WO2017014183A1 - Exercise capacity and exercise evaluation system - Google Patents

Exercise capacity and exercise evaluation system Download PDF

Info

Publication number
WO2017014183A1
WO2017014183A1 PCT/JP2016/070991 JP2016070991W WO2017014183A1 WO 2017014183 A1 WO2017014183 A1 WO 2017014183A1 JP 2016070991 W JP2016070991 W JP 2016070991W WO 2017014183 A1 WO2017014183 A1 WO 2017014183A1
Authority
WO
WIPO (PCT)
Prior art keywords
exercise
formula
exerciser
metabolic reaction
reactor
Prior art date
Application number
PCT/JP2016/070991
Other languages
French (fr)
Japanese (ja)
Inventor
克之 柿木
Original Assignee
Blue Wych合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Wych合同会社 filed Critical Blue Wych合同会社
Priority to JP2017529877A priority Critical patent/JP6770749B2/en
Publication of WO2017014183A1 publication Critical patent/WO2017014183A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to an evaluation system for athletic ability and exercise. More particularly, the present invention relates to a method for assessing an endurance exercise capacity of an exerciser based on a plurality of measurement variables indicating the exercise state of the exerciser during exercise, and the quality of exercise performed by the exerciser.
  • the present invention relates to a method for analysis and evaluation. Further, the present invention is a method for estimating the endurance exercise ability by estimating the exercise ability of the exerciser based on the variable indicating the exercise state of the exerciser, and evaluating the quality of exercise performed by the exerciser.
  • the present invention relates to a method and database system for creating a support database for estimating any element selected from the group consisting of an athlete's state, possible exercise quantity and quality for supporting execution.
  • measuring instruments for measuring exercise intensity (hereinafter referred to as “power measuring instruments”) have been developed and miniaturized. For this reason, depending on the competition, in addition to the heart rate, pulse, and respiration rate at the competition site, the altitude and exercise speed at which the competitor is currently located can be measured and collected as data.
  • a bicycle competition is a sport in which such measurement devices can be loaded and exercise history can be collected as data.
  • the pitch or the rotational speed of the legs can be measured.
  • devices for data collection as described above are sold at a price of tens of thousands to hundreds of thousands of yen together with software having a simple analysis function from each measuring instrument manufacturer.
  • fat which is a main energy source (hereinafter referred to as “first energy source”), is mostly used to produce ATP by oxidative metabolic reaction in the main reactor (see FIG. 1).
  • first energy source a main energy source
  • sugar which is the second energy source
  • pyruvic acid is generated by the glycolysis reaction in the first side reactor.
  • Pyruvate is also used as a raw material for ATP production in the main reactor, but becomes lactic acid when reduced by the action of lactate dehydrogenase. Lactic acid is also used for the production of ATP.
  • Part of the oxidative metabolite of fat is utilized in the creatine phosphate consumption-resynthesis reaction in the second side reactor to produce ATP (see FIG. 1).
  • LT is an exercise intensity that is observed when the exercise intensity is increased and indicates a point at which the blood lactate concentration starts to increase rapidly. It is defined as exercise intensity (power) that makes difficult exercise difficult. In recent years, the importance of LT has become clear as an index of endurance exercise ability.
  • LT is widely used as an indicator of endurance exercise ability because the measurement at the site is simple.
  • a gradual load test is performed. This is a test in which exercise is performed at a constant intensity for a certain period of time, the blood lactate concentration is measured each time, and then the intensity is gradually increased.
  • the LT is determined by measuring the blood lactate concentration of the subject according to the exercise intensity to be maintained, creating a lactate curve representing the relationship between the exercise intensity and the blood lactate concentration, and determining the specific concentration change value. Based on the Lactate curve (hereinafter referred to as the “Lactate curve method”) and the method in which the blood lactate concentration reaches 4 mmol / L uniformly based on the Lactate curve (( It is known that there is an onset of blood lactic acid accumulation (Onset ⁇ Blood LactatecumAccumulation, hereinafter referred to as" OBLA method ").
  • LT is determined as the LT power, the LT heart rate, the LT speed, and the like near the intensity at which the increase in blood lactate concentration begins.
  • FIG. 3 shows points for determining ⁇ 1 mmol / L from the baseline as an example of the LT determination method.
  • the latter LT determination method is different from the former method in that the point at which the blood lactate concentration uniformly reaches 4 mmol / L from the Lactate curve is used as an index of endurance exercise ability.
  • LT is obtained simply and approximately by several methods as an index of endurance exercise intensity. I was able to do it.
  • a method for determining LT using such a device there are a method for obtaining from measured training data, a method for obtaining from the distribution frequency of the work rate distribution, a method for obtaining from the relationship between the exercise intensity called “Critical Power (CP)” and the sustainable time.
  • CP is a method in which the athlete who is the subject actually executes the intensity a plurality of times, or estimates a power value that can be maintained based on the intensity data value during training.
  • CP is a more practical estimation method of the endurance exercise index, and the LT intensity can be estimated more easily and approximately.
  • the blood lactate concentration is measured in order to determine the metabolic ability of the exerciser. Specifically, the blood lactate concentration is measured when an exercise test that maintains a constant intensity for a certain period of time is performed. As the exercise intensity is gradually increased, there is a phenomenon in which the blood lactate concentration increases as the exercise intensity increases, and the intensity (power value, speed, etc.) at that time is set as LT, which is a representative value of endurance exercise ability. That is, conventionally, the blood lactic acid concentration has been measured by a method of measuring the lactic acid concentration at a predetermined time while maintaining a constant load (hereinafter referred to as “prior art”).
  • exercise history generally varies with time because exercise intensity varies intermittently due to weather and other causes such as fatigue accumulated during exercise, course fluctuations, rain, wind strength, and high and low temperatures. It becomes complicated and shows various patterns. And energy consumption changes according to the endurance exercise ability and exercise history of each exerciser, and fatigue accumulates corresponding to this. For this reason, for example, when aiming at the completion of a full marathon, it is necessary to suppress the accumulation of fatigue as much as possible while responding to varying exercise intensity. And, with the elements such as exercise intensity, time, number of times, etc. as the optimum configuration according to each athlete's specific metabolic ability, it is possible to improve the endurance exercise ability and perform exercise with the exercise intensity required in the competition It is necessary to advance training.
  • the prior art is an excellent method in that the lactic acid concentration at a certain time can be known while maintaining a constant load.
  • the load during exercise was kept constant, the blood lactate concentration that gradually increased could not be measured over time.
  • the endurance exercise capacity value is determined as ⁇ 1 mmol / L or OBLA from the baseline by the LT determination method using the conventional lactate curve, in practice, higher exercise intensity and blood lactate concentration are maintained.
  • the lactic acid production formula in the first sub-reactor (see FIGS. 1 and 2), which serves as an index of metabolic ability to supply energy for sustaining exercise, is created without measuring blood concentration.
  • the present inventor has conducted research on changes in the concentration of metabolic reaction substances that indirectly indicate the state of the exerciser that changes as the exercise continues. Then, the inventor appropriately combines a plurality of specific measurable amounts, and when the specific plurality of measurable amounts are variables, estimates in the form of the sum of the products of the functions for each of the variables The knowledge that the reaction rate formula which can ensure accuracy can be expressed was obtained.
  • the present invention has been completed based on such findings. That is, any one of the first to third sets of variables is selected, and each value of the exercise state variable included in the selected set is continuously measured for at least one exercise period for the measurement target exerciser. A measurement step of actually measuring; and a calculation step of calculating a coefficient parameter corresponding to the exerciser to be measured in a metabolic reaction model formula determined corresponding to the selected set based on a measurement result in the measurement step: Prepared,
  • the first set includes any of torque, cadence, body weight of the measurement target exerciser, heart rate of the measurement target exerciser, inclination of a training course, blood or muscle metabolite concentration, and temperature or body temperature.
  • the second set includes force, stride (pitch), body weight of the subject exerciser, heart rate of the subject exerciser, slope of the training course, blood or muscle Metabolite concentration, and a variable consisting of either air temperature or body temperature;
  • the third set includes power (work rate), weight of the measurement target exerciser, Including variables consisting of heart rate, training course slope, blood or muscle metabolite concentration, and either temperature or body temperature;
  • the metabolic reaction model formula when the selected set is the first set is the following formula (I); the metabolic reaction model formula when the selected set is the second set is The metabolic reaction model formula when the selected set is the third set is the following formula (III); in the metabolic reaction formula estimation method for the measurement subject exerciser is there.
  • [met] represents a metabolite concentration
  • [tor] represents a torque value
  • [cad] represents a leg rotation speed [rpm]
  • a pedal rotation speed a pitch number
  • a movement speed Each cadence selected from the group consisting of [weight] represents the weight of the exerciser to be measured
  • [HR] represents the heart rate [bpm].
  • [slope] represents the course state including the course inclination angle distribution.
  • [temp] represents air temperature or body temperature.
  • [force] is a force value
  • [stride (pitch)] is a parameter for moving the body like a pitch, and represents a stride or pitch during walking or running.
  • [weight], [HR], [slope], [met], and [temp] are the same as those in the formula (I).
  • the power order in the formula (IV) is a real number.
  • the power order in the formula (V) is a real number.
  • the power order in the formula (VI) is a real number.
  • the present invention is based on the metabolic reaction equation estimated for the measurement target exerciser using the metabolic reaction equation estimation method described above, and the exerciser for the measurement target exerciser during exercise in a new exercise period.
  • the method is preferably a method for estimating at least one of the state, the quality of exercise, and the amount of exercise.
  • the personal attribute includes the degree of training progress, and according to the progress of the training, the quality of exercise or the amount of exercise can be estimated using a new metabolic reaction equation.
  • the personal attributes preferably include the level of athletic ability, height, weight, body temperature, and the like of the measurement target exerciser.
  • an endurance exercise ability evaluation method for evaluating endurance exercise ability for evaluating endurance exercise ability.
  • the overall performance of the main body reactor that supplies energy necessary for the duration of movement by metabolic reaction, and the first and second side reactors in the reactor is used for the metabolic reaction in each reactor.
  • the main body reactor is a place where the first energy source is metabolized to generate creatine phosphate and adenosine triphosphate, and the first body side reactor is metabolized the second energy source to generate pyruvic acid. And adenosine triphosphate, the second internal side reactor reacts creatine and adenosine triphosphate from creatine phosphate generated in the main body reactor depending on the level of adenosine diphosphate. It is preferable that the field is generated.
  • the metabolic reaction of the metabolite includes an oxidative metabolic reaction of the first energy source in the main body reactor, a glycolysis reaction of the second energy source in the first body side reactor, and the second body side reaction.
  • a combination of creatine phosphate consumption-resynthesis reaction in the reactor is preferred.
  • the first energy source is fat and the second energy source is sugar.
  • the estimation method of the metabolic reaction model formula of the present invention it is possible to provide a metabolic capacity index that is more strict than that of LT and that is necessary for the duration of exercise.
  • a new indicator of endurance according to the individual's ability by the estimation method of any element selected from the group consisting of the state of the exerciser, the quality of exercise and the amount of exercise using the above metabolic reaction model formula Can be provided.
  • a predetermined exercise state variable is measured, and a metabolic reaction model equation corresponding to the exercise state variable is used, so that a support database for estimation of exercise quality or possible exercise amount is obtained. Can be created.
  • the training support method of the present invention it is possible to efficiently and accurately improve the exercise ability of the exerciser.
  • FIG. 1 is a diagram schematically showing the main body reactor, the first and second sub-reactors in the body, their functions, and the amount of adenosine triphosphate (ATP) supplied from each reactor.
  • FIG. 2 is a diagram schematically showing a change in the ATP supply amount from each of the reactors after performing appropriate training.
  • FIG. 3 is a diagram showing a method for determining a lactic acid curve (relationship between increase in work (power [W]) and blood lactic acid concentration [mmol / L]) and LT power value.
  • FIG. 4A is a diagram showing the results of blood lactate concentration measurement by an incremental load test.
  • FIG. 4B is a diagram illustrating a change due to cadence among the measurement results of FIG. 4A.
  • FIG. 4C is a diagram showing a change due to the heart rate in the measurement result of FIG. 4A.
  • FIG. 4D is a diagram illustrating a change due to power in the measurement result of FIG. 4A.
  • FIG. 5 is a diagram showing changes in blood lactate concentration during a constant load exercise.
  • FIG. 6 is a diagram showing a decrease in blood lactate concentration during low-load exercise.
  • FIG. 7 is a graph showing actually measured blood lactate concentration data and calculation results (predicted lactate concentration).
  • FIG. 8 is a diagram illustrating an example of the configuration of the database system.
  • the metabolic reaction equation estimation method of the present invention includes (A1) calculating at least one of the values of the exercise state variables included in the selected group among the following groups of 1 to 3 for the measurement target exerciser. And (A2) a calculation step of calculating a coefficient parameter corresponding to the measurement target exerciser in the metabolic reaction model formula based on the measurement result in the measurement step.
  • the variables of the group described in the above (A1) are as follows.
  • the first set (a) includes (a1) torque, (a2) cadence, (a3) body weight of the exerciser to be measured, (a4) heart rate of the exerciser to be measured, (a5) inclination of the training course, (a6) The blood metabolite concentration (concentration of pyruvic acid, lactic acid, creatine phosphate), and (a7) a variable consisting of one of temperature and body temperature.
  • the above (a3) to (a7) are the same as the first group (a), but a force representing a pressing force is used instead of the torque of (a1), and ( Instead of the cadence of a2), a variable called stride (pitch) is included.
  • the third group (c) preferably includes a variable of power (power) instead of the torque and cadence of the above (a1) and (a2) in order to increase the accuracy of the estimation result.
  • [met] represents blood and muscle concentrations of metabolites generated in the main body reactor, the first body side reactor, and the second body side reactor (see FIG. 1).
  • [Tor] is the torque value when using a device with a pedal for exercise
  • [cad] is the number of leg rotations [rpm], pedal rotation speed, and number of pitches when the device is used. And any cadence selected from the group consisting of moving speeds.
  • [weight] represents the weight of the measurement target exerciser, and [HR] represents the heart rate [bpm].
  • [slope] represents a course state including an inclination angle distribution of a training course on which the measurement subject exerciser runs.
  • [temp] represents air temperature or body temperature, and when the temperature rises, the reaction rate of the first in-body side reactor often increases.
  • [force] represents a force value.
  • [stride (pitch)] indicates a parameter of the speed of moving the body, like the pitch, and represents the stride or pitch during walking or running, respectively.
  • [weight], [HR], [slope], [met] and [temp] are as described above for the formula (I).
  • the concentration level of creatine phosphate indicates the “fatigue state” of the exerciser.
  • lactic acid indicates the amount of consumption by those skilled in the art. That is, the total amount of lactic acid produced can be determined from the concentration fluctuation of lactic acid, and the amount of sugar consumed can be grasped from the total amount of lactic acid produced.
  • the amount of sugar that can be used by the exerciser (the amount of available sugar) can be ascertained, and the remaining amount of sugar during exercise can be ascertained.
  • the lactic acid concentration level also represents the exerciser's fatigue status. For this reason, by grasping all the concentrations of metabolites, total sugar consumption, creatine phosphate concentration, and residual amount of sugar, it is possible to quantitatively grasp the “exercise state”. From the above, by measuring these values and calculating using the above formula, any element selected from the group consisting of the state of the exerciser, the quality of exercise and the amount of exercise can be obtained.
  • the metabolic reaction equation can be estimated for the measurement target exerciser. Then, based on the metabolic reaction equation estimated in this way, when the measurement target exerciser exercises during a new exercise period, the quality of the exercise is determined for the measurement target exerciser. It becomes possible to estimate how much momentum is possible.
  • the concentration of the metabolite in muscle or blood varies depending on the change of the parameter value indicating the exercise state represented by the above formula during exercise, and as such representative metabolites, lactic acid, creatine phosphate, etc. Can be mentioned.
  • the metabolite concentration changes with changes in the exercise state. For example, in the case of lactic acid, the concentration change over time as shown in FIG. 3 is shown.
  • the change in the motion state is expressed by the change in the parameter value (torque value to temperature) expressed in the above formula.
  • the metabolic reaction rate changes according to changes in these parameter values, and the concentration of metabolite in muscle or blood changes accordingly.
  • the change in the concentration of blood metabolite (in this case, lactic acid) seen in FIGS. 3, 5 and 6 is a typical example.
  • each parameter value varies with changes in the exercise state, and accordingly, the metabolic reaction rate of the metabolite in each organ in the body also varies.
  • the form of metabolic reaction and the rate of metabolic reaction vary depending on the organ, and the value of i varies depending on the form of exercise, for example, whether you are using a bicycle or running.
  • the method for creating the support database for estimating any element selected from the group consisting of the state of the exerciser, the quality of exercise, and the amount of exercise uses (B1) the metabolic reaction equation estimation method described above. And (B2) the individual attribute of each of the plurality of measurement target exercisers and the metabolic reaction of the measurement target exerciser corresponding to the individual attribute. And a creation step of creating a database that associates the expressions.
  • the personal attributes include the level of athletic ability of the exerciser to be measured, the degree of training progress, height, weight, body temperature, etc. This is preferable for creating a database. Also, as the exercise progresses, exercise variables such as exercise intensity, torque value or force value that can be tolerated by the measurement target exerciser rise, so using those variables, using a new metabolic reaction equation, It is preferable to estimate any element selected from the group consisting of the state of the exerciser, the quality of exercise, and the amount of exercise possible in order to create a highly accurate estimation support database.
  • the endurance exercise ability evaluation method of the present invention corresponds to the estimated metabolic reaction equation based on the metabolic rate obtained using the reaction rate equation estimated using the metabolic reaction equation estimation method described above. Evaluate the endurance of the athlete.
  • the above-mentioned metabolic reaction rate equation (I) represents a course state including a torque value, cadence of leg rotation speed [rpm], heart rate [bpm], and course inclination angle distribution of about 10 degrees.
  • the estimated metabolic reaction rate can be obtained.
  • the endurance of the exerciser can be evaluated from the metabolic reaction rate thus obtained.
  • (C1) the overall performance of the main body reactor for supplying the energy necessary for the continuation of the exercise by metabolic reaction and the first and second in-body side reactors are expressed as metabolites in each reactor.
  • (C2) a performance estimation step for estimating the performance of the first in-vivo side reactor using the production rate of at least one of pyruvic acid and lactic acid as an index, and (C3) a fatigue level grasping step for quantitatively estimating the relationship between the duration of the exercise and the fatigue progressing with time based on the metabolic reaction formula estimated by the metabolic reaction formula estimation method;
  • (C4) a training method deriving step for deriving an optimal training method based on the estimated overall performance and the estimated performance of the first sub-reactor.
  • the main body reactor is a place where the first energy source is metabolized to generate creatine phosphate and ATP, and the first body side reactor is metabolized the second energy source to generate pyruvic acid and ATP.
  • the second internal side reactor reacts with the level of adenosine diphosphate (ADP) stored in the muscle and generates creatine and ATP from creatine phosphate generated in the main reactor. It is preferable that The energy production in these reaction vessels will be described later.
  • ADP adenosine diphosphate
  • the metabolite production-consumption reaction includes an oxidative metabolic reaction of the first energy source and the second energy source in the body main reactor, a glycolysis reaction of the second energy source in the first body side reactor, In addition, a combination of creatine phosphate consumption and resynthesis reaction in the second internal side reactor is preferable because the performance of these reactors can be comprehensively evaluated as the amount of ATP produced. Furthermore, it is preferable that the first energy source is fat and the second energy source is sugar.
  • the energy required to move the muscle comes from ATP in the cells.
  • ATP can be said to be a substance which becomes an energy source for fat or sugar to generate ATP after it is generated from fat or sugar.
  • ATP is produced
  • fat means “oil” that is “oil” contained in animals and plants, and is solid at room temperature.
  • the component of the oil and fat is triacylglycerol (also called triglyceride or neutral fat), and fatty acids are ester-bonded to the three hydroxyl groups of glycerol.
  • Triacylglycerol is an energy storage body stored in adipose tissue and occupies most of the stored energy in the living body. Fatty acids liberated by enzymes from triacylglycerol are metabolized as described below and participate in ATP production.
  • Fat is broken down into fatty acids and enters the citric acid cycle where the carbon skeleton is finally fully oxidized and broken down into water and carbon dioxide.
  • the carbon moiety of acetyl-CoA formed from fatty acids is decarboxylated by the citrate cycle, and the hydrogen moiety is dehydrogenase, mainly as NADH (reduced nicotinamide adenine dinucleotide (NAD)). Passed to the system.
  • NADH reduced nicotinamide adenine dinucleotide
  • ATP synthase uses this energy to synthesize ATP from ADP (adenosine diphosphate) inorganic phosphate (Pi).
  • ADP adenosine diphosphate
  • I inorganic phosphate
  • the above reaction is performed in the inner mitochondrial membrane, and the place where ATP production is performed using the first energy source as described above is the main body reactor.
  • the metabolism of sugar as the second energy source is as follows. Glucose is anaerobically decomposed into pyruvate or lactic acid by a glycolysis system that works actively in muscle. ATP is also produced in the process of producing pyruvic acid. The place where the glycolysis system works is called the first in-body side reactor. Pyruvate is reduced to lactic acid by lactate dehydrogenase.
  • creatine phosphate which is a high-energy compound produced in the main body reactor, is a substance having the physiological significance of storing high-energy phosphate bonds. This is because when the ADP level rises due to muscle contraction or the like, creatine phosphate is consumed in the second body side-reactor to produce creatine and ATP, but conversely, when the ADP level falls, it is catalyzed by creatine kinase. This is because creatine phosphate is produced from creatine and ATP. This series of reactions is called “creatine phosphate consumption-synthesis reaction”, and the place where this reaction occurs is the second internal side reactor.
  • ATP is generated in three reactors, the main body reactor, and the first and second body side reactors. Comparing the amount of ATP produced for each reactor, the amount of ATP produced in the first and second body side reactors is much less than the amount produced in the body main reactor. For this reason, it can be said that ATP, which is energy for exercise, is mainly supplied from the main body reactor.
  • the exercise state variable is measured, and the metabolic rate is determined using the blood lactate concentration as one of the indices. This makes it possible to accurately estimate any element selected from the group consisting of a person's condition, exercise quality, and possible exercise quantity.
  • the method for creating a support database for estimating any element selected from the group consisting of an exerciser's condition, exercise quality and possible exercise amount includes a measurement step of actually measuring an exercise state variable, and a metabolic reaction rate.
  • any one of the following formulas is used to determine the metabolic reaction rate.
  • the power order in the formula (IV) is a real number.
  • the power order in the formula (V) is a real number.
  • the power order in the formula (VI) is a real number.
  • the movement state variable includes (a1) a torque value or a force value, (a2) a cadence value selected from the group consisting of a leg rotation speed, a pedal rotation speed, a pitch number, and a movement speed, and a stride ( (Pitch), (a3) body weight of the athlete to be measured, (a4) heart rate of the athlete to be measured, (a5) inclination of the training course, (a6) metabolite concentration in the blood (pyruvic acid, lactate, creatine phosphorus) Acid concentration), and (a7) one of air temperature and body temperature.
  • the torque value or force value of (a1) and the cadence value of (a2) it is selected from a group including a variable of power (power) in order to increase the accuracy of the estimation result. preferable.
  • [power] represents a power value (W) that is an exercise load, and can be measured by, for example, a power meter, a force plate, a pressure measuring device, a GPS, an acceleration sensor, or the like.
  • [tor] represents, for example, in the case of a bicycle, a torque value indicating a force that pushes the pedal down or a force value that is a pressing force.
  • a pressure sensor attached to a leg, pedal, crank, shoes, or a strain gauge It can be actually measured with a measuring device such as a load cell.
  • [Cad] is a cadence value selected from the group consisting of the number of rotations of the legs [rpm], the rotation speed of the pedals [rpm], the number of pitches [times / minute], and the movement speed [m / s].
  • the cadence can be actually measured by a measuring device such as an acceleration sensor, a rotation sensor, a pressure sensor, or a strain gauge attached to the body.
  • [HR] represents the heart rate [bpm] per minute and can be measured with a heart rate monitor or the like attached to the body of the exerciser.
  • [slope] represents the inclination angle distribution of the course, and whether or not the slope is steep is represented by a numerical value.
  • [met] represents the blood lactate concentration (mmol / L), and can be measured using a commercially available dedicated measuring device.
  • [Temp] represents air temperature or body temperature (° C.), and by substituting these numerical values, it becomes possible to reflect the influence on the metabolic reaction rate accompanying the increase in body temperature.
  • the power order represents a real number, and can be represented by a numerical value such as 0.50 for [tor] and -1 for [weight], for example.
  • the exercise state variable can be obtained by using a power meter which is an instrument for measuring the power given to the bicycle by the exerciser by the pedal.
  • a power meter for example, SRM Training System Science (manufactured by SRM (Schoberer Rad Messtechnik)), pedaling monitor system (manufactured by Pioneer Corporation), Power Tap (manufactured by Saris), Power 2 max (manufactured by Power2max), Examples include Quark ELSA (Quark) and Rotor Power (Rotor).
  • Examples of the measurement of lactic acid include portable blood lactic acid concentration measuring instruments such as LactatePRO (manufactured by ARKREY), Lactate PR02 (manufactured by Arkley), Biocen-line (manufactured by Biocen).
  • LactatePRO requires 5 ⁇ L of blood for measurement
  • Lactate PR02 requires 0.3 ⁇ L of blood.
  • the load can be changed as follows, and the power value, heart rate, and cadence value changes described above can be measured with a power meter, and the result can be obtained.
  • Warm up at about 50 to 150 W for about 10 to 20 minutes, and then exercise at about 60 to 120 rpm for 2 to 5 minutes.
  • about 0.3 to about 5 ⁇ L of blood is applied to the fingertip of the subject exerciser or Blood is collected from the earlobe about 0.5 to 1.5 minutes.
  • the load is gradually increased by about 30 to 50 W at intervals of about 2 to 5 minutes, and the test is terminated when cadence cannot be maintained for about 10 seconds or more.
  • cool down at about 50-150W, and measure the blood lactate concentration at intervals of 2-5 minutes even during the cool-down.
  • the cadence value when the cadence value is changed to about 60 to 80 rpm, about 70 to 90 rpm, about 80 to 100 rpm, and about 90 to 110 rpm using the above power meter It is possible to examine the change in blood lactate concentration over time. For lowering the blood lactate concentration during low-load exercise, use the same power meter as described above, and set the cadence value as low as about 50 to 100 rpm, for example, several people, preferably 6 to 9 people. Select subjects with a degree and measure the change in blood lactate concentration over time. It can be divided into several groups according to the tendency of changes in blood lactate concentration.
  • the amount of energy available from sugar varies depending on the athlete. For this reason, the useable energy amount according to each exerciser can be calculated
  • the accumulation of fatigue due to consumption of sugar is nothing but the consumption (utilization amount) of sugar reflecting the fatigue situation. From this fact, it is possible to know the accumulated state of fatigue by knowing the energy consumption, the consumption speed, and the consumption rate based on the accumulated amount of lactic acid.
  • any element selected from the group consisting of the state of the exerciser, the quality of exercise, and the amount of possible exercise can be estimated, and using these, it is selected from the group consisting of the state of the exerciser, quality of exercise and the amount of exercise possible It is possible to create a support database for estimating any of the elements.
  • Example 1 Gradually increasing load test As a power meter, SRM Training System Science manufactured by SRM (Schoberer Rad Messtechnik) was used. For measurement of lactic acid, LactatePRO manufactured by ARKREY was used. The measurement was performed indoors at room temperature (22 ° C.). The height, weight, and bicycle weight of the subject cycling athlete were measured.
  • this athlete attached a power meter to a bicycle used in competition or training, and conducted a gradual load test on a fixed load table.
  • blood lactate concentration with increasing load was measured using LactatePRO.
  • power value, cadence value, torque value, heart rate, and speed were measured.
  • the temperature in the room where the measurement was being performed was also monitored.
  • the menu for measurement was as follows. First, warm-up was performed for 15 minutes at 100W. Next, exercise was performed at 90 ⁇ 3 rpm for 3 minutes, and 0.3 ⁇ L of blood was collected in 1 minute. Thereafter, the load was gradually increased by 40 W every 3 minutes, and when the cadence could not be maintained for 10 seconds or more, the test was ended as all-out.
  • the measurement result of the blood lactate concentration at this time is shown in FIG.
  • FIGS. 4A to 4D show measurement results of changes in power value, heart rate, and cadence value using a power meter.
  • OBLA indicates blood lactate accumulation amount onset. It was shown that when the blood lactate concentration exceeded this value, the blood lactate concentration increased rapidly. As shown in FIG. 3, the LT power value and ⁇ 1 mm / L were determined from the graph of blood lactate concentration change. After the test, it was cooled down with 100W power. During the cool-down, the blood lactate concentration was measured every 3 to 4 minutes, and the change rate of the lactate concentration was measured. The measurement results clearly showed the effect of increased blood lactic acid concentration on cadence as compared to conventional oxygen uptake measurements.
  • Example 2 Change in blood lactate concentration due to difference in load exercise
  • Change in blood lactate concentration in constant load exercise Using the same power meter as used in Example 1, constant load exercise was performed. It was. The torque values at this time were set to 70 rpm, 80 rpm, 90 rpm, and 100 rpm, respectively, and the change with time in blood lactic acid concentration when each load was applied was measured. The result is shown in FIG. In the case of 70 to 90 rpm, the blood lactic acid concentration increased with time. On the other hand, in the case of 100 rpm, a pattern was shown in which the blood lactic acid concentration increased significantly between 5 and 11 minutes and then decreased.
  • the individual endurance exercise ability is accurately evaluated. can do.
  • to estimate the endurance exercise ability by estimating the exercise ability of the exerciser based on the variable indicating the exercise state of the exerciser, and to support the execution of the technique for evaluating the quality of exercise performed by the exerciser. It is possible to create a support database for estimation of any element selected from the group consisting of the state of the exerciser, the quality of exercise, and the amount of exercise possible.
  • a database system is selected from the group consisting of the state of the athlete, the quality of the exercise, and the amount of possible exercise to support the execution of the technique for evaluating the quality of the exercise performed by the above-mentioned
  • a database system including a support database for estimating any of the elements will be described.
  • FIG. 1 The configuration of an example of such a database system is shown in FIG.
  • a data logging system 100 j 1 to M) that moves together with the exerciser according to the movement of the exerciser is arranged around the exerciser when exercising.
  • Each of the data logging systems 100 j includes a logger unit 120 j .
  • the logger unit 120 j includes an information input unit such as a keyboard (not shown), and by operating the information input unit, designation of exerciser identification information and designation of start / stop of a logging operation are performed. Be able to.
  • the logger unit 120 j is a communication terminal device that has both short-range wireless communication and wide-area wireless communication functions in accordance with the Bluetooth (registered trademark) standard and the like, and has computing power.
  • a logger unit 120 j can exhibit various functions such as, for example, transmitting data to be transmitted to the database server 200 after unifying the format into a predetermined transmission format by executing a program.
  • a smartphone can be used.
  • the senor 110 j, k includes a sensor main body and a data transmission unit.
  • the data transmission unit transmits data obtained by digitizing the detection result of the sensor body to the logger unit 120 j by short-range wireless communication according to the Bluetooth (registered trademark) standard or the like. It has become.
  • the sensors 110 j, k and the logger unit 120 j may be connected by wire. Further, when the not high processing power of the logger unit 120 j is logger module 120 j may utilize a personal computer owned by the user, it may be sent to the database server after unified data format.
  • the components of the data logging system 100 j can be attached to the bicycle when the athlete performs exercise using the bicycle, for example. Further, the connection mode between the sensors 110 j, k and the logger unit 120 j may be wired connection or short-range wireless connection.
  • the user can receive identification information and register the original personal attributes. It has become.
  • the database server 200 is selected from the group consisting of an exerciser's state, exercise quality and exercise capacity to assist in the execution of a technique for assessing the quality of exercise performed by the exerciser using the method described above. Create support database for estimation of any element. Then, the database server 200, in response to a request from a user using the communication terminal device 300 p, to assist in performing a method of evaluating the quality of the exercise in which the user himself conducted exerciser state, It is possible to obtain the estimation result of any element selected from the group consisting of the quality of exercise and the amount of exercise, and obtain the currently recommended exercise mode.
  • the present invention is useful for creating training guidelines for evaluating training and improving athletic ability in various exercises performed continuously.

Abstract

A training assistance method comprising: a capacity estimation step of estimating the total capacity of an internal main reactor that supplies necessary energy for sustaining exercise by metabolic reaction and a first and a second internal sub-reactors, by monitoring a concentration change in metabolite accompanying metabolic reaction in each of the reactors; a capacity estimation step of estimating the capacity of the first internal sub-reactor using the rate of production of at least one of pyruvic acid or lactic acid as an index; a fatigue level acquisition step of quantitatively estimating a relationship between continuation of the exercise and fatigue that develops over time, on the basis of a metabolic reaction formula estimated by a metabolic reaction formula estimation method; and a training method deriving step of deriving an optimum training method on the basis of the estimated total capacity and the estimated capacity of the first sub-reactor.

Description

運動能力及び運動の評価システムMotor ability and exercise evaluation system
 本発明は、運動能力及び運動の評価システムに関する。より詳細には、本発明は、運動時における運動者の運動の状態を示す複数の測定変数に基づいて、運動者の持久運動能力を評価する方法、及び前記運動者が行った運動の質の解析及び評価する方法に関する。また、本発明は、前記運動者の運動状態を示す変数を基に前記運動者の代謝能力を推算し、持久運動能力を評価するとともに、前記運動者が行った運動の質を評価する手法の実行を支援するための運動者の状態、運動可能量及び質からなる群から選ばれるいずれかの要素の推定用支援データベースの作成方法並びにデータベースシステムに関する。 The present invention relates to an evaluation system for athletic ability and exercise. More particularly, the present invention relates to a method for assessing an endurance exercise capacity of an exerciser based on a plurality of measurement variables indicating the exercise state of the exerciser during exercise, and the quality of exercise performed by the exerciser. The present invention relates to a method for analysis and evaluation. Further, the present invention is a method for estimating the endurance exercise ability by estimating the exercise ability of the exerciser based on the variable indicating the exercise state of the exerciser, and evaluating the quality of exercise performed by the exerciser. The present invention relates to a method and database system for creating a support database for estimating any element selected from the group consisting of an athlete's state, possible exercise quantity and quality for supporting execution.
 運動強度の測定においては、呼吸で摂取した酸素量による測定が以前から広く行われてきた。近年では、運動強度を測定する測定器(以下、「仕事率測定器」という。)が開発され、小型化が進んだ。このため、競技によっては競技現場での心拍数、脈拍、呼吸数の他、その競技者が現在位置している高度や運動速度等を測定し、データとして収集できるようになった。 In the measurement of exercise intensity, measurement based on the amount of oxygen ingested by breathing has been widely performed. In recent years, measuring instruments for measuring exercise intensity (hereinafter referred to as “power measuring instruments”) have been developed and miniaturized. For this reason, depending on the competition, in addition to the heart rate, pulse, and respiration rate at the competition site, the altitude and exercise speed at which the competitor is currently located can be measured and collected as data.
 例えば、自転車競技は、こうした測定機器を積んで運動の履歴をデータとして収集することができるスポーツである。そして、上記のような身体的な状況を示すデータの他、ピッチ又は脚の回転速度等も計測することができるようになった。このため、各測定器メーカーから、以上のようなデータ収集のための装置が、簡易な解析機能を有するソフトウェアとともに、数万円~数十万円という価格で販売されている。 For example, a bicycle competition is a sport in which such measurement devices can be loaded and exercise history can be collected as data. In addition to the data indicating the physical condition as described above, the pitch or the rotational speed of the legs can be measured. For this reason, devices for data collection as described above are sold at a price of tens of thousands to hundreds of thousands of yen together with software having a simple analysis function from each measuring instrument manufacturer.
 一方で、運動を続けるためにはエネルギーが必要とされるが、こうしたエネルギー源としては、脂肪と糖という2つがある。まず、主要なエネルギー源である脂肪(以下、「第1エネルギー源」という。)は、主反応器内においてその多くが酸化的代謝反応によってATPを産生するために利用される(図1参照)。2つ目のエネルギー源である糖からは、第1副反応器内で、解糖反応によってピルビン酸が生成される。ピルビン酸は前記主反応器におけるATP産生の原料としても使用されるが、乳酸脱水素酵素の働きによって還元されると乳酸となる。乳酸もまた、ATPの産生に利用される。脂肪の酸化的代謝物の一部は、第2副反応器においてクレアチンリン酸消費-再合成反応で利用され、ATPが産生される(図1参照)。 On the other hand, energy is required to keep exercising, but there are two such energy sources: fat and sugar. First, fat, which is a main energy source (hereinafter referred to as “first energy source”), is mostly used to produce ATP by oxidative metabolic reaction in the main reactor (see FIG. 1). . From the sugar, which is the second energy source, pyruvic acid is generated by the glycolysis reaction in the first side reactor. Pyruvate is also used as a raw material for ATP production in the main reactor, but becomes lactic acid when reduced by the action of lactate dehydrogenase. Lactic acid is also used for the production of ATP. Part of the oxidative metabolite of fat is utilized in the creatine phosphate consumption-resynthesis reaction in the second side reactor to produce ATP (see FIG. 1).
 運動強度が低い場合には、ATPは主に第1エネルギー源の酸化的代謝によって生成される(図2参照)。これに対し、運動強度の増加に伴い、副反応器からのATP供給の比率が高まってくる。そして、第2エネルギー源、すなわち、糖の利用量が多くなると、疲労によって運動の持続が困難となることが知られている(図2参照)。 When the exercise intensity is low, ATP is mainly generated by oxidative metabolism of the first energy source (see FIG. 2). On the other hand, as the exercise intensity increases, the ratio of ATP supply from the side reactor increases. And it is known that when the amount of the second energy source, that is, the amount of sugar used is increased, it is difficult to maintain exercise due to fatigue (see FIG. 2).
 ところで、運動強度と血中乳酸濃度とは、運動強度(以下、「パワー」ということがある。)が低い間はほぼ比例関係にあるといえる。しかし、運動強度を上げていくと、ある強度に達すると急激に血中乳酸濃度が上がることが知られている(図3参照)。このため、従来から、呼吸で測定した場合には嫌気的スレッショルド(Anaerobic Threshold, 以下、ATと略すことがある。)又は乳酸スレッショルド(Lactate Threshold, 以下「LT」と略すことがある。)といった指標が、持久運動能力の指標として用いられてきた。図3に示すように、LTは運動強度を上げていった際に観測される、血中乳酸濃度が急激な上昇に転じるポイントを示す運動強度であり、これ以降の強度では長時間の持続的な運動が困難な運動強度(パワー)と定義される。そして、近年、持久運動能力の指標のひとつとして、LTの重要性が明らかになってきた。 By the way, it can be said that the exercise intensity and the blood lactate concentration are in a proportional relationship while the exercise intensity (hereinafter sometimes referred to as “power”) is low. However, it is known that when the exercise intensity is increased, the blood lactic acid concentration rapidly increases when a certain intensity is reached (see FIG. 3). For this reason, conventionally, when measured by respiration, an anaerobic threshold (Anaerobic Threshold, hereinafter abbreviated as AT) or a lactate threshold (Lactate Threshold, hereinafter abbreviated as “LT”). Has been used as an indicator of endurance exercise capacity. As shown in FIG. 3, LT is an exercise intensity that is observed when the exercise intensity is increased and indicates a point at which the blood lactate concentration starts to increase rapidly. It is defined as exercise intensity (power) that makes difficult exercise difficult. In recent years, the importance of LT has become clear as an index of endurance exercise ability.
 現場での測定が簡便なこともあって、持久運動能力を示す指標として、LTが広く利用されている。実験室でLTを測定する場合には、漸増負荷テストを行う。これは、一定強度で一定時間の運動を行い、その都度、血中乳酸濃度の測定を行い、次いで徐々に強度を上げてゆくというテストである。 LT is widely used as an indicator of endurance exercise ability because the measurement at the site is simple. When measuring LT in the laboratory, a gradual load test is performed. This is a test in which exercise is performed at a constant intensity for a certain period of time, the blood lactate concentration is measured each time, and then the intensity is gradually increased.
 LTの決定には、維持する運動強度に応じた被験者の血中乳酸濃度を測定し、この運動強度と血中乳酸濃度との間の関係を表すLactateカーブを作成して特定の濃度変化の値をもとに決定する方法(以下、「Lactateカーブ法」という)と、Lactateカーブをもとに一律に血中乳酸濃度が4mmol/Lに達したポイントを持久運動能力の指標とする方法((血中乳酸蓄積のオンセット(Onset of Blood Lactate Accumulation)、以下、「OBLA法」という。)等があることが知られている。 The LT is determined by measuring the blood lactate concentration of the subject according to the exercise intensity to be maintained, creating a lactate curve representing the relationship between the exercise intensity and the blood lactate concentration, and determining the specific concentration change value. Based on the Lactate curve (hereinafter referred to as the “Lactate curve method”) and the method in which the blood lactate concentration reaches 4 mmol / L uniformly based on the Lactate curve (( It is known that there is an onset of blood lactic acid accumulation (Onset 「Blood LactatecumAccumulation, hereinafter referred to as" OBLA method ").
 前者のlactateカーブを使用する方法では、血中乳酸濃度の上昇が始まる強度付近を、LTをLTパワー、LT心拍数、LT速度などとして決定する。図3では、LT決定法の例として、ベースラインからΔ1mmol/Lを決定するポイントを示している。後者のLT決定法では、Lactateカーブから一律に血中乳酸濃度が4mmol/Lに達したポイントを、持久運動能力の指標とする点が、前者の方法とは異なっている。 In the former method using the lactate curve, LT is determined as the LT power, the LT heart rate, the LT speed, and the like near the intensity at which the increase in blood lactate concentration begins. FIG. 3 shows points for determining Δ1 mmol / L from the baseline as an example of the LT determination method. The latter LT determination method is different from the former method in that the point at which the blood lactate concentration uniformly reaches 4 mmol / L from the Lactate curve is used as an index of endurance exercise ability.
 上述したように、仕事率測定器が自転車に積載できるサイズに小型化され、普及が進んだことに伴って、幾つかの手法で簡便かつ近似的にLTを求めて持久運動強度の指標とすることができるようになった。こうした機器を利用したLT決定法としては、測定したトレーニングデータから求める方法、仕事率分布の分布頻度から求める方法、Critical Power(CP)と呼ばれる運動強度と維持可能時間の関係から求める方法等がある。CPは、被験者である選手が、実際にその強度を複数回実行する、又はトレーニング時の強度データ値を基に、維持可能なパワー値を推算する方法である。CPは、持久運動指標のより実践的な推算法であり、より簡便かつ近似的にLT強度を推算することができる。 As described above, as the work rate measuring device is reduced to a size that can be loaded on a bicycle and has become widespread, LT is obtained simply and approximately by several methods as an index of endurance exercise intensity. I was able to do it. As a method for determining LT using such a device, there are a method for obtaining from measured training data, a method for obtaining from the distribution frequency of the work rate distribution, a method for obtaining from the relationship between the exercise intensity called “Critical Power (CP)” and the sustainable time. . CP is a method in which the athlete who is the subject actually executes the intensity a plurality of times, or estimates a power value that can be maintained based on the intensity data value during training. CP is a more practical estimation method of the endurance exercise index, and the LT intensity can be estimated more easily and approximately.
 以上で述べた方法では、運動する者の代謝能力を決めるために血中乳酸濃度を測定する。具体的には、一定時間、一定強度を維持する運動テストを行ったときに血中乳酸濃度を測定する。次第に運動強度を上げていくと、その増加につれて血中乳酸濃度が上昇する現象が現れる点があり、その時点の強度(パワー値、速度など)をLTとして持久運動能力の代表値とする。すなわち、従来は、一定負荷を維持しながらある決まった時間における乳酸濃度を測定するという方法によって、血中乳酸濃度が測定されてきた(以下、「従来技術」という。)。 In the method described above, the blood lactate concentration is measured in order to determine the metabolic ability of the exerciser. Specifically, the blood lactate concentration is measured when an exercise test that maintains a constant intensity for a certain period of time is performed. As the exercise intensity is gradually increased, there is a phenomenon in which the blood lactate concentration increases as the exercise intensity increases, and the intensity (power value, speed, etc.) at that time is set as LT, which is a representative value of endurance exercise ability. That is, conventionally, the blood lactic acid concentration has been measured by a method of measuring the lactic acid concentration at a predetermined time while maintaining a constant load (hereinafter referred to as “prior art”).
 ところで、実際に運動者が行う運動においては、様々な理由によって(運動とともに進行する疲れ、コース変動、天候など)断続的な運動強度の変動があり、時間の経過とともに複雑な運動強度変動の履歴をたどるのが一般的である。運動強度変動の履歴は各運動者の持久運動能力、コースなどに応じて多種多様なパターンをたどり、それとともに、各運動者の持久運動能力と運動履歴に対応したエネルギー消費、それに応じた疲労へ至る経路をたどってゆく。 By the way, in an exercise actually performed by an exerciser, there are intermittent fluctuations in exercise intensity for various reasons (such as fatigue that progresses with exercise, course fluctuations, weather, etc.), and the history of complicated exercise intensity fluctuations over time It is common to follow. The history of changes in exercise intensity follows a variety of patterns depending on the endurance exercise ability and course of each exerciser, along with energy consumption corresponding to each exerciser's endurance exercise ability and exercise history, and fatigue accordingly Follow the path to reach.
 目的とする運動(例えば、フルマラソンの完走など)の達成、運動強度、運動時間、運動回数など、各運動者固有の代謝能力に応じた適切な構成で進行させてゆく必要がある。このことは、目標とする運動の達成のために行うトレーニングについても同様の考慮を行なうことが望ましい。そのためには、経時的な運動強度の変動履歴をたどりながら、それまでの運動がその後の運動へどのような影響を及ぼすかを経時的な変化の中でのひとつながりの現象として、運動者の状態からその運動の質を把握し、総合的に評価する手法が必要である。ここで、上記運動者の状態は、代謝物質の濃度又は運動の継続に伴って変化する疲労の進行等によって表される。 It is necessary to proceed with an appropriate configuration according to each athlete's specific metabolic ability, such as achievement of the target exercise (for example, full marathon completion), exercise intensity, exercise time, number of exercises, etc. It is desirable that the same consideration be given to the training performed to achieve the target exercise. To that end, while tracing the fluctuation history of exercise intensity over time, the influence of previous exercises on subsequent exercises can be considered as a connected phenomenon in the change over time. A method for comprehensively evaluating the quality of exercise from the state is necessary. Here, the state of the exerciser is represented by the concentration of the metabolite or the progress of fatigue that changes with the continuation of exercise.
 また、運動履歴は、運動につれて蓄積される疲労、コース変動、雨、風の強さ、気温の高低といった天候その他の原因によって、運動強度は断続的に変動するため、一般的に、時間の経過とともに複雑なものとなり、多様なパターンを示す。そして、各運動者の持久運動能力と運動履歴に対応してエネルギー消費量が変動し、これに対応して疲労が蓄積してゆく。このため、例えば、フルマラソンの完走を目的とする場合には、変動する運動強度に対応しながら、疲労の蓄積をできる限り抑えることが必要である。そして、運動強度、時間、回数などの要素を、各運動者固有の代謝能力に応じた最適の構成として、持久運動能力の向上とともに、競技で要求される運動強度による運動の遂行が可能となるようトレーニングを進めることが必要である。 In addition, exercise history generally varies with time because exercise intensity varies intermittently due to weather and other causes such as fatigue accumulated during exercise, course fluctuations, rain, wind strength, and high and low temperatures. It becomes complicated and shows various patterns. And energy consumption changes according to the endurance exercise ability and exercise history of each exerciser, and fatigue accumulates corresponding to this. For this reason, for example, when aiming at the completion of a full marathon, it is necessary to suppress the accumulation of fatigue as much as possible while responding to varying exercise intensity. And, with the elements such as exercise intensity, time, number of times, etc. as the optimum configuration according to each athlete's specific metabolic ability, it is possible to improve the endurance exercise ability and perform exercise with the exercise intensity required in the competition It is necessary to advance training.
 従来技術は、一定負荷を維持しながらある決まった時間における乳酸濃度を知ることができるという点では優れた方法である。しかし、運動中の負荷を一定に維持していても、次第に増加する血中乳酸濃度を経時的に測定することができなかった。
 また、従来のLactate curveを用いるLT決定法で、ベースラインからΔ1mmol/L又はOBLAとして持久運動能力値を決定したとしても、実際には、それよりも高い運動強度と血中乳酸濃度を維持しながら長時間の運動が可能な競技者が多いことが知られている。
The prior art is an excellent method in that the lactic acid concentration at a certain time can be known while maintaining a constant load. However, even if the load during exercise was kept constant, the blood lactate concentration that gradually increased could not be measured over time.
Moreover, even if the endurance exercise capacity value is determined as Δ1 mmol / L or OBLA from the baseline by the LT determination method using the conventional lactate curve, in practice, higher exercise intensity and blood lactate concentration are maintained. However, it is known that many athletes can exercise for a long time.
 このため、従来のLT決定法を用いて持久運動能力に対する各人能力を厳密に評価することは難しい。もう少し具体的に言えば、測定対象運動者に適した運動強度を決めることはできるが、どのようなトレーニング履歴をたどることがその測定対象運動者にとってベストなのかを決めることはできなかった。このことは、最大限の効果を得られるトレーニングプログラムを組むことが難しいということを意味する。すなわち、経時的に変動する運動強度の履歴を正確に反映する疲労進行度の指標が存在しないのが現状である。
 このため、それまでの運動がその後の運動へどのような影響を及ぼすかということ、すなわち、運動者の状態から運動の質を経時的な変化の中でのひとつながりの現象として把握し、総合的に評価する手法に対する、強い社会的な要請があった。
For this reason, it is difficult to strictly evaluate each person's ability with respect to the endurance exercise ability using the conventional LT determination method. More specifically, although it was possible to determine the exercise intensity suitable for the measurement target exerciser, it was not possible to determine what type of training history was best for the measurement target exerciser. This means that it is difficult to develop a training program that can achieve the maximum effect. In other words, there is no indicator of fatigue progress that accurately reflects the history of exercise intensity that varies with time.
For this reason, it is understood how the previous exercise affects the subsequent exercise, that is, the quality of the exercise from the state of the exerciser as a connected phenomenon in the change over time. There was a strong social demand for a method to evaluate the situation.
 また、実際の運動において経時的な強度変化の過程でどの程度の運動強度を維持し、血中乳酸濃度はどれくらいの値を維持しているのか、そして、またそれに伴って疲労がどの程度進行しているのかを知ることは、適切なプログラムを作成するためには必須である。そして、疲労の程度を厳密に数値として求めるためには、筋や血液サンプルなどの採取とその生理学的な分析が必要となる。
 しかし、運動している最中に、こうした測定を実施することは困難であり、また、競技中にこうしたサンプルの採取を行うことは不可能である。
Also, how much exercise intensity is maintained in the course of intensity change over time in actual exercise, how much blood lactate concentration is maintained, and how much fatigue progresses along with it? It is essential to create an appropriate program. In order to determine the degree of fatigue strictly as a numerical value, it is necessary to collect muscles and blood samples and to perform physiological analysis thereof.
However, it is difficult to make such measurements while exercising, and it is impossible to take such samples during competition.
 このため、運動を持続するためのエネルギーを供給する代謝能力の指標となる第1副反応器(図1及び2参照)における乳酸生成式を、血中濃度を測定することなく作成することについての強い社会的な要請があった。
 さらに、現状では、短時間に強度の高い運動を行なった場合に生じる一時的な疲労を評価する適切な指標がない。このため、上記のような場合における一時的な疲労を評価し、疲労の進行と回復とを表す代謝反応速度式を作成することについての強い社会的な要請があった。
For this reason, the lactic acid production formula in the first sub-reactor (see FIGS. 1 and 2), which serves as an index of metabolic ability to supply energy for sustaining exercise, is created without measuring blood concentration. There was a strong social demand.
Furthermore, at present, there is no appropriate index for evaluating temporary fatigue that occurs when a high-intensity exercise is performed in a short time. For this reason, there has been a strong social demand for evaluating temporary fatigue in the above-described case and creating a metabolic reaction rate expression representing the progress and recovery of fatigue.
 以上のような状況の下、本発明者は、運動の継続に伴って変化する運動者の状態を間接的に示す代謝反応物質の濃度変化に関する研究を行ってきた。そして、本発明者は、特定の複数の計測可能量を適切に組み合わせ、当該特定の複数の計測可能量を変数とした場合に、当該変数のそれぞれについての関数の積の和の形式で、推定精度を確保できる反応速度式を表現することができるという知見を得た。本発明は、かかる知見に基づいて完成されたものである。
 すなわち、第1~第3の組の変数のいずれかの組を選択し、選択された組に含まれる運動状態変数のそれぞれの値を、測定対象運動者について、少なくとも一の運動期間にわたって継続的に実測する測定工程と;前記測定工程における測定結果に基づいて、前記選択された組に対応して定まる代謝反応モデル式における前記測定対象運動者に対応する係数パラメータを算出する算出工程と:を備え、
Under the circumstances as described above, the present inventor has conducted research on changes in the concentration of metabolic reaction substances that indirectly indicate the state of the exerciser that changes as the exercise continues. Then, the inventor appropriately combines a plurality of specific measurable amounts, and when the specific plurality of measurable amounts are variables, estimates in the form of the sum of the products of the functions for each of the variables The knowledge that the reaction rate formula which can ensure accuracy can be expressed was obtained. The present invention has been completed based on such findings.
That is, any one of the first to third sets of variables is selected, and each value of the exercise state variable included in the selected set is continuously measured for at least one exercise period for the measurement target exerciser. A measurement step of actually measuring; and a calculation step of calculating a coefficient parameter corresponding to the exerciser to be measured in a metabolic reaction model formula determined corresponding to the selected set based on a measurement result in the measurement step: Prepared,
 前記第1の組は、トルク、ケイデンス、前記測定対象運動者の体重、前記測定対象運動者の心拍数、トレーニングコースの傾斜、血中又は筋中の代謝物濃度、並びに、気温又は体温のいずれか一方の温度からなる変数を含み;前記第2の組は、フォース、ストライド(ピッチ)、前記測定対象運動者の体重、前記測定対象運動者の心拍数、トレーニングコースの傾斜、血中又は筋中の代謝物濃度、並びに、気温又は体温のいずれか一方の温度からなる変数を含み;前記第3の組は、パワー(仕事率)、前記測定対象運動者の体重、前記測定対象運動者の心拍数、トレーニングコースの傾斜、血中又は筋中の代謝物濃度、並びに、気温又は体温のいずれか一方の温度からなる変数を含み; The first set includes any of torque, cadence, body weight of the measurement target exerciser, heart rate of the measurement target exerciser, inclination of a training course, blood or muscle metabolite concentration, and temperature or body temperature. The second set includes force, stride (pitch), body weight of the subject exerciser, heart rate of the subject exerciser, slope of the training course, blood or muscle Metabolite concentration, and a variable consisting of either air temperature or body temperature; the third set includes power (work rate), weight of the measurement target exerciser, Including variables consisting of heart rate, training course slope, blood or muscle metabolite concentration, and either temperature or body temperature;
 前記選択された組が前記第1の組である場合の前記代謝反応モデル式は下記式(I)であり;前記選択された組が前記第2の組である場合の前記代謝反応モデル式は下記式(II)であり;前記選択された組が前記第3の組である場合の前記代謝反応モデル式は下記式(III)である;前記測定対象運動者に関する代謝反応式の推定方法である。 The metabolic reaction model formula when the selected set is the first set is the following formula (I); the metabolic reaction model formula when the selected set is the second set is The metabolic reaction model formula when the selected set is the third set is the following formula (III); in the metabolic reaction formula estimation method for the measurement subject exerciser is there.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、上記式(I)~(III)中、ki(i=1~j)は係数パラメータを表す、各運動者固有の値である。また、上記式(I)中、[met]は代謝物濃度を表し、[tor]はトルク値を、[cad]は、脚の回転数[rpm]、ペダルの回転速度、ピッチ数及び移動速度からなる群から選ばれるいずれかのケイデンスをそれぞれ表す。[weight]は測定対象運動者の体重、[HR]は心拍数[bpm]をそれぞれ表す。[slope]はコースの傾斜角度分布を含むコース状態を表す。[temp]は気温又は体温を表す。 Here, in the above formulas (I) to (III), k i (i = 1 to j) is a coefficient-specific value representing a coefficient parameter. In the above formula (I), [met] represents a metabolite concentration, [tor] represents a torque value, [cad] represents a leg rotation speed [rpm], a pedal rotation speed, a pitch number, and a movement speed. Each cadence selected from the group consisting of [weight] represents the weight of the exerciser to be measured, and [HR] represents the heart rate [bpm]. [slope] represents the course state including the course inclination angle distribution. [temp] represents air temperature or body temperature.
 上記式(II)中、[force]はフォース値を、[stride(pitch)]は、ピッチと同様に身体を動かす速さのパラメータであり、歩行時又はランニング時の歩幅又はピッチをそれぞれ表す。[weight]、[HR]、[slope]、[met]及び[temp]については、式(I)と同じである。 In the above formula (II), [force] is a force value, and [stride (pitch)] is a parameter for moving the body like a pitch, and represents a stride or pitch during walking or running. [weight], [HR], [slope], [met], and [temp] are the same as those in the formula (I).
 上記式(III)中、[power(work rate)]は、force(力)、水平および垂直方向の速度と加速度、身体の上下変動高さ、接地時間、走行時のジャンプ角度、ストライドの周期(pitch)といった測定パラメータから求める仕事率(work rate)を含む。[weight]、[HR]、[slope]、[met]及び[temp]については、式(I)と同じである。 In the above formula (III), [power (work rate)] is force, horizontal and vertical speed and acceleration, vertical movement height, contact time, jump angle during running, stride cycle ( It includes the work rate calculated from measurement parameters such as pitch). [weight], [HR], [slope], [met], and [temp] are the same as those in the formula (I).
 上記式(I)~(III)中のfr(X),gr(X),hr(X)は、Xを変数とする関数である。 The formula (I) f r in ~ (III) (X), g r (X), h r (X) is a function that the X variable.
 本発明の代謝反応式の推定方法では、前記式(I)として下記式(IV)を採用することができる。 In the metabolic reaction formula estimation method of the present invention, the following formula (IV) can be adopted as the formula (I).
Figure JPOXMLDOC01-appb-M000010
 前記式(IV)中のべき乗次数は実数である。
Figure JPOXMLDOC01-appb-M000010
The power order in the formula (IV) is a real number.
 本発明の代謝反応式の推定方法では、前記式(II)として下記式(V)を採用することができる。 In the metabolic reaction formula estimation method of the present invention, the following formula (V) can be adopted as the formula (II).
Figure JPOXMLDOC01-appb-M000011
 前記式(V)中のべき乗次数は実数である。
Figure JPOXMLDOC01-appb-M000011
The power order in the formula (V) is a real number.
 本発明の代謝反応式の推定方法では、前記式(III)として下記式(VI)を採用することができる。 In the metabolic reaction formula estimation method of the present invention, the following formula (VI) can be adopted as the formula (III).
Figure JPOXMLDOC01-appb-M000012
 前記式(VI)中のべき乗次数は実数である。
Figure JPOXMLDOC01-appb-M000012
The power order in the formula (VI) is a real number.
 本発明は、上記の代謝反応式の推定方法を使用して測定対象運動者について推定された代謝反応式に基づいて、新たな運動期間における運動の際の前記測定対象運動者にとっての運動者の状態、運動の質、運動可能量のうちの少なくとも1つを推定する方法であることが好ましい。 The present invention is based on the metabolic reaction equation estimated for the measurement target exerciser using the metabolic reaction equation estimation method described above, and the exerciser for the measurement target exerciser during exercise in a new exercise period. The method is preferably a method for estimating at least one of the state, the quality of exercise, and the amount of exercise.
 また、本発明の別の実施態様は、上記の代謝反応式の推定方法を使用して、複数の測定対象運動者の代謝反応式を推定する推定工程と;前記複数の測定対象運動者のそれぞれの個人属性と、前記個人属性に対応する測定対象運動者の代謝反応式とを関連付けたデータベースを作成する作成工程と;を備える、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定用支援データベースの作成方法である。 In another embodiment of the present invention, an estimation step of estimating metabolic reaction formulas of a plurality of measurement target exercisers using the metabolic reaction formula estimation method described above; And a creation step of creating a database that associates the individual attributes of the subject and the metabolic reaction formula of the measurement target exerciser corresponding to the individual attributes; This is a method of creating a support database for estimation of any one of the selected elements.
 ここで、前記個人属性には、トレーニングの進行度が含まれ、前記トレーニングの進行に応じて、新たな代謝反応式を用いて運動の質又は運動可能量を推定するものであることが好ましい。また、前記個人属性には、測定対象運動者の運動能力のレベル、身長、体重、体温等が含まれることが好ましい。 Here, it is preferable that the personal attribute includes the degree of training progress, and according to the progress of the training, the quality of exercise or the amount of exercise can be estimated using a new metabolic reaction equation. The personal attributes preferably include the level of athletic ability, height, weight, body temperature, and the like of the measurement target exerciser.
 本発明のまた別の実施態様は、上述した代謝反応式の推定方法により推定された代謝反応式を用いて求めた代謝速度に基づいて、前記推定された代謝反応式に対応する運動者の状態及び持久運動能力を評価する持久運動能力の評価方法である。 According to another embodiment of the present invention, the state of the exerciser corresponding to the estimated metabolic reaction formula based on the metabolic rate obtained using the metabolic reaction formula estimated by the metabolic reaction formula estimation method described above. And an endurance exercise ability evaluation method for evaluating endurance exercise ability.
 本発明のさらに別の実施態様は、代謝反応により運動の持続に必要なエネルギーを供給する体内主反応器並びに第1及び第2体内副反応器の総合性能を、各反応器中における代謝反応に伴う代謝物の濃度変化をモニターすることによって推定する性能推定工程と;ピルビン酸及び乳酸の少なくとも一方の生成速度を指標として、前記第1体内副反応器の性能を推測する性能推測工程と;前記運動の持続と経時的に進行する疲労との関係を、上記の代謝反応式の推定方法により推定された代謝反応式に基づいて、代謝物質(代謝産物)の濃度又は代謝量を定量的に推定する疲労度把握工程と;前記推定された総合性能と前記推測された前記第1副反応器の性能とに基づいて、最適なトレーニング方法を導出するトレーニング方法導出工程と;を備えるトレーニング支援方法である。 In another embodiment of the present invention, the overall performance of the main body reactor that supplies energy necessary for the duration of movement by metabolic reaction, and the first and second side reactors in the reactor is used for the metabolic reaction in each reactor. A performance estimation step of estimating by monitoring the concentration change of the accompanying metabolite; a performance estimation step of estimating the performance of the first in-vivo side reactor using the production rate of at least one of pyruvic acid and lactic acid as an index; Based on the metabolic reaction equation estimated by the metabolic reaction equation estimation method above, the relationship between the duration of exercise and fatigue that progresses over time is quantitatively estimated. A fatigue level grasping step; a training method deriving step for deriving an optimal training method based on the estimated overall performance and the estimated performance of the first sub-reactor; Is a training support method provided.
 ここで、前記体内主反応器は第1エネルギー源を代謝してクレアチンリン酸とアデノシン三リン酸とを生成する場であり、第1体内副反応器は第2エネルギー源を代謝してピルビン酸とアデノシン三リン酸とを生成する場であり、第2体内副反応器は、アデノシン二リン酸のレベル依存的に、体内主反応器で生成されたクレアチンリン酸からクレアチンとアデノシン三リン酸を生成する場であることが好ましい。 The main body reactor is a place where the first energy source is metabolized to generate creatine phosphate and adenosine triphosphate, and the first body side reactor is metabolized the second energy source to generate pyruvic acid. And adenosine triphosphate, the second internal side reactor reacts creatine and adenosine triphosphate from creatine phosphate generated in the main body reactor depending on the level of adenosine diphosphate. It is preferable that the field is generated.
 また、前記代謝物の代謝反応は、前記体内主反応器における第1エネルギー源の酸化的代謝反応、前記第1体内副反応器における第2エネルギー源の解糖反応、及び、前記第2体内副反応器におけるクレアチンリン酸の消費-再合成反応の組み合わせであることが好ましい。さらに、前記第1エネルギー源は脂肪であり、第2エネルギー源は糖であることが好ましい。 The metabolic reaction of the metabolite includes an oxidative metabolic reaction of the first energy source in the main body reactor, a glycolysis reaction of the second energy source in the first body side reactor, and the second body side reaction. A combination of creatine phosphate consumption-resynthesis reaction in the reactor is preferred. Furthermore, it is preferable that the first energy source is fat and the second energy source is sugar.
 本発明の代謝反応モデル式の推定方法によれば、LTよりも厳密な、運動の持続に必要な代謝能力指標を提供することができる。また、上記代謝反応モデル式を用いた運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定方法により、個人の能力に応じた持久力についての新規な指標を提供することができる。 According to the estimation method of the metabolic reaction model formula of the present invention, it is possible to provide a metabolic capacity index that is more strict than that of LT and that is necessary for the duration of exercise. In addition, a new indicator of endurance according to the individual's ability by the estimation method of any element selected from the group consisting of the state of the exerciser, the quality of exercise and the amount of exercise using the above metabolic reaction model formula Can be provided.
 また、本発明のトレーニング支援方法を用いることにより、所定の運動状態変数を測定し、上記運動状態変数に対応する代謝反応モデル式を用いることにより、運動の質又は運動可能量の推定用支援データベースを作成することができる。 In addition, by using the training support method of the present invention, a predetermined exercise state variable is measured, and a metabolic reaction model equation corresponding to the exercise state variable is used, so that a support database for estimation of exercise quality or possible exercise amount is obtained. Can be created.
 さらにまた、本発明のトレーニング支援方法を用いることによって、運動者の持続運動能力を効率的かつ的確に向上させることができる。 Furthermore, by using the training support method of the present invention, it is possible to efficiently and accurately improve the exercise ability of the exerciser.
図1は、体内主反応器、第1及び第2体内副反応器とそれらの機能、並びに各反応器から供給されるアデノシン三リン酸(ATP)の量を模式的に表した図である。FIG. 1 is a diagram schematically showing the main body reactor, the first and second sub-reactors in the body, their functions, and the amount of adenosine triphosphate (ATP) supplied from each reactor. 図2は、適切なトレーニングを行なった後の上記の各反応器からのATP供給量の変化を模式的に示す図である。FIG. 2 is a diagram schematically showing a change in the ATP supply amount from each of the reactors after performing appropriate training. 図3は、乳酸曲線(仕事量(パワー[W])の増加と血中乳酸濃度[mmol/L]との関係)及びLTパワー値の決定方法を示す図である。FIG. 3 is a diagram showing a method for determining a lactic acid curve (relationship between increase in work (power [W]) and blood lactic acid concentration [mmol / L]) and LT power value.
図4Aは、漸増負荷テストによる血中乳酸濃度測定結果を示す図である。FIG. 4A is a diagram showing the results of blood lactate concentration measurement by an incremental load test. 図4Bは、図4Aの測定結果のうち、ケイデンスによる変化を示す図である。FIG. 4B is a diagram illustrating a change due to cadence among the measurement results of FIG. 4A. 図4Cは、図4Aの測定結果のうち、心拍数による変化を示す図である。FIG. 4C is a diagram showing a change due to the heart rate in the measurement result of FIG. 4A. 図4Dは、図4Aの測定結果のうち、パワーによる変化を示す図である。FIG. 4D is a diagram illustrating a change due to power in the measurement result of FIG. 4A.
図5は、一定負荷運動における血中乳酸濃度の変化を示す図である。FIG. 5 is a diagram showing changes in blood lactate concentration during a constant load exercise. 図6は、低負荷運動時の血中乳酸濃度の低下を示す図である。FIG. 6 is a diagram showing a decrease in blood lactate concentration during low-load exercise. 図7は、実測した血中乳酸濃度データ及び計算結果(予測乳酸濃度)を示すグラフである。FIG. 7 is a graph showing actually measured blood lactate concentration data and calculation results (predicted lactate concentration). 図8は、データベースシステムの構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of the configuration of the database system.
 以下に本発明を、図面を参照しつつ、さらに詳細に説明する。
 本発明の代謝反応式の推定方法は、(A1)下記の1~3の組の変数のうち、選択された組に含まれる運動状態変数のそれぞれの値を、測定対象運動者について、少なくとも一の運動期間にわたって継続的に実測する測定工程と;(A2)前記測定工程における測定結果に基づいて、代謝反応モデル式における前記測定対象運動者に対応する係数パラメータを算出する算出工程と:を備える。ここで、上記(A1)に記載された組の変数は下記の通りである。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
The metabolic reaction equation estimation method of the present invention includes (A1) calculating at least one of the values of the exercise state variables included in the selected group among the following groups of 1 to 3 for the measurement target exerciser. And (A2) a calculation step of calculating a coefficient parameter corresponding to the measurement target exerciser in the metabolic reaction model formula based on the measurement result in the measurement step. . Here, the variables of the group described in the above (A1) are as follows.
 前記第1の組(a)は、(a1)トルク、(a2)ケイデンス、(a3)測定対象運動者の体重、(a4)前記測定対象運動者の心拍数、(a5)トレーニングコースの傾斜、(a6)血中の代謝物濃度(ピルビン酸、乳酸、クレアチンリン酸の濃度)、並びに、(a7)気温又は体温のいずれか一方の温度からなる変数を含む。前記第2の組(b)は、上記(a3)~(a7)は第1の組(a)と同じであるが、(a1)のトルクに代えて押す力を表すフォースを、また、(a2)のケイデンスに代えてストライド(ピッチ)という変数を含んでいる。前記第3の組(c)は、上記(a1)及び(a2)のトルクとケイデンスに代えて、パワー(仕事率)という変数を含むものであることが、推定結果の精度を高める上で好ましい。 The first set (a) includes (a1) torque, (a2) cadence, (a3) body weight of the exerciser to be measured, (a4) heart rate of the exerciser to be measured, (a5) inclination of the training course, (a6) The blood metabolite concentration (concentration of pyruvic acid, lactic acid, creatine phosphate), and (a7) a variable consisting of one of temperature and body temperature. In the second group (b), the above (a3) to (a7) are the same as the first group (a), but a force representing a pressing force is used instead of the torque of (a1), and ( Instead of the cadence of a2), a variable called stride (pitch) is included. The third group (c) preferably includes a variable of power (power) instead of the torque and cadence of the above (a1) and (a2) in order to increase the accuracy of the estimation result.
 また、上記変数の組は、下記の代謝反応モデル式(I)~(III)と対応付けられている。 In addition, the above set of variables is associated with the following metabolic reaction model equations (I) to (III).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 上記式(I)~(III)中、ki(i=1~j)は係数パラメータを表す、各測定対象運動者固有の値である。上記式(I)中、[met]は、体内主反応器、第1体内副反応器及び第2体内副反応器(図1参照)で生成される代謝物の血中及び筋中濃度を表す。また、[tor]は、ペダルのついた装置を運動に使用する場合のトルク値を、[cad]は、前記装置を使用した場合の脚の回転数[rpm]、ペダルの回転速度、ピッチ数及び移動速度からなる群から選ばれるいずれかのケイデンスをそれぞれ表す。[weight]は前記測定対象運動者の体重を、[HR]は心拍数[bpm]をそれぞれ表す。[slope]は、前記測定対象運動者が走行するトレーニングコースの傾斜角度分布を含むコース状態を表す。[temp]は気温又は体温を表し、温度が上昇すると第1体内副反応器の反応速度が速くなることが多い。 In the above formulas (I) to (III), k i (i = 1 to j) is a value specific to each measurement subject exerciser representing a coefficient parameter. In the above formula (I), [met] represents blood and muscle concentrations of metabolites generated in the main body reactor, the first body side reactor, and the second body side reactor (see FIG. 1). . [Tor] is the torque value when using a device with a pedal for exercise, and [cad] is the number of leg rotations [rpm], pedal rotation speed, and number of pitches when the device is used. And any cadence selected from the group consisting of moving speeds. [weight] represents the weight of the measurement target exerciser, and [HR] represents the heart rate [bpm]. [slope] represents a course state including an inclination angle distribution of a training course on which the measurement subject exerciser runs. [temp] represents air temperature or body temperature, and when the temperature rises, the reaction rate of the first in-body side reactor often increases.
 上記式(II)中、[force]はフォース値を表す。[stride(pitch)]は、ピッチと同様に身体を動かす速さのパラメータを示し、歩行時又はランニング時の歩幅又はピッチをそれぞれ表す。[weight]、[HR]、[slope]、[met]及び[temp]については、式(I)について上述した通りである。 In the above formula (II), [force] represents a force value. [stride (pitch)] indicates a parameter of the speed of moving the body, like the pitch, and represents the stride or pitch during walking or running, respectively. [weight], [HR], [slope], [met] and [temp] are as described above for the formula (I).
 上記式(III)中、[power(work rate)]は、force(力)、水平および垂直方向の速度と加速度、身体の上下変動高さ、接地時間、走行時のジャンプ角度、ストライドの周期(pitch)といった測定パラメータから求める仕事率(work rate)を含む。[weight]、[HR]、[slope]、[met]及び[temp]については、式(I)について上述した通りである。 In the above formula (III), [power (work rate)] is force, horizontal and vertical speed and acceleration, vertical movement height, contact time, jump angle during running, stride cycle ( It includes the work rate calculated from measurement parameters such as pitch). [weight], [HR], [slope], [met] and [temp] are as described above for the formula (I).
 上記式(I)~(III)中のfr(X),gr(X),hr(X)は、Xを変数とする関数である。 The formula (I) f r in ~ (III) (X), g r (X), h r (X) is a function that the X variable.
 ここで、代謝産物の濃度を計算することには以下の目的がある。まず、クレアチンリン酸(上記第2体内副反応器における代謝産物)は、その濃度レベルが運動者の「疲労の状態」を示す。また、乳酸(上記第1体内副反応器における代謝産物)は、当業者の消費量を示す。すなわち、乳酸の生成総量は乳酸の濃度変動から求めることができ、乳酸の生成総量から糖の消費量が把握できるからである。そして、これによって運動者の糖の使用可能量(利用可能な糖の量)を把握することができ、また、運動時に糖の残存量を把握することができる。これに加えて、ある運動条件下では、乳酸濃度レベルも運動者の疲労の状態を表す。このため、代謝産物の濃度、糖の消費総量、クレアチンリン酸の濃度、及び糖の残存量をすべて把握することによって、「運動者の状態」を定量的に把握することができるのである。
 以上から、これらの値を測定し、上記の式を用いて計算をすることによって、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素を求めることができる。
Here, calculating the concentration of the metabolite has the following purposes. First, the concentration level of creatine phosphate (metabolite in the second body side reactor) indicates the “fatigue state” of the exerciser. In addition, lactic acid (metabolite in the first in-vivo side reactor) indicates the amount of consumption by those skilled in the art. That is, the total amount of lactic acid produced can be determined from the concentration fluctuation of lactic acid, and the amount of sugar consumed can be grasped from the total amount of lactic acid produced. Thus, the amount of sugar that can be used by the exerciser (the amount of available sugar) can be ascertained, and the remaining amount of sugar during exercise can be ascertained. In addition, under certain exercise conditions, the lactic acid concentration level also represents the exerciser's fatigue status. For this reason, by grasping all the concentrations of metabolites, total sugar consumption, creatine phosphate concentration, and residual amount of sugar, it is possible to quantitatively grasp the “exercise state”.
From the above, by measuring these values and calculating using the above formula, any element selected from the group consisting of the state of the exerciser, the quality of exercise and the amount of exercise can be obtained.
 上記の代謝反応式の推定方法を使用することによって、測定対象運動者について代謝反応式を推定することができる。そして、このようにして推定された代謝反応式に基づいて、上記測定対象運動者が新たな運動期間に運動を行う際に、その運動が、前記測定対象運動者にとってどのような質のものとなるか、又はどの程度の運動量が可能なのかを推定することができるようになる。 By using the above metabolic reaction equation estimation method, the metabolic reaction equation can be estimated for the measurement target exerciser. Then, based on the metabolic reaction equation estimated in this way, when the measurement target exerciser exercises during a new exercise period, the quality of the exercise is determined for the measurement target exerciser. It becomes possible to estimate how much momentum is possible.
 ここで、筋肉中又は血中の代謝物濃度は、運動時には上記の式に表される運動状態を示すパラメータ値の変化によって変動するが、そうした代表的な代謝物として、乳酸、クレアチンリン酸等を挙げることができる。代謝物濃度は運動状態の変化に伴って変化し、例えば、乳酸の場合には図3に示すような経時的な濃度変化を示す。 Here, the concentration of the metabolite in muscle or blood varies depending on the change of the parameter value indicating the exercise state represented by the above formula during exercise, and as such representative metabolites, lactic acid, creatine phosphate, etc. Can be mentioned. The metabolite concentration changes with changes in the exercise state. For example, in the case of lactic acid, the concentration change over time as shown in FIG. 3 is shown.
 運動状態の変化は、上記の式中で表されるパラメータ値の変化(トルク値~温度)で表される。これらのパラメータ値の変化に応じて代謝反応速度が変化し、それに伴って筋中又は血中の代謝物濃度が変化する。図3および図5及び図6に見られる血中代謝物(この場合は乳酸)の濃度変化は、その代表的な例である。 The change in the motion state is expressed by the change in the parameter value (torque value to temperature) expressed in the above formula. The metabolic reaction rate changes according to changes in these parameter values, and the concentration of metabolite in muscle or blood changes accordingly. The change in the concentration of blood metabolite (in this case, lactic acid) seen in FIGS. 3, 5 and 6 is a typical example.
 上記の式(I)~(III)は代謝物濃度の経時的変化を表す式であり、体内の各器官における代謝反応の集合体(i=1~j)を示している。上述したように、運動状態の変化に伴って各パラメータ値が変動し、これに応じて、体内の各器官における代謝物質の代謝反応速度も変動する。このような代謝反応の形態や代謝反応の速度は器官によっても異なり、また、運動の形態、例えば、自転車を使用しているか、ランニングかなどによって、iの値は変わる。 The above formulas (I) to (III) are formulas representing changes in metabolite concentration over time, and indicate aggregates (i = 1 to j) of metabolic reactions in each organ in the body. As described above, each parameter value varies with changes in the exercise state, and accordingly, the metabolic reaction rate of the metabolite in each organ in the body also varies. The form of metabolic reaction and the rate of metabolic reaction vary depending on the organ, and the value of i varies depending on the form of exercise, for example, whether you are using a bicycle or running.
 例えば、ランニングの場合には、脚を動かす動作、着地の衝撃を緩和する動作などによって、主体的に稼働しているそれぞれの筋肉(主動筋)がある。こうした主動筋では、乳酸およびクレアチンリン酸の生成・消費・再合成などの代謝反応が進行している。一方、体内の他の器官(心臓、脳、主動筋以外の筋肉)においても、こうした代謝反応は同時に進行している。上記の式は、以上のような運動状態の変化に応じた各器官での代謝反応の集合を反映するものであり、図5及び図6に示すように、運動状態の変化に応じて代謝物の濃度変化を予測することができる。 For example, in the case of running, there are muscles (main driving muscles) that are actively working by moving the legs and reducing the impact of landing. In these main muscles, metabolic reactions such as production, consumption, and resynthesis of lactic acid and creatine phosphate progress. On the other hand, in other organs in the body (muscles other than the heart, brain, and main muscles), such metabolic reactions are simultaneously progressing. The above formula reflects a set of metabolic reactions in each organ according to the change in the exercise state as described above, and as shown in FIGS. 5 and 6, the metabolite according to the change in the exercise state. Can be predicted.
 そして、上記の式を用いると、代謝物質の濃度変化の予測に加えて、低~高負荷運動に伴う体内での経時的な代謝反応履歴の追跡も可能となる。その結果、経時的な体内のエネルギー利用履歴を精密に把握することができるようになる。さらに、運動者への経時的な疲労の更新を把握することにも役立つ。 Using the above formula, in addition to predicting changes in metabolite concentration, it is also possible to track the metabolic reaction history over time in the body associated with low to high load exercise. As a result, it is possible to accurately grasp the energy usage history in the body over time. Furthermore, it is useful for grasping the renewal of fatigue over time to the exerciser.
 また、本発明の、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれか要素の推定用支援データベースの作成方法は、(B1)上述した代謝反応式の推定方法を使用して、複数の測定対象運動者の代謝反応式を推定する推定工程と;(B2)前記複数の測定対象運動者のそれぞれの個人属性と、前記個人属性に対応する測定対象運動者の代謝反応式とを関連付けたデータベースを作成する作成工程と;を備えている。 In addition, the method for creating the support database for estimating any element selected from the group consisting of the state of the exerciser, the quality of exercise, and the amount of exercise according to the present invention uses (B1) the metabolic reaction equation estimation method described above. And (B2) the individual attribute of each of the plurality of measurement target exercisers and the metabolic reaction of the measurement target exerciser corresponding to the individual attribute. And a creation step of creating a database that associates the expressions.
 ここで、前記個人属性には、測定対象運動者の運動能力のレベル、トレーニングの進行度、身長、体重、体温等が含まれることが、精度の高い運動の質又は運動可能量の推定用支援データベースを作成する上で好ましい。また、前記トレーニングの進行に応じて、測定対象運動者が耐えられる運動強度、トルク値又はフォース値等の運動変数は上昇するため、それらの変数を用いて、新たな代謝反応式を用いて、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれか要素を推定することが、精度の高い推定用支援データベースを作成する上で好ましい。 Here, the personal attributes include the level of athletic ability of the exerciser to be measured, the degree of training progress, height, weight, body temperature, etc. This is preferable for creating a database. Also, as the exercise progresses, exercise variables such as exercise intensity, torque value or force value that can be tolerated by the measurement target exerciser rise, so using those variables, using a new metabolic reaction equation, It is preferable to estimate any element selected from the group consisting of the state of the exerciser, the quality of exercise, and the amount of exercise possible in order to create a highly accurate estimation support database.
 本発明の持久運動能力の評価方法では、上述した代謝反応式の推定方法を使用して推定された反応速度式を用いて求めた代謝速度に基づいて、前記推定された代謝反応式に対応する運動者の持久運動能力を評価する。例えば、上述した代謝反応速度式(I)に、トルク値、ケイデンスとして脚の回転数[rpm]、心拍数[bpm]、コースの傾斜角度分布が約10度であることを含むコース状態を表す数値、血中乳酸濃度、及び気温を変数として代入することによって、推定された代謝反応速度を求めることができる。そして、このようにして求められた代謝反応速度から、運動者の持久力を評価することができる。 The endurance exercise ability evaluation method of the present invention corresponds to the estimated metabolic reaction equation based on the metabolic rate obtained using the reaction rate equation estimated using the metabolic reaction equation estimation method described above. Evaluate the endurance of the athlete. For example, the above-mentioned metabolic reaction rate equation (I) represents a course state including a torque value, cadence of leg rotation speed [rpm], heart rate [bpm], and course inclination angle distribution of about 10 degrees. By substituting numerical values, blood lactate concentration, and air temperature as variables, the estimated metabolic reaction rate can be obtained. Then, the endurance of the exerciser can be evaluated from the metabolic reaction rate thus obtained.
 本発明のトレーニング支援方法は、(C1)代謝反応により運動の持続に必要なエネルギーを供給する体内主反応器並びに第1及び第2体内副反応器の総合性能を、各反応器中における代謝物の生成-消費反応をモニターすることによって推定する性能推定工程と;(C2)ピルビン酸及び乳酸の少なくとも一方の生成速度を指標として、前記第1体内副反応器の性能を推測する性能推測工程と;(C3)前記運動の持続と経時的に進行する疲労との関係を、上記の代謝反応式の推定方法により推定された代謝反応式に基づいて、定量的に推定する疲労度把握工程と;(C4)前記推定された総合性能と前記推測された前記第1副反応器の性能とに基づいて、最適なトレーニング方法を導出するトレーニング方法導出工程と;を備えている。 In the training support method of the present invention, (C1) the overall performance of the main body reactor for supplying the energy necessary for the continuation of the exercise by metabolic reaction and the first and second in-body side reactors are expressed as metabolites in each reactor. And (C2) a performance estimation step for estimating the performance of the first in-vivo side reactor using the production rate of at least one of pyruvic acid and lactic acid as an index, and (C3) a fatigue level grasping step for quantitatively estimating the relationship between the duration of the exercise and the fatigue progressing with time based on the metabolic reaction formula estimated by the metabolic reaction formula estimation method; (C4) a training method deriving step for deriving an optimal training method based on the estimated overall performance and the estimated performance of the first sub-reactor.
 ここで、前記体内主反応器は第1エネルギー源を代謝してクレアチンリン酸とATPとを生成する場であり、第1体内副反応器は第2エネルギー源を代謝してピルビン酸とATPとを生成する場であり、第2体内副反応器は、筋肉に蓄えられたアデノシン二リン酸(ADP)のレベル依存的に、主反応器で生成されクレアチンリン酸からクレアチンとATPを生成する場であることが好ましい。これらの反応容器内におけるエネルギー産生については後述する。 Here, the main body reactor is a place where the first energy source is metabolized to generate creatine phosphate and ATP, and the first body side reactor is metabolized the second energy source to generate pyruvic acid and ATP. The second internal side reactor reacts with the level of adenosine diphosphate (ADP) stored in the muscle and generates creatine and ATP from creatine phosphate generated in the main reactor. It is preferable that The energy production in these reaction vessels will be described later.
 また、前記代謝物の生成-消費反応は、前記体内主反応器における第1エネルギー源及び第2エネルギー源の酸化的代謝反応、前記第1体内副反応器における第2エネルギー源の解糖反応、及び、前記第2体内副反応器におけるクレアチンリン酸の消費-再合成反応の組み合わせであることが、ATPの生成量としてこれらの反応器の性能を総合的に評価できる点から好ましい。さらに、前記第1エネルギー源は脂肪であり、第2エネルギー源は糖であることが好ましい。 The metabolite production-consumption reaction includes an oxidative metabolic reaction of the first energy source and the second energy source in the body main reactor, a glycolysis reaction of the second energy source in the first body side reactor, In addition, a combination of creatine phosphate consumption and resynthesis reaction in the second internal side reactor is preferable because the performance of these reactors can be comprehensively evaluated as the amount of ATP produced. Furthermore, it is preferable that the first energy source is fat and the second energy source is sugar.
 以下に、運動、すなわち筋肉を動かすのに使用されるエネルギー、エネルギー源及びそれらの産生の場について説明する。
 まず、筋肉を動かすのに必要とされるエネルギーは、細胞内にあるATPからもたらされる。そして、ATPは、脂肪又は糖から生成されてから、脂肪または糖がATPを生成するためのエネルギー源となる物質といえる。そして、これらのエネルギー源を利用した複数の反応によってATPが生成される。
The following describes the exercise, ie the energy used to move the muscles, the energy source and the field of their production.
First, the energy required to move the muscle comes from ATP in the cells. And ATP can be said to be a substance which becomes an energy source for fat or sugar to generate ATP after it is generated from fat or sugar. And ATP is produced | generated by several reaction using these energy sources.
 上記「脂肪」(第1エネルギー源)は、動植物に含まれる「あぶら」である「油脂」のうち、常温で固体のものをいう。油脂の成分は、トリアシルグリセロール(トリグリセリド又は中性脂肪ともよばれる)であり、グリセロールの3つの水酸基に、脂肪酸がそれぞれエステル結合したものである。トリアシルグリセロールは、脂肪組織に蓄えられたエネルギー貯蔵体であり、生体の大半の貯蔵エネルギーを占める。トリアシルグリセロールから酵素によって遊離された脂肪酸は、下記のように代謝されてATP生成に関与する。 The above “fat” (first energy source) means “oil” that is “oil” contained in animals and plants, and is solid at room temperature. The component of the oil and fat is triacylglycerol (also called triglyceride or neutral fat), and fatty acids are ester-bonded to the three hydroxyl groups of glycerol. Triacylglycerol is an energy storage body stored in adipose tissue and occupies most of the stored energy in the living body. Fatty acids liberated by enzymes from triacylglycerol are metabolized as described below and participate in ATP production.
 脂肪は、脂肪酸に分解されてクエン酸回路に入り、この回路において炭素骨格が最終的に完全酸化されて水と二酸化炭素とに分解される。脂肪酸から形成されたアセチルCoAの炭素部分は、クエン酸回路で脱炭酸され、水素部分は脱水素酵素で主にNADH(還元型のニコチンアミドアデニンジヌクレオチド(NAD))としてミトコンドリア内膜の電子伝達系に渡される。そして、電子伝達系は、その最後の使途クロームオキシダーゼによって、酵素を用いてこのNADHの水素を酸化して水をつくる。その際には多量のエネルギーが遊離されるため、このエネルギーを用いてATP合成酵素がADP(アデノシン二リン酸)無機リン酸(Pi)とからATPを合成する。
 以上の反応は、真核細胞の場合には細胞内のミトコンドリア内膜において行われ、上記のような第1エネルギー源を用いてATP産生を行なう場が体内主反応器なのである。
Fat is broken down into fatty acids and enters the citric acid cycle where the carbon skeleton is finally fully oxidized and broken down into water and carbon dioxide. The carbon moiety of acetyl-CoA formed from fatty acids is decarboxylated by the citrate cycle, and the hydrogen moiety is dehydrogenase, mainly as NADH (reduced nicotinamide adenine dinucleotide (NAD)). Passed to the system. The electron transfer system then oxidizes this NADH hydrogen using an enzyme with the last use of chrome oxidase to produce water. Since a large amount of energy is released at that time, ATP synthase uses this energy to synthesize ATP from ADP (adenosine diphosphate) inorganic phosphate (Pi).
In the case of eukaryotic cells, the above reaction is performed in the inner mitochondrial membrane, and the place where ATP production is performed using the first energy source as described above is the main body reactor.
 また、第2エネルギー源である糖の代謝は以下の通りである。糖は、筋肉で活発に働く解糖系により、グルコースがピルビン酸又は乳酸まで嫌気的に分解される。ピルビン酸が生成される過程でATPも生成される。解糖系が働く場を、第1体内副反応器という。なお、ピルビン酸は、乳酸デヒドロゲナーゼによって乳酸に還元される。 Moreover, the metabolism of sugar as the second energy source is as follows. Glucose is anaerobically decomposed into pyruvate or lactic acid by a glycolysis system that works actively in muscle. ATP is also produced in the process of producing pyruvic acid. The place where the glycolysis system works is called the first in-body side reactor. Pyruvate is reduced to lactic acid by lactate dehydrogenase.
 さらに、体内主反応器で産生された高エネルギー化合物であるクレアチンリン酸は、高エネルギーリン酸結合の貯蔵という生理的意義を持つ物質である。なぜなら、筋収縮等に伴ってADPレベルが上昇すると、クレアチンンリン酸は第2体内副反応器で消費されてクレアチンとATPとを生成するが、逆にADPレベルが低下すると、クレアチンキナーゼで触媒される反応によって、クレアチンとATPとからクレアチンリン酸が生成されるからである。この一連の反応を、「クレアチンリン酸消費-合成反応」といい、この反応が起こる場が第2体内副反応器である。 Furthermore, creatine phosphate, which is a high-energy compound produced in the main body reactor, is a substance having the physiological significance of storing high-energy phosphate bonds. This is because when the ADP level rises due to muscle contraction or the like, creatine phosphate is consumed in the second body side-reactor to produce creatine and ATP, but conversely, when the ADP level falls, it is catalyzed by creatine kinase. This is because creatine phosphate is produced from creatine and ATP. This series of reactions is called “creatine phosphate consumption-synthesis reaction”, and the place where this reaction occurs is the second internal side reactor.
 上述したように、ATPは、体内主反応器、第1及び第2体内副反応器という3つの反応器で生成される。生成されるATP量を反応器ごとに比較すると、第1及び第2体内副反応器で産生されるATP産生量は、体内主反応器で産生される量よりもはるかに少ない。このため、運動のためのエネルギーであるATPは、主として体内主反応器から供給されているといえる。 As described above, ATP is generated in three reactors, the main body reactor, and the first and second body side reactors. Comparing the amount of ATP produced for each reactor, the amount of ATP produced in the first and second body side reactors is much less than the amount produced in the body main reactor. For this reason, it can be said that ATP, which is energy for exercise, is mainly supplied from the main body reactor.
 一方で、トレーニング開始前の状態では、ある運動強度にしか耐えられず、それ以上運動を持続できなかった人でも、適切なトレーニングを行うことによって運動を持続できる時間が長くなる。これは、トレーニングによってより高い運動強度に耐えられるようになることを意味するが、このような事象は、体内主反応器からのATP供給量が増加することに大きく依存し、併せて第1及び第2体内副反応器由来のATPの供給量が増加したことによるものと考えられている。 On the other hand, in a state before the start of training, even a person who can only endure a certain exercise intensity and cannot continue the exercise further, the time that the exercise can be continued becomes longer by performing an appropriate training. This means that training will be able to withstand higher exercise intensity, but such an event is highly dependent on the increase in ATP supply from the main body reactor, together with the first and This is thought to be due to an increase in the amount of ATP supplied from the second internal side reactor.
 ATPの生成量を直接的に測定することはできないため、本発明では、運動状態変数を実測するとともに、血中乳酸濃度を指標の1つとして用いて代謝速度を求め、それらを用いて、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素を精密に推定することを可能としたのである。 Since the amount of ATP produced cannot be measured directly, in the present invention, the exercise state variable is measured, and the metabolic rate is determined using the blood lactate concentration as one of the indices. This makes it possible to accurately estimate any element selected from the group consisting of a person's condition, exercise quality, and possible exercise quantity.
 本発明の、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定用支援データベースの作成方法は、運動状態変数を実測する測定工程と、代謝反応速度を求める代謝反応速度計算工程とを備えている。そして、前記代謝反応速度計算工程では、代謝反応速度を求めるに当たって、下記のいずれかの式を用いるものである。 The method for creating a support database for estimating any element selected from the group consisting of an exerciser's condition, exercise quality and possible exercise amount includes a measurement step of actually measuring an exercise state variable, and a metabolic reaction rate. A metabolic reaction rate calculation step to be obtained. In the metabolic reaction rate calculation step, any one of the following formulas is used to determine the metabolic reaction rate.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 上記式(I)~(III)中、ki(i=1~j)は係数パラメータを表す、各運動者固有の値であり、運動者の代謝能力を特徴づけるパラメータである。このパラメータは、発揮仕事率、運動時間(分)、心拍数、ピッチ数その他の下記のような運動変数と、これらの変数の測定条件とに基づいて求めることができる。なお、上記の式中の下記項をすべて含むことは、必ずしも要求されない。 In the above formulas (I) to (III), k i (i = 1 to j) is a coefficient-specific value representing a coefficient parameter, and is a parameter characterizing the exerciser's metabolic ability. This parameter can be obtained based on the following work variables such as the working power, the exercise time (minutes), the heart rate, the pitch number, and the following measurement conditions. It is not always required to include all the following terms in the above formula.
 ここで、式(I)として、次の式(IV)を採用することができる。 Here, the following formula (IV) can be adopted as the formula (I).
Figure JPOXMLDOC01-appb-M000019
 前記式(IV)中のべき乗次数は実数である。
Figure JPOXMLDOC01-appb-M000019
The power order in the formula (IV) is a real number.
 また、式(II)として、次の式(V)を採用することができる。 Also, the following formula (V) can be adopted as the formula (II).
Figure JPOXMLDOC01-appb-M000020
 前記式(V)中のべき乗次数は実数である。
Figure JPOXMLDOC01-appb-M000020
The power order in the formula (V) is a real number.
 また、式(III)として、次の式(VI)を採用することができる。 Also, the following formula (VI) can be adopted as the formula (III).
Figure JPOXMLDOC01-appb-M000021
 前記式(VI)中のべき乗次数は実数である。
Figure JPOXMLDOC01-appb-M000021
The power order in the formula (VI) is a real number.
 前記運動状態変数は、以下に述べる(a1)トルク値又はフォース値、(a2)脚の回転数、ペダルの回転速度、ピッチ数及び移動速度からなる群から選ばれるいずれかのケイデンス値、ストライド(ピッチ)、(a3)測定対象運動者の体重、(a4)前記測定対象運動者の心拍数、(a5)トレーニングコースの傾斜、(a6)血中の代謝物濃度(ピルビン酸、乳酸、クレアチンリン酸の濃度)、並びに、(a7)気温又は体温のいずれか一方の温度、からなる群から選ばれるものである。又は、前記(a1)のトルク値又はフォース値及び(a2)のケイデンス値に代えて、パワー(仕事率)という変数を含む群から選ばれるものであることが、推定結果の精度を高める上で好ましい。 The movement state variable includes (a1) a torque value or a force value, (a2) a cadence value selected from the group consisting of a leg rotation speed, a pedal rotation speed, a pitch number, and a movement speed, and a stride ( (Pitch), (a3) body weight of the athlete to be measured, (a4) heart rate of the athlete to be measured, (a5) inclination of the training course, (a6) metabolite concentration in the blood (pyruvic acid, lactate, creatine phosphorus) Acid concentration), and (a7) one of air temperature and body temperature. Or, instead of the torque value or force value of (a1) and the cadence value of (a2), it is selected from a group including a variable of power (power) in order to increase the accuracy of the estimation result. preferable.
 ここで、[power]は運動負荷であるパワー値(W)を表し、例えば、パワーメーター、フォースプレート、圧力測定器、GPS、加速度センサ等で測定することができる。[tor]は、例えば、自転車の場合にはペダルを下に押す力を表すトルク値又は押す力であるフォース値を表し、例えば、脚、ペダル、クランク、シューズ等に取り付けた圧力センサ、歪ゲージ、ロードセル等の測定装置で実測することができる。また、[cad]は、脚の回転数[rpm]、ペダルの回転速度[rpm]、ピッチ数[回/分]及び移動速度[m/秒]からなる群から選ばれるいずれかのケイデンス値を表す。ケイデンスも、[power]又は[tor]と同様に、例えば、身体に取り付けた加速度センサ、回転センサ、圧力センサ、歪ゲージ等の測定装置で実測することができる。 Here, [power] represents a power value (W) that is an exercise load, and can be measured by, for example, a power meter, a force plate, a pressure measuring device, a GPS, an acceleration sensor, or the like. [tor] represents, for example, in the case of a bicycle, a torque value indicating a force that pushes the pedal down or a force value that is a pressing force. For example, a pressure sensor attached to a leg, pedal, crank, shoes, or a strain gauge It can be actually measured with a measuring device such as a load cell. [Cad] is a cadence value selected from the group consisting of the number of rotations of the legs [rpm], the rotation speed of the pedals [rpm], the number of pitches [times / minute], and the movement speed [m / s]. To express. Similarly to [power] or [tor], the cadence can be actually measured by a measuring device such as an acceleration sensor, a rotation sensor, a pressure sensor, or a strain gauge attached to the body.
 [HR]は一分間あたりの心拍数[bpm]を表し、運動者の身体に装着した心拍計等で測定することができる。[slope]は、コースの傾斜角度分布を表し、勾配が急か否かは数値で表される。[met]は血中乳酸濃度(mmol/L)を表し、市販の専用測定装置を使用して測定することができる。 [HR] represents the heart rate [bpm] per minute and can be measured with a heart rate monitor or the like attached to the body of the exerciser. [slope] represents the inclination angle distribution of the course, and whether or not the slope is steep is represented by a numerical value. [met] represents the blood lactate concentration (mmol / L), and can be measured using a commercially available dedicated measuring device.
 [temp]は気温又は体温(℃)を表し、これらの数値を代入することによって、体温上昇に伴う代謝反応速度への影響を反映させることができるようになる。べき乗次数は実数を表し、例えば、[tor]の場合には0.50、[weight]の場合には-1のような数値で表すことができる。 [Temp] represents air temperature or body temperature (° C.), and by substituting these numerical values, it becomes possible to reflect the influence on the metabolic reaction rate accompanying the increase in body temperature. The power order represents a real number, and can be represented by a numerical value such as 0.50 for [tor] and -1 for [weight], for example.
 以下に自転車を使用した場合を例にとりつつ、説明する。
 運動状態変数は、運動者がペダルによって自転車に与えた動力を計測する計器であるパワーメーターを使用することによって求めることができる。パワーメーターとしては、例えば、SRM Training System Science (SRM(Schoberer Rad Messtechnik)社製)、ペダリングモニターシステム(パイオニア(株)製)、Power Tap(Saris社製)、Power 2 max (Power2max社製)、Quark ELSA(Quark社製)、Rotor Power(Rotor社製)等を挙げることができる。また、乳酸の測定には、LactatePRO(ARKREY社製)、Lactate PR02(Arkley社製)、Biocen c-line(Biocen社製)等のポータブル血中乳酸濃度測定器を挙げることができる。ここで、LactatePROは測定に5μLの血液が必要であるが、Lactate PR02では0.3μLの血液で足りる。
The following description will be made with an example of using a bicycle.
The exercise state variable can be obtained by using a power meter which is an instrument for measuring the power given to the bicycle by the exerciser by the pedal. As a power meter, for example, SRM Training System Science (manufactured by SRM (Schoberer Rad Messtechnik)), pedaling monitor system (manufactured by Pioneer Corporation), Power Tap (manufactured by Saris), Power 2 max (manufactured by Power2max), Examples include Quark ELSA (Quark) and Rotor Power (Rotor). Examples of the measurement of lactic acid include portable blood lactic acid concentration measuring instruments such as LactatePRO (manufactured by ARKREY), Lactate PR02 (manufactured by Arkley), Biocen-line (manufactured by Biocen). Here, LactatePRO requires 5 μL of blood for measurement, but Lactate PR02 requires 0.3 μL of blood.
 例えば、以下のように負荷を変化させて、上述したパワー値、心拍数、及びケイデンス値の変化をパワーメーターによって測定し、結果を求めることができる。約50~150Wで約10~20分間ウォーミングアップ、次いで、約60~120rpmで2~5分間運動を行い、使用する測定器に応じて、約0.3~約5μLの血液を測定対象運動者の指先又は耳朶から約0.5~1.5分間で採血する。その後、約2~5分間隔で約30~50Wずつ負荷を漸増させ、約10秒以上ケイデンスを維持できなくなった時点でテストを終了する。その後、約50~150Wでクールダウンを行い、クールダウン中も2~5分間隔で血中乳酸濃度の測定を行う。 For example, the load can be changed as follows, and the power value, heart rate, and cadence value changes described above can be measured with a power meter, and the result can be obtained. Warm up at about 50 to 150 W for about 10 to 20 minutes, and then exercise at about 60 to 120 rpm for 2 to 5 minutes. Depending on the measuring instrument used, about 0.3 to about 5 μL of blood is applied to the fingertip of the subject exerciser or Blood is collected from the earlobe about 0.5 to 1.5 minutes. Thereafter, the load is gradually increased by about 30 to 50 W at intervals of about 2 to 5 minutes, and the test is terminated when cadence cannot be maintained for about 10 seconds or more. Then, cool down at about 50-150W, and measure the blood lactate concentration at intervals of 2-5 minutes even during the cool-down.
 一定負荷運動における血中乳酸濃度の変化は、例えば、上記のパワーメーターを用いて、ケイデンス値を、約60~80rpm、約70~90rpm、約80~100rpm及び約90~110rpmと変化させたときの血中乳酸濃度の経時変化を測定して調べることができる。また、低負荷運動時の血中乳酸濃度の低下については、上記と同じパワーメーターを使用して、ケイデンス値を、例えば、約50~100rpmと低く設定し、数名、好ましくは6~9名程度の被験者を選定し、血中乳酸濃度の変化を経時的に測定する。血中乳酸濃度の変化の傾向によって、幾つかのグループに分けることができる。 For example, when the cadence value is changed to about 60 to 80 rpm, about 70 to 90 rpm, about 80 to 100 rpm, and about 90 to 110 rpm using the above power meter It is possible to examine the change in blood lactate concentration over time. For lowering the blood lactate concentration during low-load exercise, use the same power meter as described above, and set the cadence value as low as about 50 to 100 rpm, for example, several people, preferably 6 to 9 people. Select subjects with a degree and measure the change in blood lactate concentration over time. It can be divided into several groups according to the tendency of changes in blood lactate concentration.
 上記のようにして求めた各運動者固有のパラメータと、各運動者が運動したときの運度変数とを用いて、上記の代謝反応式から運動の持続伴う乳酸生成量の経時的変化を知ることができる。これによって、第1体内副反応器から供給されるエネルギー(糖由来のエネルギー)の消費量と併せて、運動を持続するために必要とされるエネルギー量(利用可能エネルギー量)を推定できるようになる。 Using the parameters specific to each exerciser obtained as described above and the mobility variables when each exerciser exercises, the change in lactic acid production with time of exercise is known from the above metabolic reaction equation. be able to. By this, together with the consumption of energy (sugar-derived energy) supplied from the first body side reactor, it is possible to estimate the amount of energy (available energy amount) required to continue the exercise Become.
 また、運動者によって糖由来の利用可能エネルギー量は異なる。このため、上述した代謝反応式を用いることによって、各運動者に応じた利用可能エネルギー量を求めることができる。そして、各運動者が保有すると推定された使用可能エネルギー量がどの程度消費されたかを求め、最初の推定された利用可能エネルギー量と比較することによって、各運動者のエネルギー消費を表すバロメーターとして用いることができる。 Also, the amount of energy available from sugar varies depending on the athlete. For this reason, the useable energy amount according to each exerciser can be calculated | required by using the metabolic reaction formula mentioned above. Then, the amount of usable energy estimated to be possessed by each exerciser is calculated and used as a barometer representing the energy consumption of each exerciser by comparing with the first estimated available energy amount. be able to.
 さらに、糖が消費されることによって疲労が蓄積するということは、糖の消費量(利用量)が疲労状況を反映することに他ならない。このことから、積算生成乳酸量をもとに、エネルギーの消費量、消費速度、消費率を知ることによって、疲労の蓄積状況を知ることができるようになる。 Furthermore, the accumulation of fatigue due to consumption of sugar is nothing but the consumption (utilization amount) of sugar reflecting the fatigue situation. From this fact, it is possible to know the accumulated state of fatigue by knowing the energy consumption, the consumption speed, and the consumption rate based on the accumulated amount of lactic acid.
 以上のようにして求めた運動変数を、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定用支援データベースの作成方法で用いる式に代入することによって、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素を推定することができ、これらを用いて運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定用支援データベースを作成することができる。 By substituting the exercise variables obtained as described above into the formula used in the method for creating the support database for estimation of any element selected from the group consisting of the state of the exerciser, the quality of exercise, and the amount of possible exercise, Any element selected from the group consisting of the exerciser's condition, quality of exercise and the amount of exercise can be estimated, and using these, it is selected from the group consisting of the state of the exerciser, quality of exercise and the amount of exercise possible It is possible to create a support database for estimating any of the elements.
(実施例1)漸増負荷テスト
 パワーメーターとして、SRM(Schoberer Rad Messtechnik)社製のSRM Training System Scienceを使用した。乳酸の測定には、ARKREY社製のLactatePROを使用した。測定は、室内で、常温(22℃)にて行った。被験者である自転車競技の選手の身長、体重、及び自転車重量の測定を行った。
(Example 1) Gradually increasing load test As a power meter, SRM Training System Science manufactured by SRM (Schoberer Rad Messtechnik) was used. For measurement of lactic acid, LactatePRO manufactured by ARKREY was used. The measurement was performed indoors at room temperature (22 ° C.). The height, weight, and bicycle weight of the subject cycling athlete were measured.
 次いで、この選手が、競技又はトレーニングで使用している自転車にパワーメーターを取り付け、固定負荷台上で漸増負荷テストを実施した。このテストでは、負荷の増加に伴う血中乳酸濃度を、LactatePROを用いて測定した。同時に、パワー値、ケイデンス値、トルク値、心拍数、及び速度を測定した。測定を行っている室内の温度もモニターした。 Next, this athlete attached a power meter to a bicycle used in competition or training, and conducted a gradual load test on a fixed load table. In this test, blood lactate concentration with increasing load was measured using LactatePRO. At the same time, power value, cadence value, torque value, heart rate, and speed were measured. The temperature in the room where the measurement was being performed was also monitored.
 測定用のメニューは、以下の通りとした。まず、100Wで15分間ウォーミングアップを行った。次いで、90±3rpmで3分間運動を行い、1分間で0.3μLを採血した。その後、3分ごとに40Wずつ負荷を漸増させ、10秒以上ケイデンスを維持できなくなった時点でオールアウトとしてテストを終了した。このときの血中乳酸濃度の測定結果を図3に示す。また、パワー値、心拍数、及びケイデンス値の変化のパワーメーターによる測定結果を図4A~4Dに示す。 The menu for measurement was as follows. First, warm-up was performed for 15 minutes at 100W. Next, exercise was performed at 90 ± 3 rpm for 3 minutes, and 0.3 μL of blood was collected in 1 minute. Thereafter, the load was gradually increased by 40 W every 3 minutes, and when the cadence could not be maintained for 10 seconds or more, the test was ended as all-out. The measurement result of the blood lactate concentration at this time is shown in FIG. In addition, FIGS. 4A to 4D show measurement results of changes in power value, heart rate, and cadence value using a power meter.
 図3中、OBLAは血中乳酸蓄積量オンセットを示す。血中乳酸濃度がこの数値を超えると、血中乳酸濃度が一気に上昇することが示された。図3に示すように、血中乳酸濃度変化のグラフから、LTパワー値及びΔ1mm/Lを求めた。テスト終了後、パワー100Wでクールダウンを行った。クールダウンの間は、3~4分ごとに血中乳酸濃度の測定を行い、乳酸濃度の変化速度を測定した。
 測定結果から、従来の酸素摂取量による測定と比べて、血中乳酸濃度の上昇がケイデンスに与える影響が明確に示された。
In FIG. 3, OBLA indicates blood lactate accumulation amount onset. It was shown that when the blood lactate concentration exceeded this value, the blood lactate concentration increased rapidly. As shown in FIG. 3, the LT power value and Δ1 mm / L were determined from the graph of blood lactate concentration change. After the test, it was cooled down with 100W power. During the cool-down, the blood lactate concentration was measured every 3 to 4 minutes, and the change rate of the lactate concentration was measured.
The measurement results clearly showed the effect of increased blood lactic acid concentration on cadence as compared to conventional oxygen uptake measurements.
(実施例2)負荷運動の相違による血中乳酸濃度の変化
(1)一定負荷運動における血中乳酸濃度の変化
 実施例1で使用したのと同じパワーメーターを使用して、一定負荷運動を行なった。このときのトルク値は、70rpm、80rpm、90rpm及び100rpmにそれぞれ設定し、各負荷をかけたときの血中乳酸濃度の経時変化を測定した。その結果を図5に示す。
 70~90rpmの場合には、血中乳酸濃度は経時的に上昇した。これに対し、100rpmの場合には、5分~11分の間に血中乳酸濃度が大きく上昇し、その後減少するというパターンが示された。
(Example 2) Change in blood lactate concentration due to difference in load exercise (1) Change in blood lactate concentration in constant load exercise Using the same power meter as used in Example 1, constant load exercise was performed. It was. The torque values at this time were set to 70 rpm, 80 rpm, 90 rpm, and 100 rpm, respectively, and the change with time in blood lactic acid concentration when each load was applied was measured. The result is shown in FIG.
In the case of 70 to 90 rpm, the blood lactic acid concentration increased with time. On the other hand, in the case of 100 rpm, a pattern was shown in which the blood lactic acid concentration increased significantly between 5 and 11 minutes and then decreased.
(2)低負荷運動時の血中乳酸濃度の低下
 実施例1で使用したのと同じパワーメーターを使用してクールダウン時の血中乳酸濃度の変化を調べた。被験者数は7名とした。図6に示すように、3.5分後まで血中乳酸濃度がわずかに上昇した後に経時的に減少するか、又は上昇せずに経時的に減少するグループと、6分過ぎまで上昇したグループとに大別された。以上より、低負荷運動においても、個人差が大きいことが具体的な数値として示された。
(2) Reduction of blood lactate concentration during low-load exercise Using the same power meter as used in Example 1, changes in blood lactate concentration during cool-down were examined. The number of subjects was seven. As shown in FIG. 6, the blood lactate concentration slightly increased until 3.5 minutes and then decreased over time, or did not increase, but decreased over time, and the group increased over 6 minutes. It was divided roughly. From the above, it was shown as a specific numerical value that individual differences are large even in low-load exercise.
(3)代謝反応とエネルギー利用の解析
 上記(2)のクールダウン中に測定した乳酸濃度変化速度と、上記(1)で行った一定負荷運動時の乳酸濃度変化速度とを、各負荷をかけた場合について、実施例上記式(I)~(III)を用いて求め、乳酸生成反応式のパラメータ計算を行った。この結果をもとに、乳酸生成速度を計算するモデル式を作成し、フィッティングを行なった。測定値と乳酸生成速度とがよくフィットすることが示された。また、実測した血中乳酸濃度データ及び計算結果(予測乳酸濃度)は、図7に示す通りとなった。
(3) Analysis of metabolic reaction and energy utilization The rate of change in lactic acid concentration measured during the cool-down in (2) above and the rate of change in lactic acid concentration during a constant load exercise performed in (1) above are applied to each load. In this case, the examples were obtained using the above formulas (I) to (III), and the parameters of the lactic acid production reaction formula were calculated. Based on this result, a model formula for calculating the lactic acid production rate was created and fitted. It was shown that the measured value and the lactic acid production rate fit well. The actually measured blood lactate concentration data and calculation results (predicted lactate concentration) are as shown in FIG.
 以上より、乳酸代謝反応速度式を作成し、前記運動状態変数のすべてを用いて運動者の乳酸代謝反応パラメータを決定する持久運動能力評価方法を用いることによって、個人の持久運動能力を正確に評価することができる。また、運動者の運動状態を示す変数を基に前記運動者の代謝能力を推算し、持久運動能力を評価するとともに、前記運動者が行った運動の質を評価する手法の実行を支援するための運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定用支援データベースを作成することができる。 Based on the above, by creating a lactic acid metabolism reaction rate equation and using the endurance exercise ability evaluation method that determines the lactic acid metabolism reaction parameters of the exerciser using all of the exercise state variables, the individual endurance exercise ability is accurately evaluated. can do. In addition, to estimate the endurance exercise ability by estimating the exercise ability of the exerciser based on the variable indicating the exercise state of the exerciser, and to support the execution of the technique for evaluating the quality of exercise performed by the exerciser. It is possible to create a support database for estimation of any element selected from the group consisting of the state of the exerciser, the quality of exercise, and the amount of exercise possible.
(実施例3)データベースシステムの構成
 次に、上述した運動者が行った運動の質を評価する手法の実行を支援するための運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定用支援データベースを含むデータベースシステムについて説明する。
(Embodiment 3) Configuration of database system Next, a database system is selected from the group consisting of the state of the athlete, the quality of the exercise, and the amount of possible exercise to support the execution of the technique for evaluating the quality of the exercise performed by the above-mentioned A database system including a support database for estimating any of the elements will be described.
 <構成>
 こうしたデータベースシステムの一例の構成が、図8に示されている。このデータベースシステムでは、運動者の移動に従って運動者とともに移動するデータロギングシステム100j(j=1~M)が、運動を行う際に運動者の周辺に配置される。かかるデータロギングシステム100jのそれぞれは、上述した(I)~(III)式のいずれかに登場する複数の測定変数の値に対応する物理量を検出するセンサ110j,k(k=1~N)を備えている。
<Configuration>
The configuration of an example of such a database system is shown in FIG. In this database system, a data logging system 100 j (j = 1 to M) that moves together with the exerciser according to the movement of the exerciser is arranged around the exerciser when exercising. Each of the data logging systems 100 j includes sensors 110 j, k (k = 1 to N) that detect physical quantities corresponding to the values of a plurality of measurement variables appearing in any of the above-described equations (I) to (III). ).
 また、データロギングシステム100jのそれぞれは、ロガーユニット120jを備えている。このロガーユニット120jは、不図示のキーボード等の情報入力部を備えており、この情報入力部を操作することにより、運動者の識別情報の指定や、ロギング動作の開始/停止の指定をすることができるようになっている。 Each of the data logging systems 100 j includes a logger unit 120 j . The logger unit 120 j includes an information input unit such as a keyboard (not shown), and by operating the information input unit, designation of exerciser identification information and designation of start / stop of a logging operation are performed. Be able to.
 ロガーユニット120jは、ロギング動作の開始が指定されると、ロギング動作の終了が指定されるまで、センサ110j,k(k=1~N)から送られたデータを収集し、逐次、当該測定変数の値を求める。そして、ロガーユニット120jは、求められた測定変数の値を、運動者の識別情報及び時刻情報ともに、広域無線通信網を利用して、データベースサーバ200へ送る。 When the start of the logging operation is designated, the logger unit 120 j collects data sent from the sensors 110 j, k (k = 1 to N) until the end of the logging operation is designated. Find the value of the measurement variable. Then, the logger unit 120 j sends the value of the obtained measurement variable to the database server 200 using the wide area wireless communication network together with the exerciser's identification information and time information.
 本実施例では、ロガーユニット120jは、Bluetooth(登録商標)規格等に従った近距離無線通信及び広域無線通信の双方の機能を有するとともに、演算能力を有する通信端末装置となっている。こうしたロガーユニット120jとしては、例えば、プログラムの実行により、データベースサーバ200へ送信するデータを、予め定められた送信フォーマットにフォーマット統一を行った後に送信する等の様々の機能を発揮することができるスマートフォンを採用することができる。 In the present embodiment, the logger unit 120 j is a communication terminal device that has both short-range wireless communication and wide-area wireless communication functions in accordance with the Bluetooth (registered trademark) standard and the like, and has computing power. Such a logger unit 120 j can exhibit various functions such as, for example, transmitting data to be transmitted to the database server 200 after unifying the format into a predetermined transmission format by executing a program. A smartphone can be used.
 また、本実施例では、センサ110j,kは、センサ本体と、データ送信ユニットとを備えている。このセンサ110j,kでは、センサ本体による検出結果をデジタル値化したデータを、データ送信ユニットが、Bluetooth(登録商標)規格等に従った近距離無線通信により、ロガーユニット120jへ送信するようになっている。 In the present embodiment, the sensor 110 j, k includes a sensor main body and a data transmission unit. In this sensor 110 j, k , the data transmission unit transmits data obtained by digitizing the detection result of the sensor body to the logger unit 120 j by short-range wireless communication according to the Bluetooth (registered trademark) standard or the like. It has become.
 なお、センサ110j,kとロガーユニット120jとは、有線接続されるようにしてもよい。また、ロガーユニット120jの演算処理能力が高くない場合には、ロガーユニット120jは、利用者が保有するパーソナルコンピュータを利用し、データフォーマットを統一した後にデータベースサーバへ送るようにしてもよい。 The sensors 110 j, k and the logger unit 120 j may be connected by wire. Further, when the not high processing power of the logger unit 120 j is logger module 120 j may utilize a personal computer owned by the user, it may be sent to the database server after unified data format.
 データロギングシステム100jの構成要素は、例えば、運動者が自転車を使用した運動を行う場合には、当該自転車に装着しておくようにすることができる。
 また、センサ110j,kとロガーユニット120jとの接続態様は、有線接続であってもよいし、近距離無線接続であってもよい。
The components of the data logging system 100 j can be attached to the bicycle when the athlete performs exercise using the bicycle, for example.
Further, the connection mode between the sensors 110 j, k and the logger unit 120 j may be wired connection or short-range wireless connection.
 また、データベースサーバ200は、インターネット網500を介して、パーソナルコンピュータ等の通信端末装置300p(p=1~P)と通信可能となっている。利用者は、通信端末装置300p(p=1~P)を用いてデータベースサーバ200と通信することにより、識別情報の付与を受けたり、当初の個人属性を登録したりすることができるようになっている。 The database server 200 can communicate with a communication terminal device 300 p (p = 1 to P) such as a personal computer via the Internet network 500. By communicating with the database server 200 using the communication terminal device 300 p (p = 1 to P), the user can receive identification information and register the original personal attributes. It has become.
 データベースサーバ200は、上述した方法を使用して、運動者が行った運動の質を評価する手法の実行を支援するための運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定用支援データベースを作成する。そして、データベースサーバ200は、通信端末装置300pを使用した利用者からの求めに応答して、利用者自身が行った運動の質を評価する手法の実行を支援するための運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定結果を入手したり、現時点において推奨される運動態様を入手したりすることができるようになっている。 The database server 200 is selected from the group consisting of an exerciser's state, exercise quality and exercise capacity to assist in the execution of a technique for assessing the quality of exercise performed by the exerciser using the method described above. Create support database for estimation of any element. Then, the database server 200, in response to a request from a user using the communication terminal device 300 p, to assist in performing a method of evaluating the quality of the exercise in which the user himself conducted exerciser state, It is possible to obtain the estimation result of any element selected from the group consisting of the quality of exercise and the amount of exercise, and obtain the currently recommended exercise mode.
 本発明は、持続的に行う種々の運動におけるトレーニングの評価及び運動能力向上のためのトレーニング指針を作成する上で有用である。 The present invention is useful for creating training guidelines for evaluating training and improving athletic ability in various exercises performed continuously.

Claims (12)

  1.  第1~第3の組の変数のいずれかの組を選択し、選択された組に含まれる運動状態変数のそれぞれの値を、測定対象運動者について、少なくとも一の運動期間にわたって継続的に実測する測定工程と;
     前記測定工程における測定結果に基づいて、前記選択された組に対応して定まる代謝反応モデル式における前記測定対象運動者に対応する係数パラメータを算出する算出工程と:を備え、
     前記第1の組は、トルク、ケイデンス、前記測定対象運動者の体重、前記測定対象運動者の心拍数、トレーニングコースの傾斜、血中又は筋中の代謝物濃度、並びに、気温又は体温のいずれか一方の温度からなる変数を含み;
     前記第2の組は、フォース、ストライド(ピッチ)、前記測定対象運動者の体重、前記測定対象運動者の心拍数、トレーニングコースの傾斜、血中又は筋中の代謝物濃度、並びに、気温又は体温のいずれか一方の温度からなる変数を含み;
     前記第3の組は、パワー(仕事率)、前記測定対象運動者の体重、前記測定対象運動者の心拍数、トレーニングコースの傾斜、血中又は筋中の代謝物濃度、並びに、気温又は体温のいずれか一方の温度からなる変数を含み;
     前記選択された組が前記第1の組である場合の前記代謝反応モデル式は下記式(I)であり;
     前記選択された組が前記第2の組である場合の前記代謝反応モデル式は下記式(II)であり;
     前記選択された組が前記第3の組である場合の前記代謝反応モデル式は下記式(III)である;
    前記測定対象運動者に関する代謝反応式の推定方法。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
     上記式(I)中、[met]は代謝物濃度を表し、[tor]はトルク値を、[cad]は、脚の回転数[rpm]、ペダルの回転速度、ピッチ数及び移動速度からなる群から選ばれるいずれかのケイデンスをそれぞれ表す。[weight]は前記測定対象運動者の体重、[HR]は心拍数[bpm]をそれぞれ表す。[slope]はコースの傾斜角度分布を含むコース状態を表す。[temp]は気温又は体温を表す。
     上記式(II)中、[force]はフォース値を、[stride(pitch)]は、ピッチと同様に身体を動かす速さのパラメータであり、歩行時又はランニング時の歩幅又はピッチをそれぞれ表す。[weight]、[HR]、[slope]、[met]及び[temp]については、式(I)と同じである。
     上記式(III)中、[power(work rate)]は、force(力)、水平および垂直方向の速度と加速度、身体の上下変動高さ、接地時間、走行時のジャンプ角度、ストライドの周期(pitch)といった測定パラメータから求める仕事率(work rate)を含む。[weight]、[HR]、[slope]、[met]及び[temp]については、式(I)と同じである。
     上記式(I)~(III)中のfr(X),gr(X),hr(X)は、Xを変数とする関数である。
    Any one of the first to third variables is selected, and each value of the exercise state variable included in the selected set is continuously measured for at least one exercise period for the measurement target exerciser. Measuring process to perform;
    A calculation step of calculating a coefficient parameter corresponding to the measurement subject exerciser in a metabolic reaction model formula determined corresponding to the selected set based on the measurement result in the measurement step, and
    The first set includes any of torque, cadence, body weight of the measurement target exerciser, heart rate of the measurement target exerciser, inclination of a training course, blood or muscle metabolite concentration, and temperature or body temperature. Including a variable consisting of either temperature;
    The second set includes force, stride (pitch), the weight of the subject exerciser, the heart rate of the subject exerciser, the slope of the training course, the metabolite concentration in blood or muscle, and the temperature or Including a variable consisting of either body temperature;
    The third set includes power (work rate), the weight of the measurement target exerciser, the heart rate of the measurement target exerciser, the slope of the training course, the metabolite concentration in blood or muscle, and the temperature or body temperature. Including a variable consisting of either temperature;
    The metabolic reaction model formula when the selected set is the first set is the following formula (I);
    The metabolic reaction model formula when the selected set is the second set is the following formula (II);
    The metabolic reaction model formula when the selected set is the third set is the following formula (III);
    A method for estimating a metabolic reaction formula relating to the measurement subject exerciser.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    In the above formula (I), [met] represents the metabolite concentration, [tor] represents the torque value, and [cad] comprises the leg rotation speed [rpm], the pedal rotation speed, the pitch number, and the movement speed. Each cadence selected from the group is represented. [weight] represents the weight of the measurement target exerciser, and [HR] represents the heart rate [bpm]. [slope] represents the course state including the course inclination angle distribution. [temp] represents air temperature or body temperature.
    In the above formula (II), [force] is a force value, and [stride (pitch)] is a parameter of the speed of moving the body like the pitch, and represents the stride or pitch during walking or running. [weight], [HR], [slope], [met], and [temp] are the same as those in the formula (I).
    In the above formula (III), [power (work rate)] is force, horizontal and vertical speed and acceleration, vertical movement height, contact time, jump angle during running, stride cycle ( The work rate obtained from the measurement parameter such as (pitch) is included. [weight], [HR], [slope], [met], and [temp] are the same as those in the formula (I).
    The formula (I) f r in ~ (III) (X), g r (X), h r (X) is a function that the X variable.
  2.  前記式(I)は下記式(IV)である、ことを特徴とする請求項1に記載の代謝反応式の推定方法。
    Figure JPOXMLDOC01-appb-M000004
     前記式(IV)中のべき乗次数は実数である。
    2. The metabolic reaction formula estimation method according to claim 1, wherein the formula (I) is the following formula (IV).
    Figure JPOXMLDOC01-appb-M000004
    The power order in the formula (IV) is a real number.
  3.  前記式(II)は下記式(V)である、ことを特徴とする請求項1に記載の代謝反応式の推定方法。
    Figure JPOXMLDOC01-appb-M000005
     前記式(V)中のべき乗次数は実数である。
    2. The metabolic reaction formula estimation method according to claim 1, wherein the formula (II) is the following formula (V).
    Figure JPOXMLDOC01-appb-M000005
    The power order in the formula (V) is a real number.
  4.  前記式(III)は下記式(VI)である、ことを特徴とする請求項1に記載の代謝反応式の推定方法。
    Figure JPOXMLDOC01-appb-M000006
     前記式(VI)中のべき乗次数は実数である。
    2. The metabolic reaction formula estimation method according to claim 1, wherein the formula (III) is the following formula (VI).
    Figure JPOXMLDOC01-appb-M000006
    The power order in the formula (VI) is a real number.
  5.  請求項1に記載の代謝反応式の推定方法を使用して測定対象運動者について推定された代謝反応式に基づいて、新たな運動期間における運動の際の前記測定対象運動者にとっての、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定方法。 An exerciser for the measurement subject exerciser during exercise in a new exercise period based on the metabolic reaction equation estimated for the measurement subject exerciser using the metabolic reaction equation estimation method according to claim 1 A method for estimating any element selected from the group consisting of the state of exercise, the quality of exercise, and the amount of exercise possible.
  6.  請求項1に記載の代謝反応式の推定方法を使用して、複数の測定対象運動者の代謝反応式を推定する推定工程と;
     前記複数の測定対象運動者のそれぞれの個人属性と、前記個人属性に対応する測定対象運動者の代謝反応式とを関連付けたデータベースを作成する作成工程と;
     を備える、運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定用支援データベースの作成方法。
    An estimation step of estimating metabolic reaction formulas of a plurality of measurement subject exercisers using the metabolic reaction formula estimation method according to claim 1;
    A creation step of creating a database associating each individual attribute of the plurality of measurement target exercisers with a metabolic reaction formula of the measurement target exerciser corresponding to the personal attribute;
    A method of creating a support database for estimating any element selected from the group consisting of an exerciser's condition, exercise quality and possible exercise quantity.
  7.  前記個人属性には、トレーニングの進行度が含まれ、
     前記トレーニングの進行に応じて、新たな代謝反応式を用いて運動の質又は運動可能量を推定する、
     ことを特徴とする請求項6に記載の運動者の状態、運動の質及び運動可能量からなる群から選ばれるいずれかの要素の推定用支援データベースの作成方法。
    The personal attributes include training progress,
    As the training progresses, the quality or amount of exercise is estimated using a new metabolic reaction equation.
    The method of creating a support database for estimating any element selected from the group consisting of the state of an exerciser, the quality of exercise, and the amount of exercise available according to claim 6.
  8.  請求項1に記載の代謝反応式の推定方法により推定された代謝反応式を用いて求めた代謝速度に基づいて、前記推定された代謝反応式に対応する運動者の持久運動能力を評価する持久運動能力の評価方法。 The endurance for evaluating the endurance exercise ability of the exerciser corresponding to the estimated metabolic reaction formula based on the metabolic rate obtained by using the metabolic reaction formula estimated by the metabolic reaction formula estimation method according to claim 1 Evaluation method of athletic ability.
  9.  代謝反応により運動の持続に必要なエネルギーを供給する体内主反応器並びに第1及び第2体内副反応器の総合性能を、各反応器中における代謝反応に伴う代謝物の濃度変化をモニターすることによって推定する性能推定工程と;
     ピルビン酸及び乳酸の少なくとも一方の生成速度を指標として、前記第1体内副反応器の性能を推測する性能推測工程と;
     前記運動の持続と経時的に進行する疲労との関係を、請求項1に記載の代謝反応式の推定方法により推定された代謝反応式に基づいて、代謝物質の濃度又は代謝量を定量的に推定する疲労度把握工程と;
     前記推定された総合性能と前記推測された前記第1副反応器の性能とに基づいて、最適なトレーニング方法を導出するトレーニング方法導出工程と;
    を備えるトレーニング支援方法。
    To monitor the overall performance of the main body reactor and the first and second body side reactors that supply the energy required for sustained exercise through metabolic reactions, and monitor changes in the concentration of metabolites in each reactor. A performance estimation step estimated by:
    A performance estimation step of estimating the performance of the first in-vivo side reactor using the production rate of at least one of pyruvic acid and lactic acid as an index;
    The relationship between the duration of the exercise and the fatigue that progresses over time is quantitatively determined based on the metabolic reaction formula estimated by the metabolic reaction formula estimation method according to claim 1. An estimated fatigue level grasping process;
    A training method derivation step for deriving an optimal training method based on the estimated overall performance and the estimated performance of the first side reactor;
    A training support method comprising:
  10.  前記体内主反応器は第1エネルギー源を代謝してクレアチンリン酸とアデノシン三リン酸とを生成する場であり、第1体内副反応器は第2エネルギー源を代謝してピルビン酸とアデノシン三リン酸とを生成する場であり、第2体内副反応器は、アデノシン二リン酸のレベル依存的に、体内主反応器で生成されたクレアチンリン酸からクレアチンとアデノシン三リン酸を生成する場である、ことを特徴とする請求項9に記載のトレーニング支援方法。 The main body reactor is a place that metabolizes the first energy source to produce creatine phosphate and adenosine triphosphate, and the first body side reactor metabolizes the second energy source to generate pyruvate and adenosine triphosphate. The second internal side reactor reacts with the level of adenosine diphosphate to produce creatine and adenosine triphosphate from the creatine phosphate produced in the main body reactor. The training support method according to claim 9, wherein:
  11.  前記代謝物の代謝反応は、前記体内主反応器における第1エネルギー源の酸化的代謝反応、前記第1体内副反応器における第2エネルギー源の解糖反応、及び、前記第2体内副反応器におけるクレアチンリン酸の消費-再合成反応の組み合わせであることを特徴とする、請求項9に記載のトレーニング支援方法。 The metabolic reaction of the metabolite includes an oxidative metabolic reaction of a first energy source in the main body reactor, a glycolytic reaction of a second energy source in the first body side reactor, and the second body side reactor. The training support method according to claim 9, which is a combination of creatine phosphate consumption and resynthesis reaction.
  12.  前記第1エネルギー源は脂肪であり、第2エネルギー源は糖であることを特徴とする、請求項10に記載のトレーニング支援方法。 The training support method according to claim 10, wherein the first energy source is fat and the second energy source is sugar.
PCT/JP2016/070991 2015-07-17 2016-07-15 Exercise capacity and exercise evaluation system WO2017014183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017529877A JP6770749B2 (en) 2015-07-17 2016-07-15 Athletic ability and exercise evaluation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015143394 2015-07-17
JP2015-143394 2015-07-17

Publications (1)

Publication Number Publication Date
WO2017014183A1 true WO2017014183A1 (en) 2017-01-26

Family

ID=57835198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070991 WO2017014183A1 (en) 2015-07-17 2016-07-15 Exercise capacity and exercise evaluation system

Country Status (2)

Country Link
JP (1) JP6770749B2 (en)
WO (1) WO2017014183A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018051138A (en) * 2016-09-30 2018-04-05 オムロン株式会社 Exercise instruction device, system, method and program
JP2020089721A (en) * 2018-11-22 2020-06-11 Blue Wych合同会社 Training support system and training support method
JP2021069846A (en) * 2019-11-01 2021-05-06 国立大学法人 東京大学 Muscle fatigue estimation method and device
CN114098686A (en) * 2020-08-31 2022-03-01 棋展电子股份有限公司 Wearable physiological sensing system for team activities
WO2022050335A1 (en) * 2020-09-03 2022-03-10 Ssst株式会社 Biological information computation system
JP7083193B1 (en) 2021-03-02 2022-06-10 Ssst株式会社 Biological information calculation system
JP7083195B1 (en) 2021-03-02 2022-06-10 Ssst株式会社 Biological information calculation system
US11358028B2 (en) * 2020-02-19 2022-06-14 Nautilus, Inc. Workout generation based on user-agnostic training profiles and user boundaries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038767B2 (en) * 1986-04-25 1991-02-06 Sekisui Chemical Co Ltd
US6411841B2 (en) * 2000-02-23 2002-06-25 Polar Electro Oy Human-related measuring assessment
US6687535B2 (en) * 2000-02-23 2004-02-03 Polar Electro Oy Controlling of fitness exercise
JP2010533514A (en) * 2007-07-13 2010-10-28 ユニバーシティー オブ マサチューセッツ Physical ability monitoring and monitoring

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2539837A4 (en) * 2010-02-24 2016-05-25 Jonathan Edward Bell Ackland Classification system and method
CN104144203B (en) * 2013-12-11 2016-06-01 腾讯科技(深圳)有限公司 Information sharing method and device
ES2901223T3 (en) * 2015-05-21 2022-03-21 Bomdic Inc Resistance control method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038767B2 (en) * 1986-04-25 1991-02-06 Sekisui Chemical Co Ltd
US6411841B2 (en) * 2000-02-23 2002-06-25 Polar Electro Oy Human-related measuring assessment
US6687535B2 (en) * 2000-02-23 2004-02-03 Polar Electro Oy Controlling of fitness exercise
JP2010533514A (en) * 2007-07-13 2010-10-28 ユニバーシティー オブ マサチューセッツ Physical ability monitoring and monitoring

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018051138A (en) * 2016-09-30 2018-04-05 オムロン株式会社 Exercise instruction device, system, method and program
JP2020089721A (en) * 2018-11-22 2020-06-11 Blue Wych合同会社 Training support system and training support method
JP7423043B2 (en) 2018-11-22 2024-01-29 Blue Wych合同会社 Training support system and training support method
JP7417982B2 (en) 2019-11-01 2024-01-19 国立大学法人 東京大学 Muscle fatigue estimation method and device
JP2021069846A (en) * 2019-11-01 2021-05-06 国立大学法人 東京大学 Muscle fatigue estimation method and device
WO2021085116A1 (en) * 2019-11-01 2021-05-06 国立大学法人東京大学 Muscle fatigue estimation method and device
US11358028B2 (en) * 2020-02-19 2022-06-14 Nautilus, Inc. Workout generation based on user-agnostic training profiles and user boundaries
CN114098686A (en) * 2020-08-31 2022-03-01 棋展电子股份有限公司 Wearable physiological sensing system for team activities
WO2022050335A1 (en) * 2020-09-03 2022-03-10 Ssst株式会社 Biological information computation system
JP7083193B1 (en) 2021-03-02 2022-06-10 Ssst株式会社 Biological information calculation system
JP2022133918A (en) * 2021-03-02 2022-09-14 Ssst株式会社 Biological information arithmetic system
JP2022133920A (en) * 2021-03-02 2022-09-14 Ssst株式会社 Biological information calculation system
JP7083195B1 (en) 2021-03-02 2022-06-10 Ssst株式会社 Biological information calculation system

Also Published As

Publication number Publication date
JPWO2017014183A1 (en) 2018-04-26
JP6770749B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2017014183A1 (en) Exercise capacity and exercise evaluation system
Brickley et al. Physiological responses during exercise to exhaustion at critical power
Faude et al. Lactate threshold concepts: how valid are they?
Padilla et al. Exercise intensity during competition time trials in professional road cycling
Peyrebrune et al. Estimating the energy contribution during single and repeated sprint swimming
Sirotic et al. The reliability of physiological and performance measures during simulated team-sport running on a non-motorised treadmill
EP3113676B1 (en) Real-time and continuous determination of excess post-exercise oxygen consumption and the estimation of blood lactate
KR100953371B1 (en) A Method For Controlling Workload by Measuring Heart Rate in Sub-maximal Exercise Test And A System For Controlling Workload OF Fitness Apparatus
Domene et al. Combined triaxial accelerometry and heart rate telemetry for the physiological characterization of Latin dance in non-professional adults
EP3391809A1 (en) Fitness level prediction device, system and method
Woolford et al. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists
Viana et al. Pacing strategy during simulated mountain bike racing
TWI597617B (en) Exercise guiding system, exercise guiding method and anaerobic threshold measuring method
US11276488B2 (en) System and method for functional state and / or performance assessment and training program adjustment
Oliveira et al. Physiological and stroke parameters to assess aerobic capacity in swimming
Sassi et al. Prediction of time to exhaustion from blood lactate response during submaximal exercise in competitive cyclists
Papoti et al. Determination of force coresponding to maximal lactate steady state in tethered swimming
CN109350069A (en) A method of teenager&#39;s daily routines oxygen uptake and exercise intensity are calculated by load heart rate
Deakin et al. Reliability and Validity of an Incremental Cadence Cycle O2max Testing Protocol for Trained Cyclists
Nevill et al. Optimal power-to-mass ratios when predicting flat and hill-climbing time-trial cycling
JP7423043B2 (en) Training support system and training support method
Michailidis et al. The use of Yo-Yo intermittent recovery test level 1 for the estimation of maximal oxygen uptake in youth elite soccer players
EP3132745B1 (en) A method and an apparatus to determine anaerobic threshold of a person non-invasively from freely performed exercise and to provide feedback on training intensity
US20230138921A1 (en) A method and system for determining exercise parameters including aerobic endurance based on heart rate curve analysis
Rosic et al. Mathematical analysis of the heart rate performance curve during incremental exercise testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827743

Country of ref document: EP

Kind code of ref document: A1