WO2016178986A1 - System and method for spo2 determination using reflective ppg - Google Patents

System and method for spo2 determination using reflective ppg Download PDF

Info

Publication number
WO2016178986A1
WO2016178986A1 PCT/US2016/030088 US2016030088W WO2016178986A1 WO 2016178986 A1 WO2016178986 A1 WO 2016178986A1 US 2016030088 W US2016030088 W US 2016030088W WO 2016178986 A1 WO2016178986 A1 WO 2016178986A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
wavelength
path length
optical path
Prior art date
Application number
PCT/US2016/030088
Other languages
French (fr)
Inventor
Laurence Richard OLIVIER
Franco Bauer Du Preez
Tiaan Andre VAN DER MERWE
Original Assignee
Lifeq Global Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lifeq Global Limited filed Critical Lifeq Global Limited
Publication of WO2016178986A1 publication Critical patent/WO2016178986A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger

Definitions

  • the present invention relates to the field of non ⁇ invasive digital health monitoring and signal processing.
  • a system and method for determining oxygen saturation (SpO 2 ) non ⁇ invasively is presented.
  • the invention comprises a wearable device to be placed in contact with the user’s skin.
  • the wristwatch form factor creates the challenge of measuring SpO 2 under conditions which may greatly reduce the quality and consistency of the PPG signal used for calculating the SpO 2 value.
  • being able to perform SpO 2 measurements on a finger that is temporarily placed in contact with a flat sensor in reflectance mode as opposed to using an additional cumbersome finger clip that supports transmission mode, will make it possible to embed the present technology to measure SpO 2 on mobile devices connected to the cloud.
  • PPG measurements can be performed in two modes, namely transmission or reflection.
  • transmission mode PPG the light emitting diodes (LEDs) and photodetector (PD) within the sensor are placed on opposite sides of the pulsating vascular bed.
  • the sensor can be attached across a fingertip or earlobe allowing the light to be transmitted from the LED through the flesh and detected on the opposite side by the PD.
  • the configuration of reflection mode differs in that the LEDs and PD are situated adjacent to each other, on the same planar surface, which allows the PD to detect the reflected light from tissue, bone and/or blood vessels.
  • the reflection mode arrangement enables readings from various body locations, such as the head and wrist.
  • Pulse oximetry is largely based on the principle of the Beer ⁇ Lambert Law which uses variables such as absorbance, intensity of incident and transmitted light, extinction coefficients and path length (distance light is transmitted). In applying the Beer ⁇ Lambert Law, exact knowledge of the path length is required. However, the path length changes due to perturbations in the tissue.
  • US 20130331710 There are publications that have innovations based on inferring the optical path length (US 20130331710), have corrected for differential scattering based on path lengths estimated from signal levels (US 20100076319) and inventions that control the optical path length mechanically (US 8060171).
  • PPG waveforms consist of direct current (DC) and alternating current (AC) components.
  • the DC component of the PPG waveform represents the detected transmitted or reflected optical signal from the tissue and remains relatively constant with regard to respiration.
  • the AC component corresponds to changes in the blood volume, namely between the systolic and diastolic phases of the cardiac cycle, and is dependent on the heart rate signal, which is superimposed onto the DC component.
  • modulation amplitude or level is indicative of the effect of the status of the tissue, by the change in blood flow within the artery, and is calculated as the AC/DC component ratio (R).
  • EP 0957747 used a novel sensor design that has a ring ⁇ like geometry and two point ⁇ like light sources to mechanically mitigate variations in the path lengths for red and infrared light sources.
  • the present invention relates to a novel system and method for continuous SpO 2 measurement using reflective PPG.
  • the system facilitates SpO 2 prediction by basing a calibration step on the ratio of red and infrared path lengths. This facilitates SpO 2 prediction, on any user for a given optical configuration, by ensuring that path length is accordingly incorporated into the prediction equation.
  • use of an automatic gain control (AGC) implemented on the device enables optimal signal extraction for the determination of SpO 2 .
  • the signal extraction ensures the maximal amplification of the AC component, which is usually a limitation in reflective PPG.
  • the current invention provides a novel system and method that removes discontinuities from the red and infrared signals in a way that preserves the ⁇ value (equation 20, discussed below), ensuring a more accurate SpO 2 prediction.
  • the system and method perform SpO 2 measurements using PPG technology in reflective mode.
  • the unique aspects pertain to selecting a specific factor for calibrating the PPG device in a manner that is specific to the layout of the optical configuration. This method adds further accuracy and robustness to the SpO 2 prediction.
  • a filter technique is presented that removes discontinuities from the signal while preserving the information content relating to SpO 2 calculations, further increasing the robustness of the output.
  • Determining SpO 2 using optical PPG technology in reflective mode poses additional challenges as opposed to transmission modes.
  • One challenge is differences in the scattering coefficient of the illumination sources. For example, a source in the red portion of the visible spectrum (e.g., around 660 nm) and a source in the infrared spectrum (e.g., around 950 nm) results in different degrees of light penetration, potentially illuminating tissue areas with different concentrations of blood vessels, as infrared light typically penetrates deeper layers.
  • the present invention relates to using the path length ratio (c) (see equation 3 below), which changes depending on the distance between the detector and light source, to calibrate a specific optical layout consisting of photodiode(s) and LEDs for measuring a range of oxygen saturation values (SpO 2 ) using reflective mode PPG data.
  • the present invention further relates to the use of a specific adaptable amplification system to generate the signals used for calculating the SpO 2 value.
  • the DC component of the received signal can be filtered out. This results in a larger AC component, therefore producing a better signal ⁇ to ⁇ noise ratio (SNR) due to the increased power in the signal.
  • SNR signal ⁇ to ⁇ noise ratio
  • the present invention also relates to post processing of the signal obtained from said amplification system.
  • the value of ⁇ is required, which relies on a reading proportional to the light intensity detected by the PPG sensor.
  • the photodiode current is generally proportional to the amount of monochromatic light that the photodiode receives and can be calculated based on an understanding of the signal amplification and quantification (analog ⁇ to ⁇ digital converter or ADC) systems.
  • this technology may be deployed in a range of mobile devices, such as smart ⁇ watches, or incorporated in the exterior of mobile phones to enable the calculation of SpO 2 values with minimal invasiveness.
  • Such devices can perform further processing to reveal additional physiological information based on the SpO 2 value and other information, or this could be sent to a mobile phone for such operations, or could similarly be sent to a cloud computing platform for such operations.
  • the information produced as a result of these processing steps could then be relayed back to a user via a range of terminals including, but not limited to, a wearable display, a smartwatch display or other computing devices connected to the internet.
  • FIG. 1 is a schematic diagram of reflective and transmission mode PPG.
  • FIG. 2 shows the differences in the trajectory for light of different wavelengths, exemplified with a red (660 nm) and near infrared (950 nm) light source.
  • FIG. 3 shows signal adjustment using scaling continuity filter, according to an embodiment of the present invention.
  • FIG. 4 shows data flow, information flow, and connectivity of the sensor to mobile computing platforms and the internet, according to an embodiment of the present invention.
  • “Exemplary” means “an example of” and is not intended to convey an indication of a preferred or ideal embodiment. “Such as” is not used in a restrictive sense, but for explanatory purposes. The singular forms “a,” “an,” and “the” also include plural elements unless the context clearly dictates otherwise. “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur and that the description includes instances where said event or circumstance occurs and instances where it does not.
  • the system of the current invention typically comprises electrodes which are placed in a specific configuration on an area of the body which includes, but is not limited to, areas such as the upper arm, forearm and wrist.
  • FIG. 1 depicts the difference between transmission and reflective mode PPG.
  • a light source 160 illuminates tissue 170 and a sensor or detector 150 is situated opposite the light source 160 across the tissue 170.
  • the light path 180 through the tissue 170 is direct.
  • a light source 100 illuminates tissue 120 and a sensor or detector 110 is situated on the same side of the tissue 120 as the light source 100.
  • the light that is detected at the sensor 110 is the light that follows a reflected light path 130.
  • the same tissue can be illuminated in transmission mode as in reflective mode PPG, differences are pronounced in reflective mode.
  • the reflective mode receives more light that is less modulated by interaction with the pulsating tissue, thereby causing a smaller modulation (AC/DC ratio).
  • AC/DC ratio modulation
  • motion artifacts are pronounced due to the specular nature of the light reflecting off the skin surface.
  • FIG. 2 shows an example of how light of different wavelengths can illuminate different sections of tissue due to the preferential scattering of lower wavelengths, exemplified by light from a light source 210, such as an LED, with a 660 nm wavelength compared to light from a light source 210, such as an LED, with a 950 nm wavelength.
  • a light source 210 such as an LED
  • light source 210 of FIG. 2 generates light of both wavelengths. This difference forms the basis for considering different path lengths, such as a longer path length 230 and a shorter path length 240, for the different wavelengths, even though the light source 210 to sensor 220 distance could be identical in both cases.
  • any of a number of combinations of wavelengths could be used.
  • ultraviolet and infrared, visible and ultraviolet, visible and terahertz, or infrared and mm ⁇ wave light could be used.
  • two distinct wavelengths within the same portion of the spectrum can be used, such as two separate wavelengths of infrared light.
  • the combination of red light and infrared light is used in the preferred embodiment due to the availability of these light sources in convenient components for integrated devices and the ability of these wavelengths to penetrate into the body.
  • These two wavelengths of light can be generated by one or two or more light sources 210, including, but not limited to LEDs, diode lasers, or incandescent lamps.
  • the light source 210 may be tunable in wavelength. Likewise, the light may be sensed by one or two or more light sensors 220.
  • the light sensors 220 may be, among others, photodiodes, photodetectors, photoconductors, photomultiplier tubes, or solar cells.
  • a single photodiode may receive the signal at two wavelengths simultaneously or in a time modulated manner to act as sensors for more than one wavelength.
  • the following section shows the derivation of oxygen saturation using the principles of the Beer ⁇ Lambert Law describing the absorption of light in various media.
  • the calculations are carried out on the device via a processor.
  • This processor in an embodiment, may be embedded in the wrist band of the device in the wristwatch form factor.
  • Light transmission is defined as the amount of light that leaves a medium that is illuminated (I) relative to the amount of light used in the illumination process (I 0 ):
  • Absorbance (A) is then defined as the negative log of transmission: We also know according to the Beer ⁇ Lambert Law that
  • A absorbance
  • is the molar extinction coefficient
  • c concentration
  • l is the path length
  • the different layers can be seen as filters with different characteristics.
  • ⁇ LED ⁇ Tissue is the coupling efficiency of emitted light
  • ⁇ Tissue ⁇ PD is the efficiency of the photo ⁇ diode to collect light
  • the denominator I E associated with the DC component
  • the numerator derivative term dI E /dt being associated with the AC component. Note that if we take the gradient calculated from the trough to the peak of the PPG waveform (AC), then we essentially calculate the average gradient over that period. Similarly, the DC component is the average intensity of transmitted light. Note that while the calculations are performed here using 660 nm and 950 nm light, any two wavelengths can be substituted into the equations.
  • FIG. 3 depicts the basic operation of the proportional discontinuity filter, which uses a multiplicative factor to rebase the signal after adjustments, such as LED intensity increases or changes in the settings of the amplification system have been applied.
  • the key is that the signal is multiplied from the discontinuity onwards with a constant value that brings about continuity of the signal for improved amplitude (AC) and baseline (DC) calculations, while maintaining the AC/DC ratio for any channel that it is applied to.
  • the constant multiplier is adjusted similarly to retain continuity (i.e. k 1 *k 2 l PD in FIG. 3).
  • FIG. 4 demonstrates a basic embodiment of the inventions described above concerning SpO2 prediction whereby the sensor is embodied together with a micro controller or other type of processor into a wearable device 1 containing the necessary sensor means to measure SpO2, including light sources, such as LEDs, laser diodes, and the like, and sensors, such as photodiodes and/or photodetectors.
  • the processor is operatively connected to the sensors to receive the measurements of the light intensity or other received signal appropriate for the sensor type. This may include an analog to digital conversion by the processor or by the sensor.
  • the wearable device may be a wrist mount, such as a wristwatch or other type of wrist strap device.
  • the wearable device optionally contains a display 2 and is capable of encoded transmitting digital encoded or analog modulated data to wireless device over a wireless radio connection, such as Bluetooth or Wi ⁇ Fi.
  • the wireless device may be a mobile device 3 or a personal computer 5 with a wireless connection.
  • the wearable device may directly connect to an internet based platform 4.
  • the data can be stored and further processed on a server / internet based platform 6 for future retrieval and to be viewed on a computing platform exemplified by the personal computer 5, the mobile device 3 and or wearable device 1.

Abstract

A system and method for performing SpO2 measurements using reflective PPG technology. The method of the invention is to be applied to physiological signal analysis. The system and method of the invention allows accurate measurement of SpO2 by wearable devices.

Description

SYSTEM AND METHOD FOR SPODETERMINATION USING REFLECTIVE PPG   
FIELD OF INVENTION 
 
[0001] The  present  invention  relates  to  the  field  of  non‐invasive  digital  health  monitoring and  signal processing.  In particular, a  system and method  for determining  oxygen saturation (SpO2) non‐invasively  is presented. In an embodiment, the  invention  comprises a wearable device to be placed in contact with the user’s skin.  
 
BACKGROUND OF INVENTION 
 
[0002] Traditionally,  determining  the  degree  of  saturation  of  the  oxygen‐carrying  molecules found in red blood cells (SpO2) was only applicable in a fixed medical/hospital  setting. However, there is an increasing demand for wearable devices which can provide  monitoring  in  almost  any  environment.  This  includes,  but  is  not  limited  to,  sports,  quantified‐self, and medical applications. This data may also be useful in a scientific and  clinical research setting.  
 
[0003] While  finger and ear clip based pulse oximetry monitors have been proven  to provide an accurate measure of SpO2, they are limited by the location from which the  SpOmeasurement  is  taken. These pulse oximeters  interfere with everyday activities,  such  as  typing,  and  wearing  such  devices  for  extended  periods  of  time  may  cause  discomfort. Some monitors make use of a photoplethysmography (PPG) light source and  sensor, which utilizes an algorithm to determine the user’s degree of oxygen saturation  (SpO2) from the measured PPG signal. In such instances, the sensor and light source are  both in contact with the same area of skin. This method is particularly useful under free‐ living  conditions  where  a  subject  may  be  unable  to  wear  a  finger  or  ear  clip.  A  wristwatch  form  factor  is generally a more  favorable option. However, the wristwatch  form factor creates the challenge of measuring SpOunder conditions which may greatly  reduce the quality and consistency of the PPG signal used for calculating the SpOvalue.  In addition, being able  to perform SpOmeasurements on a  finger  that  is  temporarily  placed  in  contact  with  a  flat  sensor  in  reflectance  mode  as  opposed  to  using  an  additional  cumbersome  finger  clip  that  supports  transmission  mode,  will  make  it  possible  to  embed  the  present  technology  to  measure  SpO on  mobile  devices  connected to the cloud. 
 
[0004] PPG measurements can be performed in two modes, namely transmission or  reflection.  In  transmission  mode  PPG,  the  light  emitting  diodes  (LEDs)  and  photodetector  (PD)  within  the  sensor  are  placed  on  opposite  sides  of  the  pulsating  vascular  bed.  For  example,  the  sensor  can  be  attached  across  a  fingertip  or  earlobe  allowing the light to be transmitted from the LED through the flesh and detected on the  opposite side by the PD. On the other hand, the configuration of reflection mode differs  in that the LEDs and PD are situated adjacent to each other, on the same planar surface,  which allows the PD to detect the reflected light from tissue, bone and/or blood vessels.  The reflection mode arrangement enables readings from various body locations, such as  the head and wrist. 
 
[0005] Pulse  oximetry  is  largely  based  on  the  principle  of  the  Beer‐Lambert  Law  which  uses  variables  such  as  absorbance,  intensity  of  incident  and  transmitted  light,  extinction  coefficients  and  path  length  (distance  light  is  transmitted).  In  applying  the  Beer‐Lambert Law, exact knowledge of the path  length  is required. However, the path  length  changes  due  to  perturbations  in  the  tissue.  There  are  publications  that  have  innovations  based  on  inferring  the  optical  path  length  (US  20130331710),  have  corrected for differential scattering based on path  lengths estimated from signal  levels  (US 20100076319) and inventions that control the optical path length mechanically (US  8060171). While  these  publications,  and  others  (US  6987994, US  5259381),  describe  techniques  conventional  to  most  reflective  PPG  devices,  they  do  not  describe  a  calibration method where  the  ratio of optical path  lengths  for  visible  spectrum  light,  such as red  light, and  infrared  light  illumination  is the parameter being fitted as  in the  present  invention. Others have assumed that the change  in path  length, due to factors  such as the wavelength shift,  is negligible on the accuracy of the SpOprediction  (WO  2013077808). US Patent Publication No. 20140200423 discloses a wearable,  reflective  PPG  device  whereby  the  optical  path  length  was  increased.  While  the  said method  improves  accuracy of  the  signal, due  to  increased  absorbance,  it does not describe  a  method by which path length is necessarily appropriately calibrated in the prediction of  SpO2
 
[0006] PPG waveforms  consist of direct  current  (DC)  and  alternating  current  (AC)  components.  The  DC  component  of  the  PPG  waveform  represents  the  detected  transmitted or  reflected optical  signal  from  the  tissue and  remains  relatively constant  with  regard  to  respiration.  The  AC  component  corresponds  to  changes  in  the  blood  volume, namely between  the  systolic and diastolic phases of  the cardiac cycle, and  is  dependent on  the heart  rate  signal, which  is  superimposed onto  the DC  component.  Additionally, modulation amplitude or level is indicative of the effect of the status of the  tissue, by  the  change  in blood  flow within  the artery, and  is  calculated as  the AC/DC  component  ratio  (R). Reflective PPG often  results  in a  reduced AC component and an  increased DC component, since the light tends to pass through a more superficial part of  the skin and has a reduced  interaction with pulsating blood.  In an attempt  to address  this  issue,  International  Patent  Publication No. WO  2009064979  described  a method  whereby  the DC  component of  the  analog was  filtered out  in order  to extract  an AC  component, which could then be further processed in order to identify the rising portion  of  the  AC  component. Others  have  documented  that  the  addition  of  a  third  near‐IR  wavelength enables the calculation of an additional ratio formed by the combination of  the  two  IR wavelengths  (US Patent Publication No. 20020042558).  In addition,  the US  Patent No. 6839580 made use of dynamic device calibration using a database of SpO calibration curves to calibrate the device on a per individual basis. European Patent No.  EP 0957747 used a novel sensor design that has a ring‐like geometry and two point‐like  light sources to mechanically mitigate variations in the path lengths for red and infrared  light sources. 
 
[0007] However,  the proposed  systems and methods demonstrated  in  related art  remain lacking in the aspects of continuity in measurement, sufficient calibration as well  as  optimal  signal  extraction.  Therefore,  we  propose  a  system  and  method  which  addresses these shortcomings and results in an accurate SpO2 prediction.  
 
SUMMARY OF INVENTION 
 
[0008] The present invention relates to a novel system and method for continuous  SpO measurement  using  reflective  PPG.  In  an  aspect,  the  system  facilitates  SpO prediction by basing a calibration step on the ratio of red and infrared path lengths. This  facilitates SpOprediction, on any user for a given optical configuration, by ensuring that  path length is accordingly incorporated into the prediction equation. In addition, use of  an  automatic  gain  control  (AGC)  implemented  on  the  device  enables  optimal  signal  extraction  for  the  determination  of  SpO2.  The  signal  extraction  ensures  the maximal  amplification of  the AC  component, which  is usually  a  limitation  in  reflective PPG.  In  another  aspect,  the  current  invention  provides  a  novel  system  and  method  that  removes discontinuities from the red and infrared signals in a way that preserves the  Φ  value (equation 20, discussed below), ensuring a more accurate SpOprediction.   
[0009] In an aspect, the system and method perform SpOmeasurements using PPG  technology  in reflective mode. The unique aspects pertain to selecting a specific factor  for calibrating  the PPG device  in a manner  that  is specific  to  the  layout of  the optical  configuration. This method adds further accuracy and robustness to the SpOprediction.  Finally, a filter technique is presented that removes discontinuities from the signal while  preserving the  information content relating to SpOcalculations, further  increasing the  robustness of the output.   
[00010] Determining  SpO using  optical  PPG  technology  in  reflective  mode  poses  additional challenges as opposed to transmission modes. One challenge is differences in  the scattering coefficient of the  illumination sources. For example, a source  in the red  portion  of  the  visible  spectrum  (e.g.,  around  660  nm)  and  a  source  in  the  infrared  spectrum  (e.g.,  around  950  nm)  results  in  different  degrees  of  light  penetration,  potentially  illuminating  tissue areas with different  concentrations of blood  vessels, as  infrared light typically penetrates deeper layers. 
 
[00011] The present invention relates to using the path length ratio (c) (see equation  3  below), which  changes  depending  on  the  distance  between  the  detector  and  light  source,  to  calibrate  a  specific optical  layout  consisting of  photodiode(s)  and  LEDs  for  measuring a range of oxygen saturation values (SpO2) using reflective mode PPG data.   
[00012] The  present  invention  further  relates  to  the  use  of  a  specific  adaptable  amplification system to generate the signals used for calculating the SpOvalue.    
[00013] In an embodiment, the DC component of the received signal can be filtered  out. This results in a larger AC component, therefore producing a better signal‐to‐noise  ratio (SNR) due to the increased power in the signal. 
 
[00014] The present  invention also relates to post processing of the signal obtained  from said amplification system. In order to calculate SpO(or S as used in the formulas  below; equation 29) the value of  Φ is required, which relies on a reading proportional to  the light intensity detected by the PPG sensor. In the case where the photodiode is used  as the  light sensor, the photodiode current  is generally proportional to the amount of  monochromatic  light  that  the photodiode  receives and can be calculated based on an  understanding of the signal amplification and quantification (analog‐to‐digital converter  or ADC) systems. Imperfections in these calculations, variation in the specification of the  components  involved and changes  in  the  intensity of  the  illumination source all affect  the  calculated  PD  current  and  changes  in  settings  typically  cause  discontinuities  that  reduce the quality of SpOpredictions. Looking at the definition of  Φ and assuming that  PD current is proportional to the light intensity received at the photodiode, it becomes  evident  that any  linear  factor  that equally affects  the AC and DC  components of one  wavelength,  cancels  out  and  does  not  affect  the  value  of  Φ. Hence,  it  is  possible  to  remove  discontinuities  from  the  PD  current  signal  by multiplying  the  signal with  the  necessary factor to retain continuity. The improvement in signal continuity subsequently  aids the process of separating AC and DC components for the current in the 660 nm and  950 nm channels and thereby calculating a more robust  Φ, and therefore SpO2 value.   
[00015] In an aspect, this technology may be deployed in a range of mobile devices,  such as smart‐watches, or  incorporated  in the exterior of mobile phones to enable the  calculation of SpOvalues with minimal  invasiveness. Such devices can perform further  processing  to  reveal additional physiological  information based on  the SpOvalue and  other information, or this could be sent to a mobile phone for such operations, or could  similarly be  sent  to a  cloud  computing platform  for  such operations. The  information  produced as a result of these processing steps could then be relayed back to a user via a  range  of  terminals  including,  but  not  limited  to,  a  wearable  display,  a  smartwatch  display or other computing devices connected to the internet. 
 
BRIEF DESCRIPTION OF DRAWINGS 
 
[00016] The  preferred  embodiments  of  the  invention will  be  described  by way  of  example only, with reference to the accompanying drawings: 
 
[00017] FIG. 1 is a schematic diagram of reflective and transmission mode PPG.   
[00018] FIG.  2  shows  the  differences  in  the  trajectory  for  light  of  different  wavelengths, exemplified with a red (660 nm) and near infrared (950 nm) light source.   
[00019] FIG. 3 shows signal adjustment using scaling continuity filter, according to an  embodiment of the present invention. 
 
[00020] FIG. 4 shows data flow,  information flow, and connectivity of the sensor to  mobile  computing  platforms  and  the  internet,  according  to  an  embodiment  of  the  present invention. 
 
 
DETAILED DESCRIPTION OF INVENTION AND DRAWINGS 
 
[00021] The following detailed description and drawings describe different aspects of  the current  invention. The description and drawings serve to enable one skilled  in the  art to fully understand the current invention and are not intended to limit the scope of  the invention in any manner. Before the present methods and systems are disclosed and  described,  it  is  to  be  understood  that  the methods  and  systems  are  not  limited  to  special methods, special components, or to particular  implementations.  It  is also to be  understood that the terminology used herein is for the purpose of describing particular  aspects  only  and  is  not  intended  to  be  limiting. As  used  in  the  specification  and  the  appended claims, the word “comprise” and variations of the word, such as “comprising”  and “comprises,” means “including but not  limited to, ”and  is not  intended to exclude,  for example, other components or steps. “Exemplary” means “an example of” and is not  intended to convey an  indication of a preferred or  ideal embodiment. “Such as”  is not  used  in a restrictive sense, but for explanatory purposes. The singular forms “a,” “an,”  and “the”  also  include  plural  elements  unless  the  context  clearly  dictates  otherwise.  “Optional”  or “optionally”  means  that  the  subsequently  described  event  or  circumstance may or may not occur and that the description  includes  instances where  said event or circumstance occurs and  instances where  it does not. The system of the  current  invention  typically  comprises  electrodes  which  are  placed  in  a  specific  configuration on an area of the body which includes, but is not limited to, areas such as  the upper arm, forearm and wrist. 
 
[00022] FIG. 1 depicts the difference between transmission and reflective mode PPG.  In  transmission mode  PPG,  a  light  source  160  illuminates  tissue  170  and  a  sensor  or  detector 150  is situated opposite  the  light source 160 across  the  tissue 170. The  light  path 180  through  the  tissue 170  is direct.  In  reflective mode PPG,  a  light  source 100  illuminates  tissue 120 and a sensor or detector 110 is situated on the same side of the  tissue 120 as the light source 100. The light that is detected at the sensor 110 is the light  that follows a reflected  light path 130. Although the same tissue can be  illuminated  in  transmission mode as  in reflective mode PPG, differences are pronounced  in reflective  mode. Furthermore, the reflective mode receives more  light that  is  less modulated by  interaction  with  the  pulsating  tissue,  thereby  causing  a  smaller  modulation  (AC/DC  ratio). Lastly,  in  reflective mode, motion artifacts are pronounced due  to  the specular  nature of the light reflecting off the skin surface. 
 
[00023] FIG. 2 shows an example of how light of different wavelengths can illuminate  different  sections  of  tissue  due  to  the  preferential  scattering  of  lower  wavelengths,  exemplified by light from a light source 210, such as an LED, with a 660 nm wavelength  compared to  light from a  light source 210, such as an LED, with a 950 nm wavelength.  Note that light source 210 of FIG. 2 generates light of both wavelengths. This difference  forms the basis for considering different path lengths, such as a longer path length 230  and  a  shorter  path  length  240,  for  the  different wavelengths,  even  though  the  light  source 210 to sensor 220 distance could be identical in both cases.  
 
[00024] Although 660 nm and 950 nm are used as examples  throughout, any of a  number  of  combinations  of wavelengths  could  be  used. As  examples,  ultraviolet  and  infrared,  visible  and  ultraviolet,  visible  and  terahertz,  or  infrared  and mm‐wave  light  could be used. Furthermore,  two distinct wavelengths within  the  same portion of  the  spectrum  can  be  used,  such  as  two  separate  wavelengths  of  infrared  light.  The  combination of red light and infrared light is used in the preferred embodiment due to  the availability of these  light sources  in convenient components  for  integrated devices  and the ability of these wavelengths to penetrate into the body. These two wavelengths  of  light can be generated by one or  two or more  light sources 210,  including, but not  limited  to  LEDs,  diode  lasers,  or  incandescent  lamps.  The  light  source  210  may  be  tunable  in wavelength. Likewise,  the  light may be sensed by one or  two or more  light  sensors  220.  The  light  sensors  220,  in  an  embodiment,  may  be,  among  others,  photodiodes, photodetectors, photoconductors, photomultiplier tubes, or solar cells. A  single  photodiode may  receive  the  signal  at  two wavelengths  simultaneously  or  in  a  time modulated manner to act as sensors for more than one wavelength. 
 
[00025] The  following  section  shows  the derivation of oxygen  saturation using  the  principles of the Beer‐Lambert Law describing the absorption of  light  in various media.  The  calculations  are  carried  out  on  the  device  via  a  processor.  This  processor,  in  an  embodiment, may be embedded in the wrist band of the device in the wristwatch form  factor. 
 
[00026] Light transmission (T) is defined as the amount of light that leaves a medium  that is illuminated (I) relative to the amount of light used in the illumination process (I0):   
Figure imgf000010_0001
 
Absorbance (A) is then defined as the negative log of transmission: 
Figure imgf000010_0002
  We also know according to the Beer‐Lambert Law that 
 
Figure imgf000011_0001
 
 
where A is absorbance, ∈ is the molar extinction coefficient, c is concentration and l is  the path length.  
 
[00027] If we assume that  light travels through  layers of different compounds (such  as bone, skin pigment, arterial and venous blood vessels, etc.), then we can think of the  resulting  transmittance  as  the  product  of  the  transmittance  components  associated  with the different layers. 
Figure imgf000011_0002
 
The different layers can be seen as filters with different characteristics. In an aspect, we  view the transmitted light as the light traveling between the light source 210, such as an  emitters LED, and the sensor 220, such as a photodiode or other type of photodetector.   
[00028] We can add two multiplicative factors to equation 4, 
 
Figure imgf000011_0003
 
Where ηLED−Tissue  is the coupling efficiency of emitted  light and ηTissue−PD  is the efficiency  of the photo‐diode to collect light. 
 
[00029] Now using the Beer‐Lambert Law, equation 3 
    This gives the total absorbance (ATotal) and can be equivalently expressed as sum of the  individual absorbances, 
 
Figure imgf000012_0001
   
 
[00030] We  assume  that  all  other  layers/filters  remain  fairly  constant  during  a  relatively  short  time  period,  except  for  the  arterial  absorption  layer,  for  which  its  changes  in concentration are  induced by a beating heart. Since pulse oximetry focuses  on  the  pulsating  arterial  blood,  the  derivative  of  equation  8  with  respect  to  time  is  calculated. Most terms will cancel out because they are constant with respect to time:   
Figure imgf000012_0002
 
 
[00031] An additional assumption  is made that there are only two absorbers  in the  arterial blood: oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb). This implies that   
Figure imgf000013_0001
 
 
If  we  assume  the  incoming  light  intensity  is  constant  (IE),  then  the  only  changing  intensity is that which is measured at the end of the path length, at the photodiode (due  to  pulsating  blood),  and  therefore  equation  13  becomes  (using  the  chain  rule  of  differentiation): 
 
Figure imgf000013_0002
 
[00032] If we take the ratio of delta absorbances for the two different wavelengths  660 nm (red visible light) and 950 nm (infrared), 
 
Figure imgf000013_0003
 
 
Note that this is approximately equal to: 
 
Figure imgf000013_0004
 
  with  the  denominator  I associated  with  the  DC  component  and  the  numerator  derivative term dIE/dt being associated with the AC component. Note that if we take the  gradient  calculated  from  the  trough  to  the peak of  the PPG waveform  (AC),  then we  essentially calculate the average gradient over that period. Similarly, the DC component  is  the  average  intensity  of  transmitted  light.  Note  that  while  the  calculations  are  performed  here  using  660  nm  and  950  nm  light,  any  two  wavelengths  can  be  substituted into the equations. 
 
[00033] We  define  oxygen  saturation,  S,  as  the  percentage  of  total  concentration  (given previous assumption this consists of only hemoglobin and oxyhemoglobin):   
Figure imgf000014_0001
 
 
This implies that: 
 
Figure imgf000014_0002
 
 
 
We  do  this  simply  to  get  the  equation  in  terms  of  one  variable.  Substituting  this  definition in equation 15 we get 
 
Figure imgf000014_0003
   
[00034] Using equation 19, we have 
 
Figure imgf000015_0001
 
 
Note  that  in  biological  tissue,  l  is  the  effective mean  path  length  to  account  for  the  effects of scattering: 
 
Figure imgf000015_0002
   
[00035] Note if we assume that the path lengths for hemoglobin and oxyhemoglobin,  given the same wave  length, are the same (i.e.  lHb,950 =  lHbO2,950 and  lHb,660 =  lHbO2,660) and  that the ratio of path  lengths  for visible spectrum  light, such as red  light, and  infrared  light are constant  
 
Figure imgf000015_0003
 
 
then equation 29 reduces to: 
 
Figure imgf000015_0004
 
 
[00036] Note  that  the dcHb/dt  cancels  in  the  ratio,  so  this  calculation  is essentially  independent of the instantaneous change in hemoglobin concentration (due the way we  defined  it  in  equation  22).  By  calibrating  one  value  for  the  path‐length  ratio  (c)  in  equation 29,  for a  specific  reflectance PPG  sensor  layout, we can obtain a  theoretical  SpO prediction.  The  parameter  Φ  would  then  be  calculated  from  the  photodiode  current, after applying the additional filter described below. 
 
[00037] FIG.  3  depicts  the  basic  operation  of  the  proportional  discontinuity  filter,  which uses a multiplicative  factor  to  rebase  the  signal after adjustments,  such as LED  intensity  increases  or  changes  in  the  settings  of  the  amplification  system  have  been  applied. The key  is  that  the signal  is multiplied  from  the discontinuity onwards with a  constant value  that brings about continuity of  the  signal  for  improved amplitude  (AC)  and baseline (DC) calculations, while maintaining the AC/DC ratio for any channel that it  is applied  to. As additional discontinuities are encountered,  the  constant multiplier  is  adjusted similarly to retain continuity (i.e. k1*k2lPD in FIG. 3). 
 
[00038] FIG. 4 demonstrates a basic embodiment of the inventions described above  concerning SpO2 prediction whereby the sensor is embodied together with a micro  controller or other type of processor into a wearable device 1 containing the necessary  sensor means to measure SpO2, including light sources, such as LEDs, laser diodes, and  the like, and sensors, such as photodiodes and/or photodetectors. The processor is  operatively connected to the sensors to receive the measurements of the light intensity  or other received signal appropriate for the sensor type. This may include an analog to  digital conversion by the processor or by the sensor. The wearable device may be a wrist  mount, such as a wristwatch or other type of wrist strap device. The wearable device  optionally contains a display 2 and is capable of encoded transmitting digital encoded or  analog modulated data to wireless device over a wireless radio connection, such as  Bluetooth or Wi‐Fi. The wireless device may be a mobile device 3 or a personal  computer 5 with a wireless connection. The wearable device may directly connect to an  internet based platform 4. The data can be stored and further processed on a server /  internet based platform 6 for future retrieval and to be viewed on a computing platform  exemplified by the personal computer 5, the mobile device 3 and or wearable device 1.    
[00039] Having thus described exemplary embodiments of a method to produce  metallic composite material, it should be noted by those skilled in the art that the within  disclosures are exemplary only and that various other alternatives, adaptations, and  modifications may be made within the scope of this disclosure.  Accordingly, the  invention is not limited to the specific embodiments as illustrated herein, but is only  limited by the following claims. 
 
 
 
   

Claims

  WHAT IS CLAIMED:   
1. An  apparatus  for  measuring  the  oxygen  saturation  of  blood,  the  apparatus  comprising  
a. a first light source operating in the visible spectrum; 
b. a  first  light  sensor  configured  to  detect  the  intensity  of  received  light  from  the  first  light source and configured  to operate  in reflective mode  photoplethysmography with the first light source; 
c. a second light source operating in the infrared spectrum; 
d. a second  light sensor configured to detect the  intensity of received  light  from  the  second  light  source  and  configured  to  operate  in  reflective  mode photoplethysmography with the second light source;  e. a processor  configured  to  calculate  the oxygen  saturation, wherein  the  calculation  uses  the  ratio  of  the  optical  path  length  of  the  first  light  source  to  the  first  light  sensor  versus  the  optical  path  length  of  the  second light source to the second light sensor. 
 
2. The  apparatus  of  claim  1,  wherein  the  first  light  source  generates  light  substantially having a wavelength of 660 nm. 
 
3. The apparatus of claim 1, wherein the first light source comprises at least one light  emitting diode. 
 
4. The  apparatus  of  claim  1,  wherein  the  second  light  source  generates  light  substantially having a wavelength of 950 nm. 
 
5. The apparatus of claim 1, wherein the second light source comprises at  least one  light emitting diode.   
6. The apparatus of claim 1, wherein  the  first  light  source  is a  light emitting diode  having a wavelength of 660 nm and  the  second  light  source  is a  light emitting  diode having a wavelength of 950 nm. 
 
7. The apparatus of claim 1, wherein  the  first  light source,  the second  light source,  the first light sensor, and the second light sensor are substantially located on the  same surface. 
 
8. The apparatus of claim 1, wherein the ratio of the optical path length of the first  light source to the first light sensor versus the optical path length of the second  light source to the second light sensor is calculated based on the equation:   
Figure imgf000019_0001
wherein  λ1 is the wavelength of the first light source, and  λis the wavelength of  the second light source. 
  
9. The apparatus of claim 9, wherein the parameter  Φ  is based on the ratio of delta  absorbances for the two different wavelengths. 
 
10. The apparatus of claim 10, wherein the parameter  Φ is approximated by 
Figure imgf000019_0002
wherein  λ1 is the wavelength of the first light source, and  λis the wavelength of  the second light source. 
 
11. The  apparatus  of  claim  10,  further  comprising  a  scaling  discontinuity  filter  configured to adjust the output of the photodiode current so as to remove the  discontinuity caused by a light source intensity change.  
 
12. The apparatus of claim 10, further comprising signal conditioning. 
 
13. The  apparatus  of  claim  12,  wherein  the  signal  conditioning  comprises  an  automatic gain control. 
 
14. The  apparatus  of  claim  1,  further  comprising  a  wireless  radio,  wherein  the  wireless  radio  is  configured  to  transmit  a  digital  encoding  of  the  calculated  oxygen saturation. 
 
15. A  method  for  determining  the  oxygen  saturation  of  blood,  the  method  comprising: 
a. placing  a  first  light  emitting  diode  proximate  to  skin  of  a  first  person,  wherein the first light source has a first wavelength; 
b. placing  a  second  light  emitting  diode  proximate  the  skin  of  the  first  person, wherein the second light source has a second wavelength;  c. placing  a  first  photodetector  proximate  to  the  skin  of  the  first  person,  wherein  the  first  photodetector  is  configured  to  operate  in  reflective  photoplethysmography mode and to detect the intensity of the reflected  light from the first light source; 
d. placing a second photodetector proximate to the skin of the first person,  wherein the second photodetector  is configured to operate  in reflective  photoplethysmography mode and to detect the intensity of the reflected  light from the second light source;  e. determining  a  first  optical  path  length  based  on  the  intensity  of  the  reflected light from the first light source; 
f. determining a  second optical path  length based on  the  intensity of  the  reflected light from the second light source; and 
g. calculating the oxygen saturation, wherein the calculation uses the ratio  of the first optical path length versus the second optical path length.   
16. The method of claim 15, wherein the ratio of the first optical path length versus  the second optical path length is calculated based on the equation: 
 
Figure imgf000021_0001
 
wherein  λ1 is the wavelength of the first light source, and  λis the wavelength of the  second light source. 
 
17. The method of claim 16, wherein the parameter  Φ is based on the ratio of delta  absorbances for the two different wavelengths. 
 
18. The  method  of  claim  17,  wherein  the  parameter  Φ  is  approximated  by
Figure imgf000021_0002
wherein  λ1 is the wavelength of the first light source, and  λis the wavelength of  the second light source. 
 
19. A system for determining the oxygen saturation of blood, the system comprising:      a wearable device comprising: 
i. a wrist mount, 
ii. a first light source, 
iii. a  first  light  sensor  configured  for  reflectivity mode  operation  in  conjunction  with  the  first  light  source  and  generating  a  first  intensity output, 
iv. a second light source, 
v. a second light sensor configured for reflectivity mode operation in  conjunction with the second light source and generating a second  intensity output, 
vi. a  processor  configured  to  receive  the  first  intensity  output  and  determine a first optical path length, receive the second intensity  output  and  determine  a  second  optical  path  length,  and  determine an oxygen saturation based on the ratio of the ratio of  the first optical path length and the second optical path length.   
20. The  system  of  claim  19,  wherein  the  wearable  device  further  comprises  a  wireless radio. 
 
21. The system of claim 20, wherein the wireless radio of the wearable device  is a  Wi‐Fi  radio,  and  the  processor  is  further  configured  to  transmit  the  oxygen  saturation over the Wi‐Fi radio. 
 
22. The  system  of  claim  20,  further  comprising  a  wireless  device,  wherein  the  wireless device comprises a wireless  radio  that  is operatively connected  to  the  wireless radio of the wearable device, and wherein the mobile device comprises  an application for displaying the oxygen saturation. 
 
23. The  system of  claim 19, wherein  the  first  light  source operates  in  the  infrared  spectrum, and the second light source operates in the visible spectrum. 
 
24. The apparatus of claim 23, wherein the first light source is a light emitting diode  that generates light substantially having a wavelength of 660 nm and the second  light source  is a  light emitting diode  that generates  light substantially having a  wavelength of 950 nm. 
 
25. The system of claim 19, wherein the ratio of the first optical path  length versus  the second optical path length is calculated based on the equation: 
 
 
Figure imgf000023_0001
 
  wherein 
Figure imgf000023_0002
is the wavelength of the first light source, and  λis the wavelength of  the second light source. 
 
26. The  method  of  claim  25,  wherein  the  parameter  Φ  is  approximated  by
Figure imgf000023_0003
wherein 
Figure imgf000023_0004
is the wavelength of the first light source, and  λis the wavelength of  the second light source. 
 
27. The system of claim 19, wherein the first light source and the second light source  are the same.  
28. The system of claim 19, wherein the first light sensor and the second light sensor  are the same. 
 
   
PCT/US2016/030088 2015-05-01 2016-04-29 System and method for spo2 determination using reflective ppg WO2016178986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562155739P 2015-05-01 2015-05-01
US62/155,739 2015-05-01

Publications (1)

Publication Number Publication Date
WO2016178986A1 true WO2016178986A1 (en) 2016-11-10

Family

ID=57217986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/030088 WO2016178986A1 (en) 2015-05-01 2016-04-29 System and method for spo2 determination using reflective ppg

Country Status (1)

Country Link
WO (1) WO2016178986A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020210617A1 (en) * 2019-04-11 2020-10-15 Vivonics, Inc System and method for noninvasively measuring blood alcohol concentration using light
EP3641648A4 (en) * 2017-06-23 2021-04-14 3M Innovative Properties Company Wireless pulse oximeter device
GB2589553A (en) * 2019-10-09 2021-06-09 Life Meter Srl Pulse oximetry methods, devices and systems
CN113100759A (en) * 2021-04-01 2021-07-13 北京雪扬科技有限公司 Wearable device-based oxyhemoglobin saturation detection method
WO2022191385A1 (en) * 2021-03-08 2022-09-15 삼성전자 주식회사 Electronic device and method for improving signal stabilization time
RU2793540C1 (en) * 2022-05-19 2023-04-04 Самсунг Электроникс Ко., Лтд. Portable device and method for non-invasive measurement of blood elements

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246002A (en) * 1992-02-11 1993-09-21 Physio-Control Corporation Noise insensitive pulse transmittance oximeter
US20080208019A1 (en) * 2007-02-22 2008-08-28 Jerusalem College Of Technology Modified Pulse Oximetry Technique For Measurement Of Oxygen Saturation In Arterial And Venous Blood
US20110201946A1 (en) * 2004-07-19 2011-08-18 Turcott Robert G Reducing data acquisition, power and processing for hemodynamic signal sampling
US20130060104A1 (en) * 2011-09-07 2013-03-07 Nellcor Puritan Bennett Llc Filtered detector array for optical patient sensors
US20130096401A1 (en) * 2011-10-13 2013-04-18 Robert Evan Lash Wireless disposable shock trauma monitoring device
US20130197330A1 (en) * 1998-06-03 2013-08-01 Masimo Corporation Physiological monitor
US20130331710A1 (en) * 2012-06-12 2013-12-12 Nellcor Puritan Bennett Llc Pathlength Enhancement of Optical Measurement of Physiological Blood Parameters
US20140200423A1 (en) * 2011-08-30 2014-07-17 Oxitone Medical Ltd. Wearable pulse oximetry device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246002A (en) * 1992-02-11 1993-09-21 Physio-Control Corporation Noise insensitive pulse transmittance oximeter
US20130197330A1 (en) * 1998-06-03 2013-08-01 Masimo Corporation Physiological monitor
US20110201946A1 (en) * 2004-07-19 2011-08-18 Turcott Robert G Reducing data acquisition, power and processing for hemodynamic signal sampling
US20080208019A1 (en) * 2007-02-22 2008-08-28 Jerusalem College Of Technology Modified Pulse Oximetry Technique For Measurement Of Oxygen Saturation In Arterial And Venous Blood
US20140200423A1 (en) * 2011-08-30 2014-07-17 Oxitone Medical Ltd. Wearable pulse oximetry device
US20130060104A1 (en) * 2011-09-07 2013-03-07 Nellcor Puritan Bennett Llc Filtered detector array for optical patient sensors
US20130096401A1 (en) * 2011-10-13 2013-04-18 Robert Evan Lash Wireless disposable shock trauma monitoring device
US20130331710A1 (en) * 2012-06-12 2013-12-12 Nellcor Puritan Bennett Llc Pathlength Enhancement of Optical Measurement of Physiological Blood Parameters

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3641648A4 (en) * 2017-06-23 2021-04-14 3M Innovative Properties Company Wireless pulse oximeter device
WO2020210617A1 (en) * 2019-04-11 2020-10-15 Vivonics, Inc System and method for noninvasively measuring blood alcohol concentration using light
US11013460B2 (en) 2019-04-11 2021-05-25 Vivonics, Inc. System and method for noninvasively measuring blood alcohol concentration using light
GB2589553A (en) * 2019-10-09 2021-06-09 Life Meter Srl Pulse oximetry methods, devices and systems
GB2589553B (en) * 2019-10-09 2024-03-13 Life Meter Srl Pulse oximetry methods, devices and systems
WO2022191385A1 (en) * 2021-03-08 2022-09-15 삼성전자 주식회사 Electronic device and method for improving signal stabilization time
CN113100759A (en) * 2021-04-01 2021-07-13 北京雪扬科技有限公司 Wearable device-based oxyhemoglobin saturation detection method
RU2793540C1 (en) * 2022-05-19 2023-04-04 Самсунг Электроникс Ко., Лтд. Portable device and method for non-invasive measurement of blood elements

Similar Documents

Publication Publication Date Title
US11202582B2 (en) Device for use in blood oxygen saturation measurement
US8175670B2 (en) Pulse oximetry signal correction using near infrared absorption by water
US8123695B2 (en) Method and apparatus for detection of venous pulsation
US8385995B2 (en) Physiological parameter tracking system
KR100612827B1 (en) Method and apparatus for noninvasively measuring hemoglobin concentration and oxygen saturation
JP6525890B2 (en) System and method for determining vital sign information of a subject
US7738935B1 (en) Methods and devices for reduction of motion-induced noise in pulse oximetry
US8694067B2 (en) Sensor, apparatus and method for non-invasively monitoring blood characteristics of a subject
WO2016178986A1 (en) System and method for spo2 determination using reflective ppg
JP5096310B2 (en) Method and apparatus for determining blood perfusion in a body part
EP3307162B1 (en) Pulse oximetry
SG189432A1 (en) A photoplethysmographic device and methods therefore
JP2005516642A6 (en) Signal processing method and apparatus for improving signal-to-noise ratio
JP2004202190A (en) Biological information measuring device
US20190209060A1 (en) System and method for non-invasive monitoring of hemoglobin
EP3355775A1 (en) Vital signs sensor and method of measuring vital signs of a user
CN115988985A (en) Device and method for compensating for the assessment of peripheral arterial tone
WO2018029123A1 (en) Device for use in blood oxygen saturation measurement
JP6373511B2 (en) Optical analysis system and method
JP2021521951A (en) Devices, methods and computer programs for determining blood pressure measurements
KR101786014B1 (en) SPO2 measurement system based on wrist-type photoplethysmography and method thereof
KR20170064906A (en) Apparatus and method for measuring bio-signal
US20240057868A1 (en) System for Optically Measuring Vital Parameters
Von Chong et al. Towards Spectral Pulse Oximetry independent of motion artifacts
CN117425427A (en) NIRS/tissue oximetry based method for measuring arterial blood oxygen saturation from pulsatile hemoglobin waveforms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789824

Country of ref document: EP

Kind code of ref document: A1