WO2017034913A1 - Nasogastric tube securement systems and methods of using same - Google Patents

Nasogastric tube securement systems and methods of using same Download PDF

Info

Publication number
WO2017034913A1
WO2017034913A1 PCT/US2016/047500 US2016047500W WO2017034913A1 WO 2017034913 A1 WO2017034913 A1 WO 2017034913A1 US 2016047500 W US2016047500 W US 2016047500W WO 2017034913 A1 WO2017034913 A1 WO 2017034913A1
Authority
WO
WIPO (PCT)
Prior art keywords
major surface
base layer
coupling
layer
nasogastric tube
Prior art date
Application number
PCT/US2016/047500
Other languages
French (fr)
Inventor
Jener de OLIVEIRA
Elaine C. RAMIRES
Adriana S.P. LOVON
Steven B. Heinecke
Simon S. Fung
Felipe S.R. BIZARRIA
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Publication of WO2017034913A1 publication Critical patent/WO2017034913A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M2025/0213Holding devices, e.g. on the body where the catheter is attached by means specifically adapted to a part of the human body
    • A61M2025/0226Holding devices, e.g. on the body where the catheter is attached by means specifically adapted to a part of the human body specifically adapted for the nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M2025/0253Holding devices, e.g. on the body where the catheter is attached by straps, bands or the like secured by adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M2025/0253Holding devices, e.g. on the body where the catheter is attached by straps, bands or the like secured by adhesives
    • A61M2025/026Holding devices, e.g. on the body where the catheter is attached by straps, bands or the like secured by adhesives where the straps are releasably secured, e.g. by hook and loop-type fastening devices

Definitions

  • the present disclosure generally relates to nasogastric tube securement systems, and methods of using same, and particularly to systems configured to be secured to skin.
  • nasogastric tubes During patient treatment (e.g., at hospitals, and particularly, in Intensive Care Units (ICUs)), the insertion of tubes can be required for different purposes, such as feeding, air supply, and/or liquid removal.
  • the tubes inserted through the nose are referred to as nasogastric (NG) tubes and can be used for various applications, including feeding, drug administration and/or stomach drainage.
  • NG nasogastric
  • Such nasogastric tubes generally need to be attached to the patient's skin in order to maintain the correct position internally, such as inside the stomach.
  • Some existing devices for NG tube securement do not allow a medical practitioner (e.g., a nurse) to intervene or evaluate the position or level of securement without removing an adhesive tape from skin, which can cause damage to the patient's skin (such as skin tears, redness, and/or damages due to constant changing of adhesives).
  • Other existing devices are large and bulky (e.g., configured to be attached around the patient's head), thereby being cumbersome to use, reducing patient comfort, and/or causing pressure ulcers.
  • nasogastric tube securement systems of the present disclosure can increase the safety of NG tube securement and patient's comfort, while minimizing skin damage.
  • Systems of the present disclosure generally allow for repositioning of the NG tube and/or the system (or a portion thereof) relative to a patient (e.g., the patient's skin, the nose, and/or an internal structure) when needed.
  • systems of the present disclosure include a base layer for securing the system to a patient's nose, and a coupling layer configured to be repositionably coupled to the base layer, while also being configured to secure the NG tube.
  • the coupling layer can be repositioned without removing the base layer from the skin or even changing the base layer (e.g., comprising an adhesive tape) on the skin. In view of that, the comfort is enhanced and any potential risk for skin damage can be minimized.
  • the nasogastric tube securement systems of the present disclosure can also reduce pressure ulcers in the nostril caused by the NG tubes, which can be a frequent problem on patients using NG tubes.
  • the majority of tubes are secured by tapes or adhesive devices that are usually changed after 24 hours which may increase the potential risk of pressure ulcers developing in the nostril.
  • the medical practitioner can evaluate a potential pressure point inside the nostril and take action to avoid the ulcers by changing the securement device position without causing an adhesion lesion or reducing the securement of the NG tube.
  • the system can include a layer comprising a first end comprising coupling means, a second end comprising coupling means, and a middle section connecting the first end and the second end.
  • the middle section can be configured to secure a nasogastric tube, the middle section comprising legs oriented with respect to one another at an acute angle, such that the first end and the second end are positioned adjacent one another or in an at least partially overlapping relationship.
  • the layer can be a coupling layer
  • the system can further include a base layer having a first major surface comprising a skin-contact adhesive and a second major surface opposite the first major surface.
  • the coupling means on the first end and the second end can be configured to be repositionably coupled to the second major surface of the base layer.
  • the first end of the layer can serve as a base layer having a first major surface comprising a skin-contact adhesive and a second major surface opposite the first major surface.
  • the coupling means on the second end can be configured to be repositionably coupled to the second major surface of the first end.
  • FIG. 1 is a plan view of a nasogastric tube securement system according to one embodiment of the present disclosure, the system shown in the form of a kit, the system comprising a base layer and a coupling layer.
  • FIG. 2A is a side cross-sectional view of the base layer of the system of FIG. 1 according to one embodiment of the present disclosure, taken along line 2A-2A of FIG. 1.
  • FIG. 2B is a side cross-sectional view of the coupling layer of the system of FIG. 1 according to one embodiment of the present disclosure, taken along line 2B-2B of FIG. 1.
  • FIG. 3A is a side cross-sectional view of the base layer of the system of FIG. 1 according to another embodiment of the present disclosure.
  • FIG. 3B is a side cross-sectional view of the coupling layer of the system of FIG. 1 according to another embodiment of the present disclosure.
  • FIGS. 4A-4J illustrate a method of using the nasogastric tube securement system of FIG.
  • FIGS. 5 A and 5B each illustrate a base layer according to another embodiment of the present disclosure.
  • FIGS. 6A-6E each illustrate a coupling layer according to another embodiment of the present disclosure.
  • nasogastric tube securement systems of the present disclosure include at least two parts or components: (i) a base layer that can be coupled (i.e., adhered) to skin, and (ii) a coupling layer having a portion configured to secure the nasogastric tube and a portion configured to be repositionably coupled to the base layer to allow the nasogastric tube to be repositioned as desired without disrupting the base layer adhesion to skin, or requiring any portion of the base layer to be removed.
  • the base layer can remain in position on the skin until it becomes necessary to change it or until the nasogastric tube is removed from the patient.
  • kits e.g., on one release liner, which can enhance manufacturability, packaging, ease-of-use and standardization of application procedures or techniques.
  • the systems of the present disclosure provide a repositionable coupling layer that can be repositioned as desired on a base layer that remains stably adhered to the skin until the entire system is to be changed or removed.
  • the repositionable coupling layer secures the nasogastric tube on the patient's nose in order to keep it well placed. This allows site evaluation and helps reduce skin damage, as well as nostril pressure ulcers.
  • the base layer can include a release agent (e.g., a release coating) on its back side to which an adhesive on the coupling layer can be adhered to ensure that the coupling layer (or at least a portion thereof) can be repositionable on the base layer.
  • the base layer can include a first mating surface of a mechanical fastener (e.g., hooks) on its back side to which a second mating surface of the mechanical fastener on the coupling layer (e.g., loops) can be repositionably engaged. This will be described in greater detail below with reference to FIGS. 3 A and 3B.
  • connection and “coupled,” and variations thereof, are used broadly and encompass both direct and indirect connections and couplings.
  • layer is used to describe an article having a thickness that is small relative to its length and width.
  • polymer and polymeric material refer to both materials prepared from one monomer such as a homopolymer or to materials prepared from two or more monomers such as a copolymer, terpolymer, or the like.
  • polymerize refers to the process of making a polymeric material that can be a homopolymer, copolymer, terpolymer, or the like.
  • copolymer and copolymeric material refer to a polymeric material prepared from at least two monomers.
  • repositionable refers to the ability of an article or surface to be, at least initially, repeatedly coupled to (e.g., adhered to) and removed from a surface or substrate without substantial loss of coupling capability (e.g., adhesion) and without damage to either surface (e.g., article or underlying substrate) being coupled together.
  • a coupling layer of the present disclosure can be repositionable on a base layer of the present disclosure if the base layer and the coupling layer can be removed, or decoupled, from one another without causing damage to the base layer or the coupling layer.
  • some pressure-sensitive adhesives and mechanical fasteners are repositionable.
  • mechanical fastener or “touch fastener” generally refers to a fastener that includes two mating, or engagement, surfaces configured to be applied to one another, each mating surface having a plurality of engagement structures or features, such that engagement structures on one mating surface are configured to engage with the engagement structures on the opposing mating surface.
  • the mechanical fastener can include two flexible mating strips or layers.
  • the mechanical fastener can include a first mating surface comprising tiny, stiff protrusions shaped like hooks that are configured to engage a second mating surface comprising pliable loops (i.e., a "hook and loop fastener,” or “hook and pile fastener”).
  • the mechanical fastener can include inter-engaging hooks (e.g., self -engaging hooks) on both mating surfaces (i.e., a "hook and hook fastener” or a "self -engaging hook fastener”).
  • inter-engaging hooks e.g., self -engaging hooks
  • mating surfaces i.e., a "hook and hook fastener” or a "self -engaging hook fastener”
  • Peel force refers to the force needed to "peel” one surface from another surface at an angle with respect to the plane between the surfaces.
  • Adhesive peel force can be measured using the ASTM method referenced in the "Adhesives” section below. Peel force between mating surfaces of a mechanical fastener can be measured using ASTM D5170-98 (2015) - Standard Test Method for Peel Strength ("T” Method) of Hook and Loop Touch Fasteners.
  • Shear strength refers to the resistance to forces that cause, or tend to cause, two contiguous parts of a body to slide relatively to each other in a direction parallel to their plane of contact. That is, shear strength is the amount of force required to move one surface relative to another surface when the two surfaces are pulled in opposite directions parallel to their plane of contact.
  • Adhesive shear force can be measured using the ASTM method referenced in the "Adhesives” section below. Shear force between mating surfaces of a mechanical fastener can be measured using ASTM D5169-98(2015) - Standard Test Method for Shear Strength (Dynamic Method) of Hook and Loop Touch Fasteners.
  • FIG. 1 illustrates a nasogastric tube securement system 100 according to one embodiment of the present disclosure.
  • the system 100 is shown as a kit 101 comprising four elements of the system 100 all provided on one release liner 103. Additional details regarding release liners of the present disclosure are described in greater detail below under the section entitle, "Release Liners.”
  • the nasogastric tube securement system can include a base layer, sheet or dressing 102, a coupling layer, sheet or dressing 104, and one or more additional auxiliary layers, sheets or tapes.
  • the base layer 102 and the coupling layer 104 can be flexible sheets.
  • the system 100 is shown as including a first tape strip 106 and a second tape strip 108.
  • the first tape strip 106 can include securing means, e.g., a securing adhesive 107, configured to adhere to the nasogastric tube (e.g., an outer surface thereof) and configured to be wrapped about at least a portion of a circumference of the nasogastric tube to mark a desired depth of insertion into a subject's nostril.
  • securing means e.g., a securing adhesive 107
  • the second tape strip 108 can include a skin-contact adhesive 109 and can be configured to be adhered to another portion of the subject's skin (e.g., on the face) to hold a portion of the length of the nasogastric tube out of the way to inhibit accidental tensions in the nasogastric tube or accidental removal of the nasogastric tube from the nostril or nasal cavity.
  • a skin-contact adhesive 109 can be configured to be adhered to another portion of the subject's skin (e.g., on the face) to hold a portion of the length of the nasogastric tube out of the way to inhibit accidental tensions in the nasogastric tube or accidental removal of the nasogastric tube from the nostril or nasal cavity.
  • the first tape strip 106 and the second tape strip 108 are shown as being elongated and rectangular by way of example; however, it should be understood that the first tape strip 106 and the second tape strip 108 can have any shape suitable for marking the nasogastric tube and for adhering a portion of the tube to the subject's skin, respectively.
  • the base layer 102 can be configured (e.g., dimensioned, shaped, formed of appropriate materials, etc.) to be adhered to the skin on the top of a nose (e.g., a human nose).
  • the base layer 102 can include a first (e.g., bottom) major surface 110 comprising a skin-contact adhesive 112 and a second (e.g., top) major surface 114 opposite the first major surface.
  • the base layer 102 can be shaped to be conducive to covering a nose, and particularly, a human nose.
  • the base layer 102 of FIG. 1 has a generally triangular shape comprising a center portion that can overlap and adhere to the bridge of a nose, and two side flank portions extending out from the center portion configured to overlap and adhere to the sides of a nose, providing a secure and reliable base for the system 100.
  • Other shapes are possible to achieve a stable and secure base, as described below with respect to FIGS. 5 A and 5B.
  • the base layer 102 may be provided in various sizes to accommodate different populations, e.g., smaller sizes for children.
  • the coupling layer 104 can include a first bulbous end (or “first end” or “first portion of a nose securing portion” or “first portion of a base layer coupling portion") 120; a second bulbous end (or “second end” or “second portion of a nose securing portion” or “second portion of a base layer coupling portion") 122; and a middle section (or “bridge” or “connector” or “nasogastric tube securing portion”) 124.
  • the coupling layer 104 consists essentially of the first end 120, the second end 122, and the middle section 124.
  • the first end 120 and the second end 122 can be referred to as "bulbous" because of their protruding and expanded areas or shapes, relative to the narrower middle section 124.
  • the first end 120 and the second end 122 can include coupling means configured to be repositionably coupled to the second major surface 114 of the base layer 102.
  • the middle section 124 can be configured to secure a nasogastric tube, i.e., can include securing means for reliably coupling the nasogastric tube.
  • the system 100 does not include the base layer 102.
  • one of the first end 120 and the second end 122 can serve as a base layer for the system 100 and be configured to be coupled directly to the nose (i.e., to skin), and the other of the first end 120 and the second end 122 can serve as the coupling layer and be configured to be repositionably coupled to the base layer (i.e., the first end 120 of the second end 122 that is serving as the base layer).
  • the coupling layer 104 can be referred to as simply a "layer" (or "sheet,” or "dressing").
  • any disclosure herein pertaining to the base layer can pertain to whichever of the first end 120 or the second end 122 is serving as the base layer (e.g., including a skin-contact adhesive), and any disclosure herein pertaining to the coupling layer can pertain to whichever of the second end 122 or the first end 120, respectively, is serving as the coupling layer.
  • the systems of the present disclosure still include a first portion to be coupled directly to the nose (i.e., the base layer 102 or one of the first end 120 and the second end 122), and a second portion (i.e., the first end 120 and the second end 120 when the base layer 102 is employed; or the other of the first end 120 and the second end 122 when the base layer 102 is not employed) to be repositionably coupled to the portion on the nose.
  • the first end 120 will be described herein as the end that can serve as the base layer in embodiments that do not employ the separate base layer 102
  • the second end 122 will be described as the end that can serve as the coupling layer in such embodiments.
  • the second end 122 could instead serve as the base layer
  • the first end 120 could instead serve as the coupling layer of the system 100.
  • the middle section 124 can be desirable for the middle section 124 to not only securely hold the nasogastric tube for a desired duration of time but to also allow relatively easy removal of the nasogastric tube.
  • the middle section 124 connects the first end 120 and the second end 122 and includes two legs (i.e., a first leg and a second leg) 123 oriented with respect to one another at an acute angle a, such that the first end 120 and the second end 122 are positioned adjacent one another or in an at least partially overlapping relationship, as shown in FIG. 1.
  • the coupling layer 104 can be symmetrical about a central longitudinal axis X that extends along a longitudinal direction D that, e.g., can be aligned with a longitudinal direction LT of a nasogastric tube to be secured by the system 100 (see FIG. 4A).
  • each leg 123 can be separated from the central longitudinal axis X by an acute angle equal to 0.5a.
  • the first end 120 and the second end 122 can be mirror images of one another, e.g., about the central longitudinal axis X.
  • the first end 120 (or the second end 122) can be positioned on the base layer 102 on the nose, the middle section 124 can be wrapped about at least a portion of a circumference of a nasogastric tube, and the second end 122 (or the first end 120, if the second end 122 was first placed) can then be coupled to the base layer 102 and/or the first end 120 (or the second end 122, respectively).
  • the middle section 124 can be described as including a bend (or apex or joint) 125, such that the legs 123 are oriented with respect to one another the acute angle a, wherein the first end 120 and the second end 122 are located at an opposite end of the middle section 124 from the bend 125.
  • the bend 125 can be laterally centered with respect to the coupling layer 104.
  • the coupling layer 104 can be described as including a first leg 123 and a second leg 123 that are oriented with respect to one another at the acute angle a, the first leg 123 terminating in the first end 120, and the second leg 123 terminating in the second end 122, the first end 120 and the second end 122 having the properties and functions described herein.
  • the base layer 102 and/or the coupling layer 104 can include one or more tabs 105, which can facilitate removal of the base layer 102 and/or the coupling layer 104 from the release liner 103.
  • tabs 105 can enhance removal of the base layer 102 from skin after use, and/or can enhance removal of the coupling layer 104 from the base layer 102 during use (e.g., for repositioning as necessary) or after use.
  • an additional section of release liner may be provided under only the portion 105.
  • the first end 120 and the second end 122 are each wider than the middle section 124 in a lateral, or transverse, direction L that is oriented substantially perpendicularly with respect to the longitudinal direction D, when compared to a width of the middle section 124 that is lateral, or transverse, to a longitudinal direction K of each of the legs 123, i.e., along which each of the legs 123 is elongated.
  • the first end 120 and the second end 122 each have a width (i.e., an ultimate lateral dimension) in the lateral direction L that is greater than a width of either of the legs 123 of the middle section 124.
  • a width i.e., an ultimate lateral dimension
  • the first end 120 and the second end 122 of the coupling layer 104 can each be at least two times wider than the middle section 124.
  • the relative sizing between the first end 120, the second end 122, and the middle section 124 can ensure that the first end 120 and the second end 122 are sized appropriately for coupling to the nose (i.e., sized to be coupled over the nose via the base layer 102) and can ensure that the middle section 124 can be sufficiently narrow to bridge the first end 120 and the second end 122 and sufficiently long for wrapping about at least a portion of a circumference of a nasogastric tube without adding bulk, complexity or reducing patient comfort.
  • the relative sizing can ensure that the middle section 124 is sufficiently long (i.e., in the longitudinal direction D) to provide adequate longitudinal extension to a nasogastric tube to avoid pressure on the nostril.
  • the coupling layer 104 (e.g., the middle section 124) can be configured, such that, in use, the longitudinal direction D is oriented substantially along or parallel to a longitudinal direction LT (see FIG. 4A) of a nasogastric tube T to be secured by the system 100.
  • the coupling layer 104 (e.g., the middle section 124) can be configured, such that, in use, the longitudinal direction D is oriented substantially along or parallel to a bridge of the nose when the system is coupled to the nose. Furthermore, as shown in FIG.
  • the width of the first end 120 and the second end 122 of the coupling layer 104 and/or the width of the base layer 102 can be oriented, in use, substantially laterally with respect to a bridge of a nose when the system 100 is coupled to the nose.
  • the middle section 124 can be longer in the longitudinal direction D than either of the first end 120 or the second end 122 to ensure that the middle section 124 secures the nasogastric tube at a longitudinal position that will not directly impinge on the nose, nostril, or otherwise, pull or cause tension on the first end 120 or the second end 122 of the coupling layer 104, the base layer 102, the nose, or the nostril.
  • the coupling layer 104 is generally "V” shaped, or generally has a “V” configuration, i.e., generally takes the shape of a capital or lowercase English letter “V” (or “v”). That is, in some embodiments, the first end 120, the middle section 124, and the second end 122 of the coupling layer 104 can generally form a "V" shape.
  • the middle section 124 can connect to the first end 120 and/or the second end 122 at a location that is near one of its lateral ends, such that the top of the "V" may not be perfectly in line with the legs of the "V," as shown in FIG. 1 , e.g., when the first end 120 and the second end 122 are bulbous and only one lateral end is connected to the middle section 124.
  • the coupling layer 104 or even the system
  • the first end 120 and the second end 122 of the coupling layer 104 can each be laterally centered (i.e., symmetrical) with respect to the middle section 124 of the coupling layer 104, such that the coupling layer 104 is symmetric about the central longitudinal axis X.
  • each leg 123 of the middle section 124 can be linear. Furthermore, in some embodiments, each leg 123 can have a uniform width along its length in the longitudinal direction K.
  • the coupling layer 104 can include a first major surface 130 configured to be positioned toward the patient (i.e., toward the patient's skin and nose) and toward a nasogastric tube to be secured by the system 100, and a second major surface 134 configured to face away from the patient (i.e., away from the patient's skin and nose) and the nasogastric tube, the second major surface 134 being opposite the first major surface 130.
  • the coupling layer 104 can include one or more adhesives on the first major surface 130, such as the securing adhesive 132 shown in FIG. 1.
  • the first major surface 130 can include a different adhesive in the region of the first end 120 and the second end 122 than in the region of the middle section 124, but this need not be the case.
  • the first major surface 130 can include first coupling means located at least partially in the first end 120 and the second end 122 configured for repositionable coupling to the second major surface 114 of the base layer 102 (or the first end 120), and second coupling means located at least partially in the middle section 124 configured to secure a nasogastric tube.
  • the first major surface 130 of the coupling layer 104 can include one coupling means (e.g., one securing adhesive).
  • the second major surface 114 of the base layer 102 (or of the first end 120) can be modified to include a release agent (e.g., in the form of a release layer, a release coating, or a combination thereof) configured to release the securing adhesive on the first major surface 130 of the coupling layer 104 (or the second end 122), such that the first end 120 and the second end 122 of the coupling layer 104 is repositionable on the base layer 102 (or the second end 122 is repositionable on the first end 120) as needed.
  • a release agent e.g., in the form of a release layer, a release coating, or a combination thereof
  • a mechanical fastener can be employed (e.g., between the second major surface 114 of the base layer 102 and the first major surface 130 of the first end 120 and the second end 122 of the coupling layer 104) in addition to the securing adhesive 132, or as an alternative thereto.
  • one mating surface of a mechanical fastener can be employed on the first major surface 130 of the coupling layer 104 (or the second end 122), and the complementary mating surface of the mechanical fastener can be employed on the second major surface 114 of the base layer 102 (or the first end 120) to achieve strong but repositionable coupling between the base layer 102 and the coupling layer 104 (or between the first end 120 and the second end 122 when the separate base layer 102 is not employed).
  • the first end 120 and the second end 122 can be configured to at least partially overlap when coupled over the base layer 102 on the nose.
  • the first end 120 and the second end 122 can also be configured such that at least one is repositionable on the second major surface 134 of the other.
  • the engagement e.g., adhesion
  • the engagement e.g., adhesion
  • the base layer 102 and the coupling layer 104 i.e., the first end 120 and the second end 122 thereof
  • the base layer 102 and the coupling layer 104, and particularly, the second major surface 114 of the base layer 102 and the first major surface 130 of the coupling layer 104 should be configured such that the peel force required to remove (i.e., peel) the coupling layer 104 from the base layer 102 is relatively low to allow easy repositioning as necessary, while the shear strength between the layers is relatively high to ensure adequate securement of the nasogastric tube.
  • the present inventors discovered that by employing base layers and coupling layers specifically shaped and configured as described herein, they were able to achieve this balance of mechanical properties.
  • the base layer 102 can have a generally triangular shape, and particularly, generally has the shape of an equilateral triangle.
  • the base layer 102 also has rounded corners for enhanced patient comfort.
  • the base layer 102 can have any shape that is suitable for covering or wrapping over a nose, and particularly, the top of a nose.
  • the base layer 102 can have a shape that is suitable for covering a substantial portion of a nose, including the bridge of the nose and at least part of the lateral sides of the nose.
  • the base layer 102 can have lateral symmetry, which can enhance the coupling to a nose.
  • the base layer 102 is also shaped so as not to extend downwardly over the tip or the nose or to otherwise interfere with a nasogastric tube to be secured by the system 100.
  • FIGS. 5A and 5B illustrate two examples of alternative shapes for base layers of the present disclosure.
  • FIG. 5A shows a base layer 202 having a generally trapezoidal shape that is wider at its base (i.e., the portion to be positioned toward the tip of the nose) than it is at its top (i.e., the portion to be positioned away from the tip of the nose).
  • FIG. 5A shows a base layer 202 having a generally trapezoidal shape that is wider at its base (i.e., the portion to be positioned toward the tip of the nose) than it is at its top (i.e., the portion to be positioned away from the tip of the nose).
  • FIG. 5A shows a base layer 202 having a generally trapezoidal shape that is wider at its base (i.e., the portion to be positioned toward the
  • FIGS. 5B shows a base layer 302 having an irregular lobed shape that is wider at its base than at its top and that includes one or more scalloped rounded edges, which can enhance the conformability of the base layer 302 to a nose and/or patient comfort.
  • FIGS. 5 A and 5B are illustrated to show other possible base layer shapes that can be employed, the three illustrated shapes (i.e., in FIGS. 1, 5A and 5B) are not exhaustive and other shapes that suitably cover the nose are also possible, including, but not limited to, oblong, circular, parallelogrammatic (e.g., square, rectangular), other suitable shapes, or combinations thereof.
  • Any of the previous or following disclosure regarding base layers of the present disclosure refers to the base layer 102 of FIG. 1 for simplicity, but it should be understood that any such disclosure can also equally apply to the base layers 202 and 302 of FIGS. 5 A and 5B.
  • the first end 120 and the second end 122 of the coupling layer 104 can have a shape that mimics the shape of the base layer 102, or a portion thereof, while also generally being smaller than the base layer 102, such that the area of the first end 120 and the area of the second end 120 can be contained within the area of the base layer 102 when the first end 120 and the second end 122 are coupled to the base layer 102.
  • Such a relationship between the shape and size of the first end 120 and the second end 122 of the coupling layer 104 and the base layer 102 can enhance the coupling between the first end 120 and the base layer 102 and the between the second end 122 and the base layer 102.
  • the first end 120 and the second end 122 of FIG. 1 has a generally lobed or bulbous shape, with edges that can more or less align with the triangular edges of the base layer 102.
  • the first end 120 and the second end 122 of the coupling layer 104 can also have rounded corners.
  • the first end 120 and the second end 122 of the coupling layer 104 can have any shape suitable for coupling to the base layer 102 and for also covering or wrapping over at least a portion of a nose, and particularly, the top of a nose.
  • the first end 120 and the second end 122 of the coupling layer 104 can have a shape that is suitable for covering a substantial portion of a nose, including the bridge of the nose and at least part of the lateral sides of the nose.
  • the first end 120 and the second end 122 can be shaped and sized to each cover at least a lateral side of the nose.
  • the coupling layer 104 can be configured to extend down from each lateral side of the nose (e.g., from the first end 120 and the second end 122) to a more laterally central position to couple to a nasogastric tube. Such a configuration can ensure that the nasogastric tube is secured in such a way that limits lateral or longitudinal pulling or tension on the nasogastric tube that could cause pressure ulcers on the nostril.
  • FIGS. 6A-6E illustrate three examples of alternative shapes for coupling layers of the present disclosure.
  • FIG. 6A shows a coupling layer 204 having a generally lobed first end 220, a generally lobed second end 222, and a middle section 224 having two legs 223.
  • the coupling layer 204 is substantially the same as the coupling layer 104 of FIG. 1, except that the coupling layer 204 is not laterally symmetrical. Rather, even though the first end 220 and the second end 222 still have generally mirror image shapes, the first end 220 and the second end 222 are at slightly different longitudinal positions in the coupling layer 204, such that the coupling layer 204 is not symmetrical. Furthermore, just like in FIG.
  • the middle section 224 includes a bend 225 that is rounded and does not include any sharp corners or a flat edge. Particularly, by way of example only the internal portion of the bend 225 and the external portion of the bend 225 are both rounded in the coupling layer 204, which is the same as that of the bend 125 of FIG. 1.
  • FIG. 6B shows a coupling layer 304 having a generally circular first end 320 and second end 322, and a middle section 324 connecting the first end 320 and the second end 322 and comprising two legs 323, still generally forming a "V" configuration.
  • the coupling layer 304 has lateral symmetry.
  • the middle section 324 includes a bend 325 having a flat edge 327.
  • the first end and the second are located relatively close to one another, i.e., they are not spaced laterally or longitudinally very far from one another.
  • FIG. 6C shows a coupling layer 404 having a generally trapezoidal first end 420 and second end 422, and a middle section 424 connecting the first end 420 and the second end 422 and comprising legs 423.
  • the coupling layer 404 further includes a tab 405.
  • the middle section 424 includes a rounded bend 425.
  • the coupling layer 404 has lateral symmetry, but unlike the previously described coupling layers, the first end 420 and the second end 422 are spaced further apart (e.g., laterally). In some embodiments, such spacing between the first end 420 and the second end 422 can allow the middle section 424 to be wrapped a greater number of times about a nasogastric tube to be secured.
  • FIG. 6D shows a coupling layer 504 having a generally rectangular (or otherwise parallelogrammatic) first end 520 and second end 522, and a middle section 524 connecting the first end 520 and the second end 522 and comprising legs 523.
  • the coupling layer 504 has lateral symmetry.
  • the middle section 524 includes a bend 525 having a flat edge 527. That is, the coupling layer 504 is substantially the same as the coupling layer 304 of FIG. 6B, except that the first end 520 and the second end 522 are each rectangular instead of circular.
  • FIG. 6E shows a coupling layer 604 having a generally trapezoidal first end 620, a generally triangular second end 622 (e.g., which can mimic the shape of a base layer, if employed), and a middle section 624 connecting the first end 620 and the second end 622 and comprising legs 623.
  • the coupling layer 604 further includes a tab 605.
  • the coupling layer 604 does not have lateral symmetry, at least because the first and second ends 620 and 622 not only have different shapes but also have substantially different sizes.
  • the second end 622 can serve as a base layer for coupling to a nose
  • the first end 620 can serve as a coupling layer.
  • the first end 620 and the second end 622 can be shaped and sized to cooperatively couple to (and within an area of) the base layer.
  • the middle section 624 is substantially the same as that of FIG. 6C and includes a rounded bend 625.
  • FIGS. 6A-6E are illustrated to show other possible coupling layer shapes that can be employed, the six illustrated shapes (i.e., in FIGS. 1 and 6A-6E) are not exhaustive and other shapes, or other combinations of first end and second end shapes, are also possible to provide suitable coupling between the first end and/or the second end and the base layer while also providing sufficient coupling between the second end and a nasogastric tube.
  • various shapes can be employed as the first end, the second end, or both, including, but not limited to, trapezoidal, lobed, triangular, oblong, circular, parallelogrammatic (e.g., square, rectangular), other suitable shapes, or combinations thereof.
  • any of the previous or following disclosure regarding coupling layers of the present disclosure refers to the coupling layer 104 of FIG. 1 for simplicity, but it should be understood that any such disclosure can also equally apply to the coupling layers 204, 304, 404, 504 and 604 of FIGS. 6A-6E.
  • the base layer 102 (or the first end 120) can have a footprint area A, which is measured when the base layer 102 is in a flat configuration as shown in FIG. 1, e.g., before being applied to a nose.
  • This area A is the overall footprint that the base layer 102 takes up on the release liner 103 and generally over a nose, when in use.
  • the first end 120 and the second end 120 of the coupling layer 104 can together have a footprint area B, or together take up a footprint area B when coupled onto the base layer 120.
  • at least one of the first end 120 and the second end 122 can have a footprint area B.
  • the first end 120 can have a footprint area A and the second end 122 can have a footprint area B.
  • the footprint area B can be at least 0.3A (i.e., at least 30% of footprint area A); in some embodiments, at least 0.4A; in some embodiments, at least 0.5A; in some embodiments, at least 0.6A; in some embodiments, at least 0.7A; in some embodiments, at least 0.75A; in some embodiments, at least 0.8A; in some embodiments, at least 0.85A; in some embodiments, at least 0.9A; and in some embodiments, at least 0.95A.
  • the footprint area B can be no greater than 0.98A; in some embodiments, no greater than 0.97A; in some embodiments, no greater than 0.95A.
  • Increasing the footprint area B, relative to the footprint area A can enhance the coupling (e.g., shear strength) either (i) between the first end 120 and the second end 122 and the base layer 102; or (ii) between the second end 122 and the first end 120 when the base layer 102 is not employed; which can enhance the securement of a nasogastric tube.
  • the base layer 102 can include a backing 135 that provides the first major surface 110 and the second major surface 114.
  • the base layer 102 can include a multi-layer structure, including a plurality of backings 135, and can optionally include additional adhesives located between adjacent backings 135.
  • the first major surface 110 of the base layer 102 can be provided by a lowermost backing
  • the second major surface 114 of the base layer 102 can be provided by an uppermost backing in the multi-layer structure. That is, while only one backing 135 is shown in FIG.
  • the multi-layer concept can also be used in the configuration of the kit 101 of FIG. 1, where, for example, the base layer 102 and the coupling layer 104 can be provided already overlapped on the release liner 103 (e.g., where a release agent on a top surface of one layer can serve as the release liner for another layer).
  • the kit 101 can optionally include an extra coupling layer 104 that can be supplied to guarantee an extra adjustment, if necessary, for a nasogastric tube.
  • the additional coupling layer 104 for example, can be supplied directly under the first coupling layer 104, thereby taking up no additional footprint area of the kit 101.
  • the first tape strip 106 and the second tape strip 108 can be provided in an overlapped configuration on the release liner 103.
  • the cross-sectional multilayer configuration of such overlapped embodiments would be similar to the construction shown in FIG. 2B, which is described in greater detail below.
  • the kit 101 can include multiple coupling layers 104 of different shapes, types and/or sizes, such that the kit 101 provides several options for use, for example, depending on patient anatomy.
  • the base layer 102 can further include the skin-contact adhesive 112 on the first major surface 110, and a release agent (e.g., a release coating) 136 on the second major surface 114 of the backing 135.
  • a release agent 136 can be selected to function as a release layer or liner for an adhesive (e.g., a securing adhesive) located on the first major surface 130 of the coupling layer 104, and particularly, for an adhesive located on the first major surface 130 in the first end 120 of the coupling layer 104.
  • an adhesive e.g., a securing adhesive
  • the base layer 102 can further include a release liner 138 (e.g., a paper liner comprising a release agent, e.g., silicone, for the skin-contact adhesive 112).
  • a release liner 138 e.g., a paper liner comprising a release agent, e.g., silicone, for the skin-contact adhesive 112
  • the base layer 102 may be provided on the same release liner 103 as the rest of the system 100 and not include its own dedicated release liner 138.
  • the release agent 136 can include a low adhesion (low adhesion backsize, or LAB) coating provided on the second major surface 114 of the base layer 102 at least in a region positioned to come into contact with the coupling layer 104.
  • the low adhesion coating can allow the coupling layer 104 to be repositionable on the base layer 102 to the extent necessary.
  • a description of a low adhesion backing material suitable for use with medical dressings of the present disclosure can be found in U.S. Patent Nos. 5,531,855 and 6,264,976, which are incorporated herein by reference in their entirety.
  • the backing 135 can be formed of a stretchable material (e.g., a stretchable nonwoven, woven, film, or combination thereof) that can provide gentle removal to minimize skin damage when the system 100 (and, particularly, the base layer 102 of the system 100) is removed.
  • the base layer 102 can include a stretch release backing 135 (i.e., a backing 135 formed of a stretch release material) and skin-contact adhesive 112, such that while stretching, there is a distribution of tension force between the backing 135, the adhesive 112, and the skin, providing adhesive failures and reducing the tension applied on the skin as the base layer 102 is removed.
  • the backing 135 and the skin-contact adhesive 112 can be provided by polyurethane stretchable nonwoven tape, such as the tape available as 3MTM CoTranTM 9699 Melt Blow Polyurethane Tape from 3M Company, St. Paul, MN, any of the materials A-H of Table 1 in the Examples section below, other suitable tapes/backings, or a combination thereof.
  • the base layer 102 it can be advantageous for the base layer 102 to be formed of a relatively stretchy (e.g., elastic, viscoelastic, etc.) and conformable material, while the coupling layer 104 is formed of a relatively non-stretchy (e.g., inelastic, rigid, etc.) material.
  • Such relative material properties can enhance patient comfort and/or facilitate removal of the base layer 102 from the skin, while also ensuring enough tensile strength in the coupling layer 104 to securely hold a nasogastric tube in a desired position without allowing the nasogastric tube to shift or cause undue pressure on the skin or nostril.
  • the base layer 102 can have a percent elongation at break (or maximum elongation) of at least 200%; in some embodiments, at least 250%; in some embodiments, at least 300%; in some embodiments, at least 400%; and in some embodiments, at least 500%.
  • the coupling layer 104 can have a percent elongation at break of no greater than 100%; in some embodiments, no greater than 80%; in some embodiments, no greater than 75%; and in some embodiments, no greater than 50%.
  • Percent elongation at break can be measured using any standard tensile testing equipment known to those of ordinary skill in the art. One example of tensile testing is described in the Examples section.
  • the coupling layer 104 can include a multilayer structure (e.g., multi-layer tape or multiple tapes) comprising one or more backings 140 and one or more securing adhesives 132.
  • the first major surface 130 of the coupling layer 104 can be provided by one backing 140, and the first major surface 130 can include a securing adhesive 132 configured to repositionably adhere to the release agent 136 on the second major surface 114 of the base layer 102, as well as adhere to a nasogastric tube (and, optionally, its own second major surface 134) to securely hold a nasogastric tube in place.
  • a multilayer structure e.g., multi-layer tape or multiple tapes
  • the first major surface 130 of the coupling layer 104 can be provided by one backing 140, and the first major surface 130 can include a securing adhesive 132 configured to repositionably adhere to the release agent 136 on the second major surface 114 of the base layer 102, as well as adhere to a nas
  • the first major surface 130 is provided by a first adhesive backing (e.g., tape) 140A
  • the second major surface 134 is provided by a second adhesive backing (e.g., tape) 140B that is laminated over the first adhesive backing 140A.
  • first adhesive backing e.g., tape
  • second adhesive backing e.g., tape
  • the illustrated laminate structure need not be employed and that the first major surface 130 and the second major surface 134 can be provided by one backing 140. While two backings 140 and securing adhesives 132 are shown in FIG. 2B by way of example, it should be understood that as few as one backing 140 and securing adhesive 132, or as many as structurally possible or necessary, can be employed.
  • the coupling layer 104 can be formed of the first backing 140A and a first securing adhesive 132A, and the second backing 140B and a second securing adhesive 132B that adheres the second backing 140B to the first backing 140A.
  • the first backing 140A and the first securing adhesive 132A can be provided by a polyethylene terephthalate (PET) nonwoven-acrylic adhesive tape, such as the tape available as 3MTM Tan Spunlaced Nonwoven Medical Tape 9916, 3M Company, St. Paul, MN.
  • PET polyethylene terephthalate
  • the second backing 140B and the second securing adhesive 132B can be provided by a polyethylene backing-acrylic adhesive tape, such as the tape available as 3MTM BlendermTM Surgical Tape 1525, 3M Company, St. Paul, MN.
  • a polyethylene backing-acrylic adhesive tape such as the tape available as 3MTM BlendermTM Surgical Tape 1525, 3M Company, St. Paul, MN.
  • the first securing adhesive 132A functions as the exposed securing adhesive that will be adhered to the nasogastric tube.
  • the specific tapes listed above are described by way of example; however, the coupling layer 104 can also include any of the materials I-M of Table 1 in the Examples section below, other suitable tapes/backings, or a combination thereof.
  • the coupling layer 104 can further include a release liner 148 (e.g., a paper liner comprising release agent for the securing adhesive 132 exposed on the first major surface 130).
  • a release liner 148 e.g., a paper liner comprising release agent for the securing adhesive 132 exposed on the first major surface 130.
  • the coupling layer 104 may be provided on the same release liner 103 as the rest of the system 100 and not include its own dedicated release liner 148.
  • the second major surface 134 of the coupling layer 104 can include a release agent similar to the release agent 136 of the base layer 102 of FIG. 2A, described above.
  • the second major surface 134 can include a low adhesion (low adhesion backsize, or LAB) coating.
  • a release agent on the second major surface 134 of the coupling layer 104 e.g., at least in the region of the middle section 124 of the coupling layer 104) can facilitate unwrapping the coupling layer 104 during the process of removing the system 100 and decoupling the system 100 from a nasogastric tube.
  • first major surface 130 of the coupling layer 104 in at least a portion of the first end 120 and the second end 122 can include a first securing adhesive (e.g., a less aggressive adhesive with a lower peel force on the second major surface 114 of the base layer 102), and the first major surface 130 in at least a portion of the middle section 124 can include a second securing adhesive (e.g., a more aggressive adhesive with a higher peel force on the outer surface of the nasogastric tube) that is different from the first securing adhesive.
  • first securing adhesive e.g., a less aggressive adhesive with a lower peel force on the second major surface 114 of the base layer 102
  • second securing adhesive e.g., a more aggressive adhesive with a higher peel force on the outer surface of the nasogastric tube
  • the coupling layer 104 would generally be longer than the base layer 102 (i.e., in the direction of the width of the page of FIGS. 2A and 2B), such that the first end 120 and the second end 122 of the coupling layer 104 can be sized and positioned to overlap at least a portion of the base layer 102, while the middle section 124 of the coupling layer 104 can extend beyond the area of the base layer 102 to access and secure a nasogastric tube, e.g., according to the relative sizes shown in FIG. 1.
  • FIGS. 3A and 3B illustrate a base layer 102' and a coupling layer 104' , respectively, according to another embodiment of the present disclosure.
  • no additional release liners are shown in FIGS. 3A and 3B.
  • each of the base layer 102' and the coupling layer 104' are shown for simplicity as including only one backing - backings 135' and 140', respectively.
  • one or both of the base layer 102 and the coupling layer 104 can be a multi-layer structure, as described above and as shown in FIG. 2B.
  • FIGS. 3 A and 3B represent an example of repositionable coupling means between the base layer 102' and the coupling layer 104' that includes a mechanical fastener.
  • the base layer 102' includes the backing 135' having first major surface 110' and second major surface 114', and a skin-contact adhesive 112' on the first major surface 110'.
  • the coupling layer 104' includes the backing 140' having first major surface 130' and second major surface 134' , and a securing adhesive 132' on the first major surface 130'.
  • the coupling layer 104' further includes a first mating surface 142' of a mechanical fastener 143' on the first major surface 130', which can be coupled (e.g., laminated) to the first major surface 130' via the securing adhesive 132' .
  • the first mating surface 142' of the coupling layer 104' is shown as being formed of loops or pile, however, other mechanical fastener features can be used.
  • the base layer 102' further includes a second mating surface 144' of the mechanical fastener 143' on the second major surface 114' that is configured to reversibly engage the first mating surface 142' of the coupling layer 104' .
  • the second mating surface 144' is shown as being formed of hooks, however, other mechanical fastener features can be used.
  • the second mating surface 144' of the mechanical fastener 143' can be provided on the base layer 102' by laminating.
  • the backing 135' and skin-contact adhesive 112' can be provided by a polyethylene terephthalate (PET)-acrylic adhesive tape, available under the trade designation 3MTM Spunlaced Polyester Non woven Medical Tape 1776 from 3M Company, St. Paul, MN.
  • PET polyethylene terephthalate
  • Other examples useful for providing the backing 135' and the skin-contact adhesive 112' include, but are not limited to, a polyethylene terephthalate (PET) nonwoven-acrylic adhesive tape, such as the tape available as 3MTM Tan Spunlaced Nonwoven Medical Tape 9916 from 3M Company, St.
  • the second mating surface 144' is shown as being coextensive with the second major surface 114' of the base layer 102', this need not be the case. Rather, in some embodiments, the second mating surface 144' can have an area less than a total surface area of the second major surface 114', e.g., such that the base layer 102' includes a border around all edges of the second major surface 114' that is free of the second mating surface 144' . Such embodiments can inhibit the potentially harder and more rigid mechanical fastener 143' component from irritating the skin on the nose, by providing a buffer all around where the backing 135' is free of the second mating surface 144'.
  • the first mating surface 142' may not be coextensive with the first major surface 130' of the coupling layer 104' .
  • the securing adhesive 132' may be exposed in a portion of at least one of the first end 120' and the second end 122' (e.g., in some embodiments, in an area accounting for less than 10% of the total area of the first major surface 130' of the first end 120' or the second end 122' , in some embodiments, less than 20%, or in some embodiments, less than 30%).
  • the entire first end 120' and the entire second end 122' of the coupling layer 104' can include the first mating surface 142' of the mechanical fastener 143' (e.g., if the mechanical fastener 143' has a sufficiently aggressive engagement between the first mating surface 142' and the second mating surface 144').
  • At least a portion of the middle section 124' can be free of the mechanical fastener 143' , so that the securing adhesive 132' can be exposed for securing a nasogastric tube.
  • at least 80% of the middle section 124' is free of the mechanical fastener 143', in some embodiments, at least 90%, and in some embodiments, at least 95%.
  • FIGS. 4A-4J illustrate a method of securing a nasogastric tube using the nasogastric tube securement system 100 of FIG. 1.
  • the length of the tube to be inserted to reach a desired depth can be measured.
  • the first tape strip 106 can be wrapped about a nasogastric tube T (e.g., about a circumference thereof) to mark the measured length, e.g., by adhering the securing adhesive 107 to the outer surface of the nasogastric tube T and continuing to wrap the first tape strip 106 over itself.
  • the nasogastric tube T can be inserted into a nostril to the desired depth (see FIG. 4B).
  • the base layer 102 can be applied to the subject' s nose, i.e., to cover a substantial portion of the top surface of the nose.
  • the skin-contact adhesive 112 on the first major surface 110 of the base layer 102 can be adhered to the skin on the top of the nose.
  • the first end 120 of the coupling layer 104 can then be applied to the base layer 102.
  • the securing adhesive 132 can be used to adhere the first major surface 130 of the first end 120 of the coupling layer 104 to the second major surface 114 of the base layer 102.
  • the first mating surface 142' of the mechanical fastener 143' on the first major surface 130' of the coupling layer 104' can be engaged with the second mating surface 144' on the second major surface 114' of the base layer 102' .
  • the first end 120 of the coupling layer 104 can be positioned on the base layer 102 in such a way that the first end 120 is positioned within the area of the base layer 102 and is generally aligned with the base layer 102.
  • the central longitudinal axis X of the coupling layer 104 can be aligned with the nasogastric tube T such that the longitudinal direction D and central longitudinal axis X of the system 100 (see FIG. 1) is generally aligned with the longitudinal direction LT of the nasogastric tube T, and the second end 122 of the coupling layer 104 can be coupled to the nasogastric tube T.
  • the middle section 124 e.g., a bend or apex 125 thereof
  • the middle section 124 can be coupled (e.g., adhered) to the nasogastric tube T.
  • the middle section 124 e.g., a leg 123 thereof
  • the second end 122 can then be applied to the base layer 102 (see FIG. 4E), and in some embodiments, can at least partially overlap the first end 120 of the coupling layer 104.
  • the second end 122 can be coupled to the base layer 102 and/or the first end 120 using the same or different coupling means as the first end 120. As shown in FIG.
  • the "V" shaped coupling layer 104 provides sufficient (and also repositionable) coupling of the first end 120 and the second end 122 to the base layer 102, while also providing sufficient length for facile coupling (e.g., wrapping) of the middle section 124 about the nasogastric tube T.
  • at least one leg 123 can be coupled to the second major surface 134 of the other leg 123 as the legs 123 are wrapped about the nasogastric tube T.
  • the second tape strip 108 can be used to adhere excess length of the nasogastric tube T to the patient's skin (e.g., face) in such a way that keeps the nasogastric tube T out of the way and inhibits unnecessary tensions or pulling forces on the nasogastric tube T.
  • the remainder of the nasogastric tube T can then be threaded behind the patient's ear.
  • FIG. 4G illustrates how the second end 122 (and/or the first end 120) can be repositionable on the second major surface 114 of the base layer 102 while the rest of the coupling layer 104 remains in place on the nasogastric tube T and undisturbed.
  • the second end 122 (and/or the first end 120) can then be readjusted as necessary (e.g., to remove any pressures on a nostril) and replaced back on the base layer 102.
  • FIGS. 4H-4J illustrate how the system 100 can be removed, e.g., when it is desired to remove the nasogastric tube T.
  • the second tape strip 108 can be peeled from the patient's skin.
  • at least a portion of the second end 122 (or the first end 120 - typically whichever end was last applied) can be grasped and the corresponding portion (e.g., leg 123) of the middle section 124 can be unwrapped from around the nasogastric tube T.
  • the corresponding portion e.g., leg 123
  • the first end 120 of the coupling layer 104 can be lifted off of the base layer 102, and the whole coupling layer 104 can be removed (and disposed). While removing, i.e., unwrapping, the middle section 124 first can provide a less cumbersome removal method for removing the coupling layer 104, the first end 120 and/or the second end 122 can be removed first instead. As shown in FIG. 4J, then only the base layer 102 remains on the nose. Then, in embodiments employing a stretch release material in the base layer 102, a corner or edge of the base layer 102 can be grasped, as shown in FIG. 4J, and pulled in order to gently remove the base layer 102 from the nose, reducing the risk of skin damage and increasing patient comfort. In embodiments not employing stretch release material in the base layer 102, the base layer 102 can be simply peeled from the nose.
  • Suitable backings for base layers and coupling layers of the present disclosure can include, but are not limited to, one or more of a fabric, a woven fibrous web, a nonwoven fibrous web, a knit, a polymeric film, other familiar dressing materials, or combinations thereof.
  • the backing materials can include polymeric elastic films (e.g., transparent or non- transparent), and can include, but are not limited to, films formed of elastomeric polyurethanes, co-polyesters, polyethylenes, or combinations thereof.
  • the backing can be a high moisture vapor permeable film, i.e., a backing with a relatively high moisture vapor transmission rate (MVTR).
  • MVTR moisture vapor transmission rate
  • U.S. Patent No. 3,645,835 describes methods of making such films and methods for testing their permeability.
  • the backing can be constituted of natural or synthetic sources of raw materials.
  • the backings of the present disclosure advantageously should transmit moisture vapor at a rate equal to or greater than human skin.
  • the backing can be adhesive- coated.
  • the adhesive -coated backing can transmit moisture vapor at a rate of at least 300 g/m 2 /24 hrs/37°C/100-10 RH, and in some embodiments, at least 700 g/m 2 /24 hrs/37°C/100-10 RH.
  • the backing is generally conformable to anatomical surfaces. As such, when the backing is applied to an anatomical surface, such as a nose, it conforms to the surface even when the surface is moved.
  • the backing can be a flexible material.
  • the backing can be a film, paper, woven, knit, foam, nonwoven material, or a combination thereof, or one or more layers of film, paper, woven, knit, foam, nonwoven, or a combination thereof.
  • the backing of a base layer of the present disclosure can be formed of a film available under the trade designation TEGADERM® from 3M Company, St. Paul, MN.
  • Release liners suitable for use with the systems of the present disclosure can include, but are not limited to, kraft papers, polyethylene, embossed polyethylene, polypropylene, polyester, or combinations thereof. Such liners can be coated with release agents, such as fluorochemicals, silicones, or other suitable low surface energy materials. Other adhesives and release liner combinations known to those of ordinary skill in the art can also be employed in the systems of the present disclosure. Examples of commercially available silicone coated release papers are POLYSLIKTM, silicone release papers available from Rexam Release (Bedford Park, 111.) and silicone release papers supplied by LOPAREX (Willowbrook, 111.). Other non-limiting examples of such release liners commercially available include siliconized polyethylene terephthalate films, commercially available from H. P. Smith Co., and fluoropolymer coated polyester films, commercially available from 3M Company (St. Paul) under the brand "SCOTCHPAKTM" release liners.
  • release agents such as fluorochemicals, silicones, or other suitable low
  • the securing adhesives of the present disclosure can have an adhesion that is higher than the skin-contact adhesives of the present disclosure (e.g., the skin-contact adhesive 112 or 109 of FIG. 1).
  • the securing adhesive and the skin-contact adhesive may be of the same or similar classes of adhesive, but have different adhesion levels.
  • the securing adhesive and/or the skin-contact adhesive may be an acrylate, silicone, urethane, hydrogel, hydrocolloid, natural rubber, or synthetic rubber. Adhesion can also be tuned through changes in adhesive composition, adhesive thickness, or adhesive surface area (e.g., by employing a pattern-coated adhesive).
  • Adhesion refers to the force required to separate an adhesive from an underlying substrate. Adhesion can be measured in a number of ways. For example, adhesion can be defined by peel force or shear force. In some embodiments, adhesion can be defined by peel adhesion using ASTM D3330/D3330M-04(2010). In some embodiments, adhesion can be defined by shear adhesion using ASTM D3654M-06(2011). Adhesion is dependent on the specific substrate being adhered to, as well as the time the pressure-sensitive adhesive (PSA) is allowed to dwell on the substrate.
  • PSA pressure-sensitive adhesive
  • typical peel adhesion values exhibited by pressure-sensitive adhesives in medical dressings maybe in the range of 20 to 300 g/cm as measured from stainless steel.
  • at least 10% higher peel adhesion, as measured by ASTM D3330 / D3330M - 04(2010), of the securing adhesive over the skin-contact adhesive may realize the benefit of both securing to a nasogastric tube, while providing gentle adhesion to the skin.
  • the securing adhesive can be an acrylate adhesive and the skin- contact adhesive can be a silicone adhesive.
  • acrylate or "acrylate -based” or “acrylate- containing” refers to monomeric acrylic or methacrylic esters of alcohols. Acrylate and methacrylate monomers are referred to collectively herein as "acrylate” monomers. Materials that are described as “acrylate-based” or “acrylate-containing” contain at least some acrylate monomers and may contain additional co-monomers.
  • Acrylate adhesives are well suited for securing adhesive dressings to medical articles (e.g., nasogastric tubes), or skin.
  • the adhesion can be manipulated to have high adhesion or low adhesion.
  • the adhesion between acrylate adhesives and another material will increase over time. This property makes acrylate adhesives well suited as the securing adhesive which is intended to secure a nasogastric tube.
  • Suitable acrylate adhesives that can be applied to skin such as the acrylate copolymers are described in U.S. Patent No. RE 24,906, the disclosure of which is hereby incorporated by reference.
  • Another acrylate adhesive is a 70: 15: 15 isooctyl acrylate: ethyleneoxide acrylate: acrylic acid terpolymer, as described in U.S. Pat. No. 4,737,410 (Example 31), the disclosure of which is hereby incorporated by reference.
  • Other useful acrylate adhesives are described in U.S. Pat. Nos. 3,389,827, 4,112,213, 4,310,509, and 4,323,557, the disclosures of which are incorporated herein by reference.
  • silicone or “silicone -based” or “silicone-containing” refers to polymers that contain units with dialkyl or diaryl siloxane (-S1R2O-) repeating units.
  • the silicone-based polymers may be segmented copolymers or polysiloxanes polymers.
  • silicone and siloxane are used interchangeably.
  • silicone adhesives are able to effectively secure dressings and tape to skin and upon removal from the skin produce little or no skin damage.
  • silicone adhesives do not adhere well to polymer-based substrates, like tubing or hardgoods, for example that are often present in nasogastric tubes.
  • lack of strong adhesion to medical devices/tubing combined with the gentle removal of silicone adhesives from skin make these adhesives well suited as the skin-contact adhesive of the present disclosure.
  • Suitable silicone adhesive systems can include, but are not limited to, products available under the following trade designations: Dow Corning MG 7-9850, Wacker SILPURAN® 2110 and 2130, Bluestar SILBIONE® RT Gel 4317 and 4320, Nusil MED-6345 and 6350.
  • Other examples of suitable silicone adhesives are disclosed in PCT Publications WO2010/056541, WO2010/056543 and WO2010/056544, the disclosures of which are incorporated herein by reference.
  • the adhesive is able to transmit moisture vapor at a rate greater to or equal to that of human skin. While such a characteristic can be achieved through the selection of an appropriate adhesive, it is also contemplated that other methods of achieving a high relative rate of moisture vapor transmission may be used, such as perforating the adhesive or pattern coating the adhesive, as described in U.S. Pat. No. 4,595,001 and U.S. Pat. App. Pub. 2008-0233348 (now U.S. Pat. No. 7,947,366), the disclosures of which are incorporated herein by reference. Each of the securing or skin-contact adhesive can optionally be applied in a discontinuous manner.
  • various other features and elements can be employed in the nasogastric tube securement systems of the present disclosure, such as those disclosed in co-pending U.S. Application Nos. 62/208058 (Attorney Docket No. 76855US002); 62/208060 (Attorney Docket No. 76856US002); 62/208065 (Attorney Docket No. 76857US002); and 62/208055 (Attorney Docket No. 76503US002), each of which is incorporated herein by reference in its entirety.
  • a nasogastric tube securement system comprising:
  • middle section connecting the first end and the second end, the middle section configured to secure a nasogastric tube, the middle section comprising legs oriented with respect to one another at an acute angle, such that the first end and the second end are positioned adjacent one another or in an at least partially overlapping relationship.
  • a nasogastric tube securement system comprising:
  • a first end comprising coupling means configured to be at least one of (i) repositionably coupled to a base layer that is configured to be coupled to skin and (ii) coupled to skin to serve as a base layer,
  • a second end comprising coupling means configured to be repositionably coupled to at least one of (i) the base layer and (ii) the first end, and
  • middle section connecting the first end and the second end, the middle section configured to secure a nasogastric tube, the middle section comprising two legs oriented with respect to one another at an acute angle, such that the first end and the second end are positioned adjacent one another or in an at least partially overlapping relationship.
  • the base layer has at least one of a generally triangular shape, a generally trapezoidal shape, and a lobed shape.
  • the coupling layer includes a first major surface configured to be coupled to the second major surface of the base layer, the first major surface comprising an adhesive
  • the coupling layer includes a release agent for the adhesive.
  • the coupling layer includes a first major surface, wherein the first major surface of the first end and the second end of the coupling layer comprises an adhesive, and wherein the second major surface of the base layer comprises a release agent for the adhesive.
  • the coupling layer includes a first major surface, wherein the first major surface of the first end and the second end of the coupling layer comprises a first mating surface of a mechanical fastener, and wherein the second major surface of the base layer comprises a second mating surface of the mechanical fastener configured to engage the first mating surface on the first major surface of the first end and the second end of the coupling layer.
  • a kit comprising:
  • the first tape strip comprising a securing adhesive and configured to be wrapped about at least a portion of a circumference of the nasogastric tube.
  • kit of embodiment 23, further comprising: a second tape strip provided on the release liner, the second tape strip comprising a skin-contact adhesive and configured to be adhered to another portion of the subject's skin.
  • a method of securing a nasogastric tube comprising:
  • nasogastric tube securement system of any embodiments 3-21 ; providing a nasogastric tube that has been inserted into a subject's nostril to a desired depth;
  • marking the nasogastric tube includes wrapping a tape strip about at least a portion of a circumference of the nasogastric tube.
  • first end includes a first major surface comprising a skin-contact adhesive configured to be adhered to skin
  • second end is configured to be repositionably coupled to a second major surface of the first end, opposite the first major surface.
  • first end is a base layer having a first major surface comprising a skin-contact adhesive and a second major surface opposite the first major surface, and wherein the coupling means on the second end are configured to be repositionably coupled to the second major surface of the first end.
  • first end, the second end and the middle section have a first major surface and a second major surface opposite the first major surface, wherein the second end includes an adhesive on the first major surface, and wherein the first end includes a release agent for the adhesive on the second major surface.
  • a method of securing a nasogastric tube comprising:
  • nasogastric tube securement system of any of embodiments 30-36; providing a nasogastric tube that has been inserted into a subject's nostril to a desired depth;
  • each of the first end and the second end is sized and shaped to cover at least half of a human nose.
  • each of the legs of the middle section has a uniform width.
  • first end and the second end each have a shape selected from a generally triangular shape, a lobed shape, a generally trapezoidal shape, a generally circular shape, a generally square shape, a generally rectangular shape, and a parallelogram shape.
  • Tape 1776 polyester backing, coated with a St. Paul, MN medical, pressure sensitive acrylate adhesive
  • Examples 1-8 represent relatively elastic backings having a percent elongation of at least 100% that can be used as base layers of the present disclosure.
  • Examples 9-13 represent relatively non-elastic backings having a percent elongation of less than 100% that can be used as coupling layers of the present disclosure. Results are shown in Tables 3 and 4.

Abstract

A nasogastric tube securement system. The system can include a layer comprising a first end comprising coupling means, a second end comprising coupling means, and a middle section connecting the first end and the second end. The middle section can be configured to secure a nasogastric tube, the middle section comprising legs oriented with respect to one another at an acute angle, such that the first end and the second end are positioned adjacent one another or in an at least partially overlapping relationship. In such embodiments, the layer can have a "V" configuration.

Description

NASOGASTRIC TUBE SECUREMENT SYSTEMS AND
METHODS OF USING SAME
FIELD
The present disclosure generally relates to nasogastric tube securement systems, and methods of using same, and particularly to systems configured to be secured to skin.
BACKGROUND
During patient treatment (e.g., at hospitals, and particularly, in Intensive Care Units (ICUs)), the insertion of tubes can be required for different purposes, such as feeding, air supply, and/or liquid removal. The tubes inserted through the nose are referred to as nasogastric (NG) tubes and can be used for various applications, including feeding, drug administration and/or stomach drainage. Such nasogastric tubes generally need to be attached to the patient's skin in order to maintain the correct position internally, such as inside the stomach.
Some existing devices for NG tube securement do not allow a medical practitioner (e.g., a nurse) to intervene or evaluate the position or level of securement without removing an adhesive tape from skin, which can cause damage to the patient's skin (such as skin tears, redness, and/or damages due to constant changing of adhesives). Other existing devices are large and bulky (e.g., configured to be attached around the patient's head), thereby being cumbersome to use, reducing patient comfort, and/or causing pressure ulcers.
SUMMARY
As a result, there is a need for robust, reliable, manipulatable, repositionable nasogastric tube securement systems, which provide for a standardization of procedures. The nasogastric tube securement systems of the present disclosure can increase the safety of NG tube securement and patient's comfort, while minimizing skin damage. Systems of the present disclosure generally allow for repositioning of the NG tube and/or the system (or a portion thereof) relative to a patient (e.g., the patient's skin, the nose, and/or an internal structure) when needed. In general, systems of the present disclosure include a base layer for securing the system to a patient's nose, and a coupling layer configured to be repositionably coupled to the base layer, while also being configured to secure the NG tube. The coupling layer can be repositioned without removing the base layer from the skin or even changing the base layer (e.g., comprising an adhesive tape) on the skin. In view of that, the comfort is enhanced and any potential risk for skin damage can be minimized. The nasogastric tube securement systems of the present disclosure can also reduce pressure ulcers in the nostril caused by the NG tubes, which can be a frequent problem on patients using NG tubes. The majority of tubes are secured by tapes or adhesive devices that are usually changed after 24 hours which may increase the potential risk of pressure ulcers developing in the nostril. However, by using the nasogastric tube securement systems of the present disclosure, the medical practitioner can evaluate a potential pressure point inside the nostril and take action to avoid the ulcers by changing the securement device position without causing an adhesion lesion or reducing the securement of the NG tube.
Some embodiments of the present disclosure provide a nasogastric tube securement system. The system can include a layer comprising a first end comprising coupling means, a second end comprising coupling means, and a middle section connecting the first end and the second end. The middle section can be configured to secure a nasogastric tube, the middle section comprising legs oriented with respect to one another at an acute angle, such that the first end and the second end are positioned adjacent one another or in an at least partially overlapping relationship. In some embodiments, the layer can be a coupling layer, and the system can further include a base layer having a first major surface comprising a skin-contact adhesive and a second major surface opposite the first major surface. In such embodiments, the coupling means on the first end and the second end can be configured to be repositionably coupled to the second major surface of the base layer. In other embodiments, the first end of the layer can serve as a base layer having a first major surface comprising a skin-contact adhesive and a second major surface opposite the first major surface. In such embodiments, the coupling means on the second end can be configured to be repositionably coupled to the second major surface of the first end.
Other features and aspects of the present disclosure will become apparent by consideration of the detailed description and accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plan view of a nasogastric tube securement system according to one embodiment of the present disclosure, the system shown in the form of a kit, the system comprising a base layer and a coupling layer.
FIG. 2A is a side cross-sectional view of the base layer of the system of FIG. 1 according to one embodiment of the present disclosure, taken along line 2A-2A of FIG. 1.
FIG. 2B is a side cross-sectional view of the coupling layer of the system of FIG. 1 according to one embodiment of the present disclosure, taken along line 2B-2B of FIG. 1. FIG. 3A is a side cross-sectional view of the base layer of the system of FIG. 1 according to another embodiment of the present disclosure.
FIG. 3B is a side cross-sectional view of the coupling layer of the system of FIG. 1 according to another embodiment of the present disclosure.
FIGS. 4A-4J illustrate a method of using the nasogastric tube securement system of FIG.
1.
FIGS. 5 A and 5B each illustrate a base layer according to another embodiment of the present disclosure.
FIGS. 6A-6E each illustrate a coupling layer according to another embodiment of the present disclosure.
DETAILED DESCRIPTION
The present disclosure generally relates to nasogastric tube securement systems and methods of using same. Particularly, nasogastric tube securement systems of the present disclosure include at least two parts or components: (i) a base layer that can be coupled (i.e., adhered) to skin, and (ii) a coupling layer having a portion configured to secure the nasogastric tube and a portion configured to be repositionably coupled to the base layer to allow the nasogastric tube to be repositioned as desired without disrupting the base layer adhesion to skin, or requiring any portion of the base layer to be removed. The base layer can remain in position on the skin until it becomes necessary to change it or until the nasogastric tube is removed from the patient.
The systems of the present disclosure can be provided together as a kit, e.g., on one release liner, which can enhance manufacturability, packaging, ease-of-use and standardization of application procedures or techniques.
As a result, the systems of the present disclosure provide a repositionable coupling layer that can be repositioned as desired on a base layer that remains stably adhered to the skin until the entire system is to be changed or removed. The repositionable coupling layer secures the nasogastric tube on the patient's nose in order to keep it well placed. This allows site evaluation and helps reduce skin damage, as well as nostril pressure ulcers.
In some embodiments, the base layer can include a release agent (e.g., a release coating) on its back side to which an adhesive on the coupling layer can be adhered to ensure that the coupling layer (or at least a portion thereof) can be repositionable on the base layer. Alternatively or additionally, in some embodiments, the base layer can include a first mating surface of a mechanical fastener (e.g., hooks) on its back side to which a second mating surface of the mechanical fastener on the coupling layer (e.g., loops) can be repositionably engaged. This will be described in greater detail below with reference to FIGS. 3 A and 3B.
Definitions
The term "a", "an", and "the" are used interchangeably with "at least one" to mean one or more of the elements being described.
The term "and/or" means either or both. For example "A and/or B" means only A, only B, or both A and B.
The terms "including," "comprising," or "having," and variations thereof, are meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
Unless specified or limited otherwise, the terms "connected" and "coupled," and variations thereof, are used broadly and encompass both direct and indirect connections and couplings.
The terms "layer," "sheet," and "dressing," or variations thereof, are used to describe an article having a thickness that is small relative to its length and width.
The terms "polymer" and "polymeric material" refer to both materials prepared from one monomer such as a homopolymer or to materials prepared from two or more monomers such as a copolymer, terpolymer, or the like. Likewise, the term "polymerize" refers to the process of making a polymeric material that can be a homopolymer, copolymer, terpolymer, or the like. The terms "copolymer" and "copolymeric material" refer to a polymeric material prepared from at least two monomers.
The term "repositionable" refers to the ability of an article or surface to be, at least initially, repeatedly coupled to (e.g., adhered to) and removed from a surface or substrate without substantial loss of coupling capability (e.g., adhesion) and without damage to either surface (e.g., article or underlying substrate) being coupled together. For example, a coupling layer of the present disclosure can be repositionable on a base layer of the present disclosure if the base layer and the coupling layer can be removed, or decoupled, from one another without causing damage to the base layer or the coupling layer. By way of example, some pressure-sensitive adhesives and mechanical fasteners are repositionable.
The phrase "mechanical fastener" or "touch fastener" generally refers to a fastener that includes two mating, or engagement, surfaces configured to be applied to one another, each mating surface having a plurality of engagement structures or features, such that engagement structures on one mating surface are configured to engage with the engagement structures on the opposing mating surface. In some embodiments, the mechanical fastener can include two flexible mating strips or layers. In some embodiments, the mechanical fastener can include a first mating surface comprising tiny, stiff protrusions shaped like hooks that are configured to engage a second mating surface comprising pliable loops (i.e., a "hook and loop fastener," or "hook and pile fastener"). In some embodiments, the mechanical fastener can include inter-engaging hooks (e.g., self -engaging hooks) on both mating surfaces (i.e., a "hook and hook fastener" or a "self -engaging hook fastener").
"Peel force" refers to the force needed to "peel" one surface from another surface at an angle with respect to the plane between the surfaces. Adhesive peel force can be measured using the ASTM method referenced in the "Adhesives" section below. Peel force between mating surfaces of a mechanical fastener can be measured using ASTM D5170-98 (2015) - Standard Test Method for Peel Strength ("T" Method) of Hook and Loop Touch Fasteners.
"Shear strength" (or "shear force") refers to the resistance to forces that cause, or tend to cause, two contiguous parts of a body to slide relatively to each other in a direction parallel to their plane of contact. That is, shear strength is the amount of force required to move one surface relative to another surface when the two surfaces are pulled in opposite directions parallel to their plane of contact. Adhesive shear force can be measured using the ASTM method referenced in the "Adhesives" section below. Shear force between mating surfaces of a mechanical fastener can be measured using ASTM D5169-98(2015) - Standard Test Method for Shear Strength (Dynamic Method) of Hook and Loop Touch Fasteners.
FIG. 1 illustrates a nasogastric tube securement system 100 according to one embodiment of the present disclosure. By way of example only, the system 100 is shown as a kit 101 comprising four elements of the system 100 all provided on one release liner 103. Additional details regarding release liners of the present disclosure are described in greater detail below under the section entitle, "Release Liners." As shown in FIG. 1, the nasogastric tube securement system can include a base layer, sheet or dressing 102, a coupling layer, sheet or dressing 104, and one or more additional auxiliary layers, sheets or tapes. The base layer 102 and the coupling layer 104 can be flexible sheets.
Specifically, by way of example only, the system 100 is shown as including a first tape strip 106 and a second tape strip 108. The first tape strip 106 can include securing means, e.g., a securing adhesive 107, configured to adhere to the nasogastric tube (e.g., an outer surface thereof) and configured to be wrapped about at least a portion of a circumference of the nasogastric tube to mark a desired depth of insertion into a subject's nostril. The second tape strip 108 can include a skin-contact adhesive 109 and can be configured to be adhered to another portion of the subject's skin (e.g., on the face) to hold a portion of the length of the nasogastric tube out of the way to inhibit accidental tensions in the nasogastric tube or accidental removal of the nasogastric tube from the nostril or nasal cavity.
The first tape strip 106 and the second tape strip 108 are shown as being elongated and rectangular by way of example; however, it should be understood that the first tape strip 106 and the second tape strip 108 can have any shape suitable for marking the nasogastric tube and for adhering a portion of the tube to the subject's skin, respectively.
With continued reference to FIG. 1, the base layer 102 can be configured (e.g., dimensioned, shaped, formed of appropriate materials, etc.) to be adhered to the skin on the top of a nose (e.g., a human nose). The base layer 102 can include a first (e.g., bottom) major surface 110 comprising a skin-contact adhesive 112 and a second (e.g., top) major surface 114 opposite the first major surface.
Additional details regarding securing adhesives and skin-contact adhesives of the present disclosure are described in greater detail below under the section entitled, "Adhesives."
The base layer 102 can be shaped to be conducive to covering a nose, and particularly, a human nose. By way of example only, the base layer 102 of FIG. 1 has a generally triangular shape comprising a center portion that can overlap and adhere to the bridge of a nose, and two side flank portions extending out from the center portion configured to overlap and adhere to the sides of a nose, providing a secure and reliable base for the system 100. Other shapes are possible to achieve a stable and secure base, as described below with respect to FIGS. 5 A and 5B. In addition, the base layer 102 may be provided in various sizes to accommodate different populations, e.g., smaller sizes for children.
The coupling layer 104 can include a first bulbous end (or "first end" or "first portion of a nose securing portion" or "first portion of a base layer coupling portion") 120; a second bulbous end (or "second end" or "second portion of a nose securing portion" or "second portion of a base layer coupling portion") 122; and a middle section (or "bridge" or "connector" or "nasogastric tube securing portion") 124. In some embodiments, the coupling layer 104 consists essentially of the first end 120, the second end 122, and the middle section 124. In some embodiments, the first end 120 and the second end 122 can be referred to as "bulbous" because of their protruding and expanded areas or shapes, relative to the narrower middle section 124.
The first end 120 and the second end 122 can include coupling means configured to be repositionably coupled to the second major surface 114 of the base layer 102. The middle section 124 can be configured to secure a nasogastric tube, i.e., can include securing means for reliably coupling the nasogastric tube. Alternatively, in some embodiments, the system 100 does not include the base layer 102. In such embodiments, one of the first end 120 and the second end 122 can serve as a base layer for the system 100 and be configured to be coupled directly to the nose (i.e., to skin), and the other of the first end 120 and the second end 122 can serve as the coupling layer and be configured to be repositionably coupled to the base layer (i.e., the first end 120 of the second end 122 that is serving as the base layer). As a result, in some embodiments, the coupling layer 104 can be referred to as simply a "layer" (or "sheet," or "dressing"). In such embodiments, any disclosure herein pertaining to the base layer can pertain to whichever of the first end 120 or the second end 122 is serving as the base layer (e.g., including a skin-contact adhesive), and any disclosure herein pertaining to the coupling layer can pertain to whichever of the second end 122 or the first end 120, respectively, is serving as the coupling layer.
As a result, the systems of the present disclosure still include a first portion to be coupled directly to the nose (i.e., the base layer 102 or one of the first end 120 and the second end 122), and a second portion (i.e., the first end 120 and the second end 120 when the base layer 102 is employed; or the other of the first end 120 and the second end 122 when the base layer 102 is not employed) to be repositionably coupled to the portion on the nose. For simplicity, the first end 120 will be described herein as the end that can serve as the base layer in embodiments that do not employ the separate base layer 102, and the second end 122 will be described as the end that can serve as the coupling layer in such embodiments. However, it should be understood that the second end 122 could instead serve as the base layer, and the first end 120 could instead serve as the coupling layer of the system 100.
In some embodiments, it can be desirable for the middle section 124 to not only securely hold the nasogastric tube for a desired duration of time but to also allow relatively easy removal of the nasogastric tube. As shown, the middle section 124 connects the first end 120 and the second end 122 and includes two legs (i.e., a first leg and a second leg) 123 oriented with respect to one another at an acute angle a, such that the first end 120 and the second end 122 are positioned adjacent one another or in an at least partially overlapping relationship, as shown in FIG. 1.
In some embodiments, the coupling layer 104 can be symmetrical about a central longitudinal axis X that extends along a longitudinal direction D that, e.g., can be aligned with a longitudinal direction LT of a nasogastric tube to be secured by the system 100 (see FIG. 4A). As a result, in some embodiments, each leg 123 can be separated from the central longitudinal axis X by an acute angle equal to 0.5a. Also, as a result, in some embodiments, the first end 120 and the second end 122 can be mirror images of one another, e.g., about the central longitudinal axis X. In use, in some embodiments, the first end 120 (or the second end 122) can be positioned on the base layer 102 on the nose, the middle section 124 can be wrapped about at least a portion of a circumference of a nasogastric tube, and the second end 122 (or the first end 120, if the second end 122 was first placed) can then be coupled to the base layer 102 and/or the first end 120 (or the second end 122, respectively).
In some embodiments, the middle section 124 can be described as including a bend (or apex or joint) 125, such that the legs 123 are oriented with respect to one another the acute angle a, wherein the first end 120 and the second end 122 are located at an opposite end of the middle section 124 from the bend 125. Furthermore, in such embodiments having lateral symmetry, the bend 125 can be laterally centered with respect to the coupling layer 104.
Furthermore, in some embodiments, the coupling layer 104 can be described as including a first leg 123 and a second leg 123 that are oriented with respect to one another at the acute angle a, the first leg 123 terminating in the first end 120, and the second leg 123 terminating in the second end 122, the first end 120 and the second end 122 having the properties and functions described herein.
Furthermore, by way of example only, in some embodiments, the base layer 102 and/or the coupling layer 104 (e.g., the first end 120) can include one or more tabs 105, which can facilitate removal of the base layer 102 and/or the coupling layer 104 from the release liner 103. In addition, or alternatively, such tabs 105 can enhance removal of the base layer 102 from skin after use, and/or can enhance removal of the coupling layer 104 from the base layer 102 during use (e.g., for repositioning as necessary) or after use. To facilitate easy grasping of tabs 105, an additional section of release liner may be provided under only the portion 105.
In the embodiment illustrated in FIG. 1, the first end 120 and the second end 122 are each wider than the middle section 124 in a lateral, or transverse, direction L that is oriented substantially perpendicularly with respect to the longitudinal direction D, when compared to a width of the middle section 124 that is lateral, or transverse, to a longitudinal direction K of each of the legs 123, i.e., along which each of the legs 123 is elongated. Said another way, in some embodiments, the first end 120 and the second end 122 each have a width (i.e., an ultimate lateral dimension) in the lateral direction L that is greater than a width of either of the legs 123 of the middle section 124. In some embodiments, as shown in FIG. 1, the first end 120 and the second end 122 of the coupling layer 104 can each be at least two times wider than the middle section 124. The relative sizing between the first end 120, the second end 122, and the middle section 124 can ensure that the first end 120 and the second end 122 are sized appropriately for coupling to the nose (i.e., sized to be coupled over the nose via the base layer 102) and can ensure that the middle section 124 can be sufficiently narrow to bridge the first end 120 and the second end 122 and sufficiently long for wrapping about at least a portion of a circumference of a nasogastric tube without adding bulk, complexity or reducing patient comfort. In addition, the relative sizing can ensure that the middle section 124 is sufficiently long (i.e., in the longitudinal direction D) to provide adequate longitudinal extension to a nasogastric tube to avoid pressure on the nostril.
As mentioned above, in some embodiments, the coupling layer 104 (e.g., the middle section 124) can be configured, such that, in use, the longitudinal direction D is oriented substantially along or parallel to a longitudinal direction LT (see FIG. 4A) of a nasogastric tube T to be secured by the system 100. In some embodiments, the coupling layer 104 (e.g., the middle section 124) can be configured, such that, in use, the longitudinal direction D is oriented substantially along or parallel to a bridge of the nose when the system is coupled to the nose. Furthermore, as shown in FIG. 4C, which is described in greater detail below, in some embodiments, the width of the first end 120 and the second end 122 of the coupling layer 104 and/or the width of the base layer 102 can be oriented, in use, substantially laterally with respect to a bridge of a nose when the system 100 is coupled to the nose.
In some embodiments, the middle section 124 can be longer in the longitudinal direction D than either of the first end 120 or the second end 122 to ensure that the middle section 124 secures the nasogastric tube at a longitudinal position that will not directly impinge on the nose, nostril, or otherwise, pull or cause tension on the first end 120 or the second end 122 of the coupling layer 104, the base layer 102, the nose, or the nostril.
In some embodiments, the coupling layer 104 is generally "V" shaped, or generally has a "V" configuration, i.e., generally takes the shape of a capital or lowercase English letter "V" (or "v"). That is, in some embodiments, the first end 120, the middle section 124, and the second end 122 of the coupling layer 104 can generally form a "V" shape.
Furthermore, in some embodiments, the middle section 124 can connect to the first end 120 and/or the second end 122 at a location that is near one of its lateral ends, such that the top of the "V" may not be perfectly in line with the legs of the "V," as shown in FIG. 1 , e.g., when the first end 120 and the second end 122 are bulbous and only one lateral end is connected to the middle section 124.
As mentioned above, in some embodiments, the coupling layer 104, or even the system
100 as a whole, can have lateral symmetry, i.e., about a bend 125 in the middle section 124, or about the central longitudinal axis X extending along the longitudinal direction D through the middle section 124 (e.g., through the bend 125). Furthermore, in some embodiments, the first end 120 and the second end 122 of the coupling layer 104 can each be laterally centered (i.e., symmetrical) with respect to the middle section 124 of the coupling layer 104, such that the coupling layer 104 is symmetric about the central longitudinal axis X.
As shown in FIG. 1, in some embodiments, each leg 123 of the middle section 124 can be linear. Furthermore, in some embodiments, each leg 123 can have a uniform width along its length in the longitudinal direction K.
The coupling layer 104 can include a first major surface 130 configured to be positioned toward the patient (i.e., toward the patient's skin and nose) and toward a nasogastric tube to be secured by the system 100, and a second major surface 134 configured to face away from the patient (i.e., away from the patient's skin and nose) and the nasogastric tube, the second major surface 134 being opposite the first major surface 130. The coupling layer 104 can include one or more adhesives on the first major surface 130, such as the securing adhesive 132 shown in FIG. 1. For example, in some embodiments, the first major surface 130 can include a different adhesive in the region of the first end 120 and the second end 122 than in the region of the middle section 124, but this need not be the case. In some embodiments, the first major surface 130 can include first coupling means located at least partially in the first end 120 and the second end 122 configured for repositionable coupling to the second major surface 114 of the base layer 102 (or the first end 120), and second coupling means located at least partially in the middle section 124 configured to secure a nasogastric tube. However, in some embodiments, the first major surface 130 of the coupling layer 104 can include one coupling means (e.g., one securing adhesive). In such embodiments, the second major surface 114 of the base layer 102 (or of the first end 120) can be modified to include a release agent (e.g., in the form of a release layer, a release coating, or a combination thereof) configured to release the securing adhesive on the first major surface 130 of the coupling layer 104 (or the second end 122), such that the first end 120 and the second end 122 of the coupling layer 104 is repositionable on the base layer 102 (or the second end 122 is repositionable on the first end 120) as needed.
In some embodiments, as described below with respect to FIGS. 3A and 3B, a mechanical fastener can be employed (e.g., between the second major surface 114 of the base layer 102 and the first major surface 130 of the first end 120 and the second end 122 of the coupling layer 104) in addition to the securing adhesive 132, or as an alternative thereto. For example, one mating surface of a mechanical fastener can be employed on the first major surface 130 of the coupling layer 104 (or the second end 122), and the complementary mating surface of the mechanical fastener can be employed on the second major surface 114 of the base layer 102 (or the first end 120) to achieve strong but repositionable coupling between the base layer 102 and the coupling layer 104 (or between the first end 120 and the second end 122 when the separate base layer 102 is not employed).
Furthermore, in some embodiments, even if the base layer 102 is employed, the first end 120 and the second end 122 can be configured to at least partially overlap when coupled over the base layer 102 on the nose. In such embodiments, the first end 120 and the second end 122 can also be configured such that at least one is repositionable on the second major surface 134 of the other.
However, even though the first end 120 of the coupling layer 104 (and particularly, the first major surface 130 thereof) and the base layer 102 (and particularly, the second major surface 114 thereof) are configured such that the first end 120 of the coupling layer 104 is repositionable on the base layer 102, the engagement (e.g., adhesion) between the first end 120 and the second end 122 of the coupling layer 104 and the base layer 102 also still needs to be sufficiently strong in order to provide reliable securement of a nasogastric tube for the desired period of time.
That is, whether an adhesive, a mechanical fastener, or another coupling means is employed between the base layer 102 and the coupling layer 104 (i.e., the first end 120 and the second end 122 thereof), the base layer 102 and the coupling layer 104, and particularly, the second major surface 114 of the base layer 102 and the first major surface 130 of the coupling layer 104, should be configured such that the peel force required to remove (i.e., peel) the coupling layer 104 from the base layer 102 is relatively low to allow easy repositioning as necessary, while the shear strength between the layers is relatively high to ensure adequate securement of the nasogastric tube. The present inventors discovered that by employing base layers and coupling layers specifically shaped and configured as described herein, they were able to achieve this balance of mechanical properties.
As shown in FIG. 1 by way of example only, in some embodiments, the base layer 102 can have a generally triangular shape, and particularly, generally has the shape of an equilateral triangle. The base layer 102 also has rounded corners for enhanced patient comfort. However, the base layer 102 can have any shape that is suitable for covering or wrapping over a nose, and particularly, the top of a nose. In some embodiments, the base layer 102 can have a shape that is suitable for covering a substantial portion of a nose, including the bridge of the nose and at least part of the lateral sides of the nose. Furthermore, in some embodiments, as shown in FIG. 1, the base layer 102 can have lateral symmetry, which can enhance the coupling to a nose. However, generally, the base layer 102 is also shaped so as not to extend downwardly over the tip or the nose or to otherwise interfere with a nasogastric tube to be secured by the system 100. FIGS. 5A and 5B illustrate two examples of alternative shapes for base layers of the present disclosure. FIG. 5A shows a base layer 202 having a generally trapezoidal shape that is wider at its base (i.e., the portion to be positioned toward the tip of the nose) than it is at its top (i.e., the portion to be positioned away from the tip of the nose). FIG. 5B shows a base layer 302 having an irregular lobed shape that is wider at its base than at its top and that includes one or more scalloped rounded edges, which can enhance the conformability of the base layer 302 to a nose and/or patient comfort. While FIGS. 5 A and 5B are illustrated to show other possible base layer shapes that can be employed, the three illustrated shapes (i.e., in FIGS. 1, 5A and 5B) are not exhaustive and other shapes that suitably cover the nose are also possible, including, but not limited to, oblong, circular, parallelogrammatic (e.g., square, rectangular), other suitable shapes, or combinations thereof. Any of the previous or following disclosure regarding base layers of the present disclosure refers to the base layer 102 of FIG. 1 for simplicity, but it should be understood that any such disclosure can also equally apply to the base layers 202 and 302 of FIGS. 5 A and 5B.
As shown FIG. 1, in some embodiments, the first end 120 and the second end 122 of the coupling layer 104 can have a shape that mimics the shape of the base layer 102, or a portion thereof, while also generally being smaller than the base layer 102, such that the area of the first end 120 and the area of the second end 120 can be contained within the area of the base layer 102 when the first end 120 and the second end 122 are coupled to the base layer 102. Such a relationship between the shape and size of the first end 120 and the second end 122 of the coupling layer 104 and the base layer 102 can enhance the coupling between the first end 120 and the base layer 102 and the between the second end 122 and the base layer 102.
The first end 120 and the second end 122 of FIG. 1 has a generally lobed or bulbous shape, with edges that can more or less align with the triangular edges of the base layer 102. In addition, similar to the base layer 102, the first end 120 and the second end 122 of the coupling layer 104 can also have rounded corners. However, similar to the base layer 102, the first end 120 and the second end 122 of the coupling layer 104 can have any shape suitable for coupling to the base layer 102 and for also covering or wrapping over at least a portion of a nose, and particularly, the top of a nose. In some embodiments, the first end 120 and the second end 122 of the coupling layer 104 can have a shape that is suitable for covering a substantial portion of a nose, including the bridge of the nose and at least part of the lateral sides of the nose. However, in some embodiments, the first end 120 and the second end 122 can be shaped and sized to each cover at least a lateral side of the nose. In addition, the coupling layer 104 can be configured to extend down from each lateral side of the nose (e.g., from the first end 120 and the second end 122) to a more laterally central position to couple to a nasogastric tube. Such a configuration can ensure that the nasogastric tube is secured in such a way that limits lateral or longitudinal pulling or tension on the nasogastric tube that could cause pressure ulcers on the nostril.
FIGS. 6A-6E illustrate three examples of alternative shapes for coupling layers of the present disclosure. FIG. 6A shows a coupling layer 204 having a generally lobed first end 220, a generally lobed second end 222, and a middle section 224 having two legs 223. The coupling layer 204 is substantially the same as the coupling layer 104 of FIG. 1, except that the coupling layer 204 is not laterally symmetrical. Rather, even though the first end 220 and the second end 222 still have generally mirror image shapes, the first end 220 and the second end 222 are at slightly different longitudinal positions in the coupling layer 204, such that the coupling layer 204 is not symmetrical. Furthermore, just like in FIG. 1, the middle section 224 includes a bend 225 that is rounded and does not include any sharp corners or a flat edge. Particularly, by way of example only the internal portion of the bend 225 and the external portion of the bend 225 are both rounded in the coupling layer 204, which is the same as that of the bend 125 of FIG. 1.
FIG. 6B shows a coupling layer 304 having a generally circular first end 320 and second end 322, and a middle section 324 connecting the first end 320 and the second end 322 and comprising two legs 323, still generally forming a "V" configuration. In addition, the coupling layer 304 has lateral symmetry. Furthermore, the middle section 324 includes a bend 325 having a flat edge 327. In addition, in each of the coupling layers 104, 204 and 304 described thus far, the first end and the second are located relatively close to one another, i.e., they are not spaced laterally or longitudinally very far from one another.
FIG. 6C shows a coupling layer 404 having a generally trapezoidal first end 420 and second end 422, and a middle section 424 connecting the first end 420 and the second end 422 and comprising legs 423. The coupling layer 404 further includes a tab 405. The middle section 424 includes a rounded bend 425. The coupling layer 404 has lateral symmetry, but unlike the previously described coupling layers, the first end 420 and the second end 422 are spaced further apart (e.g., laterally). In some embodiments, such spacing between the first end 420 and the second end 422 can allow the middle section 424 to be wrapped a greater number of times about a nasogastric tube to be secured.
FIG. 6D shows a coupling layer 504 having a generally rectangular (or otherwise parallelogrammatic) first end 520 and second end 522, and a middle section 524 connecting the first end 520 and the second end 522 and comprising legs 523. The coupling layer 504 has lateral symmetry. In addition, the middle section 524 includes a bend 525 having a flat edge 527. That is, the coupling layer 504 is substantially the same as the coupling layer 304 of FIG. 6B, except that the first end 520 and the second end 522 are each rectangular instead of circular.
FIG. 6E shows a coupling layer 604 having a generally trapezoidal first end 620, a generally triangular second end 622 (e.g., which can mimic the shape of a base layer, if employed), and a middle section 624 connecting the first end 620 and the second end 622 and comprising legs 623. The coupling layer 604 further includes a tab 605. The coupling layer 604 does not have lateral symmetry, at least because the first and second ends 620 and 622 not only have different shapes but also have substantially different sizes. In some embodiments, the second end 622 can serve as a base layer for coupling to a nose, and the first end 620 can serve as a coupling layer. However, in some embodiments, if a base layer is employed, the first end 620 and the second end 622 can be shaped and sized to cooperatively couple to (and within an area of) the base layer. In addition, the middle section 624 is substantially the same as that of FIG. 6C and includes a rounded bend 625.
While FIGS. 6A-6E are illustrated to show other possible coupling layer shapes that can be employed, the six illustrated shapes (i.e., in FIGS. 1 and 6A-6E) are not exhaustive and other shapes, or other combinations of first end and second end shapes, are also possible to provide suitable coupling between the first end and/or the second end and the base layer while also providing sufficient coupling between the second end and a nasogastric tube. Thus, various shapes can be employed as the first end, the second end, or both, including, but not limited to, trapezoidal, lobed, triangular, oblong, circular, parallelogrammatic (e.g., square, rectangular), other suitable shapes, or combinations thereof. Any of the previous or following disclosure regarding coupling layers of the present disclosure refers to the coupling layer 104 of FIG. 1 for simplicity, but it should be understood that any such disclosure can also equally apply to the coupling layers 204, 304, 404, 504 and 604 of FIGS. 6A-6E.
With continued reference to FIG. 1, in some embodiments, the base layer 102 (or the first end 120) can have a footprint area A, which is measured when the base layer 102 is in a flat configuration as shown in FIG. 1, e.g., before being applied to a nose. This area A is the overall footprint that the base layer 102 takes up on the release liner 103 and generally over a nose, when in use. The first end 120 and the second end 120 of the coupling layer 104 can together have a footprint area B, or together take up a footprint area B when coupled onto the base layer 120. Alternatively, in some embodiments, at least one of the first end 120 and the second end 122 can have a footprint area B. Alternatively, in some embodiments, the first end 120 can have a footprint area A and the second end 122 can have a footprint area B. In some embodiments, the footprint area B can be at least 0.3A (i.e., at least 30% of footprint area A); in some embodiments, at least 0.4A; in some embodiments, at least 0.5A; in some embodiments, at least 0.6A; in some embodiments, at least 0.7A; in some embodiments, at least 0.75A; in some embodiments, at least 0.8A; in some embodiments, at least 0.85A; in some embodiments, at least 0.9A; and in some embodiments, at least 0.95A. In some embodiments, the footprint area B can be no greater than 0.98A; in some embodiments, no greater than 0.97A; in some embodiments, no greater than 0.95A. Increasing the footprint area B, relative to the footprint area A, can enhance the coupling (e.g., shear strength) either (i) between the first end 120 and the second end 122 and the base layer 102; or (ii) between the second end 122 and the first end 120 when the base layer 102 is not employed; which can enhance the securement of a nasogastric tube.
As shown in FIG. 2A which illustrates a side cross-sectional view of one embodiment of the base layer 102, in some embodiments, the base layer 102 can include a backing 135 that provides the first major surface 110 and the second major surface 114. In some embodiments, the base layer 102 can include a multi-layer structure, including a plurality of backings 135, and can optionally include additional adhesives located between adjacent backings 135. In such embodiments, the first major surface 110 of the base layer 102 can be provided by a lowermost backing, and the second major surface 114 of the base layer 102 can be provided by an uppermost backing in the multi-layer structure. That is, while only one backing 135 is shown in FIG. 2A, it should be understood that as many backings 135 (and, optionally, adhesives therebetween) can be employed in the base layer 102, as long as the exposed adhesive on the first major surface 110 of the overall base layer 102 is a skin-contact adhesive 112 suitable for being adhered to skin, and particularly to the skin on the nose.
Various additional details regarding backings of the present disclosure are described in greater detail below under the section entitled, "Backings."
In addition, in some embodiments, the multi-layer concept can also be used in the configuration of the kit 101 of FIG. 1, where, for example, the base layer 102 and the coupling layer 104 can be provided already overlapped on the release liner 103 (e.g., where a release agent on a top surface of one layer can serve as the release liner for another layer). In addition, or alternatively, in some embodiments, the kit 101 can optionally include an extra coupling layer 104 that can be supplied to guarantee an extra adjustment, if necessary, for a nasogastric tube. In some embodiments, the additional coupling layer 104, for example, can be supplied directly under the first coupling layer 104, thereby taking up no additional footprint area of the kit 101. Furthermore, in some embodiments, the first tape strip 106 and the second tape strip 108 can be provided in an overlapped configuration on the release liner 103. The cross-sectional multilayer configuration of such overlapped embodiments would be similar to the construction shown in FIG. 2B, which is described in greater detail below. Furthermore, in some embodiments, the kit 101 can include multiple coupling layers 104 of different shapes, types and/or sizes, such that the kit 101 provides several options for use, for example, depending on patient anatomy.
As shown in FIG. 2A, the base layer 102 can further include the skin-contact adhesive 112 on the first major surface 110, and a release agent (e.g., a release coating) 136 on the second major surface 114 of the backing 135. Such a release agent 136 can be selected to function as a release layer or liner for an adhesive (e.g., a securing adhesive) located on the first major surface 130 of the coupling layer 104, and particularly, for an adhesive located on the first major surface 130 in the first end 120 of the coupling layer 104. As further shown in FIG. 2A, in some embodiments, the base layer 102 can further include a release liner 138 (e.g., a paper liner comprising a release agent, e.g., silicone, for the skin-contact adhesive 112). However, in some embodiments, as shown in FIG. 1, the base layer 102 may be provided on the same release liner 103 as the rest of the system 100 and not include its own dedicated release liner 138.
In some embodiments, the release agent 136 can include a low adhesion (low adhesion backsize, or LAB) coating provided on the second major surface 114 of the base layer 102 at least in a region positioned to come into contact with the coupling layer 104. The low adhesion coating can allow the coupling layer 104 to be repositionable on the base layer 102 to the extent necessary. A description of a low adhesion backing material suitable for use with medical dressings of the present disclosure can be found in U.S. Patent Nos. 5,531,855 and 6,264,976, which are incorporated herein by reference in their entirety.
In some embodiments, the backing 135 can be formed of a stretchable material (e.g., a stretchable nonwoven, woven, film, or combination thereof) that can provide gentle removal to minimize skin damage when the system 100 (and, particularly, the base layer 102 of the system 100) is removed. For example, in some embodiments, the base layer 102 can include a stretch release backing 135 (i.e., a backing 135 formed of a stretch release material) and skin-contact adhesive 112, such that while stretching, there is a distribution of tension force between the backing 135, the adhesive 112, and the skin, providing adhesive failures and reducing the tension applied on the skin as the base layer 102 is removed.
By way of example only, in some embodiments, the backing 135 and the skin-contact adhesive 112 can be provided by polyurethane stretchable nonwoven tape, such as the tape available as 3M™ CoTran™ 9699 Melt Blow Polyurethane Tape from 3M Company, St. Paul, MN, any of the materials A-H of Table 1 in the Examples section below, other suitable tapes/backings, or a combination thereof. In some embodiments, it can be advantageous for the base layer 102 to be formed of a relatively stretchy (e.g., elastic, viscoelastic, etc.) and conformable material, while the coupling layer 104 is formed of a relatively non-stretchy (e.g., inelastic, rigid, etc.) material. Such relative material properties can enhance patient comfort and/or facilitate removal of the base layer 102 from the skin, while also ensuring enough tensile strength in the coupling layer 104 to securely hold a nasogastric tube in a desired position without allowing the nasogastric tube to shift or cause undue pressure on the skin or nostril.
For example, in some embodiments, the base layer 102 can have a percent elongation at break (or maximum elongation) of at least 200%; in some embodiments, at least 250%; in some embodiments, at least 300%; in some embodiments, at least 400%; and in some embodiments, at least 500%.
In some embodiments, the coupling layer 104 can have a percent elongation at break of no greater than 100%; in some embodiments, no greater than 80%; in some embodiments, no greater than 75%; and in some embodiments, no greater than 50%.
Percent elongation at break can be measured using any standard tensile testing equipment known to those of ordinary skill in the art. One example of tensile testing is described in the Examples section.
As shown in FIG. 2B, in some embodiments, the coupling layer 104 can include a multilayer structure (e.g., multi-layer tape or multiple tapes) comprising one or more backings 140 and one or more securing adhesives 132. As shown in FIG. 2B, the first major surface 130 of the coupling layer 104 can be provided by one backing 140, and the first major surface 130 can include a securing adhesive 132 configured to repositionably adhere to the release agent 136 on the second major surface 114 of the base layer 102, as well as adhere to a nasogastric tube (and, optionally, its own second major surface 134) to securely hold a nasogastric tube in place. By way of example only, in the embodiment illustrated in FIG. 2B, the first major surface 130 is provided by a first adhesive backing (e.g., tape) 140A, and the second major surface 134 is provided by a second adhesive backing (e.g., tape) 140B that is laminated over the first adhesive backing 140A. However, it should be understood that the illustrated laminate structure need not be employed and that the first major surface 130 and the second major surface 134 can be provided by one backing 140. While two backings 140 and securing adhesives 132 are shown in FIG. 2B by way of example, it should be understood that as few as one backing 140 and securing adhesive 132, or as many as structurally possible or necessary, can be employed.
That is, as shown in FIG. 2B, in some embodiments, the coupling layer 104 can be formed of the first backing 140A and a first securing adhesive 132A, and the second backing 140B and a second securing adhesive 132B that adheres the second backing 140B to the first backing 140A. By way of example only, in some embodiments, the first backing 140A and the first securing adhesive 132A can be provided by a polyethylene terephthalate (PET) nonwoven-acrylic adhesive tape, such as the tape available as 3M™ Tan Spunlaced Nonwoven Medical Tape 9916, 3M Company, St. Paul, MN. In addition, in some embodiments, the second backing 140B and the second securing adhesive 132B can be provided by a polyethylene backing-acrylic adhesive tape, such as the tape available as 3M™ Blenderm™ Surgical Tape 1525, 3M Company, St. Paul, MN. Such a laminate structure can provide the necessary strength to the coupling layer 104 to secure a nasogastric tube and keep it in the correct position for the desired period of time. The first securing adhesive 132A functions as the exposed securing adhesive that will be adhered to the nasogastric tube. The specific tapes listed above are described by way of example; however, the coupling layer 104 can also include any of the materials I-M of Table 1 in the Examples section below, other suitable tapes/backings, or a combination thereof.
As further shown in FIG. 2B, the coupling layer 104 can further include a release liner 148 (e.g., a paper liner comprising release agent for the securing adhesive 132 exposed on the first major surface 130). However, in some embodiments, as shown in FIG. 1, the coupling layer 104 may be provided on the same release liner 103 as the rest of the system 100 and not include its own dedicated release liner 148.
Furthermore, in some embodiments, the second major surface 134 of the coupling layer 104 can include a release agent similar to the release agent 136 of the base layer 102 of FIG. 2A, described above. For example, the second major surface 134 can include a low adhesion (low adhesion backsize, or LAB) coating. Such a release agent on the second major surface 134 of the coupling layer 104 (e.g., at least in the region of the middle section 124 of the coupling layer 104) can facilitate unwrapping the coupling layer 104 during the process of removing the system 100 and decoupling the system 100 from a nasogastric tube.
While only one securing adhesive 132 is shown as being present on the first major surface 130 of the coupling layer 104, it should be understood that in some embodiments, the first major surface 130 of the coupling layer 104 in at least a portion of the first end 120 and the second end 122 can include a first securing adhesive (e.g., a less aggressive adhesive with a lower peel force on the second major surface 114 of the base layer 102), and the first major surface 130 in at least a portion of the middle section 124 can include a second securing adhesive (e.g., a more aggressive adhesive with a higher peel force on the outer surface of the nasogastric tube) that is different from the first securing adhesive. Furthermore, while the base layer 102 shown in FIG. 2A is shown as being the same size (i.e., length) as the coupling layer 104 of FIG. 2B, these two figures are not necessarily drawn to scale. Rather, as shown in FIG. 1, the coupling layer 104 would generally be longer than the base layer 102 (i.e., in the direction of the width of the page of FIGS. 2A and 2B), such that the first end 120 and the second end 122 of the coupling layer 104 can be sized and positioned to overlap at least a portion of the base layer 102, while the middle section 124 of the coupling layer 104 can extend beyond the area of the base layer 102 to access and secure a nasogastric tube, e.g., according to the relative sizes shown in FIG. 1.
FIGS. 3A and 3B illustrate a base layer 102' and a coupling layer 104' , respectively, according to another embodiment of the present disclosure. For simplicity, no additional release liners are shown in FIGS. 3A and 3B. In addition, each of the base layer 102' and the coupling layer 104' are shown for simplicity as including only one backing - backings 135' and 140', respectively. However, it should be understood that one or both of the base layer 102 and the coupling layer 104 can be a multi-layer structure, as described above and as shown in FIG. 2B.
FIGS. 3 A and 3B represent an example of repositionable coupling means between the base layer 102' and the coupling layer 104' that includes a mechanical fastener. As shown in FIG. 3A, the base layer 102' includes the backing 135' having first major surface 110' and second major surface 114', and a skin-contact adhesive 112' on the first major surface 110'. As shown in FIG. 3B, the coupling layer 104' includes the backing 140' having first major surface 130' and second major surface 134' , and a securing adhesive 132' on the first major surface 130'. The coupling layer 104' further includes a first mating surface 142' of a mechanical fastener 143' on the first major surface 130', which can be coupled (e.g., laminated) to the first major surface 130' via the securing adhesive 132' . By way of example only, the first mating surface 142' of the coupling layer 104' is shown as being formed of loops or pile, however, other mechanical fastener features can be used.
As further shown in FIG. 3A, the base layer 102' further includes a second mating surface 144' of the mechanical fastener 143' on the second major surface 114' that is configured to reversibly engage the first mating surface 142' of the coupling layer 104' . By way of example only, the second mating surface 144' is shown as being formed of hooks, however, other mechanical fastener features can be used. In some embodiments, the second mating surface 144' of the mechanical fastener 143' can be provided on the base layer 102' by laminating.
By way of example only, in some embodiments the backing 135' and skin-contact adhesive 112' can be provided by a polyethylene terephthalate (PET)-acrylic adhesive tape, available under the trade designation 3M™ Spunlaced Polyester Non woven Medical Tape 1776 from 3M Company, St. Paul, MN. Other examples useful for providing the backing 135' and the skin-contact adhesive 112', include, but are not limited to, a polyethylene terephthalate (PET) nonwoven-acrylic adhesive tape, such as the tape available as 3M™ Tan Spunlaced Nonwoven Medical Tape 9916 from 3M Company, St. Paul, MN.; a rayon nonwoven tape, such as the tape available as 3M™ Microporous Tan Rayon Nonwoven Medical Tape 1533 from 3M Company, St. Paul, MN.; a suitable elastic backing with a gentle adhesive; or a combination thereof.
While the second mating surface 144' is shown as being coextensive with the second major surface 114' of the base layer 102', this need not be the case. Rather, in some embodiments, the second mating surface 144' can have an area less than a total surface area of the second major surface 114', e.g., such that the base layer 102' includes a border around all edges of the second major surface 114' that is free of the second mating surface 144' . Such embodiments can inhibit the potentially harder and more rigid mechanical fastener 143' component from irritating the skin on the nose, by providing a buffer all around where the backing 135' is free of the second mating surface 144'.
As shown in FIG. 3B, in some embodiments, the first mating surface 142' may not be coextensive with the first major surface 130' of the coupling layer 104' . For example, in some embodiments, the securing adhesive 132' may be exposed in a portion of at least one of the first end 120' and the second end 122' (e.g., in some embodiments, in an area accounting for less than 10% of the total area of the first major surface 130' of the first end 120' or the second end 122' , in some embodiments, less than 20%, or in some embodiments, less than 30%). This can reduce the risk of the coupling layer 104' being inadvertently removed from the base layer 102' during use, enhancing the coupling between the first end 120' and the second end 122' of the coupling layer 104' and the base layer 102', while still allowing for repositioning of the coupling layer 104' on the base layer 102' as needed. In some embodiments, however, the entire first end 120' and the entire second end 122' of the coupling layer 104' can include the first mating surface 142' of the mechanical fastener 143' (e.g., if the mechanical fastener 143' has a sufficiently aggressive engagement between the first mating surface 142' and the second mating surface 144').
Furthermore, as shown in FIG. 3B, at least a portion of the middle section 124' can be free of the mechanical fastener 143' , so that the securing adhesive 132' can be exposed for securing a nasogastric tube. In some embodiments, at least 80% of the middle section 124' is free of the mechanical fastener 143', in some embodiments, at least 90%, and in some embodiments, at least 95%. Methods of using systems of the present disclosure to secure a nasogastric tube
FIGS. 4A-4J illustrate a method of securing a nasogastric tube using the nasogastric tube securement system 100 of FIG. 1. Before inserting a nasogastric tube T into a subject's nose, the length of the tube to be inserted to reach a desired depth can be measured. Then, the first tape strip 106 can be wrapped about a nasogastric tube T (e.g., about a circumference thereof) to mark the measured length, e.g., by adhering the securing adhesive 107 to the outer surface of the nasogastric tube T and continuing to wrap the first tape strip 106 over itself. Then, as shown in FIG. 4A, the nasogastric tube T can be inserted into a nostril to the desired depth (see FIG. 4B).
As shown in FIG. 4B, the base layer 102 can be applied to the subject' s nose, i.e., to cover a substantial portion of the top surface of the nose. Particularly, the skin-contact adhesive 112 on the first major surface 110 of the base layer 102 can be adhered to the skin on the top of the nose.
As shown in FIG. 4C, the first end 120 of the coupling layer 104 can then be applied to the base layer 102. As shown in FIG. 4C, the securing adhesive 132 can be used to adhere the first major surface 130 of the first end 120 of the coupling layer 104 to the second major surface 114 of the base layer 102. Alternatively or additionally, as shown in FIGS. 3 A and 3B, the first mating surface 142' of the mechanical fastener 143' on the first major surface 130' of the coupling layer 104' can be engaged with the second mating surface 144' on the second major surface 114' of the base layer 102' . The first end 120 of the coupling layer 104 can be positioned on the base layer 102 in such a way that the first end 120 is positioned within the area of the base layer 102 and is generally aligned with the base layer 102.
As shown in FIGS. 4C and 4D, the central longitudinal axis X of the coupling layer 104 can be aligned with the nasogastric tube T such that the longitudinal direction D and central longitudinal axis X of the system 100 (see FIG. 1) is generally aligned with the longitudinal direction LT of the nasogastric tube T, and the second end 122 of the coupling layer 104 can be coupled to the nasogastric tube T. Specifically, based at least in part on the V-shaped configuration of the coupling layer 104, the middle section 124 (e.g., a bend or apex 125 thereof) can be coupled (e.g., adhered) to the nasogastric tube T. Then, as shown in FIGS. 4D-4E, the middle section 124 (e.g., a leg 123 thereof) can be wrapped under and around at least a portion of the nasogastric tube T, and the second end 122 can then be applied to the base layer 102 (see FIG. 4E), and in some embodiments, can at least partially overlap the first end 120 of the coupling layer 104. The second end 122 can be coupled to the base layer 102 and/or the first end 120 using the same or different coupling means as the first end 120. As shown in FIG. 4E, the "V" shaped coupling layer 104 provides sufficient (and also repositionable) coupling of the first end 120 and the second end 122 to the base layer 102, while also providing sufficient length for facile coupling (e.g., wrapping) of the middle section 124 about the nasogastric tube T. Furthermore, as shown in FIG. 4E, in some embodiments, at least one leg 123 can be coupled to the second major surface 134 of the other leg 123 as the legs 123 are wrapped about the nasogastric tube T.
As shown in FIG. 4F, the second tape strip 108 can be used to adhere excess length of the nasogastric tube T to the patient's skin (e.g., face) in such a way that keeps the nasogastric tube T out of the way and inhibits unnecessary tensions or pulling forces on the nasogastric tube T. The remainder of the nasogastric tube T can then be threaded behind the patient's ear.
The system 100 as shown in FIG. 4F is therefore fully secured and can remain as shown until repositioning of the coupling layer 104 is necessary or until the system 100 needs to be removed or changed. FIG. 4G illustrates how the second end 122 (and/or the first end 120) can be repositionable on the second major surface 114 of the base layer 102 while the rest of the coupling layer 104 remains in place on the nasogastric tube T and undisturbed. The second end 122 (and/or the first end 120) can then be readjusted as necessary (e.g., to remove any pressures on a nostril) and replaced back on the base layer 102.
FIGS. 4H-4J illustrate how the system 100 can be removed, e.g., when it is desired to remove the nasogastric tube T. First, if employed, the second tape strip 108 can be peeled from the patient's skin. Then, as shown in FIG. 4H, at least a portion of the second end 122 (or the first end 120 - typically whichever end was last applied) can be grasped and the corresponding portion (e.g., leg 123) of the middle section 124 can be unwrapped from around the nasogastric tube T. As shown in FIG. 41, after the middle section 124 has been unwrapped from the nasogastric tube T, the first end 120 of the coupling layer 104 can be lifted off of the base layer 102, and the whole coupling layer 104 can be removed (and disposed). While removing, i.e., unwrapping, the middle section 124 first can provide a less cumbersome removal method for removing the coupling layer 104, the first end 120 and/or the second end 122 can be removed first instead. As shown in FIG. 4J, then only the base layer 102 remains on the nose. Then, in embodiments employing a stretch release material in the base layer 102, a corner or edge of the base layer 102 can be grasped, as shown in FIG. 4J, and pulled in order to gently remove the base layer 102 from the nose, reducing the risk of skin damage and increasing patient comfort. In embodiments not employing stretch release material in the base layer 102, the base layer 102 can be simply peeled from the nose.
Backings
Suitable backings for base layers and coupling layers of the present disclosure can include, but are not limited to, one or more of a fabric, a woven fibrous web, a nonwoven fibrous web, a knit, a polymeric film, other familiar dressing materials, or combinations thereof. In some embodiments, the backing materials can include polymeric elastic films (e.g., transparent or non- transparent), and can include, but are not limited to, films formed of elastomeric polyurethanes, co-polyesters, polyethylenes, or combinations thereof. The backing can be a high moisture vapor permeable film, i.e., a backing with a relatively high moisture vapor transmission rate (MVTR). U.S. Patent No. 3,645,835 describes methods of making such films and methods for testing their permeability. The backing can be constituted of natural or synthetic sources of raw materials.
The backings of the present disclosure advantageously should transmit moisture vapor at a rate equal to or greater than human skin. In some embodiments, the backing can be adhesive- coated. In such embodiments, the adhesive -coated backing can transmit moisture vapor at a rate of at least 300 g/m2/24 hrs/37°C/100-10 RH, and in some embodiments, at least 700 g/m2/24 hrs/37°C/100-10 RH. The backing is generally conformable to anatomical surfaces. As such, when the backing is applied to an anatomical surface, such as a nose, it conforms to the surface even when the surface is moved.
The backing can be a flexible material. For example, the backing can be a film, paper, woven, knit, foam, nonwoven material, or a combination thereof, or one or more layers of film, paper, woven, knit, foam, nonwoven, or a combination thereof. In some embodiments, it can be desirable that at least a portion of the backing is formed of a transparent material to allow for viewing of underlying skin, a medical device, and/or a target site.
By way of example only, in some embodiments, the backing of a base layer of the present disclosure can be formed of a film available under the trade designation TEGADERM® from 3M Company, St. Paul, MN.
Release Liners
Release liners suitable for use with the systems of the present disclosure can include, but are not limited to, kraft papers, polyethylene, embossed polyethylene, polypropylene, polyester, or combinations thereof. Such liners can be coated with release agents, such as fluorochemicals, silicones, or other suitable low surface energy materials. Other adhesives and release liner combinations known to those of ordinary skill in the art can also be employed in the systems of the present disclosure. Examples of commercially available silicone coated release papers are POLYSLIK™, silicone release papers available from Rexam Release (Bedford Park, 111.) and silicone release papers supplied by LOPAREX (Willowbrook, 111.). Other non-limiting examples of such release liners commercially available include siliconized polyethylene terephthalate films, commercially available from H. P. Smith Co., and fluoropolymer coated polyester films, commercially available from 3M Company (St. Paul) under the brand "SCOTCHPAK™" release liners.
Adhesives
As described above, the securing adhesives of the present disclosure (e.g., the securing adhesive 132 or 107 of FIG. 1 configured to be adhered a nasogastric tube) can have an adhesion that is higher than the skin-contact adhesives of the present disclosure (e.g., the skin-contact adhesive 112 or 109 of FIG. 1). In some embodiments, the securing adhesive and the skin-contact adhesive may be of the same or similar classes of adhesive, but have different adhesion levels. For example, the securing adhesive and/or the skin-contact adhesive may be an acrylate, silicone, urethane, hydrogel, hydrocolloid, natural rubber, or synthetic rubber. Adhesion can also be tuned through changes in adhesive composition, adhesive thickness, or adhesive surface area (e.g., by employing a pattern-coated adhesive).
"Adhesion" refers to the force required to separate an adhesive from an underlying substrate. Adhesion can be measured in a number of ways. For example, adhesion can be defined by peel force or shear force. In some embodiments, adhesion can be defined by peel adhesion using ASTM D3330/D3330M-04(2010). In some embodiments, adhesion can be defined by shear adhesion using ASTM D3654M-06(2011). Adhesion is dependent on the specific substrate being adhered to, as well as the time the pressure-sensitive adhesive (PSA) is allowed to dwell on the substrate.
For example, typical peel adhesion values exhibited by pressure-sensitive adhesives in medical dressings maybe in the range of 20 to 300 g/cm as measured from stainless steel. In some embodiments, at least 10% higher peel adhesion, as measured by ASTM D3330 / D3330M - 04(2010), of the securing adhesive over the skin-contact adhesive may realize the benefit of both securing to a nasogastric tube, while providing gentle adhesion to the skin.
In some embodiments, the securing adhesive can be an acrylate adhesive and the skin- contact adhesive can be a silicone adhesive. The term "acrylate" or "acrylate -based" or "acrylate- containing" refers to monomeric acrylic or methacrylic esters of alcohols. Acrylate and methacrylate monomers are referred to collectively herein as "acrylate" monomers. Materials that are described as "acrylate-based" or "acrylate-containing" contain at least some acrylate monomers and may contain additional co-monomers.
Acrylate adhesives are well suited for securing adhesive dressings to medical articles (e.g., nasogastric tubes), or skin. The adhesion can be manipulated to have high adhesion or low adhesion. Generally, the adhesion between acrylate adhesives and another material will increase over time. This property makes acrylate adhesives well suited as the securing adhesive which is intended to secure a nasogastric tube.
Suitable acrylate adhesives that can be applied to skin such as the acrylate copolymers are described in U.S. Patent No. RE 24,906, the disclosure of which is hereby incorporated by reference. In particular, a 97:3 iso-octyl acrylate :acrylamide copolymer. Another acrylate adhesive is a 70: 15: 15 isooctyl acrylate: ethyleneoxide acrylate: acrylic acid terpolymer, as described in U.S. Pat. No. 4,737,410 (Example 31), the disclosure of which is hereby incorporated by reference. Other useful acrylate adhesives are described in U.S. Pat. Nos. 3,389,827, 4,112,213, 4,310,509, and 4,323,557, the disclosures of which are incorporated herein by reference.
The term "silicone" or "silicone -based" or "silicone-containing" refers to polymers that contain units with dialkyl or diaryl siloxane (-S1R2O-) repeating units. The silicone-based polymers may be segmented copolymers or polysiloxanes polymers. The terms silicone and siloxane are used interchangeably.
Generally, silicone adhesives are able to effectively secure dressings and tape to skin and upon removal from the skin produce little or no skin damage. Typically, silicone adhesives do not adhere well to polymer-based substrates, like tubing or hardgoods, for example that are often present in nasogastric tubes. Thus, lack of strong adhesion to medical devices/tubing combined with the gentle removal of silicone adhesives from skin make these adhesives well suited as the skin-contact adhesive of the present disclosure.
Examples of suitable silicone adhesive systems can include, but are not limited to, products available under the following trade designations: Dow Corning MG 7-9850, Wacker SILPURAN® 2110 and 2130, Bluestar SILBIONE® RT Gel 4317 and 4320, Nusil MED-6345 and 6350. Other examples of suitable silicone adhesives are disclosed in PCT Publications WO2010/056541, WO2010/056543 and WO2010/056544, the disclosures of which are incorporated herein by reference.
For skin-contact adhesives, it is desirable that the adhesive is able to transmit moisture vapor at a rate greater to or equal to that of human skin. While such a characteristic can be achieved through the selection of an appropriate adhesive, it is also contemplated that other methods of achieving a high relative rate of moisture vapor transmission may be used, such as perforating the adhesive or pattern coating the adhesive, as described in U.S. Pat. No. 4,595,001 and U.S. Pat. App. Pub. 2008-0233348 (now U.S. Pat. No. 7,947,366), the disclosures of which are incorporated herein by reference. Each of the securing or skin-contact adhesive can optionally be applied in a discontinuous manner. Each embodiment shown in the figures is illustrated as a separate embodiment for clarity in illustrating a variety of features of the nasogastric tube securement systems of the present disclosure. However, it should be understood that any combination of elements and features of any of the embodiments illustrated in the figures and described herein can be employed in the nasogastric tube securement systems of the present disclosure.
In addition, various other features and elements can be employed in the nasogastric tube securement systems of the present disclosure, such as those disclosed in co-pending U.S. Application Nos. 62/208058 (Attorney Docket No. 76855US002); 62/208060 (Attorney Docket No. 76856US002); 62/208065 (Attorney Docket No. 76857US002); and 62/208055 (Attorney Docket No. 76503US002), each of which is incorporated herein by reference in its entirety.
The following embodiments are intended to be illustrative of the present disclosure and not limiting.
EMBODIMENTS
1. A nasogastric tube securement system, the system comprising:
a layer comprising
a first end comprising coupling means,
a second end comprising coupling means, and
a middle section connecting the first end and the second end, the middle section configured to secure a nasogastric tube, the middle section comprising legs oriented with respect to one another at an acute angle, such that the first end and the second end are positioned adjacent one another or in an at least partially overlapping relationship.
2. A nasogastric tube securement system, the system comprising:
a layer comprising
a first end comprising coupling means configured to be at least one of (i) repositionably coupled to a base layer that is configured to be coupled to skin and (ii) coupled to skin to serve as a base layer,
a second end comprising coupling means configured to be repositionably coupled to at least one of (i) the base layer and (ii) the first end, and
a middle section connecting the first end and the second end, the middle section configured to secure a nasogastric tube, the middle section comprising two legs oriented with respect to one another at an acute angle, such that the first end and the second end are positioned adjacent one another or in an at least partially overlapping relationship.
3. The system of embodiment 1 or 2, wherein the layer is a coupling layer, and further comprising a base layer having a first major surface comprising a skin-contact adhesive and a second major surface opposite the first major surface.
4. The system of embodiment 3, wherein the coupling means of the first end and the second end are configured to be repositionably coupled to the second major surface of the base layer.
5. The system of embodiment 3 or 4, wherein the coupling means on the first end and the second end are configured to repositionably couple the first end and the second end to the second major surface of the base layer.
6. The system of any of embodiments 3-5, wherein the base layer has a footprint area of A, and wherein at least one of the first end and the second end has a footprint area of at least 0.3A.
7. The system of any of embodiments 3-6, wherein at least one of the first end and the second end of the coupling layer has a footprint area of at least 0.5A.
8. The system of any of embodiments 3-7, wherein the first end and the second end at least partially overlap one another when coupled to the base layer.
9. The system of any of embodiments 3-8, wherein the coupling means on the first end and the second end include a first mating surface of a mechanical fastener, and wherein the second major surface of the base layer includes a second mating surface of the mechanical fastener configured to engage the first mating surface.
10. The system of any of embodiments 3-9, wherein the coupling means on the first end and the second end include an adhesive, and wherein the second major surface of the base layer includes a release agent for the adhesive.
11. The system of any of embodiments 3-10, wherein the coupling layer consists essentially of the first end, the second end, and the middle section.
12. The system of any of embodiments 3-11, wherein the base layer has at least one of a generally triangular shape, a generally trapezoidal shape, and a lobed shape.
13. The system of any of embodiments 3-12, wherein the base layer has lateral symmetry.
14. The system of any of embodiments 3-13, wherein at least one of the first end and the second end of the coupling layer has a shape that mimics at least a portion of the shape of the base layer. 15. The system of any of embodiments 3-14, wherein the base layer has a percent elongation of at least 200%.
16. The system of any of embodiments 3-15, wherein the coupling layer has a percent elongation of no greater than 50%.
17. The system of any of embodiments 3-16, wherein the coupling layer has a percent elongation of no greater than 100%.
18. The system of any of embodiments 3-17, wherein the base layer is formed of a stretch release material.
19. The system of any of embodiments 3-18, wherein the coupling layer includes a first major surface configured to be coupled to the second major surface of the base layer, the first major surface comprising an adhesive, and
a second major surface opposite the first major surface, wherein the second major surface of at least a portion of the coupling layer includes a release agent for the adhesive.
20. The system of any of embodiments 3-19, wherein the coupling layer includes a first major surface, wherein the first major surface of the first end and the second end of the coupling layer comprises an adhesive, and wherein the second major surface of the base layer comprises a release agent for the adhesive.
21. The system of any of embodiments 3-20, wherein the coupling layer includes a first major surface, wherein the first major surface of the first end and the second end of the coupling layer comprises a first mating surface of a mechanical fastener, and wherein the second major surface of the base layer comprises a second mating surface of the mechanical fastener configured to engage the first mating surface on the first major surface of the first end and the second end of the coupling layer.
22. A kit comprising:
the nasogastric tube securement system of any of embodiments 3-21, and a release liner,
wherein the base layer and the coupling layer of the nasogastric tube securement system are provided together on the release liner.
23. The kit of embodiment 22, further comprising:
a first tape strip provided on the release liner, the first tape strip comprising a securing adhesive and configured to be wrapped about at least a portion of a circumference of the nasogastric tube.
24. The kit of embodiment 23, further comprising: a second tape strip provided on the release liner, the second tape strip comprising a skin-contact adhesive and configured to be adhered to another portion of the subject's skin.
25. A method of securing a nasogastric tube, the method comprising:
providing the nasogastric tube securement system of any embodiments 3-21 ; providing a nasogastric tube that has been inserted into a subject's nostril to a desired depth;
adhering the base layer to the top of a subject's nose via the skin-contact adhesive on the first major surface of the base layer;
coupling the first major surface of the first end of the coupling layer to the second major surface of the base layer;
securing the middle section of the coupling layer to the nasogastric tube; and coupling the first major surface of the second end of the coupling layer to the second major surface of the base layer.
26. The method of embodiment 25, further comprising repositioning at least a portion of at least one of the first end and the second end of the coupling layer on the base layer.
27. The method of embodiment 25 or 26, further comprising:
marking the nasogastric tube to form a mark; and
inserting the nasogastric tube into the subject's nostril up to the mark.
28. The method of embodiment 27, wherein marking the nasogastric tube includes wrapping a tape strip about at least a portion of a circumference of the nasogastric tube.
29. The method of any of embodiments 25-28, further comprising securing a portion of the nasogastric tube to another portion of the subject's body with a tape strip.
30. The system of embodiment 1 or 2, wherein the first end includes a first major surface comprising a skin-contact adhesive configured to be adhered to skin, and wherein the second end is configured to be repositionably coupled to a second major surface of the first end, opposite the first major surface.
31. The system of embodiment 1 , 2 or 30, wherein the first end is a base layer having a first major surface comprising a skin-contact adhesive and a second major surface opposite the first major surface, and wherein the coupling means on the second end are configured to be repositionably coupled to the second major surface of the first end.
32. The system of embodiment 30 or 31 , wherein the first end has a footprint area of A, and wherein the second end has a footprint area of at least 0.3A.
33. The system of any of embodiments 30-32, wherein the first end has a footprint area of A, and wherein the second end has a footprint area of at least 0.5 A. 34. The system of any of embodiments 30-33, wherein the coupling means on the second end include a first mating surface of a mechanical fastener, and wherein the second major surface of the first end includes a second mating surface of the mechanical fastener configured to engage the first mating surface.
35. The system of any of embodiments 30-34, wherein the first end, the second end and the middle section have a first major surface and a second major surface opposite the first major surface, wherein the second end includes an adhesive on the first major surface, and wherein the first end includes a release agent for the adhesive on the second major surface.
36. The system of embodiment 35, wherein the middle section includes an adhesive on the first major surface that is different from any adhesive on the first major surface of the first end or the second end.
37. A method of securing a nasogastric tube, the method comprising:
providing the nasogastric tube securement system of any of embodiments 30-36; providing a nasogastric tube that has been inserted into a subject's nostril to a desired depth;
adhering the first end to the top of a subject's nose via the skin-contact adhesive on the first major surface of the first end;
securing the middle section to the nasogastric tube; and
coupling the first major surface of the second end to the second major surface of the first end.
38. The method of embodiment 37, further comprising repositioning at least a portion of the second end on the first end.
39. The system of any of embodiments 1-38, wherein the second end has a larger footprint area than the first end.
40. The system of any of embodiments 1-39, wherein the middle section is elongated.
41. The system of any of embodiments 1-40, wherein the first end and the second end are each wider than the middle section.
42. The system of any of embodiments 1-41, wherein the middle section has a "V" configuration.
43. The system of embodiment 42, wherein the middle section comprises an apex, and wherein the apex is laterally centered with respect to the first end and the second end.
44. The system of any of embodiments 1-43, wherein the layer has a "V" configuration. 45. The system of any of embodiments 1-44, wherein the two legs meet at a joint that is configured to receive the nasogastric tube.
46. The system of any of embodiments 1-45, wherein the middle section has a first major surface comprising a securing adhesive for securing a nasogastric tube.
47. The system of any of embodiments 1-46, wherein the middle section is configured to be wrapped about at least a portion of a circumference of a nasogastric tube.
48. The system of any of embodiments 1-47, wherein each of the first end and the second end is sized and shaped to cover at least half of a human nose.
49. The system of any of embodiments 1-48, wherein the layer consists essentially of the first end, the second end, and the middle section.
50. The system of any of embodiments 1-49, wherein the system has lateral symmetry.
51. The system of any of embodiments 1-50, wherein the layer is symmetrical about a central longitudinal axis.
52. The system of any of embodiments 1-51, wherein the layer has lateral symmetry.
53. The system of any of embodiments 1-52, wherein each of the legs of the middle section is linear.
54. The system of any of embodiments 1-53, wherein each of the legs of the middle section has a uniform width.
55. The system of any of embodiments 1-54, wherein the first end and the second end each have a shape selected from a generally triangular shape, a lobed shape, a generally trapezoidal shape, a generally circular shape, a generally square shape, a generally rectangular shape, and a parallelogram shape.
56. The system of any of embodiments 1-55, wherein the first end is generally triangular trapezoidal and the second end is generally triangular.
It is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the above description or illustrated in the accompanying drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. It is to be further understood that other embodiments may be utilized, and structural or logical changes may be made without departing from the scope of the present disclosure.
The embodiments described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present disclosure. As such, it will be appreciated by one having ordinary skill in the art that various changes in the elements and their configuration and arrangement are possible without departing from the spirit and scope of the present disclosure.
All references and publications cited herein are expressly incorporated herein by reference in their entirety into this disclosure.
The following working examples are intended to be illustrative of the present disclosure and not limiting.
EXAMPLES
Materials
Materials utilized in the Examples are shown in Table 1.
Table 1. Materials List
Figure imgf000034_0001
F- PE Tape 3M™ Blenderm™ Surgical Tape 1525 - 3M Company,
Polyethylene backing coated with gentle medical St. Paul, MN acrylate adhesive
G - LDPE Film 3M™ Steri-Drape™ incise drape: 30 micron thick 3M Company, Drape low density polyethylene backing coated with 51 St. Paul, MN
micron thick pressure sensitive acrylate adhesive
H - coPET-AM 3M™ Ioban™ 2 Antimicrobial Incise Drape; 25 3M Company, Drape micron thick elastomeric copolyester backing St. Paul, MN
coated with 51 micron thick iodophor impregnated
(antimicrobial) pressure sensitive acrylate adhesive
I - PET-NW Tape 3M™ Spunlaced Polyester Nonwoven Medical 3M Company,
Tape 1776: polyester backing, coated with a St. Paul, MN medical, pressure sensitive acrylate adhesive
J- RA-NW Tape 3M™ Rayon Acetate Woven Medical Tape 1538; 3M Company,
Rayon acetate woven cloth backing coated with a St. Paul, MN medical, pressure sensitive acrylate adhesive
K- RA-MP NW 3M™ MICROPORE 1530 Surgical Tape; 3M Company, Tape microporous rayon nonwoven backing coated with St. Paul, MN
a medical, pressure sensitive acrylate adhesive
L - CAT Tape 3M™ Cloth Adhesive Tape 2950; high strength 3M Company,
cotton backing coated with a medical, pressure St. Paul, MN sensitive acrylate adhesive
M-NW fiber strip 3M™ Steri-Strip Skin Closure 1548; nonwoven 3M Company,
backing, fiber reinforced with a medical, pressure St. Paul, MN sensitive acrylate adhesive
Test Methods
Tensile Test Method
Percent elongation was measured using a Universal test machine available from Kratos Industrial Equipment Ltda., BR, model K2000MP with a load cell of 20 kgf (196 N), depending on the properties of the backing to be tested, and with the gauge distance and the kart speed set according to the backing characteristics, as set forth in Table 2 below. Table 2. Gauge Distance and Test Speed for Elongation Testing
Figure imgf000036_0001
Results
Tensile Strength & Percent Elongation
Various backings or tapes useful for base layers and coupling layers of the present disclosure were tested according to the Tensile Test Method to determine the Tensile Strength (kgf; N) and Percent Elongation at break (%). Examples 1-8 represent relatively elastic backings having a percent elongation of at least 100% that can be used as base layers of the present disclosure. Examples 9-13 represent relatively non-elastic backings having a percent elongation of less than 100% that can be used as coupling layers of the present disclosure. Results are shown in Tables 3 and 4.
Table 3. Tensile Strength & Percent Elongation for Base Layer backings
Figure imgf000036_0002
Table 4. Tensile Strength & Percent Elongation for Coupling Layer backings
Figure imgf000036_0003
Various features and aspects of the present disclosure are set forth in the following claims.

Claims

What is claimed is:
1. A nasogastric tube securement system, the system comprising:
a layer comprising
a first end comprising coupling means,
a second end comprising coupling means, and
a middle section connecting the first end and the second end, the middle section configured to secure a nasogastric tube, the middle section comprising legs oriented with respect to one another at an acute angle, such that the first end and the second end are positioned adjacent one another or in an at least partially overlapping relationship.
2. The system of claim 1, wherein the layer is a coupling layer, and further comprising a base layer having a first major surface comprising a skin-contact adhesive and a second major surface opposite the first major surface.
3. The system of claim 2, wherein the coupling means of the first end and the second end are configured to be repositionably coupled to the second major surface of the base layer.
4. The system of claim 2 or 3, wherein the base layer has a footprint area of A, and wherein at least one of the first end and the second end has a footprint area of at least 0.3A.
5. The system of any of claims 2-4, wherein the first end and the second end at least partially overlap one another when coupled to the base layer.
6. The system of any of claims 2-5, wherein the coupling means on the first end and the second end include a first mating surface of a mechanical fastener, and wherein the second major surface of the base layer includes a second mating surface of the mechanical fastener configured to engage the first mating surface.
7. The system of any of claims 2-6, wherein the coupling means on the first end and the second end include an adhesive, and wherein the second major surface of the base layer includes a release agent for the adhesive.
8. The system of any of claims 2-7, wherein the base layer has a percent elongation of at least 200%, and wherein the coupling layer has a percent elongation of no greater than 50%.
9. The system of any of claims 2-8, wherein the base layer is formed of a stretch release material.
10. The system of any of claims 2-9, wherein the coupling layer includes
a first major surface configured to be coupled to the second major surface of the base layer, the first major surface comprising an adhesive, and
a second major surface opposite the first major surface, wherein the second major surface of at least a portion of the coupling layer includes a release agent for the adhesive.
11. The system of any of claims 2-10, wherein the coupling layer includes a first major surface, wherein the first major surface of the first end and the second end of the coupling layer comprises an adhesive, and wherein the second major surface of the base layer comprises a release agent for the adhesive.
12. The system of any of claims 2-11, wherein the coupling layer includes a first major surface, wherein the first major surface of the first end and the second end of the coupling layer comprises a first mating surface of a mechanical fastener, and wherein the second major surface of the base layer comprises a second mating surface of the mechanical fastener configured to engage the first mating surface on the first major surface of the first end and the second end of the coupling layer.
13. A kit comprising :
the nasogastric tube securement system of any of claims 2-12, and a release liner,
wherein the base layer and the coupling layer of the nasogastric tube securement system are provided together on the release liner.
14. A method of securing a nasogastric tube, the method comprising:
providing the nasogastric tube securement system of any claims 2-12;
providing a nasogastric tube that has been inserted into a subject's nostril to a desired depth; adhering the base layer to the top of a subject's nose via the skin-contact adhesive on the first major surface of the base layer;
coupling the first major surface of the first end of the coupling layer to the second major surface of the base layer;
securing the middle section of the coupling layer to the nasogastric tube; and coupling the first major surface of the second end of the coupling layer to the second major surface of the base layer.
15. The system of claim 1, wherein the first end is a base layer having a first major surface comprising a skin-contact adhesive and a second major surface opposite the first major surface, and wherein the coupling means on the second end are configured to be repositionably coupled to the second major surface of the first end.
16. The system of claim 15, wherein the first end has a footprint area of A, and wherein the second end has a footprint area of at least 0.3 A.
17. The system of claim 15 or 16, wherein the coupling means on the second end include a first mating surface of a mechanical fastener, and wherein the second major surface of the first end includes a second mating surface of the mechanical fastener configured to engage the first mating surface.
18. The system of any of claims 15-17, wherein the first end, the second end and the middle section have a first major surface and a second major surface opposite the first major surface, wherein the second end includes an adhesive on the first major surface, and wherein the first end includes a release agent for the adhesive on the second major surface.
19. A method of securing a nasogastric tube, the method comprising:
providing the nasogastric tube securement system of any of claims 15-18;
providing a nasogastric tube that has been inserted into a subject's nostril to a desired depth;
adhering the first end to the top of a subject's nose via the skin-contact adhesive on the first major surface of the first end;
securing the middle section to the nasogastric tube; and coupling the first major surface of the second end to the second major surface of the first end.
20. The system of any of claims 1-12 and 15-18, wherein the second end has a larger footprint area than the first end.
21. The system of any of claims 1-12, 15-18 and 20, wherein the first end and the second end are each wider than the middle section.
22. The system of any of claims 1-12, 15-18 and 20-21, wherein the layer has a "V" configuration.
23. The system of any of claims 1-12, 15-18 and 20-22, wherein the two legs meet at a joint that is configured to receive the nasogastric tube.
24. The system of any of claims 1-12, 15-18 and 20-23, wherein the middle section has a first major surface comprising a securing adhesive for securing a nasogastric tube.
PCT/US2016/047500 2015-08-21 2016-08-18 Nasogastric tube securement systems and methods of using same WO2017034913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562208069P 2015-08-21 2015-08-21
US62/208,069 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017034913A1 true WO2017034913A1 (en) 2017-03-02

Family

ID=56801850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/047500 WO2017034913A1 (en) 2015-08-21 2016-08-18 Nasogastric tube securement systems and methods of using same

Country Status (1)

Country Link
WO (1) WO2017034913A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD827144S1 (en) 2017-09-14 2018-08-28 3M Innovative Properties Company Nasogastric tube securement device
WO2020183326A1 (en) 2019-03-13 2020-09-17 3M Innovative Properties Company A tube securement device with adjustable size
WO2020183325A1 (en) 2019-03-13 2020-09-17 3M Innovative Properties Company A tube securement device
US10814103B2 (en) 2015-08-21 2020-10-27 3M Innovative Properties Company Nasogastric tube securement systems and methods of using same
US10813846B2 (en) 2015-08-21 2020-10-27 3M Innovative Properties Company Nasogastric tube securement systems and methods of using same
US11013667B2 (en) 2015-08-21 2021-05-25 3M Innovative Properties Company Nasogastric tube securement systems and methods of using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592346U (en) * 1982-06-30 1984-01-09 町田 宗正 Nasal tube fixation tape
US5735272A (en) * 1997-01-22 1998-04-07 Dillon; Michael M. Nasal tube holder having a nasal dilator attached thereto
WO1998032481A1 (en) * 1997-01-27 1998-07-30 Venetec International, Inc. Naso-gastric tube retainer
WO2012009126A2 (en) * 2010-06-28 2012-01-19 Beevers Manufacturing & Supply, Inc. Infant friendly nasal cpap canula seal
US20120138060A1 (en) * 2008-06-04 2012-06-07 Resmed Limited Patient interface systems
EP2532384A2 (en) * 2005-01-18 2012-12-12 Acclarent, Inc. Balloon catheter for delivering s substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592346U (en) * 1982-06-30 1984-01-09 町田 宗正 Nasal tube fixation tape
US5735272A (en) * 1997-01-22 1998-04-07 Dillon; Michael M. Nasal tube holder having a nasal dilator attached thereto
WO1998032481A1 (en) * 1997-01-27 1998-07-30 Venetec International, Inc. Naso-gastric tube retainer
EP2532384A2 (en) * 2005-01-18 2012-12-12 Acclarent, Inc. Balloon catheter for delivering s substance
US20120138060A1 (en) * 2008-06-04 2012-06-07 Resmed Limited Patient interface systems
WO2012009126A2 (en) * 2010-06-28 2012-01-19 Beevers Manufacturing & Supply, Inc. Infant friendly nasal cpap canula seal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814103B2 (en) 2015-08-21 2020-10-27 3M Innovative Properties Company Nasogastric tube securement systems and methods of using same
US10813846B2 (en) 2015-08-21 2020-10-27 3M Innovative Properties Company Nasogastric tube securement systems and methods of using same
US11013667B2 (en) 2015-08-21 2021-05-25 3M Innovative Properties Company Nasogastric tube securement systems and methods of using same
USD827144S1 (en) 2017-09-14 2018-08-28 3M Innovative Properties Company Nasogastric tube securement device
WO2020183326A1 (en) 2019-03-13 2020-09-17 3M Innovative Properties Company A tube securement device with adjustable size
WO2020183325A1 (en) 2019-03-13 2020-09-17 3M Innovative Properties Company A tube securement device

Similar Documents

Publication Publication Date Title
EP3337548B1 (en) Nasogastric tube securement systems
EP3337547B1 (en) Nasogastric tube securement systems
EP3337546B1 (en) Nasogastric tube securement systems
EP3337545B1 (en) Nasogastric tube securement systems
WO2017034913A1 (en) Nasogastric tube securement systems and methods of using same
US11247025B2 (en) Medical dressing comprising a flap
US20220001124A1 (en) Tube securement system
US9119620B2 (en) Elastic strip
US20190366050A1 (en) Catheter securement systems, kits and methods of using same
EP3233002A1 (en) Viscoelastic wound closure dressing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16757465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16757465

Country of ref document: EP

Kind code of ref document: A1