WO2017064914A1 - Information-processing device - Google Patents

Information-processing device Download PDF

Info

Publication number
WO2017064914A1
WO2017064914A1 PCT/JP2016/073655 JP2016073655W WO2017064914A1 WO 2017064914 A1 WO2017064914 A1 WO 2017064914A1 JP 2016073655 W JP2016073655 W JP 2016073655W WO 2017064914 A1 WO2017064914 A1 WO 2017064914A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
information processing
processing apparatus
sound collection
unit
Prior art date
Application number
PCT/JP2016/073655
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 関矢
裕一郎 小山
雄哉 平野
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP19168684.9A priority Critical patent/EP3544311B1/en
Priority to PCT/JP2016/079855 priority patent/WO2017065092A1/en
Priority to RU2018112178A priority patent/RU2727883C2/en
Priority to US15/766,241 priority patent/US10565976B2/en
Priority to JP2017545183A priority patent/JP6496941B2/en
Priority to CN201910827384.7A priority patent/CN110493692B/en
Priority to EP16855346.9A priority patent/EP3364663B1/en
Priority to BR112018007055-6A priority patent/BR112018007055A2/en
Priority to CN201680058465.XA priority patent/CN108141654B/en
Priority to KR1020187008290A priority patent/KR102524931B1/en
Publication of WO2017064914A1 publication Critical patent/WO2017064914A1/en
Priority to PH12018500760A priority patent/PH12018500760A1/en
Priority to JP2019037388A priority patent/JP2019110593A/en
Priority to US16/517,365 priority patent/US11232777B2/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • This disclosure relates to an information processing apparatus.
  • so-called information processing devices In recent years, with the advancement of communication technology and the miniaturization of various devices, the type of equipment called so-called information processing devices has also diversified, not limited to PCs (Personal Computers) etc., like smartphones and tablet terminals, Information processing apparatuses configured to be carried by users are also becoming popular. In particular, in recent years, a so-called wearable device has also been proposed that is configured to be used while being carried by a user wearing it on a part of the body.
  • PCs Personal Computers
  • Patent Document 1 discloses an example of a mechanism for suppressing noise.
  • the present disclosure proposes an information processing apparatus capable of collecting a target sound in a more preferable manner even in an environment where noise is randomly generated.
  • At least a part of the sound collecting part and a convex part having a streamline shape is provided, and the sound collecting part is supported so as to be positioned at or near the tip of the convex part.
  • An information processing apparatus comprising a support member is provided.
  • an information processing apparatus that can collect a target sound in a more preferable manner even in an environment where noise is randomly generated.
  • FIG. 4 is an explanatory diagram for describing an example of a schematic configuration of an information processing device according to a first embodiment of the present disclosure.
  • FIG. Explanatory drawing for demonstrating an example of schematic structure of the information processing apparatus which concerns on the embodiment
  • It is explanatory drawing for demonstrating an example of the observation environment for observing the influence of a wind noise.
  • An example of an installation position of each of a plurality of sound collection units provided in the information processing apparatus is illustrated.
  • It is the block diagram which showed an example of the function structure of the information processing apparatus which concerns on the embodiment.
  • the information processing apparatus which concerns on the embodiment has shown an example of the process which acquires a target sound based on the sound collection result of each of several sound collection parts.
  • 5 is a flowchart illustrating an example of a flow of a series of processes of the information processing apparatus according to the embodiment.
  • 1 is an explanatory diagram for describing an example of an information processing apparatus according to a first embodiment
  • FIG. 6 is an explanatory diagram for explaining another example of the information processing apparatus according to the first embodiment.
  • FIG. 6 is an explanatory diagram for explaining another example of the information processing apparatus according to the first embodiment.
  • FIG. 9 is an explanatory diagram for describing an example of an information processing apparatus according to a second embodiment.
  • FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment.
  • FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment.
  • FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment.
  • FIG. 9 is an explanatory diagram for describing an example of an information processing apparatus according to a third embodiment. It is explanatory drawing for demonstrating an example of the utilization form of the information processing apparatus 30 which concerns on the modification 3.
  • FIG. 10 is an explanatory diagram for describing an example of an information processing apparatus according to a fourth embodiment.
  • FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the fourth embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of an information processing apparatus according to a fifth embodiment.
  • FIG. 10 is an explanatory diagram for explaining an example of a schematic configuration in the vicinity of a lens of an imaging unit in an information processing apparatus according to Embodiment 5.
  • FIG. It is a block diagram showing an example of functional composition of an information processor concerning a 2nd embodiment of this indication. It is explanatory drawing for demonstrating the basic principle of a process of a non-correlation component power estimation part. It is the figure which showed an example of the hardware constitutions of the signal processing apparatus which concerns on the same embodiment.
  • Example 1 An example of a wearable device worn on the neck 1.5.2.
  • Example 2 An example of a wearable device worn on the head 1.5.3.
  • Example 3 Application example to portable information terminal 1.5.4.
  • Example 4 Application example to a watch-type wearable device 1.5.5.
  • Example 5 Application example to imaging apparatus Second Embodiment 2.1. Outline 2.2. Functional configuration 2.3. Details of Uncorrelated Component Power Estimator 2.4. Details of random noise power estimation section 2.5. Evaluation Hardware configuration
  • FIG. 1 is an explanatory diagram for describing an example of a schematic configuration of the information processing apparatus according to the first embodiment of the present disclosure.
  • the information processing apparatus 10 is configured as a so-called wearable device. More specifically, the information processing apparatus 10 has a ring shape that is partially opened (in other words, a headband shape or a U-shape), and at least one of the inner surfaces of the ring-shaped portion. The part is attached to the user so as to contact a part of the user's neck (that is, to hang around the neck).
  • the information processing apparatus 10 includes a sound collection unit such as a so-called microphone, and collects sound emitted by the user from the sound collection unit as acoustic information.
  • the information processing apparatus 10 includes a plurality of sound collection units denoted by reference numerals 111 to 113. More specifically, the sound collection units 111 to 113 are supported by the housing 101 of the information processing apparatus 10, for example.
  • FIG. 2 is an explanatory diagram for explaining an example of a schematic configuration of the information processing apparatus 10 according to the present embodiment, and a configuration of a portion of the information processing apparatus 10 in which the sound collection unit 111 is provided. It is the figure which showed an example.
  • the information processing apparatus 10 has a streamlined shape so as to protrude toward the front of the user in the vicinity of the user's mouth when worn on the user's neck.
  • the sound collecting portion 111 is provided at the tip of the convex portion (or in the vicinity of the tip) so as to face the direction in which the convex portion protrudes.
  • the sound collection unit 111 is configured as a device separate from the information processing apparatus 10, and faces the direction in which the convex portion protrudes with respect to the tip of the convex portion (or the vicinity of the tip). It may be supported.
  • the sound collection unit 110 is provided for the information processing device 10
  • the sound collection unit 110 is separated from the information processing device 10 and the information processing device 10 is provided. The case where it is supported by at least a part of the device 10 can also be included.
  • the sound collection units 112 and 113 are provided to face the information processing apparatus 10 in different directions. More specifically, the sound collection units 112 and 113 are provided at positions that are substantially symmetric with respect to the user's neck when the information processing apparatus 10 is attached to the user's neck. Details of the position where each sound collecting unit is provided will be described later.
  • the sound collecting portions 112 and 113 are provided so as to face the outside of the ring (that is, the side opposite to the center of the ring) with respect to the ring-shaped casing 101. ing. That is, the sound collection unit 112 and the sound collection unit 113 are provided so as to face opposite directions.
  • the information processing apparatus 10 uses the voice recognition technology or the natural language processing technology for the user's voice (acoustic information) collected by the sound collection unit (for example, the sound collection units 111 to 113). By performing an analysis based on the above, the content spoken by the user may be recognized. Thereby, the information processing apparatus 10 can recognize, for example, the instruction content from the user and execute various processes (applications) according to the recognition result.
  • the information processing apparatus 10 may have a so-called call function.
  • the information processing apparatus 10 may transfer the sound collected by the sound collection unit (for example, the sound collection units 111 to 113) to another information processing apparatus that is a call partner.
  • the information processing apparatus 10 configured to be carried by the user like a so-called wearable device as shown in FIG. 1 has various usage scenes such as when used outdoors, and the information A situation is assumed in which the environment around the processing apparatus 10 changes dynamically. Under such circumstances, for example, randomly generated noise such as wind noise, noise due to vibration, and rubbing due to wearing of the apparatus is collected by the sound collecting unit of the information processing apparatus 10. There is a case.
  • the information processing apparatus 10 is configured as a wearable device that is worn on the user's neck.
  • the result of the examination regarding the installation position of the sound collecting unit that can be performed will be described. More specifically, it is assumed that a so-called wind noise is assumed to be noise, and each of the sound collection units when the wind is applied from different angles to the information processing apparatus 10 in which the sound collection units are installed at a plurality of locations. An example of the observation result of wind noise by will be described.
  • FIG. 3 is an explanatory diagram for explaining an example of an observation environment for observing the effect of wind noise.
  • the information processing apparatus 10 is mounted on the neck of a dummy doll U1 that imitates a part above the user's chest, and the circulator U2 is disposed in front of the dummy doll U1. Then, with the vertical direction of the dummy doll U1 as an axis, the dummy doll U1 is rotated in increments of 10 degrees within a range of 0 degrees to 360 degrees, so that the wind from the circulator U2 arrives at the information processing apparatus 10 The level of wind noise collected by each sound collecting unit was observed.
  • FIG. 4 shows an example of the installation positions of the plurality of sound collection units provided in the information processing apparatus 10 in this observation.
  • sound collection units M1 to M6 are installed for the information processing apparatus 10.
  • the markers attached to the information processing apparatus 10 schematically indicate the positions where the sound collecting units M1 to M6 are installed.
  • the said arrow has shown the direction of the sound collection part corresponding to the said marker.
  • the sound collection unit corresponding to the marker that is, the sound collection units M3 and M6
  • the sound collection unit M1 corresponds to the sound collection unit 111 in the information processing apparatus 10 described with reference to FIG. That is, the sound collection unit M1 is a convex portion provided so as to protrude toward the front of the user at a position corresponding to the vicinity of the user's mouth when the information processing apparatus 10 is worn by the user. It is provided at the tip.
  • the sound collection unit M5 corresponds to the sound collection unit 112 in the information processing apparatus 10 described with reference to FIG. That is, when the information processing apparatus 10 is attached to the user, the sound collecting unit M5 is located at a position corresponding to the left side of the user (direction of approximately 270 degrees in FIG. 3). Outside the housing 101 (in other words, approximately 270 degrees in FIG. 3).
  • the sound collection units M2 to M4 and M6 are positions corresponding to the area on the right front side of the user (in other words, the direction of approximately 45 degrees in FIG. 3) when the information processing apparatus 10 is worn by the user. Is provided.
  • the sound collection unit M ⁇ b> 2 is interposed between the housing 101 of the information processing apparatus 10 and the user's neck and is installed so as to face the inside of the housing 101.
  • the sound collection unit M4 is provided outside the housing 101 of the information processing apparatus 10 so as to face the outside of the housing 101 (in other words, the direction of approximately 45 degrees in FIG. 3).
  • the sound collection units M3 and M6 are provided so as to face vertically upward as described above.
  • FIG. 5 is an explanatory diagram for explaining an example of observation results of wind noise by each of the sound collection units when wind is applied to the information processing apparatus 10 from different angles. That is, FIG. 5 shows an example of a wind noise collection result by each of the sound collection units M1 to M6 described with reference to FIG. 4 in the observation environment described with reference to FIG.
  • the numerical values described in the circumferential direction indicate the direction in which the wind from the circulator U2 arrives.
  • the numerical values described along the radial direction of the graph indicate the level of the sound collected by the corresponding sound collection unit (that is, the observation level of the sound collection unit). That is, in the graph showing the sound collection results of the sound collection units M1 to M6 shown in FIG. 5, the smaller the observation level (in other words, the more the observation value is located inside the graph), the wind noise (ie, noise). ) Is less affected.
  • the influence of the wind noise is small particularly in the situation where the wind comes from the front of the user (ie, the direction of 0 degree).
  • the sound collecting unit M1 it can be seen that the effect of wind noise is small compared to other sound collecting units even when the wind comes from directions other than the front.
  • the sound collection unit 111 shown in FIG. 1 the sound collection unit is provided at the tip of the streamlined projection (or in the vicinity of the tip) so that the projection protrudes.
  • the influence of randomly generated noise such as wind noise can be reduced.
  • the user's part for example, the neck or the head
  • the information processing apparatus 10 can be used as a shield against wind or the like.
  • the sound collection unit it is estimated that the characteristics of other sound collection units (for example, the sound collection unit 111 shown in FIG. 1) can be supplemented.
  • the information processing apparatus 10 is configured as a wearable device that is worn on the user's neck as an example.
  • the result of the study on the installation position of the sound collection unit that can collect sound ie, reduce the influence of noise such as wind noise has been described.
  • FIG. 6 is a block diagram illustrating an example of a functional configuration of the information processing apparatus 10 according to the present embodiment.
  • the information processing apparatus 10 includes a plurality of sound collecting units 111 to 11M (M is a positive integer), a frequency resolving unit 13, a channel power estimating unit 15, a filter estimating unit 16, a filter A processing unit 17 and a frequency synthesis unit 18 are included.
  • the sound collection units 111 to 11M may be referred to as “sound collection unit 110” unless they are particularly distinguished.
  • the number of sound collecting units 110 (that is, M) is not particularly limited as long as it is plural, but is more preferably 3 or more.
  • the sound collection unit 110 is configured as a sound collection device for collecting sound of the external environment (that is, sound that propagates through the external environment) like a so-called microphone. Note that the voice input from the user is also taken into the information processing apparatus 10 by being collected by the sound collection unit 110.
  • the sound collection unit 110 may include a plurality of sound collection devices such as a microphone array.
  • the sound collection unit 110 outputs an acoustic signal based on the sound collection result of the sound of the external environment to the frequency decomposition unit 13. Note that the acoustic signal output from the sound collection unit 110 may be input to the frequency decomposition unit 13 after the gain is adjusted by an amplifier or the like, converted from an analog signal to a digital signal by AD conversion, and the like.
  • the channel number of the sound collection unit 110 is m (1 ⁇ m ⁇ M) and the discrete time is n
  • the acoustic signal output from the sound collection unit 110 is represented by x m (n). It shall be expressed as
  • the frequency decomposing unit 13 is configured to decompose the acoustic signal x m (n) output from the sound collecting unit 110 into frequency components and output the frequency components. Specifically, the frequency resolving unit 13 performs frame division, application of a predetermined window function, and time-frequency conversion (for example, FFT (Fast Fourier Transform), etc.) on the acquired acoustic signal x m (n). The acoustic signal x m (n) is decomposed into frequency components by performing processing such as DFT (Discrete Fourier Transform). In the following description, the frequency component of the acoustic signal x m (n) may be described as X m (i, k).
  • each frequency component X m (i, k) of the acquired acoustic signal x m (n) is output to each of the filter processing unit 17 and the channel power estimation unit 15 located in the subsequent stage. To do. Thereby, for each of the sound collecting units 111 to 11M, each frequency component X m (i, k) of the acoustic signal x m (n) is output to the filter processing unit 17 and the channel power estimation unit 15, respectively. It will be.
  • the channel power estimation unit 15 acquires each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collection unit 110 (that is, for each of the sound collection units 111 to 11M) from the frequency decomposition unit 13. To do. Next, the channel power estimation unit 15 determines the power of each sound collecting unit 110 for each frequency based on each frequency component X m (i, k) of the acoustic signal x m (n) corresponding to each sound collecting unit 110. Estimate the spectrum.
  • the power spectrum corresponding to the i frame and the frequency k in the m-th sound collecting unit 110 is P m (i, k)
  • the power spectrum P m (i, k) is expressed by a calculation formula shown as (Formula 1) below.
  • X m * (i, k) represents a conjugate complex number of X m (i, k).
  • r represents a smoothing coefficient in the frame direction for suppressing a rapid change in power spectrum (0 ⁇ r ⁇ 1).
  • the channel power estimation unit 15 outputs the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 to the filter estimation unit 16 for each frequency.
  • the filter estimation unit 16 Based on the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 for each frequency output from the channel power estimation unit 15, the filter estimation unit 16 performs filtering after that. A filter coefficient for executing the process is calculated.
  • the filter estimation unit 16 performs the following (Equation 2) based on the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 acquired from the channel power estimation unit 15 for each frequency.
  • Equation 2 A matrix R (i, k) shown as follows is generated.
  • the filter estimation unit 16 determines, for each of the sound collection units 110, the frequency of each sound collection unit 110 based on the distance between the sound collection unit 110 and the target sound source (for example, the user's mouth).
  • An array manifold vector a (k) showing attenuation and delay characteristics up to 110 is calculated. Note that the distance between the sound source of the target sound and each sound collection unit 110 is determined when the information processing apparatus 10 is attached to the user by the information processing apparatus 10 (and thus each information processing apparatus 10 provided with the information processing apparatus 10). It is possible to specify in advance based on the relative positional relationship between the sound collection unit 110) and the sound source.
  • the array manifold vector a (k) is expressed by the following calculation formulas (Equation 3) and (Equation 4).
  • d m is the target sound source (e.g., mouth) and, m-th sound collecting portion 110 (i.e., the sound collecting portion 11m) represents the distance between the.
  • g m indicates the amount of attenuation until the target sound reaches the sound collecting unit 11m.
  • ⁇ k indicates an angular frequency corresponding to the discrete frequency number k.
  • C indicates the speed of sound.
  • a matrix with a superscript T is used to indicate transposition of the matrix. In the following description, a matrix with a superscript T may be referred to as a “transposed vector matrix”.
  • a matrix with a superscript H indicates a complex conjugate transpose of the matrix.
  • a matrix with a superscript H may be referred to as a “complex conjugate transposed vector matrix”.
  • the filter coefficient w (i, k) for each frequency is expressed by the following calculation formula (Formula 6). Note that i indicates a frame number, and k indicates a discrete frequency number.
  • the filter coefficient w (i, k) shown as (Equation 6) above indicates the gain of the component a (k) coming from the target sound source (for example, the mouth), as shown in (Equation 5) above. 1 and a coefficient that minimizes noise components (for example, wind noise). Then, the filter estimation unit 16 outputs the filter coefficient w (i, k) calculated for each frequency to the filter processing unit 17.
  • the filter processing unit 17 acquires each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collection unit 110 (ie, for each of the sound collection units 111 to 11M) from the frequency decomposition unit 13. . Further, the filter processing unit 17 acquires the filter coefficient w (i, k) calculated for each frequency from the filter estimation unit 16. The filter processing unit 17 uses each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 as an input signal and is based on the acquired filter coefficient w (i, k) for each frequency. By performing the filtering process, an output signal Y (i, k) is generated.
  • the filter processing unit 17 uses each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 as an input signal, and obtains a filter coefficient w (i for each acquired frequency. , K), the input signal is weighted and added to generate an output signal Y (i, k) for each frequency.
  • the output signal Y (i, k) is expressed by a calculation formula shown as (Formula 7) below. Note that i indicates a frame number, and k indicates a discrete frequency number.
  • the filter processing unit 17 outputs the output signal Y (i, k) generated for each frequency to the frequency synthesis unit 18.
  • the frequency synthesizer 18 acquires the output signal Y (i, k) generated for each frequency from the filter processor 17.
  • the frequency synthesizer 18 generates the acoustic signal y (n) by synthesizing the acquired output signal Y (i, k) for each frequency. That is, the frequency synthesizing unit 18 performs the reverse process of the frequency decomposing unit 13 described above. Specifically, the frequency synthesizer 18 performs frequency-time conversion (for example, IFFT (Inverse FFT), IDFT (Inverse DFT), etc.), a predetermined window for the output signal Y (i, k) for each frequency. By performing processing such as function application and frame synthesis, an acoustic signal y (n) in which the output signal Y (i, k) for each frequency is synthesized is generated.
  • IFFT Inverse FFT
  • IDFT Inverse DFT
  • FIG. 7 shows an example of processing in which the information processing apparatus 10 according to the present embodiment acquires the target sound based on the sound collection results of the plurality of sound collection units 110.
  • FIG. 7 an example in which four microphones of the sound collection units 111 to 114 are used as the plurality of sound collection units 110 is illustrated. That is, in the example shown in FIG. 7, each of the sound collection units 111 to 114 is obtained by an example of the sound collection result by each of the sound collection units 111 to 114 (ie, the collected sound signal) and the signal processing by the information processing apparatus 10.
  • An example of an acoustic signal (synthetic sound) obtained by synthesizing the sound collection results is shown.
  • the filtering process for synthesizing the sound collection results (more specifically, each frequency component X m (i, k) of the acoustic signal x m (n)) by each of the plurality of sound collection units 110.
  • the coefficient w (i, k) is a characteristic that keeps the gain of the component a (k) coming from the sound source (for example, the mouth) of the target sound at 1 and minimizes the noise component (for example, wind noise).
  • weighting is performed so that the input of the sound collecting unit 110 having a smaller noise component level (in other words, the sound collecting unit 110 having a smaller noise component effect) is prioritized, and each sound collecting unit 110 is prioritized.
  • the sound collection results are synthesized.
  • the information processing apparatus 10 is configured to synthesize the target sound from the sound collection results of each of the plurality of sound collection units 110. This is different from the configuration in which the sound collection unit 110 that obtains the sound collection result is simply switched. More specifically, in the case of a configuration in which the sound collecting unit 110 that acquires the sound collection result is simply switched, the acoustic signal may be deteriorated before and after the switching, and particularly noise such as wind noise. In a situation where the direction of arrival of the sound changes dynamically, the deterioration of the acoustic signal tends to be more obvious.
  • the information processing apparatus 10 synthesizes the target sound by the signal processing described above, so that the direction in which noise such as wind noise arrives dynamically changes.
  • the target sound can be acquired in a more natural manner without causing deterioration of the acoustic signal.
  • the signal processing for the sound collection result of each sound collection unit 110 described above is merely an example, and weighting is performed so that the input of the sound collection unit 110 having a smaller noise component level is prioritized, and each sound collection unit 110 is prioritized.
  • the content is not particularly limited as long as the sound collection results of the sound unit 110 can be synthesized.
  • the frequency synthesizer 18 outputs the generated acoustic signal y (n) as a target sound collection result.
  • the acoustic signal y (n) output from the frequency synthesizer 18 is used for various processes (for example, voice recognition, voice call, etc.) executed by the information processing apparatus 10, for example.
  • the configuration illustrated in FIG. 6 is merely an example, and the configuration of the information processing apparatus 10 is not necessarily limited to the example illustrated in FIG. 6 as long as the various processes described above can be realized.
  • the frequency resolving unit 13 is provided for each of the sound collecting units 111 to 11m. It is good also as a structure to process.
  • a part of the configuration may be externally attached to the information processing apparatus 10.
  • at least some of the plurality of sound collecting units 110 may be configured to be detachable from the information processing apparatus 10.
  • the information processing apparatus 10 has the target sound based on the sound collection results of the plurality of sound collection units. The description has been given focusing on the process of acquiring the.
  • FIG. 8 is a flowchart illustrating an example of a flow of a series of processes of the information processing apparatus 10 according to the present embodiment.
  • Step S101 The sound of the external environment is taken into the information processing apparatus 10 by being collected by the plurality of sound collection units 110.
  • the sound collection unit 110 adjusts the gain of an acoustic signal (analog signal) based on the sound collection result, converts the analog signal from a digital signal by AD conversion, and then converts the converted acoustic signal (digital signal) x m (n ) Is output to the frequency resolving unit 13.
  • the frequency resolving unit 13 performs processing such as frame division, application of a predetermined window function, time-frequency conversion, and the like on the acoustic signal x m (n) output from the sound collecting unit 110.
  • the acoustic signal x m (n) is decomposed into frequency components.
  • the frequency resolving unit 13 outputs each frequency component X m (i, k) of the acoustic signal x m (n) to each of the filter processing unit 17 and the channel power estimating unit 15 located in the subsequent stage.
  • each frequency component X m (i, k) of the acoustic signal x m (n) is output to the filter processing unit 17 and the channel power estimation unit 15, respectively. It will be.
  • Step S105 The channel power estimation unit 15 acquires each frequency component X m (i, k) of the acoustic signal x m (n) from the frequency resolution unit 13 for each sound collection unit 110. Next, the channel power estimation unit 15 determines the power of each sound collecting unit 110 for each frequency based on each frequency component X m (i, k) of the acoustic signal x m (n) corresponding to each sound collecting unit 110. Estimate the spectrum. Then, the channel power estimation unit 15 outputs the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 to the filter estimation unit 16 for each frequency.
  • Step S107 Based on the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 for each frequency output from the channel power estimation unit 15, the filter estimation unit 16 performs filtering after that. A filter coefficient w (i, k) for executing the processing is calculated.
  • the filter estimation unit 16 generates a matrix R (i, k) based on the power spectrum P m (i, k) of each sound collection unit 110. Further, the filter estimation unit 16 determines, for each frequency, the attenuation and delay characteristics to the sound collection unit 110 based on the distance between the sound collection unit 110 and the target sound source for each frequency. The indicated array manifold vector a (k) is calculated. Then, the filter estimation unit 16 calculates a filter coefficient w (i, k) based on the generated matrix R (i, k) and the calculated array manifold vector a (k), and the filter coefficient w (i , K) is output to the filter processing unit 17.
  • Step S109 The filter processing unit 17 acquires each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collection unit 110 from the frequency decomposition unit 13. Further, the filter processing unit 17 acquires the filter coefficient w (i, k) calculated for each frequency from the filter estimation unit 16. The filter processing unit 17 uses each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 as an input signal, based on the acquired filter coefficient w (i, k) for each frequency. By weighting and adding the input signals, an output signal Y (i, k) for each frequency is generated. Then, the filter processing unit 17 outputs the output signal Y (i, k) generated for each frequency to the frequency synthesis unit 18.
  • Step S111 The frequency synthesizer 18 performs processing such as frequency-time conversion, application of a predetermined window function, and frame synthesis on the output signal Y (i, k) for each frequency output from the filter processor 17.
  • the output signal Y (i, k) for each frequency is synthesized.
  • an acoustic signal y (n) in which the sound collection results by the sound collection units 110 are combined is generated.
  • the acoustic signal y (n) generated by the frequency synthesizer 18 is used as a sound collection result for various processes (for example, voice recognition, voice call, etc.) executed by the information processing apparatus 10. .
  • the information processing apparatus 10 performs the target sound based on the sound collection results of the plurality of sound collection units.
  • the description has been given focusing on the process of acquiring the.
  • Example> Next, another example of the information processing apparatus 10 according to the present embodiment will be described as an example.
  • Example 1 An example of a wearable device attached to the neck> First, referring to FIG. 9 to FIG. 11, as an example 1, an information processing apparatus configured as a wearable device that can be worn on the user's neck like the so-called neckband type wearable device shown in FIG. An example will be described.
  • FIG. 9 is an explanatory diagram for describing an example of the information processing apparatus according to the first embodiment, and illustrates an example of the information processing apparatus configured as a wearable device that can be worn on the user's neck.
  • the information processing apparatus shown in FIG. 9 is referred to as an “information processing apparatus 10a” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • the information processing apparatus 10a includes sound collection units 111 to 114.
  • the sound collection units 111 to 113 correspond to the sound collection units 111 to 113 in the information processing apparatus 10 described above with reference to FIG.
  • the sound collecting unit 114 is provided at a position behind the user so that the information processing apparatus 10a is attached to the user's neck so as to face the rear side of the user. With such a configuration, for example, it is possible to further reduce the influence of noise coming from behind the user.
  • the information processing apparatus 10a is provided with convex portions having a streamlined shape protruding in the direction in which each of the sound collecting portions 112 to 114 faces at a position where the sound collecting portions 112 to 114 are installed.
  • Each of the sound collecting portions 112 to 114 is provided at the tip.
  • the sound collecting portions 112 to 114 also reduce the influence of noise such as wind noise as in the sound collecting portion 111, and the direction in which the convex portion protrudes (that is, the sound collecting portion). It is possible to collect sound coming from the direction in which the sound part is directed in a more preferable manner.
  • the position where the convex portion is provided (that is, the position where the sound collecting portion 110 is provided) is not particularly limited. Therefore, for example, by providing various circuits such as a driver, a battery, and the like, a convex portion is provided at a location where the casing 101 may swell, and the sound collection unit 110 is provided at the tip of the convex portion (or in the vicinity of the tip). It is good also as a structure which provides.
  • FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the first embodiment, and illustrates an example of the information processing apparatus configured as a wearable device that can be worn on the user's neck.
  • the information processing apparatus shown in FIG. 10 is referred to as an “information processing apparatus 10b” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • the information processing apparatus 10b has a ring shape and is configured to be openable at a portion indicated by reference numeral 19. In addition, it is comprised so that attachment or detachment is possible between the edge parts which mutually spaces apart because the part shown with the referential mark 19 opens. With such a configuration, the information processing apparatus 10b is attached to the user so that the inner surface of the ring-shaped portion is in contact with the user's neck (that is, wound around the neck).
  • the information processing apparatus 10b has the sound collecting units 115 to 118 at positions different from each other along the circumference of the ring-shaped casing (ie, on the side opposite to the center of the ring). It is provided to face.
  • the sound collection units 115 to 118 correspond to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. To do.
  • each of the sound collection units 115 to 118 shields noise coming from the opposite side to the direction in which the sound collection unit is facing by the user's part (that is, the neck) to which the information processing apparatus 10b is attached. Therefore, the influence of the noise is mitigated.
  • each of the sound collection units 115 to 118 is supported so as to be closer to the user's neck than the information processing apparatus 10 shown in FIG. The influence of noise such as noise (particularly noise coming from the user's neck) is further alleviated.
  • each of the sound collection units 115 to 118 is provided so as to face different directions, for example, the characteristics of other sound collection units may be supplemented based on the sound collection results of some sound collection units. It becomes possible.
  • a streamline-shaped convex portion is provided on at least a part of the housing, and a sound collecting unit 110 (for example, at the vicinity of the convex portion) , At least a part of the sound collecting units 115 to 118) may be provided.
  • FIG. 11 is an explanatory diagram for explaining another example of the information processing apparatus according to the first embodiment, and shows an example of the information processing apparatus configured as a wearable device having a shape like a so-called necklace. Yes.
  • the information processing apparatus shown in FIG. 11 is referred to as an “information processing apparatus 10c” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • reference numeral 119 indicates an example of the sound collection unit 110 in the information processing apparatus 10 according to the above-described embodiment. That is, in the information processing apparatus 10c having a shape like a necklace, for example, a streamline-shaped convex portion is provided in a portion corresponding to a so-called pendant so as to face the front of the user when the user wears the convex portion.
  • the sound collecting unit 119 may be provided at the tip of the head (or in the vicinity of the tip).
  • one sound collection unit 110 is provided for the information processing apparatus 10c, but a plurality of sound collection units 110 may be provided. Further, when a plurality of sound collecting units 110 are provided for the information processing apparatus 10c, the plurality of sound collecting units 110 may be provided so as to face different directions.
  • an information processing apparatus configured as a wearable device that can be worn on the user's neck like the so-called neckband type wearable device shown in FIG. An example has been described.
  • Example 2 Example of wearable device worn on head> Next, as a second embodiment, an example of an information processing apparatus configured as a wearable device that can be worn on the head will be described with reference to FIGS.
  • FIG. 12 is an explanatory diagram for explaining an example of the information processing apparatus according to the second embodiment, and illustrates an example of the information processing apparatus configured as a wearable device that can be worn on the user's head.
  • the information processing apparatus shown in FIG. 12 is referred to as an “information processing apparatus 20a” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • the information processing apparatus 20a is mounted on the user's head so that a housing in which circuits and the like for realizing various functions are incorporated is held near the user's ear.
  • the information processing device 20 a includes an earphone unit that is inserted into the user's ear canal and a cable-shaped support member that supports the housing by being hooked on the user's ear. Prepare.
  • the housing is held near the user's ear by the earphone unit and the cable-shaped support member.
  • the information processing apparatus 20a includes sound collection units 211 and 212.
  • the sound collection units 211 and 212 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. Equivalent to.
  • the information processing apparatus 20a when attached to the user's head, places the front side on an end portion of the casing that is held near the user's ear and located on the front side of the user.
  • a convex portion having a streamline shape protruding so as to face is provided.
  • the sound-collecting part 211 is provided in the front-end
  • the information processing device 20a when the information processing device 20a is attached to the user's head, the information processing device 20a has at least a part of a side surface located outside the housing (that is, opposite to the head) in the direction of the outside ( That is, the sound collection unit 212 is provided so as to face the user's lateral direction.
  • the information processing apparatus 20a includes a convex portion having a streamline shape that protrudes toward the outer side of the casing with respect to the side surface of the casing, and the sound collection unit 212 is provided at the tip of the convex portion. It may be provided.
  • a configuration similar to the case to be held can be taken.
  • the housing held on the right ear side may be provided with only a configuration corresponding to the sound collection unit 212, or a configuration corresponding to the sound collection units 211 and 212. Also good.
  • FIG. 13 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment.
  • the information processing apparatus is configured as a so-called glasses-type wearable device that is worn on the user's head. An example is shown.
  • the information processing apparatus shown in FIG. 13 is referred to as an “information processing apparatus 20b” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • the information processing apparatus 20b includes sound collection units 213 to 215.
  • the sound collection units 213 to 215 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the embodiment described above. Equivalent to.
  • a sound collection unit 213 is provided at least at a part corresponding to the front of the glasses.
  • the information processing apparatus 20b includes a convex portion having a streamline shape that protrudes forward at a portion corresponding to a bridge of glasses, and a sound collecting portion is provided at the tip of the convex portion. 213 is provided so as to face the direction in which the convex portion protrudes.
  • the convex portion and the sound collecting portion are provided in a portion corresponding to the front of the glasses other than the portion corresponding to the bridge. May be.
  • the information processing apparatus 20b is provided with sound collection units 214 and 215 at least at a part corresponding to the temples of the glasses.
  • the sound collection units 214 and 215 are provided so as to face in the direction opposite to the head (that is, the lateral direction of the user) when the information processing apparatus 20b is mounted on the user's head, for example. It is good to have been.
  • FIG. 14 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment.
  • the information processing apparatus shown in FIG. 14 is referred to as an “information processing apparatus 20c” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • the information processing apparatus 20c includes sound collection units 216 to 218.
  • the sound collection units 216 to 218 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the embodiment described above. Equivalent to.
  • the sound collecting portions 216 to 218 are provided at different positions of the portions corresponding to the frame of the glasses (for example, the front and the temple) so as to face different directions. More specifically, each of the sound collection units 216 to 218 is provided so as to face the direction opposite to the head when the information processing apparatus 20c is attached to the user's head.
  • each of the sound collecting units 216 to 218 is shielded by the user's head from the noise coming from the side opposite to the direction in which the sound collecting unit 216 is facing, so that the influence of the noise is not affected. Alleviated.
  • the characteristics of other sound collection units may be supplemented based on the sound collection results of some sound collection units. It becomes possible.
  • FIG. 15 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment, and illustrates an example of the information processing apparatus configured as an overhead wearable device such as a so-called headphone. ing.
  • the information processing apparatus shown in FIG. 15 is referred to as an “information processing apparatus 20d” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • the information processing apparatus 20 d includes an imaging unit 25 and a sound collection unit 219.
  • the sound collection unit 219 corresponds to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. .
  • the imaging unit 25 can store the front of the user of the housing of the information processing device 20d within the angle of view. In the position.
  • the imaging unit 25 is provided in the housing of the information processing device 20 d so as to face the front of the user.
  • the information processing apparatus 20d includes a convex portion having a streamline shape that protrudes toward the front side of the user in a state of being mounted on the user's head in at least a part of the housing, and the convex portion
  • a sound collecting portion 219 is provided at the front end of the head so as to face the direction in which the convex portion protrudes.
  • the sound collection unit 219 is provided in the vicinity of the imaging unit 25.
  • a streamline projecting so as to face the front side of the user on at least a part of the holding member for holding the information processing apparatus 20d on the head of the user.
  • a sound collecting part may be provided at the tip of the convex part so as to face the direction in which the convex part protrudes.
  • an example of an information processing apparatus configured as a wearable device that can be worn on the head has been described with reference to FIGS. 12 to 15.
  • the example demonstrated above is an example to the last, and is not necessarily limited to the example shown above.
  • a configuration corresponding to the sound collection unit 110 in the information processing apparatus 10 according to the above-described embodiment with respect to the information processing apparatus configured as a head-mounted wearable device having a so-called headband shape. May be provided.
  • Example 3 Application example to portable information terminal> Next, as Example 3, an example of an information processing apparatus configured as a portable information terminal such as a so-called smartphone will be described with reference to FIGS. 16 and 17.
  • FIG. 16 is an explanatory diagram for explaining an example of the information processing apparatus according to the third embodiment.
  • the information processing apparatus shown in FIG. 16 is referred to as an “information processing apparatus 30” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • the information processing apparatus 30 includes sound collection units 311 to 314.
  • the sound collection units 311 to 314 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. Equivalent to.
  • the housing of the information processing apparatus 30 has a substantially rectangular surface 36 at least in part, and a predetermined region including the corner of the surface 36 (that is, the corner or the vicinity of the corner). ), A convex portion having a streamline shape is formed so as to face the outside of the housing.
  • the housing of the information processing apparatus 30 includes a substantially planar surface 36 and a plurality of side surfaces 371 to 374 formed so as to face different directions along the end of the surface 36, and are adjacent to each other.
  • a convex portion having a streamline shape is formed in a predetermined region including a portion where the matching side surfaces are connected.
  • the surface 36 may correspond to a surface on which a display unit such as a display is provided, for example.
  • each of the sound collection units 311 to 314 is provided at the tip of any one of the convex portions (or in the vicinity of the tip) so as to face the outside of the casing of the information processing apparatus 30.
  • FIG. 17 is an explanatory diagram for explaining an example of a usage form of the information processing apparatus 30 according to the modification 3. An example of a case where the user performs a voice call using the information processing apparatus 30 is illustrated. Show.
  • the information is set so that the sound collecting unit 312 faces the front of the user.
  • the processing device 30 is held.
  • the sound collecting unit 312 is affected by wind noise caused by the wind coming from the front due to the movement of the user. It becomes difficult. It can be assumed that the user makes a voice call while holding the information processing apparatus 30 in the vicinity of his / her left ear.
  • the information processing apparatus 30 is held so that the sound collecting unit 311 faces substantially in front of the user, and the sound collecting unit 311 winds off due to wind coming from the front due to the movement of the user. Less affected by sound. That is, the information processing apparatus 30 can mitigate the influence of wind noise caused by the wind coming from the front due to the movement of the user based on the configuration described above.
  • the information processing apparatus 30 is provided so that the sound collecting units 311 to 314 face different directions. With such a configuration, the information processing apparatus 30 can supplement the characteristics of the other sound collection units based on the sound collection results of at least some of the sound collection units.
  • FIGS. 16 and 17 As described above, as an example 3, an example of an information processing apparatus configured as a portable information terminal such as a so-called smartphone has been described with reference to FIGS. 16 and 17.
  • Example 4 Application example to watch-type wearable device> Next, as Example 4, an example of an information processing apparatus configured as a so-called watch-type wearable device that can be worn on an arm will be described with reference to FIGS. 18 and 19.
  • FIG. 18 is an explanatory diagram for explaining an example of the information processing apparatus according to the fourth embodiment.
  • the information processing apparatus shown in FIG. 18 is referred to as an “information processing apparatus 40a” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • the information processing apparatus 40a includes sound collection units 411 to 415.
  • the sound collection units 411 to 415 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. Equivalent to.
  • the information processing apparatus 40a includes a casing 481 in which circuits for realizing various functions are incorporated, and a belt-like support member 482 that supports the casing 481 on the user's arm.
  • the casing 481 has at least a part of a substantially rectangular surface, and the casing 481 has a predetermined area including corners of the substantially rectangular surface.
  • a convex portion having a streamline shape is formed so as to face the outside of the body 481.
  • the substantially rectangular surface corresponds to a surface on the side where a dial in a so-called timepiece is provided.
  • Each of the sound collecting portions 411 to 414 is provided at the tip of one of the convex portions (or in the vicinity of the tip) so as to face the outside of the housing 481.
  • the support member 482 includes a sound collection unit 415 at a position that is substantially symmetric with respect to the housing 481 with respect to the arm, and is opposite to the arm. It is provided so as to face the direction.
  • the information processing apparatus 40a allows at least any one of the sound collection units 411 to 414 even under a situation where the user is waving the arm on the side on which the information processing apparatus 40a is mounted. However, it is in a state of facing the direction substantially equal to the direction in which the arm is swung. Therefore, the information processing apparatus 40a can mitigate the effect of wind noise caused by arm swing based on the sound collection results of the sound collection units 411 to 414. In addition, the information processing apparatus 40a is provided so that the sound collecting units 411 to 415 face different directions.
  • the information processing apparatus 40a can supplement the characteristics of other sound collection units based on the sound collection results of at least some of the sound collection units 411 to 415.
  • FIG. 19 is an explanatory diagram for explaining another example of the information processing apparatus according to the fourth embodiment.
  • the information processing apparatus shown in FIG. 19 is referred to as an “information processing apparatus 40b” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • the information processing apparatus 40b includes a sound collecting unit 416 in a portion corresponding to a so-called screw portion of a timepiece indicated by reference numeral 483 (hereinafter referred to as “screw portion 483”).
  • the screw part 483 may be used as a convex part for providing the sound collection part 416 by forming the screw part 483 to have a streamlined shape.
  • the sound collection unit 416 corresponds to the sound collection unit 110 (for example, the sound collection unit 111) in the information processing apparatus 10 according to the above-described embodiment.
  • Example 5 Application Example to Imaging Device> Next, as Example 5, an example of an information processing apparatus configured as an imaging apparatus capable of capturing a moving image or a still image will be described with reference to FIGS. 20 and 21.
  • FIG. 5 An example of an information processing apparatus configured as an imaging apparatus capable of capturing a moving image or a still image will be described with reference to FIGS. 20 and 21.
  • FIG. 20 is an explanatory diagram for explaining an example of the information processing apparatus according to the fifth embodiment.
  • the information processing apparatus shown in FIG. 20 is referred to as an “information processing apparatus 50” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
  • reference numeral 53 corresponds to an image capturing unit for capturing images such as moving images and still images.
  • Reference numerals 511 and 512 correspond to an example of a sound collection unit provided in the information processing apparatus 50.
  • the sound collection units 511 and 512 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the embodiment described above. Equivalent to.
  • the information processing device 50 includes, for example, a direction of the casing that supports the imaging unit 53 in which the imaging unit 53 captures an image (hereinafter referred to as “imaging direction”).
  • imaging direction a direction of the casing that supports the imaging unit 53 in which the imaging unit 53 captures an image
  • a convex portion having a streamline shape protruding in the imaging direction is provided on a part of the surface facing (which may be).
  • a sound collection unit 511 is provided at the tip of the convex portion (or in the vicinity of the tip) so as to face the imaging direction of the imaging unit 53 (in other words, forward).
  • FIG. 21 is an explanatory diagram for explaining an example of a schematic configuration in the vicinity of the lens of the imaging unit 53 in the information processing apparatus 50 according to the fifth embodiment.
  • the information processing device 50 is provided with a convex portion 551 that protrudes toward the outside of the housing of the information processing device 50 in the vicinity of the lens of the imaging unit 53.
  • the convex portion 551 includes a convex portion 553 having a streamline shape that protrudes in the imaging direction (that is, the front side) of the imaging unit 53, and is collected at the tip of the convex portion 553 (or in the vicinity of the tip).
  • a sound unit 513 is provided.
  • the information processing apparatus 50 can mitigate the effect of wind noise caused by the wind coming from the front due to the movement of the user, for example, even in a situation where an image is captured while the user is moving. Is possible.
  • the information processing apparatus 50 may include another sound collection unit different from the sound collection units 511 and 512.
  • the other sound collecting unit may be provided so as to face a different direction from the sound collecting units 511 and 512.
  • the housing of the information processing device 50 is directed to the surface opposite to the imaging direction of the imaging unit 53 and to the direction opposite to the imaging direction (that is, rearward).
  • the other sound collecting unit may be provided. With such a configuration, for example, the characteristics of the sound collection units 511 and 512 can be supplemented based on the sound collection result by another sound collection unit.
  • Example 5 an example of an information processing apparatus configured as an imaging apparatus capable of capturing a moving image or a still image has been described with reference to FIGS. 20 and 21.
  • Second Embodiment >> ⁇ 2.1. Overview> Subsequently, a second embodiment of the present disclosure will be described.
  • the input of the sound collection unit having a smaller observation level that is, the level of the collected sound
  • the filtering process so as to be prioritized, the influence of noise generated randomly such as wind noise has been reduced.
  • Such control makes it possible to mitigate the influence of the noise in a more preferable manner, particularly when the influence of randomly generated noise such as wind noise is larger.
  • the target sound is more accurately obtained in a situation where the target sound such as speech is collected as a main component.
  • the sound collection result of the sound collection unit collected at a high level may not be used. That is, in the situation where the influence of randomly generated noise such as wind noise is small, for example, the sound collection result of the sound collection unit having a small signal-to-noise ratio is preferentially used. There is.
  • the present embodiment maintains the effect of suppressing noise generated randomly such as wind noise as in the first embodiment described above, and is more preferable when the influence of randomly generated noise is small.
  • An example of a mechanism that can acquire the target sound in various ways is proposed.
  • FIG. 22 is a block diagram illustrating an example of a functional configuration of the information processing apparatus according to the present embodiment.
  • information processing apparatus 60 May be called.
  • the information processing apparatus 60 includes a plurality of sound collecting units 111 to 11M (M is a positive integer), a frequency resolving unit 13, a channel power estimating unit 65, and filter estimation.
  • a unit 66, a filter processing unit 17, and a frequency synthesis unit 18 are included.
  • the plurality of sound collecting units 111 to 11M (M is a positive integer), the frequency resolving unit 13, the filter processing unit 17, and the frequency synthesizing unit 18 are the information processing apparatus according to the first embodiment described above. 10 (refer to FIG. 6) corresponds to the configuration with the same reference numerals.
  • the information processing apparatus 60 according to the present embodiment is different from the information processing apparatus 10 according to the first embodiment described above in the processing contents of the channel power estimation unit 65 and the filter estimation unit 66. Therefore, hereinafter, the functional configuration of the information processing apparatus 60 according to the present embodiment will be described, particularly focusing on differences from the information processing apparatus 10 according to the first embodiment described above. Detailed description of the same configuration as in FIG.
  • the channel power estimation unit 65 includes an input power estimation unit 651, a non-correlated component power estimation unit 653, and a random noise power estimation unit 655.
  • the input power estimation unit 651 corresponds to the channel power estimation unit 15 in the information processing apparatus 10 according to the first embodiment described above. That is, the input power estimation unit 651 is configured to output the power of each sound collecting unit 110 for each frequency based on each frequency component X m (i, k) of the acoustic signal x m (n) corresponding to each sound collecting unit 110. Estimate the spectrum. Then, the input power estimation unit 651 outputs the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 to the random noise power estimation unit 655 for each frequency.
  • the uncorrelated component power estimation unit 653 receives feedback of the output signal Y (i, k) generated by the filtering processing unit 17 performing the filtering process.
  • the output signal Y (i, k) is noise (random noise) in each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 that has been previously collected.
  • the sound of which the influence is suppressed corresponds to a frequency component of each sound collection unit 110 of a target sound such as a voice spoken by the user.
  • the decorrelation component power estimation unit 653 outputs each frequency component X m (i, k) of the acoustic signal x m (n) corresponding to each sound collection unit 110 and the feedback output signal Y (i, k).
  • the frequency component X m (i, k) the component that is uncorrelated with the output signal Y (i, k) (hereinafter, also simply referred to as “non-correlated component”) is the frequency component X m (i, k). This corresponds to a noise component such as random noise included in k).
  • the uncorrelated component power estimation unit 653 outputs the estimation result of the power spectrum Q m (i, k) of each sound collection unit 110 to the random noise power estimation unit 655 for each frequency.
  • the random noise power estimation unit 655 acquires an estimation result of the power spectrum P m (i, k) of each sound collection unit 110 for each frequency from the input power estimation unit 651. In addition, the random noise power estimation unit 655 acquires an estimation result of the power spectrum Q m (i, k) of the uncorrelated component corresponding to each sound collecting unit 110 for each frequency from the uncorrelated component power estimation unit 653. . Then, the random noise power estimation unit 655 uses the filter estimation unit 66 to calculate the filter coefficient w (i, k) based on the obtained estimation results of the power spectra P m (i, k) and Q m (i, k). The power spectrum Wm (i, k) of each sound collection unit 110 for each frequency for calculation is determined.
  • the random noise power estimation unit 655 outputs information indicating the power spectrum Wm (i, k) of each sound collection unit 110 to the filter estimation unit 66 for each frequency.
  • the filter estimation unit 66 Based on information indicating the power spectrum Wm (i, k) of each sound collection unit 110 for each frequency output from the channel power estimation unit 65, the filter estimation unit 66 performs a filtering process. A filter coefficient w (i, k) for calculating the value is calculated. At this time, when generating the above-described matrix R (i, k) shown as (Equation 2), the filter estimation unit 66 replaces the power spectrum P m (i, k) with the power spectrum Wm (i , K) is different from the filter estimation unit 16 according to the first embodiment described above.
  • the filter coefficient w based on the array manifold vector a (k) and the generated matrix R (i, k) generated as described above based on the subsequent processing that is, (Expression 3) to (Expression 6).
  • the processing related to the calculation of (i, k) is the same as that of the filter estimation unit 16 according to the first embodiment described above. Therefore, detailed description of the contents of the processing is omitted.
  • the filter estimation unit 66 calculates the filter coefficient w (i, k) based on the information indicating the power spectrum Wm (i, k) of each sound collection unit 110 for each acquired frequency.
  • the filtered filter coefficient w (i, k) is output to the filter processing unit 17.
  • the subsequent processing is the same as that of the information processing apparatus 10 (see FIG. 6) according to the first embodiment described above.
  • the sound (signal) input to the sound collection unit such as a microphone includes, for example, a target sound S m such as a user's voice, a so-called background noise N m, and a random noise W m such as a wind noise. And are included. That is, each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 is based on the target sound S m , the background noise N m , and the random noise W m as follows: It is represented by the relational expression shown as 8).
  • S is for the target sound S m summarizes the M sound collecting unit.
  • N represents the background noise
  • N m is a summary for M sound collecting unit
  • W is one in which the random noise W m summarizes the M sound collecting unit.
  • S, N, and W are each shown as a vector.
  • S org indicates the target sound itself output from the sound source, and is represented by a scalar value.
  • a k corresponds to the array manifold vector a (k) described above.
  • S indicates a component of the target sound that takes into account the effects of signal degradation, delay, and the like that occur when the target sound S org output from the sound source propagates through the space until it reaches the sound collection unit. Yes.
  • the generation timing of random noise W such as wind noise is random, and in the information processing apparatus according to the present disclosure, a plurality of sound collection units (particularly, sound collections arranged in a distributed manner as shown in FIG. 1). Part) can be defined as signals having no correlation.
  • Equation 9 can be defined as a relationship between vectors as shown in FIG.
  • FIG. 23 is an explanatory diagram for explaining a basic principle of processing of the uncorrelated component power estimation unit 653.
  • the vector space shown in FIG. 23 is defined based on the manifold vector ak .
  • X represents the sound collected by the sound collection unit (that is, the input signal), and corresponds to X shown in (Equation 9).
  • Y ideally corresponds to a component based on the estimation result of the target sound S org with respect to the input signal X (that is, a user's utterance component). That is, the component Y schematically shows a user's speech component (or a component having a correlation with the user's speech component) among the components included in the input signal X.
  • Z corresponds to a component having a small correlation (or no correlation) with the user's speech component among the components included in the input signal X.
  • the component Z is only the background noise N and the random noise W.
  • the background noise N is , It is observed as a component having a correlation between the sound collecting parts. Therefore, the component Y includes a background noise N component in addition to the user's utterance component S.
  • random noise W such as wind noise is indicated as a component Z because the correlation with the user's speech component is small.
  • the uncorrelated component power estimation unit 653 uses the feedback of the output signal Y (that is, the user's utterance component), thereby having a small correlation (or correlation) with the output signal Y.
  • a component having no property is extracted as a component of random noise W.
  • the component Z is also referred to as “non-correlated component Z”.
  • the array manifold vector a k is expressed by the calculation formula shown below as (Formula 10) based on the calculation formula described above as (Formula 4).
  • an input signal X based on the inner product of the manifold vector a k, it is possible to extract a component obtained by projecting the input signal X to the manifold vectors a k. From such characteristics, it is possible to extract the non-correlated component Z as a component orthogonal to the manifold vector ak based on the calculation formula shown below as (Equation 11).
  • the power spectrum Q m (i, k) of the decorrelation component Z corresponding to the i frame and the frequency k in the m-th sound collecting unit 110 (that is, the sound collecting unit 11m) is expressed as (Equation 14) below. It is expressed by the calculation formula shown as In (Expression 14) shown below, Z m * (i, k) represents a conjugate complex number of Z m (i, k). In (Expression 14), r represents a smoothing coefficient in the frame direction for suppressing a rapid change in power spectrum (0 ⁇ r ⁇ 1).
  • the uncorrelated component power estimation unit 653 calculates the power spectrum Q m (i, k) of the uncorrelated component.
  • the non-correlated component power estimation unit 653 may not necessarily collect all the sound collection units 110 if the sound collection results of two or more sound collection units 110 can be used when estimating the power spectrum Q m (i, k). There is no need to use sound results.
  • the uncorrelated component power estimation unit 653 is installed at a position where it is difficult to collect a target sound such as a voice, such as the sound collection unit 110 located behind the user's head. The sound collection result of the sound unit 110 may not be used for estimating the power spectrum Q m (i, k).
  • the random noise power estimation unit 655 includes the power spectrum P m (i, k) acquired from the input power estimation unit 651 and the power spectrum of the non-correlation component acquired from the non-correlation component power estimation unit 653.
  • a power spectrum Wm (i, k) is determined based on each estimation result of Q m (i, k).
  • the random noise power estimation unit 655 may output the estimation result of the power spectrum Q m (i, k) of the uncorrelated component to the filter estimation unit 66 as the power spectrum Wm (i, k).
  • the channel power estimation unit 65 may not include the input power estimation unit 651.
  • the random noise power estimation unit 655 selectively selects one of the estimation results of the power spectra P m (i, k) and Q m (i, k) based on a predetermined condition.
  • the power spectrum Wm (i, k) may be output to the filter estimation unit 66.
  • the random noise power estimation unit 655 adaptively applies the power spectrum Wm (i, k) based on the estimation results of the power spectra P m (i, k) and Q m (i, k). May be calculated.
  • the random noise power estimation unit 655 receives the power spectrums P m (i, k) and Q m (i, k) as inputs, and based on the calculation formula shown below as (Equation 15), the target sound (sound, etc.)
  • the power spectrum W m ⁇ taking into account the relationship between the noise and the random noise is calculated. Note that “W m ⁇ ” indicates characters with a tilde on “W m ”. Further, Pm and Qm shown below are generalized descriptions of the power spectra P m (i, k) and Q m (i, k).
  • Equation 16 calculates the power spectrum W m ⁇ taking into account the relationship between the target sound and random noise, using the power spectra P m (i, k) and Q m (i, k) as inputs.
  • Equation 16 calculates the power spectrum W m ⁇ taking into account the relationship between the target sound and random noise, using the power spectra P m (i, k) and Q m (i, k) as inputs.
  • a specific example of the function F for doing this is shown.
  • the random noise power estimation unit 655 calculates the power spectrum Wm based on the calculation formula shown below as (Equation 17) based on the power spectrum W m ⁇ in consideration of the relationship between the target sound and the random noise.
  • Equation 17 r represents a smoothing coefficient in the frame direction for suppressing a sudden change in power spectrum (0 ⁇ r ⁇ 1). That is, the random noise power estimation unit 655 may smooth the power spectrum Wm calculated based on the calculation formula shown below as (Equation 17) between frames based on the setting of the coefficient r.
  • the power spectrum P m shown in (Equation 16), that is, the estimation result of the power spectrum P m (i, k) by the input power estimation unit 651 is collected by the sound collection unit 110 as described above.
  • the power spectrum Q m shown in (Equation 16) that is, the estimation result of the power spectrum Q m (i, k) by the uncorrelated component power estimation unit 653 is the random noise such as wind noise.
  • the weight Q m / (P m + Q m ) shown in (Equation 16) changes based on the relationship between the target sound such as speech and random noise such as wind noise.
  • the weight Q m / (P m + Q m ) indicates control that further suppresses use of the sound collection result of the corresponding channel (that is, the sound collection unit 110).
  • the reciprocal of the weight Q m / (P m + Q m ) is applied to the calculation of the filter coefficient w (i, k). Therefore, when the signal level of the target sound is sufficiently high with respect to random noise, the filter coefficient w (i, k) is calculated so that the use of the sound collection result by the corresponding channel is given higher priority. It becomes.
  • weight Q m / (P m + Q m) indicates control that gives priority to the use of the sound collection result of the corresponding channel (that is, the sound collection unit 110).
  • the reciprocal of the weight Q m / (P m + Q m ) is applied to the calculation of the filter coefficient w (i, k). Therefore, when the influence of random noise is greater, the filter coefficient w (i, k) is calculated so that the use of the sound collection result by the corresponding channel is suppressed.
  • the sound collecting unit 110 that has collected the sound at a higher sound level. The result is used more preferentially to calculate the filter coefficient w (i, k).
  • the sound collection result of the sound collection unit 110 having a smaller observation level is more preferentially the same as in the first embodiment described above.
  • the random noise power estimation unit 655 uses the power spectrum Wm (i, k) for calculating the filter coefficient w (i, k) as the target sound such as speech and the wind noise. It is possible to calculate adaptively according to the relationship with random noise.
  • the random noise power estimation unit 655 may output the power spectrum Wm (i, k) calculated based on (Equation 17) to the filter estimation unit 66.
  • the random noise power estimation unit 655 determines the power spectrum Wm (i, k) of each sound collection unit 110 for each frequency used for calculating the filter coefficient w (i, k) have been described above. did.
  • the example described above is merely an example, and the power spectrum Wm (i, k) is calculated based on the estimation result of at least one of the power spectra P m (i, k) and Q m (i, k).
  • the content is not particularly limited as long as it can be determined.
  • the information processing apparatus 60 includes the sound collection results obtained by at least two or more sound collection units 110 among the plurality of sound collection units 110 and the output signal Y (i, The power spectrum Q m (i, k) of the non-correlated component is estimated based on the feedback of k).
  • the information processing apparatus 60 uses the estimation result of the power spectrum Q m (i, k) of the non-correlated component for estimation of the filter coefficient w (i, k).
  • the information processing apparatus 60 maintains the effect of suppressing noise generated randomly such as wind noise as in the first embodiment described above, and further, the influence of noise generated randomly is small. In some cases, the target sound can be acquired in a more preferable manner.
  • the signal processing according to the present embodiment has been described focusing on the case where it is applied to the so-called neckband type wearable device shown in FIG.
  • the application destination of the signal processing according to the present embodiment is not necessarily limited to the example shown in FIG.
  • the signal processing according to the present embodiment can be applied to any device that includes a plurality of sound collection units. More preferably, the plurality of sound collection units may be arranged so that the distances from the sound source of the target sound (for example, the mouth where the voice is spoken) are different from each other. More preferably, the plurality of sound collecting units may be arranged so as to be positioned in different directions with respect to the sound source of the target sound.
  • FIG. 24 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 10 according to each embodiment of the present disclosure.
  • the information processing apparatus 10 includes a processor 901, a memory 903, a storage 905, an operation device 907, a notification device 909, an acoustic device 911, and a sound collection device 913. And bus 917. Further, the information processing apparatus 10 may include a communication device 915.
  • the processor 901 may be, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), or a SoC (System on Chip), and executes various processes of the information processing apparatus 10.
  • the processor 901 can be configured by, for example, an electronic circuit for executing various arithmetic processes. Note that the frequency resolving unit 13, the channel power estimating unit 15, the filter estimating unit 16, the filter processing unit 17, and the frequency synthesizing unit 18 described above can be realized by the processor 901.
  • the memory 903 includes RAM (Random Access Memory) and ROM (Read Only Memory), and stores programs and data executed by the processor 901.
  • the storage 905 can include a storage medium such as a semiconductor memory or a hard disk.
  • the operation device 907 has a function of generating an input signal for a user to perform a desired operation.
  • the operation device 907 can be configured as a touch panel, for example.
  • the operation device 907 generates an input signal based on an input by the user, such as buttons, switches, and a keyboard, and an input for the user to input information, and supplies the input signal to the processor 901. It may be composed of a control circuit or the like.
  • the notification device 909 is an example of an output device, and may be a device such as a liquid crystal display (LCD) device or an organic EL (OLED: Organic Light Emitting Diode) display, for example. In this case, the notification device 909 can notify the user of predetermined information by displaying the screen.
  • LCD liquid crystal display
  • OLED Organic Light Emitting Diode
  • the notification device 909 described above is merely an example, and the aspect of the notification device 909 is not particularly limited as long as predetermined information can be notified to the user.
  • the notification device 909 may be a device that notifies the user of predetermined information using a lighting or blinking pattern, such as an LED (Light Emitting Diode).
  • the notification device 909 may be a device that notifies a user of predetermined information by vibrating like a so-called vibrator.
  • the acoustic device 911 is a device that notifies a user of predetermined information by outputting a predetermined acoustic signal, such as a speaker.
  • the sound collection device 913 is a device such as a microphone that collects sound emitted from the user and the sound of the surrounding environment and acquires it as acoustic information (acoustic signal).
  • the sound collection device 913 may acquire data indicating an analog sound signal indicating collected sound or sound as sound information, or convert the analog sound signal into a digital sound signal, Data indicating a later digital acoustic signal may be acquired as acoustic information.
  • the above-described sound collection unit 110 for example, the sound collection units 111 to 11M shown in FIG. 6) can be realized by the sound collection device 913.
  • the communication device 915 is a communication unit included in the information processing apparatus 10 and communicates with an external apparatus via a network.
  • the communication device 915 is a wired or wireless communication interface.
  • the communication device 915 may include a communication antenna, an RF (Radio Frequency) circuit, a baseband processor, and the like.
  • the communication device 915 has a function of performing various kinds of signal processing on a signal received from an external device, and can supply a digital signal generated from the received analog signal to the processor 901.
  • the bus 917 connects the processor 901, the memory 903, the storage 905, the operation device 907, the notification device 909, the acoustic device 911, the sound collection device 913, and the communication device 915 to each other.
  • the bus 917 may include a plurality of types of buses.
  • the information processing apparatus 10 includes a convex portion having a streamline shape at least in part, and is positioned at or near the tip of the convex portion.
  • the sound collection unit 110 is supported.
  • the information processing apparatus 10 may include a plurality of sound collecting units 110 and may be supported so that the plurality of sound collecting units 110 face different directions.
  • some sound collection units i.e., the influence of noise is Based on the sound collection results of a small number of sound collection units
  • the sound collection section A support member for supporting the sound collection unit so as to be located at or near the tip of the protrusion, or at least part of the protrusion having a streamlined shape;
  • An information processing apparatus comprising: (2) The information processing apparatus according to (1), further including one or more second sound collecting units different from the first sound collecting unit in addition to the first sound collecting unit which is the sound collecting unit. (3) The information processing apparatus according to (2), wherein the support member supports each of the plurality of second sound collection units so as to face different directions. (4) The information processing apparatus according to (1), wherein the support member is attached to a predetermined part of a user and supports the sound collection unit so that the sound collection unit and the part have a predetermined positional relationship.
  • the part is a neck; When the support member is attached to the neck, the convex portion is provided so that the tip of the convex portion faces substantially forward of the user.
  • the information processing apparatus according to (4).
  • (6) In addition to the first sound collection unit that is the sound collection unit, a plurality of second sound collection units different from the first sound collection unit are provided, Supporting at least two or more second sound collecting parts among the plurality of second sound collecting parts at positions that are substantially symmetrical with each other with respect to the part; The information processing apparatus according to (4) or (5).
  • the information processing apparatus Based on the sound collected by each of the first sound collection unit and the one or more second sound collection units, a noise component for sound coming from a predetermined direction with respect to the first sound collection unit
  • the information processing apparatus further including a signal processing unit that suppresses noise.
  • the signal processing unit estimates a signal level of each frequency component of the sound based on the sound collected by each of the first sound collecting unit and the one or more second sound collecting units, and The information processing apparatus according to (7), wherein the noise component is suppressed based on a signal level estimation result.
  • the signal processing unit includes a first sound collected by each of at least a plurality of sound collection units of the first sound collection unit and the one or more second sound collection units, and a previous process.
  • the information processing apparatus according to (7), wherein the noise component included in the first sound is suppressed based on a correlation with the second sound in which the noise component is suppressed.
  • the support member supports the plurality of sound collection units such that a distance between each of at least two or more of the plurality of sound collection units and a predetermined sound source is different from each other.
  • the information processing apparatus according to 9).
  • the support member supports the plurality of sound collection units such that at least two or more of the plurality of sound collection units are located in different directions with respect to a predetermined sound source, (9) The information processing apparatus according to (10).
  • the support member is a housing having a substantially rectangular surface at least in part, The housing has the convex portion in a predetermined region including a corner of the substantially rectangular surface, and supports the sound collecting portion at the tip of the convex portion or in the vicinity of the tip.
  • the information processing apparatus according to (1).
  • (13) A plurality of the sound collecting units; The housing has the convex portion in a predetermined region including the corner for each of a plurality of corners of the substantially rectangular surface, and at or near the tip of the convex portion.
  • the information processing apparatus according to (12) which supports the sound collection unit.
  • the support member is a glasses-type frame attached to the user's head, The frame has the convex portion on at least a part of the front, and supports the sound collecting portion at the tip of the convex portion or in the vicinity of the tip.
  • the information processing apparatus according to (1).

Abstract

[Problem] To collect desired sounds in a more suitable manner even under an environment in which noise occurs at random. [Solution] An information-processing device provided with a sound-collecting unit and a support member provided in a portion at least with a convex part having a streamlined shape, the support member supporting the sound-collecting unit so that the sound-collecting unit is located at or near the tip of the convex part.

Description

情報処理装置Information processing device
 本開示は、情報処理装置に関する。 This disclosure relates to an information processing apparatus.
 近年では、通信技術の進歩や各種デバイスの小型化に伴い、所謂情報処理装置と呼ばれる機器の種別も多様化してきており、PC(Personal Computer)等に限らず、スマートフォンやタブレット端末のように、ユーザが携行可能に構成された情報処理装置も普及してきている。特に、近年では、ユーザが身体の一部に装着することで携行しながら使用可能に構成された、所謂ウェアラブルデバイスも提案されている。 In recent years, with the advancement of communication technology and the miniaturization of various devices, the type of equipment called so-called information processing devices has also diversified, not limited to PCs (Personal Computers) etc., like smartphones and tablet terminals, Information processing apparatuses configured to be carried by users are also becoming popular. In particular, in recent years, a so-called wearable device has also been proposed that is configured to be used while being carried by a user wearing it on a part of the body.
 また、近年では、所謂音声認識技術や自然言語処理技術の発展に伴い、ユーザが音声入力により、各種処理を指示することが可能なユーザインタフェース(UI:User Interface)を有する情報処理装置も普及してきている。 In recent years, with the development of so-called speech recognition technology and natural language processing technology, information processing apparatuses having a user interface (UI) that allows a user to instruct various processes by speech input have become widespread. ing.
特開2012-203122号公報JP 2012-203122 A
 また、音声認識や音声通話等のためにユーザが発する音声を集音可能に構成された情報処理装置においては、集音対象となる音声以外の他の音響(即ち、雑音)を抑圧することで、当該音声の集音品質をより向上させることが可能な仕組みが検討されている。例えば、特許文献1には、雑音を抑圧するための仕組みの一例が開示されている。 In addition, in an information processing apparatus configured to be able to collect a voice uttered by a user for voice recognition, a voice call, and the like, by suppressing other sounds (that is, noise) other than the voice to be collected. Therefore, a mechanism capable of further improving the sound collection quality of the sound has been studied. For example, Patent Document 1 discloses an example of a mechanism for suppressing noise.
 一方で、情報処理装置が屋外で使用される場合等のように、当該情報処理装置の利用シーンの多様化に伴い、当該情報処理装置の周囲の環境が動的に変化するような状況が想定される。このような状況下においては、風切音や振動に伴う音のように、情報処理装置上で発生する音が、雑音として集音される場合も想定され得る。このような音は、発生する箇所、発生する時刻が不規則でランダムに発生する雑音となる。 On the other hand, it is assumed that the environment surrounding the information processing device changes dynamically as the usage scene of the information processing device diversifies, such as when the information processing device is used outdoors. Is done. Under such circumstances, it may be assumed that sound generated on the information processing apparatus such as wind noise or sound accompanying vibration is collected as noise. Such a sound becomes a noise which is randomly generated with irregular locations and times.
 そこで、本開示では、雑音がランダムに発生するような環境下においても、目的音をより好適な態様で集音することが可能な情報処理装置を提案する。 Therefore, the present disclosure proposes an information processing apparatus capable of collecting a target sound in a more preferable manner even in an environment where noise is randomly generated.
 本開示によれば、集音部と、流線形の形状を有する凸部を少なくとも一部に備え、前記凸部の先端、または、当該先端の近傍に位置するように前記集音部を支持する支持部材と、を備える、情報処理装置が提供される。 According to the present disclosure, at least a part of the sound collecting part and a convex part having a streamline shape is provided, and the sound collecting part is supported so as to be positioned at or near the tip of the convex part. An information processing apparatus comprising a support member is provided.
 以上説明したように本開示によれば、雑音がランダムに発生するような環境下においても、目的音をより好適な態様で集音することが可能な情報処理装置が提供される。 As described above, according to the present disclosure, there is provided an information processing apparatus that can collect a target sound in a more preferable manner even in an environment where noise is randomly generated.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の第1の実施形態に係る情報処理装置の概略的な構成の一例について説明するための説明図である。4 is an explanatory diagram for describing an example of a schematic configuration of an information processing device according to a first embodiment of the present disclosure. FIG. 同実施形態に係る情報処理装置の概略的な構成の一例について説明するための説明図Explanatory drawing for demonstrating an example of schematic structure of the information processing apparatus which concerns on the embodiment 風切音の影響を観測するための観測環境の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the observation environment for observing the influence of a wind noise. 情報処理装置に設けられた複数の集音部それぞれの設置位置の一例を示している。An example of an installation position of each of a plurality of sound collection units provided in the information processing apparatus is illustrated. 情報処理装置に対して、互いに異なる角度から風を当てた場合における、当該集音部それぞれによる風切音の観測結果の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the observation result of the wind noise by each said sound collection part when a wind is applied to an information processing apparatus from a mutually different angle. 同実施形態に係る情報処理装置の機能構成の一例を示したブロック図である。It is the block diagram which showed an example of the function structure of the information processing apparatus which concerns on the embodiment. 同実施形態に係る情報処理装置が、複数の集音部それぞれの集音結果に基づき目的音を取得する処理の一例を示している。The information processing apparatus which concerns on the embodiment has shown an example of the process which acquires a target sound based on the sound collection result of each of several sound collection parts. 同実施形態に係る情報処理装置の一連の処理の流れの一例を示したフローチャートである。5 is a flowchart illustrating an example of a flow of a series of processes of the information processing apparatus according to the embodiment. 実施例1に係る情報処理装置の一例について説明するための説明図である。1 is an explanatory diagram for describing an example of an information processing apparatus according to a first embodiment; 実施例1に係る情報処理装置の他の一例について説明するための説明図である。FIG. 6 is an explanatory diagram for explaining another example of the information processing apparatus according to the first embodiment. 実施例1に係る情報処理装置の他の一例について説明するための説明図である。FIG. 6 is an explanatory diagram for explaining another example of the information processing apparatus according to the first embodiment. 実施例2に係る情報処理装置の一例について説明するための説明図である。FIG. 9 is an explanatory diagram for describing an example of an information processing apparatus according to a second embodiment. 実施例2に係る情報処理装置の他の一例について説明するための説明図である。FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment. 実施例2に係る情報処理装置の他の一例について説明するための説明図である。FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment. 実施例2に係る情報処理装置の他の一例について説明するための説明図である。FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment. 実施例3に係る情報処理装置の一例について説明するための説明図である。FIG. 9 is an explanatory diagram for describing an example of an information processing apparatus according to a third embodiment. 変形例3に係る情報処理装置30の利用形態の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the utilization form of the information processing apparatus 30 which concerns on the modification 3. FIG. 実施例4に係る情報処理装置の一例について説明するための説明図である。FIG. 10 is an explanatory diagram for describing an example of an information processing apparatus according to a fourth embodiment. 実施例4に係る情報処理装置の他の一例について説明するための説明図である。FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the fourth embodiment. 実施例5に係る情報処理装置の一例について説明するための説明図である。FIG. 10 is an explanatory diagram illustrating an example of an information processing apparatus according to a fifth embodiment. 実施例5に係る情報処理装置における撮像部のレンズの近傍の概略的な構成の一例について説明するための説明図である。10 is an explanatory diagram for explaining an example of a schematic configuration in the vicinity of a lens of an imaging unit in an information processing apparatus according to Embodiment 5. FIG. 本開示の第2の実施形態に係る情報処理装置の機能構成の一例を示したブロック図である。It is a block diagram showing an example of functional composition of an information processor concerning a 2nd embodiment of this indication. 非相関成分パワー推定部の処理の基本原理について説明するための説明図である。It is explanatory drawing for demonstrating the basic principle of a process of a non-correlation component power estimation part. 同実施形態に係る信号処理装置のハードウェア構成の一例を示した図である。It is the figure which showed an example of the hardware constitutions of the signal processing apparatus which concerns on the same embodiment.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.第1の実施形態
  1.1.概要
  1.2.集音部の設置位置の検討
  1.3.機能構成
  1.4.処理
  1.5.実施例
   1.5.1.実施例1:首に装着されるウェアラブルデバイスの一例
   1.5.2.実施例2:頭部に装着されるウェアラブルデバイスの一例
   1.5.3.実施例3:携帯型情報端末への適用例
   1.5.4.実施例4:時計型のウェアラブルデバイスへの適用例
   1.5.5.実施例5:撮像装置への適用例
 2.第2の実施形態
  2.1.概要
  2.2.機能構成
  2.3.非相関成分パワー推定部の詳細
  2.4.ランダムノイズパワー推定部の詳細
  2.5.評価
 3.ハードウェア構成
 4.むすび
The description will be made in the following order.
1. 1. First embodiment 1.1. Outline 1.2. Examination of installation location of sound collection section 1.3. Functional configuration 1.4. Processing 1.5. Example 1.5.1. Example 1: An example of a wearable device worn on the neck 1.5.2. Example 2: An example of a wearable device worn on the head 1.5.3. Example 3: Application example to portable information terminal 1.5.4. Example 4: Application example to a watch-type wearable device 1.5.5. Example 5: Application example to imaging apparatus Second Embodiment 2.1. Outline 2.2. Functional configuration 2.3. Details of Uncorrelated Component Power Estimator 2.4. Details of random noise power estimation section 2.5. Evaluation Hardware configuration Conclusion
 <<1.第1の実施形態>>
  <1.1.概要>
 まず、図1を参照して、本開示の第1の実施形態に係る情報処理装置の概略的な構成の一例について説明し、次いで、本実施形態に係る情報処理装置の技術的課題について説明する。図1は、本開示の第1の実施形態に係る情報処理装置の概略的な構成の一例について説明するための説明図である。
<< 1. First Embodiment >>
<1.1. Overview>
First, an example of a schematic configuration of the information processing apparatus according to the first embodiment of the present disclosure will be described with reference to FIG. 1, and then a technical problem of the information processing apparatus according to the present embodiment will be described. . FIG. 1 is an explanatory diagram for describing an example of a schematic configuration of the information processing apparatus according to the first embodiment of the present disclosure.
 図1に示す例では、情報処理装置10は、所謂ウェアラブルデバイスとして構成されている。より具体的には、情報処理装置10は、一部が開口したリング状の形状(換言すると、カチューシャ状、または、U字状の形状)を成し、リング状の部分の内面のうち少なくとも一部が、ユーザの首の一部に当接するように(即ち、首に掛けるように)当該ユーザに装着される。 In the example shown in FIG. 1, the information processing apparatus 10 is configured as a so-called wearable device. More specifically, the information processing apparatus 10 has a ring shape that is partially opened (in other words, a headband shape or a U-shape), and at least one of the inner surfaces of the ring-shaped portion. The part is attached to the user so as to contact a part of the user's neck (that is, to hang around the neck).
 また、情報処理装置10は、所謂マイクロフォンのような集音部を備え、当該集音部からユーザが発する音声を音響情報として集音する。例えば、図1に示す例では、情報処理装置10は、参照符号111~113で示される複数の集音部を備える。より具体的には、集音部111~113は、例えば、情報処理装置10の筐体101により支持される。 Further, the information processing apparatus 10 includes a sound collection unit such as a so-called microphone, and collects sound emitted by the user from the sound collection unit as acoustic information. For example, in the example illustrated in FIG. 1, the information processing apparatus 10 includes a plurality of sound collection units denoted by reference numerals 111 to 113. More specifically, the sound collection units 111 to 113 are supported by the housing 101 of the information processing apparatus 10, for example.
 例えば、図2は、本実施形態に係る情報処理装置10の概略的な構成の一例について説明するための説明図であり、当該情報処理装置10のうち集音部111が設けられた部分の構成の一例を示した図である。図1及び図2に示すように、情報処理装置10は、ユーザの首に装着されたときに、当該ユーザの口の近傍に、当該ユーザの前方に向かって突出するように流線形の形状を有する凸部が設けられており、当該凸部の先端(またな、当該先端の近傍)に、当該凸部が突出する方向を向くように集音部111が設けられている。また、集音部111は、情報処理装置10とは個別のデバイスとして構成され、当該凸部の先端(またな、当該先端の近傍)に対して、当該凸部が突出する方向を向くように支持されていてもよい。なお、以降の説明においては、情報処理装置10に対して集音部110が設けられていると記載した場合には、当該集音部110が情報処理装置10とは別体として、当該情報処理装置10の少なくとも一部に支持されている場合も含み得るものとする。 For example, FIG. 2 is an explanatory diagram for explaining an example of a schematic configuration of the information processing apparatus 10 according to the present embodiment, and a configuration of a portion of the information processing apparatus 10 in which the sound collection unit 111 is provided. It is the figure which showed an example. As shown in FIGS. 1 and 2, the information processing apparatus 10 has a streamlined shape so as to protrude toward the front of the user in the vicinity of the user's mouth when worn on the user's neck. The sound collecting portion 111 is provided at the tip of the convex portion (or in the vicinity of the tip) so as to face the direction in which the convex portion protrudes. Further, the sound collection unit 111 is configured as a device separate from the information processing apparatus 10, and faces the direction in which the convex portion protrudes with respect to the tip of the convex portion (or the vicinity of the tip). It may be supported. In the following description, when it is described that the sound collection unit 110 is provided for the information processing device 10, the sound collection unit 110 is separated from the information processing device 10 and the information processing device 10 is provided. The case where it is supported by at least a part of the device 10 can also be included.
 また、図1に示すように、集音部112及び113は、情報処理装置10に対して、互いに異なる方向を向くように設けられている。より具体的には、集音部112及び113は、情報処理装置10がユーザの首に装着されたときに、当該ユーザの首を基準として、互いに略対称となる位置に設けられている。なお、各集音部が設けられる位置については、詳細を別途後述する。また、図1に示す例では、集音部112及び113は、リング状の形状の筐体101に対して、当該リングの外側(即ち、リングの中心とは逆側)を向くように設けられている。即ち、集音部112と集音部113とは、互いに逆側の方向を向くように設けられていることとなる。 Further, as shown in FIG. 1, the sound collection units 112 and 113 are provided to face the information processing apparatus 10 in different directions. More specifically, the sound collection units 112 and 113 are provided at positions that are substantially symmetric with respect to the user's neck when the information processing apparatus 10 is attached to the user's neck. Details of the position where each sound collecting unit is provided will be described later. In the example shown in FIG. 1, the sound collecting portions 112 and 113 are provided so as to face the outside of the ring (that is, the side opposite to the center of the ring) with respect to the ring-shaped casing 101. ing. That is, the sound collection unit 112 and the sound collection unit 113 are provided so as to face opposite directions.
 このような構成に基づき、例えば、情報処理装置10は、集音部(例えば、集音部111~113)により集音されたユーザの音声(音響情報)を、音声認識技術や自然言語処理技術に基づく解析を施すことで、ユーザが発話した内容を認識してもよい。これにより、情報処理装置10は、例えば、ユーザからの指示内容を認識し、認識結果に応じて各種処理(アプリケーション)を実行することが可能となる。 Based on such a configuration, for example, the information processing apparatus 10 uses the voice recognition technology or the natural language processing technology for the user's voice (acoustic information) collected by the sound collection unit (for example, the sound collection units 111 to 113). By performing an analysis based on the above, the content spoken by the user may be recognized. Thereby, the information processing apparatus 10 can recognize, for example, the instruction content from the user and execute various processes (applications) according to the recognition result.
 また、他の一例として、情報処理装置10は、所謂通話機能を備えていてもよい。この場合には、情報処理装置10は、集音部(例えば、集音部111~113)により集音された音声を、通話の相手である他の情報処理装置に転送してもよい。 As another example, the information processing apparatus 10 may have a so-called call function. In this case, the information processing apparatus 10 may transfer the sound collected by the sound collection unit (for example, the sound collection units 111 to 113) to another information processing apparatus that is a call partner.
 一方で、図1に示すような所謂ウェアラブルデバイスのように、ユーザが携行可能に構成された情報処理装置10は、例えば、屋外で使用される場合等のように利用シーンが多岐にわたり、当該情報処理装置10の周囲の環境が動的に変化する状況が想定される。このような状況下においては、例えば、風切音、振動に伴う雑音、及び装置の装着に伴う衣擦れ等のようなランダムに発生する雑音が、情報処理装置10の集音部により集音される場合がある。 On the other hand, the information processing apparatus 10 configured to be carried by the user like a so-called wearable device as shown in FIG. 1 has various usage scenes such as when used outdoors, and the information A situation is assumed in which the environment around the processing apparatus 10 changes dynamically. Under such circumstances, for example, randomly generated noise such as wind noise, noise due to vibration, and rubbing due to wearing of the apparatus is collected by the sound collecting unit of the information processing apparatus 10. There is a case.
 そこで、本開示では、雑音がランダムに発生するような環境下においても、目的音をより好適な態様で集音することが可能な仕組みの一例として、各集音部の設置位置や、当該集音部による集音結果に基づく信号処理の一例について詳細に説明する。 Therefore, in the present disclosure, as an example of a mechanism that can collect the target sound in a more preferable manner even in an environment where noise is randomly generated, the installation position of each sound collection unit and the collection An example of signal processing based on the sound collection result by the sound unit will be described in detail.
  <1.2.集音部の設置位置の検討>
 まず、本実施形態に係る情報処理装置10が、図1に示すように、ユーザの首に装着されるウェアラブルデバイスとして構成される場合を例に、当該ユーザの音声をより好適な態様で集音することが可能な集音部の設置位置に関する検討の結果について説明する。より具体的には、所謂風切音を雑音として想定し、複数箇所に集音部が設置された情報処理装置10に対して、互いに異なる角度から風を当てた場合における、当該集音部それぞれによる風切音の観測結果の一例について説明する。
<1.2. Examination of the location of the sound collector>
First, as shown in FIG. 1, the information processing apparatus 10 according to this embodiment is configured as a wearable device that is worn on the user's neck. The result of the examination regarding the installation position of the sound collecting unit that can be performed will be described. More specifically, it is assumed that a so-called wind noise is assumed to be noise, and each of the sound collection units when the wind is applied from different angles to the information processing apparatus 10 in which the sound collection units are installed at a plurality of locations. An example of the observation result of wind noise by will be described.
 例えば、図3は、風切音の影響を観測するための観測環境の一例について説明するための説明図である。本観測では、図3に示すように、ユーザの胸より上の部位を模したダミー人形U1の首に情報処理装置10を装着し、当該ダミー人形U1の正面にサーキュレーターU2を配置する。そして、ダミー人形U1の鉛直方向を軸として、当該ダミー人形U1を、0度~360度の範囲内において10度刻みで回転させることで、情報処理装置10に対してサーキュレーターU2からの風が到来する角度を変更し、各集音部により集音される風切音のレベルを観測した。 For example, FIG. 3 is an explanatory diagram for explaining an example of an observation environment for observing the effect of wind noise. In this observation, as shown in FIG. 3, the information processing apparatus 10 is mounted on the neck of a dummy doll U1 that imitates a part above the user's chest, and the circulator U2 is disposed in front of the dummy doll U1. Then, with the vertical direction of the dummy doll U1 as an axis, the dummy doll U1 is rotated in increments of 10 degrees within a range of 0 degrees to 360 degrees, so that the wind from the circulator U2 arrives at the information processing apparatus 10 The level of wind noise collected by each sound collecting unit was observed.
 図4は、今回の観測において、情報処理装置10に設けられた複数の集音部それぞれの設置位置の一例を示している。具体的には、図4に示す例では、情報処理装置10に対して、集音部M1~M6が設置されている。情報処理装置10に付されたマーカは、集音部M1~M6それぞれが設置された位置を模式的に示している。なお、矢印が付されたマーカにおいて、当該矢印は、当該マーカに対応する集音部の向きを示している。また、矢印が付されていないマーカについては、当該マーカに対応する集音部(即ち、集音部M3及びM6)は、情報処理装置10の鉛直上方向(即ち、図面に対して奥行き方向の手前側)を向くように設定されているものとする。 FIG. 4 shows an example of the installation positions of the plurality of sound collection units provided in the information processing apparatus 10 in this observation. Specifically, in the example shown in FIG. 4, sound collection units M1 to M6 are installed for the information processing apparatus 10. The markers attached to the information processing apparatus 10 schematically indicate the positions where the sound collecting units M1 to M6 are installed. In addition, in the marker to which the arrow was attached | subjected, the said arrow has shown the direction of the sound collection part corresponding to the said marker. For a marker without an arrow, the sound collection unit corresponding to the marker (that is, the sound collection units M3 and M6) is located in the vertical direction of the information processing apparatus 10 (that is, in the depth direction with respect to the drawing). It is set to face the front side.
 具体的には、集音部M1は、図1を参照して説明した情報処理装置10における集音部111に相当する。即ち、集音部M1は、情報処理装置10がユーザに装着されたときに、当該ユーザの口の近傍に相当する位置に、当該ユーザの前方に向けて突出するように設けられた凸部の先端に設けられている。また、集音部M5は、図1を参照して説明した情報処理装置10における集音部112に相当する。即ち、集音部M5は、情報処理装置10がユーザに装着されたときに、当該ユーザの左側(図3における略270度の方向)に相当する位置に、当該情報処理装置10の筐体101の外側に、当該筐体101の外側(換言すると、図3における略270度の方向)を向くように設けられている。 Specifically, the sound collection unit M1 corresponds to the sound collection unit 111 in the information processing apparatus 10 described with reference to FIG. That is, the sound collection unit M1 is a convex portion provided so as to protrude toward the front of the user at a position corresponding to the vicinity of the user's mouth when the information processing apparatus 10 is worn by the user. It is provided at the tip. The sound collection unit M5 corresponds to the sound collection unit 112 in the information processing apparatus 10 described with reference to FIG. That is, when the information processing apparatus 10 is attached to the user, the sound collecting unit M5 is located at a position corresponding to the left side of the user (direction of approximately 270 degrees in FIG. 3). Outside the housing 101 (in other words, approximately 270 degrees in FIG. 3).
 また、集音部M2~M4、及びM6は、情報処理装置10がユーザに装着されたときに、当該ユーザの右前方(換言すると、図3における略45度の方向)の領域に相当する位置に設けられている。このとき、集音部M2は、情報処理装置10の筐体101とユーザの首との間に介在し、当該筐体101の内側を向くように設置されている。また、集音部M4は、情報処理装置10の筐体101の外側に、当該筐体101の外側(換言すると、図3における略45度の方向)を向くように設けられている。なお、集音部M3及びM6については、前述したように、鉛直上方向を向くように設けられている。 Further, the sound collection units M2 to M4 and M6 are positions corresponding to the area on the right front side of the user (in other words, the direction of approximately 45 degrees in FIG. 3) when the information processing apparatus 10 is worn by the user. Is provided. At this time, the sound collection unit M <b> 2 is interposed between the housing 101 of the information processing apparatus 10 and the user's neck and is installed so as to face the inside of the housing 101. The sound collection unit M4 is provided outside the housing 101 of the information processing apparatus 10 so as to face the outside of the housing 101 (in other words, the direction of approximately 45 degrees in FIG. 3). Note that the sound collection units M3 and M6 are provided so as to face vertically upward as described above.
 また、図5は、情報処理装置10に対して、互いに異なる角度から風を当てた場合における、当該集音部それぞれによる風切音の観測結果の一例について説明するための説明図である。即ち、図5は、図3を参照して説明した観測環境における、図4を参照して説明した集音部M1~M6それぞれによる風切音の集音結果の一例を示している。なお、図5に示した、集音部M1~M6それぞれの集音結果を示すグラフにおいて、円周方向に記載された数値は、サーキュレーターU2からの風が到来する方向を示している。また、グラフの半径方向に沿って記載された数値は、対応する集音部により集音された音響のレベル(即ち、当該集音部の観測レベル)を示している。即ち、図5に示す集音部M1~M6それぞれの集音結果を示すグラフにおいて、観測レベルが小さいほど(換言すると、観測値がグラフの内側に位置するほど)、風切音(即ち、雑音)の影響が小さいことを意味している。 FIG. 5 is an explanatory diagram for explaining an example of observation results of wind noise by each of the sound collection units when wind is applied to the information processing apparatus 10 from different angles. That is, FIG. 5 shows an example of a wind noise collection result by each of the sound collection units M1 to M6 described with reference to FIG. 4 in the observation environment described with reference to FIG. In the graph showing the sound collection results of the sound collection units M1 to M6 shown in FIG. 5, the numerical values described in the circumferential direction indicate the direction in which the wind from the circulator U2 arrives. The numerical values described along the radial direction of the graph indicate the level of the sound collected by the corresponding sound collection unit (that is, the observation level of the sound collection unit). That is, in the graph showing the sound collection results of the sound collection units M1 to M6 shown in FIG. 5, the smaller the observation level (in other words, the more the observation value is located inside the graph), the wind noise (ie, noise). ) Is less affected.
 ここで、集音部M1の観測結果に着目すると、特に、ユーザの正面(即ち、0度の方向)から風が到来する状況下において風切音の影響が小さいことがわかる。また、集音部M1については、正面以外の方向から風が到来する場合においても、他の集音部に比べて、風切音の影響が小さいことがわかる。 Here, paying attention to the observation result of the sound collection unit M1, it can be seen that the influence of the wind noise is small particularly in the situation where the wind comes from the front of the user (ie, the direction of 0 degree). In addition, regarding the sound collecting unit M1, it can be seen that the effect of wind noise is small compared to other sound collecting units even when the wind comes from directions other than the front.
 このことから、例えば、図1に示す集音部111のように、流線形の凸部の先端(または、当該先端の近傍)に当該凸部が突出する方向に向くように集音部を設けることで、風切音のようなランダムに発生する雑音の影響を小さくすることが可能となるものと推定される。 For this reason, for example, as in the sound collection unit 111 shown in FIG. 1, the sound collection unit is provided at the tip of the streamlined projection (or in the vicinity of the tip) so that the projection protrudes. Thus, it is presumed that the influence of randomly generated noise such as wind noise can be reduced.
 また、集音部M5及びM6の観測結果に着目すると、当該集音部に対してユーザの首側から風が到来する場合において、風切音の影響が小さいことがわかる。これは、ユーザの首や頭部により風が遮蔽されることで、風切音の影響が小さくなったものと推定される。 Further, when attention is paid to the observation results of the sound collection units M5 and M6, it is understood that the influence of wind noise is small when wind comes from the neck side of the user to the sound collection unit. This is presumed that the influence of wind noise is reduced by the wind being shielded by the user's neck and head.
 このことから、例えば、図1に示す集音部112及び113のように、情報処理装置10が装着されるユーザの部位(例えば、首や頭部)を、風等に対する遮蔽物として利用可能な集音部を設けることで、他の集音部(例えば、図1に示す集音部111)の特性を補うことが可能であるものと推定される。 From this, for example, like the sound collection units 112 and 113 shown in FIG. 1, the user's part (for example, the neck or the head) to which the information processing apparatus 10 is attached can be used as a shield against wind or the like. By providing the sound collection unit, it is estimated that the characteristics of other sound collection units (for example, the sound collection unit 111 shown in FIG. 1) can be supplemented.
 以上、図3~図5を参照して、本実施形態に係る情報処理装置10が、ユーザの首に装着されるウェアラブルデバイスとして構成される場合を例に、当該ユーザの音声をより好適な態様で集音する(即ち、風切音等の雑音の影響をより小さくする)ことが可能な集音部の設置位置に関する検討の結果について説明した。 As described above, with reference to FIGS. 3 to 5, the information processing apparatus 10 according to the present embodiment is configured as a wearable device that is worn on the user's neck as an example. The result of the study on the installation position of the sound collection unit that can collect sound (ie, reduce the influence of noise such as wind noise) has been described.
  <1.3.機能構成>
 次いで、図6を参照して、本実施形態に係る情報処理装置10の機能構成の一例について、特に、情報処理装置10が、複数の集音部それぞれの集音結果に基づき目的音(例えば、ユーザの音声)を取得する処理に着目して説明する。図6は、本実施形態に係る情報処理装置10の機能構成の一例を示したブロック図である。
<1.3. Functional configuration>
Next, with reference to FIG. 6, with respect to an example of the functional configuration of the information processing apparatus 10 according to the present embodiment, in particular, the information processing apparatus 10 uses a target sound (for example, A description will be given focusing on the process of acquiring the user's voice. FIG. 6 is a block diagram illustrating an example of a functional configuration of the information processing apparatus 10 according to the present embodiment.
 図6に示すように、情報処理装置10は、複数の集音部111~11M(Mは正の整数)と、周波数分解部13と、チャネルパワー推定部15と、フィルタ推定部16と、フィルタ処理部17と、周波数合成部18とを含む。なお、以降の説明では、集音部111~11Mを特に区別しない場合には、「集音部110」と称する場合がある。また、集音部110の数(即ち、M)は、複数であれば特に限定はされないが、3以上であることがより望ましい。 As shown in FIG. 6, the information processing apparatus 10 includes a plurality of sound collecting units 111 to 11M (M is a positive integer), a frequency resolving unit 13, a channel power estimating unit 15, a filter estimating unit 16, a filter A processing unit 17 and a frequency synthesis unit 18 are included. In the following description, the sound collection units 111 to 11M may be referred to as “sound collection unit 110” unless they are particularly distinguished. Further, the number of sound collecting units 110 (that is, M) is not particularly limited as long as it is plural, but is more preferably 3 or more.
 集音部110は、所謂マイクロフォンのように、外部環境の音響(即ち、外部環境を伝搬して到達する音響)を集音するための集音デバイスとして構成される。なお、ユーザからの音声入力についても、集音部110により集音されることで、情報処理装置10に取り込まれることとなる。また、集音部110は、例えば、マイクロフォンアレイのように、複数の集音デバイスを含んでもよい。集音部110は、外部環境の音響の集音結果に基づく音響信号を周波数分解部13に出力する。なお、集音部110から出力される音響信号は、例えば、アンプ等によりゲインが調整され、AD変換によりアナログ信号からデジタル信号に変換されたうえで、周波数分解部13に入力されてもよい。なお、以降の説明では、集音部110のチャネル番号をm(1≦m≦M)、離散時間をnとした場合に、当該集音部110から出力される音響信号をx(n)で表すものとする。 The sound collection unit 110 is configured as a sound collection device for collecting sound of the external environment (that is, sound that propagates through the external environment) like a so-called microphone. Note that the voice input from the user is also taken into the information processing apparatus 10 by being collected by the sound collection unit 110. The sound collection unit 110 may include a plurality of sound collection devices such as a microphone array. The sound collection unit 110 outputs an acoustic signal based on the sound collection result of the sound of the external environment to the frequency decomposition unit 13. Note that the acoustic signal output from the sound collection unit 110 may be input to the frequency decomposition unit 13 after the gain is adjusted by an amplifier or the like, converted from an analog signal to a digital signal by AD conversion, and the like. In the following description, when the channel number of the sound collection unit 110 is m (1 ≦ m ≦ M) and the discrete time is n, the acoustic signal output from the sound collection unit 110 is represented by x m (n). It shall be expressed as
 周波数分解部13は、集音部110から出力される音響信号x(n)を周波数成分に分解して出力するための構成である。具体的には、周波数分解部13は、取得した音響信号x(n)に対して、フレーム分割、所定の窓関数の適用、及び、時間-周波数変換(例えば、FFT(Fast Fourier Transform)、DFT(Discrete Fourier Transform)等)等の処理を施すことで、当該音響信号x(n)を周波数成分に分解する。なお、以降の説明では、音響信号x(n)の周波数成分を、X(i,k)と記載する場合がある。ここで、iはフレーム番号を示し、kは離散周波数番号を示すものとする。そして、周波数分解部13は、取得した音響信号x(n)の各周波数成分X(i,k)を、後段に位置するフィルタ処理部17と、チャネルパワー推定部15とのそれぞれに出力する。これにより、集音部111~11Mそれぞれについて、音響信号x(n)の各周波数成分X(i,k)が、フィルタ処理部17と、チャネルパワー推定部15とのそれぞれに出力されることとなる。 The frequency decomposing unit 13 is configured to decompose the acoustic signal x m (n) output from the sound collecting unit 110 into frequency components and output the frequency components. Specifically, the frequency resolving unit 13 performs frame division, application of a predetermined window function, and time-frequency conversion (for example, FFT (Fast Fourier Transform), etc.) on the acquired acoustic signal x m (n). The acoustic signal x m (n) is decomposed into frequency components by performing processing such as DFT (Discrete Fourier Transform). In the following description, the frequency component of the acoustic signal x m (n) may be described as X m (i, k). Here, i indicates a frame number, and k indicates a discrete frequency number. Then, the frequency resolving unit 13 outputs each frequency component X m (i, k) of the acquired acoustic signal x m (n) to each of the filter processing unit 17 and the channel power estimating unit 15 located in the subsequent stage. To do. Thereby, for each of the sound collecting units 111 to 11M, each frequency component X m (i, k) of the acoustic signal x m (n) is output to the filter processing unit 17 and the channel power estimation unit 15, respectively. It will be.
 チャネルパワー推定部15は、周波数分解部13から集音部110ごとに(即ち、集音部111~11Mそれぞれについて)音響信号x(n)の各周波数成分X(i,k)を取得する。次いで、チャネルパワー推定部15は、各集音部110それぞれに対応する音響信号x(n)の各周波数成分X(i,k)に基づき、周波数ごとに、各集音部110のパワースペクトルを推定する。ここで、m番目の集音部110(即ち、集音部11m)における、iフレーム、周波数kに対応するパワースペクトルをP(i,k)とした場合に、パワースペクトルP(i,k)は、以下に(式1)として示す計算式で表される。なお、以下に示す(式1)において、X (i,k)は、X(i,k)の共役複素数を示している。また、(式1)において、rは、急激なパワースペクトルの変化を抑制するためのフレーム方向の平滑化係数を表すものとする(0≦r<1)。 The channel power estimation unit 15 acquires each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collection unit 110 (that is, for each of the sound collection units 111 to 11M) from the frequency decomposition unit 13. To do. Next, the channel power estimation unit 15 determines the power of each sound collecting unit 110 for each frequency based on each frequency component X m (i, k) of the acoustic signal x m (n) corresponding to each sound collecting unit 110. Estimate the spectrum. Here, when the power spectrum corresponding to the i frame and the frequency k in the m-th sound collecting unit 110 (that is, the sound collecting unit 11m) is P m (i, k), the power spectrum P m (i, k) is expressed by a calculation formula shown as (Formula 1) below. In the following (Expression 1), X m * (i, k) represents a conjugate complex number of X m (i, k). In (Equation 1), r represents a smoothing coefficient in the frame direction for suppressing a rapid change in power spectrum (0 ≦ r <1).
Figure JPOXMLDOC01-appb-M000001
 
 ・・・(式1)
Figure JPOXMLDOC01-appb-M000001

... (Formula 1)
 そして、チャネルパワー推定部15は、周波数ごとに、各集音部110のパワースペクトルP(i,k)の推定結果をフィルタ推定部16に出力する。 Then, the channel power estimation unit 15 outputs the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 to the filter estimation unit 16 for each frequency.
 フィルタ推定部16は、チャネルパワー推定部15から出力される、周波数ごとの、各集音部110のパワースペクトルP(i,k)の推定結果に基づき、後述するフィルタ処理部17が、フィルタリング処理を実行するためのフィルタ係数を算出する。 Based on the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 for each frequency output from the channel power estimation unit 15, the filter estimation unit 16 performs filtering after that. A filter coefficient for executing the process is calculated.
 具体的には、フィルタ推定部16は、周波数ごとに、チャネルパワー推定部15から取得した各集音部110のパワースペクトルP(i,k)の推定結果に基づき、以下に(式2)として示す行列R(i,k)を生成する。 Specifically, the filter estimation unit 16 performs the following (Equation 2) based on the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 acquired from the channel power estimation unit 15 for each frequency. A matrix R (i, k) shown as follows is generated.
Figure JPOXMLDOC01-appb-M000002
 ・・・(式2)
Figure JPOXMLDOC01-appb-M000002
... (Formula 2)
 また、フィルタ推定部16は、各集音部110それぞれについて、周波数ごとに、当該集音部110と目的音の音源(例えば、ユーザの口元等)との間の距離に基づき、当該集音部110までの減衰及び遅延特性を示すアレイマニフォールドベクトルa(k)を算出する。なお、目的音の音源と各集音部110との間の距離については、情報処理装置10がユーザに装着されたときに、情報処理装置10(ひいては、当該情報処理装置10に設けられた各集音部110)と当該音源との間の相対的な位置関係に基づき、あらかじめ特定することが可能である。 Further, the filter estimation unit 16 determines, for each of the sound collection units 110, the frequency of each sound collection unit 110 based on the distance between the sound collection unit 110 and the target sound source (for example, the user's mouth). An array manifold vector a (k) showing attenuation and delay characteristics up to 110 is calculated. Note that the distance between the sound source of the target sound and each sound collection unit 110 is determined when the information processing apparatus 10 is attached to the user by the information processing apparatus 10 (and thus each information processing apparatus 10 provided with the information processing apparatus 10). It is possible to specify in advance based on the relative positional relationship between the sound collection unit 110) and the sound source.
 ここで、アレイマニフォールドベクトルa(k)は、以下に(式3)及び(式4)として示す計算式で表される。なお、以下に示す計算式において、dは、目的音の音源(例えば、口元)と、m番目の集音部110(即ち、集音部11m)との間の距離を示している。また、gは、目的音が集音部11mに到達するまでの減衰量を示している。また、ωは、離散周波数番号kに対応する角周波数を示している。また、Cは、音速を示している。また、上付き文字のTが付された行列は、当該行列の転置を示すものとする。なお、以降の説明では、上付き文字のTが付された行列を、「転置ベクトル行列」と称する場合がある。 Here, the array manifold vector a (k) is expressed by the following calculation formulas (Equation 3) and (Equation 4). Incidentally, in the calculation formula shown below, d m is the target sound source (e.g., mouth) and, m-th sound collecting portion 110 (i.e., the sound collecting portion 11m) represents the distance between the. Further, g m indicates the amount of attenuation until the target sound reaches the sound collecting unit 11m. Further, ω k indicates an angular frequency corresponding to the discrete frequency number k. C indicates the speed of sound. A matrix with a superscript T is used to indicate transposition of the matrix. In the following description, a matrix with a superscript T may be referred to as a “transposed vector matrix”.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そして、フィルタ推定部16は、生成した行列R(i,k)と、算出したアレイマニフォールドベクトルa(k)と、以下に(式5)として示す条件とに基づき、後述するフィルタ処理部17が、フィルタリング処理を実行するためのフィルタ係数w(i,k)を算出する。ここで、上付き文字のHが付された行列は、当該行列の複素共役転置を示すものとする。なお、以降の説明では、上付き文字のHが付された行列を、「複素共役転置ベクトル行列」と称する場合がある。 Based on the generated matrix R (i, k), the calculated array manifold vector a (k), and the condition shown below as (Equation 5), the filter estimation unit 16 The filter coefficient w (i, k) for executing the filtering process is calculated. Here, a matrix with a superscript H indicates a complex conjugate transpose of the matrix. In the following description, a matrix with a superscript H may be referred to as a “complex conjugate transposed vector matrix”.
Figure JPOXMLDOC01-appb-M000004
 ・・・(式5)
Figure JPOXMLDOC01-appb-M000004
... (Formula 5)
 周波数ごとのフィルタ係数w(i,k)は、以下に(式6)として示す計算式で表される。なお、iはフレーム番号を示し、kは離散周波数番号を示すものとする。 The filter coefficient w (i, k) for each frequency is expressed by the following calculation formula (Formula 6). Note that i indicates a frame number, and k indicates a discrete frequency number.
Figure JPOXMLDOC01-appb-M000005
 ・・・(式6)
Figure JPOXMLDOC01-appb-M000005
... (Formula 6)
 なお、上記(式6)として示したフィルタ係数w(i,k)は、上記(式5)に示すように、目的音の音源(例えば、口元)から到来する成分a(k)の利得を1に保ち、かつ、ノイズ成分(例えば、風切音等)を最小にする係数となっている。そして、フィルタ推定部16は、周波数ごとに算出したフィルタ係数w(i,k)を、フィルタ処理部17に出力する。 Note that the filter coefficient w (i, k) shown as (Equation 6) above indicates the gain of the component a (k) coming from the target sound source (for example, the mouth), as shown in (Equation 5) above. 1 and a coefficient that minimizes noise components (for example, wind noise). Then, the filter estimation unit 16 outputs the filter coefficient w (i, k) calculated for each frequency to the filter processing unit 17.
 フィルタ処理部17は、周波数分解部13から集音部110ごとに(即ち、集音部111~11Mそれぞれについて)音響信号x(n)の各周波数成分X(i,k)を取得する。また、フィルタ処理部17は、フィルタ推定部16から周波数ごとに算出されたフィルタ係数w(i,k)を取得する。フィルタ処理部17は、集音部110ごとの音響信号x(n)の各周波数成分X(i,k)を入力信号として、取得した周波数ごとのフィルタ係数w(i,k)に基づくフィルタリング処理を施すことで、出力信号Y(i,k)を生成する。 The filter processing unit 17 acquires each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collection unit 110 (ie, for each of the sound collection units 111 to 11M) from the frequency decomposition unit 13. . Further, the filter processing unit 17 acquires the filter coefficient w (i, k) calculated for each frequency from the filter estimation unit 16. The filter processing unit 17 uses each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 as an input signal and is based on the acquired filter coefficient w (i, k) for each frequency. By performing the filtering process, an output signal Y (i, k) is generated.
 具体的には、フィルタ処理部17は、集音部110ごとの音響信号x(n)の各周波数成分X(i,k)を入力信号として、取得した周波数ごとのフィルタ係数w(i,k)に基づき当該入力信号を重み付け加算することで、周波数ごとの出力信号Y(i,k)を生成する。例えば、出力信号Y(i,k)は、以下に(式7)として示す計算式で表される。なお、iはフレーム番号を示し、kは離散周波数番号を示すものとする。 Specifically, the filter processing unit 17 uses each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 as an input signal, and obtains a filter coefficient w (i for each acquired frequency. , K), the input signal is weighted and added to generate an output signal Y (i, k) for each frequency. For example, the output signal Y (i, k) is expressed by a calculation formula shown as (Formula 7) below. Note that i indicates a frame number, and k indicates a discrete frequency number.
Figure JPOXMLDOC01-appb-M000006
 ・・・(式7)
Figure JPOXMLDOC01-appb-M000006
... (Formula 7)
 そして、フィルタ処理部17は、周波数ごとに生成した出力信号Y(i,k)を、周波数合成部18に出力する。 Then, the filter processing unit 17 outputs the output signal Y (i, k) generated for each frequency to the frequency synthesis unit 18.
 周波数合成部18は、フィルタ処理部17から周波数ごとに生成された出力信号Y(i,k)を取得する。周波数合成部18は、取得した周波数ごとの出力信号Y(i,k)を合成することで、音響信号y(n)を生成する。即ち、周波数合成部18は、前述した周波数分解部13とは逆の処理を実行することとなる。具体的には、周波数合成部18は、周波数ごとの出力信号Y(i,k)に対して、周波数-時間変換(例えば、IFFT(Inverse FFT)、IDFT(Inverse DFT)等)、所定の窓関数の適用、及びフレーム合成等の処理を施すことで、当該周波数ごとの出力信号Y(i,k)が合成された音響信号y(n)を生成する。 The frequency synthesizer 18 acquires the output signal Y (i, k) generated for each frequency from the filter processor 17. The frequency synthesizer 18 generates the acoustic signal y (n) by synthesizing the acquired output signal Y (i, k) for each frequency. That is, the frequency synthesizing unit 18 performs the reverse process of the frequency decomposing unit 13 described above. Specifically, the frequency synthesizer 18 performs frequency-time conversion (for example, IFFT (Inverse FFT), IDFT (Inverse DFT), etc.), a predetermined window for the output signal Y (i, k) for each frequency. By performing processing such as function application and frame synthesis, an acoustic signal y (n) in which the output signal Y (i, k) for each frequency is synthesized is generated.
 例えば、図7は、本実施形態に係る情報処理装置10が、複数の集音部110それぞれの集音結果に基づき目的音を取得する処理の一例を示している。図7に示す例では、複数の集音部110として、集音部111~114の4つのマイクロフォンを使用した場合の一例を示している。即ち、図7に示す例では、集音部111~114それぞれによる集音結果の一例(即ち、集音された音響信号)と、情報処理装置10による信号処理により、集音部111~114それぞれの集音結果が合成された音響信号(合成音)の一例とを示している。 For example, FIG. 7 shows an example of processing in which the information processing apparatus 10 according to the present embodiment acquires the target sound based on the sound collection results of the plurality of sound collection units 110. In the example illustrated in FIG. 7, an example in which four microphones of the sound collection units 111 to 114 are used as the plurality of sound collection units 110 is illustrated. That is, in the example shown in FIG. 7, each of the sound collection units 111 to 114 is obtained by an example of the sound collection result by each of the sound collection units 111 to 114 (ie, the collected sound signal) and the signal processing by the information processing apparatus 10. An example of an acoustic signal (synthetic sound) obtained by synthesizing the sound collection results is shown.
 前述したように、複数の集音部110それぞれによる集音結果(より具体的には、音響信号x(n)の各周波数成分X(i,k))を合成するためのフィルタリング処理の係数w(i,k)は、目的音の音源(例えば、口元)から到来する成分a(k)の利得を1に保ち、かつ、ノイズ成分(例えば、風切音等)を最小にする特性を有する。このような構成により、ノイズ成分のレベルがより小さい集音部110(換言するとノイズ成分の影響がより小さい集音部110)の入力がより優先されるように重み付けされて、各集音部110の集音結果が合成される。このような処理により、風切音のような雑音がランダムに発生するような環境下においても、当該雑音の影響を抑圧し、目的音をより好適な態様で集音することが可能となる。 As described above, the filtering process for synthesizing the sound collection results (more specifically, each frequency component X m (i, k) of the acoustic signal x m (n)) by each of the plurality of sound collection units 110. The coefficient w (i, k) is a characteristic that keeps the gain of the component a (k) coming from the sound source (for example, the mouth) of the target sound at 1 and minimizes the noise component (for example, wind noise). Have With such a configuration, weighting is performed so that the input of the sound collecting unit 110 having a smaller noise component level (in other words, the sound collecting unit 110 having a smaller noise component effect) is prioritized, and each sound collecting unit 110 is prioritized. The sound collection results are synthesized. By such processing, even in an environment where noise such as wind noise is generated randomly, it is possible to suppress the influence of the noise and collect the target sound in a more preferable manner.
 なお、上記に説明したように本実施形態に係る情報処理装置10は、複数の集音部110それぞれの集音結果から目的音を合成する構成となっており、複数の集音部110の中から集音結果を取得する集音部110を単に切り替える構成とは異なる。より具体的には、集音結果を取得する集音部110を単に切り替えるような構成の場合には、当該切り替えの前後で音響信号に劣化が生じる場合があり、特に、風切音等の雑音が到来する方向が動的に変化するような状況下では当該音響信号の劣化がより顕在化しやすい傾向にある。これに対して、本実施形態に係る情報処理装置10は、上述した信号処理により目的音が合成されるため、風切音等の雑音が到来する方向が動的に変化するような状況下においても音響信号の劣化が発生せずに、より自然なかたちで目的音を取得することが可能となる。 As described above, the information processing apparatus 10 according to the present embodiment is configured to synthesize the target sound from the sound collection results of each of the plurality of sound collection units 110. This is different from the configuration in which the sound collection unit 110 that obtains the sound collection result is simply switched. More specifically, in the case of a configuration in which the sound collecting unit 110 that acquires the sound collection result is simply switched, the acoustic signal may be deteriorated before and after the switching, and particularly noise such as wind noise. In a situation where the direction of arrival of the sound changes dynamically, the deterioration of the acoustic signal tends to be more obvious. On the other hand, the information processing apparatus 10 according to the present embodiment synthesizes the target sound by the signal processing described above, so that the direction in which noise such as wind noise arrives dynamically changes. In addition, the target sound can be acquired in a more natural manner without causing deterioration of the acoustic signal.
 なお、上記に説明した各集音部110の集音結果に対する信号処理はあくまで一例であり、ノイズ成分のレベルがより小さい集音部110の入力がより優先されるように重み付けされて、各集音部110の集音結果を合成することが可能であれば、その内容は特に限定されない。 The signal processing for the sound collection result of each sound collection unit 110 described above is merely an example, and weighting is performed so that the input of the sound collection unit 110 having a smaller noise component level is prioritized, and each sound collection unit 110 is prioritized. The content is not particularly limited as long as the sound collection results of the sound unit 110 can be synthesized.
 そして、周波数合成部18は、生成した音響信号y(n)を目的音の集音結果として出力する。周波数合成部18から出力される音響信号y(n)は、例えば、情報処理装置10により実行される各種処理(例えば、音声認識や音声通話等)に利用されることとなる。 Then, the frequency synthesizer 18 outputs the generated acoustic signal y (n) as a target sound collection result. The acoustic signal y (n) output from the frequency synthesizer 18 is used for various processes (for example, voice recognition, voice call, etc.) executed by the information processing apparatus 10, for example.
 なお、図6に示す構成はあくまで一例であり、上記に説明した各種処理が実現可能であれば、情報処理装置10の構成は、必ずしも図6に示す例には限定されない。例えば、図6に示す例では、集音部111~11mそれぞれについて周波数分解部13が設けられているが、複数の集音部110それぞれから出力される音響信号を、1つの周波数分解部13が処理する構成としてもよい。また、一部の構成が、情報処理装置10に対して外付けされてもよい。具体的な一例として、複数の集音部110のうち、少なくとも一部が、情報処理装置10に対して着脱可能に構成されていてもよい。 Note that the configuration illustrated in FIG. 6 is merely an example, and the configuration of the information processing apparatus 10 is not necessarily limited to the example illustrated in FIG. 6 as long as the various processes described above can be realized. For example, in the example shown in FIG. 6, the frequency resolving unit 13 is provided for each of the sound collecting units 111 to 11m. It is good also as a structure to process. A part of the configuration may be externally attached to the information processing apparatus 10. As a specific example, at least some of the plurality of sound collecting units 110 may be configured to be detachable from the information processing apparatus 10.
 以上、図6及び図7を参照して、本実施形態に係る情報処理装置10の機能構成の一例について、特に、情報処理装置10が、複数の集音部それぞれの集音結果に基づき目的音を取得する処理に着目して説明した。 As described above, with reference to FIG. 6 and FIG. 7, with regard to an example of the functional configuration of the information processing apparatus 10 according to the present embodiment, in particular, the information processing apparatus 10 has the target sound based on the sound collection results of the plurality of sound collection units. The description has been given focusing on the process of acquiring the.
  <1.4.処理>
 次に、図8を参照して、本実施形態に係る情報処理装置10の一連の処理の流れの一例について、特に、情報処理装置10が、複数の集音部それぞれの集音結果に基づき目的音(例えば、ユーザの音声)を取得する処理に着目して説明する。図8は、本実施形態に係る情報処理装置10の一連の処理の流れの一例を示したフローチャートである。
<1.4. Processing>
Next, referring to FIG. 8, an example of a flow of a series of processes of the information processing apparatus 10 according to the present embodiment, in particular, the information processing apparatus 10 is based on the sound collection results of each of the plurality of sound collection units. Description will be made by paying attention to processing for acquiring sound (for example, user's voice). FIG. 8 is a flowchart illustrating an example of a flow of a series of processes of the information processing apparatus 10 according to the present embodiment.
 (ステップS101)
 外部環境の音響は、複数の集音部110により集音されることで、情報処理装置10に取り込まれる。集音部110は、集音結果に基づく音響信号(アナログ信号)のゲインの調整し、AD変換によりアナログ信号からデジタル信号に変換したうえで、変換後の音響信号(デジタル信号)x(n)を周波数分解部13に出力する。
(Step S101)
The sound of the external environment is taken into the information processing apparatus 10 by being collected by the plurality of sound collection units 110. The sound collection unit 110 adjusts the gain of an acoustic signal (analog signal) based on the sound collection result, converts the analog signal from a digital signal by AD conversion, and then converts the converted acoustic signal (digital signal) x m (n ) Is output to the frequency resolving unit 13.
 (ステップS103)
 周波数分解部13は、集音部110から出力される音響信号x(n)に対して、フレーム分割、所定の窓関数の適用、及び、時間-周波数変換等の処理を施すことで、当該音響信号x(n)を周波数成分に分解する。そして、周波数分解部13は、音響信号x(n)の各周波数成分X(i,k)を、後段に位置するフィルタ処理部17と、チャネルパワー推定部15とのそれぞれに出力する。これにより、複数の集音部110それぞれについて、音響信号x(n)の各周波数成分X(i,k)が、フィルタ処理部17と、チャネルパワー推定部15とのそれぞれに出力されることとなる。
(Step S103)
The frequency resolving unit 13 performs processing such as frame division, application of a predetermined window function, time-frequency conversion, and the like on the acoustic signal x m (n) output from the sound collecting unit 110. The acoustic signal x m (n) is decomposed into frequency components. Then, the frequency resolving unit 13 outputs each frequency component X m (i, k) of the acoustic signal x m (n) to each of the filter processing unit 17 and the channel power estimating unit 15 located in the subsequent stage. Thereby, for each of the plurality of sound collecting units 110, each frequency component X m (i, k) of the acoustic signal x m (n) is output to the filter processing unit 17 and the channel power estimation unit 15, respectively. It will be.
 (ステップS105)
 チャネルパワー推定部15は、周波数分解部13から集音部110ごとに音響信号x(n)の各周波数成分X(i,k)を取得する。次いで、チャネルパワー推定部15は、各集音部110それぞれに対応する音響信号x(n)の各周波数成分X(i,k)に基づき、周波数ごとに、各集音部110のパワースペクトルを推定する。そして、チャネルパワー推定部15は、周波数ごとに、各集音部110のパワースペクトルP(i,k)の推定結果をフィルタ推定部16に出力する。
(Step S105)
The channel power estimation unit 15 acquires each frequency component X m (i, k) of the acoustic signal x m (n) from the frequency resolution unit 13 for each sound collection unit 110. Next, the channel power estimation unit 15 determines the power of each sound collecting unit 110 for each frequency based on each frequency component X m (i, k) of the acoustic signal x m (n) corresponding to each sound collecting unit 110. Estimate the spectrum. Then, the channel power estimation unit 15 outputs the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 to the filter estimation unit 16 for each frequency.
 (ステップS107)
 フィルタ推定部16は、チャネルパワー推定部15から出力される、周波数ごとの、各集音部110のパワースペクトルP(i,k)の推定結果に基づき、後述するフィルタ処理部17が、フィルタリング処理を実行するためのフィルタ係数w(i,k)を算出する。
(Step S107)
Based on the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 for each frequency output from the channel power estimation unit 15, the filter estimation unit 16 performs filtering after that. A filter coefficient w (i, k) for executing the processing is calculated.
 具体的には、フィルタ推定部16は、各集音部110のパワースペクトルP(i,k)に基づき、行列R(i,k)を生成する。また、フィルタ推定部16は、各集音部110それぞれについて、周波数ごとに、当該集音部110と目的音の音源との間の距離に基づき、当該集音部110までの減衰及び遅延特性を示すアレイマニフォールドベクトルa(k)を算出する。そして、フィルタ推定部16は、生成した行列R(i,k)と、算出したアレイマニフォールドベクトルa(k)とに基づき、フィルタ係数w(i,k)を算出し、当該フィルタ係数w(i,k)をフィルタ処理部17に出力する。 Specifically, the filter estimation unit 16 generates a matrix R (i, k) based on the power spectrum P m (i, k) of each sound collection unit 110. Further, the filter estimation unit 16 determines, for each frequency, the attenuation and delay characteristics to the sound collection unit 110 based on the distance between the sound collection unit 110 and the target sound source for each frequency. The indicated array manifold vector a (k) is calculated. Then, the filter estimation unit 16 calculates a filter coefficient w (i, k) based on the generated matrix R (i, k) and the calculated array manifold vector a (k), and the filter coefficient w (i , K) is output to the filter processing unit 17.
 (ステップS109)
 フィルタ処理部17は、周波数分解部13から集音部110ごとに音響信号x(n)の各周波数成分X(i,k)を取得する。また、フィルタ処理部17は、フィルタ推定部16から周波数ごとに算出されたフィルタ係数w(i,k)を取得する。フィルタ処理部17は、集音部110ごとの音響信号x(n)の各周波数成分X(i,k)を入力信号として、取得した周波数ごとのフィルタ係数w(i,k)に基づき当該入力信号を重み付け加算することで、周波数ごとの出力信号Y(i,k)を生成する。そして、フィルタ処理部17は、周波数ごとに生成した出力信号Y(i,k)を、周波数合成部18に出力する。
(Step S109)
The filter processing unit 17 acquires each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collection unit 110 from the frequency decomposition unit 13. Further, the filter processing unit 17 acquires the filter coefficient w (i, k) calculated for each frequency from the filter estimation unit 16. The filter processing unit 17 uses each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 as an input signal, based on the acquired filter coefficient w (i, k) for each frequency. By weighting and adding the input signals, an output signal Y (i, k) for each frequency is generated. Then, the filter processing unit 17 outputs the output signal Y (i, k) generated for each frequency to the frequency synthesis unit 18.
 (ステップS111)
 周波数合成部18は、フィルタ処理部17から出力される周波数ごとの出力信号Y(i,k)に対して、周波数-時間変換、所定の窓関数の適用、及びフレーム合成等の処理を施すことで、当該周波数ごとの出力信号Y(i,k)を合成する。これにより、各集音部110による集音結果が合成された音響信号y(n)が生成される。なお、周波数合成部18により生成された音響信号y(n)は、集音結果として、情報処理装置10により実行される各種処理(例えば、音声認識や音声通話等)に利用されることとなる。
(Step S111)
The frequency synthesizer 18 performs processing such as frequency-time conversion, application of a predetermined window function, and frame synthesis on the output signal Y (i, k) for each frequency output from the filter processor 17. Thus, the output signal Y (i, k) for each frequency is synthesized. As a result, an acoustic signal y (n) in which the sound collection results by the sound collection units 110 are combined is generated. The acoustic signal y (n) generated by the frequency synthesizer 18 is used as a sound collection result for various processes (for example, voice recognition, voice call, etc.) executed by the information processing apparatus 10. .
 以上、図8を参照して、本実施形態に係る情報処理装置10の一連の処理の流れの一例について、特に、情報処理装置10が、複数の集音部それぞれの集音結果に基づき目的音を取得する処理に着目して説明した。 As described above, with reference to FIG. 8, with regard to an example of a series of processing flow of the information processing apparatus 10 according to the present embodiment, in particular, the information processing apparatus 10 performs the target sound based on the sound collection results of the plurality of sound collection units. The description has been given focusing on the process of acquiring the.
  <1.5.実施例>
 次に、実施例として、本実施形態に係る情報処理装置10の他の一態様について説明する。
<1.5. Example>
Next, another example of the information processing apparatus 10 according to the present embodiment will be described as an example.
  <1.5.1.実施例1:首に装着されるウェアラブルデバイスの一例>
 まず、実施例1として、図9~図11を参照して、図1に示した所謂ネックバンド型のウェアラブルデバイスのように、ユーザの首に装着され得るウェアラブルデバイスとして構成された情報処理装置の一例について説明する。
<1.5.1. Example 1: An example of a wearable device attached to the neck>
First, referring to FIG. 9 to FIG. 11, as an example 1, an information processing apparatus configured as a wearable device that can be worn on the user's neck like the so-called neckband type wearable device shown in FIG. An example will be described.
 例えば、図9は、実施例1に係る情報処理装置の一例について説明するための説明図であり、ユーザの首に装着され得るウェアラブルデバイスとして構成された情報処理装置の一例を示している。なお、本説明では、図9に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置10a」と称する場合がある。 For example, FIG. 9 is an explanatory diagram for describing an example of the information processing apparatus according to the first embodiment, and illustrates an example of the information processing apparatus configured as a wearable device that can be worn on the user's neck. In this description, the information processing apparatus shown in FIG. 9 is referred to as an “information processing apparatus 10a” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図9に示すように、情報処理装置10aは、集音部111~114を備える。集音部111~113は、図1を参照して前述した情報処理装置10における集音部111~113に対応している。また、集音部114は、情報処理装置10aがユーザの首に装着された場合に、当該ユーザの後方の位置に、当該ユーザの後方側を向くように設けられている。このような構成とすることで、例えば、ユーザの後方から到来する雑音の影響をより緩和することが可能となる。 As shown in FIG. 9, the information processing apparatus 10a includes sound collection units 111 to 114. The sound collection units 111 to 113 correspond to the sound collection units 111 to 113 in the information processing apparatus 10 described above with reference to FIG. Further, the sound collecting unit 114 is provided at a position behind the user so that the information processing apparatus 10a is attached to the user's neck so as to face the rear side of the user. With such a configuration, for example, it is possible to further reduce the influence of noise coming from behind the user.
 また、情報処理装置10aは、集音部112~114が設置される位置に、当該集音部112~114それぞれが向く方向に突出し流線形の形状を有する凸部が設けられ、各凸部の先端に集音部112~114のそれぞれが設けられている。このような構成とすることで、集音部112~114についても、集音部111と同様に、風切音等のような雑音の影響を緩和し、凸部が突出する方向(即ち、集音部が向いた方向)から到来する音響をより好適な態様で集音することが可能となる。 Further, the information processing apparatus 10a is provided with convex portions having a streamlined shape protruding in the direction in which each of the sound collecting portions 112 to 114 faces at a position where the sound collecting portions 112 to 114 are installed. Each of the sound collecting portions 112 to 114 is provided at the tip. By adopting such a configuration, the sound collecting portions 112 to 114 also reduce the influence of noise such as wind noise as in the sound collecting portion 111, and the direction in which the convex portion protrudes (that is, the sound collecting portion). It is possible to collect sound coming from the direction in which the sound part is directed in a more preferable manner.
 なお、凸部を設ける位置(即ち、集音部110を設ける位置)については、特に限定はされない。そのため、例えば、ドライバ等の各種回路やバッテリー等が設けられることで筐体101にふくらみが生じ得る箇所に凸部を設け、当該凸部の先端(または、当該先端の近傍)に集音部110を設ける構成としてもよい。 It should be noted that the position where the convex portion is provided (that is, the position where the sound collecting portion 110 is provided) is not particularly limited. Therefore, for example, by providing various circuits such as a driver, a battery, and the like, a convex portion is provided at a location where the casing 101 may swell, and the sound collection unit 110 is provided at the tip of the convex portion (or in the vicinity of the tip). It is good also as a structure which provides.
 また、図10は、実施例1に係る情報処理装置の他の一例について説明するための説明図であり、ユーザの首に装着され得るウェアラブルデバイスとして構成された情報処理装置の一例を示している。なお、本説明では、図10に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置10b」と称する場合がある。 FIG. 10 is an explanatory diagram for explaining another example of the information processing apparatus according to the first embodiment, and illustrates an example of the information processing apparatus configured as a wearable device that can be worn on the user's neck. . In this description, the information processing apparatus shown in FIG. 10 is referred to as an “information processing apparatus 10b” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図10に示すように、情報処理装置10bは、リング状の形状を成し、参照符号19で示された部分が開口可能に構成されている。なお、参照符号19で示された部分が開口することで互いに離間する端部間は着脱可能に構成されている。このような構成により、情報処理装置10bは、リング状の部分の内面がユーザの首に当接するように(即ち、首に巻きつけるように)当該ユーザに装着される。 As shown in FIG. 10, the information processing apparatus 10b has a ring shape and is configured to be openable at a portion indicated by reference numeral 19. In addition, it is comprised so that attachment or detachment is possible between the edge parts which mutually spaces apart because the part shown with the referential mark 19 opens. With such a configuration, the information processing apparatus 10b is attached to the user so that the inner surface of the ring-shaped portion is in contact with the user's neck (that is, wound around the neck).
 また、情報処理装置10bは、集音部115~118が、リング状に形成された筐体の円周に沿って互いに異なる位置に、当該リングの外側(即ち、リングの中心とは逆側)を向くように設けられている。なお、情報処理装置10bにおいては、集音部115~118が、前述した実施形態に係る情報処理装置10における、集音部110(例えば、図1に示す集音部111~113等)に相当する。 Further, the information processing apparatus 10b has the sound collecting units 115 to 118 at positions different from each other along the circumference of the ring-shaped casing (ie, on the side opposite to the center of the ring). It is provided to face. In the information processing apparatus 10b, the sound collection units 115 to 118 correspond to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. To do.
 このような構成により、集音部115~118のそれぞれは、自身が向いている方向とは逆側から到来する雑音が、情報処理装置10bが装着されるユーザの部位(即ち、首)により遮蔽されるため、当該雑音の影響が緩和されることとなる。特に、図10に示す情報処理装置10bにおいては、集音部115~118のそれぞれが、図1に示した情報処理装置10に比べてよりユーザの首に近接するように支持されるため、風切音等の雑音(特に、ユーザの首側から到来する雑音)の影響がより緩和される。このことは、図5を参照して説明した、集音部M5及びM6(即ち、よりユーザの部位に近接する集音部)において、ユーザの部位側から到来する雑音の影響がより緩和されていることからも明らかである。また、集音部115~118のそれぞれは、互いに異なる方向を向くように設けられているため、例えば、一部の集音部の集音結果に基づき他の集音部の特性を補うことも可能となる。 With this configuration, each of the sound collection units 115 to 118 shields noise coming from the opposite side to the direction in which the sound collection unit is facing by the user's part (that is, the neck) to which the information processing apparatus 10b is attached. Therefore, the influence of the noise is mitigated. In particular, in the information processing apparatus 10b shown in FIG. 10, each of the sound collection units 115 to 118 is supported so as to be closer to the user's neck than the information processing apparatus 10 shown in FIG. The influence of noise such as noise (particularly noise coming from the user's neck) is further alleviated. This is because the influence of noise coming from the user's part side is further alleviated in the sound collecting parts M5 and M6 (that is, the sound collecting part closer to the user's part) described with reference to FIG. It is clear from that. In addition, since each of the sound collection units 115 to 118 is provided so as to face different directions, for example, the characteristics of other sound collection units may be supplemented based on the sound collection results of some sound collection units. It becomes possible.
 なお、図10に示す情報処理装置10bにおいても、筐体の少なくとも一部に流線形の形状の凸部を設け、当該凸部の先端(または、当該先端の近傍)に集音部110(例えば、集音部115~118のうちの少なくとも一部)を設けてもよい。 In the information processing apparatus 10b shown in FIG. 10 as well, a streamline-shaped convex portion is provided on at least a part of the housing, and a sound collecting unit 110 (for example, at the vicinity of the convex portion) , At least a part of the sound collecting units 115 to 118) may be provided.
 また、図11は、実施例1に係る情報処理装置の他の一例について説明するための説明図であり、所謂ネックレスのような形状を成すウェアラブルデバイスとして構成された情報処理装置の一例を示している。なお、本説明では、図11に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置10c」と称する場合がある。 FIG. 11 is an explanatory diagram for explaining another example of the information processing apparatus according to the first embodiment, and shows an example of the information processing apparatus configured as a wearable device having a shape like a so-called necklace. Yes. In this description, the information processing apparatus shown in FIG. 11 is referred to as an “information processing apparatus 10c” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図11において、参照符号119は、前述した実施形態に係る情報処理装置10における集音部110の一例を示している。即ち、ネックレスのような形状を成す情報処理装置10cにおいては、例えば、所謂ペンダントに相当する部分に、ユーザが装着したときに当該ユーザの前方を向くように流線型の凸部を設け、当該凸部の先端(または、当該先端の近傍)に集音部119を設ければよい。 11, reference numeral 119 indicates an example of the sound collection unit 110 in the information processing apparatus 10 according to the above-described embodiment. That is, in the information processing apparatus 10c having a shape like a necklace, for example, a streamline-shaped convex portion is provided in a portion corresponding to a so-called pendant so as to face the front of the user when the user wears the convex portion. The sound collecting unit 119 may be provided at the tip of the head (or in the vicinity of the tip).
 なお、図11に示す例では、情報処理装置10cに対して集音部110を1つ設けているが、集音部110が複数設けられていてもよい。また、情報処理装置10cに対して集音部110を複数設ける場合には、当該複数の集音部110のそれぞれが、互いに異なる方向を向くように設けられているとよい。 In the example shown in FIG. 11, one sound collection unit 110 is provided for the information processing apparatus 10c, but a plurality of sound collection units 110 may be provided. Further, when a plurality of sound collecting units 110 are provided for the information processing apparatus 10c, the plurality of sound collecting units 110 may be provided so as to face different directions.
 以上、実施例1として、図9~図11を参照して、図1に示した所謂ネックバンド型のウェアラブルデバイスのように、ユーザの首に装着され得るウェアラブルデバイスとして構成された情報処理装置の一例について説明した。 As described in the first embodiment, an information processing apparatus configured as a wearable device that can be worn on the user's neck like the so-called neckband type wearable device shown in FIG. An example has been described.
  <1.5.2.実施例2:頭部に装着されるウェアラブルデバイスの一例>
 次に、実施例2として、図12~図15を参照して、頭部に装着され得るウェアラブルデバイスとして構成された情報処理装置の一例について説明する。
<1.5.2. Example 2: Example of wearable device worn on head>
Next, as a second embodiment, an example of an information processing apparatus configured as a wearable device that can be worn on the head will be described with reference to FIGS.
 例えば、図12は、実施例2に係る情報処理装置の一例について説明するための説明図であり、ユーザの頭部に装着され得るウェアラブルデバイスとして構成された情報処理装置の一例を示している。なお、本説明では、図12に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置20a」と称する場合がある。 For example, FIG. 12 is an explanatory diagram for explaining an example of the information processing apparatus according to the second embodiment, and illustrates an example of the information processing apparatus configured as a wearable device that can be worn on the user's head. In this description, the information processing apparatus shown in FIG. 12 is referred to as an “information processing apparatus 20a” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図12に示すように、情報処理装置20aは、ユーザの頭部に装着されることで、各種機能を実現するための回路等が組み込まれた筐体が、ユーザの耳の近傍に保持される。具体的な一例として、図12に示す例では、情報処理装置20aは、ユーザの耳孔内に挿入されるイヤフォン部と、ユーザの耳に掛けることで筐体を支持するケーブル状の支持部材とを備える。情報処理装置20aは、このイヤフォン部とケーブル状の支持部材とにより、筐体がユーザの耳の近傍に保持される。 As shown in FIG. 12, the information processing apparatus 20a is mounted on the user's head so that a housing in which circuits and the like for realizing various functions are incorporated is held near the user's ear. . As a specific example, in the example illustrated in FIG. 12, the information processing device 20 a includes an earphone unit that is inserted into the user's ear canal and a cable-shaped support member that supports the housing by being hooked on the user's ear. Prepare. In the information processing apparatus 20a, the housing is held near the user's ear by the earphone unit and the cable-shaped support member.
 また、図12に示すように、情報処理装置20aは、集音部211及び212を備える。なお、情報処理装置20aおいては、集音部211及び212が、前述した実施形態に係る情報処理装置10における、集音部110(例えば、図1に示す集音部111~113等)に相当する。 As shown in FIG. 12, the information processing apparatus 20a includes sound collection units 211 and 212. In the information processing apparatus 20a, the sound collection units 211 and 212 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. Equivalent to.
 具体的には、情報処理装置20aは、ユーザの頭部に装着された状態において、当該ユーザの耳の近傍に保持される筐体のユーザの前方側に位置する端部に、当該前方側を向くように突出した流線形の形状を有する凸部を備える。そして、当該凸部の先端には、集音部211が、当該凸部が突出する方向(即ち、ユーザの前方)を向くように設けられている。また、情報処理装置20aは、ユーザの頭部に装着された場合に、当該筐体の外側(即ち、当該頭部とは逆側)に位置する側面の少なくとも一部に、当該外側の方向(即ち、ユーザの横方向)を向くように集音部212が設けられている。また、情報処理装置20aは、筐体の側面に対して、当該筐体の外側の方向に向けて突出した流線形の形状を有する凸部を備え、当該凸部の先端に集音部212が設けられていてもよい。 Specifically, the information processing apparatus 20a, when attached to the user's head, places the front side on an end portion of the casing that is held near the user's ear and located on the front side of the user. A convex portion having a streamline shape protruding so as to face is provided. And the sound-collecting part 211 is provided in the front-end | tip of the said convex part so that the direction (namely, user's front) where the said convex part protrudes. In addition, when the information processing device 20a is attached to the user's head, the information processing device 20a has at least a part of a side surface located outside the housing (that is, opposite to the head) in the direction of the outside ( That is, the sound collection unit 212 is provided so as to face the user's lateral direction. In addition, the information processing apparatus 20a includes a convex portion having a streamline shape that protrudes toward the outer side of the casing with respect to the side surface of the casing, and the sound collection unit 212 is provided at the tip of the convex portion. It may be provided.
 なお、図12に示す例では、ユーザの左耳の近傍に保持される筐体に着目して説明したが、当該ユーザの右耳の近傍に保持される筐体についても、左耳の近傍に保持される筐体と類似する構成をとり得る。具体的には、右耳側に保持される筐体には、集音部212に相当する構成のみが設けられていてもよいし、集音部211及び212に相当する構成が設けられていてもよい。 In the example illustrated in FIG. 12, the description has been given focusing on the housing held near the user's left ear, but the housing held near the user's right ear is also located near the left ear. A configuration similar to the case to be held can be taken. Specifically, the housing held on the right ear side may be provided with only a configuration corresponding to the sound collection unit 212, or a configuration corresponding to the sound collection units 211 and 212. Also good.
 また、図13は、実施例2に係る情報処理装置の他の一例について説明するための説明図であり、ユーザの頭部に装着される所謂メガネ型のウェアラブルデバイスとして構成された情報処理装置の一例を示している。なお、本説明では、図13に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置20b」と称する場合がある。 FIG. 13 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment. The information processing apparatus is configured as a so-called glasses-type wearable device that is worn on the user's head. An example is shown. In this description, the information processing apparatus shown in FIG. 13 is referred to as an “information processing apparatus 20b” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図13に示すように、情報処理装置20bは、集音部213~215を備える。なお、情報処理装置20bおいては、集音部213~215が、前述した実施形態に係る情報処理装置10における、集音部110(例えば、図1に示す集音部111~113等)に相当する。 As shown in FIG. 13, the information processing apparatus 20b includes sound collection units 213 to 215. In the information processing apparatus 20b, the sound collection units 213 to 215 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the embodiment described above. Equivalent to.
 例えば、情報処理装置20bは、メガネのフロントに相当する部分の少なくとも一部に集音部213が設けられている。より具体的な一例として、情報処理装置20bは、メガネのブリッジに相当する部分に、前方に向けて突出した流線形の形状を有する凸部を備え、当該凸部の先端には、集音部213が、当該凸部が突出する方向を向くように設けられている。また、他の一例として、参照符号213’として示すように、メガネのフロントに相当する部分のうち、ブリッジに相当する部分とは異なる他の部分に当該凸部及び当該集音部が設けられていてもよい。 For example, in the information processing apparatus 20b, a sound collection unit 213 is provided at least at a part corresponding to the front of the glasses. As a more specific example, the information processing apparatus 20b includes a convex portion having a streamline shape that protrudes forward at a portion corresponding to a bridge of glasses, and a sound collecting portion is provided at the tip of the convex portion. 213 is provided so as to face the direction in which the convex portion protrudes. Further, as another example, as shown by reference numeral 213 ′, the convex portion and the sound collecting portion are provided in a portion corresponding to the front of the glasses other than the portion corresponding to the bridge. May be.
 また、情報処理装置20bは、メガネのテンプルに相当する部分の少なくとも一部に集音部214及び215が設けられている。なお、集音部214及び215は、例えば、情報処理装置20bがユーザの頭部に装着された場合に、当該頭部とは逆側の方向(即ち、ユーザの横方向)に向くように設けられているとよい。 Further, the information processing apparatus 20b is provided with sound collection units 214 and 215 at least at a part corresponding to the temples of the glasses. The sound collection units 214 and 215 are provided so as to face in the direction opposite to the head (that is, the lateral direction of the user) when the information processing apparatus 20b is mounted on the user's head, for example. It is good to have been.
 また、図14は、実施例2に係る情報処理装置の他の一例について説明するための説明図であり、ユーザの頭部に装着され得るウェアラブルデバイスとして構成された情報処理装置の他の一例を示している。なお、本説明では、図14に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置20c」と称する場合がある。 FIG. 14 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment. Another example of the information processing apparatus configured as a wearable device that can be worn on the user's head. Show. In this description, the information processing apparatus shown in FIG. 14 is referred to as an “information processing apparatus 20c” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図14に示すように、情報処理装置20cは、集音部216~218を備える。なお、情報処理装置20cおいては、集音部216~218が、前述した実施形態に係る情報処理装置10における、集音部110(例えば、図1に示す集音部111~113等)に相当する。 As shown in FIG. 14, the information processing apparatus 20c includes sound collection units 216 to 218. In the information processing apparatus 20c, the sound collection units 216 to 218 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the embodiment described above. Equivalent to.
 より具体的には、メガネのフレームに相当する部分(例えば、フロント及びテンプル)の互いに異なる位置に、集音部216~218が互いに異なる方向を向くように設けられている。より具体的には、集音部216~218のそれぞれは、情報処理装置20cがユーザの頭部に装着された場合に、当該頭部とは逆側の方向を向くように設けられる。 More specifically, the sound collecting portions 216 to 218 are provided at different positions of the portions corresponding to the frame of the glasses (for example, the front and the temple) so as to face different directions. More specifically, each of the sound collection units 216 to 218 is provided so as to face the direction opposite to the head when the information processing apparatus 20c is attached to the user's head.
 このような構成とすることで、集音部216~218のそれぞれは、自身が向いている方向とは逆側から到来する雑音が、ユーザの頭部により遮蔽されるため、当該雑音の影響が緩和される。また、集音部216~218のそれぞれは、互いに異なる方向を向くように設けられているため、例えば、一部の集音部の集音結果に基づき他の集音部の特性を補うことも可能となる。 With such a configuration, each of the sound collecting units 216 to 218 is shielded by the user's head from the noise coming from the side opposite to the direction in which the sound collecting unit 216 is facing, so that the influence of the noise is not affected. Alleviated. In addition, since each of the sound collection units 216 to 218 is provided so as to face different directions, for example, the characteristics of other sound collection units may be supplemented based on the sound collection results of some sound collection units. It becomes possible.
 また、図15は、実施例2に係る情報処理装置の他の一例について説明するための説明図であり、所謂ヘッドフォン等のようなオーバヘッド型のウェアラブルデバイスとして構成された情報処理装置の一例を示している。なお、本説明では、図15に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置20d」と称する場合がある。 FIG. 15 is an explanatory diagram for explaining another example of the information processing apparatus according to the second embodiment, and illustrates an example of the information processing apparatus configured as an overhead wearable device such as a so-called headphone. ing. In this description, the information processing apparatus shown in FIG. 15 is referred to as an “information processing apparatus 20d” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図15に示す例では、情報処理装置20dは、撮像部25と、集音部219とを備える。なお、情報処理装置20dおいては、集音部219が、前述した実施形態に係る情報処理装置10における、集音部110(例えば、図1に示す集音部111~113等)に相当する。 In the example illustrated in FIG. 15, the information processing apparatus 20 d includes an imaging unit 25 and a sound collection unit 219. In the information processing apparatus 20d, the sound collection unit 219 corresponds to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. .
 具体的には、撮像部25は、情報処理装置20dがユーザの頭部に装着された場合に、当該情報処理装置20dの筐体の、当該ユーザの前方を画角内に収めることが可能な位置に設けられている。例えば、図15に示す例では、撮像部25は、情報処理装置20dの筐体に、ユーザの前方を向くように設けられている。 Specifically, when the information processing device 20d is mounted on the user's head, the imaging unit 25 can store the front of the user of the housing of the information processing device 20d within the angle of view. In the position. For example, in the example illustrated in FIG. 15, the imaging unit 25 is provided in the housing of the information processing device 20 d so as to face the front of the user.
 また、情報処理装置20dは、筐体の少なくとも一部に、ユーザの頭部に装着された状態においてユーザの前方側を向くように突出した流線形の形状を有する凸部を備え、当該凸部の先端には、集音部219が、当該凸部が突出する方向を向くように設けられている。例えば、図15に示す例では、集音部219は、撮像部25の近傍に設けられている。また、他の一例として、参照符号219’に示すように、情報処理装置20dをユーザの頭部に保持するための保持部材の少なくとも一部に、ユーザの前方側を向くように突出した流線形の形状を有する凸部を設け、当該凸部の先端に、当該凸部が突出する方向を向くように集音部を設けてもよい。 Further, the information processing apparatus 20d includes a convex portion having a streamline shape that protrudes toward the front side of the user in a state of being mounted on the user's head in at least a part of the housing, and the convex portion A sound collecting portion 219 is provided at the front end of the head so as to face the direction in which the convex portion protrudes. For example, in the example illustrated in FIG. 15, the sound collection unit 219 is provided in the vicinity of the imaging unit 25. Further, as another example, as indicated by reference numeral 219 ′, a streamline projecting so as to face the front side of the user on at least a part of the holding member for holding the information processing apparatus 20d on the head of the user. And a sound collecting part may be provided at the tip of the convex part so as to face the direction in which the convex part protrudes.
 以上、実施例2として、図12~図15を参照して、頭部に装着され得るウェアラブルデバイスとして構成された情報処理装置の一例について説明した。なお、上記に説明した例はあくまで一例であり、必ずしも上記に示す例には限定されない。具体的な一例として、所謂カチューシャ状の形状を有する頭部装着型のウェアラブルデバイスとして構成された情報処理装置に対して、前述した実施形態に係る情報処理装置10における集音部110に相当する構成を設けてもよい。 As described above, as the second embodiment, an example of an information processing apparatus configured as a wearable device that can be worn on the head has been described with reference to FIGS. 12 to 15. In addition, the example demonstrated above is an example to the last, and is not necessarily limited to the example shown above. As a specific example, a configuration corresponding to the sound collection unit 110 in the information processing apparatus 10 according to the above-described embodiment with respect to the information processing apparatus configured as a head-mounted wearable device having a so-called headband shape. May be provided.
  <1.5.3.実施例3:携帯型情報端末への適用例>
 次に、実施例3として、図16及び図17を参照して、所謂スマートフォン等のような携帯型情報端末として構成された情報処理装置の一例について説明する。
<1.5.3. Example 3: Application example to portable information terminal>
Next, as Example 3, an example of an information processing apparatus configured as a portable information terminal such as a so-called smartphone will be described with reference to FIGS. 16 and 17.
 例えば、図16は、実施例3に係る情報処理装置の一例について説明するための説明図である。なお、本説明では、図16に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置30」と称する場合がある。 For example, FIG. 16 is an explanatory diagram for explaining an example of the information processing apparatus according to the third embodiment. In this description, the information processing apparatus shown in FIG. 16 is referred to as an “information processing apparatus 30” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図16に示すように、情報処理装置30は、集音部311~314を含む。なお、情報処理装置30おいては、集音部311~314が、前述した実施形態に係る情報処理装置10における、集音部110(例えば、図1に示す集音部111~113等)に相当する。 As shown in FIG. 16, the information processing apparatus 30 includes sound collection units 311 to 314. In the information processing apparatus 30, the sound collection units 311 to 314 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. Equivalent to.
 具体的には、情報処理装置30の筐体は、少なくとも一部に略矩形状の面36を有し、当該面36の角を含む所定の領域(即ち、当該角、または、当該角の近傍)に、当該筐体の外側を向くように流線型の形状を有する凸部が形成されている。換言すると、情報処理装置30の筐体は、略平面状の面36と、当該面36の端部に沿って異なる方向を向くように形成された複数の側面371~374とを備え、互いに隣り合う側面が連接する部分を含む所定の領域に流線形の形状を有する凸部が形成されている。なお、面36は、例えば、ディスプレイ等の表示部が設けられる面に相当し得る。また、情報処理装置30の筐体の角自体が、当該凸部であってもよい。そして、集音部311~314のそれぞれは、当該凸部のうちのいずれかの先端(または、当該先端の近傍)に、情報処理装置30の筐体の外側を向くように設けられている。 Specifically, the housing of the information processing apparatus 30 has a substantially rectangular surface 36 at least in part, and a predetermined region including the corner of the surface 36 (that is, the corner or the vicinity of the corner). ), A convex portion having a streamline shape is formed so as to face the outside of the housing. In other words, the housing of the information processing apparatus 30 includes a substantially planar surface 36 and a plurality of side surfaces 371 to 374 formed so as to face different directions along the end of the surface 36, and are adjacent to each other. A convex portion having a streamline shape is formed in a predetermined region including a portion where the matching side surfaces are connected. The surface 36 may correspond to a surface on which a display unit such as a display is provided, for example. Further, the corner itself of the housing of the information processing device 30 may be the convex portion. Each of the sound collection units 311 to 314 is provided at the tip of any one of the convex portions (or in the vicinity of the tip) so as to face the outside of the casing of the information processing apparatus 30.
 また、図17は、変形例3に係る情報処理装置30の利用形態の一例について説明するための説明図であり、ユーザが情報処理装置30を利用して音声通話を行っている場合の一例を示している。 FIG. 17 is an explanatory diagram for explaining an example of a usage form of the information processing apparatus 30 according to the modification 3. An example of a case where the user performs a voice call using the information processing apparatus 30 is illustrated. Show.
 図17に示すように、例えば、ユーザが情報処理装置30を自身の右耳の近傍に保持しながら音声通話を行う場合には、集音部312が当該ユーザの略前方を向くように当該情報処理装置30が保持されることとなる。このような構成により、例えば、ユーザが移動しながら音声通話を行っているような状況下においても、集音部312は、ユーザの移動により前方から到来する風に伴う風切音の影響を受けにくくなる。なお、ユーザが情報処理装置30を自身の左耳の近傍に保持しながら音声通話を行う場合も想定され得る。この場合には、集音部311がユーザの略前方を向くように当該情報処理装置30が保持されることとなり、当該集音部311が、ユーザの移動により前方から到来する風に伴う風切音の影響を受けにくくなる。即ち、情報処理装置30は、上記に説明した構成に基づき、ユーザの移動により前方から到来する風に伴う風切音の影響を緩和することが可能となる。 As shown in FIG. 17, for example, when the user makes a voice call while holding the information processing apparatus 30 in the vicinity of his / her right ear, the information is set so that the sound collecting unit 312 faces the front of the user. The processing device 30 is held. With such a configuration, for example, even in a situation where the user makes a voice call while moving, the sound collecting unit 312 is affected by wind noise caused by the wind coming from the front due to the movement of the user. It becomes difficult. It can be assumed that the user makes a voice call while holding the information processing apparatus 30 in the vicinity of his / her left ear. In this case, the information processing apparatus 30 is held so that the sound collecting unit 311 faces substantially in front of the user, and the sound collecting unit 311 winds off due to wind coming from the front due to the movement of the user. Less affected by sound. That is, the information processing apparatus 30 can mitigate the influence of wind noise caused by the wind coming from the front due to the movement of the user based on the configuration described above.
 また、情報処理装置30は、集音部311~314が互いに異なる方向を向くように設けられている。このような構成により、情報処理装置30は、少なくとも一部の集音部の集音結果に基づき、他の集音部の特性を補うことも可能となる。 In addition, the information processing apparatus 30 is provided so that the sound collecting units 311 to 314 face different directions. With such a configuration, the information processing apparatus 30 can supplement the characteristics of the other sound collection units based on the sound collection results of at least some of the sound collection units.
 以上、実施例3として、図16及び図17を参照して、所謂スマートフォン等のような携帯型情報端末として構成された情報処理装置の一例について説明した。 As described above, as an example 3, an example of an information processing apparatus configured as a portable information terminal such as a so-called smartphone has been described with reference to FIGS. 16 and 17.
  <1.5.4.実施例4:時計型のウェアラブルデバイスへの適用例>
 次に、実施例4として、図18及び図19を参照して、腕に装着され得る、所謂時計型のウェアラブルデバイスとして構成された情報処理装置の一例について説明する。
<1.5.4. Example 4: Application example to watch-type wearable device>
Next, as Example 4, an example of an information processing apparatus configured as a so-called watch-type wearable device that can be worn on an arm will be described with reference to FIGS. 18 and 19.
 例えば、図18は、実施例4に係る情報処理装置の一例について説明するための説明図である。なお、本説明では、図18に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置40a」と称する場合がある。 For example, FIG. 18 is an explanatory diagram for explaining an example of the information processing apparatus according to the fourth embodiment. In this description, the information processing apparatus shown in FIG. 18 is referred to as an “information processing apparatus 40a” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図18に示すように、情報処理装置40aは、集音部411~415を含む。なお、情報処理装置30おいては、集音部411~415が、前述した実施形態に係る情報処理装置10における、集音部110(例えば、図1に示す集音部111~113等)に相当する。 As shown in FIG. 18, the information processing apparatus 40a includes sound collection units 411 to 415. In the information processing apparatus 30, the sound collection units 411 to 415 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the above-described embodiment. Equivalent to.
 具体的には、情報処理装置40aは、各種機能を実現するための回路等が組み込まれた筐体481と、当該筐体481をユーザの腕に支持するベルト状の支持部材482とを含む。筐体481は、前述した実施例3に係る情報処理装置30と同様に、少なくとも一部に略矩形状の面を有し、当該略矩形状の面の角を含む所定の領域に、当該筐体481の外側を向くように流線型の形状を有する凸部が形成されている。なお、当該略矩形状の面は、所謂時計における文字盤が設けられる側の面に相当する。そして、集音部411~414のそれぞれは、当該凸部のうちのいずれかの先端(または、当該先端の近傍)に、筐体481の外側を向くように設けられている。 Specifically, the information processing apparatus 40a includes a casing 481 in which circuits for realizing various functions are incorporated, and a belt-like support member 482 that supports the casing 481 on the user's arm. Similar to the information processing apparatus 30 according to the third embodiment described above, the casing 481 has at least a part of a substantially rectangular surface, and the casing 481 has a predetermined area including corners of the substantially rectangular surface. A convex portion having a streamline shape is formed so as to face the outside of the body 481. Note that the substantially rectangular surface corresponds to a surface on the side where a dial in a so-called timepiece is provided. Each of the sound collecting portions 411 to 414 is provided at the tip of one of the convex portions (or in the vicinity of the tip) so as to face the outside of the housing 481.
 また、支持部材482には、情報処理装置40aが腕に装着された状態において、当該腕を基準として、筐体481とは略対称となる位置に集音部415が、当該腕とは逆側の方向を向くように設けられている。 In addition, in the state where the information processing apparatus 40a is attached to the arm, the support member 482 includes a sound collection unit 415 at a position that is substantially symmetric with respect to the housing 481 with respect to the arm, and is opposite to the arm. It is provided so as to face the direction.
 このような構成により、情報処理装置40aは、例えば、ユーザが、情報処理装置40aが装着された側の腕を振っているような状況下においても、集音部411~414のうちの少なくともいずれかが、腕が振られる方向と略等しい方向を向いている状態となる。そのため、情報処理装置40aは、集音部411~414による集音結果により、腕の振りに伴う風切音の影響を緩和することが可能となる。また、情報処理装置40aは、集音部411~415が互いに異なる方向を向くように設けられている。特に、集音部415については、当該集音部415が向いている方向とは逆側から到来する雑音が、情報処理装置40aが装着された腕により遮蔽される。このような構成により、情報処理装置40aは、集音部411~415のうち、少なくとも一部の集音部の集音結果に基づき、他の集音部の特性を補うことも可能となる。 With such a configuration, the information processing apparatus 40a allows at least any one of the sound collection units 411 to 414 even under a situation where the user is waving the arm on the side on which the information processing apparatus 40a is mounted. However, it is in a state of facing the direction substantially equal to the direction in which the arm is swung. Therefore, the information processing apparatus 40a can mitigate the effect of wind noise caused by arm swing based on the sound collection results of the sound collection units 411 to 414. In addition, the information processing apparatus 40a is provided so that the sound collecting units 411 to 415 face different directions. In particular, with respect to the sound collection unit 415, noise arriving from the opposite side to the direction in which the sound collection unit 415 faces is shielded by the arm on which the information processing device 40a is attached. With such a configuration, the information processing apparatus 40a can supplement the characteristics of other sound collection units based on the sound collection results of at least some of the sound collection units 411 to 415.
 また、図19は、実施例4に係る情報処理装置の他の一例について説明するための説明図である。なお、本説明では、図19に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置40b」と称する場合がある。 FIG. 19 is an explanatory diagram for explaining another example of the information processing apparatus according to the fourth embodiment. In this description, the information processing apparatus shown in FIG. 19 is referred to as an “information processing apparatus 40b” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図19に示すように、情報処理装置40bは、参照符号483で示された所謂時計のネジ部に相当する部分(以降では、「ネジ部483」と称する)に、集音部416を備える。具体的には、ネジ部483を、流線形の形状を有するように形成することで、当該ネジ部483を、集音部416を設けるための凸部として利用してもよい。なお、情報処理装置40bおいては、集音部416が、前述した実施形態に係る情報処理装置10における、集音部110(例えば、集音部111)に相当する。 As shown in FIG. 19, the information processing apparatus 40b includes a sound collecting unit 416 in a portion corresponding to a so-called screw portion of a timepiece indicated by reference numeral 483 (hereinafter referred to as “screw portion 483”). Specifically, the screw part 483 may be used as a convex part for providing the sound collection part 416 by forming the screw part 483 to have a streamlined shape. In the information processing apparatus 40b, the sound collection unit 416 corresponds to the sound collection unit 110 (for example, the sound collection unit 111) in the information processing apparatus 10 according to the above-described embodiment.
 以上、実施例4として、図18及び図19を参照して、腕に装着され得る、所謂時計型のウェアラブルデバイスとして構成された情報処理装置の一例について説明した。 As described above, as the fourth embodiment, an example of the information processing apparatus configured as a so-called watch-type wearable device that can be worn on the arm has been described with reference to FIGS. 18 and 19.
  <1.5.5.実施例5:撮像装置への適用例>
 次に、実施例5として、図20及び図21を参照して、動画像や静止画像を撮像可能な撮像装置として構成された情報処理装置の一例について説明する。
<1.5.5. Example 5: Application Example to Imaging Device>
Next, as Example 5, an example of an information processing apparatus configured as an imaging apparatus capable of capturing a moving image or a still image will be described with reference to FIGS. 20 and 21. FIG.
 例えば、図20は、実施例5に係る情報処理装置の一例について説明するための説明図である。なお、本説明では、図20に示す情報処理装置を、前述した実施形態に係る情報処理装置10や、他の実施例に係る情報処理装置と区別するために、「情報処理装置50」と称する場合がある。 For example, FIG. 20 is an explanatory diagram for explaining an example of the information processing apparatus according to the fifth embodiment. In this description, the information processing apparatus shown in FIG. 20 is referred to as an “information processing apparatus 50” in order to distinguish it from the information processing apparatus 10 according to the above-described embodiment and the information processing apparatuses according to other examples. There is a case.
 図20において、参照符号53は、動画像や静止画像等の画像を撮像するための撮像部に相当する。また、参照符号511及び512は、情報処理装置50に設けられた集音部の一例に相当する。なお、情報処理装置50おいては、集音部511及び512が、前述した実施形態に係る情報処理装置10における、集音部110(例えば、図1に示す集音部111~113等)に相当する。 In FIG. 20, reference numeral 53 corresponds to an image capturing unit for capturing images such as moving images and still images. Reference numerals 511 and 512 correspond to an example of a sound collection unit provided in the information processing apparatus 50. In the information processing apparatus 50, the sound collection units 511 and 512 are connected to the sound collection unit 110 (for example, the sound collection units 111 to 113 shown in FIG. 1) in the information processing apparatus 10 according to the embodiment described above. Equivalent to.
 具体的には、図20に示すように、情報処理装置50は、例えば、撮像部53を支持する筐体の、当該撮像部53が画像を撮像する方向(以降では、「撮像方向」と称する場合がある)を向いた面の一部に、当該撮像方向に突出した流線形の形状を有する凸部を備える。そして、当該凸部の先端(または、当該先端の近傍)には、撮像部53の撮像方向(換言すると、前方)を向くように集音部511が設けられている。 Specifically, as illustrated in FIG. 20, the information processing device 50 includes, for example, a direction of the casing that supports the imaging unit 53 in which the imaging unit 53 captures an image (hereinafter referred to as “imaging direction”). A convex portion having a streamline shape protruding in the imaging direction is provided on a part of the surface facing (which may be). A sound collection unit 511 is provided at the tip of the convex portion (or in the vicinity of the tip) so as to face the imaging direction of the imaging unit 53 (in other words, forward).
 また、撮像部53の近傍(例えば、撮像部53のレンズの近傍)に、集音部512が設けられていてもよい。例えば、図21は、実施例5に係る情報処理装置50における撮像部53のレンズの近傍の概略的な構成の一例について説明するための説明図である。図21に示す例では、情報処理装置50は、撮像部53のレンズの近傍に、当該情報処理装置50の筐体の外側に向けて突出する凸部551が設けられている。また、凸部551は、撮像部53の撮像方向(即ち、前方)に向けて突出した流線型の形状を有する凸部553を備え、当該凸部553の先端(または、当該先端の近傍)に集音部513が設けられている。 Further, a sound collection unit 512 may be provided in the vicinity of the imaging unit 53 (for example, in the vicinity of the lens of the imaging unit 53). For example, FIG. 21 is an explanatory diagram for explaining an example of a schematic configuration in the vicinity of the lens of the imaging unit 53 in the information processing apparatus 50 according to the fifth embodiment. In the example illustrated in FIG. 21, the information processing device 50 is provided with a convex portion 551 that protrudes toward the outside of the housing of the information processing device 50 in the vicinity of the lens of the imaging unit 53. Further, the convex portion 551 includes a convex portion 553 having a streamline shape that protrudes in the imaging direction (that is, the front side) of the imaging unit 53, and is collected at the tip of the convex portion 553 (or in the vicinity of the tip). A sound unit 513 is provided.
 このような構成により、情報処理装置50は、例えば、ユーザが移動しながら画像を撮像するような状況下においても、ユーザの移動により前方から到来する風に伴う風切音の影響を緩和することが可能となる。 With such a configuration, the information processing apparatus 50 can mitigate the effect of wind noise caused by the wind coming from the front due to the movement of the user, for example, even in a situation where an image is captured while the user is moving. Is possible.
 また、図20及び図21には図示していないが、情報処理装置50は、集音部511及び512とは異なる他の集音部を備えていてもよい。この場合には、当該他の集音部は、集音部511及び512とは異なる方向を向くように設けられているとよい。より具体的な一例として、例えば、情報処理装置50の筐体の、撮像部53の撮像方向とは逆側の面に、当該撮像方向とは逆側の方向(即ち、後方)に向くように当該他の集音部が設けられていてもよい。このような構成とすることで、例えば、他の集音部による集音結果に基づき、集音部511及び512の特性を補うことも可能となる。 Although not shown in FIGS. 20 and 21, the information processing apparatus 50 may include another sound collection unit different from the sound collection units 511 and 512. In this case, the other sound collecting unit may be provided so as to face a different direction from the sound collecting units 511 and 512. As a more specific example, for example, the housing of the information processing device 50 is directed to the surface opposite to the imaging direction of the imaging unit 53 and to the direction opposite to the imaging direction (that is, rearward). The other sound collecting unit may be provided. With such a configuration, for example, the characteristics of the sound collection units 511 and 512 can be supplemented based on the sound collection result by another sound collection unit.
 以上、実施例5として、図20及び図21を参照して、動画像や静止画像を撮像可能な撮像装置として構成された情報処理装置の一例について説明した。 As described above, as Example 5, an example of an information processing apparatus configured as an imaging apparatus capable of capturing a moving image or a still image has been described with reference to FIGS. 20 and 21.
 <<2.第2の実施形態>>
  <2.1.概要>
 続いて、本開示の第2の実施形態について説明する。前述した第1の実施形態に係る情報処理装置10では、複数の集音部それぞれの集音結果に基づき、観測レベル(即ち、集音された音響のレベル)のより小さい集音部の入力が優先されるようにフィルタリング処理を施すことで、風切音のようなランダムに発生する雑音の影響を低減していた。このような制御により、特に、風切音のようなランダムに発生する雑音の影響がより大きい場合に、より好適な態様で当該雑音の影響を緩和することが可能となる。
<< 2. Second Embodiment >>
<2.1. Overview>
Subsequently, a second embodiment of the present disclosure will be described. In the information processing apparatus 10 according to the first embodiment described above, the input of the sound collection unit having a smaller observation level (that is, the level of the collected sound) is received based on the sound collection results of each of the plurality of sound collection units. By performing the filtering process so as to be prioritized, the influence of noise generated randomly such as wind noise has been reduced. Such control makes it possible to mitigate the influence of the noise in a more preferable manner, particularly when the influence of randomly generated noise such as wind noise is larger.
 一方で、上述した制御のように各集音部の集音結果をそのまま評価する場合には、音声等の目的音が主な成分として集音されるような状況下において、当該目的音をより高いレベルで集音した集音部の集音結果が使用されない場合がある。即ち、風切音等のランダムに発生する雑音の影響が小さい状況下においては、例えば、SN比(signal-to-noise ratio)の小さい集音部の集音結果が優先的に使用される場合がある。 On the other hand, when the sound collection result of each sound collection unit is evaluated as it is as in the above-described control, the target sound is more accurately obtained in a situation where the target sound such as speech is collected as a main component. The sound collection result of the sound collection unit collected at a high level may not be used. That is, in the situation where the influence of randomly generated noise such as wind noise is small, for example, the sound collection result of the sound collection unit having a small signal-to-noise ratio is preferentially used. There is.
 そこで、本実施形態では、前述した第1の実施形態と同様に風切音等のランダムに発生する雑音の抑圧効果を維持し、さらに、ランダムに発生する雑音の影響が小さい場合において、より好適な態様で目的音を取得することが可能な仕組みの一例について提案する。 Therefore, the present embodiment maintains the effect of suppressing noise generated randomly such as wind noise as in the first embodiment described above, and is more preferable when the influence of randomly generated noise is small. An example of a mechanism that can acquire the target sound in various ways is proposed.
  <2.2.機能構成>
 まず、図22を参照して、本実施形態に係る情報処理装置の機能構成の一例について説明する。図22は、本実施形態に係る情報処理装置の機能構成の一例を示したブロック図である。なお、以降の説明では、本実施形態に係る情報処理装置を、前述した第1の実施形態に係る情報処理装置10(図6参照)と明示的に区別するために、「情報処理装置60」と称する場合がある。
<2.2. Functional configuration>
First, an example of a functional configuration of the information processing apparatus according to the present embodiment will be described with reference to FIG. FIG. 22 is a block diagram illustrating an example of a functional configuration of the information processing apparatus according to the present embodiment. In the following description, in order to explicitly distinguish the information processing apparatus according to the present embodiment from the information processing apparatus 10 according to the first embodiment described above (see FIG. 6), “information processing apparatus 60”. May be called.
 図22に示すように、本実施形態に係る情報処理装置60は、複数の集音部111~11M(Mは正の整数)と、周波数分解部13と、チャネルパワー推定部65と、フィルタ推定部66と、フィルタ処理部17と、周波数合成部18とを含む。なお、複数の集音部111~11M(Mは正の整数)と、周波数分解部13と、フィルタ処理部17と、周波数合成部18とは、前述した第1の実施形態に係る情報処理装置10(図6参照)において、同様の符号が付された構成に相当する。即ち、本実施形態に係る情報処理装置60は、チャネルパワー推定部65及びフィルタ推定部66の処理内容が、前述した第1の実施形態に係る情報処理装置10と異なる。そこで、以降では、本実施系形態に係る情報処理装置60の機能構成について、特に、前述した第1の実施形態に係る情報処理装置10と異なる部分に着目して説明し、当該情報処理装置10と同様の構成については詳細な説明は省略する。 As shown in FIG. 22, the information processing apparatus 60 according to the present embodiment includes a plurality of sound collecting units 111 to 11M (M is a positive integer), a frequency resolving unit 13, a channel power estimating unit 65, and filter estimation. A unit 66, a filter processing unit 17, and a frequency synthesis unit 18 are included. The plurality of sound collecting units 111 to 11M (M is a positive integer), the frequency resolving unit 13, the filter processing unit 17, and the frequency synthesizing unit 18 are the information processing apparatus according to the first embodiment described above. 10 (refer to FIG. 6) corresponds to the configuration with the same reference numerals. That is, the information processing apparatus 60 according to the present embodiment is different from the information processing apparatus 10 according to the first embodiment described above in the processing contents of the channel power estimation unit 65 and the filter estimation unit 66. Therefore, hereinafter, the functional configuration of the information processing apparatus 60 according to the present embodiment will be described, particularly focusing on differences from the information processing apparatus 10 according to the first embodiment described above. Detailed description of the same configuration as in FIG.
 図22に示すように、チャネルパワー推定部65は、入力パワー推定部651と、非相関成分パワー推定部653と、ランダムノイズパワー推定部655とを含む。 22, the channel power estimation unit 65 includes an input power estimation unit 651, a non-correlated component power estimation unit 653, and a random noise power estimation unit 655.
 入力パワー推定部651は、前述した第1の実施形態に係る情報処理装置10におけるチャネルパワー推定部15に相当する。即ち、入力パワー推定部651は、各集音部110それぞれに対応する音響信号x(n)の各周波数成分X(i,k)に基づき、周波数ごとに、各集音部110のパワースペクトルを推定する。そして、入力パワー推定部651は、周波数ごとに、各集音部110のパワースペクトルP(i,k)の推定結果を、ランダムノイズパワー推定部655に出力する。 The input power estimation unit 651 corresponds to the channel power estimation unit 15 in the information processing apparatus 10 according to the first embodiment described above. That is, the input power estimation unit 651 is configured to output the power of each sound collecting unit 110 for each frequency based on each frequency component X m (i, k) of the acoustic signal x m (n) corresponding to each sound collecting unit 110. Estimate the spectrum. Then, the input power estimation unit 651 outputs the estimation result of the power spectrum P m (i, k) of each sound collection unit 110 to the random noise power estimation unit 655 for each frequency.
 非相関成分パワー推定部653は、フィルタ処理部17によりフィルタリング処理が施されることで生成された出力信号Y(i,k)のフィードバックを受ける。なお、当該出力信号Y(i,k)は、従前に集音された集音部110ごとの音響信号x(n)の各周波数成分X(i,k)において雑音(ランダムノイズ)の影響が抑圧された音響であり、例えば、ユーザが発話した音声等のような目的音の、集音部110ごとの周波数成分に相当する。次いで、非相関成分パワー推定部653は、各集音部110それぞれに対応する音響信号x(n)の各周波数成分X(i,k)と、フィードバックされた出力信号Y(i,k)との間の相関性に基づき、当該出力信号Y(i,k)と非相関の成分のパワースペクトルQ(i,k)を推定する。なお、周波数成分X(i,k)のうち、出力信号Y(i,k)と非相関の成分(以降では、単に「非相関成分」とも称する)が、当該周波数成分X(i,k)に含まれるランダムノイズ等の雑音の成分に相当する。また、非相関成分パワー推定部653による信号処理の詳細については別途後述する。そして、非相関成分パワー推定部653は、周波数ごとに、各集音部110のパワースペクトルQ(i,k)の推定結果をランダムノイズパワー推定部655に出力する。 The uncorrelated component power estimation unit 653 receives feedback of the output signal Y (i, k) generated by the filtering processing unit 17 performing the filtering process. Note that the output signal Y (i, k) is noise (random noise) in each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 that has been previously collected. For example, the sound of which the influence is suppressed corresponds to a frequency component of each sound collection unit 110 of a target sound such as a voice spoken by the user. Next, the decorrelation component power estimation unit 653 outputs each frequency component X m (i, k) of the acoustic signal x m (n) corresponding to each sound collection unit 110 and the feedback output signal Y (i, k). ) To estimate the power spectrum Q m (i, k) of the uncorrelated component with the output signal Y (i, k). Of the frequency component X m (i, k), the component that is uncorrelated with the output signal Y (i, k) (hereinafter, also simply referred to as “non-correlated component”) is the frequency component X m (i, k). This corresponds to a noise component such as random noise included in k). Details of the signal processing by the uncorrelated component power estimation unit 653 will be described later. Then, the uncorrelated component power estimation unit 653 outputs the estimation result of the power spectrum Q m (i, k) of each sound collection unit 110 to the random noise power estimation unit 655 for each frequency.
 ランダムノイズパワー推定部655は、入力パワー推定部651から、周波数ごとに、各集音部110のパワースペクトルP(i,k)の推定結果を取得する。また、ランダムノイズパワー推定部655は、非相関成分パワー推定部653から、周波数ごとに、各集音部110に対応する非相関成分のパワースペクトルQ(i,k)の推定結果を取得する。そして、ランダムノイズパワー推定部655は、取得したパワースペクトルP(i,k)及びQ(i,k)それぞれの推定結果に基づき、フィルタ推定部66がフィルタ係数w(i,k)を算出するための、周波数ごとの、各集音部110のパワースペクトルWm(i,k)を決定する。なお、ランダムノイズパワー推定部655による、パワースペクトルWm(i,k)の決定に係る処理の詳細については別途後述する。そして、ランダムノイズパワー推定部655は、周波数ごとに、各集音部110のパワースペクトルWm(i,k)を示す情報を、フィルタ推定部66に出力する。 The random noise power estimation unit 655 acquires an estimation result of the power spectrum P m (i, k) of each sound collection unit 110 for each frequency from the input power estimation unit 651. In addition, the random noise power estimation unit 655 acquires an estimation result of the power spectrum Q m (i, k) of the uncorrelated component corresponding to each sound collecting unit 110 for each frequency from the uncorrelated component power estimation unit 653. . Then, the random noise power estimation unit 655 uses the filter estimation unit 66 to calculate the filter coefficient w (i, k) based on the obtained estimation results of the power spectra P m (i, k) and Q m (i, k). The power spectrum Wm (i, k) of each sound collection unit 110 for each frequency for calculation is determined. The details of the process related to the determination of the power spectrum Wm (i, k) by the random noise power estimation unit 655 will be described later. Then, the random noise power estimation unit 655 outputs information indicating the power spectrum Wm (i, k) of each sound collection unit 110 to the filter estimation unit 66 for each frequency.
 フィルタ推定部66は、チャネルパワー推定部65から出力される、周波数ごとの、各集音部110のパワースペクトルWm(i,k)を示す情報に基づき、フィルタ処理部17が、フィルタリング処理を実行するためのフィルタ係数w(i,k)を算出する。なお、このときフィルタ推定部66は、(式2)として示した前述した行列R(i,k)を生成する際に、パワースペクトルP(i,k)に替えて、パワースペクトルWm(i,k)を適用する点で、前述した第1の実施形態に係るフィルタ推定部16と異なる。 Based on information indicating the power spectrum Wm (i, k) of each sound collection unit 110 for each frequency output from the channel power estimation unit 65, the filter estimation unit 66 performs a filtering process. A filter coefficient w (i, k) for calculating the value is calculated. At this time, when generating the above-described matrix R (i, k) shown as (Equation 2), the filter estimation unit 66 replaces the power spectrum P m (i, k) with the power spectrum Wm (i , K) is different from the filter estimation unit 16 according to the first embodiment described above.
 一方で、以降の処理、即ち、(式3)~(式6)に基づき前述した、アレイマニフォールドベクトルa(k)と、生成した生成された行列R(i,k)とに基づきフィルタ係数w(i,k)の算出に係る処理については、前述した第1の実施形態に係るフィルタ推定部16と同様である。そのため、当該処理の内容については、詳細な説明は省略する。 On the other hand, the filter coefficient w based on the array manifold vector a (k) and the generated matrix R (i, k) generated as described above based on the subsequent processing, that is, (Expression 3) to (Expression 6). The processing related to the calculation of (i, k) is the same as that of the filter estimation unit 16 according to the first embodiment described above. Therefore, detailed description of the contents of the processing is omitted.
 以上のようにして、フィルタ推定部66は、取得した周波数ごとの、各集音部110のパワースペクトルWm(i,k)を示す情報に基づきフィルタ係数w(i,k)を算出し、算出したフィルタ係数w(i,k)を、フィルタ処理部17に出力する。なお、以降の処理については、前述した第1の実施形態に係る情報処理装置10(図6参照)と同様である。 As described above, the filter estimation unit 66 calculates the filter coefficient w (i, k) based on the information indicating the power spectrum Wm (i, k) of each sound collection unit 110 for each acquired frequency. The filtered filter coefficient w (i, k) is output to the filter processing unit 17. The subsequent processing is the same as that of the information processing apparatus 10 (see FIG. 6) according to the first embodiment described above.
 以上、図22を参照して、本実施形態に係る情報処理装置の機能構成の一例について説明した。 The example of the functional configuration of the information processing apparatus according to the present embodiment has been described above with reference to FIG.
  <2.3.非相関成分パワー推定部の詳細>
 続いて、非相関成分パワー推定部653が、周波数ごとに、各集音部110に対応する非相関成分のパワースペクトルQ(i,k)を算出する処理の詳細について説明する。
<2.3. Details of uncorrelated component power estimation unit>
Next, details of processing in which the decorrelation component power estimation unit 653 calculates the power spectrum Q m (i, k) of the decorrelation component corresponding to each sound collection unit 110 for each frequency will be described.
 まず、非相関成分パワー推定部653が、パワースペクトルQ(i,k)を算出するための基本原理について説明する。マイクロフォン等の集音部に入力される音響(信号)には、例えば、ユーザの音声等のような目的音Sと、所謂背景ノイズNと、風切音等のようなランダムノイズWとが含まれる。即ち、集音部110ごとの音響信号x(n)の各周波数成分X(i,k)は、目的音S、背景ノイズN、及びランダムノイズWに基づき、以下に(式8)として示す関係式で表される。 First, the basic principle for the uncorrelated component power estimation unit 653 to calculate the power spectrum Q m (i, k) will be described. The sound (signal) input to the sound collection unit such as a microphone includes, for example, a target sound S m such as a user's voice, a so-called background noise N m, and a random noise W m such as a wind noise. And are included. That is, each frequency component X m (i, k) of the acoustic signal x m (n) for each sound collecting unit 110 is based on the target sound S m , the background noise N m , and the random noise W m as follows: It is represented by the relational expression shown as 8).
Figure JPOXMLDOC01-appb-M000007
 ・・・(式8)
Figure JPOXMLDOC01-appb-M000007
... (Formula 8)
 ここで、M個の集音部それぞれの入力される音響(信号)をまとめると、以下に(式9)として示す関係式で表される。 Here, the sounds (signals) input to each of the M sound collecting units are summarized as a relational expression shown as (Equation 9) below.
Figure JPOXMLDOC01-appb-M000008
 ・・・(式9)
Figure JPOXMLDOC01-appb-M000008
... (Formula 9)
 上記に示した(式9)において、Sは、目的音SをM個の集音部についてまとめたものである。同様に、Nは、背景ノイズNをM個の集音部についてまとめたものであり、Wは、ランダムノイズWをM個の集音部についてまとめたものである。なお、S、N、及びWは、それぞれベクトルとして示される。また、Sorgは、音源から出力された目的音そのものを示しており、スカラー値で示される。また、aは、前述したアレイマニフォールドベクトルa(k)に相当する。即ち、Sは、音源から出力された目的音Sorgが、集音部に到達するまでの空間を伝搬する際に生じる、信号の劣化や遅延等の影響を考慮した目的音の成分を示している。 In shown in (Equation 9), S is for the target sound S m summarizes the M sound collecting unit. Similarly, N represents the background noise N m is a summary for M sound collecting unit, W is one in which the random noise W m summarizes the M sound collecting unit. Note that S, N, and W are each shown as a vector. S org indicates the target sound itself output from the sound source, and is represented by a scalar value. Further, a k corresponds to the array manifold vector a (k) described above. In other words, S indicates a component of the target sound that takes into account the effects of signal degradation, delay, and the like that occur when the target sound S org output from the sound source propagates through the space until it reaches the sound collection unit. Yes.
 ここで、風切音等のようなランダムノイズWの発生タイミングはランダムであり、本開示に係る情報処理装置では、複数の集音部(特に、図1に示すように分散配置された集音部)間において近似的には相関性の無い信号として定義することが可能である。 Here, the generation timing of random noise W such as wind noise is random, and in the information processing apparatus according to the present disclosure, a plurality of sound collection units (particularly, sound collections arranged in a distributed manner as shown in FIG. 1). Part) can be defined as signals having no correlation.
 このような特性に基づき、上記(式9)は、図23に示すようなベクトル間の関係として規定することが可能である。図23は、非相関成分パワー推定部653の処理の基本原理について説明するための説明図である。なお、図23に示す例では、ユーザが発話した音声を目的音として集音する場合について示している。また、図23に示すベクトル空間は、マニフォールドベクトルaに基づき規定される。 Based on such characteristics, (Equation 9) can be defined as a relationship between vectors as shown in FIG. FIG. 23 is an explanatory diagram for explaining a basic principle of processing of the uncorrelated component power estimation unit 653. In the example shown in FIG. 23, the case where the voice uttered by the user is collected as the target sound is shown. Further, the vector space shown in FIG. 23 is defined based on the manifold vector ak .
 図23において、Xは、集音部により集音された音響(即ち、入力信号)を示しており、(式9)に示したXに相当する。また、Yは、理想的には、入力信号Xに対する目的音Sorgの推定結果に基づく成分(即ち、ユーザの発話成分)に相当する。即ち、成分Yは、入力信号Xに含まれる各成分のうち、ユーザの発話成分(もしくは、ユーザの発話成分と相関性を有する成分)を模式的に示している。これに対して、Zは、入力信号Xに含まれる各成分のうち、ユーザの発話成分との相関性が小さい(もしくは、相関性の無い)成分に相当する。 In FIG. 23, X represents the sound collected by the sound collection unit (that is, the input signal), and corresponds to X shown in (Equation 9). Y ideally corresponds to a component based on the estimation result of the target sound S org with respect to the input signal X (that is, a user's utterance component). That is, the component Y schematically shows a user's speech component (or a component having a correlation with the user's speech component) among the components included in the input signal X. On the other hand, Z corresponds to a component having a small correlation (or no correlation) with the user's speech component among the components included in the input signal X.
 なお、背景ノイズNとランダムノイズWとを全て抑圧することが可能であれば、成分Zは、背景ノイズN及びランダムノイズWの成分のみとなる。しかしながら、本開示に係る情報処理装置(例えば、図1参照)のように首回りに各集音部が配置される構成では、集音部間が比較的近傍に位置するため、背景ノイズNは、当該集音部間において相関性を有する成分として観測される。そのため、成分Yには、ユーザの発話成分Sに加えて、背景ノイズNの成分が含まれる。一方で、風切音等のようなランダムノイズWは、ユーザの発話成分との相関性が小さいため、成分Zとして示される。 If all of the background noise N and the random noise W can be suppressed, the component Z is only the background noise N and the random noise W. However, in the configuration in which the sound collection units are arranged around the neck as in the information processing apparatus according to the present disclosure (see, for example, FIG. 1), the background noise N is , It is observed as a component having a correlation between the sound collecting parts. Therefore, the component Y includes a background noise N component in addition to the user's utterance component S. On the other hand, random noise W such as wind noise is indicated as a component Z because the correlation with the user's speech component is small.
 以上のような特性を利用し、非相関成分パワー推定部653は、出力信号Y(即ち、ユーザの発話成分)のフィードバックを利用することで、当該出力信号Yと相関性の小さい(もしくは、相関性の無い)成分を、ランダムノイズWの成分として抽出する。なお、以降の説明では、成分Zを、「非相関成分Z」とも称する。 By utilizing the characteristics as described above, the uncorrelated component power estimation unit 653 uses the feedback of the output signal Y (that is, the user's utterance component), thereby having a small correlation (or correlation) with the output signal Y. A component having no property is extracted as a component of random noise W. In the following description, the component Z is also referred to as “non-correlated component Z”.
 例えば、集音部110の数が4個の場合には、(式4)として前述した計算式に基づき、アレイマニフォールドベクトルaは、以下に(式10)として示す計算式で表される。 For example, when the number of the sound collecting units 110 is four, the array manifold vector a k is expressed by the calculation formula shown below as (Formula 10) based on the calculation formula described above as (Formula 4).
Figure JPOXMLDOC01-appb-M000009
 ・・・(式10)
Figure JPOXMLDOC01-appb-M000009
... (Formula 10)
 ここで、入力信号Xと、マニフォールドベクトルaとの内積に基づき、当該入力信号Xをマニフォールドベクトルaに射影した成分を抽出することが可能である。このような特性から、マニフォールドベクトルaに直交する成分として、非相関成分Zを、以下に(式11)として示す計算式に基づき抽出することが可能である。 Here, an input signal X, based on the inner product of the manifold vector a k, it is possible to extract a component obtained by projecting the input signal X to the manifold vectors a k. From such characteristics, it is possible to extract the non-correlated component Z as a component orthogonal to the manifold vector ak based on the calculation formula shown below as (Equation 11).
Figure JPOXMLDOC01-appb-M000010
 ・・・(式11)
Figure JPOXMLDOC01-appb-M000010
... (Formula 11)
 ここで、上記(式11)において、(a ・a-1・a ・Xとして示された成分が、図23に示したユーザの発話成分Yに相当する。即ち、上記(式11)は、以下に(式12)として示す計算式で表すことが可能となる。 Here, in (Equation 11), the component shown as (a k H · a k ) −1 · a k H · X corresponds to the user's utterance component Y shown in FIG. That is, the above (Formula 11) can be expressed by a calculation formula shown as (Formula 12) below.
Figure JPOXMLDOC01-appb-M000011
 ・・・(式12)
Figure JPOXMLDOC01-appb-M000011
... (Formula 12)
 ここで、上記(式12)における成分Yとして、フィードバックされた出力信号Y(即ち、フィルタ処理部17によるフィルタリング処理後の出力信号)を適用すると、上記(式12)は、前述した(式6)に基づき、以下に(式13)として示す計算式で表すことが可能となる。 Here, when the output signal Y fed back (that is, the output signal after the filtering process by the filter processing unit 17) is applied as the component Y in the above (Expression 12), the above (Expression 12) becomes the above-described (Expression 6). ) On the basis of (), it can be expressed by a calculation formula shown as (Formula 13) below.
Figure JPOXMLDOC01-appb-M000012
 ・・・(式13)
Figure JPOXMLDOC01-appb-M000012
... (Formula 13)
 以上のようにして算出された非相関成分Zに基づき信号のパワーを算出し、時間平滑化を行うことで、非相関成分Zのパワースペクトルを推定することが可能となる。ここで、m番目の集音部110(即ち、集音部11m)における、iフレーム、周波数kに対応する非相関成分ZのパワースペクトルQ(i,k)は、以下に(式14)として示す計算式で表される。なお、以下に示す(式14)において、Z (i,k)は、Z(i,k)の共役複素数を示している。また、(式14)において、rは、急激なパワースペクトルの変化を抑制するためのフレーム方向の平滑化係数を表すものとする(0≦r<1)。 It is possible to estimate the power spectrum of the uncorrelated component Z by calculating the signal power based on the uncorrelated component Z calculated as described above and performing time smoothing. Here, the power spectrum Q m (i, k) of the decorrelation component Z corresponding to the i frame and the frequency k in the m-th sound collecting unit 110 (that is, the sound collecting unit 11m) is expressed as (Equation 14) below. It is expressed by the calculation formula shown as In (Expression 14) shown below, Z m * (i, k) represents a conjugate complex number of Z m (i, k). In (Expression 14), r represents a smoothing coefficient in the frame direction for suppressing a rapid change in power spectrum (0 ≦ r <1).
Figure JPOXMLDOC01-appb-M000013
 ・・・(式14)
Figure JPOXMLDOC01-appb-M000013
... (Formula 14)
 以上のようにして、非相関成分パワー推定部653は、非相関成分のパワースペクトルQ(i,k)を算出する。 As described above, the uncorrelated component power estimation unit 653 calculates the power spectrum Q m (i, k) of the uncorrelated component.
 なお、非相関成分パワー推定部653は、パワースペクトルQ(i,k)を推定する際に、2以上の集音部110の集音結果を使用できれば、必ずしも全ての集音部110の集音結果を使用する必要はない。具体的な一例として、非相関成分パワー推定部653は、ユーザの頭部に対して後方に位置する集音部110のように、音声等の目的音を集音しにくい位置に設置された集音部110の集音結果については、パワースペクトルQ(i,k)の推定に使用しなくてもよい。 Note that the non-correlated component power estimation unit 653 may not necessarily collect all the sound collection units 110 if the sound collection results of two or more sound collection units 110 can be used when estimating the power spectrum Q m (i, k). There is no need to use sound results. As a specific example, the uncorrelated component power estimation unit 653 is installed at a position where it is difficult to collect a target sound such as a voice, such as the sound collection unit 110 located behind the user's head. The sound collection result of the sound unit 110 may not be used for estimating the power spectrum Q m (i, k).
 以上、非相関成分パワー推定部653が、周波数ごとに、各集音部110に対応する非相関成分のパワースペクトルQ(i,k)を算出する処理の詳細について説明した。 The details of the process in which the decorrelation component power estimation unit 653 calculates the power spectrum Q m (i, k) of the decorrelation component corresponding to each sound collection unit 110 for each frequency has been described above.
  <2.4.ランダムノイズパワー推定部の詳細>
 続いて、ランダムノイズパワー推定部655が、フィルタ係数w(i,k)の算出に用いられる、周波数ごとの、各集音部110のパワースペクトルWm(i,k)を決定する処理の詳細について説明する。
<2.4. Details of Random Noise Power Estimator>
Subsequently, details of the process in which the random noise power estimation unit 655 determines the power spectrum Wm (i, k) of each sound collection unit 110 for each frequency used for the calculation of the filter coefficient w (i, k). explain.
 前述したように、ランダムノイズパワー推定部655は、入力パワー推定部651から取得されるパワースペクトルP(i,k)と、非相関成分パワー推定部653から取得される非相関成分のパワースペクトルQ(i,k)とのぞれぞれの推定結果に基づき、パワースペクトルWm(i,k)を決定する。 As described above, the random noise power estimation unit 655 includes the power spectrum P m (i, k) acquired from the input power estimation unit 651 and the power spectrum of the non-correlation component acquired from the non-correlation component power estimation unit 653. A power spectrum Wm (i, k) is determined based on each estimation result of Q m (i, k).
 (パワースペクトルQを適用するケース)
 例えば、ランダムノイズパワー推定部655は、非相関成分のパワースペクトルQ(i,k)の推定結果を、パワースペクトルWm(i,k)としてフィルタ推定部66に出力してもよい。なお、この場合には、チャネルパワー推定部65は、入力パワー推定部651を含まなくてもよい。
(Case of applying the power spectrum Q m)
For example, the random noise power estimation unit 655 may output the estimation result of the power spectrum Q m (i, k) of the uncorrelated component to the filter estimation unit 66 as the power spectrum Wm (i, k). In this case, the channel power estimation unit 65 may not include the input power estimation unit 651.
 (パワースペクトルP及びQを選択的に切り替えるケース)
 また、他の一例として、ランダムノイズパワー推定部655は、所定の条件に基づき、パワースペクトルP(i,k)及びQ(i,k)それぞれの推定結果のうちのいずれかを選択的に、パワースペクトルWm(i,k)としてフィルタ推定部66に出力してもよい。
(Case where the power spectra P m and Q m are selectively switched)
As another example, the random noise power estimation unit 655 selectively selects one of the estimation results of the power spectra P m (i, k) and Q m (i, k) based on a predetermined condition. Alternatively, the power spectrum Wm (i, k) may be output to the filter estimation unit 66.
 (パワースペクトルWを適応的に算出するケース)
 また、他の一例として、ランダムノイズパワー推定部655は、パワースペクトルP(i,k)及びQ(i,k)それぞれの推定結果に基づき、パワースペクトルWm(i,k)を適応的に算出してもよい。
(Case where the power spectrum W m is calculated adaptively)
As another example, the random noise power estimation unit 655 adaptively applies the power spectrum Wm (i, k) based on the estimation results of the power spectra P m (i, k) and Q m (i, k). May be calculated.
 例えば、ランダムノイズパワー推定部655は、パワースペクトルP(i,k)及びQ(i,k)を入力として、以下に(式15)として示す計算式に基づき、目的音(音声等)とランダムノイズとの関係を考慮したパワースペクトルW を算出する。なお、「W 」は、「W」の上にチルダが付された文字を示すものとする。また、以下に示すPm及びQmは、パワースペクトルP(i,k)及びQ(i,k)を一般化して記載したものである。 For example, the random noise power estimation unit 655 receives the power spectrums P m (i, k) and Q m (i, k) as inputs, and based on the calculation formula shown below as (Equation 15), the target sound (sound, etc.) The power spectrum W m ˜ taking into account the relationship between the noise and the random noise is calculated. Note that “W m ˜ ” indicates characters with a tilde on “W m ”. Further, Pm and Qm shown below are generalized descriptions of the power spectra P m (i, k) and Q m (i, k).
Figure JPOXMLDOC01-appb-M000014
 ・・・(式15)
Figure JPOXMLDOC01-appb-M000014
... (Formula 15)
 例えば、以下に示す(式16)は、パワースペクトルP(i,k)及びQ(i,k)を入力として、目的音とランダムノイズとの関係を考慮したパワースペクトルW を算出するための関数Fの具体的な一例を示している。 For example, the following (Equation 16) calculates the power spectrum W m ˜ taking into account the relationship between the target sound and random noise, using the power spectra P m (i, k) and Q m (i, k) as inputs. A specific example of the function F for doing this is shown.
Figure JPOXMLDOC01-appb-M000015
 ・・・(式16)
Figure JPOXMLDOC01-appb-M000015
... (Formula 16)
 そして、ランダムノイズパワー推定部655は、上述した目的音とランダムノイズとの関係を考慮したパワースペクトルW に基づき、パワースペクトルWmを、以下に(式17)として示す計算式に基づき算出する。なお、(式17)において、rは、急激なパワースペクトルの変化を抑制するためのフレーム方向の平滑化係数を表している(0≦r<1)。即ち、ランダムノイズパワー推定部655は、以下に(式17)として示す計算式に基づき算出されるパワースペクトルWmを、係数rの設定に基づきフレーム間で平滑化してもよい。 Then, the random noise power estimation unit 655 calculates the power spectrum Wm based on the calculation formula shown below as (Equation 17) based on the power spectrum W m ˜ in consideration of the relationship between the target sound and the random noise. . In (Equation 17), r represents a smoothing coefficient in the frame direction for suppressing a sudden change in power spectrum (0 ≦ r <1). That is, the random noise power estimation unit 655 may smooth the power spectrum Wm calculated based on the calculation formula shown below as (Equation 17) between frames based on the setting of the coefficient r.
Figure JPOXMLDOC01-appb-M000016
 ・・・(式17)
Figure JPOXMLDOC01-appb-M000016
... (Formula 17)
 ここで、(式16)に示すパワースペクトルP、即ち、入力パワー推定部651によるパワースペクトルP(i,k)の推定結果は、前述したように、集音部110により集音された音響のレベルに相当する。これに対して、(式16)に示すパワースペクトルQ、即ち、非相関成分パワー推定部653によるパワースペクトルQ(i,k)の推定結果は、風切音等のようなランダムノイズのレベルに相当する。即ち、(式16)に示した重みQ/(P+Q)は、音声等の目的音と、風切音等のランダムノイズとの間の関係に基づき変化する。 Here, the power spectrum P m shown in (Equation 16), that is, the estimation result of the power spectrum P m (i, k) by the input power estimation unit 651 is collected by the sound collection unit 110 as described above. Corresponds to the level of sound. On the other hand, the power spectrum Q m shown in (Equation 16), that is, the estimation result of the power spectrum Q m (i, k) by the uncorrelated component power estimation unit 653 is the random noise such as wind noise. Corresponds to the level. That is, the weight Q m / (P m + Q m ) shown in (Equation 16) changes based on the relationship between the target sound such as speech and random noise such as wind noise.
 具体的には、ランダムノイズに対して目的音の信号レベルが十分に大きい場合には、パワースペクトルPの影響が支配的となり、重みQ/(P+Q)はより小さくなる。即ち、この場合における当該重みQ/(P+Q)は、対応するチャネル(即ち、集音部110)の集音結果の使用をより抑制する制御を示している。ここで、フィルタ係数w(i,k)の算出には、上記重みQ/(P+Q)の逆数が適用される。そのため、ランダムノイズに対して目的音の信号レベルが十分に大きい場合には、該当するチャネルによる集音結果の使用がより優先されるように、フィルタ係数w(i,k)が算出されることとなる。 Specifically, when the signal level of the target sound is sufficiently large with respect to random noise, the influence of the power spectrum P m becomes dominant, and the weight Q m / (P m + Q m ) becomes smaller. That is, the weight Q m / (P m + Q m ) in this case indicates control that further suppresses use of the sound collection result of the corresponding channel (that is, the sound collection unit 110). Here, the reciprocal of the weight Q m / (P m + Q m ) is applied to the calculation of the filter coefficient w (i, k). Therefore, when the signal level of the target sound is sufficiently high with respect to random noise, the filter coefficient w (i, k) is calculated so that the use of the sound collection result by the corresponding channel is given higher priority. It becomes.
 一方で、風切音等のようなランダムノイズの影響がより大きい場合には、パワースペクトルQの影響がより支配的となり、重みQ/(P+Q)はより大きくなる。即ち、この場合における当該重みQ/(P+Q)は、対応するチャネル(即ち、集音部110)の集音結果の使用をより優先する制御を示している。なお、前述したようにフィルタ係数w(i,k)の算出には、上記重みQ/(P+Q)の逆数が適用される。そのため、ランダムノイズの影響がより大きい場合には、該当するチャネルによる集音結果の使用が抑制されるように、フィルタ係数w(i,k)が算出されることとなる。 On the other hand, is greater than the effect of random noise such as wind noise, the influence of the power spectrum Q m becomes more dominant, weight Q m / (P m + Q m) is greater. That is, the weight Q m / (P m + Q m ) in this case indicates control that gives priority to the use of the sound collection result of the corresponding channel (that is, the sound collection unit 110). As described above, the reciprocal of the weight Q m / (P m + Q m ) is applied to the calculation of the filter coefficient w (i, k). Therefore, when the influence of random noise is greater, the filter coefficient w (i, k) is calculated so that the use of the sound collection result by the corresponding channel is suppressed.
 即ち、上述した制御により、風切音等のランダムノイズの影響が小さく、主に音声が集音されるような状況下では、音声のレベルがより高く集音された集音部110の集音結果が、より優先的に使用されて、フィルタ係数w(i,k)が算出される。これに対して、風切音等のランダムノイズの影響が大きい状況下では、前述した第1の実施形態と同様に、観測レベルのより小さい集音部110の集音結果が、より優先的に使用されて、フィルタ係数w(i,k)が算出されることとなる。このように、ランダムノイズパワー推定部655は、フィルタ係数w(i,k)が算出するためのパワースペクトルWm(i,k)を、音声等のような目的音と、風切音等のようなランダムノイズとの関係に応じて、適応的に算出することが可能となる。 In other words, under the circumstances where random noise such as wind noise is small and the sound is mainly collected by the control described above, the sound collecting unit 110 that has collected the sound at a higher sound level. The result is used more preferentially to calculate the filter coefficient w (i, k). On the other hand, under the situation where the influence of random noise such as wind noise is large, the sound collection result of the sound collection unit 110 having a smaller observation level is more preferentially the same as in the first embodiment described above. Used to calculate the filter coefficient w (i, k). As described above, the random noise power estimation unit 655 uses the power spectrum Wm (i, k) for calculating the filter coefficient w (i, k) as the target sound such as speech and the wind noise. It is possible to calculate adaptively according to the relationship with random noise.
 そして、ランダムノイズパワー推定部655は、上記(式17)に基づき算出したパワースペクトルWm(i,k)を、フィルタ推定部66に出力してもよい。 Then, the random noise power estimation unit 655 may output the power spectrum Wm (i, k) calculated based on (Equation 17) to the filter estimation unit 66.
 以上、ランダムノイズパワー推定部655が、フィルタ係数w(i,k)の算出に用いられる、周波数ごとの、各集音部110のパワースペクトルWm(i,k)を決定する処理の詳細について説明した。なお、上記に説明した例は、あくまで一例であり、パワースペクトルP(i,k)及びQ(i,k)の少なくともいずれかの推定結果に基づき、パワースペクトルWm(i,k)を決定することが可能であれば、その内容は特に限定されない。 The details of the process in which the random noise power estimation unit 655 determines the power spectrum Wm (i, k) of each sound collection unit 110 for each frequency used for calculating the filter coefficient w (i, k) have been described above. did. The example described above is merely an example, and the power spectrum Wm (i, k) is calculated based on the estimation result of at least one of the power spectra P m (i, k) and Q m (i, k). The content is not particularly limited as long as it can be determined.
  <2.5.評価>
 以上説明したように、本実施形態に係る情報処理装置60は、複数の集音部110のうち少なくとも2以上の集音部110による集音結果と、フィルタ処理部17の出力信号Y(i,k)のフィードバックとに基づき、非相関成分のパワースペクトルQ(i,k)を推定する。そして、情報処理装置60は、非相関成分のパワースペクトルQ(i,k)の推定結果を、フィルタ係数w(i,k)の推定に利用する。このような構成により、情報処理装置60は、前述した第1の実施形態と同様に風切音等のランダムに発生する雑音の抑圧効果を維持し、さらに、ランダムに発生する雑音の影響が小さい場合において、より好適な態様で目的音を取得することが可能となる。
<2.5. Evaluation>
As described above, the information processing apparatus 60 according to this embodiment includes the sound collection results obtained by at least two or more sound collection units 110 among the plurality of sound collection units 110 and the output signal Y (i, The power spectrum Q m (i, k) of the non-correlated component is estimated based on the feedback of k). The information processing apparatus 60 uses the estimation result of the power spectrum Q m (i, k) of the non-correlated component for estimation of the filter coefficient w (i, k). With such a configuration, the information processing apparatus 60 maintains the effect of suppressing noise generated randomly such as wind noise as in the first embodiment described above, and further, the influence of noise generated randomly is small. In some cases, the target sound can be acquired in a more preferable manner.
 なお、上記では、本実施形態に係る信号処理を、例えば、図1に示した所謂ネックバンド型のウェアラブルデバイスに適用する場合に着目して説明した。一方で、本実施形態に係る信号処理の適用先は、必ずしも図1に示す例のみには限定されない。具体的には、本実施系に係る信号処理は、複数の集音部を備える装置であれば適用することが可能である。なお、より好適には、複数の集音部は、目的音の音源(例えば、音声が発話される口元)からの距離が互いに異なるように配置されているとよい。また、より好適には、複数の集音部は、目的音の音源に対して互いに異なる方向に位置するように配置されているとよい。 In the above description, the signal processing according to the present embodiment has been described focusing on the case where it is applied to the so-called neckband type wearable device shown in FIG. On the other hand, the application destination of the signal processing according to the present embodiment is not necessarily limited to the example shown in FIG. Specifically, the signal processing according to the present embodiment can be applied to any device that includes a plurality of sound collection units. More preferably, the plurality of sound collection units may be arranged so that the distances from the sound source of the target sound (for example, the mouth where the voice is spoken) are different from each other. More preferably, the plurality of sound collecting units may be arranged so as to be positioned in different directions with respect to the sound source of the target sound.
 <<3.ハードウェア構成>>
 次に、図24を参照して、本開示の各実施形態に係る情報処理装置10(即ち、上述した信号処理装置11~14)のハードウェア構成の一例について説明する。図24は、本開示の各実施形態に係る情報処理装置10のハードウェア構成の一例を示した図である。
<< 3. Hardware configuration >>
Next, an example of a hardware configuration of the information processing apparatus 10 (that is, the above-described signal processing apparatuses 11 to 14) according to each embodiment of the present disclosure will be described with reference to FIG. FIG. 24 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 10 according to each embodiment of the present disclosure.
 図24に示すように、本実施形態に係る情報処理装置10は、プロセッサ901と、メモリ903と、ストレージ905と、操作デバイス907と、報知デバイス909と、音響デバイス911と、集音デバイス913と、バス917とを含む。また、情報処理装置10は、通信デバイス915を含んでもよい。 As illustrated in FIG. 24, the information processing apparatus 10 according to the present embodiment includes a processor 901, a memory 903, a storage 905, an operation device 907, a notification device 909, an acoustic device 911, and a sound collection device 913. And bus 917. Further, the information processing apparatus 10 may include a communication device 915.
 プロセッサ901は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)又はSoC(System on Chip)であってよく、情報処理装置10の様々な処理を実行する。プロセッサ901は、例えば、各種演算処理を実行するための電子回路により構成することが可能である。なお、前述した周波数分解部13、チャネルパワー推定部15、フィルタ推定部16、フィルタ処理部17、及び周波数合成部18は、プロセッサ901により実現され得る。 The processor 901 may be, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), or a SoC (System on Chip), and executes various processes of the information processing apparatus 10. The processor 901 can be configured by, for example, an electronic circuit for executing various arithmetic processes. Note that the frequency resolving unit 13, the channel power estimating unit 15, the filter estimating unit 16, the filter processing unit 17, and the frequency synthesizing unit 18 described above can be realized by the processor 901.
 メモリ903は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ905は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。 The memory 903 includes RAM (Random Access Memory) and ROM (Read Only Memory), and stores programs and data executed by the processor 901. The storage 905 can include a storage medium such as a semiconductor memory or a hard disk.
 操作デバイス907は、ユーザが所望の操作を行うための入力信号を生成する機能を有する。操作デバイス907は、例えば、タッチパネルとして構成され得る。また、他の一例として、操作デバイス907は、例えばボタン、スイッチ、及びキーボードなどユーザが情報を入力するための入力部と、ユーザによる入力に基づいて入力信号を生成し、プロセッサ901に供給する入力制御回路などから構成されてよい。 The operation device 907 has a function of generating an input signal for a user to perform a desired operation. The operation device 907 can be configured as a touch panel, for example. As another example, the operation device 907 generates an input signal based on an input by the user, such as buttons, switches, and a keyboard, and an input for the user to input information, and supplies the input signal to the processor 901. It may be composed of a control circuit or the like.
 報知デバイス909は、出力デバイスの一例であり、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)装置、有機EL(OLED:Organic Light Emitting Diode)ディスプレイなどのデバイスであってよい。この場合には、報知デバイス909は、画面を表示することにより、ユーザに対して所定の情報を報知することができる。 The notification device 909 is an example of an output device, and may be a device such as a liquid crystal display (LCD) device or an organic EL (OLED: Organic Light Emitting Diode) display, for example. In this case, the notification device 909 can notify the user of predetermined information by displaying the screen.
 なお、上記に示した報知デバイス909の例はあくまで一例であり、ユーザに対して所定の情報を報知可能であれば、報知デバイス909の態様は特に限定されない。具体的な一例として、報知デバイス909は、LED(Light Emitting Diode)のように、点灯又は点滅のパターンにより、所定の情報をユーザに報知するデバイスであってもよい。また、報知デバイス909は、所謂バイブレータのように、振動することで、所定の情報をユーザに報知するデバイスであってもよい。 In addition, the example of the notification device 909 described above is merely an example, and the aspect of the notification device 909 is not particularly limited as long as predetermined information can be notified to the user. As a specific example, the notification device 909 may be a device that notifies the user of predetermined information using a lighting or blinking pattern, such as an LED (Light Emitting Diode). Further, the notification device 909 may be a device that notifies a user of predetermined information by vibrating like a so-called vibrator.
 音響デバイス911は、スピーカ等のように、所定の音響信号を出力することで、所定の情報をユーザに報知するデバイスである。 The acoustic device 911 is a device that notifies a user of predetermined information by outputting a predetermined acoustic signal, such as a speaker.
 集音デバイス913は、マイクロフォン等のような、ユーザから発せられた音声や周囲の環境の音響を集音し、音響情報(音響信号)として取得するためのデバイスである。また、集音デバイス913は、集音された音声や音響を示すアナログの音響信号を示すデータを音響情報として取得してもよいし、当該アナログの音響信号をデジタルの音響信号に変換し、変換後のデジタルの音響信号を示すデータを音響情報として取得してもよい。なお、前述した集音部110(例えば、図6に示す集音部111~11M)は、集音デバイス913により実現され得る。 The sound collection device 913 is a device such as a microphone that collects sound emitted from the user and the sound of the surrounding environment and acquires it as acoustic information (acoustic signal). In addition, the sound collection device 913 may acquire data indicating an analog sound signal indicating collected sound or sound as sound information, or convert the analog sound signal into a digital sound signal, Data indicating a later digital acoustic signal may be acquired as acoustic information. Note that the above-described sound collection unit 110 (for example, the sound collection units 111 to 11M shown in FIG. 6) can be realized by the sound collection device 913.
 通信デバイス915は、情報処理装置10が備える通信手段であり、ネットワークを介して外部装置と通信する。通信デバイス915は、有線または無線用の通信インタフェースである。通信デバイス915を、無線通信インタフェースとして構成する場合には、当該通信デバイス915は、通信アンテナ、RF(Radio Frequency)回路、ベースバンドプロセッサなどを含んでもよい。 The communication device 915 is a communication unit included in the information processing apparatus 10 and communicates with an external apparatus via a network. The communication device 915 is a wired or wireless communication interface. When the communication device 915 is configured as a wireless communication interface, the communication device 915 may include a communication antenna, an RF (Radio Frequency) circuit, a baseband processor, and the like.
 通信デバイス915は、外部装置から受信した信号に各種の信号処理を行う機能を有し、受信したアナログ信号から生成したデジタル信号をプロセッサ901に供給することが可能である。 The communication device 915 has a function of performing various kinds of signal processing on a signal received from an external device, and can supply a digital signal generated from the received analog signal to the processor 901.
 バス917は、プロセッサ901、メモリ903、ストレージ905、操作デバイス907、報知デバイス909、音響デバイス911、集音デバイス913、及び通信デバイス915を相互に接続する。バス917は、複数の種類のバスを含んでもよい。 The bus 917 connects the processor 901, the memory 903, the storage 905, the operation device 907, the notification device 909, the acoustic device 911, the sound collection device 913, and the communication device 915 to each other. The bus 917 may include a plurality of types of buses.
 また、コンピュータに内蔵されるプロセッサ、メモリ、及びストレージなどのハードウェアを、上記した情報処理装置10が有する構成と同等の機能を発揮させるためのプログラムも作成可能である。また、当該プログラムを記録した、コンピュータに読み取り可能な記憶媒体も提供され得る。 In addition, it is possible to create a program for causing hardware such as a processor, memory, and storage built in a computer to exhibit functions equivalent to the configuration of the information processing apparatus 10 described above. A computer-readable storage medium that records the program can also be provided.
 <<4.むすび>>
 以上、説明したように、本実施形態に係る情報処理装置10は、少なくとも一部に流線形の形状を有する凸部を備え、当該凸部の先端、または、当該先端の近傍に位置するように集音部110が支持される。このような構成とすることで、例えば、風切音、振動に伴う雑音、及び装置の装着に伴う衣擦れ等のようなランダムに発生する雑音の影響を緩和し、より好適な態様で目的音(例えば、ユーザの音声)を集音することが可能となる。
<< 4. Conclusion >>
As described above, the information processing apparatus 10 according to the present embodiment includes a convex portion having a streamline shape at least in part, and is positioned at or near the tip of the convex portion. The sound collection unit 110 is supported. By adopting such a configuration, for example, the effect of random noise such as wind noise, noise associated with vibration, and rubbing caused by wearing of the device is reduced, and the target sound ( For example, the user's voice) can be collected.
 また、本実施形態に係る情報処理装置10は、複数の集音部110を備え、当該複数の集音部110が互いに異なる方向を向くように支持されていてもよい。このような構成により、風切音、振動に伴う雑音、及び装置の装着に伴う衣擦れ等の雑音がランダムに発生するような状況下においても、一部の集音部(即ち、雑音の影響が少ない集音部)の集音結果に基づき、他の集音部の特性を補うことが可能となる。 Moreover, the information processing apparatus 10 according to the present embodiment may include a plurality of sound collecting units 110 and may be supported so that the plurality of sound collecting units 110 face different directions. With such a configuration, even in a situation where noise such as wind noise, vibration, and rubbing due to wearing of the device occurs randomly, some sound collection units (i.e., the influence of noise is Based on the sound collection results of a small number of sound collection units), it becomes possible to supplement the characteristics of other sound collection units.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 集音部と、
 流線形の形状を有する凸部を少なくとも一部に備え、前記凸部の先端、または、当該先端の近傍に位置するように前記集音部を支持する支持部材と、
 を備える、情報処理装置。
(2)
 前記集音部である第1の集音部に加えて、当該第1の集音部とは異なる1以上の第2の集音部を備える、前記(1)に記載の情報処理装置。
(3)
 前記支持部材は、複数の前記第2の集音部のそれぞれが、互いに異なる方向を向くように支持する、前記(2)に記載の情報処理装置。
(4)
 前記支持部材は、ユーザの所定の部位に装着され、前記集音部と当該部位とが所定の位置関係となるように当該集音部を支持する、前記(1)に記載の情報処理装置。
(5)
 前記部位は、首であり、
 前記支持部材は、前記首に装着された場合に、前記凸部の先端が当該ユーザの略前方を向くように当該凸部が設けられている、
 前記(4)に記載の情報処理装置。
(6)
 前記集音部である第1の集音部に加えて、当該第1の集音部とは異なる複数の第2の集音部を備え、
 複数の前記第2の集音部のうち少なくとも2以上の第2の集音部を、前記部位を基準として互いに略対称となる位置に支持する、
 前記(4)または(5)に記載の情報処理装置。
(7)
 前記第1の集音部と1以上の前記第2の集音部とのそれぞれにより集音された音響に基づき、前記第1の集音部に対して所定の方向から到来する音響に対する雑音成分を抑圧する信号処理部を備える、前記(2)に記載の情報処理装置。
(8)
 前記信号処理部は、前記第1の集音部と1以上の前記第2の集音部とのそれぞれにより集音された音響に基づき、当該音響の周波数成分それぞれの信号レベルを推定し、当該信号レベルの推定結果に基づき、前記雑音成分を抑圧する、前記(7)に記載の情報処理装置。
(9)
 前記信号処理部は、前記第1の集音部と1以上の前記第2の集音部とのうちの少なくとも複数の集音部それぞれにより集音された第1の音響と、従前の処理により前記雑音成分が抑圧された第2の音響との間の相関性に基づき、前記第1の音響に含まれる前記雑音成分を抑圧する、前記(7)に記載の情報処理装置。
(10)
 前記支持部材は、前記複数の集音部のうち少なくとも2以上の集音部のそれぞれと、所定の音源との間の距離が互いに異なるように、当該複数の集音部を支持する、前記(9)に記載の情報処理装置。
(11)
 前記支持部材は、前記複数の集音部のうち少なくとも2以上の集音部のそれぞれが、所定の音源に対して互いに異なる方向に位置するように、当該複数の集音部を支持する、前記(9)または(10)に記載の情報処理装置。
(12)
 前記支持部材は、少なくとも一部に略矩形状の面を有する筐体であり、
 前記筐体は、前記略矩形状の面の角を含む所定の領域中に前記凸部を有し、当該凸部の先端、または、当該先端の近傍に前記集音部を支持する、
 前記(1)に記載の情報処理装置。
(13)
 複数の前記集音部を備え、
 前記筐体は、前記略矩形状の面の角のうち複数の角それぞれについて、当該角を含む所定の領域中に前記凸部を有し、当該凸部の先端、または、当該先端の近傍に前記集音部を支持する、前記(12)に記載の情報処理装置。
(14)
 ユーザの腕に対して前記筐体を支持するバンド部を備え、
 前記バンド部は、前記腕に装着された場合に、当該腕を基準として前記筐体と略対称となる位置に前記集音部とは異なる他の集音部を備える、
 前記(12)または(13)に記載の情報処理装置。
(15)
 前記支持部材は、ユーザの頭部に装着されるメガネ型のフレームであり、
 前記フレームは、フロントの少なくとも一部に前記凸部を有し、当該凸部の先端、または、当該先端の近傍に前記集音部を支持する、
 前記(1)に記載の情報処理装置。
(16)
 前記フレームは、ブリッジ、または、当該ブリッジの近傍に前記凸部を有し、当該凸部の先端、または、当該先端の近傍に前記集音部を支持する、前記(15)に記載の情報処理装置。
The following configurations also belong to the technical scope of the present disclosure.
(1)
The sound collection section;
A support member for supporting the sound collection unit so as to be located at or near the tip of the protrusion, or at least part of the protrusion having a streamlined shape;
An information processing apparatus comprising:
(2)
The information processing apparatus according to (1), further including one or more second sound collecting units different from the first sound collecting unit in addition to the first sound collecting unit which is the sound collecting unit.
(3)
The information processing apparatus according to (2), wherein the support member supports each of the plurality of second sound collection units so as to face different directions.
(4)
The information processing apparatus according to (1), wherein the support member is attached to a predetermined part of a user and supports the sound collection unit so that the sound collection unit and the part have a predetermined positional relationship.
(5)
The part is a neck;
When the support member is attached to the neck, the convex portion is provided so that the tip of the convex portion faces substantially forward of the user.
The information processing apparatus according to (4).
(6)
In addition to the first sound collection unit that is the sound collection unit, a plurality of second sound collection units different from the first sound collection unit are provided,
Supporting at least two or more second sound collecting parts among the plurality of second sound collecting parts at positions that are substantially symmetrical with each other with respect to the part;
The information processing apparatus according to (4) or (5).
(7)
Based on the sound collected by each of the first sound collection unit and the one or more second sound collection units, a noise component for sound coming from a predetermined direction with respect to the first sound collection unit The information processing apparatus according to (2), further including a signal processing unit that suppresses noise.
(8)
The signal processing unit estimates a signal level of each frequency component of the sound based on the sound collected by each of the first sound collecting unit and the one or more second sound collecting units, and The information processing apparatus according to (7), wherein the noise component is suppressed based on a signal level estimation result.
(9)
The signal processing unit includes a first sound collected by each of at least a plurality of sound collection units of the first sound collection unit and the one or more second sound collection units, and a previous process. The information processing apparatus according to (7), wherein the noise component included in the first sound is suppressed based on a correlation with the second sound in which the noise component is suppressed.
(10)
The support member supports the plurality of sound collection units such that a distance between each of at least two or more of the plurality of sound collection units and a predetermined sound source is different from each other. The information processing apparatus according to 9).
(11)
The support member supports the plurality of sound collection units such that at least two or more of the plurality of sound collection units are located in different directions with respect to a predetermined sound source, (9) The information processing apparatus according to (10).
(12)
The support member is a housing having a substantially rectangular surface at least in part,
The housing has the convex portion in a predetermined region including a corner of the substantially rectangular surface, and supports the sound collecting portion at the tip of the convex portion or in the vicinity of the tip.
The information processing apparatus according to (1).
(13)
A plurality of the sound collecting units;
The housing has the convex portion in a predetermined region including the corner for each of a plurality of corners of the substantially rectangular surface, and at or near the tip of the convex portion. The information processing apparatus according to (12), which supports the sound collection unit.
(14)
A band portion for supporting the housing with respect to a user's arm;
When the band portion is attached to the arm, the band portion includes another sound collecting portion different from the sound collecting portion at a position that is substantially symmetrical with the housing with respect to the arm.
The information processing apparatus according to (12) or (13).
(15)
The support member is a glasses-type frame attached to the user's head,
The frame has the convex portion on at least a part of the front, and supports the sound collecting portion at the tip of the convex portion or in the vicinity of the tip.
The information processing apparatus according to (1).
(16)
The information processing according to (15), wherein the frame has the convex portion in the vicinity of the bridge or the bridge, and supports the sound collecting portion in a front end of the convex portion or in the vicinity of the front end. apparatus.
 10  情報処理装置
 13  周波数分解部
 15  チャネルパワー推定部
 16  フィルタ推定部
 17  フィルタ処理部
 18  周波数合成部
 110~113 集音部
 60  情報処理装置
 65  チャネルパワー推定部
 651 入力パワー推定部
 653 非相関成分パワー推定部
 655 ランダムノイズパワー推定部
 66  フィルタ推定部
DESCRIPTION OF SYMBOLS 10 Information processing apparatus 13 Frequency decomposition part 15 Channel power estimation part 16 Filter estimation part 17 Filter processing part 18 Frequency synthesis part 110-113 Sound collection part 60 Information processing apparatus 65 Channel power estimation part 651 Input power estimation part 653 Uncorrelated component power Estimator 655 Random noise power estimator 66 Filter estimator

Claims (16)

  1.  集音部と、
     流線形の形状を有する凸部を少なくとも一部に備え、前記凸部の先端、または、当該先端の近傍に位置するように前記集音部を支持する支持部材と、
     を備える、情報処理装置。
    The sound collection section;
    A support member for supporting the sound collection unit so as to be located at or near the tip of the protrusion, or at least part of the protrusion having a streamlined shape;
    An information processing apparatus comprising:
  2.  前記集音部である第1の集音部に加えて、当該第1の集音部とは異なる1以上の第2の集音部を備える、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising one or more second sound collecting units different from the first sound collecting unit in addition to the first sound collecting unit which is the sound collecting unit.
  3.  前記支持部材は、複数の前記第2の集音部のそれぞれが、互いに異なる方向を向くように支持する、請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the support member supports each of the plurality of second sound collection units so as to face different directions.
  4.  前記支持部材は、ユーザの所定の部位に装着され、前記集音部と当該部位とが所定の位置関係となるように当該集音部を支持する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the support member is attached to a predetermined part of a user and supports the sound collection unit so that the sound collection unit and the part have a predetermined positional relationship.
  5.  前記部位は、首であり、
     前記支持部材は、前記首に装着された場合に、前記凸部の先端が当該ユーザの略前方を向くように当該凸部が設けられている、
     請求項4に記載の情報処理装置。
    The part is a neck;
    When the support member is attached to the neck, the convex portion is provided so that the tip of the convex portion faces substantially forward of the user.
    The information processing apparatus according to claim 4.
  6.  前記集音部である第1の集音部に加えて、当該第1の集音部とは異なる複数の第2の集音部を備え、
     複数の前記第2の集音部のうち少なくとも2以上の第2の集音部を、前記部位を基準として互いに略対称となる位置に支持する、
     請求項4に記載の情報処理装置。
    In addition to the first sound collection unit that is the sound collection unit, a plurality of second sound collection units different from the first sound collection unit are provided,
    Supporting at least two or more second sound collecting parts among the plurality of second sound collecting parts at positions that are substantially symmetrical with each other with respect to the part;
    The information processing apparatus according to claim 4.
  7.  前記第1の集音部と1以上の前記第2の集音部とのそれぞれにより集音された音響に基づき、前記第1の集音部に対して所定の方向から到来する音響に対する雑音成分を抑圧する信号処理部を備える、請求項2に記載の情報処理装置。 Based on the sound collected by each of the first sound collection unit and the one or more second sound collection units, a noise component for sound coming from a predetermined direction with respect to the first sound collection unit The information processing apparatus according to claim 2, further comprising: a signal processing unit that suppresses noise.
  8.  前記信号処理部は、前記第1の集音部と1以上の前記第2の集音部とのそれぞれにより集音された音響に基づき、当該音響の周波数成分それぞれの信号レベルを推定し、当該信号レベルの推定結果に基づき、前記雑音成分を抑圧する、請求項7に記載の情報処理装置。 The signal processing unit estimates a signal level of each frequency component of the sound based on the sound collected by each of the first sound collecting unit and the one or more second sound collecting units, and The information processing apparatus according to claim 7, wherein the noise component is suppressed based on a signal level estimation result.
  9.  前記信号処理部は、前記第1の集音部と1以上の前記第2の集音部とのうちの少なくとも複数の集音部それぞれにより集音された第1の音響と、従前の処理により前記雑音成分が抑圧された第2の音響との間の相関性に基づき、前記第1の音響に含まれる前記雑音成分を抑圧する、請求項7に記載の情報処理装置。 The signal processing unit includes a first sound collected by each of at least a plurality of sound collection units of the first sound collection unit and the one or more second sound collection units, and a previous process. The information processing apparatus according to claim 7, wherein the noise component included in the first sound is suppressed based on a correlation with the second sound in which the noise component is suppressed.
  10.  前記支持部材は、前記複数の集音部のうち少なくとも2以上の集音部のそれぞれと、所定の音源との間の距離が互いに異なるように、当該複数の集音部を支持する、請求項9に記載の情報処理装置。 The said support member supports the said several sound collection part so that the distance between each of at least 2 or more sound collection parts of the said several sound collection parts and a predetermined sound source may mutually differ. 9. The information processing apparatus according to 9.
  11.  前記支持部材は、前記複数の集音部のうち少なくとも2以上の集音部のそれぞれが、所定の音源に対して互いに異なる方向に位置するように、当該複数の集音部を支持する、請求項9に記載の情報処理装置。 The support member supports the plurality of sound collection units such that at least two or more of the plurality of sound collection units are located in different directions with respect to a predetermined sound source. Item 10. The information processing device according to Item 9.
  12.  前記支持部材は、少なくとも一部に略矩形状の面を有する筐体であり、
     前記筐体は、前記略矩形状の面の角を含む所定の領域中に前記凸部を有し、当該凸部の先端、または、当該先端の近傍に前記集音部を支持する、
     請求項1に記載の情報処理装置。
    The support member is a housing having a substantially rectangular surface at least in part,
    The housing has the convex portion in a predetermined region including a corner of the substantially rectangular surface, and supports the sound collecting portion at the tip of the convex portion or in the vicinity of the tip.
    The information processing apparatus according to claim 1.
  13.  複数の前記集音部を備え、
     前記筐体は、前記略矩形状の面の角のうち複数の角それぞれについて、当該角を含む所定の領域中に前記凸部を有し、当該凸部の先端、または、当該先端の近傍に前記集音部を支持する、請求項12に記載の情報処理装置。
    A plurality of the sound collecting units;
    The housing has the convex portion in a predetermined region including the corner for each of a plurality of corners of the substantially rectangular surface, and at or near the tip of the convex portion. The information processing apparatus according to claim 12, wherein the information collection unit is supported.
  14.  ユーザの腕に対して前記筐体を支持するバンド部を備え、
     前記バンド部は、前記腕に装着された場合に、当該腕を基準として前記筐体と略対称となる位置に前記集音部とは異なる他の集音部を備える、
     請求項12に記載の情報処理装置。
    A band portion for supporting the housing with respect to a user's arm;
    When the band portion is attached to the arm, the band portion includes another sound collecting portion different from the sound collecting portion at a position that is substantially symmetrical with the housing with respect to the arm.
    The information processing apparatus according to claim 12.
  15.  前記支持部材は、ユーザの頭部に装着されるメガネ型のフレームであり、
     前記フレームは、フロントの少なくとも一部に前記凸部を有し、当該凸部の先端、または、当該先端の近傍に前記集音部を支持する、
     請求項1に記載の情報処理装置。
    The support member is a glasses-type frame attached to the user's head,
    The frame has the convex portion on at least a part of the front, and supports the sound collecting portion at the tip of the convex portion or in the vicinity of the tip.
    The information processing apparatus according to claim 1.
  16.  前記フレームは、ブリッジ、または、当該ブリッジの近傍に前記凸部を有し、当該凸部の先端、または、当該先端の近傍に前記集音部を支持する、請求項15に記載の情報処理装置。 The information processing apparatus according to claim 15, wherein the frame has the convex portion in the vicinity of the bridge or the bridge, and supports the sound collection unit in a front end of the convex portion or in the vicinity of the front end. .
PCT/JP2016/073655 2015-10-13 2016-08-10 Information-processing device WO2017064914A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CN201910827384.7A CN110493692B (en) 2015-10-13 2016-10-06 Information processing apparatus
BR112018007055-6A BR112018007055A2 (en) 2015-10-13 2016-10-06 Information processor
RU2018112178A RU2727883C2 (en) 2015-10-13 2016-10-06 Information processing device
US15/766,241 US10565976B2 (en) 2015-10-13 2016-10-06 Information processing device
JP2017545183A JP6496941B2 (en) 2015-10-13 2016-10-06 Information processing device
EP19168684.9A EP3544311B1 (en) 2015-10-13 2016-10-06 Information processing device
EP16855346.9A EP3364663B1 (en) 2015-10-13 2016-10-06 Information processing device
PCT/JP2016/079855 WO2017065092A1 (en) 2015-10-13 2016-10-06 Information processing device
CN201680058465.XA CN108141654B (en) 2015-10-13 2016-10-06 Information processing apparatus
KR1020187008290A KR102524931B1 (en) 2015-10-13 2016-10-06 information processing device
PH12018500760A PH12018500760A1 (en) 2015-10-13 2018-04-05 Information processing device
JP2019037388A JP2019110593A (en) 2015-10-13 2019-03-01 Information processing apparatus
US16/517,365 US11232777B2 (en) 2015-10-13 2019-07-19 Information processing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-201723 2015-10-13
JP2015201723 2015-10-13
JP2016-133593 2016-07-05
JP2016133593 2016-07-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/079855 Continuation-In-Part WO2017065092A1 (en) 2015-10-13 2016-10-06 Information processing device
US15/766,241 Continuation-In-Part US10565976B2 (en) 2015-10-13 2016-10-06 Information processing device

Publications (1)

Publication Number Publication Date
WO2017064914A1 true WO2017064914A1 (en) 2017-04-20

Family

ID=58518196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073655 WO2017064914A1 (en) 2015-10-13 2016-08-10 Information-processing device

Country Status (1)

Country Link
WO (1) WO2017064914A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147753A (en) * 2018-07-24 2019-01-04 西南交通大学 The smallest convex combination noise-reduction method of difference based on square-error and square-error logarithm

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51248Y1 (en) * 1971-05-26 1976-01-07
US5793875A (en) * 1996-04-22 1998-08-11 Cardinal Sound Labs, Inc. Directional hearing system
JP2005534269A (en) * 2002-07-26 2005-11-10 オークレイ・インコーポレイテッド Wireless interactive headset
JP2007519342A (en) * 2004-01-09 2007-07-12 コス コーポレイション Hands-free personal communication device
JP2008507926A (en) * 2004-07-22 2008-03-13 ソフトマックス,インク Headset for separating audio signals in noisy environments
JP2012133250A (en) * 2010-12-24 2012-07-12 Sony Corp Sound information display apparatus, method and program
JP2014023141A (en) * 2012-07-23 2014-02-03 Satoru Katsumata Holder for carrying mobile information terminal
JP2014045236A (en) * 2012-08-24 2014-03-13 Akoo:Kk Surface sound pressure measurement microphone with windbreak layer
WO2015003220A1 (en) * 2013-07-12 2015-01-15 Wolfson Dynamic Hearing Pty Ltd Wind noise reduction

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51248Y1 (en) * 1971-05-26 1976-01-07
US5793875A (en) * 1996-04-22 1998-08-11 Cardinal Sound Labs, Inc. Directional hearing system
JP2005534269A (en) * 2002-07-26 2005-11-10 オークレイ・インコーポレイテッド Wireless interactive headset
JP2007519342A (en) * 2004-01-09 2007-07-12 コス コーポレイション Hands-free personal communication device
JP2008507926A (en) * 2004-07-22 2008-03-13 ソフトマックス,インク Headset for separating audio signals in noisy environments
JP2012133250A (en) * 2010-12-24 2012-07-12 Sony Corp Sound information display apparatus, method and program
JP2014023141A (en) * 2012-07-23 2014-02-03 Satoru Katsumata Holder for carrying mobile information terminal
JP2014045236A (en) * 2012-08-24 2014-03-13 Akoo:Kk Surface sound pressure measurement microphone with windbreak layer
WO2015003220A1 (en) * 2013-07-12 2015-01-15 Wolfson Dynamic Hearing Pty Ltd Wind noise reduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147753A (en) * 2018-07-24 2019-01-04 西南交通大学 The smallest convex combination noise-reduction method of difference based on square-error and square-error logarithm
CN109147753B (en) * 2018-07-24 2022-03-25 西南交通大学 Convex combination noise reduction method based on minimum difference between square error and square logarithm error

Similar Documents

Publication Publication Date Title
WO2017065092A1 (en) Information processing device
JP2019110593A (en) Information processing apparatus
CN108600907B (en) Method for positioning sound source, hearing device and hearing system
US9094749B2 (en) Head-mounted sound capture device
CN108370471A (en) Distributed audio captures and mixing
US10186278B2 (en) Microphone array noise suppression using noise field isotropy estimation
US10186277B2 (en) Microphone array speech enhancement
EP2976893A1 (en) Spatial audio apparatus
WO2014101429A1 (en) Noise reduction method and device for bi-microphone of terminal
WO2016100460A1 (en) Systems and methods for source localization and separation
TW202242855A (en) Acoustic device
KR102387025B1 (en) Audio signal processing method, device, terminal and storage medium
JP2016048872A (en) Sound collection device
WO2017064914A1 (en) Information-processing device
WO2021129197A1 (en) Voice signal processing method and apparatus
CN110890100A (en) Voice enhancement method, multimedia data acquisition method, multimedia data playing method, device and monitoring system
CN113889135A (en) Method for estimating direction of arrival of sound source, electronic equipment and chip system
CN114708881A (en) Directional selectable pickup method based on double microphones, electronic equipment and storage medium
WO2022226696A1 (en) Open earphone
JP2017143406A (en) Binaural sound generation device, microphone array, binaural sound generation method, program
CN115665606B (en) Sound reception method and sound reception device based on four microphones
US11937047B1 (en) Ear-worn device with neural network for noise reduction and/or spatial focusing using multiple input audio signals
WO2024045739A1 (en) Sound signal processing device and method, and related device
CN113132845A (en) Signal processing method and device, computer readable storage medium and earphone
CN116781817A (en) Binaural sound pickup method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16855168

Country of ref document: EP

Kind code of ref document: A1