WO2017086295A1 - Body control device - Google Patents

Body control device Download PDF

Info

Publication number
WO2017086295A1
WO2017086295A1 PCT/JP2016/083774 JP2016083774W WO2017086295A1 WO 2017086295 A1 WO2017086295 A1 WO 2017086295A1 JP 2016083774 W JP2016083774 W JP 2016083774W WO 2017086295 A1 WO2017086295 A1 WO 2017086295A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
sound signal
control
electroencephalogram
unit
Prior art date
Application number
PCT/JP2016/083774
Other languages
French (fr)
Japanese (ja)
Inventor
健太 福岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017551877A priority Critical patent/JPWO2017086295A1/en
Publication of WO2017086295A1 publication Critical patent/WO2017086295A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M21/02Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis for inducing sleep or relaxation, e.g. by direct nerve stimulation, hypnosis, analgesia

Definitions

  • the following disclosure relates to a device for controlling the body.
  • Patent Document 1 two low-frequency electrical signals of speech itself to be learned or appreciated are set to two systems, and the frequency difference between the two low-frequency electrical signals is set to a desired brain wave frequency fa, so that the left and right ears
  • An apparatus for guiding the frequency of the electroencephalogram to the frequency fa by outputting to each of the above is disclosed.
  • Patent Document 1 can induce an electroencephalogram to a predetermined frequency fa, but cannot induce an electroencephalogram having an appropriate frequency according to the user's physical condition.
  • the following disclosure aims to provide a technique capable of controlling the body according to the physical condition of the user.
  • the body control device includes a biological information acquisition unit that acquires biological information of a user, a control frequency determination unit that determines a control frequency based on the biological information acquired by the biological information acquisition unit, A modulated sound signal generating unit that generates a modulated sound signal obtained by modulating a sound signal prepared in advance with a control frequency determined by the control frequency determining unit, and a modulated sound signal generated by the modulated sound signal generating unit is output. And an output unit.
  • the user's biological information is acquired, and the control frequency is determined based on the acquired biological information. Therefore, the body is controlled based on an appropriate control frequency according to the user's physical state. be able to.
  • FIG. 1 is a block diagram illustrating a schematic configuration of the body control device according to the first embodiment.
  • FIG. 2 is a diagram summarizing the types, frequencies, and characteristics of electroencephalograms.
  • FIG. 3 is a diagram showing the relationship between the sleep stage, the electroencephalogram frequency at that time, and the electroencephalogram frequency induced in the sleep mode.
  • FIG. 4 is a diagram showing a relationship between the frequency of the electroencephalogram (estimated frequency) in each sleep stage and the frequency of the electroencephalogram induced in the sleep mode.
  • FIG. 5 is a diagram showing the relationship between the sleep stage, the electroencephalogram frequency at that time, and the electroencephalogram frequency induced in the awake mode.
  • FIG. 1 is a block diagram illustrating a schematic configuration of the body control device according to the first embodiment.
  • FIG. 2 is a diagram summarizing the types, frequencies, and characteristics of electroencephalograms.
  • FIG. 3 is a diagram showing the relationship between the sleep stage, the electroence
  • FIG. 6 is a diagram showing the relationship between the frequency (estimated frequency) of the electroencephalogram in each sleep stage and the frequency of the electroencephalogram induced in the wakefulness mode.
  • FIG. 7 is a diagram illustrating an example of the time change of the sleep stage and the control timing in the mid-wake mode.
  • FIG. 8 is a diagram illustrating an example of the time change of the sleep stage and the control timing in the lucid dream mode.
  • the body control device includes a biological information acquisition unit that acquires biological information of a user, a control frequency determination unit that determines a control frequency based on the biological information acquired by the biological information acquisition unit, A modulated sound signal generating unit that generates a modulated sound signal obtained by modulating a sound signal prepared in advance with a control frequency determined by the control frequency determining unit, and a modulated sound signal generated by the modulated sound signal generating unit is output.
  • An output unit (first configuration).
  • the user's biological information is acquired, and the control frequency is determined based on the acquired biological information. Therefore, the body is controlled based on an appropriate control frequency according to the user's physical condition. Can do.
  • control frequency may be an electroencephalogram induction frequency (second configuration).
  • the body can be controlled by controlling the electroencephalogram based on the appropriate electroencephalogram induction frequency corresponding to the user's physical condition.
  • the control frequency determination unit when the control frequency determination unit guides the user to sleep, the control frequency determination unit estimates a brain wave frequency from the biological information acquired by the biological information acquisition unit, and has a frequency lower than the estimated brain wave frequency. May be determined as the induction frequency of the electroencephalogram (third configuration).
  • the electroencephalogram can be induced to a low frequency, and the user can be guided to the sleep state.
  • the control frequency determination unit when the control frequency determination unit wakes up the user, the control frequency determination unit estimates a brain wave frequency from the biological information acquired by the biological information acquisition unit, and exceeds the estimated brain wave frequency. It is good also as a structure which determines a high frequency as an induced frequency of the said electroencephalogram (4th structure).
  • the electroencephalogram can be induced to a high frequency, and the user can be guided to the awake state.
  • the control frequency determination unit is awakened by a sleep user or is likely to awaken based on the biological information acquired by the biological information acquisition unit. If it is determined that the brain wave frequency is estimated from the biological information acquired by the biological information acquisition unit, a frequency lower than the estimated brain wave frequency may be determined as the induced frequency of the brain wave ( Fifth configuration).
  • the brain wave is generated by setting a frequency lower than the estimated frequency of the electroencephalogram as an induction frequency of the electroencephalogram. A low frequency can be induced and the user can be brought back to sleep again.
  • control frequency determination unit may determine the induction frequency of the electroencephalogram to a frequency of 30 Hz or more when the user desires to have a lucid dream. Good (sixth configuration).
  • control frequency may be one of a heart rate induction frequency and a respiration rate induction frequency (seventh configuration).
  • the body can be controlled by controlling the heart rate or the respiration rate based on the induction frequency of the appropriate heart rate or the induction frequency of the respiration rate according to the physical condition of the user. .
  • the modulated sound signal generation unit generates two sound signals whose frequency difference is a control frequency determined by the control frequency determination unit, and the output unit
  • the two sound signals may be provided corresponding to the ears, and the two sound signals may be output from the two output units, respectively (eighth configuration).
  • an electroencephalogram can be induced to the control frequency, and thereby the body can be controlled.
  • the modulated sound signal generator generates a modulated sound that is amplitude-modulated based on the control frequency determined by the control frequency determiner with respect to the previously prepared sound signal.
  • a configuration for generating a signal may be adopted (ninth configuration).
  • the modulated sound signal can be output in monaural rather than stereo.
  • the modulated sound signal generation unit is a modulated sound obtained by frequency-modulating the previously prepared sound signal based on the control frequency determined by the control frequency determination unit. It is good also as a structure which produces
  • the modulated sound signal can be output in monaural rather than stereo.
  • the modulated sound signal generation unit periodically performs sound image localization on the prepared sound signal based on the control frequency determined by the control frequency determination unit.
  • Two modulated sound signals that are subjected to panning modulation that is changed in a row are generated, and two output units are provided corresponding to the left and right ears, and the two modulated sound signals are received from the two output units. It is good also as a structure each output (11th structure).
  • the modulated sound signal generation unit generates a modulated sound signal in which attenuated sound is output at intervals based on the control frequency determined by the control frequency determination unit. (12th structure).
  • the modulated sound signal can be output in monaural rather than stereo.
  • the apparatus further includes a volume determination unit that determines a volume of a modulated sound signal output from the output unit based on the biological information acquired by the biological information acquisition unit.
  • the unit may be configured to output the modulated sound signal at a volume determined by the volume determination unit (a thirteenth configuration).
  • the sound volume is gradually reduced according to the sleep state to induce the sleep state only at the time of sleep, and thereafter the user's natural sleep is reduced. Can be urged.
  • an adder that adds the modulated sound signal generated by the modulated sound signal generator to an arbitrary sound signal different from the previously prepared sound signal
  • the output unit may output a sound signal added by the adding unit (fourteenth configuration).
  • the modulated sound signal When only the modulated sound signal is output, it may be heard as a harsh sound, but according to the fourteenth configuration, it is possible to prevent a sound signal including the modulated sound signal from being heard as a harsh sound.
  • a body control device In the following embodiments, an example of controlling a user's sleep using a body control device will be described. However, the use of the body control device is not limited to sleep control.
  • FIG. 1 is a block diagram illustrating a schematic configuration of the body control device according to the first embodiment.
  • the body control device in the first embodiment includes a non-invasive sensor (biological information acquisition unit) 1, a control frequency determination unit 2, a modulated sound signal generation unit 3, a sound source 4, an addition unit 5, and an output unit 6. And comprising.
  • the non-invasive sensor 1 is a sensor that can acquire a user's biological information without being directly attached to the body. By using the non-invasive sensor 1 as a sensor for acquiring the user's biological information, the biological information can be acquired without disturbing sleep.
  • a pressure sensor for example, a Doppler sensor, an acceleration sensor, or the like can be used.
  • a pressure sensor for example, the biological information of the user is acquired by laying under a bedding.
  • a Doppler sensor is used as the non-invasive sensor 1
  • the user's biological information is acquired by outputting a signal such as a radio wave or light and receiving a signal reflected back to the user.
  • an acceleration sensor for example, the biological information of the user is acquired by placing it on a comforter and measuring vibration caused by the user turning over.
  • the non-invasive sensor 1 acquires any information of body movement, heart rate, and respiration rate as user's biological information.
  • Body movement, heart rate, and respiration rate are all closely correlated with the sleep state.
  • the user's biological information is not limited to body movement, heart rate, or respiration rate.
  • the sleep state can be estimated based on the frequency and magnitude of the body movement by measuring the body movement indicating how much the user moves while sleeping.
  • the frequency of body movement is high or when the body movement is large, sleep is shallow, and when the frequency of body movement is low or when the body movement is small, it is determined that sleep is deep.
  • the sleep state can be estimated by measuring the heart rate. That is, it is determined that sleep is deeper as the heart rate decreases and the fluctuation in heart rate decreases and stabilizes.
  • the sleep state can be estimated by measuring the respiratory rate. That is, it is determined that the sleep is deeper as the respiratory rate decreases and the fluctuation in the respiratory rate decreases and stabilizes.
  • the control frequency determination unit 2 determines the control frequency based on the operation mode and the user's biological information acquired by the non-invasive sensor 1.
  • the control frequency is a frequency for inducing an electroencephalogram (induction frequency of an electroencephalogram).
  • the operation modes include a bedtime mode, an awakening mode, an awakening mode, and a lucid dream mode.
  • the bedtime mode is a mode for leading to deep sleep at bedtime.
  • the awakening mode is a mode for smoothly leading to awakening when waking up.
  • the awakening mode is a mode for guiding the user to deep sleep again when he / she wakes up or is about to wake up.
  • the lucid dream mode is a mode for guiding the lucid dream to be seen. Details of each operation mode will be described later.
  • FIG. 2 is a summary of the types, frequencies, and characteristics of the electroencephalogram.
  • the type of electroencephalogram is a ⁇ wave
  • the frequency is 26 to 70 Hz, and the user is in an excited state.
  • the type of electroencephalogram is ⁇ -wave
  • the frequency is 14 to 38 Hz, and the user is in a normal daily life state.
  • the type of electroencephalogram is an ⁇ wave
  • the frequency is 8 to 14 Hz
  • the user is in a relaxed state.
  • the type of electroencephalogram is a ⁇ wave
  • the frequency is 4 to 8 Hz
  • the user is in a sleep state.
  • the type of electroencephalogram is a ⁇ wave
  • the frequency is 0.5 to 4 Hz, and the user is in a deep sleep state.
  • the electroencephalogram As shown in FIG. 2, the lower the electroencephalogram frequency, the quieter the body is.
  • the electroencephalogram is a ⁇ wave or ⁇ wave having a frequency of 8 Hz or less, it is in a sleep state, and in the case of a ⁇ wave having a frequency of 4 Hz or less, it is a deep sleep state.
  • the electroencephalogram in order to control the user's sleep state, roughly speaking, if the brain wave is guided to a low frequency, it can lead to a deeper sleep state, and if the brain wave is guided to a high frequency, shallower sleep Can lead to a state.
  • the control frequency determination unit 2 determines the control frequency fa, that is, the induction frequency fa of the electroencephalogram based on the operation mode described in detail later and the user's biological information acquired by the non-invasive sensor 1.
  • the modulated sound signal generation unit 3 generates a modulated sound signal obtained by modulating a single sound signal prepared in advance based on the control frequency fa determined by the control frequency determination unit 2.
  • a single tone includes not only a fundamental tone but also a fundamental tone and a harmonic overtone.
  • the sound signal to be modulated is preferably a simple sound signal.
  • a description is given assuming that a single sound signal is modulated, but the sound signal to be modulated is not limited to a single sound, and may be a sound signal such as a melody.
  • the modulated sound signal generation unit 3 generates a sound signal having a frequency fx ⁇ fa obtained by shifting the frequency fx of a single sound signal prepared in advance by the control frequency fa determined by the control frequency determination unit 2, and generates a single sound having the frequency fx.
  • a modulated sound signal obtained by adding the sound signal is generated.
  • the sound source 4 stores a sound signal to be added to the modulated sound signal generated by the modulated sound signal generation unit 3.
  • the sound signal to be added to the modulated sound signal can be an arbitrary sound signal.
  • an appropriate sound signal is preferably used according to the operation mode. For example, in the bedtime mode, healing music or the like suitable for sleeping is used to lead to deep sleep.
  • the sound signal stored in the sound source 4 is not limited to one type, and may be a plurality of types.
  • music recorded on a CD, music downloaded via the Internet, or the like can be used.
  • the adding unit 5 adds the modulated sound signal generated by the modulated sound signal generating unit 3 and the sound signal stored in the sound source 4.
  • the output unit 6 is a speaker, for example, and outputs the sound signal added by the adding unit 5.
  • Two speakers as the output unit 6 are provided corresponding to the left and right ears. However, there may be only one speaker or three or more speakers.
  • the brain wave can be induced to the control frequency fa.
  • the modulated sound signal generated by the modulated sound signal generation unit 3 is added to the sound signal stored in the sound source 4 and then output.
  • the sound signal to be added to the modulated sound signal is a sound signal for hiding the modulated sound signal. Thereby, it is possible to prevent the sound signal including the modulated sound signal from being heard as an annoying sound.
  • the bedtime mode is a mode for leading to deep sleep at bedtime. For example, if it is determined that the user is immediately after sleeping based on the biological information detected by the noninvasive sensor 1, the operation mode is set to the sleeping mode.
  • FIG. 3 is a diagram showing the relationship between the sleep stage, the electroencephalogram frequency at that time, and the control frequency in the sleep mode.
  • the relationship between sleep stage and EEG frequency at that time is based on the international standard of sleep stage classification by Rechtschaffen & Kales.
  • “wakefulness”, “REM sleep”, “NON-REM sleep 1”, “NON-REM sleep 2”, “NON-REM sleep 3”, and “NON-REM sleep 4” are listed as sleep stages (sleep states).
  • the depth of sleep increases and the frequency of the electroencephalogram decreases.
  • REM sleep is a state where the body is resting but the brain is active, and the frequency of the electroencephalogram may be higher than the “wakefulness” stage.
  • the frequency of the electroencephalogram is 8 Hz or more.
  • the frequency of the induced electroencephalogram (control frequency fa) is 4 to 8 Hz.
  • the frequency of the electroencephalogram is 12 Hz or more.
  • the frequency of the induced electroencephalogram (control frequency fa) is 4 to 8 Hz.
  • REM sleep is a state where the body is resting but the brain is active. Therefore, when body motion is detected by the non-invasive sensor 1, the sleep stage of “REM sleep” Is difficult to detect.
  • REM sleep does not usually appear at the time of falling asleep and does not need to be taken into consideration in a sleep mode or a mid-wake mode described later. For this reason, the sleep stage of “REM sleep” may not be included in the control target.
  • the frequency of the electroencephalogram is 8 to 15 Hz or more.
  • the frequency of the induced electroencephalogram (control frequency fa) is 4 to 8 Hz.
  • the frequency of the electroencephalogram is 4 to 8 Hz or more.
  • the frequency of the induced electroencephalogram (control frequency fa) is 2 to 4 Hz.
  • the frequency of the electroencephalogram is 2 to 4 Hz or more.
  • the frequency of the induced electroencephalogram (control frequency fa) is 0.5 to 2 Hz.
  • the frequency of the electroencephalogram is 0.5-2 Hz or more.
  • the induced electroencephalogram frequency (control frequency fa) is 0.5 Hz or less.
  • the sleep stage is determined based on the biological information detected by the noninvasive sensor 1, and the brain wave is induced at a frequency lower than the brain wave frequency of the sleep stage.
  • the frequency of the induced electroencephalogram is 4 to 8 Hz, and “non-REM sleep 1”, “non-REM sleep 2”, “non-REM sleep 3”, “non-REM sleep 4”.
  • the frequency of the induced electroencephalogram is set to the electroencephalogram frequency of the sleep stage that is one stage lower in the deep sleep direction.
  • control frequency fa can be gradually lowered to lead to a deep sleep state smoothly. That is, the induction frequency of the electroencephalogram (control frequency fa) is set to a frequency close to the frequency of the electroencephalogram at that time, and the induction frequency of the electroencephalogram is lowered step by step, thereby smoothly guiding to a deep sleep stage. it can.
  • the sleep stage shown in FIG. 3 is an example. Therefore, when determining the sleep stage based on the biological information detected by the non-invasive sensor 1, the sleep stage to be determined is not limited to the sleep stage shown in FIG.
  • the frequency of the induced electroencephalogram should be lower than the actual electroencephalogram frequency.
  • the frequency of the electroencephalogram can be estimated as 4 to 8 Hz from FIG.
  • the electroencephalogram frequency is estimated to be 6 Hz, which is the median value of 4 to 8 Hz
  • the electroencephalogram induction frequency (control frequency fa) is set to a lower frequency, for example, 3 Hz, which is a half of that frequency To do.
  • FIG. 4 is a diagram showing the relationship between the frequency of the electroencephalogram (estimated frequency) in each sleep stage and the frequency of the electroencephalogram induced in the sleep mode.
  • the horizontal axis represents the sleep stage
  • the vertical axis represents the brain wave frequency.
  • the horizontal axis indicates a shallow sleep stage toward the right side of FIG.
  • the frequency of the electroencephalogram induced in the sleep mode is lower than the electroencephalogram frequency (estimated frequency) in the sleep stage in any sleep stage.
  • the control frequency determination unit 2 holds table data indicating the relationship between the sleep stage and the induced brain wave frequency as shown in FIG. 4, and determines the induced brain wave frequency by referring to the table data. can do.
  • the table data values may be only some representative values, and values between the representative values may be obtained by interpolation calculation.
  • control frequency determination unit 2 determines the sleep stage based on the biological information detected by the noninvasive sensor 1, and refers to the table data as shown in FIG. 4 from the determined sleep stage.
  • the frequency of the induced electroencephalogram that is, the control frequency fa is determined.
  • the sound signal added by the adder 5 starts to be output from the output unit 6 until a fixed time (for example, 1 hour) elapses or the sleep stage is a predetermined sleep stage (for example, The sound signal is continuously output from the output unit 6 until the non-REM sleep 4).
  • a volume determination unit that determines the volume of the sound signal to be output based on the biological information detected by the noninvasive sensor 1 may be provided inside the output unit 6 or provided separately from the output unit 6. May be.
  • the volume of the sound signal output from the output unit 6 may be lowered as time elapses after the control in the bedtime mode is started. By gradually lowering the volume over time, it is possible to smoothly lead to a deep sleep state. Moreover, when other people are sleeping around, it can suppress that the sleep of the surrounding people is inhibited. However, in this method, the sound volume becomes 0 after a lapse of a certain time, but at that time, the user may not have reached a sufficiently deep sleep stage. For this reason, it is preferable to lower the volume according to the sleep stage.
  • the sleep state transition information may be created based on the biological information detected by the non-invasive sensor 1 and presented to the user the next morning. For example, based on the biological information detected by the non-invasive sensor 1, a graph showing the transition of the brain wave frequency of the user is created. If a display is provided in the body control device and a graph showing frequency transition is displayed on the display, the user can grasp his / her sleep state.
  • the awakening mode is a mode for smoothly leading to awakening when waking up. For example, when the predetermined time before the wake-up time set in advance by the user, the operation mode is set to the awakening mode.
  • FIG. 5 is a diagram showing the relationship between the sleep stage, the electroencephalogram frequency at that time, and the control frequency in the awakening mode.
  • the relationship between sleep stage and EEG frequency at that time is based on the international standard of sleep stage classification by Rechtschaffen & Kales.
  • the frequency of the electroencephalogram is 0.5-2 Hz or more.
  • the frequency of the induced electroencephalogram (control frequency fa) is 2 to 4 Hz.
  • the frequency of the electroencephalogram is 2 to 4 Hz or more.
  • the frequency of the induced electroencephalogram (control frequency fa) is 4 to 8 Hz.
  • the frequency of the electroencephalogram is 4 to 8 Hz or more.
  • the induced electroencephalogram frequency (control frequency fa) is 8 to 15 Hz.
  • the frequency of the electroencephalogram is 8 to 15 Hz or more.
  • the induced electroencephalogram frequency (control frequency fa) is 16 Hz or less.
  • the frequency of the electroencephalogram is 12 Hz or more.
  • the frequency of the induced electroencephalogram (control frequency fa) is 16 Hz or more.
  • the frequency of the electroencephalogram is 8 Hz or more.
  • the frequency of the induced electroencephalogram (control frequency fa) is 16 Hz or more.
  • the sleep stage is determined based on the biological information detected by the non-invasive sensor 1, and the electroencephalogram is induced at a frequency higher than the electroencephalogram frequency of the sleep stage.
  • the frequency of the induced electroencephalogram is 16 Hz or more, and “NON-REM sleep 2”, “NON-REM sleep 3”, “NON-REM sleep 4”.
  • the frequency of the induced electroencephalogram is set to the electroencephalogram frequency of the sleep stage that is higher by one stage in the direction of shallow sleep.
  • control frequency fa By gradually increasing the control frequency fa according to the sleep stage determined based on the biological information detected by the non-invasive sensor 1, it is possible to smoothly lead to an awake state. That is, by setting the induction frequency (control frequency fa) of the electroencephalogram to a frequency close to the frequency of the electroencephalogram at that time, it is possible to induce smoothly to the awakening stage.
  • the frequency of the induced electroencephalogram should be higher than the actual electroencephalogram frequency.
  • a frequency that is twice the frequency of the electroencephalogram estimated based on the biological information detected by the noninvasive sensor 1 can be set as the frequency of the electroencephalogram to be induced (control frequency fa).
  • control frequency fa the frequency of the electroencephalogram to be induced
  • the electroencephalogram frequency is estimated to be 6 Hz, which is the median value of 4 to 8 Hz, and the electroencephalogram induction frequency (control frequency fa) is set to a higher frequency, for example, 12 Hz, which is twice that frequency. .
  • FIG. 6 is a diagram showing a relationship between the frequency of the electroencephalogram (estimated frequency) in the sleep stage and the frequency of the electroencephalogram induced in the wakefulness mode.
  • the horizontal axis represents the sleep stage
  • the vertical axis represents the frequency of the electroencephalogram.
  • the horizontal axis indicates a shallow sleep stage toward the right side of FIG.
  • the frequency of the induced electroencephalogram is higher than the frequency of the electroencephalogram (estimated frequency) in the sleep stage at any sleep stage.
  • the control frequency determination unit 2 holds table data indicating the relationship between the sleep stage and the induced brain wave frequency as shown in FIG. 6, and determines the induced brain wave frequency by referring to the table data. can do.
  • the table data values may be only some representative values, and values between the representative values may be obtained by interpolation calculation.
  • control frequency determination unit 2 determines the sleep stage based on the biological information detected by the noninvasive sensor 1, and refers to the table data as shown in FIG. 6 from the determined sleep stage.
  • the frequency of the induced electroencephalogram that is, the control frequency fa is determined.
  • the sound signal added by the adding unit 5 is output from the output unit 6 from a predetermined time (for example, 30 minutes before) a wake-up time preset by the user. At this time, it is preferable not to suddenly increase the volume of the sound signal output from the output unit 6, but to gradually increase the volume.
  • the volume of the sound signal output from the output unit 6 is increased little by little as the sleep stage determined based on the biological information detected by the non-invasive sensor 1 proceeds in the direction of shallow sleep. Thereby, it can guide to an awakening state smoothly.
  • the volume of the sound signal output from the output unit 6 may be increased as time elapses after the control in the awake mode is started. By gradually increasing the volume, it is possible to smoothly lead to an awakened state.
  • the user can be woken up by the wake-up time.
  • an alarm sound a general alarm clock alarm sound can be used. Thereby, a user's oversleeping can be prevented.
  • the awakening mode is a mode for guiding the user to deep sleep again when he / she wakes up or is about to wake up. For example, based on the biological information detected by the non-invasive sensor 1, when it is determined that the sleeping user is awake or is about to awake, the operation mode is set to the mid-wake mode.
  • the sleep stage estimated based on the biological information detected by the noninvasive sensor 1 becomes a predetermined sleep stage
  • control is performed to lead to deep sleep again.
  • the predetermined sleep stage is, for example, “non-REM sleep 1” or “wakefulness”.
  • the control for leading to deep sleep is the same as the control performed in the bedtime mode.
  • the operation mode becomes a mid-wake mode, and the frequency for inducing brain waves (control frequency fa) is lower than the electroencephalogram frequency for non-REM sleep 1 (see FIG. 3, the frequency is set to 4 to 8 Hz.
  • the sound signal added by the adder 5 starts to be output from the output unit 6.
  • the volume of the sound signal output from the output unit 6 may not be suddenly increased but gradually increased.
  • the sound signal is output from the output unit 6 until a certain time elapses after the sound signal starts to be output from the output unit 6 or until the sleep stage reaches a predetermined sleep stage (for example, non-REM sleep 4). Keep doing.
  • the volume may be gradually decreased as the sleep stage changes in the deeper direction of sleep or as time elapses. By gradually lowering the volume, it is possible to smoothly lead to a deep sleep state.
  • FIG. 7 is a diagram showing an example of the time change of the sleep stage and the control timing in the awakening mode.
  • the horizontal axis represents time
  • the vertical axis represents the sleep stage.
  • the vertical axis indicates a shallower sleep stage toward the upper side of FIG.
  • the sleep stage gradually becomes deeper and the user is in a sleep state, but at time T ⁇ b> 1, the sleep stage becomes “non-REM sleep 1”, and control in the awakening mode is started midway Has been. Whether or not the sleep stage is “non-REM sleep 1” can be determined based on the user's biological information acquired by the non-invasive sensor 1.
  • the control frequency determination unit 2 sets the frequency (control frequency) fa for inducing brain waves to a frequency lower than the brain wave frequency corresponding to the sleep stage at that time. Therefore, at time T1 when the sleep stage becomes “Non-REM sleep 1”, the control frequency fa for inducing brain waves is set to 4 to 8 Hz. As a result, the frequency of the electroencephalogram gradually decreases.
  • the control in the mid-wake mode is terminated when the sleep stage becomes “non-REM sleep 4” at time T2.
  • the mid-wake mode may be terminated when a predetermined sleep stage other than the non-REM sleep 4 is reached, or may be terminated when a certain time has elapsed since the start of the mid-wake mode control. Also good.
  • the lucid dream mode is a mode for guiding the lucid dream to be seen.
  • a lucid dream is a dream that you see as you realize it. For example, you can freely control the situation of the dream, such as a dream that flies in the sky.
  • the German research team announced in a paper (Nature Neuroscience, June 2014, Volume 17, P810-812) that the brain wave can be induced with high probability by inducing brain waves to about 40 Hz. While dreaming lucidly, the human brain is in a light excitement. That is, during sleep, it may be possible to see lucid dreams by guiding the brain to a light excitement state.
  • the control frequency determination unit 2 sets a frequency of 30 Hz or more as the frequency of the electroencephalogram to be induced (control frequency).
  • the frequency of the electroencephalogram By setting the frequency of the electroencephalogram to be guided to 30 Hz or more, the brain can be led to a light excitement state and can be guided so that a clear dream can be seen.
  • the lucid dream mode is preferably activated only when the user wishes to see the lucid dream. Accordingly, when the user turns on the lucid dream mode and no other control mode is activated during the user's sleep, the lucid dream mode is activated. For example, if another control mode is not active after a certain period of time (e.g., 30 minutes) after the bedtime mode ends, the control in the clear dream mode is started at that time.
  • the control time in the lucid dream mode may be limited to a predetermined time, for example, or may be set by the user.
  • the volume When outputting the sound signal from the output unit 6 during the operation of the lucid dream mode, it is preferable to gradually increase the volume. Further, it is preferable that a sound for letting the user notice that he / she is dreaming is played from the speaker when the lucid dream mode is activated.
  • This speaker may be a speaker constituting the output unit 6, or may be a speaker different from the speaker constituting the output unit 6.
  • the voice for notifying the user that he / she is dreaming is, for example, a voice such as “You are in a dream now”. By playing such a sound simultaneously, the possibility of more lucid dreaming is increased.
  • FIG. 8 is a diagram showing an example of the time change of the sleep stage and the control timing in the lucid dream mode.
  • the horizontal axis represents time
  • the vertical axis represents the sleep stage.
  • the vertical axis indicates a shallower sleep stage toward the upper side of FIG.
  • the bedtime mode control is performed between times T10 and T11.
  • the lucid dream mode is started at time T12 after a lapse of a certain time (for example, 30 minutes) after the bedtime mode ends.
  • a certain time for example, 30 minutes
  • the electroencephalogram is controlled in the “wakefulness” stage.
  • the user can be guided to the lucid dreaming.
  • the same sound signal is output from the two output units 6.
  • different sound signals specifically so-called binaural beats, are output from the two output units 6.
  • the modulated sound signal generating unit 3 generates a modulated sound signal obtained by modulating a monaural sound signal prepared in advance based on the control frequency fa determined by the control frequency determining unit 2.
  • the monaural sound signal is, for example, a single continuous sound or a melody, but a sound having a wide frequency range is not desirable (preferably within one octave).
  • the modulated sound signal generation unit 3 generates a sound signal having a frequency fx ⁇ fa obtained by shifting the frequency fx of the sound signal prepared in advance by the control frequency fa determined by the control frequency determination unit 2. That is, the modulated sound signal generation unit 3 generates two sound signals whose frequency difference is the control frequency fa.
  • the two sound signals whose frequency difference is the control frequency fa may be, for example, a sound signal of frequency fx and a sound signal of frequency fx + fa, or a sound signal of frequency fx ⁇ fa / 2 and a sound signal of frequency fx + fa / 2. good.
  • the addition unit 5 adds the sound signal stored in the sound source 4 to the sound signal having the frequency fx, and adds the sound signal stored in the sound source 4 to the sound signal having the frequency fx-fa.
  • One of the left and right output units 6 outputs a sound signal obtained by adding the sound signal stored in the sound source 4 to the sound signal having the frequency fx, and the other output unit 6 outputs the frequency signal.
  • a sound signal obtained by adding the sound signal stored in the sound source 4 to the sound signal of fx-fa is output.
  • Such a sound signal is known as a binaural beat.
  • the brain waves can be induced to the control frequency fa by letting the left and right ears hear two sound signals that differ by the control frequency fa.
  • the modulated sound signal generation unit 3 performs amplitude modulation on a sound signal such as a single sound prepared in advance based on the control frequency fa determined by the control frequency determination unit 2.
  • a modulated sound signal is generated.
  • amplitude modulation of the control frequency fa is performed by multiplying a sound signal such as a single sound prepared in advance by ⁇ a ⁇ sin (2 ⁇ ⁇ fa ⁇ t) + (1-a) ⁇ .
  • a is a constant that satisfies the relationship 0 ⁇ a ⁇ 1/2
  • t is a variable that represents time.
  • the binaural beat described in the second embodiment needs to generate two sound signals whose frequency difference is the control frequency fa and listen in stereo, but the sound subjected to amplitude modulation based on the control frequency fa The signal does not have to be heard in stereo.
  • the modulated sound signal generation unit 3 performs frequency modulation on a sound signal such as a single sound prepared in advance based on the control frequency fa determined by the control frequency determination unit 2.
  • a modulated sound signal is generated.
  • frequency modulation of the control frequency fa is performed by performing a frequency shift of b ⁇ sin (2 ⁇ ⁇ fa ⁇ t) on a sound signal such as a single sound prepared in advance.
  • b is the amplitude of frequency modulation
  • t is a variable representing time.
  • the binaural beat described in the second embodiment needs to generate two sound signals having a frequency difference of the control frequency fa and listen in stereo, but the sound subjected to frequency modulation based on the control frequency fa The signal does not have to be heard in stereo.
  • the modulated sound signal generation unit 3 periodically performs sound image localization on a sound signal such as a single sound prepared in advance based on the control frequency fa determined by the control frequency determination unit 2.
  • a modulated sound is generated by performing panning modulation that is changed in a stepwise manner.
  • the sound signal subjected to panning modulation is a stereo sound source.
  • the sound signal subjected to panning modulation is a monaural sound source, two identical sound signals are prepared in order to output the same sound signal from the left and right output units 6.
  • the modulated sound signal generation unit 3 multiplies one of two sound signals prepared in advance by ⁇ c ⁇ sin (2 ⁇ ⁇ fa ⁇ t) + (1-c) ⁇ , and the other is ⁇ c Multiply sin (2 ⁇ ⁇ fa ⁇ t) + (1-c) ⁇ to perform panning modulation of the control frequency fa.
  • c is a constant that satisfies the relationship 0 ⁇ c ⁇ 1/2
  • t is a variable that represents time.
  • the frequency of the electroencephalogram can be guided to the control frequency fa.
  • the effect of leading the electroencephalogram frequency to the control frequency fa can be further enhanced.
  • the sound signal having the frequency fx is multiplied by ⁇ c ⁇ sin (2 ⁇ ⁇ fa ⁇ t) + (1-c) ⁇ to obtain the frequency fx ⁇ fa. Is multiplied by ⁇ c ⁇ sin (2 ⁇ ⁇ fa ⁇ t) + (1 ⁇ c) ⁇ .
  • control frequency fa for inducing the electroencephalogram is usually 20 Hz or less. For this reason, a modulated sound signal obtained by modulating an existing sound signal is generated and output.
  • the attenuation sound prepared in advance is output based on the control frequency fa determined by the control frequency determination unit 2. Attenuating sound is sound that gradually attenuates and disappears.
  • the attenuation sound is output from the output unit 6 at 1 / fa (second) intervals. It can be said that the attenuated sound output at 1 / fa (second) intervals is a modulated sound modulated based on the control frequency fa. For example, when the control frequency fa determined by the control frequency determination unit 2 is 2 Hz, the attenuation sound is output at a pace of 2 times per second (0.5 second interval). Even in this method, the electroencephalogram can be induced to the control frequency fa.
  • the binaural beat described in the second embodiment needs to generate two sound signals whose frequency difference is the control frequency fa and listen in stereo, but this book that outputs an attenuation sound based on the control frequency fa. According to the configuration of the embodiment, there is no need to listen in stereo.
  • the modulated sound signal generated by the modulated sound signal generation unit 3 and the sound signal stored in the sound source 4 are added and output.
  • the modulated sound signal may be output as it is.
  • the body control device includes a biological information acquisition unit that acquires the biological information of the user, a control frequency determination unit that determines a control frequency based on the biological information acquired by the biological information acquisition unit, and a sound signal prepared in advance. Is provided with a modulated sound signal generating unit that generates a modulated sound signal modulated by the control frequency determined by the control frequency determining unit, and an output unit that outputs the modulated sound signal generated by the modulated sound signal generating unit.
  • the modulated sound signal generated by the modulated sound signal generation unit 3 may be recognized as an annoying sound. For example, in the bedtime mode, it may interfere with sleep. There is sex. For this reason, it is preferable that the modulated sound signal generated by the modulated sound signal generation unit 3 and the sound signal stored in the sound source 4 are added and output as in the above-described embodiment.
  • the non-invasive sensor 1 is used as a sensor for acquiring the user's biological information
  • a sensor directly attached to the body may be used.
  • biological information can be acquired without disturbing sleep. Therefore, it is preferable to use a non-invasive sensor.
  • a user's biometric information has a correlation with a sleep state, it will not be limited to the above-mentioned user's body movement, heart rate, or respiration rate.
  • the control frequency determination unit 2 determines the induction frequency of the electroencephalogram as the control frequency fa based on the biological information detected by the non-invasive sensor 1.
  • the induction frequency of the heart rate may be set as the control frequency fa. That is, by setting a heart rate induction frequency as the control frequency fa and modulating and outputting a sound signal such as a single sound with the control frequency fa, the heart rate frequency can be induced to the control frequency fa.
  • the sleep stage is determined based on the biological information detected by the non-invasive sensor 1, and the sleep stage is
  • the control frequency fa is set to a frequency lower than the corresponding heart rate frequency. Then, by outputting a modulated sound signal obtained by modulating a sound signal such as a single sound with the control frequency fa, the frequency of the heart rate can be induced to the control frequency fa.
  • the induction frequency of the respiratory rate may be set as the control frequency fa. That is, by setting a respiration rate induction frequency as the control frequency fa and modulating and outputting a sound signal such as a single sound with the control frequency fa, the respiration rate frequency can be induced to the control frequency fa.
  • a respiration rate induction frequency As the control frequency fa and modulating and outputting a sound signal such as a single sound with the control frequency fa, the respiration rate frequency can be induced to the control frequency fa.
  • the sleep stage is determined based on the biological information detected by the non-invasive sensor 1, and the sleep stage is
  • the control frequency fa is set to a frequency lower than the frequency of the corresponding respiratory rate. Then, by outputting a modulated sound signal obtained by modulating a sound signal such as a single sound with the control frequency fa, the frequency of the respiratory rate can be induced to the control frequency fa.
  • a user's sleep is controlled using a body control device
  • the application is not limited to sleep control.
  • it can be used to control the user's body when the user is driving, studying, working, or wanting to relax.
  • the control frequency fa is set to the frequency of the electroencephalogram at that time ( By setting the frequency higher than the (estimated frequency) and guiding the frequency of the electroencephalogram to a higher frequency, the user can be guided to an arousal state.
  • the control frequency fa can be relaxed by setting the control frequency fa to 8 to 14 Hz corresponding to the state of the ⁇ wave.
  • the control frequency fa is set to a frequency lower than the frequency (estimated frequency) of the brain wave at that time, and the brain wave
  • the brain wave can be smoothly guided to the ⁇ wave state.
  • each block may be individually made into one chip by a semiconductor device such as an LSI, or made into one chip so as to include a part or all. May be.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • part or all of the processing of each functional block in each of the above embodiments may be realized by a program.
  • a part or all of the processing of each functional block in each of the above embodiments is performed by a central processing unit (CPU), a microprocessor, a processor, or the like in the computer.
  • a program for performing each processing is stored in a storage device such as a hard disk or a ROM, and is read out and executed in the ROM or the RAM.
  • the storage device storage medium is a tangible material that is not temporary, and for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • each process of the above embodiment may be realized by hardware, or may be realized by software (including a case where it is realized together with an OS (operating system), middleware, or a predetermined library). Further, it may be realized by mixed processing of software and hardware. Needless to say, when the body control device according to the above embodiment is realized by hardware, it is necessary to adjust the timing for performing each process. In the above embodiment, for convenience of explanation, details of timing adjustment of various signals generated in actual hardware design are omitted.

Abstract

A body control device is provided which controls the body depending on the bodily state of the user. This body control device is provided with a noninvasive sensor 1 (a biological information acquisition unit) which acquires biological information about the user, a control frequency determination unit 2 which determines a control frequency on the basis of the biological information acquired in the noninvasive sensor 1, a modulated sound signal generation unit 3 which generates a modulated sound signal by modulating a sound signal prepared in advance with the control frequency determined in the control frequency determination unit 2, and an output unit 6 which outputs the modulated sound signal generated by the modulated sound signal generation unit 3.

Description

身体制御装置Body control device
 本出願は、2015年11月19日に出願された特願2015-227061に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てを本願に含める。 This application claims the benefit of priority to Japanese Patent Application No. 2015-227061 filed on November 19, 2015, and the contents of all are incorporated herein by reference.
 以下の開示は、身体を制御する装置に関する。 The following disclosure relates to a device for controlling the body.
 近年、睡眠の改善やリラクゼーション効果を付与するための研究が行われている。特許文献1には、学習または鑑賞しようとする音声自体の低周波電気信号を2系統とし、2系統の低周波電気信号の周波数差を、所望する脳波の周波数faに設定して、左右の耳のそれぞれに出力することによって、脳波の周波数を周波数faに誘導する装置が開示されている。 In recent years, research for improving sleep and providing relaxation effects has been conducted. In Patent Document 1, two low-frequency electrical signals of speech itself to be learned or appreciated are set to two systems, and the frequency difference between the two low-frequency electrical signals is set to a desired brain wave frequency fa, so that the left and right ears An apparatus for guiding the frequency of the electroencephalogram to the frequency fa by outputting to each of the above is disclosed.
特許第2750502号公報Japanese Patent No. 2750502
 しかしながら、特許文献1に記載の装置では、予め決めた周波数faに脳波を誘導することはできるが、ユーザの身体状態に応じて適切な周波数の脳波に誘導することはできない。 However, the apparatus described in Patent Document 1 can induce an electroencephalogram to a predetermined frequency fa, but cannot induce an electroencephalogram having an appropriate frequency according to the user's physical condition.
 以下の開示は、ユーザの身体状態に応じて身体を制御することができる技術を提供することを目的とする。 The following disclosure aims to provide a technique capable of controlling the body according to the physical condition of the user.
 本発明の一実施形態における身体制御装置は、ユーザの生体情報を取得する生体情報取得部と、前記生体情報取得部で取得された生体情報に基づいて制御周波数を決定する制御周波数決定部と、予め用意された音信号を前記制御周波数決定部で決定された制御周波数で変調した変調音信号を生成する変調音信号生成部と、前記変調音信号生成部によって生成された変調音信号を出力する出力部と、を備える。 The body control device according to an embodiment of the present invention includes a biological information acquisition unit that acquires biological information of a user, a control frequency determination unit that determines a control frequency based on the biological information acquired by the biological information acquisition unit, A modulated sound signal generating unit that generates a modulated sound signal obtained by modulating a sound signal prepared in advance with a control frequency determined by the control frequency determining unit, and a modulated sound signal generated by the modulated sound signal generating unit is output. And an output unit.
 本実施形態の開示によれば、ユーザの生体情報を取得し、取得した生体情報に基づいて制御周波数を決定するので、ユーザの身体状態に応じた適切な制御周波数に基づいて、身体を制御することができる。 According to the disclosure of the present embodiment, the user's biological information is acquired, and the control frequency is determined based on the acquired biological information. Therefore, the body is controlled based on an appropriate control frequency according to the user's physical state. be able to.
図1は、第1の実施形態における身体制御装置の概略構成を示すブロック図である。FIG. 1 is a block diagram illustrating a schematic configuration of the body control device according to the first embodiment. 図2は、脳波の種類と周波数、及び特徴についてまとめた図である。FIG. 2 is a diagram summarizing the types, frequencies, and characteristics of electroencephalograms. 図3は、睡眠段階とその時の脳波周波数、及び、就寝時モードで誘導する脳波周波数の関係を示す図である。FIG. 3 is a diagram showing the relationship between the sleep stage, the electroencephalogram frequency at that time, and the electroencephalogram frequency induced in the sleep mode. 図4は、各睡眠段階における脳波の周波数(推定周波数)と、就寝時モードで誘導する脳波の周波数との関係を示す図である。FIG. 4 is a diagram showing a relationship between the frequency of the electroencephalogram (estimated frequency) in each sleep stage and the frequency of the electroencephalogram induced in the sleep mode. 図5は、睡眠段階とその時の脳波周波数、及び、覚醒時モードで誘導する脳波周波数の関係を示す図である。FIG. 5 is a diagram showing the relationship between the sleep stage, the electroencephalogram frequency at that time, and the electroencephalogram frequency induced in the awake mode. 図6は、各睡眠段階における脳波の周波数(推定周波数)と、覚醒時モードで誘導する脳波の周波数との関係を示す図である。FIG. 6 is a diagram showing the relationship between the frequency (estimated frequency) of the electroencephalogram in each sleep stage and the frequency of the electroencephalogram induced in the wakefulness mode. 図7は、睡眠段階の時間変化の一例、及び、途中覚醒時モードにおける制御タイミングを示す図である。FIG. 7 is a diagram illustrating an example of the time change of the sleep stage and the control timing in the mid-wake mode. 図8は、睡眠段階の時間変化の一例、及び、明晰夢モードにおける制御タイミングを示す図である。FIG. 8 is a diagram illustrating an example of the time change of the sleep stage and the control timing in the lucid dream mode.
 本発明の一実施形態における身体制御装置は、ユーザの生体情報を取得する生体情報取得部と、前記生体情報取得部で取得された生体情報に基づいて制御周波数を決定する制御周波数決定部と、予め用意された音信号を前記制御周波数決定部で決定された制御周波数で変調した変調音信号を生成する変調音信号生成部と、前記変調音信号生成部によって生成された変調音信号を出力する出力部と、を備える(第1の構成)。 The body control device according to an embodiment of the present invention includes a biological information acquisition unit that acquires biological information of a user, a control frequency determination unit that determines a control frequency based on the biological information acquired by the biological information acquisition unit, A modulated sound signal generating unit that generates a modulated sound signal obtained by modulating a sound signal prepared in advance with a control frequency determined by the control frequency determining unit, and a modulated sound signal generated by the modulated sound signal generating unit is output. An output unit (first configuration).
 第1の構成によれば、ユーザの生体情報を取得し、取得した生体情報に基づいて制御周波数を決定するので、ユーザの身体状態に応じた適切な制御周波数に基づいて、身体を制御することができる。 According to the first configuration, the user's biological information is acquired, and the control frequency is determined based on the acquired biological information. Therefore, the body is controlled based on an appropriate control frequency according to the user's physical condition. Can do.
 第1の構成において、前記制御周波数は、脳波の誘導周波数とすることができる(第2の構成)。 In the first configuration, the control frequency may be an electroencephalogram induction frequency (second configuration).
 第2の構成によれば、ユーザの身体状態に応じた、適切な脳波の誘導周波数に基づいて、脳波を制御することによって、身体を制御することができる。 According to the second configuration, the body can be controlled by controlling the electroencephalogram based on the appropriate electroencephalogram induction frequency corresponding to the user's physical condition.
 第2の構成において、前記制御周波数決定部は、ユーザを睡眠に導く場合には、前記生体情報取得部で取得された生体情報から脳波の周波数を推定し、推定した脳波の周波数よりも低い周波数を、前記脳波の誘導周波数として決定する構成としても良い(第3の構成)。 In the second configuration, when the control frequency determination unit guides the user to sleep, the control frequency determination unit estimates a brain wave frequency from the biological information acquired by the biological information acquisition unit, and has a frequency lower than the estimated brain wave frequency. May be determined as the induction frequency of the electroencephalogram (third configuration).
 第3の構成によれば、脳波の推定周波数よりも低い周波数を、脳波の誘導周波数とすることにより、脳波を低い周波数に誘導することができ、ユーザを睡眠状態へと導くことができる。 According to the third configuration, by setting a frequency lower than the estimated frequency of the electroencephalogram as the induction frequency of the electroencephalogram, the electroencephalogram can be induced to a low frequency, and the user can be guided to the sleep state.
 第2または第3の構成において、前記制御周波数決定部は、ユーザを覚醒させる場合には、前記生体情報取得部で取得された生体情報から脳波の周波数を推定し、推定した脳波の周波数よりも高い周波数を、前記脳波の誘導周波数として決定する構成としても良い(第4の構成)。 In the second or third configuration, when the control frequency determination unit wakes up the user, the control frequency determination unit estimates a brain wave frequency from the biological information acquired by the biological information acquisition unit, and exceeds the estimated brain wave frequency. It is good also as a structure which determines a high frequency as an induced frequency of the said electroencephalogram (4th structure).
 第4の構成によれば、脳波の推定周波数よりも高い周波数を、脳波の誘導周波数とすることにより、脳波を高い周波数に誘導することができ、ユーザを覚醒状態へと導くことができる。 According to the fourth configuration, by setting a frequency higher than the estimated frequency of the electroencephalogram as the induction frequency of the electroencephalogram, the electroencephalogram can be induced to a high frequency, and the user can be guided to the awake state.
 第2から第4のいずれかの構成において、前記制御周波数決定部は、前記生体情報取得部で取得された生体情報に基づいて、睡眠中のユーザが覚醒するか、または、覚醒しそうになっていると判定した場合に、前記生体情報取得部で取得された生体情報から脳波の周波数を推定し、推定した脳波の周波数よりも低い周波数を、前記脳波の誘導周波数として決定する構成としても良い(第5の構成)。 In any one of the second to fourth configurations, the control frequency determination unit is awakened by a sleep user or is likely to awaken based on the biological information acquired by the biological information acquisition unit. If it is determined that the brain wave frequency is estimated from the biological information acquired by the biological information acquisition unit, a frequency lower than the estimated brain wave frequency may be determined as the induced frequency of the brain wave ( Fifth configuration).
 第5の構成によれば、睡眠中のユーザが覚醒するか、または、覚醒しそうになっていると判定すると、脳波の推定周波数よりも低い周波数を、脳波の誘導周波数とすることにより、脳波を低い周波数に誘導することができ、ユーザを再び睡眠状態へと導くことができる。 According to the fifth configuration, when it is determined that the sleeping user is awake or is about to wake up, the brain wave is generated by setting a frequency lower than the estimated frequency of the electroencephalogram as an induction frequency of the electroencephalogram. A low frequency can be induced and the user can be brought back to sleep again.
 第2から第5のいずれかの構成において、前記制御周波数決定部は、ユーザが明晰夢を見ることを希望している場合に、前記脳波の誘導周波数を30Hz以上の周波数に決定する構成としても良い(第6の構成)。 In any one of the second to fifth configurations, the control frequency determination unit may determine the induction frequency of the electroencephalogram to a frequency of 30 Hz or more when the user desires to have a lucid dream. Good (sixth configuration).
 第6の構成によれば、ユーザが明晰夢を見ることができるように導くことができる。 According to the sixth configuration, it is possible to guide the user to see a lucid dream.
 第1の構成において、前記制御周波数は、心拍数の誘導周波数及び呼吸数の誘導周波数のうちのいずれかであっても良い(第7の構成)。 In the first configuration, the control frequency may be one of a heart rate induction frequency and a respiration rate induction frequency (seventh configuration).
 第7の構成によれば、ユーザの身体状態に応じた適切な心拍数の誘導周波数または呼吸数の誘導周波数に基づいて、心拍数または呼吸数を制御することによって、身体を制御することができる。 According to the seventh configuration, the body can be controlled by controlling the heart rate or the respiration rate based on the induction frequency of the appropriate heart rate or the induction frequency of the respiration rate according to the physical condition of the user. .
 第1から第7のいずれかの構成において、前記変調音信号生成部は、周波数差が前記制御周波数決定部で決定された制御周波数である2つの音信号を生成し、前記出力部は左右の耳に対応して2つ設けられており、前記2つの音信号は、2つの前記出力部からそれぞれ出力される構成としても良い(第8の構成)。 In any one of the first to seventh configurations, the modulated sound signal generation unit generates two sound signals whose frequency difference is a control frequency determined by the control frequency determination unit, and the output unit The two sound signals may be provided corresponding to the ears, and the two sound signals may be output from the two output units, respectively (eighth configuration).
 第8の構成によれば、いわゆるバイノーラルビートを出力することによって、脳波を制御周波数に誘導することができ、これにより、身体を制御することができる。 According to the eighth configuration, by outputting a so-called binaural beat, an electroencephalogram can be induced to the control frequency, and thereby the body can be controlled.
 第1から第7のいずれかの構成において、前記変調音信号生成部は、前記予め用意された音信号に対して、前記制御周波数決定部で決定された制御周波数に基づいて振幅変調した変調音信号を生成する構成としても良い(第9の構成)。 In any one of the first to seventh configurations, the modulated sound signal generator generates a modulated sound that is amplitude-modulated based on the control frequency determined by the control frequency determiner with respect to the previously prepared sound signal. A configuration for generating a signal may be adopted (ninth configuration).
 第9の構成によれば、ステレオではなくモノラルで変調音信号を出力することができる。 According to the ninth configuration, the modulated sound signal can be output in monaural rather than stereo.
 第1から第7のいずれかの構成において、前記変調音信号生成部は、前記予め用意された音信号に対して、前記制御周波数決定部で決定された制御周波数に基づいて周波数変調した変調音信号を生成する構成としても良い(第10の構成)。 In any one of the first to seventh configurations, the modulated sound signal generation unit is a modulated sound obtained by frequency-modulating the previously prepared sound signal based on the control frequency determined by the control frequency determination unit. It is good also as a structure which produces | generates a signal (10th structure).
 第10の構成によれば、ステレオではなくモノラルで変調音信号を出力することができる。 According to the tenth configuration, the modulated sound signal can be output in monaural rather than stereo.
 第1から第7のいずれかの構成において、前記変調音信号生成部は、前記予め用意された音信号に対して、前記制御周波数決定部で決定された制御周波数に基づいて、音像定位を周期的に変化させるパンニング変調を施した2つの変調音信号を生成し、前記出力部は左右の耳に対応して2つ設けられており、前記2つの変調音信号は、2つの前記出力部からそれぞれ出力される構成としても良い(第11の構成)。 In any one of the first to seventh configurations, the modulated sound signal generation unit periodically performs sound image localization on the prepared sound signal based on the control frequency determined by the control frequency determination unit. Two modulated sound signals that are subjected to panning modulation that is changed in a row are generated, and two output units are provided corresponding to the left and right ears, and the two modulated sound signals are received from the two output units. It is good also as a structure each output (11th structure).
 第1から第7のいずれかの構成において、前記変調音信号生成部は、前記制御周波数決定部で決定された制御周波数に基づいた間隔で減衰音が出力される変調音信号を生成する構成としても良い(第12の構成)。 In any one of the first to seventh configurations, the modulated sound signal generation unit generates a modulated sound signal in which attenuated sound is output at intervals based on the control frequency determined by the control frequency determination unit. (12th structure).
 第12の構成によれば、ステレオではなくモノラルで変調音信号を出力することができる。 According to the twelfth configuration, the modulated sound signal can be output in monaural rather than stereo.
 第1から第12のいずれかの構成において、前記生体情報取得部で取得された生体情報に基づいて、前記出力部から出力する変調音信号の音量を決定する音量決定部をさらに備え、前記出力部は、前記音量決定部で決定された音量で前記変調音信号を出力する構成としても良い(第13の構成)。 In any one of the first to twelfth configurations, the apparatus further includes a volume determination unit that determines a volume of a modulated sound signal output from the output unit based on the biological information acquired by the biological information acquisition unit. The unit may be configured to output the modulated sound signal at a volume determined by the volume determination unit (a thirteenth configuration).
 第13の構成によれば、例えば、ユーザを睡眠に導く場合において、睡眠状態に応じて少しずつ音量を小さくすることによって、入眠時だけ睡眠状態に誘導し、その後は、ユーザの自然な睡眠を促すことができる。 According to the thirteenth configuration, for example, in the case of guiding the user to sleep, the sound volume is gradually reduced according to the sleep state to induce the sleep state only at the time of sleep, and thereafter the user's natural sleep is reduced. Can be urged.
 第1から第13のいずれかの構成において、前記予め用意された音信号とは異なる任意の音信号に対して、前記変調音信号生成部によって生成された変調音信号を加算する加算部をさらに備え、前記出力部は、前記加算部によって加算された音信号を出力する構成としても良い(第14の構成)。 In any one of the first to thirteenth configurations, an adder that adds the modulated sound signal generated by the modulated sound signal generator to an arbitrary sound signal different from the previously prepared sound signal The output unit may output a sound signal added by the adding unit (fourteenth configuration).
 変調音信号だけを出力した場合、耳障りな音として聞こえる可能性があるが、第14の構成によれば、変調音信号を含む音信号が耳障りな音として聞こえるのを防ぐことができる。 When only the modulated sound signal is output, it may be heard as a harsh sound, but according to the fourteenth configuration, it is possible to prevent a sound signal including the modulated sound signal from being heard as a harsh sound.
 [実施の形態]
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
[Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. In addition, in order to make the explanation easy to understand, in the drawings referred to below, the configuration is shown in a simplified or schematic manner, or some components are omitted. Further, the dimensional ratio between the constituent members shown in each drawing does not necessarily indicate an actual dimensional ratio.
 以下の各実施形態では、身体制御装置を用いてユーザの睡眠を制御する例について説明する。ただし、身体制御装置の用途が睡眠制御に限定されることはない。 In the following embodiments, an example of controlling a user's sleep using a body control device will be described. However, the use of the body control device is not limited to sleep control.
 [第1の実施形態]
 図1は、第1の実施形態における身体制御装置の概略構成を示すブロック図である。第1の実施形態における身体制御装置は、非侵襲センサ(生体情報取得部)1と、制御周波数決定部2と、変調音信号生成部3と、音源4と、加算部5と、出力部6と、を備える。
[First Embodiment]
FIG. 1 is a block diagram illustrating a schematic configuration of the body control device according to the first embodiment. The body control device in the first embodiment includes a non-invasive sensor (biological information acquisition unit) 1, a control frequency determination unit 2, a modulated sound signal generation unit 3, a sound source 4, an addition unit 5, and an output unit 6. And comprising.
 非侵襲センサ1は、身体に直接取り付けることなく、ユーザの生体情報を取得可能なセンサである。ユーザの生体情報を取得するセンサとして、非侵襲センサ1を用いることにより、睡眠を阻害することなく、生体情報を取得することができる。 The non-invasive sensor 1 is a sensor that can acquire a user's biological information without being directly attached to the body. By using the non-invasive sensor 1 as a sensor for acquiring the user's biological information, the biological information can be acquired without disturbing sleep.
 非侵襲センサ1として、例えば圧力センサ、ドップラセンサ、加速度センサ等を用いることができる。非侵襲センサ1として圧力センサを用いる場合、例えば寝具の下に敷くことによって、ユーザの生体情報を取得する。非侵襲センサ1としてドップラセンサを用いる場合、電波、光等の信号を出力して、ユーザに反射して戻ってきた信号を受信することにより、ユーザの生体情報を取得する。非侵襲センサ1として加速度センサを用いる場合、例えば掛け布団の上に置いて、ユーザの寝返り等による振動を測定することによって、ユーザの生体情報を取得する。 As the non-invasive sensor 1, for example, a pressure sensor, a Doppler sensor, an acceleration sensor, or the like can be used. When a pressure sensor is used as the noninvasive sensor 1, for example, the biological information of the user is acquired by laying under a bedding. When a Doppler sensor is used as the non-invasive sensor 1, the user's biological information is acquired by outputting a signal such as a radio wave or light and receiving a signal reflected back to the user. When an acceleration sensor is used as the non-invasive sensor 1, for example, the biological information of the user is acquired by placing it on a comforter and measuring vibration caused by the user turning over.
 非侵襲センサ1は、ユーザの生体情報として、体動、心拍数、及び呼吸数のうちのいずれかの情報を取得する。体動、心拍数、及び呼吸数はいずれも、睡眠状態と深い相関関係がある。ただし、ユーザの生体情報が体動、心拍数、または呼吸数に限定されることはない。 The non-invasive sensor 1 acquires any information of body movement, heart rate, and respiration rate as user's biological information. Body movement, heart rate, and respiration rate are all closely correlated with the sleep state. However, the user's biological information is not limited to body movement, heart rate, or respiration rate.
 例えば、ユーザが寝ている間にどれだけ体を動かしているかを示す体動を測定することにより、体動の頻度や大きさに基づいて、睡眠状態を推定することができる。体動の頻度が多い場合や、体動が大きい場合には睡眠が浅く、体動の頻度が少ない場合や、体動が小さい場合には睡眠が深いと判定する。 For example, the sleep state can be estimated based on the frequency and magnitude of the body movement by measuring the body movement indicating how much the user moves while sleeping. When the frequency of body movement is high or when the body movement is large, sleep is shallow, and when the frequency of body movement is low or when the body movement is small, it is determined that sleep is deep.
 心拍数を測定することにより、睡眠状態を推定することができる。すなわち、心拍数が少なくなるほど、かつ、心拍数の変動が少なくなり安定するほど、睡眠が深いと判定する。 The sleep state can be estimated by measuring the heart rate. That is, it is determined that sleep is deeper as the heart rate decreases and the fluctuation in heart rate decreases and stabilizes.
 呼吸数を測定することにより、睡眠状態を推定することができる。すなわち、呼吸数が少なくなるほど、かつ、呼吸数の変動が少なくなり安定するほど、睡眠が深いと判定する。 The sleep state can be estimated by measuring the respiratory rate. That is, it is determined that the sleep is deeper as the respiratory rate decreases and the fluctuation in the respiratory rate decreases and stabilizes.
 制御周波数決定部2は、動作モード、及び、非侵襲センサ1によって取得されたユーザの生体情報に基づいて、制御周波数を決定する。本実施形態では、制御周波数は、脳波を誘導する周波数(脳波の誘導周波数)である。 The control frequency determination unit 2 determines the control frequency based on the operation mode and the user's biological information acquired by the non-invasive sensor 1. In the present embodiment, the control frequency is a frequency for inducing an electroencephalogram (induction frequency of an electroencephalogram).
 本実施形態において、動作モードには、就寝時モード、覚醒時モード、途中覚醒時モード、及び、明晰夢モードがある。就寝時モードは、就寝時に深い睡眠へと導くためのモードである。覚醒時モードは、起床時にスムーズに覚醒へと導くためのモードである。途中覚醒時モードは、睡眠の途中で起きてしまった場合や、起きそうになった場合に、再び深い睡眠へと導くためのモードである。明晰夢モードは、明晰夢が見られるように導くためのモードである。各動作モードの詳細については後述する。 In the present embodiment, the operation modes include a bedtime mode, an awakening mode, an awakening mode, and a lucid dream mode. The bedtime mode is a mode for leading to deep sleep at bedtime. The awakening mode is a mode for smoothly leading to awakening when waking up. The awakening mode is a mode for guiding the user to deep sleep again when he / she wakes up or is about to wake up. The lucid dream mode is a mode for guiding the lucid dream to be seen. Details of each operation mode will be described later.
 図2は、脳波の種類と周波数、及び特徴についてまとめた図である。脳波の種類がγ波の場合、その周波数は26~70Hzであって、ユーザは興奮状態にある。脳波の種類がβ波の場合、その周波数は14~38Hzであって、ユーザは通常の日常生活の状態にある。脳波の種類がα波の場合、その周波数は8~14Hzであって、ユーザはリラックス状態にある。脳波の種類がθ波の場合、その周波数は4~8Hzであって、ユーザは入眠時の状態にある。脳波の種類がδ波の場合、その周波数は0.5~4Hzであって、ユーザは深い睡眠状態にある。 FIG. 2 is a summary of the types, frequencies, and characteristics of the electroencephalogram. When the type of electroencephalogram is a γ wave, the frequency is 26 to 70 Hz, and the user is in an excited state. When the type of electroencephalogram is β-wave, the frequency is 14 to 38 Hz, and the user is in a normal daily life state. When the type of electroencephalogram is an α wave, the frequency is 8 to 14 Hz, and the user is in a relaxed state. When the type of electroencephalogram is a θ wave, the frequency is 4 to 8 Hz, and the user is in a sleep state. When the type of electroencephalogram is a δ wave, the frequency is 0.5 to 4 Hz, and the user is in a deep sleep state.
 図2に示すように、脳波の周波数が低いほど、身体状態は安静な状態となっている。特に、脳波が周波数8Hz以下のθ波、δ波の場合には、睡眠状態となっており、4Hz以下のδ波の場合には、深い睡眠状態となっている。このため、ユーザの睡眠状態を制御するためには、大まかには、脳波を低い周波数へと導けば、より深い睡眠状態へと導くことができ、脳波を高い周波数へと導けば、より浅い睡眠状態へと導くことができる。 As shown in FIG. 2, the lower the electroencephalogram frequency, the quieter the body is. In particular, when the electroencephalogram is a θ wave or δ wave having a frequency of 8 Hz or less, it is in a sleep state, and in the case of a δ wave having a frequency of 4 Hz or less, it is a deep sleep state. For this reason, in order to control the user's sleep state, roughly speaking, if the brain wave is guided to a low frequency, it can lead to a deeper sleep state, and if the brain wave is guided to a high frequency, shallower sleep Can lead to a state.
 制御周波数決定部2は、後に詳しく説明する動作モード、及び、非侵襲センサ1によって取得されたユーザの生体情報に基づいて、制御周波数fa、すなわち、脳波の誘導周波数faを決定する。 The control frequency determination unit 2 determines the control frequency fa, that is, the induction frequency fa of the electroencephalogram based on the operation mode described in detail later and the user's biological information acquired by the non-invasive sensor 1.
 変調音信号生成部3は、予め用意した単音の音信号に対して、制御周波数決定部2で決定した制御周波数faに基づいて変調した変調音信号を生成する。単音には、基音だけでなく、基音と倍音が含まれるものも含まれる。ユーザが聞いたときに違和感の無い音とするためには、変調する音信号はシンプルな音信号の方が好ましい。ここでは、単音の音信号を変調するものとして説明するが、変調する音信号は単音に限られず、例えばメロディのような音信号であっても良い。 The modulated sound signal generation unit 3 generates a modulated sound signal obtained by modulating a single sound signal prepared in advance based on the control frequency fa determined by the control frequency determination unit 2. A single tone includes not only a fundamental tone but also a fundamental tone and a harmonic overtone. In order to make the sound uncomfortable when the user hears it, the sound signal to be modulated is preferably a simple sound signal. Here, a description is given assuming that a single sound signal is modulated, but the sound signal to be modulated is not limited to a single sound, and may be a sound signal such as a melody.
 変調音信号生成部3は、予め用意した単音の音信号の周波数fxを、制御周波数決定部2で決定した制御周波数faだけシフトさせた周波数fx-faの音信号を生成し、周波数fxの単音の音信号と加算することによって得られる変調音信号を生成する。 The modulated sound signal generation unit 3 generates a sound signal having a frequency fx−fa obtained by shifting the frequency fx of a single sound signal prepared in advance by the control frequency fa determined by the control frequency determination unit 2, and generates a single sound having the frequency fx. A modulated sound signal obtained by adding the sound signal is generated.
 音源4には、変調音信号生成部3によって生成された変調音信号と加算するための音信号が格納されている。変調音信号と加算するための音信号は、任意の音信号とすることができる。ただし、変調音信号と加算する音信号は、動作モードに応じて適切な音信号を用いることが好ましい。例えば、就寝時モードでは、深い睡眠に導くために、睡眠時に適したヒーリングミュージック等を用いる。音源4に格納される音信号は1種類に限定されることはなく、複数種類であっても良い。音源4に格納される音信号として、CDに記録されている音楽や、インターネットを介してダウンロードした音楽等を用いることもできる。 The sound source 4 stores a sound signal to be added to the modulated sound signal generated by the modulated sound signal generation unit 3. The sound signal to be added to the modulated sound signal can be an arbitrary sound signal. However, as the sound signal to be added to the modulated sound signal, an appropriate sound signal is preferably used according to the operation mode. For example, in the bedtime mode, healing music or the like suitable for sleeping is used to lead to deep sleep. The sound signal stored in the sound source 4 is not limited to one type, and may be a plurality of types. As a sound signal stored in the sound source 4, music recorded on a CD, music downloaded via the Internet, or the like can be used.
 加算部5は、変調音信号生成部3で生成された変調音信号と、音源4に格納されている音信号とを加算する。 The adding unit 5 adds the modulated sound signal generated by the modulated sound signal generating unit 3 and the sound signal stored in the sound source 4.
 出力部6は、例えばスピーカであって、加算部5によって加算された音信号を出力する。出力部6としてのスピーカは、左右の耳に対応して2つ設けられている。ただし、スピーカは、1つだけでも良いし、3つ以上であっても良い。 The output unit 6 is a speaker, for example, and outputs the sound signal added by the adding unit 5. Two speakers as the output unit 6 are provided corresponding to the left and right ears. However, there may be only one speaker or three or more speakers.
 変調音信号生成部3によって、制御周波数faに基づいて変調された変調音信号を出力することにより、脳波を制御周波数faに誘導することができる。ただし、単音の音信号を制御周波数faに基づいて変調した変調音だけでは、耳障りな音となる可能性がある。従って、本実施形態では、変調音信号生成部3によって生成された変調音信号を、音源4に格納されている音信号に加算してから出力する。このため、変調音信号と加算するための音信号は、変調音信号を隠すための音信号と言える。これにより、変調音信号を含む音信号が耳障りな音として聞こえるのを防ぐことができる。 By outputting a modulated sound signal modulated based on the control frequency fa by the modulated sound signal generation unit 3, the brain wave can be induced to the control frequency fa. However, only a modulated sound obtained by modulating a single sound signal based on the control frequency fa may be annoying sound. Therefore, in this embodiment, the modulated sound signal generated by the modulated sound signal generation unit 3 is added to the sound signal stored in the sound source 4 and then output. For this reason, it can be said that the sound signal to be added to the modulated sound signal is a sound signal for hiding the modulated sound signal. Thereby, it is possible to prevent the sound signal including the modulated sound signal from being heard as an annoying sound.
 就寝時モード、覚醒時モード、途中覚醒時モード、及び、明晰夢モードの各動作モードの詳細について説明する。これらの動作モードは、身体制御装置が自動的に設定するが、ユーザが個別の動作モードを自由に設定できるようにしても良い。 Details of each operation mode of the sleep mode, the awake mode, the awake mode, and the lucid dream mode will be described. These operation modes are automatically set by the body control device, but the user may be able to freely set individual operation modes.
 <就寝時モード>
 就寝時モードは、就寝時に深い睡眠へと導くためのモードである。例えば、非侵襲センサ1によって検出される生体情報に基づいて、ユーザが就寝直後であると判定すると、動作モードを就寝時モードに設定する。
<Bedtime mode>
The bedtime mode is a mode for leading to deep sleep at bedtime. For example, if it is determined that the user is immediately after sleeping based on the biological information detected by the noninvasive sensor 1, the operation mode is set to the sleeping mode.
 図3は、睡眠段階とその時の脳波周波数、及び、就寝時モードでの制御周波数の関係を示す図である。睡眠段階とその時の脳波周波数の関係は、Rechtschaffen&Kalesによる睡眠段階分類の国際基準に基づいている。 FIG. 3 is a diagram showing the relationship between the sleep stage, the electroencephalogram frequency at that time, and the control frequency in the sleep mode. The relationship between sleep stage and EEG frequency at that time is based on the international standard of sleep stage classification by Rechtschaffen & Kales.
 図3では、睡眠段階(睡眠状態)として、「覚醒」、「レム睡眠」、「ノンレム睡眠1」、「ノンレム睡眠2」、「ノンレム睡眠3」、「ノンレム睡眠4」が挙げられている。「覚醒」、「レム睡眠」、「ノンレム睡眠1」、「ノンレム睡眠2」、「ノンレム睡眠3」、「ノンレム睡眠4」の順に、睡眠の深さは深くなり、脳波の周波数は低くなる。ただし、レム睡眠は、身体は休んでいるのに脳は活動している状態であり、脳波の周波数は「覚醒」の段階よりも高い場合がある。 In FIG. 3, “wakefulness”, “REM sleep”, “NON-REM sleep 1”, “NON-REM sleep 2”, “NON-REM sleep 3”, and “NON-REM sleep 4” are listed as sleep stages (sleep states). In the order of “awakening”, “REM sleep”, “NON-REM sleep 1”, “NON-REM sleep 2”, “NON-REM sleep 3”, and “NON-REM sleep 4”, the depth of sleep increases and the frequency of the electroencephalogram decreases. However, REM sleep is a state where the body is resting but the brain is active, and the frequency of the electroencephalogram may be higher than the “wakefulness” stage.
 睡眠段階が「覚醒」の場合、脳波の周波数は8Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は4~8Hzとする。 When the sleep stage is “wakefulness”, the frequency of the electroencephalogram is 8 Hz or more. In this case, the frequency of the induced electroencephalogram (control frequency fa) is 4 to 8 Hz.
 睡眠段階が「レム睡眠」の場合、脳波の周波数は12Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は4~8Hzとする。ただし、上述したように、レム睡眠は、身体は休んでいるのに脳は活動している状態であるため、非侵襲センサ1によって体動を検出する場合には、「レム睡眠」の睡眠段階を検出するのは難しい。また、レム睡眠は、通常入眠時には現れず、就寝時モードや後述する途中覚醒時モードでは考慮する必要がない。このため、「レム睡眠」の睡眠段階は、制御対象に含めないようにしても良い。 When the sleep stage is “REM sleep”, the frequency of the electroencephalogram is 12 Hz or more. In this case, the frequency of the induced electroencephalogram (control frequency fa) is 4 to 8 Hz. However, as described above, REM sleep is a state where the body is resting but the brain is active. Therefore, when body motion is detected by the non-invasive sensor 1, the sleep stage of “REM sleep” Is difficult to detect. Moreover, REM sleep does not usually appear at the time of falling asleep and does not need to be taken into consideration in a sleep mode or a mid-wake mode described later. For this reason, the sleep stage of “REM sleep” may not be included in the control target.
 睡眠段階が「ノンレム睡眠1」の場合、脳波の周波数は8~15Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は4~8Hzとする。 When the sleep stage is “Non-REM sleep 1”, the frequency of the electroencephalogram is 8 to 15 Hz or more. In this case, the frequency of the induced electroencephalogram (control frequency fa) is 4 to 8 Hz.
 睡眠段階が「ノンレム睡眠2」の場合、脳波の周波数は4~8Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は2~4Hzとする。 When the sleep stage is “NREM REM 2”, the frequency of the electroencephalogram is 4 to 8 Hz or more. In this case, the frequency of the induced electroencephalogram (control frequency fa) is 2 to 4 Hz.
 睡眠段階が「ノンレム睡眠3」の場合、脳波の周波数は2~4Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は0.5~2Hzとする。 When the sleep stage is “Non-REM sleep 3”, the frequency of the electroencephalogram is 2 to 4 Hz or more. In this case, the frequency of the induced electroencephalogram (control frequency fa) is 0.5 to 2 Hz.
 睡眠段階が「ノンレム睡眠4」の場合、脳波の周波数は0.5~2Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は0.5Hz以下とする。 When the sleep stage is “Non-REM sleep 4”, the frequency of the electroencephalogram is 0.5-2 Hz or more. In this case, the induced electroencephalogram frequency (control frequency fa) is 0.5 Hz or less.
 すなわち、非侵襲センサ1によって検出される生体情報に基づいて、睡眠段階を判定し、その睡眠段階の脳波周波数よりも低い周波数に脳波を誘導する。ここでは、「覚醒」及び「レム睡眠」の睡眠段階では、誘導する脳波の周波数は4~8Hzとし、「ノンレム睡眠1」、「ノンレム睡眠2」、「ノンレム睡眠3」、「ノンレム睡眠4」の各睡眠段階では、誘導する脳波の周波数を、睡眠が深い方向に1段階低い睡眠段階の脳波周波数に設定している。 That is, the sleep stage is determined based on the biological information detected by the noninvasive sensor 1, and the brain wave is induced at a frequency lower than the brain wave frequency of the sleep stage. Here, in the sleep stages of “wakefulness” and “rem sleep”, the frequency of the induced electroencephalogram is 4 to 8 Hz, and “non-REM sleep 1”, “non-REM sleep 2”, “non-REM sleep 3”, “non-REM sleep 4”. In each sleep stage, the frequency of the induced electroencephalogram is set to the electroencephalogram frequency of the sleep stage that is one stage lower in the deep sleep direction.
 このように、非侵襲センサ1によって検出される生体情報に基づいて判定される睡眠段階に応じて、少しずつ制御周波数faを低くしていくことにより、スムーズに深い睡眠状態へと導くことができる。すなわち、脳波の誘導周波数(制御周波数fa)を、そのときの脳波の周波数と近い周波数に設定し、段階的に脳波の誘導周波数を低下させることによって、深い睡眠段階へとスムーズに誘導することができる。 Thus, according to the sleep stage determined based on the biological information detected by the non-invasive sensor 1, the control frequency fa can be gradually lowered to lead to a deep sleep state smoothly. . That is, the induction frequency of the electroencephalogram (control frequency fa) is set to a frequency close to the frequency of the electroencephalogram at that time, and the induction frequency of the electroencephalogram is lowered step by step, thereby smoothly guiding to a deep sleep stage. it can.
 なお、図3に示す睡眠段階は一例である。従って、非侵襲センサ1によって検出される生体情報に基づいて睡眠段階を判定する際に、判定する睡眠段階が図3に示す睡眠段階に限定されることはない。 The sleep stage shown in FIG. 3 is an example. Therefore, when determining the sleep stage based on the biological information detected by the non-invasive sensor 1, the sleep stage to be determined is not limited to the sleep stage shown in FIG.
 ここで、誘導する脳波の周波数は、実際の脳波の周波数よりも低ければ良い。例えば、非侵襲センサ1によって検出される生体情報に基づいて推定される脳波の周波数の1/2の周波数を、誘導する脳波の周波数(制御周波数fa)に設定することができる。例えば、非侵襲センサ1によって検出される生体情報に基づいて、睡眠段階がノンレム睡眠2であると判定した場合、図3より、脳波の周波数は4~8Hzと推定できる。この場合、脳波の周波数は、4~8Hzの中央値である6Hzと推定し、それより低い周波数、例えば、その1/2の周波数である3Hzに、脳波の誘導周波数(制御周波数fa)を設定する。 Here, the frequency of the induced electroencephalogram should be lower than the actual electroencephalogram frequency. For example, it is possible to set a half of the brain wave frequency estimated based on the biological information detected by the non-invasive sensor 1 to the brain wave frequency to be guided (control frequency fa). For example, when it is determined that the sleep stage is non-REM sleep 2 based on biological information detected by the non-invasive sensor 1, the frequency of the electroencephalogram can be estimated as 4 to 8 Hz from FIG. In this case, the electroencephalogram frequency is estimated to be 6 Hz, which is the median value of 4 to 8 Hz, and the electroencephalogram induction frequency (control frequency fa) is set to a lower frequency, for example, 3 Hz, which is a half of that frequency To do.
 図4は、各睡眠段階における脳波の周波数(推定周波数)と、就寝時モードで誘導する脳波の周波数との関係を示す図である。図4において横軸は睡眠段階を表し、縦軸は脳波の周波数を表している。ただし、横軸は、図4の右側に向かうほど、浅い睡眠段階を示す。図4に示すように、就寝時モードで誘導する脳波の周波数は、どの睡眠段階においても、その睡眠段階における脳波の周波数(推定周波数)よりも低い。 FIG. 4 is a diagram showing the relationship between the frequency of the electroencephalogram (estimated frequency) in each sleep stage and the frequency of the electroencephalogram induced in the sleep mode. In FIG. 4, the horizontal axis represents the sleep stage, and the vertical axis represents the brain wave frequency. However, the horizontal axis indicates a shallow sleep stage toward the right side of FIG. As shown in FIG. 4, the frequency of the electroencephalogram induced in the sleep mode is lower than the electroencephalogram frequency (estimated frequency) in the sleep stage in any sleep stage.
 制御周波数決定部2は、図4に示すような睡眠段階と誘導する脳波の周波数との関係を示すテーブルデータを保持しており、このテーブルデータを参照することによって、誘導する脳波の周波数を決定することができる。この場合、テーブルデータの値は、いくつかの代表値のみとし、代表値の間の値は補間演算により求めるようにしても良い。 The control frequency determination unit 2 holds table data indicating the relationship between the sleep stage and the induced brain wave frequency as shown in FIG. 4, and determines the induced brain wave frequency by referring to the table data. can do. In this case, the table data values may be only some representative values, and values between the representative values may be obtained by interpolation calculation.
 より具体的には、制御周波数決定部2は、非侵襲センサ1によって検出される生体情報に基づいて、睡眠段階を判定し、判定した睡眠段階から、図4に示すようなテーブルデータを参照することによって、誘導する脳波の周波数、すなわち、制御周波数faを決定する。 More specifically, the control frequency determination unit 2 determines the sleep stage based on the biological information detected by the noninvasive sensor 1, and refers to the table data as shown in FIG. 4 from the determined sleep stage. Thus, the frequency of the induced electroencephalogram, that is, the control frequency fa is determined.
 就寝時モードでは、就寝時に、加算部5によって加算された音信号を出力部6から出力し始めてから、一定時間(例えば1時間)が経過するまで、または睡眠段階が所定の睡眠段階(例えば、ノンレム睡眠4)に至るまでの間、出力部6から音信号を出力し続ける。 In the bedtime mode, at the time of going to bed, the sound signal added by the adder 5 starts to be output from the output unit 6 until a fixed time (for example, 1 hour) elapses or the sleep stage is a predetermined sleep stage (for example, The sound signal is continuously output from the output unit 6 until the non-REM sleep 4).
 ここで、睡眠が深い方向に睡眠段階が変化するにつれて、出力部6から出力する音信号の音量を下げるようにすることが好ましい。すなわち、非侵襲センサ1によって検出される生体情報に基づいて判定した睡眠段階が睡眠の深い方向に進むにつれて、出力部6から出力する音信号の音量を少しずつ小さくする。これにより、スムーズに深い睡眠状態へと導くことができる。また、周囲に他の人が寝ている場合には、周りの人の睡眠が阻害されるのを抑制することができる。この場合、非侵襲センサ1によって検出された生体情報に基づいて、出力する音信号の音量を決定する音量決定部を、出力部6の内部に設けても良いし、出力部6とは別に設けても良い。 Here, it is preferable to reduce the volume of the sound signal output from the output unit 6 as the sleep stage changes in the deep sleep direction. That is, the volume of the sound signal output from the output unit 6 is gradually reduced as the sleep stage determined based on the biological information detected by the non-invasive sensor 1 proceeds in the deep sleep direction. Thereby, it can guide to a deep sleep state smoothly. Moreover, when other people are sleeping around, it can suppress that the sleep of the surrounding people is inhibited. In this case, a volume determination unit that determines the volume of the sound signal to be output based on the biological information detected by the noninvasive sensor 1 may be provided inside the output unit 6 or provided separately from the output unit 6. May be.
 また、就寝時モードによる制御を開始してから、時間が経過するにつれて、出力部6から出力する音信号の音量を下げるようにしても良い。時間の経過とともに音量を少しずつ下げていくことにより、スムーズに深い睡眠状態へと導くことができる。また、周囲に他の人が寝ている場合には、周りの人の睡眠が阻害されるのを抑制することができる。しかしながら、この方法では、一定時間経過後に音量が0になるが、その時に、ユーザが十分な深さの睡眠段階に到達していない可能性がある。このため、睡眠段階に応じて音量を下げる方が好ましい。 Further, the volume of the sound signal output from the output unit 6 may be lowered as time elapses after the control in the bedtime mode is started. By gradually lowering the volume over time, it is possible to smoothly lead to a deep sleep state. Moreover, when other people are sleeping around, it can suppress that the sleep of the surrounding people is inhibited. However, in this method, the sound volume becomes 0 after a lapse of a certain time, but at that time, the user may not have reached a sufficiently deep sleep stage. For this reason, it is preferable to lower the volume according to the sleep stage.
 非侵襲センサ1によって検出される生体情報に基づいて、睡眠状態の推移情報を作成して、翌朝ユーザに提示するようにしても良い。例えば、非侵襲センサ1によって検出される生体情報に基づいて、ユーザの脳波の周波数の推移を示すグラフを作成する。身体制御装置にディスプレイを設けておき、ディスプレイに周波数の推移を示すグラフを表示すれば、ユーザは自身の睡眠状態を把握することができる。 The sleep state transition information may be created based on the biological information detected by the non-invasive sensor 1 and presented to the user the next morning. For example, based on the biological information detected by the non-invasive sensor 1, a graph showing the transition of the brain wave frequency of the user is created. If a display is provided in the body control device and a graph showing frequency transition is displayed on the display, the user can grasp his / her sleep state.
 <覚醒時モード>
 覚醒時モードは、起床時にスムーズに覚醒へと導くためのモードである。例えば、ユーザによって予め設定された起床時刻の所定時間前になると、動作モードを覚醒時モードに設定する。
<Wake mode>
The awakening mode is a mode for smoothly leading to awakening when waking up. For example, when the predetermined time before the wake-up time set in advance by the user, the operation mode is set to the awakening mode.
 図5は、睡眠段階とその時の脳波周波数、及び、覚醒時モードでの制御周波数の関係を示す図である。睡眠段階とその時の脳波周波数の関係は、Rechtschaffen&Kalesによる睡眠段階分類の国際基準に基づいている。 FIG. 5 is a diagram showing the relationship between the sleep stage, the electroencephalogram frequency at that time, and the control frequency in the awakening mode. The relationship between sleep stage and EEG frequency at that time is based on the international standard of sleep stage classification by Rechtschaffen & Kales.
 図5でも、睡眠段階として、「覚醒」、「レム睡眠」、「ノンレム睡眠1」、「ノンレム睡眠2」、「ノンレム睡眠3」、「ノンレム睡眠4」が挙げられている。 Also in FIG. 5, “wakefulness”, “REM sleep”, “NON-REM sleep 1”, “NON-REM sleep 2”, “NON-REM sleep 3”, and “NON-REM sleep 4” are listed as sleep stages.
 睡眠段階が「ノンレム睡眠4」の場合、脳波の周波数は0.5~2Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は2~4Hzとする。 When the sleep stage is “Non-REM sleep 4”, the frequency of the electroencephalogram is 0.5-2 Hz or more. In this case, the frequency of the induced electroencephalogram (control frequency fa) is 2 to 4 Hz.
 睡眠段階が「ノンレム睡眠3」の場合、脳波の周波数は2~4Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は4~8Hzとする。 When the sleep stage is “Non-REM sleep 3”, the frequency of the electroencephalogram is 2 to 4 Hz or more. In this case, the frequency of the induced electroencephalogram (control frequency fa) is 4 to 8 Hz.
 睡眠段階が「ノンレム睡眠2」の場合、脳波の周波数は4~8Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は8~15Hzとする。 When the sleep stage is “NREM REM 2”, the frequency of the electroencephalogram is 4 to 8 Hz or more. In this case, the induced electroencephalogram frequency (control frequency fa) is 8 to 15 Hz.
 睡眠段階が「ノンレム睡眠1」の場合、脳波の周波数は8~15Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は16Hz以下とする。 When the sleep stage is “Non-REM sleep 1”, the frequency of the electroencephalogram is 8 to 15 Hz or more. In this case, the induced electroencephalogram frequency (control frequency fa) is 16 Hz or less.
 睡眠段階が「レム睡眠」の場合、脳波の周波数は12Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は16Hz以上とする。ただし、上述したように、非侵襲センサ1によって体動を検出する場合には、「レム睡眠」の睡眠段階を検出するのは難しいので、「レム睡眠」の睡眠段階は、制御対象に含めないようにしても良い。 When the sleep stage is “REM sleep”, the frequency of the electroencephalogram is 12 Hz or more. In this case, the frequency of the induced electroencephalogram (control frequency fa) is 16 Hz or more. However, as described above, when the body motion is detected by the non-invasive sensor 1, it is difficult to detect the sleep stage of “REM sleep”, so the sleep stage of “REM sleep” is not included in the control target. You may do it.
 睡眠段階が「覚醒」の場合、脳波の周波数は8Hz以上である。この場合、誘導する脳波の周波数(制御周波数fa)は16Hz以上とする。 When the sleep stage is “wakefulness”, the frequency of the electroencephalogram is 8 Hz or more. In this case, the frequency of the induced electroencephalogram (control frequency fa) is 16 Hz or more.
 すなわち、非侵襲センサ1によって検出される生体情報に基づいて、睡眠段階を決定し、その睡眠段階の脳波周波数よりも高い周波数に脳波を誘導する。ここでは、「覚醒」、「レム睡眠」、及び「ノンレム睡眠1」の睡眠段階では、誘導する脳波の周波数は16Hz以上とし、「ノンレム睡眠2」、「ノンレム睡眠3」、「ノンレム睡眠4」の各睡眠段階では、誘導する脳波の周波数を、睡眠が浅い方向に1段階高い睡眠段階の脳波周波数に設定している。 That is, the sleep stage is determined based on the biological information detected by the non-invasive sensor 1, and the electroencephalogram is induced at a frequency higher than the electroencephalogram frequency of the sleep stage. Here, in the sleep stages of “wakefulness”, “REM sleep”, and “non-REM sleep 1”, the frequency of the induced electroencephalogram is 16 Hz or more, and “NON-REM sleep 2”, “NON-REM sleep 3”, “NON-REM sleep 4”. In each sleep stage, the frequency of the induced electroencephalogram is set to the electroencephalogram frequency of the sleep stage that is higher by one stage in the direction of shallow sleep.
 このように、非侵襲センサ1によって検出される生体情報に基づいて判定される睡眠段階に応じて、少しずつ制御周波数faを高くしていくことにより、スムーズに覚醒状態へと導くことができる。すなわち、脳波の誘導周波数(制御周波数fa)を、そのときの脳波の周波数と近い周波数に設定することによって、覚醒段階へとスムーズに誘導することができる。 Thus, by gradually increasing the control frequency fa according to the sleep stage determined based on the biological information detected by the non-invasive sensor 1, it is possible to smoothly lead to an awake state. That is, by setting the induction frequency (control frequency fa) of the electroencephalogram to a frequency close to the frequency of the electroencephalogram at that time, it is possible to induce smoothly to the awakening stage.
 ここで、誘導する脳波の周波数は、実際の脳波の周波数よりも高ければ良い。例えば、非侵襲センサ1によって検出される生体情報に基づいて推定される脳波の周波数の2倍の周波数を、誘導する脳波の周波数(制御周波数fa)に設定することができる。例えば、非侵襲センサ1によって検出される生体情報に基づいて、睡眠段階がノンレム睡眠2であると判定した場合、図5より、脳波の周波数は4~8Hzと推定できる。この場合、脳波の周波数は、4~8Hzの中央値である6Hzと推定し、それより高い周波数、例えば、その2倍の周波数である12Hzに、脳波の誘導周波数(制御周波数fa)を設定する。 Here, the frequency of the induced electroencephalogram should be higher than the actual electroencephalogram frequency. For example, a frequency that is twice the frequency of the electroencephalogram estimated based on the biological information detected by the noninvasive sensor 1 can be set as the frequency of the electroencephalogram to be induced (control frequency fa). For example, when it is determined that the sleep stage is non-REM sleep 2 based on the biological information detected by the noninvasive sensor 1, the frequency of the electroencephalogram can be estimated as 4 to 8 Hz from FIG. In this case, the electroencephalogram frequency is estimated to be 6 Hz, which is the median value of 4 to 8 Hz, and the electroencephalogram induction frequency (control frequency fa) is set to a higher frequency, for example, 12 Hz, which is twice that frequency. .
 図6は、その睡眠段階における脳波の周波数(推定周波数)と、覚醒時モードで誘導する脳波の周波数との関係を示す図である。図6において横軸は睡眠段階を表し、縦軸は脳波の周波数を表している。ただし、横軸は、図6の右側に向かうほど、浅い睡眠段階を示す。図6に示すように、誘導する脳波の周波数は、どの睡眠段階においても、その睡眠段階における脳波の周波数(推定周波数)よりも高い。 FIG. 6 is a diagram showing a relationship between the frequency of the electroencephalogram (estimated frequency) in the sleep stage and the frequency of the electroencephalogram induced in the wakefulness mode. In FIG. 6, the horizontal axis represents the sleep stage, and the vertical axis represents the frequency of the electroencephalogram. However, the horizontal axis indicates a shallow sleep stage toward the right side of FIG. As shown in FIG. 6, the frequency of the induced electroencephalogram is higher than the frequency of the electroencephalogram (estimated frequency) in the sleep stage at any sleep stage.
 制御周波数決定部2は、図6に示すような睡眠段階と誘導する脳波の周波数との関係を示すテーブルデータを保持しており、このテーブルデータを参照することによって、誘導する脳波の周波数を決定することができる。この場合、テーブルデータの値は、いくつかの代表値のみとし、代表値の間の値は補間演算により求めるようにしても良い。 The control frequency determination unit 2 holds table data indicating the relationship between the sleep stage and the induced brain wave frequency as shown in FIG. 6, and determines the induced brain wave frequency by referring to the table data. can do. In this case, the table data values may be only some representative values, and values between the representative values may be obtained by interpolation calculation.
 より具体的には、制御周波数決定部2は、非侵襲センサ1によって検出される生体情報に基づいて、睡眠段階を判定し、判定した睡眠段階から、図6に示すようなテーブルデータを参照することによって、誘導する脳波の周波数、すなわち、制御周波数faを決定する。 More specifically, the control frequency determination unit 2 determines the sleep stage based on the biological information detected by the noninvasive sensor 1, and refers to the table data as shown in FIG. 6 from the determined sleep stage. Thus, the frequency of the induced electroencephalogram, that is, the control frequency fa is determined.
 覚醒時モードでは、ユーザによって予め設定された起床時刻の所定時間前(例えば、30分前)から、加算部5によって加算された音信号を出力部6から出力する。このとき、出力部6から出力する音信号の音量をいきなり大きくするのではなく、少しずつ大きくしていくことが好ましい。 In the awakening mode, the sound signal added by the adding unit 5 is output from the output unit 6 from a predetermined time (for example, 30 minutes before) a wake-up time preset by the user. At this time, it is preferable not to suddenly increase the volume of the sound signal output from the output unit 6, but to gradually increase the volume.
 また、睡眠が浅い方向に睡眠段階が変化するにつれて、出力部6から出力する音信号の音量を上げるようにすることが好ましい。すなわち、非侵襲センサ1によって検出される生体情報に基づいて決定した睡眠段階が睡眠の浅い方向に進むにつれて、音量を少しずつ上げる。これにより、スムーズに覚醒状態へと導くことができる。 Also, it is preferable to increase the volume of the sound signal output from the output unit 6 as the sleep stage changes in a direction in which sleep is shallow. That is, the sound volume is increased little by little as the sleep stage determined based on the biological information detected by the non-invasive sensor 1 proceeds in the direction of shallow sleep. Thereby, it can guide to an awakening state smoothly.
 また、覚醒時モードによる制御を開始してから、時間が経過するにつれて、出力部6から出力する音信号の音量を上げるようにしても良い。音量を少しずつ上げていくことにより、スムーズに覚醒状態へと導くことができる。 Also, the volume of the sound signal output from the output unit 6 may be increased as time elapses after the control in the awake mode is started. By gradually increasing the volume, it is possible to smoothly lead to an awakened state.
 覚醒時モードによる制御によれば、ユーザを起床時刻までに覚醒させることができる。しかし、出力部6からの音信号の出力だけでは、起床時刻までに覚醒させることができない場合もあり得る。そこで、起床時刻になると、アラーム音を鳴らすようにしても良い。アラーム音は、一般的な目覚まし時計のアラーム音を使用することができる。これにより、ユーザの寝過ごしを防止することができる。 According to the control in the wake-up mode, the user can be woken up by the wake-up time. However, it may be impossible to wake up by the wake-up time only by outputting the sound signal from the output unit 6. Therefore, an alarm sound may be sounded at the wake-up time. As an alarm sound, a general alarm clock alarm sound can be used. Thereby, a user's oversleeping can be prevented.
 <途中覚醒時モード>
 ユーザの中には、睡眠中に目が覚めて、その後になかなか寝付けないという途中覚醒に悩んでいる人もいる。途中覚醒時モードは、睡眠の途中で起きてしまった場合や、起きそうになった場合に、再び深い睡眠へと導くためのモードである。例えば、非侵襲センサ1によって検出される生体情報に基づいて、睡眠中のユーザが覚醒するか、または、覚醒しそうになっていると判定した場合に、動作モードを途中覚醒時モードに設定する。
<Mode when waking up midway>
Some users are worried about awakening on the way, when they wake up during sleep and then have difficulty sleeping. The awakening mode is a mode for guiding the user to deep sleep again when he / she wakes up or is about to wake up. For example, based on the biological information detected by the non-invasive sensor 1, when it is determined that the sleeping user is awake or is about to awake, the operation mode is set to the mid-wake mode.
 途中覚醒時モードでは、非侵襲センサ1によって検出される生体情報に基づいて推定される睡眠段階が所定の睡眠段階になると、再び深い睡眠へと導くための制御を行う。所定の睡眠段階とは、例えば「ノンレム睡眠1」または「覚醒」である。深い睡眠へと導くための制御は、就寝時モードにおいて行われる制御と同じである。例えば、睡眠段階がノンレム睡眠2からノンレム睡眠1に変化すると、動作モードが途中覚醒時モードとなり、脳波を誘導する周波数(制御周波数fa)を、ノンレム睡眠1のときの脳波周波数より低い周波数(図3を参照すると、4~8Hzの周波数)に設定する。 In the mid-wake mode, when the sleep stage estimated based on the biological information detected by the noninvasive sensor 1 becomes a predetermined sleep stage, control is performed to lead to deep sleep again. The predetermined sleep stage is, for example, “non-REM sleep 1” or “wakefulness”. The control for leading to deep sleep is the same as the control performed in the bedtime mode. For example, when the sleep stage changes from non-REM sleep 2 to non-REM sleep 1, the operation mode becomes a mid-wake mode, and the frequency for inducing brain waves (control frequency fa) is lower than the electroencephalogram frequency for non-REM sleep 1 (see FIG. 3, the frequency is set to 4 to 8 Hz.
 途中覚醒時モードでは、睡眠段階が所定の睡眠段階になると、加算部5によって加算された音信号を出力部6から出力し始める。このとき、出力部6から出力する音信号の音量をいきなり大きくするのではなく、少しずつ大きくしていくようにしても良い。また、出力部6から音信号を出力し始めてから、一定時間が経過するまで、または睡眠段階が所定の睡眠段階(例えば、ノンレム睡眠4)に至るまでの間、出力部6から音信号を出力し続ける。このとき、就寝時モードと同様に、睡眠が深い方向に睡眠段階が変化するにつれて、または、時間が経過するにつれて、音量を少しずつ下げるようにしても良い。音量を少しずつ下げていくことにより、スムーズに深い睡眠状態へと導くことができる。 In the mid-wake mode, when the sleep stage becomes a predetermined sleep stage, the sound signal added by the adder 5 starts to be output from the output unit 6. At this time, the volume of the sound signal output from the output unit 6 may not be suddenly increased but gradually increased. Also, the sound signal is output from the output unit 6 until a certain time elapses after the sound signal starts to be output from the output unit 6 or until the sleep stage reaches a predetermined sleep stage (for example, non-REM sleep 4). Keep doing. At this time, as in the bedtime mode, the volume may be gradually decreased as the sleep stage changes in the deeper direction of sleep or as time elapses. By gradually lowering the volume, it is possible to smoothly lead to a deep sleep state.
 図7は、睡眠段階の時間変化の一例、及び、途中覚醒時モードにおける制御タイミングを示す図である。図7において、横軸は時間を表し、縦軸は睡眠段階を表している。ただし、縦軸は、図7の上側に向かうほど、浅い睡眠段階となっている。 FIG. 7 is a diagram showing an example of the time change of the sleep stage and the control timing in the awakening mode. In FIG. 7, the horizontal axis represents time, and the vertical axis represents the sleep stage. However, the vertical axis indicates a shallower sleep stage toward the upper side of FIG.
 図7において、就床後、睡眠段階は少しずつ深くなっていき、ユーザは睡眠状態となっているが、時刻T1に睡眠段階が「ノンレム睡眠1」になり、途中覚醒時モードによる制御が開始されている。睡眠段階が「ノンレム睡眠1」になったか否かは、非侵襲センサ1によって取得されたユーザの生体情報に基づいて、判定することができる。 In FIG. 7, after going to bed, the sleep stage gradually becomes deeper and the user is in a sleep state, but at time T <b> 1, the sleep stage becomes “non-REM sleep 1”, and control in the awakening mode is started midway Has been. Whether or not the sleep stage is “non-REM sleep 1” can be determined based on the user's biological information acquired by the non-invasive sensor 1.
 就寝時モードで説明したように、制御周波数決定部2は、脳波を誘導する周波数(制御周波数)faを、そのときの睡眠段階に対応する脳波周波数よりも低い周波数に設定する。従って、睡眠段階が「ノンレム睡眠1」となった時刻T1では、脳波を誘導する制御周波数faを、4~8Hzに設定する。これにより、脳波の周波数は少しずつ低下していく。 As described in the bedtime mode, the control frequency determination unit 2 sets the frequency (control frequency) fa for inducing brain waves to a frequency lower than the brain wave frequency corresponding to the sleep stage at that time. Therefore, at time T1 when the sleep stage becomes “Non-REM sleep 1”, the control frequency fa for inducing brain waves is set to 4 to 8 Hz. As a result, the frequency of the electroencephalogram gradually decreases.
 図7に示す例では、時刻T2に睡眠段階が「ノンレム睡眠4」になることにより、途中覚醒時モードにおける制御を終了している。ただし、途中覚醒時モードは、ノンレム睡眠4以外の所定の睡眠段階に到達したときに終了しても良いし、途中覚醒時モードによる制御を開始してから一定時間が経過すると終了するようにしても良い。 In the example shown in FIG. 7, the control in the mid-wake mode is terminated when the sleep stage becomes “non-REM sleep 4” at time T2. However, the mid-wake mode may be terminated when a predetermined sleep stage other than the non-REM sleep 4 is reached, or may be terminated when a certain time has elapsed since the start of the mid-wake mode control. Also good.
 途中覚醒時モードによる制御によれば、途中覚醒を抑制、または、途中覚醒してしまっても、再び睡眠へと導くことができる。 According to the control in the mid-wake mode, even if the mid-wake is suppressed, or even if the mid-wake is awake, it can lead to sleep again.
 <明晰夢モード>
 明晰夢モードとは、明晰夢が見られるように導くためのモードである。明晰夢とは、自分で夢と自覚しながら見る夢のことであり、例えば空を飛ぶ夢等のように、夢の状況を自由にコントロールできるのが特徴である。
<Lucid dream mode>
The lucid dream mode is a mode for guiding the lucid dream to be seen. A lucid dream is a dream that you see as you realize it. For example, you can freely control the situation of the dream, such as a dream that flies in the sky.
 ドイツの研究チームは、論文(Nature Neuroscience, June 2014, Volume 17, P810-812)の中で、脳波を約40Hzに誘導することにより、高い確率で明晰夢が見られることを発表している。明晰夢を見ている間、人の脳は軽い興奮状態にある。すなわち、睡眠中に、脳を軽い興奮状態に導くことにより、明晰夢を見ることができる可能性がある。 The German research team announced in a paper (Nature Neuroscience, June 2014, Volume 17, P810-812) that the brain wave can be induced with high probability by inducing brain waves to about 40 Hz. While dreaming lucidly, the human brain is in a light excitement. That is, during sleep, it may be possible to see lucid dreams by guiding the brain to a light excitement state.
 従って、明晰夢モード時に、制御周波数決定部2は、誘導する脳波の周波数(制御周波数)として、30Hz以上の周波数を設定する。誘導する脳波の周波数を30Hz以上に設定することにより、脳を軽い興奮状態に導くことができ、明晰夢が見られるように導くことができる。ドイツの研究チームが発表したように、30Hz以上の周波数のうち、40Hzの周波数を、誘導する脳波の周波数に設定することが好ましい。 Therefore, in the lucid dream mode, the control frequency determination unit 2 sets a frequency of 30 Hz or more as the frequency of the electroencephalogram to be induced (control frequency). By setting the frequency of the electroencephalogram to be guided to 30 Hz or more, the brain can be led to a light excitement state and can be guided so that a clear dream can be seen. As announced by a German research team, it is preferable to set a frequency of 40 Hz out of a frequency of 30 Hz or more as a frequency of the induced electroencephalogram.
 明晰夢モードは、ユーザが明晰夢を見ることを希望するときだけアクティブになることが好ましい。従って、ユーザが明晰夢モードをオンにして、ユーザの睡眠中に他の制御モードがアクティブになっていない場合に、明晰夢モードがアクティブになる。例えば、就寝時モードが終了して一定時間経過後(例えば30分後)に他の制御モードがアクティブになっていなければ、その時点で明晰夢モードによる制御を開始する。明晰夢モードによる制御時間は、例えば所定時間に制限しても良いし、ユーザが設定するようにしても良い。 The lucid dream mode is preferably activated only when the user wishes to see the lucid dream. Accordingly, when the user turns on the lucid dream mode and no other control mode is activated during the user's sleep, the lucid dream mode is activated. For example, if another control mode is not active after a certain period of time (e.g., 30 minutes) after the bedtime mode ends, the control in the clear dream mode is started at that time. The control time in the lucid dream mode may be limited to a predetermined time, for example, or may be set by the user.
 明晰夢モードの作動時に出力部6から音信号を出力する際には、少しずつ音量を上げていくことが好ましい。また、明晰夢モードの作動時には、ユーザに夢を見ていることを気づかせるための音声をスピーカから流すことが好ましい。このスピーカは、出力部6を構成するスピーカでも良いし、出力部6を構成するスピーカとは別のスピーカでも良い。ユーザに夢を見ていることを気づかせるための音声とは、例えば「あなたは今、夢の中にいます」というような音声である。このような音声を同時に流すことにより、より明晰夢を見ることができる可能性が高くなる。 When outputting the sound signal from the output unit 6 during the operation of the lucid dream mode, it is preferable to gradually increase the volume. Further, it is preferable that a sound for letting the user notice that he / she is dreaming is played from the speaker when the lucid dream mode is activated. This speaker may be a speaker constituting the output unit 6, or may be a speaker different from the speaker constituting the output unit 6. The voice for notifying the user that he / she is dreaming is, for example, a voice such as “You are in a dream now”. By playing such a sound simultaneously, the possibility of more lucid dreaming is increased.
 図8は、睡眠段階の時間変化の一例、及び、明晰夢モードにおける制御タイミングを示す図である。図8において、横軸は時間を表し、縦軸は睡眠段階を表している。ただし、縦軸は、図8の上側に向かうほど、浅い睡眠段階となっている。 FIG. 8 is a diagram showing an example of the time change of the sleep stage and the control timing in the lucid dream mode. In FIG. 8, the horizontal axis represents time, and the vertical axis represents the sleep stage. However, the vertical axis indicates a shallower sleep stage toward the upper side of FIG.
 図8において、時刻T10からT11の間は、就寝時モードによる制御が行われている。就寝時モードが終了してから一定時間(例えば30分)経過後の時刻T12において、明晰夢モードが開始されている。明晰夢モードでの制御時には、制御周波数faが30Hz以上の周波数に設定されるため、脳波は「覚醒」段階に制御される。 Referring to FIG. 8, the bedtime mode control is performed between times T10 and T11. The lucid dream mode is started at time T12 after a lapse of a certain time (for example, 30 minutes) after the bedtime mode ends. During control in the lucid dream mode, since the control frequency fa is set to a frequency of 30 Hz or higher, the electroencephalogram is controlled in the “wakefulness” stage.
 明晰夢モードによれば、ユーザを明晰夢に誘導することができる。 According to the lucid dreaming mode, the user can be guided to the lucid dreaming.
 [第2の実施形態]
 第1の実施形態における身体制御装置では、2つの出力部6からは同じ音信号を出力した。第2の実施形態における身体制御装置では、2つの出力部6から異なる音信号、具体的には、いわゆるバイノーラルビートを出力する。
[Second Embodiment]
In the body control device according to the first embodiment, the same sound signal is output from the two output units 6. In the body control apparatus according to the second embodiment, different sound signals, specifically so-called binaural beats, are output from the two output units 6.
 変調音信号生成部3は、予め用意したモノラルの音信号に対して、制御周波数決定部2で決定した制御周波数faに基づいて変調した変調音信号を生成する。モノラルの音信号は、例えば単音の持続音やメロディであるが、周波数範囲が広い音は望ましくない(望ましくは1オクターブ以内)。 The modulated sound signal generating unit 3 generates a modulated sound signal obtained by modulating a monaural sound signal prepared in advance based on the control frequency fa determined by the control frequency determining unit 2. The monaural sound signal is, for example, a single continuous sound or a melody, but a sound having a wide frequency range is not desirable (preferably within one octave).
 変調音信号生成部3は、予め用意した音信号の周波数fxを、制御周波数決定部2で決定した制御周波数faだけシフトさせた周波数fx-faの音信号を生成する。すなわち、変調音信号生成部3は、周波数差が制御周波数faである2つの音信号を生成する。なお、周波数差が制御周波数faである2つの音信号は、例えば周波数fxの音信号と周波数fx+faの音信号でも良いし、周波数fx-fa/2の音信号と周波数fx+fa/2の音信号でも良い。 The modulated sound signal generation unit 3 generates a sound signal having a frequency fx−fa obtained by shifting the frequency fx of the sound signal prepared in advance by the control frequency fa determined by the control frequency determination unit 2. That is, the modulated sound signal generation unit 3 generates two sound signals whose frequency difference is the control frequency fa. The two sound signals whose frequency difference is the control frequency fa may be, for example, a sound signal of frequency fx and a sound signal of frequency fx + fa, or a sound signal of frequency fx−fa / 2 and a sound signal of frequency fx + fa / 2. good.
 加算部5は、周波数fxの音信号に、音源4に格納されている音信号を加算するとともに、周波数fx-faの音信号に、音源4に格納されている音信号を加算する。 The addition unit 5 adds the sound signal stored in the sound source 4 to the sound signal having the frequency fx, and adds the sound signal stored in the sound source 4 to the sound signal having the frequency fx-fa.
 左右の出力部6のうちの一方の出力部6からは、周波数fxの音信号に、音源4に格納されている音信号を加算した音信号を出力し、他方の出力部6からは、周波数fx-faの音信号に、音源4に格納されている音信号を加算した音信号を出力する。 One of the left and right output units 6 outputs a sound signal obtained by adding the sound signal stored in the sound source 4 to the sound signal having the frequency fx, and the other output unit 6 outputs the frequency signal. A sound signal obtained by adding the sound signal stored in the sound source 4 to the sound signal of fx-fa is output.
 このような音信号は、バイノーラルビートとして知られている。すなわち、左右の耳に、制御周波数faだけ異なる2つの音信号を聞かせることにより、脳波を制御周波数faに誘導することができる。  Such a sound signal is known as a binaural beat. In other words, the brain waves can be induced to the control frequency fa by letting the left and right ears hear two sound signals that differ by the control frequency fa. *
 [第3の実施形態]
 第3の実施形態における身体制御装置では、変調音信号生成部3は、予め用意した単音等の音信号に対して、制御周波数決定部2で決定した制御周波数faに基づいて、振幅変調を施すことによって、変調音信号を生成する。例えば、予め用意した単音等の音信号に対して、{a・sin(2π・fa・t)+(1-a)}を乗じることによって、制御周波数faの振幅変調を行う。ただし、aは0<a<1/2の関係を満たす定数であり、tは時間を表す変数である。このように、制御周波数faに基づいて振幅変調を施した音信号を出力することにより、脳波を制御周波数faに誘導することができる。
[Third Embodiment]
In the body control device according to the third embodiment, the modulated sound signal generation unit 3 performs amplitude modulation on a sound signal such as a single sound prepared in advance based on the control frequency fa determined by the control frequency determination unit 2. Thus, a modulated sound signal is generated. For example, amplitude modulation of the control frequency fa is performed by multiplying a sound signal such as a single sound prepared in advance by {a · sin (2π · fa · t) + (1-a)}. Here, a is a constant that satisfies the relationship 0 <a <1/2, and t is a variable that represents time. Thus, by outputting a sound signal subjected to amplitude modulation based on the control frequency fa, the brain wave can be induced to the control frequency fa.
 本実施形態によれば、脳波を制御周波数faに誘導するための音信号をステレオで聞く必要がない。すなわち、第2の実施形態で説明したバイノーラルビートは、周波数差が制御周波数faである2つの音信号を生成してステレオで聞く必要があるが、制御周波数faに基づいて振幅変調を施した音信号はステレオで聞く必要がない。 According to the present embodiment, it is not necessary to listen to the sound signal for inducing the electroencephalogram to the control frequency fa in stereo. That is, the binaural beat described in the second embodiment needs to generate two sound signals whose frequency difference is the control frequency fa and listen in stereo, but the sound subjected to amplitude modulation based on the control frequency fa The signal does not have to be heard in stereo.
 [第4の実施形態]
 第4の実施形態における身体制御装置では、変調音信号生成部3は、予め用意した単音等の音信号に対して、制御周波数決定部2で決定した制御周波数faに基づいて、周波数変調を施すことによって、変調音信号を生成する。例えば、予め用意した単音等の音信号に対して、b・sin(2π・fa・t)の周波数シフトを施すことにより、制御周波数faの周波数変調を行う。ただし、bは、周波数変調の振幅であり、tは時間を表す変数である。
[Fourth Embodiment]
In the body control device according to the fourth embodiment, the modulated sound signal generation unit 3 performs frequency modulation on a sound signal such as a single sound prepared in advance based on the control frequency fa determined by the control frequency determination unit 2. Thus, a modulated sound signal is generated. For example, frequency modulation of the control frequency fa is performed by performing a frequency shift of b · sin (2π · fa · t) on a sound signal such as a single sound prepared in advance. Here, b is the amplitude of frequency modulation, and t is a variable representing time.
 本実施形態によれば、脳波を制御周波数faに誘導するための音信号をステレオで聞く必要がない。すなわち、第2の実施形態で説明したバイノーラルビートは、周波数差が制御周波数faである2つの音信号を生成してステレオで聞く必要があるが、制御周波数faに基づいて周波数変調を施した音信号はステレオで聞く必要がない。 According to the present embodiment, it is not necessary to listen to the sound signal for inducing the electroencephalogram to the control frequency fa in stereo. That is, the binaural beat described in the second embodiment needs to generate two sound signals having a frequency difference of the control frequency fa and listen in stereo, but the sound subjected to frequency modulation based on the control frequency fa The signal does not have to be heard in stereo.
 [第5の実施形態]
 第5の実施形態における身体制御装置では、変調音信号生成部3は、予め用意した単音等の音信号に対して、制御周波数決定部2で決定した制御周波数faに基づいて、音像定位を周期的に変化させるパンニング変調を施すことによって、変調音を生成する。パンニング変調を施す音信号は、ステレオ音源である。ただし、パンニング変調を施す音信号がモノラル音源の場合には、同じ音信号を左右の出力部6から出力するために、2つの同じ音信号を用意する。
[Fifth Embodiment]
In the body control apparatus according to the fifth embodiment, the modulated sound signal generation unit 3 periodically performs sound image localization on a sound signal such as a single sound prepared in advance based on the control frequency fa determined by the control frequency determination unit 2. A modulated sound is generated by performing panning modulation that is changed in a stepwise manner. The sound signal subjected to panning modulation is a stereo sound source. However, when the sound signal subjected to panning modulation is a monaural sound source, two identical sound signals are prepared in order to output the same sound signal from the left and right output units 6.
 変調音信号生成部3は、例えば、予め用意した2つの音信号の一方には、{c・sin(2π・fa・t)+(1-c)}を乗じ、他方には、{-c・sin(2π・fa・t)+(1-c)}を乗じることによって、制御周波数faのパンニング変調を行う。ただし、cは0<c<1/2の関係を満たす定数であり、tは時間を表す変数である。 For example, the modulated sound signal generation unit 3 multiplies one of two sound signals prepared in advance by {c · sin (2π · fa · t) + (1-c)}, and the other is {−c Multiply sin (2π · fa · t) + (1-c)} to perform panning modulation of the control frequency fa. Here, c is a constant that satisfies the relationship 0 <c <1/2, and t is a variable that represents time.
 本実施形態による制御によっても、脳波の周波数を制御周波数faに導くことができる。また、上述した第2~第4の実施形態で説明した変調方法と組み合わせることにより、脳波の周波数を制御周波数faに導く効果をさらに高めることができる。例えば、第2の実施形態で説明した変調方法と組み合わせる場合には、周波数fxの音信号に、{c・sin(2π・fa・t)+(1-c)}を乗じ、周波数fx-faの音信号に、{-c・sin(2π・fa・t)+(1-c)}を乗じる。 Also by the control according to the present embodiment, the frequency of the electroencephalogram can be guided to the control frequency fa. Further, by combining with the modulation methods described in the second to fourth embodiments described above, the effect of leading the electroencephalogram frequency to the control frequency fa can be further enhanced. For example, when combining with the modulation method described in the second embodiment, the sound signal having the frequency fx is multiplied by {c · sin (2π · fa · t) + (1-c)} to obtain the frequency fx−fa. Is multiplied by {−c · sin (2π · fa · t) + (1−c)}.
 [第6の実施形態]
 上述した各実施形態において、脳波を誘導する制御周波数faは、大抵20Hz以下であり、音にすると可聴域を下回るような音になる。このため、既存の音信号に対して変調を行った変調音信号を生成して出力している。
[Sixth Embodiment]
In each of the above-described embodiments, the control frequency fa for inducing the electroencephalogram is usually 20 Hz or less. For this reason, a modulated sound signal obtained by modulating an existing sound signal is generated and output.
 第6の実施形態における身体制御装置では、予め用意した減衰音を、制御周波数決定部2で決定した制御周波数faに基づいて出力する。減衰音とは、徐々に減衰していき消えてしまう音のことである。 In the body control device according to the sixth embodiment, the attenuation sound prepared in advance is output based on the control frequency fa determined by the control frequency determination unit 2. Attenuating sound is sound that gradually attenuates and disappears.
 具体的には、減衰音を、1/fa(秒)間隔で出力部6から出力する。1/fa(秒)間隔で出力される減衰音は、制御周波数faに基づいて変調された変調音と言える。例えば、制御周波数決定部2で決定した制御周波数faが2Hzの場合、減衰音を1秒間に2回のペース(0.5秒間隔)で出力する。この方法でも、脳波を制御周波数faに誘導することができる。 Specifically, the attenuation sound is output from the output unit 6 at 1 / fa (second) intervals. It can be said that the attenuated sound output at 1 / fa (second) intervals is a modulated sound modulated based on the control frequency fa. For example, when the control frequency fa determined by the control frequency determination unit 2 is 2 Hz, the attenuation sound is output at a pace of 2 times per second (0.5 second interval). Even in this method, the electroencephalogram can be induced to the control frequency fa.
 本実施形態によれば、脳波を制御周波数faに誘導するための音信号をステレオで聞く必要がない。すなわち、第2の実施形態で説明したバイノーラルビートは、周波数差が制御周波数faである2つの音信号を生成してステレオで聞く必要があるが、制御周波数faに基づいて減衰音を出力する本実施形態の構成によれば、ステレオで聞く必要がない。 According to the present embodiment, it is not necessary to listen to the sound signal for inducing the electroencephalogram to the control frequency fa in stereo. In other words, the binaural beat described in the second embodiment needs to generate two sound signals whose frequency difference is the control frequency fa and listen in stereo, but this book that outputs an attenuation sound based on the control frequency fa. According to the configuration of the embodiment, there is no need to listen in stereo.
 以上、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 The above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.
 例えば、上述した実施形態では、変調音信号生成部3で生成された変調音信号と、音源4に格納されている音信号とを加算してから出力したが、変調音信号生成部3で生成された変調音信号をそのまま出力するようにしても良い。この場合、身体制御装置は、ユーザの生体情報を取得する生体情報取得部と、生体情報取得部で取得された生体情報に基づいて制御周波数を決定する制御周波数決定部と、予め用意した音信号を制御周波数決定部で決定された制御周波数で変調した変調音信号を生成する変調音信号生成部と、変調音信号生成部によって生成された変調音信号を出力する出力部とを備える。ただし、上述したように、変調音信号生成部3で生成された変調音信号をそのまま出力すると、耳障りな音と認識される可能性があるため、例えば就寝時モードでは、睡眠の邪魔になる可能性がある。このため、上述した実施形態のように、変調音信号生成部3で生成された変調音信号と、音源4に格納されている音信号とを加算してから出力することが好ましい。 For example, in the above-described embodiment, the modulated sound signal generated by the modulated sound signal generation unit 3 and the sound signal stored in the sound source 4 are added and output. The modulated sound signal may be output as it is. In this case, the body control device includes a biological information acquisition unit that acquires the biological information of the user, a control frequency determination unit that determines a control frequency based on the biological information acquired by the biological information acquisition unit, and a sound signal prepared in advance. Is provided with a modulated sound signal generating unit that generates a modulated sound signal modulated by the control frequency determined by the control frequency determining unit, and an output unit that outputs the modulated sound signal generated by the modulated sound signal generating unit. However, as described above, if the modulated sound signal generated by the modulated sound signal generation unit 3 is output as it is, it may be recognized as an annoying sound. For example, in the bedtime mode, it may interfere with sleep. There is sex. For this reason, it is preferable that the modulated sound signal generated by the modulated sound signal generation unit 3 and the sound signal stored in the sound source 4 are added and output as in the above-described embodiment.
 ユーザの生体情報を取得するためのセンサとして、非侵襲センサ1を用いたが、身体に直接取り付けるセンサを用いても良い。ただし、身体に直接取り付けない非侵襲センサを用いれば、睡眠を阻害することなく、生体情報を取得することができるので、非侵襲センサを用いることが好ましい。また、ユーザの生体情報は、睡眠状態と相関関係があるものであれば、上述したユーザの体動、心拍数、または呼吸数に限定されることはない。 Although the non-invasive sensor 1 is used as a sensor for acquiring the user's biological information, a sensor directly attached to the body may be used. However, if a non-invasive sensor that is not directly attached to the body is used, biological information can be acquired without disturbing sleep. Therefore, it is preferable to use a non-invasive sensor. Moreover, if a user's biometric information has a correlation with a sleep state, it will not be limited to the above-mentioned user's body movement, heart rate, or respiration rate.
 上述した各実施形態において、制御周波数決定部2は、非侵襲センサ1によって検出される生体情報に基づいて、制御周波数faとして脳波の誘導周波数を決定した。しかし、制御周波数faとして、心拍数の誘導周波数を設定しても良い。すなわち、制御周波数faとして、心拍数の誘導周波数を設定し、制御周波数faで単音等の音信号を変調して出力することにより、心拍数の周波数を制御周波数faに誘導することができる。睡眠段階と心拍数の周波数との間には相関関係があり、睡眠が深くなるほど、心拍数は少なくなって、心拍数の周波数は低くなり、かつ、心拍数(心拍数の周波数)の変動が少なくなって安定する。この場合、図3に示すような、睡眠段階と心拍数の周波数との関係を予め把握しておき、非侵襲センサ1によって検出される生体情報に基づいて睡眠段階を判定し、その睡眠段階に対応する心拍数の周波数よりも低い周波数に制御周波数faを設定する。そして、単音等の音信号を制御周波数faで変調した変調音信号を出力することにより、心拍数の周波数を制御周波数faに誘導することができる。 In each embodiment described above, the control frequency determination unit 2 determines the induction frequency of the electroencephalogram as the control frequency fa based on the biological information detected by the non-invasive sensor 1. However, the induction frequency of the heart rate may be set as the control frequency fa. That is, by setting a heart rate induction frequency as the control frequency fa and modulating and outputting a sound signal such as a single sound with the control frequency fa, the heart rate frequency can be induced to the control frequency fa. There is a correlation between the sleep stage and the heart rate frequency. The deeper the sleep, the lower the heart rate, the lower the heart rate frequency, and the fluctuation of the heart rate (heart rate frequency). Less and stable. In this case, as shown in FIG. 3, the relationship between the sleep stage and the frequency of the heart rate is grasped in advance, the sleep stage is determined based on the biological information detected by the non-invasive sensor 1, and the sleep stage is The control frequency fa is set to a frequency lower than the corresponding heart rate frequency. Then, by outputting a modulated sound signal obtained by modulating a sound signal such as a single sound with the control frequency fa, the frequency of the heart rate can be induced to the control frequency fa.
 また、制御周波数faとして、呼吸数の誘導周波数を設定しても良い。すなわち、制御周波数faとして、呼吸数の誘導周波数を設定し、制御周波数faで単音等の音信号を変調して出力することにより、呼吸数の周波数を制御周波数faに誘導することができる。睡眠段階と呼吸数の周波数との間には相関関係があり、睡眠が深くなるほど、呼吸数は少なくなって、呼吸数の周波数は低くなり、かつ、呼吸数(呼吸数の周波数)の変動が少なくなって安定する。この場合、図3に示すような、睡眠段階と呼吸数の周波数との関係を予め把握しておき、非侵襲センサ1によって検出される生体情報に基づいて睡眠段階を判定し、その睡眠段階に対応する呼吸数の周波数よりも低い周波数に制御周波数faを設定する。そして、単音等の音信号を制御周波数faで変調した変調音信号を出力することにより、呼吸数の周波数を制御周波数faに誘導することができる。 Also, the induction frequency of the respiratory rate may be set as the control frequency fa. That is, by setting a respiration rate induction frequency as the control frequency fa and modulating and outputting a sound signal such as a single sound with the control frequency fa, the respiration rate frequency can be induced to the control frequency fa. There is a correlation between the sleep stage and the frequency of breathing. The deeper the sleep, the lower the breathing rate, the lower the breathing frequency, and the fluctuation in the breathing rate (breathing frequency). Less and stable. In this case, as shown in FIG. 3, the relationship between the sleep stage and the frequency of the respiratory rate is grasped in advance, the sleep stage is determined based on the biological information detected by the non-invasive sensor 1, and the sleep stage is The control frequency fa is set to a frequency lower than the frequency of the corresponding respiratory rate. Then, by outputting a modulated sound signal obtained by modulating a sound signal such as a single sound with the control frequency fa, the frequency of the respiratory rate can be induced to the control frequency fa.
 上述した実施形態では、身体制御装置を用いてユーザの睡眠を制御する例を挙げて説明したが、用途が睡眠制御に限定されることはない。例えば、ユーザの運転時、勉強時、仕事時、リラックスしたい時等に、ユーザの身体を制御する際に用いることができる。例えば、運転時や勉強時、仕事時等において、非侵襲センサ1によって検出される生体情報に基づいて、ユーザが睡眠しそうになっていると判定すると、制御周波数faをそのときの脳波の周波数(推定周波数)よりも高い周波数に設定し、脳波の周波数を、より高い周波数に導くことによって、ユーザを覚醒状態に導くことができる。また、ユーザがリラックスしたい時には、制御周波数faを、脳波がα波の状態に対応する8~14Hzに設定することによって、リラックスさせることができる。この場合、非侵襲センサ1によって検出される生体情報に基づいて、ユーザが興奮状態にあると判定すると、その時の脳波の周波数(推定周波数)よりも低い周波数に制御周波数faを設定するとともに、脳波の推定周波数に基づいて、制御周波数faを少しずつ低くしていくことにより、スムーズに脳波をα波の状態に導くことができる。 In the above-described embodiment, an example in which a user's sleep is controlled using a body control device has been described, but the application is not limited to sleep control. For example, it can be used to control the user's body when the user is driving, studying, working, or wanting to relax. For example, when it is determined that the user is about to sleep based on the biological information detected by the noninvasive sensor 1 during driving, studying, working, etc., the control frequency fa is set to the frequency of the electroencephalogram at that time ( By setting the frequency higher than the (estimated frequency) and guiding the frequency of the electroencephalogram to a higher frequency, the user can be guided to an arousal state. When the user wants to relax, the control frequency fa can be relaxed by setting the control frequency fa to 8 to 14 Hz corresponding to the state of the α wave. In this case, when it is determined that the user is in an excited state based on the biological information detected by the noninvasive sensor 1, the control frequency fa is set to a frequency lower than the frequency (estimated frequency) of the brain wave at that time, and the brain wave By gradually decreasing the control frequency fa based on the estimated frequency, the brain wave can be smoothly guided to the α wave state.
 上記実施形態(変形例を含む)で説明した身体制御装置において、各ブロックは、LSIなどの半導体装置により個別に1チップ化されても良いし、一部又は全部を含むように1チップ化されても良い。 In the body control device described in the above embodiment (including modifications), each block may be individually made into one chip by a semiconductor device such as an LSI, or made into one chip so as to include a part or all. May be.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用しても良い。 Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied as a possibility.
 また、上記各実施形態の各機能ブロックの処理の一部または全部は、プログラムにより実現されるものであってもよい。そして、上記各実施形態の各機能ブロックの処理の一部または全部は、コンピュータにおいて、中央演算装置(CPU)、マイクロプロセッサ、プロセッサ等により行われる。それぞれの処理を行うためのプログラムは、ハードディスク、ROMなどの記憶装置に格納されており、ROMにおいて、あるいはRAMに読み出されて実行される。記憶装置(記憶媒体)は、一時的でない有形のものであり、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。 Further, part or all of the processing of each functional block in each of the above embodiments may be realized by a program. A part or all of the processing of each functional block in each of the above embodiments is performed by a central processing unit (CPU), a microprocessor, a processor, or the like in the computer. A program for performing each processing is stored in a storage device such as a hard disk or a ROM, and is read out and executed in the ROM or the RAM. The storage device (storage medium) is a tangible material that is not temporary, and for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
 また、上記実施形態の各処理をハードウェアにより実現してもよいし、ソフトウェア(OS(オペレーティングシステム)、ミドルウェア、あるいは、所定のライブラリとともに実現される場合を含む。)により実現してもよい。さらに、ソフトウェアおよびハードウェアの混在処理により実現しても良い。なお、上記実施形態に係る身体制御装置をハードウェアにより実現する場合、各処理を行うためのタイミング調整を行う必要があるのは言うまでもない。上記実施形態においては、説明便宜のため、実際のハードウェア設計で生じる各種信号のタイミング調整の詳細については省略している。 Further, each process of the above embodiment may be realized by hardware, or may be realized by software (including a case where it is realized together with an OS (operating system), middleware, or a predetermined library). Further, it may be realized by mixed processing of software and hardware. Needless to say, when the body control device according to the above embodiment is realized by hardware, it is necessary to adjust the timing for performing each process. In the above embodiment, for convenience of explanation, details of timing adjustment of various signals generated in actual hardware design are omitted.
1…非侵襲センサ、2…制御周波数決定部、3…変調音信号生成部、4…音源、5…加算
部、6…出力部
 
DESCRIPTION OF SYMBOLS 1 ... Non-invasive sensor, 2 ... Control frequency determination part, 3 ... Modulation sound signal generation part, 4 ... Sound source, 5 ... Addition part, 6 ... Output part

Claims (14)

  1.  ユーザの生体情報を取得する生体情報取得部と、
     前記生体情報取得部で取得された生体情報に基づいて制御周波数を決定する制御周波数決定部と、
     予め用意された音信号を前記制御周波数決定部で決定された制御周波数で変調した変調音信号を生成する変調音信号生成部と、
     前記変調音信号生成部によって生成された変調音信号を出力する出力部と、
    を備える、身体制御装置。
    A biometric information acquisition unit that acquires biometric information of the user;
    A control frequency determination unit that determines a control frequency based on the biological information acquired by the biological information acquisition unit;
    A modulated sound signal generating unit that generates a modulated sound signal obtained by modulating a sound signal prepared in advance with the control frequency determined by the control frequency determining unit;
    An output unit for outputting the modulated sound signal generated by the modulated sound signal generating unit;
    A body control device.
  2.  前記制御周波数は、脳波の誘導周波数である、請求項1に記載の身体制御装置。 The body control device according to claim 1, wherein the control frequency is an induction frequency of an electroencephalogram.
  3.  前記制御周波数決定部は、ユーザを睡眠に導く場合には、前記生体情報取得部で取得された生体情報から脳波の周波数を推定し、推定した脳波の周波数よりも低い周波数を、前記脳波の誘導周波数として決定する、請求項2に記載の身体制御装置。 When the control frequency determination unit guides the user to sleep, the control frequency determination unit estimates the frequency of the electroencephalogram from the biometric information acquired by the biometric information acquisition unit, and derives a frequency lower than the estimated electroencephalogram frequency. The body control device according to claim 2, wherein the body control device is determined as a frequency.
  4.  前記制御周波数決定部は、ユーザを覚醒させる場合には、前記生体情報取得部で取得された生体情報から脳波の周波数を推定し、推定した脳波の周波数よりも高い周波数を、前記脳波の誘導周波数として決定する、請求項2または3に記載の身体制御装置。 When the control frequency determination unit awakens the user, the control frequency determination unit estimates a brain wave frequency from the biological information acquired by the biological information acquisition unit, and determines a higher frequency than the estimated brain wave frequency as the induced frequency of the brain wave. The body control device according to claim 2, wherein the body control device is determined as follows.
  5.  前記制御周波数決定部は、前記生体情報取得部で取得された生体情報に基づいて、睡眠中のユーザが覚醒するか、または、覚醒しそうになっていると判定した場合に、前記生体情報取得部で取得された生体情報から脳波の周波数を推定し、推定した脳波の周波数よりも低い周波数を、前記脳波の誘導周波数として決定する、請求項2から4のいずれか一項に記載の身体制御装置。 When the control frequency determination unit determines that the sleeping user is awake or is about to awake based on the biological information acquired by the biological information acquisition unit, the biological information acquisition unit The body control device according to any one of claims 2 to 4, wherein a frequency of an electroencephalogram is estimated from the biological information acquired in step (b), and a frequency lower than the estimated electroencephalogram frequency is determined as the induction frequency of the electroencephalogram. .
  6.  前記制御周波数決定部は、ユーザが明晰夢を見ることを希望している場合に、前記脳波の誘導周波数を30Hz以上の周波数に決定する、請求項2から5のいずれか一項に記載の身体制御装置。 The body according to any one of claims 2 to 5, wherein the control frequency determination unit determines the induction frequency of the electroencephalogram to be a frequency of 30 Hz or more when the user desires to have a lucid dream. Control device.
  7.  前記制御周波数は、心拍数の誘導周波数及び呼吸数の誘導周波数のうちのいずれかである、請求項1に記載の身体制御装置。 The body control device according to claim 1, wherein the control frequency is one of a heart rate induction frequency and a respiration rate induction frequency.
  8.  前記変調音信号生成部は、周波数差が前記制御周波数決定部で決定された制御周波数である2つの音信号を生成し、
     前記出力部は左右の耳に対応して2つ設けられており、前記2つの音信号は、2つの前記出力部からそれぞれ出力される、請求項1から7のいずれか一項に記載の身体制御装置。
    The modulated sound signal generation unit generates two sound signals whose frequency difference is the control frequency determined by the control frequency determination unit,
    The body according to any one of claims 1 to 7, wherein two output units are provided corresponding to left and right ears, and the two sound signals are respectively output from the two output units. Control device.
  9.  前記変調音信号生成部は、前記予め用意された音信号に対して、前記制御周波数決定部で決定された制御周波数に基づいて振幅変調した変調音信号を生成する、請求項1から7のいずれか一項に記載の身体制御装置。 The modulated sound signal generation unit generates a modulated sound signal obtained by modulating the amplitude of the previously prepared sound signal based on the control frequency determined by the control frequency determination unit. The body control device according to claim 1.
  10.  前記変調音信号生成部は、前記予め用意された音信号に対して、前記制御周波数決定部で決定された制御周波数に基づいて周波数変調した変調音信号を生成する、請求項1から7のいずれか一項に記載の身体制御装置。 The modulated sound signal generation unit generates a modulated sound signal that is frequency-modulated based on the control frequency determined by the control frequency determination unit with respect to the sound signal prepared in advance. The body control device according to claim 1.
  11.  前記変調音信号生成部は、前記予め用意された音信号に対して、前記制御周波数決定部で決定された制御周波数に基づいて、音像定位を周期的に変化させるパンニング変調を施した2つの変調音信号を生成し、
     前記出力部は左右の耳に対応して2つ設けられており、前記2つの変調音信号は、2つの前記出力部からそれぞれ出力される、請求項1から7のいずれか一項に記載の身体制御装置。
    The modulated sound signal generation unit performs two modulations on the sound signal prepared in advance by performing panning modulation that periodically changes sound image localization based on the control frequency determined by the control frequency determination unit. Generate sound signals,
    8. The output unit according to claim 1, wherein two output units are provided corresponding to left and right ears, and the two modulated sound signals are output from the two output units, respectively. Body control device.
  12.  前記変調音信号生成部は、前記制御周波数決定部で決定された制御周波数に基づいた間隔で減衰音が出力される変調音信号を生成する、請求項1から7のいずれか一項に記載の身体制御装置。 8. The modulated sound signal generation unit according to claim 1, wherein the modulated sound signal generation unit generates a modulated sound signal in which an attenuation sound is output at an interval based on the control frequency determined by the control frequency determination unit. Body control device.
  13.  前記生体情報取得部で取得された生体情報に基づいて、前記出力部から出力する変調音信号の音量を決定する音量決定部をさらに備え、
     前記出力部は、前記音量決定部で決定された音量で前記変調音信号を出力する、請求項1から12のいずれか一項に記載の身体制御装置。
    Based on the biological information acquired by the biological information acquisition unit, further comprises a volume determination unit that determines the volume of the modulated sound signal output from the output unit,
    The body control device according to any one of claims 1 to 12, wherein the output unit outputs the modulated sound signal at a volume determined by the volume determination unit.
  14.  前記予め用意された音信号とは異なる任意の音信号に対して、前記変調音信号生成部によって生成された変調音信号を加算する加算部をさらに備え、
     前記出力部は、前記加算部によって加算された音信号を出力する、請求項1から13のいずれか一項に記載の身体制御装置。
     
    An additional unit that adds the modulated sound signal generated by the modulated sound signal generating unit to an arbitrary sound signal different from the previously prepared sound signal;
    The body control apparatus according to claim 1, wherein the output unit outputs the sound signal added by the adding unit.
PCT/JP2016/083774 2015-11-19 2016-11-15 Body control device WO2017086295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017551877A JPWO2017086295A1 (en) 2015-11-19 2016-11-15 Body control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015227061 2015-11-19
JP2015-227061 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017086295A1 true WO2017086295A1 (en) 2017-05-26

Family

ID=58718915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083774 WO2017086295A1 (en) 2015-11-19 2016-11-15 Body control device

Country Status (2)

Country Link
JP (1) JPWO2017086295A1 (en)
WO (1) WO2017086295A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235536A1 (en) * 2017-06-21 2018-12-27 パナソニックIpマネジメント株式会社 Device for estimating likelihood of becoming drowsy and system for inducing wakefulness
JP2019006363A (en) * 2017-06-21 2019-01-17 パナソニックIpマネジメント株式会社 Easiness-to-sleep estimation device and awakening guide system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884218A (en) * 1970-09-30 1975-05-20 Monroe Ind Inc Method of inducing and maintaining various stages of sleep in the human being
JPH0889580A (en) * 1994-09-22 1996-04-09 Noryoku Kaihatsu Kenkyusho:Kk Brain wave intensifying method
JPH09164206A (en) * 1995-12-15 1997-06-24 Noryoku Kaihatsu Kenkyusho:Kk Relaxation providing device
JPH11169558A (en) * 1997-08-20 1999-06-29 Taiyo E & C:Kk Biofeedback game apparatus and mouse adapted therefor
JP2004344284A (en) * 2003-05-21 2004-12-09 Aisin Seiki Co Ltd Relaxation apparatus, toilet seat device, bed, bathtub and massage chair
JP2005087572A (en) * 2003-09-19 2005-04-07 Matsushita Electric Works Ltd Brain wave guide
JP2015109964A (en) * 2013-11-11 2015-06-18 株式会社電通サイエンスジャム Emotion estimation device, emotion estimation processing system, emotion estimation method, and emotion estimation program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884218A (en) * 1970-09-30 1975-05-20 Monroe Ind Inc Method of inducing and maintaining various stages of sleep in the human being
JPH0889580A (en) * 1994-09-22 1996-04-09 Noryoku Kaihatsu Kenkyusho:Kk Brain wave intensifying method
JPH09164206A (en) * 1995-12-15 1997-06-24 Noryoku Kaihatsu Kenkyusho:Kk Relaxation providing device
JPH11169558A (en) * 1997-08-20 1999-06-29 Taiyo E & C:Kk Biofeedback game apparatus and mouse adapted therefor
JP2004344284A (en) * 2003-05-21 2004-12-09 Aisin Seiki Co Ltd Relaxation apparatus, toilet seat device, bed, bathtub and massage chair
JP2005087572A (en) * 2003-09-19 2005-04-07 Matsushita Electric Works Ltd Brain wave guide
JP2015109964A (en) * 2013-11-11 2015-06-18 株式会社電通サイエンスジャム Emotion estimation device, emotion estimation processing system, emotion estimation method, and emotion estimation program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235536A1 (en) * 2017-06-21 2018-12-27 パナソニックIpマネジメント株式会社 Device for estimating likelihood of becoming drowsy and system for inducing wakefulness
JP2019006363A (en) * 2017-06-21 2019-01-17 パナソニックIpマネジメント株式会社 Easiness-to-sleep estimation device and awakening guide system

Also Published As

Publication number Publication date
JPWO2017086295A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
US9978358B2 (en) Sound generator device and sound generation method
US10413699B2 (en) Sleep guidance device and control method
US11318278B2 (en) Methods and apparatus for inducing or modifying sleep
EP1886707A1 (en) Sleep enhancing device
JP6824873B2 (en) Systems and methods for adjusting the intensity of sensory stimuli during sleep based on sleep spindles
WO2016136450A1 (en) Sound source control apparatus, sound source control method, and computer-readable storage medium
EP2537550A1 (en) Device for inducing and maintaining sleep
US20170182284A1 (en) Device and Method for Generating Sound Signal
US20140275741A1 (en) System and method providing all-night sleep management
US20180110461A1 (en) Audio signal processing device, audio signal processing method, and storage medium
JP6645115B2 (en) Playback device and program
WO2017086295A1 (en) Body control device
JP2017121529A (en) Sound source device and program
JP5754393B2 (en) Sleep learning control device
WO2018030404A1 (en) Guiding sound generation device
JP2005087572A (en) Brain wave guide
CA3112835A1 (en) Methods and apparatus for inducing or modifying sleep
WO2014083375A1 (en) Entrainment device
WO2018159519A1 (en) Induction sound output device, induction sound output method, and program
JP2005334163A (en) Brain wave guide
Morishima et al. Effects on Sleep by" Cradle Sound" Adjusted to Heartbeat and Respiration
JP2009207750A (en) Bedding for easy falling asleep
JP7391073B2 (en) Electronic equipment, control systems, control methods, and control programs
US20230256191A1 (en) Non-auditory neurostimulation and methods for anesthesia recovery
JP2017119159A (en) Sound source device and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866297

Country of ref document: EP

Kind code of ref document: A1