MRI 스캐닝 동안에 신체와 함께 동일한 RF 펄스로 반응한다.(1) Respond with the same RF pulse with the body during MRI scanning.
(2) MRI 이미지 신호에 영향이 없다.(2) No effect on the MRI image signal.
(3) 환자에게 유해한 영향이 없다.(3) There is no harmful effect on the patient.
(4) 적용하기 쉽다(편의성)(4) It is easy to apply (convenience)
(5) 자체 제작하기 쉽다(5) easy to self-manufacture
(6) 환자에게 불편을 주지 않는다.(6) We do not inconvenience patient.
(7) 재사용할 수 있다.(7) Can be reused.
(8) 주변 환경에 의해 영향을 받지 않는다.(8) Not affected by the surrounding environment.
(9) 비용이 효율적이다.(9) Cost effective.
그 결과 실리콘 패드가 45점 만점 중 37점(82.22%)으로 모든 항목에서 매우 높게 나타나 본 발명을 위한 물질 중 실리콘 패드를 조직과 공기 간 자화율 차이를 줄일 수 있는 가장 효과가 큰 물질로 선정 하였다(표 3).As a result, the silicon pads were very high in all items, with 37 out of 45 (82.22%), and the silicone pad was selected as the most effective material to reduce the difference in susceptibility between tissue and air. Table 3).
도 1의 순서도에 의하여 가장 이상적인 물질로 선정된 실리콘 패드의 영상검사 적용 결과에 의하면, 실리콘 패드의 적용 전ㆍ후에 따른 발명대상자의 갑상선 좌엽과 우엽의 뒤틀림은 좌엽의 경우 실리콘 패드의 적용 후(b0: 184.58±55.90, b800: 178.06±56.29, ADC: 182.64±54.37)가 적용 전(b0: 154.49±59.62, b800: 50.08±59.36, ADC: 152.31± 59.13)에 비해 영상의 뒤틀림이 적었고, 우엽의 경우도 좌엽과 마찬가지로 실리콘 패드의 적용 후(b0: 215.14±61.13, b800: 212.99±55.53, ADC: 214.86±58.34)가 적용 전(b0: 173.01±60.10, b800: 167.48±60.96, ADC: 171.28±63.44)에 비해 영상의 뒤틀림이 적었다(표 4).According to the results of application of the imaging test of the silicon pad selected as the most ideal material according to the flow chart of FIG. 1, the distortion of the left and right lobes of the thyroid gland of the subject before and after the application of the silicon pad was determined after the application of the silicon pad in the left lobe (b0). : 184.58 ± 55.90, b800: 178.06 ± 56.29, ADC: 182.64 ± 54.37) compared with before application (b0: 154.49 ± 59.62, b800: 50.08 ± 59.36, ADC: 152.31 ± 59.13) Similarly to the left lobe, after application of the silicone pad (b0: 215.14 ± 61.13, b800: 212.99 ± 55.53, ADC: 214.86 ± 58.34) before application (b0: 173.01 ± 60.10, b800: 167.48 ± 60.96, ADC: 171.28 ± 63.44) The distortion of the image was less than that of (Table 4).
표 4 -이미지 왜곡과 비교하여 실리콘 패드의 적용과 함께 그리고 적용 없이 좌측과 우측 갑상선의 면적 측정(단위: ㎟)
구분
좌엽 T2 212.29± 60.97 207.13± 56.70
좌엽 b0 154.49± 59.62 184.58± 55.90
좌엽 b800 150.08± 59.36 178.06± 56.29
좌엽 ADC 152.31± 59.13 182.64± 54.37
우엽 T2 248.51± 67.84 245.90± 62.56
우엽 b0 173.01± 60.10 215.14± 61.13
우엽 b800 167.48± 60.96 212.99± 55.53
우엽 ADC 171.28± 63.44 214.86± 58.34
Table 4 Area measurements of the left and right thyroid gland with and without the application of silicone pads in comparison to image distortion (unit: mm 2)
division I'm after
Left lobe T2 212.29 ± 60.97 207.13 ± 56.70
Left lobe b0 154.49 ± 59.62 184.58 ± 55.90
Left lobe b800 150.08 ± 59.36 178.06 ± 56.29
Left lobe ADC 152.31 ± 59.13 182.64 ± 54.37
Right lobe T2 248.51 ± 67.84 245.90 ± 62.56
Right lobe b0 173.01 ± 60.10 215.14 ± 61.13
Right lobe b800 167.48 ± 60.96 212.99 ± 55.53
Right lobe ADC 171.28 ± 63.44 214.86 ± 58.34
실리콘 패드의 적용 전ㆍ후에 따른 발명대상자의 갑상선 좌엽과 우엽의 오차율은 좌엽과 우엽 모두 실리콘 적용 후(10%대)가 적용 전(30%대)에 비해 오차율이 적었다(표 5).The error rate of the left and right thyroid glands of the subjects before and after the application of the silicone pads was lower in the left and right lobes than in the silicone (10% range) compared with before (30%) (Table 5).
표 5 -실리콘 패드의 적용과 함께 그리고 적용 없이 좌측과 우측 갑상선의 차이(단위: %)
구분
좌엽 b0 28.73± 14.24 12.67± 10.32
좌엽 b800 31.01± 13.86 14.79± 10.63
좌엽 ADC 29.70± 14.56 12.21± 9.17
우엽 b0 30.84± 13.55 12.87± 9.49
우엽 b800 33.39± 13.71 13.96± 7.64
우엽 ADC 31.74± 15.32 13.78± 8.40
Table 5 Difference between left and right thyroid gland with and without silicone pads in%
division I'm after
Left lobe b0 28.73 ± 14.24 12.67 ± 10.32
Left lobe b800 31.01 ± 13.86 14.79 ± 10.63
Left lobe ADC 29.70 ± 14.56 12.21 ± 9.17
Right lobe b0 30.84 ± 13.55 12.87 ± 9.49
Right lobe b800 33.39 ± 13.71 13.96 ± 7.64
Right lobe ADC 31.74 ± 15.32 13.78 ± 8.40
표 6 -실리콘 패드의 적용과 함께 그리고 적용 없이 양쪽 좌측과 우측 갑상선의 일방향 ANOVA
구분
구분 Squares의 합 평균 Square F sig
좌엽 그룹 간 81270.00 27090.00 7.582 .000
좌엽 그룹 내 414463.94 3572.96
좌엽 전체 495733.94
우엽 그룹 간 137082.37 45694.12 11.456 .000
우엽 그룹 내 462681.94 3988.64
우엽 전체 599764.31
Table 6 One-way ANOVA of both left and right thyroid gland with and without application of silicone pads
division I'm
division Sum of squares Average Square F sig
Left lobe Between groups 81270.00 27090.00 7.582 .000
Left lobe In group 414463.94 3572.96
Left lobe all 495733.94
Right lobe Between groups 137082.37 45694.12 11.456 .000
Right lobe In group 462681.94 3988.64
Right lobe all 599764.31
표 7 -실리콘 패드의 적용과 함께 그리고 적용 없이 양쪽 좌측과 우측 갑상선의 일방향 ANOVA
구분
구분 Squares의 합 평균 Square F sig
좌엽 그룹 간 15151.68 5050.56 1.621 .188
좌엽 그룹 내 361481.75 3116.22
좌엽 전체 376633.43
우엽 그룹 간 22507.32 7502.44 2.122 .101
우엽 그룹 내 410046.65 3534.88
우엽 전체 432553.97
TABLE 7 One-way ANOVA of both left and right thyroid gland with and without application of silicone pads
division I'm
division Sum of squares Average Square F sig
Left lobe Between groups 15151.68 5050.56 1.621 .188
Left lobe In group 361481.75 3116.22
Left lobe all 376633.43
Right lobe Between groups 22507.32 7502.44 2.122 .101
Right lobe In group 410046.65 3534.88
Right lobe all 432553.97
뒤틀림 감소를 위한 실리콘 패드의 적용 전ㆍ후에 따른 갑상선 좌엽과 우엽의 일원배치 분산분석 결과 표 6 및 표 7과 같이 나타났다. 실리콘 패드를 적용하지 않았을 경우 갑상선의 좌엽과 우엽 모두 통계적으로 유의하여(p<0.05) 기준영상인 T2 강조영상과 적어도 면적이 일치하지 않는 하나 이상의 유의한 측정값이 포함되어 있음을 알 수 있으며, 실리콘 패드를 적용하였을 경우 좌엽과 우엽 모두 통계적으로 유의하지 않아(p>0.05) 기준영상인 T2 강조영상과 면적이 일치함을 알 수 있다.The results of one-way ANOVA of the left and right thyroid gland according to before and after application of the silicone pad to reduce distortion are shown in Tables 6 and 7. If the silicone pad was not applied, both the left and right lobes of the thyroid gland were statistically significant (p <0.05), indicating that there was at least one significant measurement that did not match at least the area of the baseline T2-weighted image. When the silicon pad was applied, the left and right lobes were not statistically significant (p> 0.05), indicating that the area coincided with the T2-weighted image.
각 측정값 중 기준영상인 T2 강조영상과 일치하지 않는 영상을 알아보기 위해 Duncan의 사후분석을 실시한 결과, 실리콘 패드를 적용하지 않았을 경우 좌엽과 우엽 모두 유의수준 0.05에 대한 부 그룹이 2개의 그룹 간 차이가 존재하여 기준영상인 T2 강조영상과 확산강조영상의 면적이 차이가 있음을 알 수 있으며, 실리콘 패드를 적용하였을 경우 1개의 부 그룹만 존재하여 T2 강조영상과 확산강조영상의 면적이 차이가 없음을 알 수 있다(표 8).Duncan's post-mortem analysis was performed to find an image that did not match the T2-weighted image among the measured values. It can be seen that there is a difference in the area of the T2-weighted image and the diffusion-weighted image, which are the reference images, and when the silicon pad is applied, only one subgroup exists, so that the area of the T2-weighted and diffusion-weighted images is different. It can be seen that there is no (Table 8).
표 8 -실리콘 패드의 적용과 함께 그리고 적용 없이 양쪽 좌측과 우측 갑상선의Post-hoc(Duncan) 비교
구분
구분 Subset for alpha = 0.05
구분 1 2 1
좌엽 b800 150.08 178.06
좌엽 ADC 152.31 182.64
좌엽 b0 154.49 184.58
좌엽 T2 212.29 207.13
좌엽 Sig. 0.790 1.000 0.067
우엽 b800 167.48 212.99
우엽 ADC 171.28 214.86
우엽 b0 173.01 215.14
우엽 T2 248.51 245.90
우엽 Sig. 0.752 1.000 0.051
Table 8 Post-hoc comparison of both left and right thyroid gland with and without silicone pads
division I'm after
division Subset for alpha = 0.05
division One 2 One
Left lobe b800 150.08 178.06
Left lobe ADC 152.31 182.64
Left lobe b0 154.49 184.58
Left lobe T2 212.29 207.13
Left lobe Sig. 0.790 1.000 0.067
Right lobe b800 167.48 212.99
Right lobe ADC 171.28 214.86
Right lobe b0 173.01 215.14
Right lobe T2 248.51 245.90
Right lobe Sig. 0.752 1.000 0.051
실리콘 패드의 두께 변화에 따른 발명대상자의 갑상선 좌엽과 우엽의 뒤틀림은 좌엽과 우엽 모두 실리콘 패드의 두께가 증가할수록 뒤틀림이 감소하였다(표 9 및 표 10)As the thickness of the silicone pad was increased, the distortion of the left and right lobes of the subject's thyroid gland decreased as the thickness of the silicone pad increased (Table 9 and Table 10).
표 9 -실리콘 패드의 다양한 두께와 함께 좌측과 우측의 양쪽 갑상선의 면적 측정(단위: ㎟)
구분 미적용 1cm 2cm
좌엽 T2 212.29± 60.97 211.12± 61.62 207.13± 56.70
b0 154.49± 59.62 177.79± 61.78 184.58± 55.90
b800 150.08± 59.36 172.86± 60.61 178.06± 56.29
ADC 152.31± 59.13 177.79± 61.39 182.64± 54.37
우엽 T2 248.51± 67.84 248.66± 65.13 245.90± 62.56
b0 173.01± 60.10 208.93± 66.11 215.14± 61.13
b800 167.48± 60.96 200.50± 62.35 212.99± 55.53
ADC 171.28± 63.44 207.94± 61.50 214.86± 58.34
Table 9 Area measurements of both the left and right thyroid gland along with the various thicknesses of the silicone pad (unit: mm2)
division Unapplied 1 cm 2 cm
Left lobe T2 212.29 ± 60.97 211.12 ± 61.62 207.13 ± 56.70
b0 154.49 ± 59.62 177.79 ± 61.78 184.58 ± 55.90
b800 150.08 ± 59.36 172.86 ± 60.61 178.06 ± 56.29
ADC 152.31 ± 59.13 177.79 ± 61.39 182.64 ± 54.37
Right lobe T2 248.51 ± 67.84 248.66 ± 65.13 245.90 ± 62.56
b0 173.01 ± 60.10 208.93 ± 66.11 215.14 ± 61.13
b800 167.48 ± 60.96 200.50 ± 62.35 212.99 ± 55.53
ADC 171.28 ± 63.44 207.94 ± 61.50 214.86 ± 58.34
표 10 -실리콘 패드의 다양한 두께와 함께 좌측 및 우측의 양쪽 갑상선의 면적 측정(단위: ㎟)
구분 3cm 4cm 5cm
좌엽 T2 208.81± 60.06 208.05± 56.49 207.59± 57.51
b0 189.62± 60.73 191.86± 58.64 197.83± 60.29
b800 184.14± 61.22 186.87± 59.31 190.59± 62.27
ADC 188.49± 60.31 192.84± 56.93 198.32± 56.18
우엽 T2 248.53± 64.96 245.88± 61.58 246.12± 62.33
b0 222.60± 69.86 229.34± 65.98 234.24± 70.77
b800 216.36± 70.27 222.10± 66.84 226.09± 69.52
ADC 222.76± 68.19 230.13± 63.14 236.39± 64.80
Table 10 Area measurements of both thyroid glands on the left and right sides, with various thicknesses of silicon pads
division 3 cm 4 cm 5 cm
Left lobe T2 208.81 ± 60.06 208.05 ± 56.49 207.59 ± 57.51
b0 189.62 ± 60.73 191.86 ± 58.64 197.83 ± 60.29
b800 184.14 ± 61.22 186.87 ± 59.31 190.59 ± 62.27
ADC 188.49 ± 60.31 192.84 ± 56.93 198.32 ± 56.18
Right lobe T2 248.53 ± 64.96 245.88 ± 61.58 246.12 ± 62.33
b0 222.60 ± 69.86 229.34 ± 65.98 234.24 ± 70.77
b800 216.36 ± 70.27 222.10 ± 66.84 226.09 ± 69.52
ADC 222.76 ± 68.19 230.13 ± 63.14 236.39 ± 64.80
표 11 -실리콘 패드의 두께와 함게 좌측 및 우측 갑상선의 차이(단위: %)
구분 미적용 1cm 2cm
좌엽 b0 28.73± 14.24 16.54± 11.49 12.67± 10.32
b800 31.01± 13.86 19.06± 11.73 14.79± 10.63
ADC 29.70± 14.56 16.62± 11.15 12.21± 9.17
우엽 b0 30.84± 13.55 16.46± 12.31 12.87± 9.49
b800 33.39± 13.71 19.77± 12.12 13.96± 7.64
ADC 31.74± 15.32 16.72± 11.11 13.78± 8.40
Table 11 Difference between left and right thyroid gland with thickness of silicon pad (unit:%)
division Unapplied 1 cm 2 cm
Left lobe b0 28.73 ± 14.24 16.54 ± 11.49 12.67 ± 10.32
b800 31.01 ± 13.86 19.06 ± 11.73 14.79 ± 10.63
ADC 29.70 ± 14.56 16.62 ± 11.15 12.21 ± 9.17
Right lobe b0 30.84 ± 13.55 16.46 ± 12.31 12.87 ± 9.49
b800 33.39 ± 13.71 19.77 ± 12.12 13.96 ± 7.64
ADC 31.74 ± 15.32 16.72 ± 11.11 13.78 ± 8.40
표 12 -실리콘 패드의 두께와 함게 좌측 및 우측 갑상선의 차이(단위: %)
구분 3cm 4cm 5cm
좌엽 b0 10.05± 9.58 9.25± 9.20 9.08± 7.42
b800 12.91± 10.14 11.45± 9.91 10.45±1 0.22
ADC 11.07± 8.69 9.16± 8.82 7.40± 6.98
우엽 b0 11.67± 9.42 8.73± 8.55 8.48± 6.71
b800 14.26± 10.59 11.01± 9.64 10.15± 9.33
ADC 11.66± 9.68 8.72± 7.37 8.24± 6.17
Table 12 Difference between left and right thyroid gland with thickness of silicon pad (unit:%)
division 3 cm 4 cm 5 cm
Left lobe b0 10.05 ± 9.58 9.25 ± 9.20 9.08 ± 7.42
b800 12.91 ± 10.14 11.45 ± 9.91 10.45 ± 1 0.22
ADC 11.07 ± 8.69 9.16 ± 8.82 7.40 ± 6.98
Right lobe b0 11.67 ± 9.42 8.73 ± 8.55 8.48 ± 6.71
b800 14.26 ± 10.59 11.01 ± 9.64 10.15 ± 9.33
ADC 11.66 ± 9.68 8.72 ± 7.37 8.24 ± 6.17
실리콘 패드의 두께 변화에 따른 발명대상자의 갑상선 좌엽과 우엽의 오차율은 좌엽과 우엽 모두 실리콘 패드의 두께가 증가할수록 오차율이 감소하였다(표 11 및 12).The error rate of the left and right lobes of the thyroid gland of the subject according to the thickness change of the silicon pad decreased as the thickness of the silicon pad increased in both the left and right lobes (Tables 11 and 12).
실리콘 패드의 두께변화에 따른 갑상선 좌엽과 우엽의 일원배치 분산분석 결과, 실리콘 패드를 적용하지 않았을 경우 갑상선의 좌엽과 우엽 모두 유의하여(p<0.05), 기준영상인 T2 강조영상과 적어도 면적이 일치하지 않는 하나 이상의 유의한 측정값이 포함되어 있음을 알 수 있으며, 실리콘 패드를 1cm 두께로 적용하였을 경우 좌엽은 유의하지 않지만(p>0.05) 우엽은 유의하여(p<0.05) 적어도 면적이 다른 하나의 값이 우엽에 존재함을 알 수 있다. 실리콘 패드의 두께가 2cm 이상부터는 좌엽과 우엽 모두 통계적으로 유의하지 않아(p>0.05) T2 강조영상과 면적이 차이가 없음을 알 수 있다. 영상의 뒤틀림의 개선을 위한 최적 두께를 알아보기 위해 Duncan의 사후분석을 실시한 결과, 실리콘 패드를 적용하지 않았을 경우와 1 cm 적용하였을 경우, 갑상선의 좌엽과 우엽 모두 유의수준 0.05에 대한 부 그룹이 2개의 그룹 간 차이가 존재하여 기준영상인 T2 강조영상과 면적이 차이가 있음을 알 수 있으며, 실리콘 패드의 두께가 2cm 이상부터는 1개의 부 그룹만 존재하여 T2 강조영상과 면적이 차이가 없음을 알 수 있다.As a result of one-way distribution analysis of the left and right thyroid gland according to the thickness change of the silicone pad, when the silicone pad was not applied, both the left and right lobes of the thyroid gland were significantly (p <0.05), and at least the area coincided with the reference T2-weighted image. One or more significant measurements are included, and the left lobe is not significant (p> 0.05) but the right lobe is significant (p <0.05) when the silicone pad is applied at 1 cm thickness. It can be seen that the value of exists in the right lobe. Since the thickness of the silicon pad was more than 2 cm, the left and right lobes were not statistically significant (p> 0.05). Duncan's post-mortem analysis was performed to determine the optimal thickness for the improvement of image distortion, and when the silicone pad was not applied and 1 cm was applied, both the left and right lobes of the thyroid had a subgroup of significance level of 0.05. There is a difference between the two groups and the area of the T2-weighted image, which is the reference image, is different. Can be.
다음은 본 발명의 다른 실시예에 따라 실리콘 패드를 갑상선 부분 외에 발에 적용하여 실험한 결과를 설명한 것이다.The following describes the results of experiments by applying a silicone pad to the foot in addition to the thyroid part according to another embodiment of the present invention.
지방 포화는 대개 조직 대조도와 병변 특성을 개선하기 위한 임상 이미지로 사용된다. 그러나, 균일한 지방 억제의 획득은 대개 임상 근골격의 이미지화, 특히 손과 발의 이미지화 동안에 만나게 되는 복잡한 자기 환경 때문에 도전받고 있다.Fat saturation is often used as a clinical image to improve tissue contrast and lesion characteristics. However, the acquisition of uniform fat suppression is often challenged by the complex magnetic environment encountered during imaging of the clinical musculoskeletal, in particular hand and foot imaging.
해부 형상과 다수의 조직-조직 및 조직-공기 계면의 존재에 의해 유도된 자기장 이질성은 하드웨어 자기장 보정과 함께하기 위한 보상을 어렵게 한다. 이전 연구는 균일한 지방 억제를 획득하기 위해 사용된 몇 가지 방법을 보고하였다. MRI 검사에서 지방 억제를 개선하기 위한 기구가 제안되었으며, 예를 들어 무릎 MRI 검사에서의 퍼플루오로카본 액체 패드와 비교되는 쌀 패드 뿐만 아니라, 목과 머리 이미지화 동안의 화학-선택적 지방 포화에서 사용되는 아타풀자이트(attapulgite)를 함유하는 기구가 제안되었다.Magnetic field heterogeneity induced by anatomical shapes and the presence of multiple tissue-tissue and tissue-air interfaces makes it difficult to compensate for with hardware magnetic field correction. Previous studies have reported several methods used to achieve uniform fat inhibition. Apparatuses for improving fat inhibition in MRI tests have been proposed, for example rice pads compared to perfluorocarbon liquid pads in knee MRI tests, as well as atta used in chemical-selective fat saturation during neck and head imaging Apparatuses containing attapulgite have been proposed.
본 발명자들이 아는 한, MRI 발 이미지화 동안에 실리콘 패드를 이용하여 수행된 연구는 없었다. 게다가, 실리콘 패드는 상업적인 퍼플루오로카본 액체 또는 퍼플루오로-화합물로 채워진 기구보다 비용적으로 더 효율적이다. 그러므로, 본 발명의 다른 실시예의 목적은 발의 3T MRI 스캔 동안에 균일한 지방 억제를 위한 실리콘 패드의 유효성을 평가하는 것에 있다.To the best of our knowledge, no studies have been conducted using silicon pads during MRI foot imaging. In addition, silicone pads are more cost effective than instruments filled with commercial perfluorocarbon liquids or perfluoro-compounds. Therefore, it is an object of another embodiment of the present invention to evaluate the effectiveness of a silicone pad for uniform fat inhibition during a 3T MRI scan of the foot.
SNR과 CNR이 10㎟의 면적으로 4개의 ROIs에서 측정되었다. ROI 1과 2는 지방 억제가 불완전한 발가락 측면 뼈와 부드러운 조직으로부터 선택되었고, 반면에 ROI 3과 4는 지방 억제가 완전한 상대적으로 기부의 뼈와 부드러운 조직으로부터 선택되었다. ROIs는 다음과 같았다: (1) 첫 번째 지골 상의 ROI; (2) 첫 번째 지골 아래의 ROI; (3) 첫 번째 중족골 상의 ROI; 및 (4) 첫 번째 중족골 지골 조인트 아래의 ROI. SNR과 CNR은 다음의 방정식을 이용하여 계산되었다: SNR=(병변 SI/배경 SD)X100,CNR=|(병변 SI- 주변 조직 SI)/배경 노이즈 SD│X100. 배경 신호는 0이 되는 것으로 추정되었고, ROI 3과 4는 ROI 1과 2에 대한 주변 조직으로서 측정되었다.SNR and CNR were measured at four ROIs with an area of 10 mm 2. ROI 1 and 2 were selected from the toe flank bones and soft tissues with incomplete fat suppression, while ROI 3 and 4 were selected from the relatively basal bones and soft tissues with complete fat suppression. ROIs were as follows: (1) ROI on the first phalanx; (2) the ROI below the first phalanx; (3) ROI on the first metatarsals; And (4) ROI under the first metatarsal phalanx joint. SNR and CNR were calculated using the following equation: SNR = (lesion SI / background SD) × 100, CNR = | (lesion SI- surrounding tissue SI) / background noise SD│X100. The background signal was assumed to be zero, and ROI 3 and 4 were measured as the surrounding tissue for ROI 1 and 2.
4 개의 포인트 스케일에서, 3 명의 판독자들은 그룹 A 및 B에 대하여 이미지의 전체 품질(4, 매우 우수; 3, 우수; 2, 허용가능; 1, 나쁨), 첫 번째 지골의 균질성(4, 매우 우수하게 균질함; 3, 균질함; 2, 부분적으로 불균질함; 1, 불균질함), 중족골의 균질성(4, 매우 우수하게 균질함; 3, 균질함; 2, 부분적으로 불균질함; 1, 불균질함)에 등급을 매겼다. 3명의 방사선 기사로부터의 평균 등급은 3개의 카테고리로 계산되었다. At four point scales, three readers were given the overall quality of the image (4, very good; 3, good; 2, acceptable; 1, poor), homogeneity of the first phalanx (4, very good) for groups A and B Homogeneous; 3, homogeneous; 2, partially homogeneous; 1, heterogeneous; homogeneity of metatarsal bones (4, very good homogeneous; 3, homogeneous; 2, partially homogeneous; 1 , Heterogeneity). Average ratings from three radiographers were calculated in three categories.
그룹 B로부터 수득된 이미지는 첫 번째 지골(ROI 1)과 첫 번째 지골 아래의 부드러운 조직(ROI 2)의 불균질성을 개선하였으나, ROI 3과 4는 그룹 A와 비교하였을 때 이미지의 불균질성에서 개선을 보여주지 못하였다. The images obtained from group B improved the heterogeneity of the first phalanx (ROI 1) and the soft tissue below the first phalanx (ROI 2), while ROI 3 and 4 showed an improvement in the image heterogeneity compared to group A. Did not give.
그룹 A에서, ROI 1과 2에서의 모든 SNR 및 CNR 값은 그룹 B에서 수득된 것보다 현저하게 높았고, ROI 3과 4에서는 현저한 차이가 없었다.In group A, all SNR and CNR values in ROI 1 and 2 were significantly higher than those obtained in group B, with no significant difference in ROI 3 and 4.
그룹 B에서 지방 억제의 전체 품질의 정성 점수는 그룹 A에서 보여지는 것보다 현저하게 높았다(P < 0.001). 그룹 B에서 첫 번째 지골의 균질성은 또한 그룹 A에서의 것보다 현저하게 높았다(P < 0.001). 반면에, 중족골의 균질성은 2개의 그룹에서 현저하게 상이하지 않았다.The qualitative score of the overall quality of fat inhibition in group B was significantly higher than that seen in group A (P <0.001). Homogeneity of the first phalanx in group B was also significantly higher than that in group A (P <0.001). On the other hand, the homogeneity of the metatarsals did not differ significantly in the two groups.
본 발명의 다른 실시예의 결과는, 실리콘 패드가 종래의 SPIR 이미지화에 대한 우수한 지방 억제를 제공하며, 3T MRI에서 지방 억제의 균일성을 개선하기 위한 능력과 관련이 있다는 것을 제시한다. 일반적인 정의에서, 높은 SNR가 실험의 결과로서 기대된다. 그러나, 본 발명의 다른 실시예에서 SNR은 불완전한 지방 포화의 결과로서 잔여 지방 신호의 정도를 의미하였다. 그룹 B에서, 지방 억제는 실리콘 패드로 인해 더욱 강해져서, 그룹 A에서보다 더 적은 지방 신호가 관찰되었다.The results of another embodiment of the present invention suggest that silicone pads provide good fat inhibition for conventional SPIR imaging and are related to the ability to improve the uniformity of fat inhibition in 3T MRI. In the general definition, high SNR is expected as the result of the experiment. However, in another embodiment of the present invention, SNR meant the degree of residual fat signal as a result of incomplete fat saturation. In group B, fat inhibition was stronger due to the silicone pad, so less fat signal was observed than in group A.
이것은 SNR이 그룹 B의 ROI 1과 2에서 상당히 감소가 되었던 이유이다. 마찬가지로, 일반적인 정의에서, 높은 CNR이 또한 기대되나, 본 발명의 다른 실시예에서 CNR은 지방 억제가 완전하고 불완전한 ROIs 사이의 불균질성의 정도를 의미하였다. ROI 1과 2는 지방 억제가 불완전한 곳에서 선택되었다. ROI 3과 4는 지방 억제가 완전한 곳에서 선택되었다. 그룹 B에서, 지방 억제는 실리콘 패드로 인해 더욱 강해져서, ROI 1 및 2 상의 그룹 A에서보다 더 적은 지방 신호가 관찰되었다. CNR을 제공하는 공식에서, 분자는 주변 조직의 신호 강도를 뺀 병변의 신호 강도이다. 병변의 신호 강도는 그룹 B에서의 보다 우수한 지방 억제의 결과로서 더 작아졌다. 결과적으로, CNR은 ROI 1과 2에서 감소되었다.This is why SNR has been significantly reduced in ROI 1 and 2 of Group B. Likewise, in a general definition, high CNRs are also expected, but in other embodiments of the present invention CNR meant the degree of heterogeneity between ROIs where fat inhibition was complete and incomplete. ROI 1 and 2 were chosen where fat inhibition was incomplete. ROI 3 and 4 were chosen where fat inhibition was complete. In group B, fat inhibition was stronger due to the silicone pad, so less fat signal was observed than in group A on ROI 1 and 2 phases. In the formula that gives the CNR, the molecule is the signal strength of the lesion minus the signal strength of the surrounding tissue. The signal intensity of the lesions was smaller as a result of better fat inhibition in group B. As a result, the CNRs were reduced in ROI 1 and 2.
게다가, 실리콘 패드는 다른 화학제품과 화학반응을 일으키지 않는다. 또한, 독성물질을 포함하지 않는다. 알레르기 반응도 또한 일으키지 않는다. 그러므로 인체에 유해하지 않다. 실리콘 패드 세척이나 세정을 할 수 없지만, 상기 패드는 항진균제를 포함한다. 이것은 한국화학융합시험연구원에 의해 입증된 것이다. 실리콘 패드의 항균 활성 수준(R)은 다음의 세 가지 박테리아에 대해 5 초과이었다; 대장균, 황색포도알균, 살모렐라균. 2를 초과하는 항균 활성 수준(R)은 효과적인 것으로 고려되었다.In addition, silicone pads do not cause chemical reactions with other chemicals. It also does not contain toxic substances. It also does not cause allergic reactions. Therefore, it is not harmful to the human body. Silicone pads cannot be washed or cleaned, but the pads contain antifungal agents. This is proved by Korea Testing & Research Institute. The antimicrobial activity level (R) of the silicone pad was greater than 5 for the following three bacteria; Escherichia coli, Staphylococcus aureus, Salmonella. Antimicrobial activity levels (R) above 2 were considered effective.
실리콘 패드는 고자장 MRI 스캔을 이용한 빠른 이미지화에 대한 이점이 있고 더욱 활발한 지방 억제를 제공하는 데에 유용하므로, 발의 표면 가까이에 위치되는 자화율 인공물의 감소와 함께 고품질의 MRI 스캔을 가능케 한다. 본 발명의 다른 실시예는 실리콘 패드의 적용이 발에서의 지방 억제의 균질성을 개선하기 위한 효과적인 방법이 될 수 있음을 나타내었다.Silicone pads have the advantage of rapid imaging with high magnetic field MRI scans and are useful for providing more active fat suppression, enabling high quality MRI scans with reduced susceptibility artifacts located near the surface of the foot. Another embodiment of the present invention has shown that the application of silicone pads can be an effective way to improve the homogeneity of fat inhibition in the foot.
결론적으로, 실리콘 패드의 사용은 발의 3T MRI에서 균일한 지방 억제를 제공할 수 있고 이미지를 양적 및 질적으로 상당히 개선한다.In conclusion, the use of silicone pads can provide uniform fat inhibition in the 3T MRI of the foot and significantly improve the image both quantitatively and qualitatively.
이상과 같이 본 발명의 실시예의 설명에서는 인체의 일부분인 갑상선과 발의 자기공명 자화율 차이 보상에 관한 것을 설명하였으나, 상기 갑상선과 발 외에도 다양한 인체의 일부분에 본 발명의 실리콘 패드로 된 보상필터를 적용할 수 있을 것이다.As described above, in the description of the embodiment of the present invention, the compensation for the difference in magnetic resonance susceptibility between the thyroid gland and the foot, which is a part of the human body, has been described. Could be.
이에 따라 다음과 같이 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드를 실제 인체에 여러 부위에 적용하였을 때의 실시예를 설명한 것이다.Accordingly, as described below, an embodiment in which the silicone pad of the magnetic resonance susceptibility difference compensation filter according to the present invention is applied to various parts of the human body will be described.
도 6는 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드의 형상 예를 도시한 도면이다.6 is a view showing an example of the shape of the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention.
도 6에 도시한 바와 같이, 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드(10)는 자유롭게 형상을 변형시킬 수 있으므로 목 부위와 같은 굴곡부위에 적용하는 경우, 목의 앞 부분에 밀착되어 덮일 수 있도록 ∪ 형태의 실리콘 패드(10a)와, 이에 더해 목의 뒷부분에 밀착되어 덮일 수 있도록 일자형으로 된 실리콘 패드(10b)의 2개로 각각 별개로 구성한 것이다. 즉 상기 실리콘 패드(10)는 ∪ 형태의 실리콘 패드(10a)와 일자형의 실리콘 패드(10b)를 각각 별개로 구성하여 목 부위의 앞뒤에 적용한 것이다. 여기서 상기 일자형의 실리콘 패드(10b)는 목 부위에 외에도 일자 형태이기 때문에 가슴 부위에도 밀착하여 적용할 수 있을 것이다. 이와 같이 상기 실리콘 패드(10b)는 목 부위와 같은 인체의 부위에 맞는 형상으로 자유롭게 변형할 수 있고, 인체의 부위에 밀착하여 덮었을 때 형상을 변형할 수 있으므로 압박하여 상기 인체의 부위와 사이 공간이 생기지 않도록 하는 것이 바람직하다.As shown in Figure 6, the silicon pad 10 of the magnetic resonance susceptibility difference compensation filter according to the present invention can be freely deformed shape, so when applied to the bent portion, such as the neck, is in close contact with the front of the neck It is composed of two types of silicon pads 10a having a ∪ shape so as to be covered, and two silicon pads 10b having a straight shape so as to be covered in close contact with the back of the neck. That is, the silicon pad 10 is composed of a ∪-shaped silicon pad 10a and a straight silicon pad 10b separately applied to the front and back of the neck area. Here, the straight silicone pad 10b may be applied in close contact with the chest because it is in a straight form in addition to the neck. As described above, the silicone pad 10b may be freely deformed into a shape that fits the part of the human body, such as a neck area, and may be deformed when the silicon pad 10b is in close contact with the part of the human body. It is preferable to prevent this from occurring.
도 7은 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드를 발 앞 부분에 적용하였을 때의 사용 예 도면이다.7 is a diagram showing an example of using the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention in the forefoot part.
도 7에 도시한 바와 같이, 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드(10)로 발 앞 부분을 감싸는 형태로 적용하여 사용하고 있다. 이와 같이 발 앞 부분을 감싸는 형태로 적용하는 경우 발 앞 부분과 실리콘 패드 사이의 공간이 생겨 자화율 차이 보상에 영향을 줄 수 있으므로, 사이 공간이 생기지 않도록 상기 실리콘 패드(10)를 감싸 조여줌으로써 발 앞 부분에 밀착될 수 있도록 하는 밴드(20)를 사용하는 것이 바람직하다. As shown in FIG. 7, the front pad portion of the magnetic resonance susceptibility difference compensation filter according to the present invention is covered with the silicon pad 10. In this case, when the front portion of the foot is applied in a form that surrounds the front part of the foot and the silicon pads may affect the compensation of the susceptibility difference, the front of the foot by wrapping and tightening the silicone pad 10 so as not to create a gap between It is desirable to use a band 20 that can be in close contact with the part.
도 8은 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드를 무릎에 적용하였을 때의 사용 예 도면이다.8 is a diagram showing an example of use when the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention is applied to a knee.
도 8에 도시한 바와 같이, 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드(10)는 무릎의 뒤쪽과 같은 굴곡 부위에 적용하고자 할 때에는, 상기 무릎 뒤의 비어있는 공간에 상기 패드(10)를 채워 넣을 수 있도록 비스듬한 경사판의 형태로 구성하되, 무릎 뒤에 상기 실리콘 패드(10)를 밀착시킨 상태에서 무릎을 받쳐 지지할 수 있도록 하는 받침대(30)의 내부에 실리콘 패드(10)가 삽입되어 위치되도록 하는 것이 바람직하다.As shown in FIG. 8, when the silicon pad 10 of the magnetic resonance susceptibility difference compensation filter according to the present invention is to be applied to a bent portion such as the back of the knee, the pad 10 is disposed in an empty space behind the knee. It is configured in the form of an oblique inclined plate to fill the (), but the silicone pad 10 is inserted into the pedestal 30 to support the knee while supporting the knee in close contact with the silicone pad 10 behind the knee. It is desirable to be positioned.
도 8 내지 12은 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드를 손목, 팔꿈치, 발목 및 어깨에 적용하였을 때의 사용 예 도면이다.8 to 12 are examples of the use of the silicone pad of the magnetic resonance susceptibility difference compensation filter according to the present invention applied to the wrist, elbow, ankle and shoulder.
도 8 내지 12에 도시한 바와 같이, 본 발명에 따른 실리콘 패드(10)는 자유롭게 형상을 변경시킬 수 있으므로 손목, 팔꿈치, 발목 및 어깨 등에 밀착하여 감싸는 보호대의 형태로 만들어 사용할 수 있다.As shown in Figures 8 to 12, the silicon pad 10 according to the present invention can be freely changed in shape, it can be used in the form of a protector wrapped in close contact with the wrist, elbow, ankle and shoulder.
도 13 및 도 14은 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드를 목 부위에 적용하였을 때의 베게 형태 실리콘 패드와 그 사용 예 도면이다.13 and 14 are diagrams illustrating a pillow-type silicon pad and an example of using the silicon pad of the magnetic resonance susceptibility difference compensation filter according to the present invention.
도 13 및 도 14에 도시한 바와 같이, 본 발명에 따른 자기공명 자화율 차이 보상필터의 실리콘 패드(10)를 목 부위의 뒤쪽에 적용하는 경우, 상기한 형태와는 다르게 목 부위를 편안하게 받칠 수 있도록 베개 형태로 구성할 수 있다. 이와 같이 베개 형태로 실리콘 패드(10)를 구성하는 경우 목의 뒤쪽과 뒷머리 부분을 편안하게 받칠 수 있도록, 상면의 받치는 부분에 돌출부(40)와 홈부(50)가 이어져 형성된 베개 형태로 구성하는 것이 바람직하다.As shown in Figure 13 and 14, when the silicone pad 10 of the magnetic resonance susceptibility difference compensation filter according to the present invention is applied to the back of the neck, it is possible to comfortably support the neck, unlike the above It can be configured in the form of a pillow. Thus, when configuring the silicone pad 10 in the form of a pillow to support the back and the back of the neck comfortably, to form a pillow form formed by connecting the protrusion 40 and the groove 50 on the supporting portion of the upper surface. desirable.
상기한 바와 같이 다양한 형태로 구성하여 사용하는 실리콘 패드(10)는 그 자체를 인체의 피부에 1시간 가량 접촉시켜 사용하고 있어 알레르기와 같이 불필요한 피부 트러블을 일으킬 수 있는 소지가 있으므로, 알레르기 반응이 없는 면 소재의 커버를 덮어 사용하는 것이 바람직하다. 상기 커버는 세탁에 의해 수회의 재사용이 가능하도록 할 수 있고, 위생상의 필요에 의해서 1회용으로 사용할 수도 있다.As described above, the silicone pad 10 used in various forms is in contact with the skin of the human body for about an hour, and thus may cause unnecessary skin troubles such as allergies. It is preferable to cover the cotton material. The cover can be reused several times by washing, and can also be used for disposable use by hygiene needs.
이상과 같이 본 발명에 따른 자기공명 자화율 차이 보상필터 및 이를 이용한 자화율 차이 보상방법에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 당업자에 의해 다양한 변형이 이루어질 수 있음은 물론이다.As described above with reference to the drawings illustrating a magnetic resonance susceptibility difference compensation filter and a susceptibility difference compensation method using the same, the present invention is not limited to the embodiments and drawings disclosed herein, Various modifications can be made by those skilled in the art within the scope of the technical idea of the present invention.
본 발명의 실리콘 패드를 이용하여 공기와 맞닿은 굴곡진 부분을 보상하면 자기공명 신호의 대조도에 영향을 주지 않으면서 조직과 공기 간 자화율 차이를 줄일 수 있어, 갑상선 등의 인체의 확산강조영상 검사 시 영상의 뒤틀림이 감소한 진단적 가치가 높은 영상을 획득할 수 있는 자기공명 자화율 차이 보상필터로 유용하게 활용할 수 있다.Compensating the curved portion in contact with the air using the silicon pad of the present invention can reduce the susceptibility difference between the tissue and the air without affecting the contrast of the magnetic resonance signal, during the inspection of the diffuse emphasis image of the human body, such as the thyroid gland It can be usefully used as a magnetic resonance susceptibility difference compensation filter that can obtain a high diagnostic value image with reduced distortion.
또 알레르기가 발생하지 않는 1회용 면 소재의 커버를 피부와 맞닿는 실리콘 패드에 적용함으로써, 검사 시 장시간 상기 실리콘 패드와 접촉해야 하는 환자의 부담을 줄여줄 수 있는 자기공명 자화율 차이 보상필터로 유용하게 활용할 수 있다.In addition, by applying the cover of disposable cotton material that does not cause allergy to the silicon pad that comes into contact with the skin, it can be usefully used as a magnetic resonance susceptibility difference compensation filter that can reduce the burden on patients who need to contact the silicon pad for a long time during the examination. Can be.
또한 실리콘 패드의 형상을 자유롭게 변경시킬 수 있으므로 환자의 신체 각 부위에 정확하게 밀착되는 형상으로 미리 맞춤 제작하여 사용할 수 있는 자기공명 자화율 차이 보상필터로 유용하게 활용할 수 있다.In addition, since the shape of the silicon pad can be freely changed, it can be usefully used as a magnetic resonance susceptibility difference compensation filter that can be custom made and used in a shape that closely adheres to each part of the patient's body.

Claims (15)

  1. 규소 수지성분의 실리콘 베이스로 구성된 실리콘 패드를 포함하며,It includes a silicon pad composed of a silicon base of the silicon resin component,
    상기 실리콘 베이스를 인체 부위에 적용하되, 상기 인체 외부 공간의 적어도 일부를 채워 인체 조직과 상기 인체 외부의 자화율 차이를 보상하도록 한 것을 특징으로 하는 자기공명 자화율 차이 보상필터.Magnetic resonance susceptibility difference compensation filter, characterized in that the silicone base is applied to the human body part, by filling at least a portion of the external space of the human body to compensate for the difference in susceptibility between human tissue and the outside of the human body.
  2. 제1항에 있어서,The method of claim 1,
    상기 실리콘 패드는 규소 수지성분의 실리콘 베이스에 경화방지제가 첨가되어 형상변형이 가능한 것을 특징으로 하는 자기공명 자화율 차이 보상필터.The silicone pad is a magnetic resonance susceptibility difference compensation filter, characterized in that the shape change is possible by adding a curing agent to the silicon base of the silicon resin component.
  3. 제1항에 있어서,The method of claim 1,
    상기 실리콘 패드는 적용된 상기 인체 부위와의 사이 공간이 생기지 않도록 압박변형 또는 밀착 가능하도록 하는 것을 특징으로 하는 자기공명 자화율 차이 보상필터.The silicon pad is magnetic resonance susceptibility difference compensation filter, characterized in that the compression deformation or close contact so as not to create a space between the applied human body parts.
  4. 제1항에 있어서,The method of claim 1,
    상기 실리콘 패드의 표면을 덮는 커버를 더 포함하는 것을 특징으로 하는 자기공명 자화율 차이 보상필터.The magnetic resonance susceptibility difference compensation filter further comprises a cover covering the surface of the silicon pad.
  5. 제1항에 있어서,The method of claim 1,
    상기 실리콘 패드는 젤(gel)의 형태로 구성함을 특징으로 하는 자기공명 자화율 차이 보상필터.Magnetic resonance susceptibility difference compensation filter, characterized in that the silicon pad is configured in the form of a gel (gel).
  6. 제2항에 있어서,The method of claim 2,
    상기 실리콘 베이스는 실리콘 중합체에 폴리디메틸실록산, 실리카 및 실리콘 오일이 첨가된 혼합물이고, 상기 경화방지제는 메틸 비닐 실리콘 검과 실리콘 오일의 혼합물인 것을 특징으로 하는 자기공명 자화율 차이 보상필터. Wherein said silicone base is a mixture of polydimethylsiloxane, silica and silicone oil added to a silicone polymer, and said hardening agent is a mixture of methyl vinyl silicone gum and silicone oil.
  7. 제1항에 있어서,The method of claim 1,
    상기 실리콘 패드는 상기 인체의 곡면 부위를 덮는 ∪ 형태 패드 또는 상기 인체의 평면 부위를 덮는 일자형태 패드로 구성되며, 상기 ∪ 형태 패드 및 상기 일자 형태 패드는 단독으로 또는 함께 사용되는 것을 특징으로 하는 자기공명 자화율 차이 보상필터.The silicon pad may be configured of a pad-shaped pad covering the curved portion of the human body or a straight pad covering the flat portion of the human body, and the pad-shaped pad and the straight pad may be used alone or together. Resonance susceptibility difference compensation filter.
  8. 제1항에 있어서,The method of claim 1,
    상기 인체의 굴곡을 보상하고 인체와 실리콘 패드 사이의 비어있는 공간이 생기지 않도록 상기 인체를 덮고 있는 상기 실리콘 패드를 둘러싸 조이는 밴드를 더 포함하는 것을 특징으로 하는 자기공명 자화율 차이 보상필터.The magnetic resonance susceptibility difference compensation filter further comprises a band for compensating the curvature of the human body and tightening the silicone pad covering the human body so as not to create an empty space between the human body and the silicone pad.
  9. 제1항에 있어서,The method of claim 1,
    상기 실리콘 패드는 상기 인체의 굴곡으로 비어있는 공간을 채워 넣는 형태로 구성하되, 상기 인체의 적용 부위를 받치면서 상기 실리콘 패드를 내부에 위치시키는 받침대를 더 포함하는 것을 특징으로 하는 자기공명 자화율 차이 보상필터.The silicon pad is configured to fill the empty space by the bending of the human body, the magnetic resonance susceptibility difference compensation further comprises a pedestal for placing the silicon pad inside while supporting the application site of the human body filter.
  10. 제1항에 있어서,The method of claim 1,
    상기 실리콘 패드는 상기 인체의 적용 부위를 감싸며 밀착하는 보호대의 형태로 구성된 것을 특징으로 하는 자기공명 자화율 차이 보상필터.The silicon pad is magnetic resonance susceptibility difference compensation filter, characterized in that formed in the form of a guard that wraps around the application area of the human body.
  11. 제1항에 있어서,The method of claim 1,
    상기 실리콘 패드는 목 부위를 받치면서 머리부위가 삽입되는 돌출부와 홈부가 이어져 형성되는 베개 형태로 구성된 것을 특징으로 하는 자기공명 자화율 차이 보상필터.The silicone pad is magnetic resonance susceptibility difference compensation filter, characterized in that formed in the form of a pillow formed by connecting the projection and the groove portion is inserted into the head portion supporting the neck portion.
  12. 인체 조직과 상기 인체 외부의 자화율 차이를 보상하기 위한 필터를 상기 인체의 적어도 일부위에 착용시키되, 상기 필터는 규소 수지성분의 실리콘 베이스로 구성된 실리콘 패드를 포함하는 단계; 및Wearing a filter on at least a portion of the human body to compensate for the difference in susceptibility between human tissue and the outside of the human body, the filter comprising a silicon pad comprising a silicon base of a silicon resin component; And
    자기장을 인가하여 자기공명영상을 획득하는 단계를 포함하는 것을 특징으로 하는 공명 자화율 차이 보상 방법.Resonance susceptibility difference compensation method comprising the step of obtaining a magnetic resonance image by applying a magnetic field.
  13. 제12항에 있어서,The method of claim 12,
    상기 실리콘 패드는 경화방지제가 첨가되어 형상변형이 가능한 것을 특징으로 하는 자기공명 자화율 차이 보상 방법.The silicon pad is magnetic resonance susceptibility difference compensation method characterized in that the addition of a hardening agent is capable of deformation.
  14. 제12항에 있어서,The method of claim 12,
    상기 실리콘 패드는 적용된 상기 인체 부위와의 사이 공간이 생기지 않도록 압박변형 또는 밀착 가능하도록 하는 것을 특징으로 하는 자기공명 자화율 차이 보상 방법.The silicon pad is magnetic resonance susceptibility difference compensation method characterized in that the compression deformation or close contact so as not to create a space between the applied human body parts.
  15. 제12항에 있어서,The method of claim 12,
    상기 실리콘 패드의 표면을 덮는 커버를 더 포함하는 것을 특징으로 하는 자기공명 자화율 차이 보상 방법.The magnetic resonance susceptibility difference compensation method further comprises a cover covering the surface of the silicon pad.
PCT/KR2015/004323 2015-03-12 2015-04-29 Magnetic resonance susceptibility difference compensation filter and method for compensating for magnetic susceptibility difference using same WO2016143943A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150034696 2015-03-12
KR10-2015-0034696 2015-03-12
KR1020150059911 2015-04-28
KR10-2015-0059911 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016143943A1 true WO2016143943A1 (en) 2016-09-15

Family

ID=56879196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004323 WO2016143943A1 (en) 2015-03-12 2015-04-29 Magnetic resonance susceptibility difference compensation filter and method for compensating for magnetic susceptibility difference using same

Country Status (1)

Country Link
WO (1) WO2016143943A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114195A2 (en) * 2007-03-20 2008-09-25 Koninklijke Philips Electronics N.V. Rf receiver for an mri system comprising a susceptibility matched padding device
JP2009045217A (en) * 2007-08-20 2009-03-05 Toshiba Corp Pad for magnetic resonance apparatus
KR20110035377A (en) * 2009-09-30 2011-04-06 주식회사 청우메디칼 Pad for abdominal
US8186880B1 (en) * 2008-11-27 2012-05-29 Arnold Ben A Extended and fixed INTable simultaneously imaged calibration and correction methods and references for 3-D imaging devices
JP2013022065A (en) * 2011-07-15 2013-02-04 Toshiba Corp Coil pad and planar coil device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114195A2 (en) * 2007-03-20 2008-09-25 Koninklijke Philips Electronics N.V. Rf receiver for an mri system comprising a susceptibility matched padding device
JP2009045217A (en) * 2007-08-20 2009-03-05 Toshiba Corp Pad for magnetic resonance apparatus
US8186880B1 (en) * 2008-11-27 2012-05-29 Arnold Ben A Extended and fixed INTable simultaneously imaged calibration and correction methods and references for 3-D imaging devices
KR20110035377A (en) * 2009-09-30 2011-04-06 주식회사 청우메디칼 Pad for abdominal
JP2013022065A (en) * 2011-07-15 2013-02-04 Toshiba Corp Coil pad and planar coil device

Similar Documents

Publication Publication Date Title
Yoshikawa et al. Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer
Minetto et al. Ultrasound-based detection of low muscle mass for diagnosis of sarcopenia in older adults
Drakonaki et al. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy
McCallister et al. A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI
Asensio et al. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later
Moser et al. MR imaging of pseudotumor cerebri
Vasilev et al. Chest MRI of patients with COVID-19
JP6665087B2 (en) Foot positioning system for examination by magnetic resonance imaging
Schraml et al. Multiparametric analysis of bone marrow in cancer patients using simultaneous PET/MR imaging: Correlation of fat fraction, diffusivity, metabolic activity, and anthropometric data
Chaudry et al. Magnetic resonance imaging and bioelectrical impedance analysis to assess visceral and abdominal adipose tissue
Rehmann et al. Diffusion tensor imaging reveals changes in non‐fat infiltrated muscles in late onset Pompe disease
Zhao et al. Experimental evaluation of accelerated T1rho relaxation quantification in human liver using limited spin-lock times
Oba et al. Evaluation of muscle quality and quantity for the assessment of sarcopenia using mid-thigh computed tomography: a cohort study
Luo et al. Comparison of Image Quality of Multiple Magnetic Resonance Imaging Sequences in Multiple Myeloma
Sun et al. Selection and application of coils in temporomandibular joint MRI
Hemke et al. Quantitative imaging of body composition
Su et al. Multisequence quantitative magnetic resonance neurography of brachial and lumbosacral plexus in chronic inflammatory demyelinating polyneuropathy
Heaney et al. A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields
Trip et al. Muscle ultrasound measurements and functional muscle parameters in non-dystrophic myotonias suggest structural muscle changes
Debernard et al. A possible clinical tool to depict muscle elasticity mapping using magnetic resonance elastography
Rößler et al. The influence of patient positioning in breast CT on breast tissue coverage and patient comfort
Choi et al. Optimization of dose and image quality using self-produced phantom with various diameters in pediatric abdominal CT scan
KR101747240B1 (en) Filter and Method for compensation of gap of magnetic resonance susceptibility
Wu et al. Feasibility of three-dimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures
WO2016143943A1 (en) Magnetic resonance susceptibility difference compensation filter and method for compensating for magnetic susceptibility difference using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884743

Country of ref document: EP

Kind code of ref document: A1