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0 Preface

This book was developed for a senior computer science course I taught starting in Spring of 2019.
Its objective was to teach a computer science student with some music experience how to build a
digital music synthesizer in software from the ground up. I hope it’ll be useful to others.

The text assumes an undergraduate computer science background and some basic calculus and
linear algebra. But it does not assume that the reader is particularly familiar with the history, use,
or significance of music synthesizers. To provide some appreciation of these concepts, I’ve tried to
include quite a bit of history and grounding in the text. The text also doesn’t assume that the reader
knows much about electrical engineering or digital signal processing (indeed it should be obvious
to experts in these fields that I don’t know much either!) and so tries to provide an introduction to
these concepts in a relatively gentle manner.

One of the problems with writing a book on music topics is that reading about these topics is not
enough: you have to hear the sounds being discussed, and see the instruments being manipulated,
in order to gain an intuitive understanding for the concepts being presented. The mere pages here
won’t help with that.

0.1 Caveats

While I am a computer science professor, a musician, and a synthesizer tool builder on the side, I am
by no means an expert in how to build music synthesizers. I am very familiar with certain subjects
discussed here, but many others were entirely new to me at the start of developing this book and
course. My knowledge of filters, resampling, effects, and physical modeling is particularly weak.

What this means is that you should take a lot of what’s discussed here with a big grain of
salt: there are likely to be a great many errors in the text, ranging from small typos to grand
misconceptions. I would very much appreciate error reports: send them to sean@cs.gmu.edu

I may also be making significant modifications to the text over time, even rearranging entire
sections as necessary. I have also tried very hard to cite my sources and give credit where it is due.
If you feel I did not adequately cite or credit you, send me mail.

I refer to my own tools here and there. Hey, that’s my prerogative! They are all open source:

• Gizmo is an Arduino-based MIDI manipulation tool with a step sequencer, arpeggiator, note
recorder, and lots of other stuff. I refer to it in Section 4.
http://cs.gmu.edu/∼sean/projects/gizmo/

• Edisyn is a synthesizer patch editor with very sophisticated tools designed to assist in
exploring the space of patches. I refer to it in Section 4.
http://cs.gmu.edu/∼sean/projects/edisyn/

• Flow is an unusual polyphonic additive modular software synthesizer. I refer to it in Section 3.
http://cs.gmu.edu/∼sean/projects/flow/

0.2 Algorithms

Algorithms in this book are written peculiarly and relatively informally. If an algorithm takes
parameters, they will appear first followed by a blank line. If there are no parameters, the algorithm

5



begins immediately. Sometimes certain shared, static global variables are defined which appear at
the beginning and are labelled global. Here is an example of a simple algorithm:

Algorithm 0 Bubble Sort
1: ~v← 〈v1, ..., vl〉 vector to sort . User-provided parameters to the algorithm appear here

. Then a blank space
2: repeat . Algorithm begins here
3: swapped ← false . ← always means “is set to”
4: for i from 1 to l − 1 do . Note that l is defined by vl in Line 1
5: if vi > vi+1 then
6: Swap vi and vi+1
7: swapped ← true

8: until swapped = false . = means “is equal to”
9: return ~v . Some algorithms may return nothing, so there is no return statement

6



1 Introduction

A music synthesizer, or synthesizer (or just synth), is a programmable device which produces
sounds in response to being played or controlled by a musician or composer. Synthesizers are
omnipresent. They’re in pop and rock songs, rap and hip hop, movie and television scores, sound
cards and video games, and — unfortunately — cell phone ringtones. Music synthesizers are used
for other purposes as well: for example, R2-D2’s sounds were generated on a music synthesizer,1

as was Deep Note,2 the famous trademark sound played before movies to indicate the use of THX.
The classic “Ahhh” bootup sound on many Macintoshes in the 90s and 00s was produced on a
Korg Wavestation, a popular commercial synthesizer from the late 90s.

Traditionally a music synthesizer generates sounds from scratch by creating and modifying
fundamental waveforms. But that’s not the only scenario. For example, samplers will sample a
sound, then edit it and store it to be played back later as individual notes. Romplers3 are similar,
except that their playback samples are fixed in ROM, and so they cannot sample in the first place.

Synthesizers also differ based on their use. For example, while many synthesizers produce
tonal notes for melody, drum machines produce synthesized or sampled drum sounds. Vocoders
take in human speech via a microphone, then use this sound source to produce a synthesized
version of the same, often creating a robot voice sound. Effects units take in sounds — vocals or
instrumentals, say — then modify them and emit the result, adding delay or reverb, for example.

Synthesizers have often been criticized for notionally replicating, and ultimately replacing, real
instruments. And indeed this is not an uncommon use case: a great many movie scores you
probably thought were performed by orchestras were actually done with synthesizers, and much
more cheaply. Certainly there are many stories in history of drum machines eliminating drummers
from bands. But more and more synthesizers have come to be seen as instruments in their own
right, with their own aesthetic and art.

1.1 A Very Brief History

We’ll cover synthesizer history more in-depth in later sections: here we’ll start with a very very
brief history of the basics.

Figure 0 Moog modular synthesizer.©1

1960s Synthesizers have been around since the late 1800s in
various guises, but with a few famous exceptions, they did not
seriously impact the music scene until the 1960s with the rise
of modular synthesizers manufactured by the likes of Robert
Moog and Don Buchla. These devices consisted of a variety of
modules which generated sounds, modified sounds, or emitted
signals meant to change the parameters of other modules in real
time. The units were connected via quarter-inch patch cables
(the same as used by electric guitars), and so even today the
term for a synthesizer program which defines a played sound
is a patch.

1An ARP 2600. See Figure 48 in Section 5.
2Deep Note was computer-generated by a software synthesizer written in custom C code.
3This is a derogatory but common term. It’s a mash-up of ROM and sampler.
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Figure 1 Moog Minimoog Model D.©2

Modular synthesizers had many failings. They were large
and cumbersome, required manual connections with cabling,
could only store one patch at a time (the one currently wired
up!), and usually could only produce one note at a time (that
is, they were monophonic). Modular synthesizer keyboards of
the time offered limited control and expressivity. And modular
synths were very, very expensive.

Modular synthesizers were also analog, meaning that their
sounds were produced entirely via analog circuitry. Analog
synthesizers would continue to dominate until the mid-1980s.

Figure 2 Roland CR78
drum machine.©3

1970s This decade saw the introduction of compact, portable, all-in-one
analog synthesizers which eliminated the wires of their predecessors, and
thus could be used realistically by touring musicians. One prominent
model was the Moog Minimoog Model D, shown in Figure 1. Other
models allowed multiple notes to be played at the same time (they were
polyphonic).

The 1970s also saw the introduction of the first viable drum machines,
synthesizers which produced only drum sounds following rhythm pat-
terns rather than notes.

Figure 3 Yamaha DX7.©4

1980s and 1990s This period saw an explosion in synthesizer
technology. Due to the introduction of MIDI, a simple com-
munication standard, musicians could play synthesizers from
remote keyboards, from computers, or from sequencers which
stored note event data much like a computerized music box
or player piano roll. Synthesizer hardware began to be sepa-
rated from its means of musical control: one could purchase
controllers (commonly keyboards) whose sole function was
to manipulate synthesizers via MIDI, as well as rackmount or
desktop (tabletop) synthesizers with no keyboard at all. When
rackmount or desktop units were controlled from a keyboard
version of the same synthesizer, they were known as expanders.

Synthesizers also benefited from RAM and CPUs, enabling them to store and recall patches
at the touch of a button. And critically, while nearly all previous synthesizers produced sound
from analog electronic components, the CPU and related digital signal processor (or DSP) chips
gave rise to digital synthesizers which produced discrete waveforms and enabled many new ap-
proaches to synthesis. The digital tsunami began with frequency modulation (or FM) synthesizers,
spearheaded by the highly influential Yamaha DX7 (Figure 3). Digital synthesizer approaches that
followed included wavetable synthesis, samplers and romplers, digital additive synthesis, and
vector synthesis. The onslaught of FM alone almost singlehandedly did away with the analog
synthesizer industry. Digital synthesizers also migrated from music halls to more mundane uses:
video games, sound cards on personal computers, and eventually (sigh) ringtones.
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Figure 4 Propellerhead Reason DAW.©5

2000s and Beyond As personal computers be-
came increasingly powerful, the turn of the cen-
tury saw the rise of digital audio workstations or
DAWs: software which could handle much of the
music production environment entirely inside a lap-
top. This included the use of software synthesizers
rather than those in hardware. The early 2000s also
saw the popularization of virtual analog synthe-
sizers, which simulated classic analog approaches
in digital form.

Analog synthesizers have since seen a renais-
sance as musicians yearned for the warm-sounding,
knobby, physical devices of the past. At the extreme end of this trend, we have since seen the
reintroduction of modular synthesizers as a popular format. What goes around comes around.

1.2 The Synthesizer Musician’s Environment

Music synthesizers are ubiquitous in the music and sound effects scene, and so appear in a wide
range of of music performance and production scenarios. If you’re unfamiliar with the architecture
of these scenarios, it’s useful to review a few common ones. The scenarios in question are shown in
Figure 5.

Playing Around This is the obvious basic scenario: you own a synthesizer and want to play it.
This is sometimes called noodling. The important item here is the possible inclusion of an effects
unit. Effects are manipulations of sound to add some kind of “texture” or “color” to it. For example,
we might add a delay or echo to the synthesizer’s sound, or some reverb or chorus. Effects,
particularly reverb, are often important to make a synthesizer’s dry sound become more realistic or
interesting sounding. Because effects are so important an item at the end of the synthesizer’s audio
chain, many modern synthesizers have effects built in as part of the synthesizer itself.

Performance In the next scenario, you are playing a synthesizer as a solo or group live perfor-
mance involving sound reinforcement. To do this, you will need the inclusion of a mixer, a device
which sums up the sounds from multiple inputs and produces one final sound to be broadcast.
Mixers can be anything from small tabletop/desktop or rackmount devices to massive automated
mixing consoles: but they all do basically the same thing. Here, the effects unit is added as an
auxiliary module: the mixer will send a mixed sound to the effects unit, which then returns the
resulting effects. The mixer then adds the effects to the final sound and outputs it. The amount of
effects added to the final sound is known as how wet the effects are. A sound with no effects is dry.

Production A classic synthesizer sound recording and production environment adds a recorder
(historically a multi-track tape recorder) which receives sound from the mixer or sends it back to
the mixer to be assessed and revised. The high-grade speakers used by recording engineers or
musicians to assess how the music sounds during the mixing and recording process are known
as monitors. Additionally, because synthesizers can be controlled remotely and also controlled
via automated means, a musician might construct an entire song by playing multiple parts into a
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Figure 5 Four common scenarios in which music synthesizers are used.
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sequencer, which records the event data (when a note was played or released, etc.) and then can
play multiple synthesizers simultaneously. Sequencers can be found both as computer software
and as dedicated hardware. In this scenario, a musician often wouldn’t play a synthesizer directly,
but rather would play a controller, typically a keyboard, to issue event data to the sequencer or to
one or more downstream synthesizers.

In-the-Box (ITB) Production The classic synthesizer production environment has given way to
one in which most of these tasks are now done in software on a computer. This is known as
In The Box or ITB production. The core software environment for ITB production is the digital
audio workstation or DAW. This software is a combination of a sequencer, mixer, recorder, and
effects unit. Most DAWs are also modular in design and can be extended via plug-ins, the most
well-known being Virtual Studio Technology plugins (or VSTs), or Audio Unit (AU) plugins.
These plugins can be used for many tasks, but are often used to add software synthesizers (or
softsynths) as additional playable instruments directly in the DAW.

A DAW interacts with the musician in several ways. First, the musician can enter note event
data directly via his controller to the computer through a MIDI interface. Second, the DAW’s
internal sequencer can also control external synthesizers via the same interface, playing them along
with its software synthesizers. Third, the musician can record audio into the DAW from those
synthesizers or from other audio sources (instruments, vocals) via an audio interface. Fourth, the
computer can use this same audio interface to play audio on monitors or headphones to be assessed
by the musician or studio engineer. Ultimately the DAW will be used to write out a final version of
the song in digital form for a CD or MP3 file, etc.

1.3 A Typical Synthesizer

A musician interacts with a typical synthesizer in four basic ways:

• By playing it (of course).

• By changing one or two parameters in real time while playing as part of the performance
(turning a knob, say).

• By editing all of its parameters offline to change how it sounds.

• By automating his performance, both playing and real-time parameter-modification.

Figure 6 Dave Smith Instruments Prophet ’08.©6

Consider the Dave Smith Instruments Prophet ’08,
which came out in (what else?) 2008. This is a classic ana-
log subtractive synthesizer, and is festooned with knobs
and buttons (see Figure 6) to enable easy programming
both in real time during performance and also offline.

The Prophet ’08 is polyphonic, meaning that it can
play multiple notes at a time: in this case, at most eight.
The sound circuitry necessary to play a single note is
called a voice; and thus the Prophet ’08 has eight voices.
Figure 7 shows the Prophet ’08’s voice card.

11



Figure 7 Eight-voice circuitry for the Prophet ’08.

Voices The architecture for a single Prophet ’08
voice is very typical of a subtractive analog syn-
thesizer. Each of its eight voices has two oscilla-
tors, which are modules that produce sound waves.
These oscillators are then combined together to
form a single sound wave, which is then fed into a
filter. A filter is a device which modifies the tonal
qualities of a sound: in this case, the Prophet ’08 has
a low pass filter, which can tamp down high fre-
quencies in a sound wave, making it sound duller
or more mellow. The filtered sound is then fed into
an amplifier which changes its volume. All of the currently sounding voices are then finally added
together and the result is emitted as sound.

The oscillators, combiner, filter, and amplifier all have many parameters. For example, the
oscillators may be detuned relative to one another; the combiner can be set to weight one oscillator’s
volume more than another; the low-pass filter’s cutoff frequency (the point beyond which it starts
dampening sounds) may be adjusted, or the amplifier’s volume scaling may be tweaked.

Modulation The synthesizer’s many parameters can be manually set by the musician, or the
musician can attach them to modulation devices which will change the parameters automatically
over time as a note is played, to create richer sounds. For example, both the filter and the amplifier
have dedicated DADSR envelopes to change their cutoff frequency and volume scaling respec-
tively. A DADSR (Delay/Attack/Decay/Sustain/Release) envelope is a simple function which
starts at 0 when a note is played, then delays for a certain amount of time, then rises (attacks) to
some maximum value at a certain rate, then falls (decays) to a different (sustain) value at a certain
rate. It then holds at that sustain value as long as the key is held down, and when the key is released,
it dies back down to zero at a certain rate. This allows (for example) a sound to get suddenly loud
or brash initially, then die back and finally decay slowly after it has been released.

In addition to its two dedicated envelopes, the Prophet ’08 has an extra envelope which can
be assigned to many different parameters; and it also has four low frequency oscillators or LFOs
which can also be so assigned. An LFO is just a function which slowly oscillates between 0 and 1 (or
between -1 and 1). When attached to the pitch of a voice an LFO would cause vibrato, for example.
The Prophet ’08 also has a basic step sequencer which can play notes or change parameters in a
certain repeating, programmable pattern; and a simple arpeggiator which repeatedly plays notes
held down by the musician in a certain repeating pattern as well. Modulation sources can be
assigned to many different parameters via the Prophet ’08’s modulation matrix.

Patches and MIDI The parameters which collectively define the sound the Prophet ’08 is making
are called a patch. The Prophet ’08 is a stored patch synthesizer, meaning that after you have
programmed the synthesizer to produce a sound you like, you can save patches to memory; and
you can recall them later. A patch can also be transferred to or from a computer program, or another
Prophet ’08, over a MIDI cable. MIDI can also be used to play or program a Prophet ’08 remotely
from another keyboard controller, computer, or synthesizer. Because you can play a Prophet ’08
remotely via another keyboard, you don’t need the Prophet ’08’s keyboard at all, and indeed there
exists a keyboard-less standalone tabletop or desktop module version of the synthesizer.
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2 Representation of Sound
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Figure 8 A sound wave and zoomed-in por-
tion. The x-axis is time, the y-axis is amplitude.

Sound waves represent changes in air or water pressure
as a sound arrives to our ear and, in their simplest form,
they are simple one-dimensional functions of time, that
is f (time). Figure 8 at right shows a snippet of a sound
wave. The x-axis is time and the y-axis is the wave’s current
amplitude at that time. Sound waves may come in pairs,
perhaps resulting in stereo sound, or even larger numbers:
for example quadraphonic sound consists of four waves.

But a function of time isn’t the only way to view a
sound wave. It’s true that many music synthesizers and
effects devices manipulate sound waves this way. And as
humans we are accustomed to think of sound this way. But
in fact this isn’t a particularly good way to think of sound,
because our brains don’t receive a sound wave at all.

Instead, we can think of our brains as receiving, at any
given time, an array of amplitudes for different frequencies.
This array changes over time. If the incoming sound has
loud high frequencies, for example, then the amplitudes
corresponding to those frequency slots in the array will
have large numbers. One way of viewing this is shown in
Figure 9, in which the arrays are vertical slices out of the
image (the x-axis is time). A graph of this type is known
as a spectrogram.

Figure 9 A spectrogram of the spoken phrase
“nineteenth century”. The x-axis is time, the y-
axis is frequency, and the color is amplitude.©7

How is this so? A critical fact about sound waves (and
any time-variant wave) is that any sound wave can be de-
scribed as the infinite sum of sine waves, each with its own
frequency, amplitude, and phase. For example, consider
Figure 10 at right. There are three dashed sine waves, each
of a different frequency4 and a different amplitude. If you
add up the waves, the result is the more complex wave
shown in bold black. These sine waves are known as par-
tials, since each of them is in some sense a part of the final
sound wave.

1 2 3 4 5 6
Time

-1.0

-0.5

0.5

1.0

Amplitude

Figure 10 Three sine waves (colored) and the
result of adding them up (in bold).

If we disregarded phase, we could plot the three partials
in Figure 10 by their amplitudes as a kind of bar chart,
where the x-axis would be frequency, not time. This bar
chart is shown in Figure 11. If we viewed the sound in this
way, it’s known as depicting the sound in the frequency
domain (because of the x-axis). If we viewed a sound in
the classic way (Figure 10), where the x-axis is time, this is
known as perceiving the sound in the time domain.

4In this example, they all have the same phase, since they’re all 0 at time 0.
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Figure 11 The three sine waves from Fig-
ure 10, plotted by amplitude and frequency.

When a sound is arbitrarily long and complex, the num-
ber of sine waves required to describe it is effectively infi-
nite and uncountable: so the frequency domain is no longer
a bar chart, but is really a real-valued function of frequency.
As an example, Figure 12 shows the time domain and the
(real-valued) frequency domain of a note from a bass guitar.

There exists a straightforward mathematical transfor-
mation between the time domain and the frequency do-
main. It’s called the Fourier Transform (and its inverse,
not surprisingly named the Inverse Fourier Transform).
The mathematics and algorithms to perform this transform
are discussed in Section 12.

Figure 12 Time Domain (top) and Frequency
Domain (bottom) of a bass guitar note.©8

As mentioned before, we perceive things in the fre-
quency domain: this is because of how the cochlea in our
ear operates. The cochlea is essentially a long, curled up
tube filled with liquid and lined with hair. Hairs near
the start of the cochlea vibrate in sympathetic response to
low-frequency sounds, and hairs further along the cochlea
vibrate in response to higher frequency sounds. The louder
the sound near a hair’s resonant frequency, the more the
hair vibrates. The hairs are connected to nerves which send
signals to the brain. Thus when a sound enters the cochlea,
the hairs are essentially doing a kind of Fourier Transform,
breaking the sound out into its separate frequency compo-
nents, which are then passed to the brain.

Phase Phase is the point in time where the sine wave
begins (starts or restarts from zero). Consider Figure 13,
which shows three sine waves with identical frequency
and amplitude, but which differ in phase. Along with
amplitude and frequency, the phase of a partial plays a crit-
ical part in the sound. Thus the frequency domain should
not be thought of as a single plot of frequency versus am-
plitude, but rather as two separate plots, one of frequency
versus amplitude, and the other of frequency versus phase.
Similarly, the partials that make up a sound have two com-
ponents: amplitude and phase.

1 2 3 4 5 6
Time

-1.0

-0.5

0.5

1.0

Amplitude

Figure 13 Three identical sine waves which
differ only in phase. Note that the blue and
green sine waves have entirely opposite phase.

Phase is far less important to us than amplitude: hu-
mans can detect amplitude much better. In fact, while we
can distinguish partials which are changing in phase, if we
were presented with two sounds with identical partials
except for different phases, depending on the situation, we
might not be able to distinguish between them! Because of this, some synthesis methods (such as addi-
tive synthesis) almost entirely disregard phase: though other ones (such as frequency modulation
synthesis), rely heavily on changes in phase.
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Harmonic

Variance (in cents)

Closest Pitch

Figure 15 Harmonic series. The fundamental (harmonic #1) is shown as a low C, and successive harmonics are shown
with their equivalent pitches relative to it. The numbers below the notes indicate the degree to which the harmonic
deviates from traditional pitches (in cents, that is, 1/100ths of a semitone).©9

Harmonics and Pitch Identification Most sounds which we perceive as “tonal” or “musical”
have most of their partials organized in very specific way. In these sounds, there is a specific partial
called the fundamental. This is often the lowest significant partial, often the loudest partial, and
often the partial whose frequency we typically would identify as the pitch of the sound — that is,
its associated note. Partials other than the fundamental are called overtones. Furthermore, in these
“tonal” sounds, most overtones have frequencies which are integer multiples of the fundamental.
That is, most of the overtones will have frequencies of the form i× f , where f is the fundamental
frequency, and i is an integer 2, 3, .... When partials are organized this way, we call them harmonics.
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Figure 14 Modes corresponding to the first, second,
third, and fourth harmonics in a stringed instrument.

Many instruments, including woodwinds,
brass, and strings among others, have partials
largely structured as harmonics. These instruments
are essentially fixed strings or tubes which can only
vibrate according to certain modes. Consider Fig-
ure 14, where the ends of a violin string are fixed at
0 and 2π respectively. There are only so many ways
that a violin string can vibrate so long as those ends
are fixed. Figure 14 shows the first four possibili-
ties, and their frequencies correspond to the first
four harmonics ( f , 2 f , 3 f , and 4 f ). A woodwind
is similar: air vibrations in its tube are essentially
“fixed” at the two ends.

Many harmonics are very close to the pitch of standard notes, and this has a strong effect on
our perception of the tonality of instruments and the chords they produce. For example, the second
harmonic, whose frequency is 2 f , is exactly an octave above f . The third harmonic is very nearly a
fifth above that. The fourth harmonic is two octaves above the fundamental. Figure 15 shows a
fundamental, various harmonics, the notes that they are closest to, and their degree of deviation
from those notes. A few harmonics are quite off,5 but many are tantalizingly close.

5You might be wondering: why are they off? Traditionally notes have been tuned such that an octave corresponds
to a doubling in frequency. That lines up nicely with harmonics since every harmonic that is the next power of 2 is an
octave higher. But within an octave, how would one space the remaining notes? The classic approach has been to assume
that there are 12 notes, spaced such that the ratio between the frequencies of any two successive notes (A / A[, say, or
F/E) is the same. This is a fancy way of saying that the notes are laid out not linearly in frequency but logarithmically.
This tuning strategy is known as equal temperament. However, logarithmic frequencies don’t line up along integer
multiple values like the harmonics do. Many of them are close enough, but some are pretty off. Because integers and logs
don’t match up, other temperament strategies have been proposed throughout history which adjust notes slightly in
order to make them sound more harmonious together. Temperament strategies have been a matter of debate for many
centuries.
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Figure 16 First nine drum modes, ordered by frequency. Red regions vibrate up when white regions vibrate down and
vice versa. Drum vibration patterns may combine these modes. Underneath each mode is the frequency relative to the
first mode (the fundamental).

Notice that when defining the term fundamental I used the word often three times: the funda-
mental is often the lowest harmonic, often the loudest, and often what determines the pitch. This is
because sometimes one or more of those things isn’t true. For example, organs commonly have one
or two fairly loud partials an octave or two below the fundamental (an octave lower corresponds
to half the frequency). Similarly, bells will usually have at least one loud partial lower than the
fundamental called the hum tone. In fact, the hum tone is in many ways the fundamental, but
we usually identify the pitch of the bell (its so-called strike tone) with the second harmonic (the
prime), which is also usually louder. Thus the prime is typically thought of as the fundamental.

Bells are bizarre. The next major partial up from the prime is usually the tierce,6 which is just a
minor third above the prime, or about 1.2 times the prime frequency.7 There are other inharmonic
partials as well. And yet we perceive bells as, more or less, tonal. The specific amplitudes of the
various partials in bells can cause us to associate the pitch with partials other than the prime. In
fact, bells may cause us to associate the pitch with a partial that doesn’t even exist in the sound.

Finally, drums have their own unique harmonic characteristics quite unlike strings or pipes.
A drum is a 2D sheet, and so its harmonic vibration patterns (or modes) are two dimensional. This
results in a complex series of partial frequencies, as shown in Figure 16, which are generally atonal.8

2.1 Units of Measure

Frequency Frequency is often measured in Hertz (or Hz), which is the number of cycles of its sine
wave per second. 1Hz means a sine wave whose full wave takes 1 second to complete. The period
of a partial is the amount of time, in seconds, for its sine wave to complete one cycle. This is the
inverse of frequency: thus if a cycle has a period of p, then it has a frequency of f = 1

p Hz.
Another measure of frequency we’ll see is angular frequency, which is in radians per second.

Angular frequency ω often appears in the imaginary portion of a complex number, and so you’ll
see it appearing in things like iω or eiω. It’s closely related to Hertz: specifically, 2πω = 1 Hz.

6Bells have classic names for their unusual partials: hum, prime, tierce, quint, nominal, deciem, unideciem, etc.
7One major consequence of this very loud minor third partial is that songs in major keys can sound horrible when

played on a carillon (an instrument consisting of a large collection of bell-tower bells). Consider a major chord C, E, G.
The C bell produces both the C prime and a very loud E[ tierce which is sounded at the same time as the next note in the
chord: E. The simultaneous E[ and E sound pretty bad. Songs in minor keys sound only a little bit better than major
keys: they too have this dissonance, just further up in the chord (with C, E[, G, the E[ makes a G[ tierce). Compositions
specifically for the carillon are usually written in fully diminished scales and chords, that is, ones consisting only of
minor thirds, such as C, E[, G[, A, C. That way the tierce of each bell lines up harmoniously with the prime of the next
note in the chord.

8In a famous paper, Mark Kac asked whether the 2D mode patterns of a drum could be ascertained from the sound
produced (Mark Kac, 1966, Can one hear the shape of a drum?, American Mathematical Monthly, 73(4)). It took 30 years to
determine that the answer was no (Carolyn Gordon, David Webb, and S. Wolpert, 1992, Isospectral plane domains and
surfaces via Riemannian orbifolds, Inventiones Mathematicae, 110(1)).
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Frequency is of course closely associated with pitch: what note the sound is being played at.
Pitch is classically measured in semitones, that is, half-steps. Going from C to C# is one semitone,
as is going from G to G#, etc. You’ll also see the finer measure cents. A cent is 1/100th of a semitone.

Pitch goes up logarithmically with frequency. When a frequency is doubled, its perceived
pitch has gone up an octave. More precisely, if a note is a certain frequency f , and we go up n
semitones from that note, the new note is at frequency g = 2n/12 × f . Similarly, if you have gone
from frequency f to frequency g, then you have moved n = 12 log2(g/ f ) semitones in pitch.

Amplitude When we are multiplying an amplitude or volume to make it louder or softer, we are
said to be changing the gain of the signal. Amplitude is a positive value; but it’s common to refer
informally to the value of a wave as its “amplitude”: and if we centered the wave at zero, it’d go
both above and below that value, hence informally having a “negative amplitude” at certain times.

The change in amplitude of a signal, or the ratio between that signal and some reference signal,
is given in terms of decibels (dB). Decibels are a relative measure and thus you will very often see
negative decibels relative to some signal amplitude, to indicate sounds quieter than that signal.

Computing from decibels to raw amplitudes, or back, isn’t very hard: if you have two sounds
i and j, with amplitudes Ai and Aj respectively, and sound j is d dB louder than sound i, then
Aj = Ai × 10 d/20. Conversely, d = 20 log10

Aj
Ai

. Doubling the amplitude is approximately an in-
crease of 6dB. A doubling in perceived volume is often described as an increase of 10 dB.

Phase Because we’re talking about sine waves, the phase of a partial is an angular measure and
so is typically expressed as a value from 0...2π (or if you like, −π...π). In Figure 13 the green and
blue sine waves are out of phase of one another by π.

The Stereo Field When sounds are in stereo, they can appear to come from left of us, in center, or
to the right of us. The angular position from which a sound appears to originate is known as the
pan position of the sound.

2.2 Digitization of Sound Waves

Sound waves can be stored in (effectively) a real-valued form, on tapes or on records, etc. But
modern sound is normally stored in digital form. To do this, the sound is sampled at uniform
intervals of time, and the amplitude of each sample (positive or negative) is typically stored as
an integer. Thus discretization occurs in two directions: (1) a discrete number of samples (2) each
sample stored as a discrete integer. 1
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Figure 17 A sine wave discretized and shown in grid form (left) and
as a lollipop graph (right).

A popular way to think of these
samples is to lay them out on a grid,
as shown in Figure 17 (left subfigure),
where the x dimension is (discretized)
time, one unit per sample, starting at
0 and increasing; and the y dimension
is the (discretized) amplitude of each
sample, going from −1 to +1. But it’s
dangerous to think of it this way, be-
cause it implies that when the wave is
played, it takes the form of a blocky
function with all horizontal and vertical lines (shown in red) and right angles. This is not really
what happens.
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Instead, to play a digital sound, it is first fed to a Digital-Analog Converter or DAC.9 The job
of the DAC (and they’re very good at it nowadays) is to convert the digital data into a perfectly
smooth analog waveform. Thus it might be best to think of a digitized wave as a lollipop graph,
as in Figure 17 (right subfigure). This helps remind you that the samples are not a bunch of blocky
lines, but are in fact just numbers sampled from a real-valued function (the original sound), at very
specific and precise times, and from which another real-valued function can be produced. For any
time other than those specific sample times, there is no value: it’s undefined.

Sampling Rates, the Nyquist Limit and Aliasing When a sound is sampled, the speed of the
sampling is known as the sampling rate. A sampling rate of n kHz means that one sample is
collected, or played, every 1/(n× 1000) of a second.

The highest possible frequency that can be faithfully represented in a digitized sound of
sampling rate n is exactly n/2. This is known as the Nyquist limit (or Nyquist frequency).10

However it is possible to draw digital waves which would seem to contain within them higher
frequency partials than the Nyquist limit, but this is an illusion. These waves do not present
themselves as proper partials of those given frequencies, but instead create unusual artifacts
with lower frequencies, a distortion known as aliasing (or foldover).11 A sound wave (digital or
analog) which has been carefully groomed to make sure that no frequencies exist above a certain
maximum frequency is known as a band limited wave, and will have no aliasing when converted
to a sampling rate greater than or equal to than twice that maximum. Thus to prevent aliasing
when resampling sounds to lower sampling rates, audio devices first apply a low pass filter to
strip out all frequencies higher than Nyquist (for the new sampling rate) before reducing a sound
wave. For an extended discussion on aliasing (and it’s pretty important), see Section 6.2.

It’s important to understand the following critical (but very counterintuitive) notion. Consider
the lollipop graph again (Figure 17, right subfigure). This graph was sampled at a certain sampling
rate n and thus has a Nyquist limit of n/2. It turns out that there exists only one analog signal,
band-limited (to n/2), which passes exactly through the points in this lollipop graph. Thus this
digital lollipop graph represents a single smooth analog signal. It’s the job of a DAC to reproduce
this analog signal from the digital signal.

Common Sampling Rates One common sampling rate is 44.1 kHz (that is, one sample every
1/44, 100 of a second): this is the sampling rate of a compact disc, and is the rate produced by many
early digital synthesizers. Another popular rate is 48 kHz (one sample every 1/48, 000 of a second):
this is a common rate in sound production: it was the sampling rate of Digital Audio Tape and had
long been used in laboratory settings. A third popular rate in sound production is 96 kHz.

Why these values? The maximum frequency that humans can hear is roughly 20 kHz. Thus a
reasonable sampling rate for human-perceptible sound would be one which can accommodate at
least 20 kHz. However to prevent aliasing, a recording application would need to apply a low-pass

9A DAC outputs sound. What device would do sound input, or sampling? That would be, naturally, an Analog-
Digital Converter or ADC.

10This is not to be confused with the Nyquist rate, which is just the sampling rate. The terminology is confusing.
11I learned this the hard way a long time ago as an undergraduate student. I had created a sound editor where you

could draw the wave as a bitmap, and found that if you drew a perfect sawtooth wave (a 45-degree angle going up to
the top, then a sharp vertical line going down, and repeating) it created strange artifacts. This was because it’s possible
to store a sawtooth wave as a digital representation, but this in fact was stuffing in some partials above the Nyquist limit
which created bad aliasing problems.
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filter at 20 kHz. Low-pass filters cannot cut off frequencies precisely: they need some degree
of wiggle-room in frequency, and so require a sampling rate whose Nyquist limit is somewhat
above 20kHz. 44.1 kHz, which provides a wiggle room of 2.05 kHz, was chosen by Sony in 1979
because it was compatible with certain video standards and so could be stored on early video
recorders. 48 kHz has a similar history, being derived from different compromises due to competing
video standards, and ultimately becoming the standard for video. 48 kHz seems more reasonable
nowadays: it covers 20 kHz with even more wiggle room (4kHz) for the low-pass filter, and it’s
divisible by many integers.12 96 kHz is simply twice 48 kHz.

Bit Depth The sampling rate defines the x axis of the digitized signal: the bit depth defines the y
axis. Bit depth thus the resolution of the amplitude of the wave. The most common bit depth is 16
bits: that is, each sample is a 16-bit unsigned integer.13 This implies that a sample can be any one of
216 = 65536 possible values. The notional center position is half this (32768); this is the canonical
0-amplitude position. A sine wave would oscillate up above, then down below, the center position.

You’d think that small bit depths result in a “low resolution” sound in some sense, but this isn’t
the effect. Recall that there is exactly one smooth analog signal which passes through the lollipop
graph points regardless of their bit depth, and a DAC will try to reproduce that signal. Rather,
bit depth largely affects the dynamic range of the sound: the difference in amplitude between the
loudest possible sound representable and the quietest sound before the sound is overwhelmed by
hiss. The point at which you can’t hear quiet sounds any more because there’s too much hiss is
called the noise floor. This is also closely associated with the signal to noise ratio of a medium.
A higher bit depth translates to more dynamic range. Since this is a difference in amplitudes, it’s
measured in dB: a bit depth of n yields a difference in dB of roughly 6n.

Viewed this way, even analog recording media can be thought of as having an effective “bit
depth” based on its dynamic range. A vinyl record has at most a “bit depth”, so to speak, of 10–11
bits (that is, 60–72 dB). A typical cassette tape is between 6–9 bits. Some very high end reel-to-reel
tapes might be able to achieve upwards of 13–14 bits. These are all quite inferior to CDs, at 16 bits.
And DVDs support a bit depth of 24 bits!

Compression Schemes Compression won’t come into play much in the development of a music
synthesizer, but it’s worth mentioning it. The human auditory system is rife with unusual charac-
teristics which can be exploited to remove, modify, or simplify a sound without us being able to
tell. One simple strategy used in many early (and current!) sound formats is companding. This
capitalizes on the fact that humans can distinguish between different soft- or medium-volume
sounds more easily than different high-volume sounds. Thus we might use the bits in our sample
to encode logarithmically: quiet sounds get higher resolution than loud sounds. Early techniques
which applied this often used either the µ-law or a-law companding algorithms.14

More famous nowadays are lossy compression schemes such as MP3, which take advantage
of a variety of eccentricities in human hearing to strip away portions of a sound without being
detected. As just one example, humans are bad at hearing sounds if there are other, louder sounds
near them in frequency. MP3 will remove the quieter sound under the (usually correct) assumption
that we wouldn’t notice. MP3 generally has a fixed bitrate, meaning the number of bits of data

12Though 44.1 kHz is no slouch here: 44, 100 = 22 × 33 × 55 × 77.
13You could certainly use a 2’s-complement signed representation with 0 at the center instead.
14If you think about it, these are in some sense a way of representing your sound as floating-point.
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MP3 consumes in order to record a second of audio. But if some a sound has a lot of redundancy
in it (as an extreme example: large segments of total silence), some compression schemes take
advantage of this to compress different parts of a sound stream at different bitrates. These are
known as variable bitrate schemes.

Channels Another final factor in the size of audio is the number of channels it consumes. A
channel is a single sound wave. Stereo audio will consist of two parallel sound waves, that is,
two channels. Quadraphonic sound, which was designed to be played all around the listener, has
four channels. Channels may serve different functions as well: for example in a movie theater one
channel, largely for voice, is routed directly behind the screen, while two or more channels provide
a stereo field on both sides of the viewer, and an additional channel underneath the viewer drives
the subwoofer. Similar multi-channel formats have made their way into home theaters, such as 5.1
surround sound, which requires six channels.
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3 Additive Synthesis

An additive synthesizer builds a sound by producing and modifying a large set of partials —ṡine
waves of different amplitude, frequency, and (sometimes) phase — and then adding them up
at the end to form the final sound wave. Additive synthesis is one of the most intuitive and
straightforward ways of synthesizing sounds, and yet it is among the rarest due to its high number
of parameters (all those frequencies, amplitudes, and phases). It’s not easy to develop an additive
synthesizer that isn’t tedious to use. The high computational cost of adding all those sine waves in
additive synthesizers has also restricted their availability compared to other techniques.

3.1 History

Figure 18 (Left) Ranks of Organ Stops.©10

(Right) Organ Stop Knobs.©11

Additive synthesis is easily the oldest form of music syn-
thesis, and if we relaxed its definition to allow adding up
waves to beyond just sine waves, its history stretches back
in time much further than that.

Organ makers have long understood the effect of play-
ing multiple simultaneous pipes for a single note, each with
its own set of partials, to produce a final mixed sound. Pipe
organs are typically organized as sets of pipes (or stops),
one per note, which produce notes with a certain timbre.
As can be seen in Figure 18, stops are of many different
shapes, and are made out of different materials, notably
steel and wood. A full set of stops of a certain kind, one
per note, is known as an organ rank.

Figure 19 Rudolf Koenig’s synthesizer.©12

Good organs may have many ranks. To cause an organ
to play a stop from a rank when a note is played, a control
called a stop knob or drawknob is pulled out. Organs can
play many ranks from the same note at once by pulling out
the appropriate stop knobs; in fact some ranks are even
designed to play multiple pipes in the same rank in response
to a single note (a concept called, in organ parlance, mix-
tures). If you wanted to go all-out, playing all the ranks
at the same time, you would pull out all the stop knobs:
hence the origin of the term “to pull out all the stops”.

Figure 20 Diagram of a tonewheel. As the
wheel spins, its teeth alternatively get closer to
or farther from an electromagnet, causing the
magnet to produce a wave.©13

Early electro-mechanical synthesis devices were largely
additive, using tonewheels (or alternators). A tonewheel,
originally devised by Hermann von Helmholtz and later
Rudolf Koenig (Figure 19), is a metal disk or drum with
teeth (Figure 20). The tonewheel is spun, and an electro-
magnet is placed near it, and as the teeth on the tonewheel
get closer or farther from the magnet, they induce a current
in the magnet which produces an electronic wave.15 We
can do a simple kind of additive synthesis by summing the
sounds from multiple tonewheels at once.

15This magnetic induction is essentially the same concept as an electric guitar pickup.
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Figure 21 The Telharmonium. Tonewheel (called a “dynamo”) shown at bottom left.©14

22



Figure 22 Tonewheel figure from Thaddeus
Cahill’s 1897 Telharmonium patent.©15

The first significant electronic (or at least electric) mu-
sic synthesizer in history, Thaddeus Cahill’s enormous
Telharmonium, relied on summing tonewheels and was
thus an additive synthesizer. The Telharmonium was not
small nor simple: as shown in Figure 21, it filled an entire
room. As shown in the patent illustration for the Telharmo-
nium, Figure 22, multiple tonewheels were attached to a
spinning rod and so could produce many harmonics simul-
taneously for the same note. The motivation behind the
Telharmonium was that a single performer could produce
a song electronically, which then could be broadcast over
telephone lines to many remote sites at once.

Tonewheels later formed the sound-generation mech-
anism of the Hammond Organ: and it too worked using
additive synthesis. The Hammond Organ sported nine
drawbars which specified the amplitudes of nine specific
partials ranging in frequency from one octave below the
fundamental to three octaves above. These drawbars were
linked to tonewheels which produced the final sound.

The Hammond Organ was often paired with one or
more Leslie rotating speakers, an early example of an ef-
fects unit. Leslie speakers added both vibrato and tremolo
to the resulting sound. See Section 10.3, which discusses
this effect in more detail. A Hammond B3 Organ is shown
in Figure 23.

Figure 23 Hammond B3 Organ.©16

Most later attempts in additive synthesis were in the
digital realm. In 1974 the Rocky Mount Instruments (or
RMI) Harmonic Synthesizer was probably the first elec-
tronic music synthesizer to do additive synthesis using dig-
ital oscillators. The Bell Labs Digital Synthesizer, a highly
influential experimental digital synthesizer, was also en-
tirely additive. The Fairlight Qasar M8 generated samples
by manipulating partials, and then used an Inverse Fast
Fourier Transform (or IFFT) to produce the final sound
(See Section 12). Finally (and importantly) the commer-
cially successful, but quite expensive, New England Dig-
ital Synclavier II sported additive synthesis along with
other synthesis modes (sampling, FM), putting additive
synthesis within reach of professional music studios.

Figure 24 Kawai K5000s.©17

During the 1980s and 1990s, Kawai was the primary
manufacturer to produce additive synthesizers. Kawai’s
K3, K5, and later its much improved K5000 series brought
additive synthesis to individual musicians. Since the 1990s, the method has not shown up much in
commercial hardware synthesizers, but it features prominently in a number of software synthesizers,
including AIR Music Technology’s Loom, Native Instruments Inc.’s Razor, Image-Line Software’s
Harmor, and Camel Audio (now Apple)’s Alchemy.
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Figure 26 Effect of a filter on the amplitudes of partials in an additive synthesizer.
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Figure 25 One possible monophonic pipeline for an additive synthesizer
(of many). Arrays of partials are passed from module to module.

Each timestep an additive synthe-
sizer produces and modifies an ar-
ray of partials, and once the ar-
ray is sufficiently modified, the syn-
thesizer gives it to its sound gen-
eration facility, which uses the ar-
ray to produce a single sample.
The sound generation facility typi-
cally produces this sample by hand-
ing each partial in the array to a
corresponding sine-wave generator,
which runs it through a sine wave
function to produce a single sample value for that partial. Then all the sample values are added up
to produce the final sample.

Figure 25 shows one possible pipeline for an additive synthesizer. This isn’t the only possibility
by far, but it serves as an example with many of the common elements:

• Partials Generators These are sources for arrays of partials. They could be anything. For
example, a generator might output one of several preset arrays of partials designed to produce
specific tones. A partials generator could also change the partials arrays it emits over time.
For example, a partials generator could emit one of 128 different arrays of partials, and the
particular array being emitted is specified by a parameter. This has a close relationship with a
technique discussed later called wavetable synthesis.

• Partials Modifiers These take arrays of partials and modify them, emitting the result. A
simple modifier might just amplify the partials by multiplying all of their amplitudes by a
constant. Or perhaps a modifier might change the frequencies of certain partials.

Another common modifier is a filter, which shapes partials by multiplying their amplitudes
against a filter function as shown in Figure 26. There are many possible filter function shapes,
though certain ones are very common. For example, a low pass filter cuts off high frequencies
after some point, whereas a high pass filter cuts off low frequencies. The filter in Figure 26
is an example of a high pass filter. There is also the band pass filter, which cuts off all
frequencies except those in a certain range, and the notch filter, which does the opposite.
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Another common filter in additive synthesis is the formant filter, where the amplitudes of
partials are shaped to simulate the effect of the human vocal tract (see Section 7.13).

In other forms of synthesis which work in the time domain rather than the frequency domain,
filters can be tricky to implement: indeed all of Section 7 discusses these kinds of filters. But
with an additive synthesizer we are fortunate, because in the frequency domain a filter is
little more than a function multiplied against the partials based on their frequencies.16

• Partials Combiners These take two or more arrays of partials and merge them somehow
to form a single array. If the partials are harmonics and both arrays contain the same
frequencies, then this could be as simple as adding together the amplitudes of the same-
frequency harmonics from both arrays: the additive version of mixing. If the partials have
arbitrary frequencies, and you need to produce a new array that is the same size as each of the
previous arrays, then you’d have to use some clever approach to cut out partials: for example,
you might throw all the partials together and then delete the highest frequency ones.

• Modulation All along the way, the parameters of the partials generators, modifiers, and
combiners can be changed in real time via automated or musician-driven modulation proce-
dures. A modulation signal typically varies from -1 to 1, or perhaps from 0 to 1. Modulators
can be used not only to change the parameters of the aforementioned modules, etc., but also
the parameters of other modulators. The two common kinds of automated modulators are:

– Low Frequency Oscillators or LFOs simply cause the signal to go up and down at a
certain rate specified by the musician.

– Envelopes vary the signal over time after a key has been pressed. For example, in
an Attack-Decay-Sustain-Release (or ADSR) envelope, when you press a note, the
envelope begins sweeping from 0 to some attack level over the course of an attack time.
When it reaches the attack level, it then starts sweeping back down to some sustain
level over the course of a decay time. When it reaches the sustain level, it stays there
until you release the key, at which point it starts sweeping back to zero over the course
of a release time. The musician specifies these values.

Modulation is absolutely critical to making realistic sounds. Consider for a moment that when
someone plays an instrument such as trumpet, we often first hear a loud and brash blare for a
moment, which then fades to a mellower tone. There are two things that are happening here.
First, the trumpet is starting loudly, then quickly dropping in volume. Second, the trumpet
is starting with lots of high-frequency harmonics, giving it a brash and buzzy sound, and
then quickly reduces to just low-frequency harmonics, resulting in a mellowing of tone. If we
wished to simulate this, we’d use a modulation procedure which, when a note was played,
made the sound louder and perhaps opened a low-pass filter to allow higher harmonics
through, and then soon thereafter quieted the sound and closed much of the filter (cutting out
the higher harmonics). This kind of modulation procedure calls for one or more envelopes.

16If you’d like a basic filter function for an additive synthesizer, try using the two-pole filter amplitude response equa-
tions in Section 7.7. For example, if you have a desired cutoff frequency ω0 > 0 (in radians) and resonance Q > 0, then for

each partial, given its frequency ω (in radians again), multiply its amplitude against 1
/√

(1−ω2/ω2
0)

2
+ (ω/(ω0Q))2

to get a basic low-pass filter. To convert a frequency from Hz to radians, just multiply by 2π. Also, resonance normally
doesn’t drop below Q =

√
1/2, which is generally considered the minimum “no resonance” position.
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Similarly if we wished to add tremolo (rapidly moving the volume up and down) or vibrato
(rapidly moving the pitch up and down) or another oscillating effect, we could use an LFO.

Other modulation mechanisms include Arpeggiators and Sequencers. We’ll cover all of
these in more detail in Section 4.

3.3 Implementation

An additive synthesizer can be implemented straightforwardly as a set of modules which offer
arrays of partials or individual modulation values to one another. Every so often the code would
update all of the modules in order, allowing them to extract the latest information out of other
modules so as to revise their own offered partials or modulation. A final module, Out, would
extract and hold the latest partials. Every time tick (more rapidly than the modules update) the
facility would grab the latest partials from Out and use them to update a sample, one sample per
tick. Here’s a basic monophonic additive synthesizer top-level architecture:

Algorithm 1 Simple Monophonic Additive Synthesizer Architecture
1: M← 〈M1, ..., Mm〉 modules
2: tick ← 0
3: counter ← 0
4: δ← 0
5: α← interpolation factor
6: ticksPerUpdate ← number of ticks to wait between updates . ticksPerUpdate = 32 works well

7: procedure Tick
8: if Note Released then
9: for i from 1 to m do

10: Released(Mi, pitch)

11: if Note Pressed then
12: for i from 1 to m do
13: Pressed(Mi, pitch, volume)

14: tick ← tick +1
15: counter ← counter +1
16: δ← (1− α)× δ + α
17: if counter >= ticksPerUpdate then
18: counter ← 0
19: δ← 0
20: for i from 1 to m do
21: Update(Mi, tick)

22: return OutputSample(tick, δ)

Note that a new note may be pressed before the previous note is released: this is known
as playing legato on a monophonic synthesizer. Some modules might respond specially to this
situation. For example, partials generators might gradually slide in pitch from the old note to the
new note, a process called portamento.
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Interpolating the Array of Partials What’s the point of δ and α? The call to OutputSample(...)
in Algorithm 1 is called every tick: but the partials are only updated (via Update(...)) every
ticksPerUpdate ticks. If ticksPerUpdate > 1 then we will have a problem: even relatively small
changes in the amplitude and frequency of the partials can appear as abrupt changes in the
underlying sound waves, creating clicks.

The simplest way to fix this is to do partial interpolation. Let A(t−1) be the amplitudes of
the previous partials and A(t) be the amplitudes of the current partials. Similarly, let F(t−1) and
F(t) be their frequencies. For each partial i, we could define Ai and Fi to be the amplitude and
frequency, respectively, used to generate the next sample via Ai ← (1− δ)× A(t−1)

i + δ × A(t)
i ,

and Fi ← (1− δ)× F(t−1)
i + δ× F(t)

i . Here δ is 0 when we receive a brand new set of partials, and
gradually increases to 1 immediately prior to when we receive the next new set.

In Algorithm 1 we’re passing in a δ to OutputSample(...) which can serve exactly this purpose.
Note that it’s being increased exponentially rather than linearly: I’ve found an exponential curve
to be much more effective at eliminating clicks. But you will need to set α such that, by the time
ticksPerUpdate ticks have expired, δ is within, oh, about 0.97 or so.

Warning Imagine that A(t)
i = 0. Then as interpolation pushes Ai towards A(t)

i , you could find
Ai mired in the denormalized17 floating-point range, and math with denormal numbers is can
be extremely slow for many programming languages. You need to detect that you’re getting close
to the denormals and just set Ai directly to 0. For example, if A(t)

i < s and δ < s for a value of s
somewhat above the denormals, then Ai ← 0.

Generating a Sound from an Array of Partials At the end of the day, we must take the final array
of partials and produce one sample for our sound. Let us define a partial as a tuple 〈i, f , a, p〉:

• Each partial has a unique ID i ∈ 0...N. This indicates the sine-wave generator responsible
for outputting that partial. If a partial’s position in the array never changes, this isn’t really
necessary: you could just use the array position as the ID. However it might be useful to
rearrange the partials in the array (perhaps because you’ve changed their various frequencies
in some module, and then re-sorted the partials by frequency). Keeping track of which partial
was originally for which generator is helpful because if a generator suddenly switched to a
different partial with a different phase or frequency or amplitude, you might hear an audible
pop as the generator’s sine wave abruptly changed.

• The frequency f of the partial is relative to the base frequency of the note being created: for
example, if the note being played is an A 440, and f = 2.0, then the partial’s frequency is
440× 2.0 = 880.

• To keep things simple, the amplitude a ≥ 0 of the partial is never negative. If you needed a
“negative” amplitude, as in a Triangle wave, you could achieve this by just shifting the phase
by π.

17 Denormalized numbers are a quirk of the IEEE 754 floating point spec. They are a set of non-zero numbers
between the positive and negative values with the smallest exponent. For doubles, that means they’re roughly at
−2−308 < d < +2−308, d 6= 0. Math with denormals is custom and must be handled with very slow hardware, or worse,
in software, if your language doesn’t automatically round denormals to 0. As a result they can be hundreds of times
slower or worse depending on your CPU. You don’t want to mess with that.
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• The phase p of the partial could be any value, though for our own sanity, we might restrict it
to 0 ≤ p ≤ 2π.

The sound generation facility maintains an array of sine-wave generators G1...GN . Each genera-
tor has a current instantaneous phase xi . Let’s say that the interval between successive timesteps
is ∆t seconds: for example, 1/44100 seconds for 44.1KHz. Every timestep each generator Gi finds
its associated partial 〈i, f , a, p〉 of ID i. It then increases xi to advance it the amount that it had
changed due to the partial’s frequency:

x(t)i ← x(t−1)
i + fi∆t

Let’s assume that the period of our wave corresponded to the interval xi = 0...1. Since our
wave is periodic, it’s helpful to always keep xi in the 0...1 range. So when it gets bigger than 1,
we just subtract 1 to wrap it back into that range. One big reason why this is a good idea is that
high values of xi will start having resolution issues given the computer’s floating-point numerical
accuracy. So we could say:

x(t)i ← x(t−1)
i + fi∆t mod 1 (1)

For our purposes, mod 1 is the same thing as saying “keep subtracting 1 until the value is in the
range 0...1, excluding 1.” In Java, x mod 1 (for positive x, which is our case) is easily implemented
as x = x - (int) x; Once this is done for each xi, we just adjust all the sine waves by their phases,
multiply them by their amplitudes, and add ’em up. Keep in mind that the period of a sine wave
goes 0...2π, so we need to adjust our period range accordingly. So the final sample is defined as:

∑
i

sin(2πx(t)i + pi)× ai

We might multiply the final result against a gain (a volume), but that’s basically all there is to it.

Sine Approximation The big cost in additive synthesis is the generation and summation of sine
waves. Don’t use the built-in sin function, it’s costly. Approximate it with a fast lookup table:

Algorithm 2 Sine Table Initialization
1: Global S0...S2n−1 ← array of 2n numbers . I myself use n = 16, so 2n = 65536

2: for i from 0 to 2n − 1 do
3: Si ← sin(2πi/2n)

Algorithm 3 Sine Approximation
1: x ← argument

2: i←
⌊

x× 2n

2π

⌋
mod 2n . mod 2n can be done with just a bitwise-and with (2n − 1)

3: return Si

You can make this much more accurate by interpolating with the Catmull-Rom cubic spline
(Equation 6, page 124). To do this, let α = x× 2n

2π −
⌊

x× 2n

2π

⌋
. Then let f (x1) = S(i−1 mod 2n), f (x2) =

S(i mod 2n), f (x3) = S(i+1 mod 2n), and f (x2) = S(i+2 mod 2n). Then apply Catmull-Rom, and return
f (x). Slightly slower than direct table lookup, but still much faster than the built-in sin function.
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Buffering and Latency This is an important implementation detail you need to be aware of. In
most operating systems you will output sound by dumping data into a buffer. You can dump it in
a sample at a time, or (more efficiently) put in an array of samples all at once. The operating system
must not fully drain the buffer or it will start emitting garbage (usually zeros) as sound because it has
nothing else available. You have to keep this buffer full enough that this does not happen.

The problem is that the operating system won’t drain the buffer a byte at a time: instead it will
take chunks out of the buffer in fits and starts. This means you always have to keep the buffer filled
to more than the largest possible chunk. Different operating systems and libraries have different
chunk sizes. For example, Java on OS X (what I’m familiar with) has an archaic audio facility which
requires a buffer size of about 1.5K bytes. Low-latency versions of Linux can reduce this to 512
bytes or less.

You’d like as small a buffer as possible because keeping a buffer full of sound means that you
have that much latency in the audio. That is, if you have to keep a 1.5K buffer full, that’s going to
result in an up to 17ms audio delay. That’s a lot!

Timing How do you make sure that the Tick(...) method is called regularly and consistently?
There are various approaches: you could use timing code provided by the operating system, or poll
a getTime(...) method and call Tick(...) when appropriate. But there’s an easier way: just rely on
the audio output buffer. That is, if the buffer isn’t full, fill it, and each time you fill it with a sample,
you do so by calling Tick(...) once. As discussed before, the buffer gets drained in fits and starts,
and so your filling will be fitful as well: but that doesn’t matter: all that matters is that all of your
time-sensitive code is in sync with the audio output. So base it directly on the output itself! That is,
I’d call the following over and over again in a tight loop:

Algorithm 4 Buffer Output
1: A← array of samples . Large enough to keep the buffer happy

2: for i from 0 to length of A− 1 do
3: Ai ← Tick()

4: AddToBuffer(A) . Presumably this is blocking

Dealing with Drifts in Phase We’ve largely trivialized phase as less important to human hearing
than amplitude and frequency: but that’s not quite true. Phase plays a significant role in the color
of sounds, particularly mid-to-low frequency ones. As a result, at the very least you’d like partials
to not start varying in phase (unintentionally) relative to one another as the sound progresses,
or its tonal character may change. This is particularly noticeable if the partials, when summed
up, approximately form waves with large vertical drops such as a sawtooth or square wave (see
Figure 31 on page 37 for illustrations).

If the partials were permitted to change in frequency relative to one another over time, you
might have a problem. Imagine you had a partial at frequency N and another at 2N, both in phase.
If the 2N partial was temporarily (and intentionally) changed to 2.123N, and then returned to
2N, the two partial generators would now be out of phase relative to one another, and wouldn’t
sound quite the same. Even if the partials were fixed in frequency (they were only permitted to be
harmonics), it’s possible their phases might drift relative to one another due to numerical instability.
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Here are some strategies for dealing with this. First, you could ignore it. Second, some additive
synthesizers simply reset the phases of a voice’s partials every time it’s used to play a new note.
Third, instead of wrapping around xi, compute it directly each time as x(t)i ← t× fi × ∆t mod 1.
This would guarantee that when we returned to 2N it’d be back in phase: but even subtle changes
in frequency might create pops just like sudden changes in amplitude, for moderate t. I’d do #2.

3.4 Monophony, Paraphony, Polyphony, and Multitimbrality

A monophonic synthesizer can only play one note at a time. A polyphonic synthesizer can play
multiple notes at a time, each effectively played through its own independent synthesizer (called
a voice). Most early synthesizers were monophonic. Recall the additive pipeline shown before
in Figure 25 (page 24). This essentially shows a monophonic pipeline, and likewise Algorithm 1
(page 26) describes a monophonic synthesizer architecture. (Though they’re introduced here for
additive synthesizers, monophony and polyphony are qualities of all synthesizers.)

Monophonic Note Resolution What happens when we play two notes on a monophonic synthe-
sizer keyboard? Which one plays? The approach taken to resolve this impacts on the playability
and performance options on the machine. Monophonic synthesizers have adopted different note
priority rules: for example, the lowest note would get priority, or the highest note. Perhaps the
most useful priority rule is to have the last note played get priority. Another issue that might arise:
what should happen when a note is played, and then while it is being held down, another note is
played which assumes priority? One option is to have the synthesizer simply reset itself and play
the second note from its start. Another option, commonly called legato, is to continue playing the
voice in the style of the first note but to shift its pitch to the new note. A third option, called glide,
works like legato, but over time slides the pitch from the first note to the new note.
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Figure 27 A paraphonic pipeline for an additive synthesizer. Notice that
the oscillators play different notes, but the volume (and other features
discussed in Section 7, such as filter cutoff), is controlled only by one note.
Compare with a monophonic pipeline as shown in Figure 25, page 24.

Paraphony As monophonic syn-
thesizers developed, they gained
the ability to have their two or three
oscillators play different notes at
once. This was done by having
them play different pitches (the dif-
ferent notes): but these sounds were
still combined and jointly pushed
through a single modification stage
together as one voice, whose param-
eters and modulation triggers were
dictated by only the priority note, as
shown in Figure 27. This so-called paraphony is a stand-in for true polyphony — the voices aren’t
independent — but it was a useful enough extension to monophonic synthesizers.

Polyphony A polyphonic synthesizer can be thought of as some N completely independent
monophonic synthesizers-̇– the voices — each programmed with the same patch, as shown in
Figure 28. When you play a note, one of these N synthesizers is assigned to this note, reset, and
instructed to begin playing. But which voice should be assigned? The most common approach is to
assign the least recently assigned voice, that is, the oldest one.
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Figure 28 A four-voice polyphonic pipeline for an additive synthesizer. As each new note is played, a different voice
(essentially a monophonic synthesizer) is assigned to play that note. If there are no more voices, one is reassigned to play
the next note (commonly the one assigned the furthest in the past).

One difficulty that arises with polyphonic synthesizers is the issue of voice stealing. Let’s say
you have a four-voice polyphonic synthesizer. You play a four-note chord. Then while playing it,
you also play a fifth note. The synthesizer will be forced to reallocate one of the four voices to the
new note. The allocated voice will immediately stop playing its old note and play the new, likely
completely different note. This will probably result in a “click” or “pop” as the voice is lurched
from one wave to another. Voice stealing obviously happens in a monophonic synthesizer as well,
but little can be done about that.

You’d like to avoid voice stealing: this means having enough voices that there’s always one
available. But how many is enough? You’d think it’d be the largest chord you’re ever likely to
play — perhaps 8 notes? 10 notes? But you’d be wrong. In many patches, after you let go of a
key, the note continues to play as it slowly dies out (over a so-called release time). This means
that you could play a large chord, and play a second or even third chord before the first chord has
entirely faded out and is available to reallocated without the clicks and pops of voice stealing. Thus
a synthesizer benefits from a large number of notes, perhaps 16 or more.

Many early synthesizers could only afford to offer five or six note polyphony, which wasn’t
great but was serviceable. Later synthesizers offered 8 or more, and some digital synthesizers offer
a huge number of voices, so many that you could never play them all. Which brings us to...

Multitimbrality A multitimbral synthesizer is a polyphonic synthesizer with a twist: its voices
can play different patches. You might have a 24-voice multitimbral synthesizer which has allocated 8
voices to a pad sound, 8 voices to a lead, 2 voices to a bass, and 6 voices to one drum sound each.
In a multitimbral synthesizer, you could play the pad on the keyboard, but (for example), let a
computer play the lead, bass, and drums remotely via MIDI (see Section 11). Or you might split
your keyboard so that you can play the pad in the upper notes with your right hand and the bass
in the lower notes with your left hand.
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Multitimbral synthesizers came into their own in the 1990s as rackmount synthesizers were
developed to work with a computer to play an entire song. Most multitimbral synthesizers have
special multimode patches in addition to standard single patches. The idea is as follows: each
single patch holds the parameters which collectively defined of the sound of a voice, as usual. You
can play a single patch by itself. Or you can instead load a mutlimode patch. A multimode patch
contains parameters which define some N parts. Each part has a reference18 to some single patch
in your memory, plus information such as how many voices should be allocated to that part, how it
should be played (for example, via the keyboard; or just the upper part of the keyboard; or remotely
over MIDI), which audio port it should output its sound to, and so on. When a synthesizer loads a
multimode patch, it will also load each of the single patches referred to in the multimode patch’s
parts, allocate voices to them, and set them up.

3.5 Architecture Examples

Here are two actual architectures which fall in the architectural implementation discussed before.

Figure 29 Kawai K5m

Kawai K5 If you disregard the Hammond Organ, Kawai
has probably produced more additive hardware synthesiz-
ers than any other company. This particular synthesizer
came out in 1987 in both keyboard and rackmount (K5m)
versions. The Kawai K5 had exactly 126 of partials in its
array, organized as harmonics: you could not change their
frequencies. Furthermore, the phase of each harmonic was
fixed to zero. This greatly simplified the options available: all you could do was change the
amplitudes of the partials over time: but that alone still involved a great many parameters.

Nonetheless the pipeline for a K5 is quite simple:

• Determine the current pitch of the note (this can be modulated with an LFO or envelope).

• Build an array of 63 harmonics. You can set the amplitude of each of the harmonics separately.
You can also modulate the amplitudes of harmonics, either by assigning each of the harmonics
to one of four envelopes or to an LFO. The envelopes are the important part here: they allow
different harmonics to rise and fall over time, changing the sound timbre considerably.

• Run the harmonics through some kind of filter. The filter has its own envelope and can be
modulated via a LFO.

• Run the harmonics through an amplifier. This amplifies all the harmonics as a group, much
as a sound is amplified (as opposed to earlier in the pipeline, when each harmonic could
have its amplitude changed independently). The amplifier has its own envelope and can be
modulated via a LFO.

• Run the harmonics through a formant filter. This filter can be used to adjust the harmonics
to simulate the formant properties of the human vocal tract. See Section 7.13.

18Except for a few rare cases (such as the Nord Lead 2, see Figure 60, page 53) the multimode patch won’t contain
copies of the single patches, but rather just refer to their patch locations. Thus if you modify single mode patches, this
would also effect the multimode patches which refer to them.

32



• Hand the harmonics to the final output to be summed and emitted.

• This pipeline happens twice, for two independent sets of 63 harmonics each. This can be done
in parallel to make two independent voices per note, or one set can be assigned to harmonics
1...63, while the other set is assigned to harmonics 65...127 to create a richer sound with many
higher-frequency harmonics.19

The challenge here is that even with this simple architecture, there were 751 parameters, as
every harmonic had its own amplitude and modulation options. The amplifier, filter, and pitch all
had their own 6- or 7-stage envelopes, as well as the four envelopes that the harmonics could be
assigned to: and this was for each of the two sets of harmonics. It was not easy to program the
Kawai K5.

The K5 was 16-voice polyphonic, and up to 16-part multitimbral. The K5 was also not a
particularly good sounding synthesizer.20 But ten years later, Kawai tried again with the K5000
series (Figure 29) and produced a far better sounding machine. The architecture was similar in
many respects, but with one critical difference: every harmonic now had its own independent
envelope. This allowed for much richer and more complex sounds (but even more parameters!)

Figure 30 Flow

Flow Flow is a fully modular,
polyphonic, multitimbral, additive
synthesizer of my own design. In
a Flow patch, you lay out mod-
ules in the form of partials genera-
tors, partials modifiers, modulation
sources, and modulation modifiers,
set their parameters, and then wire
them up like you would connect
modules in a traditional modular
synthesizer. The difference, how-
ever, is that while time-based audio signals were transferred along the cables of a traditional
modular synth, the virtual cables in Flow transfer arrays of up to 256 partials. Other cables transfer
modulation information.

Flow patches can contain any number of modules, plus one dedicated module called Out which
gathers partials from whatever cable is plugged into it and uses those partials to produce the final
sound. Unusually, Flow patches can be loaded as modules themselves in other patches, complete
with their own special modulation and partials inputs and outputs.

Flow’s pipeline is straightforward: each timestep, all of the modules are pulsed once, left to right.
When a module is pulsed, it gathers modulation and partials information from its upstream (left)
modules to produce modulation and partials information it wishes to output to later downstream
modules.21 Ultimately the Out module is pulsed, and it sends its partials information to be
outputted for the next n samples (currently 32).

Flow has many available modules, and a patch can potentially have a large number of them.
This obviously can result in complex patches with very large numbers of parameters: but in fact

19There was no harmonic 64. I don’t know why.
20Believe me. I owned one and upgraded it considerably. Figure 29 is a picture of my K5m with a brand-new screen.
21This doesn’t imply that data in Flow can only go left-to-right: Flow patches can contain cycles in their connections.
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the large majority of patches only employ small tweaks of standard modules. Rather than tediously
manipulate the individual partials in a sound one by one (though you can do that), Flow is instead
geared more towards pushing arrays through various manipulation and filter modules as a whole.

Flow fixes the number of partials, usually to 256. It also disregards phase, and a partial only
has a frequency, an amplitude, and an ID. Flow can manipulate the frequency and amplitude of
partials in a wide variety of ways and can combine and morph22 partials from multiple sources.

22Morphing works like this. For each pair of partials, one from each incoming set, produce a new resulting partial
which is the weighted average of the two both in terms of frequency and amplitude. You’d then modulate the weight.
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4 Modulation

By themselves, the audio pipeline modules will produce a constant tone: this might work okay for
an organ sound, but otherwise it’s both boring and atypical of sounds generated by real musical
instruments or physical processes. Real sounds change over time, both rapidly and slowly. To
make anything which sounds realistic, or at least interesting, requires the inclusion of mechanisms
which can change pipeline parameters over time. These are modulation sources.

Modulation signals come from two basic sources:

• The musician himself through various interface options: buttons, knobs, sliders, and so on.
Some of these are general-purpose and can be assigned as the musician prefers. These might
include the modulation wheel, the pitch bend wheel, so-called expression pedals, and from
the keyboard’s velocity, release velocity, and aftertouch, among others. These modulation
sources tend to effect all voices simultaneously in a polyphonic synthesizer. For definitions and
more information on these modulation interface options, see Section 11.

• Automated modulation procedures which change parameters automatically as time passes.
This is the bulk of this Section. Automated modulation procedures often have their own
parameters, and these parameters could be themselves modulated by other modulation
sources. Thus you might see chains or even cycles of modulation signals. These modulation
sources tend to be allocated to separate, individual voices in a polyphonic synthesizer.

How a modulation signal modulates a parameter depends on the range of the parameter. Some
parameters, such as volume, are unipolar, meaning that their range is 0...N (we could just think
of this as 0...1). Other parameters, such as pitch bend, might be bipolar, meaning that their range
is −M... + M (perhaps simplified to −1/2... + 1/2 or −1... + 1). It’s trivial to map a unipolar to a
bipolar signal or vice versa, of course, and synthesizers will often do this.

Another issue is the resolution of the parameter. Some parameters are real-valued with a high
resolution; but others are very coarse-grained. And even if a parameter is high-resolution, some
modulation signals it could receive — notably those provided over MIDI (Section 11.2) — can be
very coarse, often just 7 bits (0...127). In this situation, gradually changing the modulation signal
will create a zipper effect as the parameter clicks from one discretized value to the next.

4.1 Low Frequency Oscillators

This is our first automated modulation option. A Low Frequency Oscillator or LFO is exactly
what’s written on the tin: a repeating function at a low frequency whose output is used to slowly
modulate some parameter. By slowly we mean that an LFO is usually slower than audio rate, so it’s
less than 50Hz or so.23 It’s not unusual for an LFO to be 1Hz or less.

An LFO can be used to modulate lots of things. For example, if it were used to shift the pitch
of an oscillator, it’d cause vibrato. Similarly, if it were used to adjust an oscillator’s volume, it’d
cause tremolo. An LFO is usually bipolar, perhaps ranging −1... + 1. LFOs often come in a number
of classic shapes, including sine, square, triangle, and both sawtooth and ramp (Figure 31). LFOs
have a number of parameters, including at least the rate or frequency, and an amplitude or amount.

23One desirable property of an LFO is the ability to go high into audio rate, so as to effect a form of frequency
modulation (or FM) on audio signals. We’ll cover FM in Section 8.
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An LFO’s rate could also be defined by a clock in the synthesizer, or synced to the rate of incoming
MIDI Clock pulses (see “Clock Messages” in Section 11.2.2). The period of an LFO in a voice is
normally reset when the musician plays a new note, unless the LFO has been set free.24

In a monophonic synthesizer a new note might be pressed before the last one was released
(known as playing legato). Some LFOs might prefer to not reset in this situation, because the new
note may be perceived by the listener essentially as a continuation of the previous one.

Once you’ve got a master clock providing ticks (see Section 3.3), implementing an LFO is pretty
straightforward: you just have to map the ticks into the current cycle position (between 0 and 1).
You could do this with division, or you could do it by incrementing and then truncating back to
between 0 and 1. Each has its own numerical issues. I’ve chosen the latter below.

Algorithm 5 Simple Low Frequency Oscillator
1: r ← rate . In cycles per tick
2: type ← LFO type
3: free ← is the LFO free-running?
4: legato ← did a legato event occur (and we care about legato)?

5: global s← 0 . Current state (0...1)

6: procedure Note Pressed
7: if not free and not legato then
8: s← 0

9: procedure Update
10: s← s + r
11: if s ≥ 1 then
12: s← s mod 1 . Easily done in Java as s = s - (int) s
13: if type is Square then

14: return
{
−1 s < 1/2
1 otherwise

15: else if type is Triangle then

16: return
{

s× 4− 1 s < 1/2
3− 4× s otherwise

17: else if type is Sawtooth then
18: return (1− s)× 2− 1
19: else if type is Ramp then
20: return s× 2− 1
21: else . Type is Sine. See Section 3.3 for fast Sine lookup
22: return sin(s× 2π)× 2− 1

Random LFO Oscillators LFOs often also have a random oscillator. For example, every period it
might pick a random new target value between −1 and 1, and then over the course of the period it
would gradually interpolate from its current value to the new value, as shown in Figure 31. We
might adjust the variance in the choice of new random target locations. I’d implement it like this:

24Unlike audio-rate oscillators, phase matters for an LFO, since we can certainly detect out-of-phase LFOs used to
modulate various things.
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Figure 31 Various Low Frequency Oscillator wave functions.

Algorithm 6 Random Low Frequency Oscillator
1: r ← rate . In cycles per tick
2: var ← variance (0...1) . How randomly we pick new targets.
3: free ← is the LFO free-running?
4: legato ← did a legato event occur (and we care about legato)?

5: global s← 0 . Current state (0...1)
6: global target ← 0
7: global previous ← 0

8: procedure Note Pressed
9: if not free and not legato then

10: s← 0
11: ChooseNewTarget( )

12: procedure Update
13: s← s + r
14: if s ≥ 1 then
15: s← s mod 1
16: ChooseNewTarget( ) . Easily done in Java as s = s - (int) s

17: return (1− s) × previous + s × target

18: procedure Choose New Target
19: previous ← target
20: repeat
21: δ← random value from −2...2 inclusive
22: target ← previous + δ × var
23: until −1 ≤ target ≤ 1
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Note that we’re picking delta values from −2...2. This is so that, at maximum variance, if we’re
currently at −1, we could shift to any new target value clear up to +1 (and similarly vice versa).
With smaller and smaller variance, we’ll pick new target values closer and closer to our current
value.

Sample and Hold Many synthesizers also have a special function called sample and hold, or
S&H, which takes a modulation input and produces a discretized modulation output. At the start
of each period it samples the current value of the input, and during the course of the period it
outputs only that value, ignoring all later inputs. Like an LFO, Sample and Hold may respond to
free running and to legato. Here is one simple implementation:

Algorithm 7 Sample and Hold
1: x ← current input
2: r ← rate . In cycles per tick
3: free ← is the LFO free-running?
4: legato ← did a legato event occur (and we care about legato)?

5: global s← 0 . Current state (0...1)
6: global target ← 0

7: procedure Note Pressed
8: if not free and not legato then
9: s← 0

10: target ← x

11: procedure Update
12: s← s + r
13: if s ≥ 1 then
14: s← s mod 1 . Easily done in Java as s = s - (int) s
15: target ← x

16: return target

Sample and hold can be applied to any modulation source to produce a “discretized” version
of the modulation, but it’s particularly common to apply it to an LFO. Applying sample and hold
to sawtooth, ramp, and triangle is common, but by far the most common application is sample and
hold applied to a random LFO wave: indeed on many synths the “sample and hold” (or “S&H”)
option is only applied to random waves. The coarseness of discretization would depend on the
sample and hold rate. Figure 31 shows examples of sample and hold, at two different frequencies,
applied to ramp and random waves.

4.2 Envelopes

An envelope is a time-varying function which, when triggered, starts at some initial value and then
follows the function until it is terminated. Very commonly the trigger is when the musician plays a
note. Software or hardware which produces an envelope function is called an envelope generator.
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ADSR By far the most common envelope used in syn-
thesizers is the Attack-Decay-Sustain-Release envelope,
or ADSR. When triggered (again, usually due pressing a
key), the envelope starts rising from a start value — usually
0 — up to an attack level (sometimes fixed to 1.0) over the
course of an attack time interval. Once the interval has
been exhausted, the envelope then begins to drop to a sus-
tain level over the course of a decay time. At that point
the envelope holds at the sustain level until a different trig-
ger occurs (usually due to the musician releasing the key).
Then the envelope begins to decay to zero over the course
of a release time interval.

ADSR envelopes are popular because many musical in-
struments can be very roughly modeled using them. Many
instruments start with a loud and brash splash, then decay rapidly to a quieter and more mellow
sustained period, then finally trail off. This can be modeled with two ADSR envelopes, one attached
to the overall volume of the note, and the other attached to the filter cutoff. Indeed many synthesiz-
ers have dedicated ADSR envelopes for these two purposes. Interestingly, these two envelopes don’t
need to be the same: it’s perfectly plausible, for example, that the filter envelope reaches its attack
maximum (its brightest sound) before the amplifier envelope reaches its maximum volume.

As shown in Figure 32, an ADSR envelope’s rate of change could be linear, or it could be
exponential (or something else!). Linear rates are easily implemented when the rise or drop
intervals are defined in terms of time: but exponential rates are more easily implemented when
the rises or drops are defined in terms of rate. The choice of rate versus interval or time depends
on the synthesizer, and different manufacturers make different choices.25 Exponential rate is
straightforward to implement in analog synths, and can mimic the exponential decay of certain
musical instruments, and so it’s historically much more common.

Building an exponential rate-based envelope is easy. Imagine that the envelope was just starting
its attack. We might set v = 1.0, and then every tick we decrease v as v← αv where 0.0 < α < 1.0.
Then we set the current the current level y← (1− v)× attack level. Similarly if we were dropping
from the attack level to the sustain level, we’d set v = 1.0, and repeat this trick, but define the level
as y← v× attack level + (1− v)× sustain level. I’ll leave the release case as an exercise.

There are several common variations on ADSR. Often we will see an additional delay time
added prior to the onset of the ADSR, producing a DADSR envelope. Sometimes we will see
two decay stages before settling into sustain. Sometimes we might see a hold stage added, such
as AHDSR. In a hold stage the envelope maintains its current value over a specified interval of
time. Other variations are simplifications: for example, in AR (or perhaps AHR), the decay and
sustain stages are eliminated: the envelope simply attacks, then decays back to zero. Similarly,
in a one-shot envelope, the sustain period is eliminated: the envelope attacks, then decays to the
sustain level, then immediately releases to zero. As is the case for an LFO, it is very common for
ADSR envelopes to respond to legato by not resetting.

25There is one big difference you may not have thought about though. Let’s say that the release time and decay time
are the same amounts (likewise release rate and decay rate). Imagine that the envelope has begun to decay, and then
suddenly we let go of the note so it immediately starts releasing. In a time-based envelope, the release time will be
consistent. But in a rate-based envelope, the amount of time to complete the release would depend on how high the
value was when the note was released.
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Linear Time-based ADSR Implementation This kind of ADSR just requires you to do linear
interpolation through the attack, decay, and release stages.

Algorithm 8 Simple Linear Time-based ADSR
1: r ← rate . In envelope time units per tick
2: X ← {X0, ..., X4} . Time when stage ends. X2, X4 = ∞
3: Y ← {Y0, ..., Y4} . Target parameter value of stage. Y1 = Y2, and Y3 = Y4 = 0
4: legato ← did a legato event occur (and we care about legato)?

5: global s← 0 . Current state
6: global i← 0 . Current stage. Attack=0, Decay=1, Sustain=2, Release=3, Done=4
7: global p← 0 . Current parameter value.
8: global p′ ← 0 . Parameter value at start of the current stage.

9: procedure Note Pressed . Reset everything to the beginning of Attack
10: if not legato then
11: i← 0
12: s← 0
13: p′ ← 0
14: p← 0

15: procedure Note Released . Reset everything to the beginning of Release
16: if i < 3 and not legato then
17: i← 3 . Release stage
18: s← 0
19: p′ ← p . We start from where we currently are

20: procedure Update
21: s← s + r
22: while s ≥ Xi do . Note that for Sustain (2) and Done (4) this will never be true
23: s← s− Xi . We don’t reset to 0, but to our leftover time
24: p′ ← p
25: i← i + 1 . Go to next stage

26: γ← s/Xi . This is assuming that Xi 6= 0, which ought to be the case
27: p← (1− γ)× p′ + γ×Yi . Compute interpolated value
28: return p

This envelope changes linearly with time. To change exponentially, a time-based ADSR would
need a call to pow() to compute the exponential change, which is very costly. Instead, you could do
a call to, say, x4, which works okay as an approximation. To do this I’d just insert the following
immediately after line 26:

γ← γ× γ× γ× γ

To adjust the rate of attack/decay, just revise the number of times γ appears in the multiplication.

Exponential Rate-based ADSR Because it is multiplying rather than adding, an exponential
rate-based envelope will never reach its target, Zeno’s Paradox style. Thus we need a threshold
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variable, ε, which tells us that we’re “close enough” to the target to assume that we have finished.
This value should be small, but not so small as to get into the denormals (See Footnote 17, page 27).

Algorithm 9 Simple Exponential Rate-based ADSR
1: X ← {X0, ..., X4} . Exponential rate for stage. X2, X4 = 1.
2: Y ← {Y0, ..., Y4} . Target parameter value of stage. Y1 = Y2, and Y3 = Y4 = 0.
3: ε←Threshold for switching to new stage. Low. . Should be large enough to avoid denormals!
4: legato ← did a legato event occur (and we care about legato)?

5: global s← 1 . Current state
6: global i← 0 . Current stage. Attack=0, Decay=1, Sustain=2, Release=3, Done = 4
7: global p← 0 . Current parameter value.
8: global p′ ← 0 . Parameter value at start of the current stage.

9: procedure Note Pressed . Reset everything to the beginning of Attack
10: if not legato then
11: i← 0
12: s← 1
13: p← 0
14: p′ ← 0

15: procedure Note Released . Reset everything to the beginning of Release
16: if i < 3 and not legato then
17: i← 3 . Release stage
18: s← 1
19: p′ ← p

20: procedure Update
21: s← s× Xi . Exponential dropoff
22: if s ≤ ε then . Note that for Sustain (2) and Done (4) this will never be true
23: s← 1
24: p′ ← p
25: i← i + 1 . Go to next stage

26: p← s× p′ + (1− s)×Yi . Compute interpolated value
27: return p

1 2 3 4 5 6 7 8
Figure 33 Eight-stage envelope.

Multi-Stage Envelopes A multi-stage envelope has some N
stages, each with its own target level and time interval or rate.
Figure 33 shows an eight-stage envelope. Envelopes of this kind
are often used to make slow, sweeping changes over long periods
of time for pads.26

Multi-stage envelopes often loop through a certain stage inter-
val M...N as long as the note is held down (a looping sustain), then
finish out the remaining stages during release. If M = N, then
the envelope effectively has one sustain stage along the lines of an
ADSR. It’s plausible for M...N to encompass the entire envelope.

26A pad is a synthesizer patch designed to make long, ambient, background chords.
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The envelopes discussed so far are generally unipolar. But there do exist bipolar multi-stage
envelopes. There’s nothing special about these other than that their values can range anywhere
from −1... + 1 instead of from 0...1.

4.3 Step Sequencers and Drum Machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 34 Step sequencer pattern.

A sequencer is a modulation device which triggers a series of
events in a carefully timed fashion. Sequencers can get very elab-
orate: here we discuss the simplest form, the step sequencer.

A step sequencer maintains an array of parameter values. Ev-
ery N seconds (or beats, or whatever), it advances to the next stage
in its array and changes the modulation output to the value asso-
ciated with that stage. The number of stages is usually a multiple
of 8: it’s quite common to use step sequencers with 16 stages, one
per sixteenth note in a measure. A step sequencer typically loops
to the beginning when its stages have been expended. Figure 34
shows a possible step sequencer pattern (known, not surprisingly, as a sequence).

A step sequencer can be very simple. Here is a very basic step sequencer for modulating
parameters much as is done in an envelope or LFO. And like an LFO, a step sequencer may respond
to free running and to legato.

Algorithm 10 Simple Parameter Step Sequencer
1: r ← rate . In envelope time units per tick
2: s← 0 . Current state
3: i← 0 . Current stage
4: X ← {X0, ..., XN} . Time when stage ends. Nearly always these are evenly spaced.
5: Y ← {Y0, ..., YN} . Parameter value of stage
6: free ← is the step sequencer free-running?
7: legato ← did a legato event occur (and we care about legato)?

8: procedure Note Pressed
9: if not free and not legato then

10: i← 0
11: s← 0

12: procedure Update
13: s← s + r
14: while s ≥ Xi do
15: s← s− Xi . We don’t reset to 0, but to our leftover time
16: i← i + 1 . Go to next stage
17: if i > N then
18: i← 0
19: return Yi

In a synthesizer, step sequencers are not just used to modulate parameters, but are even more
often used to play notes. To do this, each step must provide more than a single piece of data,
including as note pitch, velocity (note volume), and perhaps auxiliary information such as whether
the step is in fact a rest (meaning “don’t play anything this step”) or a tie (meaning “continue
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playing the previous note”). Most such step sequencers are also multi-track, meaning that they
maintain some M parallel arrays of sequences (the “tracks”), all of which are advanced in sync.

Pattern 1

A#/127 D/14 C/2 

B/64 B/64 B/64 B/64

F#/64 F#/64 F#/64 F#/64

C/52

99 64 64 32

64 32 64 32 32

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

64 64

Synthesizer 1

Synthesizer 1

Synthesizer 2

Synthesizer 3

Bass Drum

Snare Drum

Hi Hat

Hand Clap

Synthesizer 1
Filter Cutoff

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Step

Figure 35 Multitrack 16-step sequencer pattern, with
four tracks of synthesizer notes (of different lengths),
four tracks of drum beats, and one track of sequenced
modulation information. Numbers in notes or beats
indicate velocity. Don’t play this, it sounds horrible.

Multitrack sequences can also often be used to
indicate drum beats: since the drum isn’t pitched,
the beat doesn’t need to include note information.
Furthermore because the drum beat is just a pulse,
ties are also not relevant. Drum beats have their
own special terminology. A louder than usual drum
beat is known as an accent, and a quieter than usual
one is known as a ghost note. Drum beats might
also be flams, that is, two or more hits in very rapid
succession to create a fattened beat sound.

Sequences could in fact consist of some M tracks
of notes, or of drum beats, or of sequenced informa-
tion, or all three in together, as shown in Figure 35.
A looped sequence of some set of multiple tracks is
called a pattern. Patterns can be any length, though
16 beats (or on bar) is common for drum beats in
much electronic dance music. We might also add to a pattern information about its tempo and
swing. Swing is the degree of syncopation in a pattern, and is usually implemented by delaying
the even steps in a pattern by some percentage of the total step time.

Song A

Pattern 1 Pattern 1 Pattern 1 Pattern 2 Pattern 1 Pattern 3 Pattern 1 Pattern 3

Figure 36 Song mode.

Many early step sequencers would also provide
song mode, where you defined multiple patterns,
and then strung them together to form a complete
“song”, as shown in Figure 36. Song mode was born
out of the limited memory constraints of early sequencers, often for drums, and it has a serious
restriction: the various tracks in patterns must stop and start at hard boundaries and cannot overlap.
This is fine for some kinds of music but very limiting for others. Incredibly most modern hardware
step sequencers still only have song mode.27

Clip A

Clip B

Clip A

Clip C

Clip D

Clip E Clip E Clip E Clip F Clip E Clip G Clip E Clip G Clip E

Synthesizer 1

Synthesizer 2

Drum Kit

Synthesizer 3

Figure 37 Clip-style linear arranger sequence.

Linear Arrangers Sequencers do not just appear
inside synthesizers: there are also dedicated multi-
track sequencers which drive synthesizers remotely
via MIDI. Some have just song mode, but others
have more sophisticated capabilities. For example,
sequencers such as the Yamaha QY Series permit-
ted multiple long tracks of any timeline of polyphonic music, drum, and modulation data. While
playing the song you’ve laid out so far, you could punch in and record new notes in real time on a
given track. These sequencers were known as linear arrangers. This approach has since evolved
into the ability to record clips of polyphonic music, drum, and modulation data, and then copy
and lay these clips out however one liked, as shown in Figure 37. These clips can start and end at
any time and can overlap with one another: they are no longer restricted to starting and stopping
at hard boundaries like patterns. Most modern digital audio workstation software employs this
approach, including clips of audio recordings in addition to note, drum, and modulation data.

27Indeed, an argument can be made that the style of modern electronic dance music is due in part to its reliance on
machines which only had song mode available. That is: the restrictions of early devices have since defined the genre.
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Figure 38 Gizmo.

Step Sequencer Example Consider one such ex-
ample, Gizmo28 (Figure 38), an Arduino-based de-
vice for sending and receiving MIDI. Gizmo has
many applications, such as an arpeggiator (men-
tioned in Section 4.4), a note recorder, and a small
MIDI control surface (such as discussed in Sec-
tion 11). But most importantly, Gizmo has two
different step sequencers: one for general note and modulation data, and one for drum beats. The
step sequencers are both laid out as 2D arrays, where the X dimension is the step number, and the
Y dimension is the track.

The general step sequencer supports a song of up to ten patterns. Each pattern can be of up to
96 steps and up to 12 tracks, depending on how you allocate the Arduino’s absurdly tiny memory.
Each track is a sequence of either notes or modulation data, one per cell in the track row. When a
track stores notes, its cells contain both pitch and volume (per note), or can also specify rests or ties.

After the musician has entered the relevant data into the step sequencer, it will loop through its
steps, and at each step it will emit MIDI information corresponding to all the notes and parameter
settings at that step. Gizmo’s step sequencer can be pulsed by an external clock, or it can run on
its own internal clock, in which case you’d need to specify its tempo. Each pattern loops some
(different) N times, and then Gizmo proceeds with the next pattern.

Because step sequencers often deal with note or event data, they usually have a number of
options. Here are a few of Gizmo’s. First you can specify swing, that is, the degree of syncopation
with which the notes are played. Second, you can specify the length of each note before the note is
released. Tracks can have independent per-track volume (as opposed to per-note volume) and also
have a built-in fader to amplify the volume as a whole. Tracks can be muted or soloed, and you
can specify a pattern for automating muting in tracks. Finally, after some number of iterations, the
sequencer can load an entirely different sequence and start on that one: this allows you to have
multiple sections in a song rather than a simple repeating pattern the whole time.

Gizmo’s drum sequencer is similar, but has more tracks (up to 20) and patterns because drum
beats require less data per step than note and modulation information. Each track controls a specific
note, notionally associated with a single drum sound on a drum synthesizer. Pattern mode is more
elaborate: a song has space for loops of up to 20 patterns drawn from 14 unique patterns. The drum
sequencer can then play a sequence of up to 10 looping songs.

Figure 39 Roland TR-808 drum machine.©18

Drum Machines By far the most common use of
a step sequencer is to trigger drum sounds, with
a different drum sound assigned to each track in
the sequencer. A multi-track step sequencer mated
to a drum synthesizer to produce these sounds is
collectively known as a drum machine (sometimes
called a drum computer). If the drum machine also
sports other synthesizers or samplers (Section 9),
and a more general purpose sequencer to support
them, it is commonly known as a groovebox.

28Why Gizmo? Because I made it of course.
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Figure 39 shows the single most famous drum machine in history, the celebrated Roland TR-808.
The top two thirds of the machine largely consists of the drum synthesizer, with parameter options
(a column of knobs) for each drum. The bottom third largely consists of the multi-track sequencer,
one track for each kind of drum sound. The musician would select a track with the knob at top left
(surrounded by little yellow labels), and then using the buttons at bottom he would select the steps
he wanted that drum to sound on.

Most drum machines have multi-track, multi-pattern step sequencers with song mode only.
Steps might include the volume of the drum strike (that is, whether or not it’s struck with an accent
or ghost note). Drum machines usually support many of the features discussed so far, including
swing,29 muting, soloing, flams, and so on. They also have additional tricks up their sleeves, such
as the ability to make abrupt changes in tempo.

4.4 Arpeggiators

An arpeggiator is a relative of the step sequencer whose purpose is to produce arpeggios. An
arpeggio is a version of a chord where, instead of playing the entire chord all at once, its notes are
played one by one in a looping pattern. Arpeggiators are only used to change notes: they’re not
used to modulate parameters, and so are not formally modulation devices. The classic arpeggiator
intercepts notes played on the keyboard and sends arpeggios to the voices to play instead. As the
musician adds or removes notes from the chord being played, the arpeggiator responds by adding
or removing them from its arpeggiated note sequence.

Options An arpeggiator is usually outfitted with a note latch facility, which continues to play the
arpeggio even after you have released the keys. Only on completely releasing all the keys and then
playing a new chord does the arpeggio shift. You can usually also specify the number of octaves
an arpeggiator plays: with two octaves specified and the chord C E G, the arpeggiator might
arpeggiate C E G, then the C E G above them, before returning to the originals. Like a sequencer, an
arpeggiator might also be subject to swing, tempo, note length, and note velocity.

Arpeggiation Patterns Arpeggiators usually offer a variety of arpeggio patterns. Here are some
of Gizmo’s built-in offerings (and they are typical):

• Up Repeatedly play the chord notes lowest-to-highest.

• Down Repeatedly play the chord notes highest-to-lowest.

• Up-Down Repeatedly play the chord notes lowest-to-highest, then back down highest-to-
lowest. Ordinarily, you’d not play the lowest or highest notes twice in a row.

• Assign Repeatedly play the chord notes in the order in which they were struck by the
musician when he played the chord.

• Random Repeatedly play the chord notes in random order.

• Chord Repeatedly play the chord as a whole.

• Custom Repeatedly play the chord in a pattern programmed by the musician (including
ties and rests).

29Indeed, swing in a step sequencer was invented by Roger Linn for the influential Linn LM-1 Drum Computer,
which also was the first drum machine to feature drum sounds as PCM samples.
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4.5 Gate/CV and Modular Synthesizers

Modular synthesizers rely on a standardized method for communication among the modules via
their patch cables. Transferring audio is obvious: just send the audio signal over the wire. What
about modulation signals?

Historically modular synthesis has treated modulation signals just like audio signals: they’re
voltages changing over time. There are two kinds of modulation that need to be encoded in this
fashion. First there are gate signals: these are just on/off signals, and in Eurorack they are encoded
as on=high (perhaps ≥ 8 volts) are off=low (0 volts).30 For example, when a musician presses a
note on a keyboard, it would send a gate-high signal to the synthesizer to indicate that some note is
being pressed. Gates are also used as triggers from sequencers etc. to indicate new events.

Second, there are control voltage or CV signals. These are simply signals whose voltage varies
continuously within some range. CV comes in both unipolar and bipolar ranges. For example,
most envelopes are unipolar: an envelope’s CV range would be 0–5 or 0–8 volts. On the other hand,
an LFO is bipolar, and its wave would be outputted in the range ±5 volts. Note that audio is also
bipolar and in a similar range: thus audio and bipolar CV are essentially interchangeable.

In addition to a gate signal (indicating that a note was pressed), a keyboard would normally
also output a unipolar CV signal to indicate which note was being played. This would be usually
be encoded as 1 volt per octave: perhaps the lowest C (note) might be 0 volts, the C one octave
above would be 1 volt, the next C would be 2 volts, and so on.31 A sequencer could similarly be
configured.

4.6 Modulation Matrices

Figure 40 Screenshots of portions of the
Edisyn patch editor of the Kawai K4 for (top)
one oscillator and (bottom) one filter. Orange
boxes indicate K4 parameters for hard-coded
modulation routings. Purple boxes indicate
parameters of dedicated envelopes for ampli-
tude (top) and filter cutoff (bottom). The re-
maining regions were the actual oscillator and
filter parameters.

With a modular synthesizer, you can practically plug any-
thing into anything to do modulation. But as modular
synthesizers gave way to compact, all-in-one units in the
1970s, this ability was lost. Instead, manufacturers created
fixed modulation routings for the most common needs.

With the digital age, as synthesizers became more com-
plex, the number of hard-coded modulations got out of
hand, often outnumbering the actual parameters of the
individual elements in the synthesizer. This was to be ex-
pected, as the number of modulation routings between n
elements grows as O(n2). Consider the modulation op-
tions for the Kawai K4, a digital synthesizer circa 1989.
Figure 40 reveals how large a proportion the hard-coded
modulation options and dedicated envelope parameters
were compared to the synthesizer parameters as a whole.

30Early Moog devices did something slightly different: to indicate “on”, the signal was pulled to ground from
whatever voltage it was.

31This is known as volt per octave. Many Korg and Yamaha synthesizers used an alternative encoding: hertz per
volt. Here, rather than increasing voltage by 1 per octave, the voltage would double for one octave. This had the nice
quality of being equivalent to frequency, which likewise doubles once per octave.
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Figure 41 Screenshot of part of the Edisyn
patch editor for the Oberheim Matrix 6, show-
ing (at top) its 10-entry modulation matrix.
Each entry has a source, a destination, and
a modulation amount. At bottom is the Matrix
6 tracking generator, a form of modifier func-
tion. The Matrix 6 is discussed in more detail
in Section 5.3.

The obvious solution is to replace the cables not with
hard-coded modulation routings but with a table in which
the musician could enter his desired modulation routings
for the given patch: essentially a table describing which
cables should go where. This is a modulation matrix.32

A typical entry in a modulation matrix contains a modu-
lation source, a modulation destination, and a (possibly
negative) modulation amount to be multiplied against the
source signal before it is fed to the destination. Many syn-
thesizers now sport a modulation matrix plus hard-coded
modulation routings for the most commonly used routings.

Some synthesizers augment modulation matrices with
modifier functions. A modifier function takes one or two
inputs from modulation sources, runs them through some
mathematical or mapping function (perhaps multiplying
or adding them, or taking the min or max), then outputs
the result as an available modulation source option in the
matrix.

4.7 Modulation via MIDI

Figure 42 Novation Remote 25 controller.©19

Since the early 1980s, nearly all non-modular synthesiz-
ers (and some modular ones!) have been equipped with
MIDI, a serial protocol to enable one device (synthesizer,
computer, controller, etc.) to send messages or remotely
manipulate another one. MIDI is most often used to send
note data, but it can also be used to send modulation infor-
mation as well.

For example, consider the keyboard in Figure 42. This
keyboard makes no sound: it exists solely to send MIDI
information to a remote synthesizer in order to control it.
And it is filled with options to do so. In addition to a two-octave keyboard, it has numerous buttons
which can send on/off information (the analogue of Gate), and sliders, encoders, potentiometers, a
joystick, and even a 2D touch pad which can send one or two real-valued signals each (the analogue
of CV).

In MIDI, this kind of control data is sent via a few special kinds of messages, notably Control
Change or CC messages. Note however that CC is fairly low-resolution and slow: changes in
response to CC messages may be audibly discretized, unlike the smooth real-valued CV signals in
modular systems. We could deal with this by smoothly interpolating the discrete changes in the
incoming MIDI signal, but this is going to create quite a lot of latency.

See Section 11.2 for more information about MIDI.

32Modulation matrices as an alternative to cables were common in hardware, where they were known as patch
matrices. For example, the EMS VCS3 sported one, albeit with a source and destination, but no modulation amount.
See Figure 50 in Section 5.1. To my knowledge, the first software modulation matrix in a stored-program commercial
synthesizer appeared in Oberheim’s aptly named Matrix series of analog synthesizers.
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5 Subtractive Synthesis

Subtractive synthesis is the most common synthesis method, and while it’s not as old as additive
synthesis, it’s still pretty old: it dates from the 1930s. The general idea of subtractive synthesis is
that you’d create a sound, then start slicing into it, removing harmonics and changing its volume,
and the parameters of these operations could change in real time via modulation as the sound
is played. Quite unlike additive synthesis, subtractive synthesis typically is done entirely within
the time domain. This can be more efficient than additive synthesis, and involves many fewer
parameters, but many things are more difficult to implement: for example, building filters in the
time domain is far more laborious than in an additive synthesizer.

Much of the defining feature of a subtractive synthesizer is its pipeline. The basic design of a
typical subtractive synthesizer (such as in Figure 66) is as follows:

• Oscillators produce waveforms (sound). In the digital case, this is one sample at a time.

• These waveforms are combined in some way to produce a final waveform.

• The waveform is then filtered. This means that it is passed through a device which removes
or dampens some of its harmonics, shaping the sound. This is why this method is called
subtractive synthesis. The most common filter is a low pass filter, which tamps down the
high-frequency harmonics, making the sound more mellow or muffled.

• The waveform is then amplified.

• All along the way, the parameters of the oscillators, combination, filters, and amplifier can be
changed in real time via automated or human-driven modulation procedures.

5.1 History

The earliest electronic music synthesizers were primarily additive, but these were eventually
eclipsed by subtractive synthesizers, mostly because subtractive synthesizers are much simpler
and less costly to build. Whereas additive synthesis has to manipulate many partials at once to
create a final sound, subtractive synthesis only has to deal with a single sound wave, shaping and
adjusting it along the way.

Figure 43 (Left) The Telefunken Trautonium, 1933.©20 (Right) Oskar
Sala’s “Mixtur-Trautonium”, 1952.©21

Subtractive synthesis has a long and
rich history. A good place to start is the
Trautonium (Figure 43), a series of de-
vices starting around 1930 which were
played in an unusual fashion. The de-
vices had a taut wire suspended over
a metal plate: when you pressed down
on the wire so that it touched the plate,
the device measured where the wire
was pressed and this determined the
pitch.33 You could slide up and down

33The plate would pass electricity into the wire where you pressed it. The wire had high resistance, so it acted like
a variable resistor, with the degree of resistance proportional to the length of the wire up to the point where it was
touching the plate.
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the wire, varying the pitch. The pitch drove an oscillator, which was then fed into a filter. The
volume of the sound could be changed via a pedal. Versions of the Trautonium became more
and more elaborate, adding many features which we would normally associate with modern
synthesizers culminating in sophisticated Trautoniums34 such as the Mixtur-Trautonium.

Figure 44 RCA Mark II.©22

We will unfairly skip many examples and fast forward
to the RCA Mark I / II Electronic Music Synthesizers.
The Mark I (1951) was really a music composition system:
but the Mark II (1957, Figure 44) combined music com-
position with real-time music synthesis; and this was the
first time the term “Music Synthesizer” or “Sound Synthe-
sizer” was used to describe a specific device. The Mark II
was installed at the Princeton-Columbia Computer Music
Center and was used by a number of avant-garde music
composers. The Mark II was highly influential in later
approaches to subtractive synthesis: as can be seen from
Figure 45, the Mark II’s pipeline has many elements that
are commonly found in music synthesizers today.
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(for Volume?)
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Figure 45 Mark II pipeline. Compare to mod-
ules discussed in this Section, and Figure 66.

Modular Synthesizers In 1959 Harald Bode started to
develop the notion of the modular synthesizer, where each
of the subtractive synthesis elements (oscillators, combi-
nation mechanisms, filters, amplifiers, modulation units)
were implemented as separate modules.

A module would have knobs and buttons, plus jacks
where patch cables would be inserted to attach the out-
put of one module to the input of another. By connecting
modules via a web of patch cables, a musician could cus-
tomize the synthesizer’s audio and modulation pipeline.
The knob and button settings and patch cable wiring to-
gether defined the instructions for making a sound. Even
now, a patch is the standard term for the set of parameters
in a synthesizer which collectively produce a sound.

Figure 46 Moog modular synthesizer be-
ing played by Keith Emerson.©23

In the United States, the two most important synthesizer
developers to follow in the footsteps of Harold Bode were
Robert Moog and Don Buchla. Each built modular synthe-
sizers which would come to have considerable influence on
the later industry. Robert Moog developed synthesizers for
professional musicians on the East Coast, resulting in devices
designed to be musical and (relatively) easily used and pro-
grammed. The musician Keith Emerson (of ELP) is particu-
larly famous for performing on a Moog modular synthesizer
(See Figure 46), as is Wendy Carlos, whose ground-breaking
album Switched-On Bach legitimized the synthesizer as a mu-
sical instrument in the public eye. Carlos went on to make the
soundtracks for Tron, The Shining, and Clockwork Orange.

34Trautonia? Not sure what the plural ought to be.
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Figure 47 Buchla 200e modular synthesizer. “Multi Di-
mensional Kinesthetic Input Port” at bottom.©25

Don Buchla primarily built machines for aca-
demics and avant-garde artists in California, no-
tably Ramon Sender and Morton Subotnick,
and so his devices tended to be much more ex-
ploratory in nature. Buchla would use unusual
techniques: a “Low-Pass Gate” (essentially a com-
bination of a low pass filter and an amplifier), a
“Source of Uncertainty”, a “Complex Waveform
Generator” (which pioneered the use of wave
folding, Section 6.4), and so on. Buchla also exper-
imented with nonstandard and unusual input and
control devices, including the infamous “Multi Di-
mensional Kinesthetic Input Port”, shown at the
bottom of Figure 47.35

Moog’s and Buchla’s synthesizers were both very influential, and they formed two schools
of synthesizer design, traditionally called East Coast (Moog) and West Coast (Buchla). The East
Coast school, with its more approachable architecture, has since largely won out. Most modern
subtractive synthesizers are variants of classic East Coast designs. However, the West Coast school
has lately enjoyed a resurgence in popularity among modern-day modular synthesizer makers.

Figure 48 ARP 2600.©26

Semi-Modular Systems As synthesizers became more popular,
manufacturers worked to simplify the overall model to make it
less expensive. This resulted in semi-modular synthesizers with a
pre-defined set of built-in modules and a default pipeline, but ones
where the pipeline could be modified by patch cables if desired.

An example of this is the ARP Instruments 2600 (Figure 48),36

which could produce a wide range of sounds with no cables at all.
Semi-modular synths could be very compact indeed: another much
later series were the diminutive Korg MS10 and MS20 (Figure 49).

Figure 49 Korg MS20.©27

Another approach was to replace the patch cables with a patch
matrix. In the Electronic Music Studios (EMS) VCS 3, shown
in Figure 50, the rows of the patch matrix were sources and the
columns were destinations. By placing a pin into a hole, a patch
designer could route a source to a destination. Different kinds of
pins had different resistance and could vary the magnitude of the
signal. The VCS 3 was also semi-modular in that without any pins,
it still had a usable default pipeline built-in.37 Even now many
synthesizers have the equivalent of patch matrixes internally in
software, known as modulation matrices (Section 4.6).38

35Suzanne Ciani is an artist famous for using Buchla’s unusual methods to their fullest. Google for her.
36Fun fact: the ARP 2600 is the synthesizer which produced all of R2-D2’s sounds, as well as those of the Ark of the

Covenant in Raiders of the Lost Ark. ARP is the initials of its founder, Alan R. Pearlman.
37A monster example of a patch matrix is the predecessor to the ARP 2600, the ARP 2500. Google for it. The matrix

(really a bus) appears above and below the modules. The 2500 was featured in Close Encounters of the Third Kind.
38The VCS 3, and its little brother, the EMS Synthi, were often used by Pink Floyd. They produced many of the

sounds in On The Run, a famous instrumental song off of Dark Side of the Moon.
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Figure 50 (Left) The EMS VCS 3.©28 (Right)
A close-up view of the VCS 3 patch matrix.©29

Compact Analog Synthesizers The 1970s also saw the
proliferation of synthesizers with very limited modularity
or with none at all. Manufacturers started with a standard
pipeline and added many hard-coded optional routing
options into the synthesizers in the hopes that patching
would not be necessary. The quintessential example was
the Moog Minimoog Model D, widely used by pop and
rock performers of the time, and popular even now.

Figure 51 (Left) Moog Minimoog Model D.©30 (Right) Arp
Odyssey.©31

The Model D had a very simple pipeline:
three oscillators fed into a mixer, then into
a low-pass filter and an amplifier. The filter
and amplifier each had their own envelope,
and the third oscillator could be repurposed
as a low frequency oscillator for modulation.
And that’s about it! But this framework, typ-
ical of Moog design, proved able to produce
a wide range of melodic sounds. The Model
D is shown in Figure 51, along with a popular
competitor, the ARP Odyssey.

Figure 52 Hammond Novachord.©32

Polyphonic Synthesizers The subtractive synthesizers dis-
cussed so far were all monophonic, meaning that they could
only play one note at a time. But many instruments, and in-
deed much of music, is polyphonic: it consists of many notes
(or voices) being played simultaneously.

Many early electronic synthesis devices, such as the Tel-
harmonium and the Hammond Organ (Section 3), were poly-
phonic. But the first major polyphonic (really paraphonic)
subtractive synthesizer, and indeed the predecessor to modern
polyphonic synthesizers, was the Hammond Novachord, circa
1930. Like a subtractive synth, the Novachord had oscillators,
filters, and envelopes; but incredibly it could play all 72 notes
simultaneously. This was achieved with a technique called frequency division: a synthesizer
would have twelve high pitched oscillators, one for each note in an octave, and then use a process
to divide down the appropriate pitch by one or more octaves to play a given note.

Figure 53 Oberheim 4-Voice.©33

Polyphony really didn’t come into its own until the 1970s. The
Oberheim 4-Voice (Figure 53) and 8-Voice were the first commer-
cially successful polyphonic synthesizers, and were made up of
many small monophonic synthesizers developed by Tom Ober-
heim, called his Synthesizer Expander Modules or SEMs.39 You
could play a single SEM, or two, etc., up to the huge 8-Voice. By
design these modules had to be programmed individually. This
could produce impressive sounds but was tremendous work. A
device to the left of the keyboard (see Figure 53) made it easier to synchronize some programming.

39The SEM is also famous for its state-variable 2-pole filter which worked well with chords and which had a high
degree of flexibility. A state-variable filter allows you to smoothly travel from low-pass to (say) band-pass or high-pass.
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Figure 54 Yamaha CS-80.©34

The Yamaha CS series, notably the Yamaha CS-80 (Figure 54),
also offered eight voices, and boasted many features for expressive
playing. These machines are still legendary (and costly!), as the CS-
80 was the synthesizer used by Vangelis on his movie soundtracks
(notably Blade Runner and Chariots of Fire) and its unique and
easily recognized sound is difficult to replicate.

Figure 55 Korg PS-3300.©35

The Korg PS series continued the Novachord tradition of total
polyphony: every key had its own independent note circuitry in
the extraordinary, and very expensive, Korg PS-3300 (Figure 55).

Stored Program Synthesizers and MIDI The integrated circuit
(the chip) arrived in the 1980s and with it the ability to store patches
in RAM. This major step forward marked (I think) the major divi-
sion between “old school” synthesizers and modern ones.

Figure 56 Sequential Circuits
Prophet 5.©36

First out of the gate was Sequential Circuits’s Prophet 5 (Fig-
ure 56). The Prophet 5 was the first commercial synthesizer to
sport RAM and a CPU, and was consequently the first commercial
synthesizer that could store and recall patches. For this reason it
was very, very successful in the music industry.

Following the Prophet 5 came many synthesizers in the same
vein. These included the Oberheim OB-X (Figure 57) and OB-Xa
(used by Van Halen in the song Jump),40 the Moog MemoryMoog
(Figure 58), and Roland’s Juno and Jupiter series, most famously
its top-of-the-line Jupiter 8 (Figure 59). These synthesizers were
dominant in pop and rock songs through the early 1980s, and
found their way onto soundtracks and even orchestral settings.

Figure 57 Oberheim OB-X.©37
Compact synthesizers largely lacked the patch points or matri-

ces of modular and semi-modular synthesizers, and the modula-
tion flexibility that came with them. But the CPU soon fixed this, as it made possible sophisticated
programmable modulation matrices in software, largely heralded by Oberheim’s Matrix series.

Figure 58 Moog MemoryMoog.©38

MIDI, Controllers, and Rackmounts Sequential Circuits’s Dave
Smith realized that as synthesizers became cheaper, musicians
would be acquiring not just one but potentially many of them.
Outfitted with a CPU and the ability to store patches in RAM, these
synthesizers would benefit from communicating with one another.
This would enable synthesizers or computers to play and control
other synthesizers, and to upload and download stored patches.
To this end Sequential Circuits and Roland jointly proposed the
Musical Instrument Digital Interface, or MIDI. MIDI soon caught on, and since then essentially
all hardware synthesizers have come with it. MIDI is discussed in Section 11.2.

MIDI gave rise to the notion that a synthesizer didn’t need a keyboard at all, or in some cases
any knobs: it could be entirely controlled, and possibly programmed, remotely over MIDI via some
other keyboard. As a result, many synthesizers were developed in versions both with keyboards

40You know this song had to make an appearance in a synthesizer text, right?
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and without: those without were usually designed to be screwed into a 19-inch rack common in
the telephone, electronics, and audio industries. Figure 59 shows the celebrated Roland Jupiter 8
and its rackmount near-equivalent, the Roland MKS-80 Super Jupiter.

Figure 59 Roland Jupiter-8©39 (top)
and MKS-80 (bottom).©40

If a synthesizer didn’t need a keyboard, then there was no
reason a keyboard needed a synthesizer. MIDI gave birth to a
new device, the keyboard controller, or performance controller, or just
controller, which was nothing more than a keyboard or set of
knobs and buttons (or both) designed to send control signals to a
remote synthesizer over MIDI. Later on, controllers would also be
used to send MIDI data to a computer. Controllers are discussed
in detail in Section 11.

Figure 60 Clavia Nord Lead 2x.©41

The Rise of Digital The early 1980s also saw the birth of the
digital synthesizer. This wave, starting with FM synthesizers
(Section 8), and culminating in samplers, wavetable synthesizers,
and PCM playback synthesizers, derisively known as romplers
(all in Section 9), more or less drove analog synthesizers from the
market. While some of these synthesizers employed subtractive
pipelines similar to analog synths, their oscillator designs were quite different. They also generally
had many more parameters than analog synthesizers, but to keep costs down their design tended
towards a menu system and perhaps a single data entry knob, making them difficult to program.

Figure 61 Korg microKORG.©42

In 1995 Clavia introduced the Nord Lead (Figure 60), a new
kind of digital synthesizer. This synthesizer attempted to emu-
late the characteristics, pipeline, modules, and style of a classic
analog subtractive synthesizer, entirely in software using digital
components. Clavia called this a virtual analog synthesizer. Since
the introduction of the Nord Lead, virtual analog synthesizers
have proven popular with manufacturers, largely because they are
much cheaper to produce than analog devices.

Figure 62 OBXD and PG8X software
synthesizers.

A famous example of this is the Korg microKORG (Figure 61).
This was an inexpensive virtual analog synthesizer with an addi-
tional microphone and vocoder, a device to sample and resynthe-
size the human voice (here, for the purpose of making a singer
sound robotic). The microKORG is considered one of the most
successful synthesizers in history: it was introduced in 2002, sold
at least 100,000 units as of 2009, and is still being sold today.

Virtual analogs are software emulations of synthesizers embed-
ded in hardware: but there is no reason that one couldn’t just do
software emulation in a PC. Many digital synthesizers now are
just computer programs commonly called software synthesizers
or softsynths. These often take the form of plugins to Digital Au-
dio Workstations using plugin library APIs, such as Steinberg’s
Virtual Studio Technology (or VST) or Apple’s Audio Unit (or
AU). Figure 62 shows two examples: OBXD, an emulation of the
Oberheim OB-X or OB-Xa, and PG-8X, a softsynth inspired by
Roland’s JX-8P analog synthesizer.
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Figure 63 Dave Smith Instruments
Prophet 6.©43

The Return of Analog What goes around comes around. Partly
driven by nostalgia for old, rich sounding synthesizers, partly out
of a yearning to escape the intangibleness of softsynths, and per-
haps partly driven by a distaste for the flood of cheap digital synths
with poor interfaces, many musicians have returned to analog de-
vices. Some of these include monophonic and polyphonic analog
synthesizers in-line with earlier compact analog designs, such as
the Dave Smith Instruments Prophet 6 (Figure 63), which directly
recalls Dave Smith’s earlier Sequential design, the Prophet 5 (Fig-
ure 56 on page 52).41

Figure 64 A Eurorack synthesizer
with modules from different manu-
facturers.©44

Another major trend has been the resurgence of fully mod-
ular synthesizers. In 1996, Doepfer Musikelektronik began to
promote a new modular synthesizer standard called Eurorack,
built around short modules, small 3.5mm jacks, and standardized
power distribution. Eurorack has since attracted a great many
small and independent manufacturers. Eurorack pays homage to
older modular designs: it is monophonic, uses older control meth-
ods (notably CV/Gate) instead of MIDI, and has no saved patch
capability. And while most of its market is East Coast, Eurorack has
given new life to West Coast synthesis and more exotic approaches
as manufacturers explore more and more esoteric designs.

Figure 65 Make Noise 0-Coast.©45

Eurorack is expensive: but its popularity has led to the recent
development of an entirely new market for semi-modular synthe-
sizers which provide some of the nostalgic and exploratory appeal
of modular but at a more reasonable price point. Synthesizers in
this category are largely compatible with Eurorack, and likewise
have no saved patch capability or polyphony: but as they are
semi-modular, they can be useful synthesizers even with no cables plugged in. One particularly
interesting example is the Make Noise 0-Coast, a small tabletop semi-modular synthesizer with
elements drawn from both the East and West Coast schools of synthesizer design.42

5.2 Implementation

Oscillator

Oscillator

Combiner Filter Amplifier Output

Envelope EnvelopeLFO

Modulates Modulates Modulates

Musician plays 
a note with
pitch and 
volume

Figure 66 One possible (and pretty typical) two-oscillator subtractive
pipeline, in East Coast tradition. Unlike in additive synthesis, where
arrays of partials were passed from module to module, here sound waves
are passed, one sample at a time (in the digital case).

The classic subtractive synthesis
pipeline, shown in Figure 66, is sim-
ilar in some sense to the additive
pipeline in Figure 25. The big differ-
ence, of course, is that the modules
do not pass partials to one another,
but rather pass sound waves. That
is, they work in the time domain
rather than the frequency domain.

A large number of subtractive
synthesizers follow same general

41The Prophet 5 itself has since been reissued.
42Hence the name. The “0-” is notionally pronounced “No” as in “No-Coast”.
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pattern: oscillators generate sounds, which are then combined, then passed through two modi-
fiers, namely a filter and an amplifier; and any of these can be modulated. But there is significant
variability in the details. For example, synthesizers might have one, two, three, or even more
oscillators; there might be a number of combination options; the filters might get quite extravagant;
and there might be a many different modulation options, including the ability for modulators to
modulate the parameters of one another. We will discuss oscillators, combiners, and amplifiers in
Sections 6.1 and 6.6 coming up, with some follow-up in Section 9. Filters are discussed in Section 7.

Similarly, the top-level algorithmic architecture for a basic, monophonic subtractive synthesizer
is similar to the one used for an additive synthesizer (Algorithm 1). But the additive synthesizer
only updated its partials every ticksPerUpdate ticks because the process of updating modules is so
costly. Here that logic has been stripped out and everything simplified (indeed, made simplistic)
because a subtractive synthesizer can update all of its modules much more efficiently. So we have:

Algorithm 11 Simple Monophonic Subtractive Synthesizer Architecture
1: M← 〈M1, ..., Mm〉 modules
2: tick ← 0

3: procedure Tick
4: tick ← tick +1
5: if Note Released then
6: for i from 1 to m do
7: Released(Mi, pitch)

8: if Note Pressed then
9: for i from 1 to m do

10: Pressed(Mi, pitch, volume)

11: for i from 1 to m do
12: Update(Mi, tick)

13: return OutputSample(tick)

The function OutputSample(tick) would simply take the most recent sample it’s received and
submit it to the audio stream to be played. And as was the case for the additive version of this
algorithm, in a monophonic subtractive synthesizer a new note could be pressed before the previous
note was released (playing legato), and some modules might respond specially when this happens,
such as doing a portamento slide from the old note to the new one.

The end of Section 3.3 had important notes about buffering and latency and how to make the
Tick() method consistent in timing for additive synthesizers. That discussion applies here as well.

5.3 Architecture Examples

We have not yet discussed the details of subtractive synthesizers, and so many of the terms
discussed in this next section may not yet make sense. After you have read Sections 6 and 7 come
back to this section and the terminology will be clearer.

Below, we discuss two compact polyphonic subtractive synthesizers: the fully analog Oberheim
Matrix 6, and the virtual analog Korg microKORG. The release dates of these two synthesizers
differ by two decades, and yet they have a great many things in common. We also discuss a
modular synthesizer format, Eurorack. Also recall that in Section 1.3 we covered the architecture
of a fourth subtractive synthesizer, the Dave Smith Instruments Prophet ’08.
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Figure 67 Oberheim Matrix 6.©46

Oberheim Matrix 6 The Matrix 6 is a 6-voice, polyphonic
analog subtractive synthesizer with analog but Digitally
Controlled Oscillators (DCOs) produced by Oberheim be-
tween 1986 and 1988. The Matrix 6 came in three forms: a
keyboard (Figure 67), a rack-mount version without a key-
board (the Matrix 6R), and a smaller rackmount version
designed largely for presets (the Matrix 1000, Figure 68).
Like many digital synthesizers of the time, and contrary to
much analog synthesizer tradition, the Matrix 6 eschewed
knobs and switches. It instead relied entirely on a tedious
keypad entry system to set its 100-odd patch parameters.
In fact, the Matrix 1000 could not be programmed at all43 from
its front panel: all you could do was select from approxi-
mately 1000 presets.

Figure 68 Oberheim Matrix 1000The Matrix 6 had two oscillators per voice, each of
which could produce a simultaneous square wave and a
sawtooth/triangle wave. The square wave had adjustable pulse width, and the sawtooth/triangle
wave could be adjusted from a full sawtooth to a full triangle shape, or something in-between. The
two oscillators could be detuned relative to one another, and the first oscillator could be synced to
the second. The second oscillator could also be used to produce white noise. These two oscillators
were then mixed together to form a final sound, which was then passed through a 4-pole resonant
low pass filter, and then finally an amplifier. The low-pass filter sported filter FM (see Section 8),
which enabled the first oscillator to modulate the cutoff frequency of the filter at audio speeds,
creating unusual effects.
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Figure 69 Five-point Piecewise-
linear Tracking Generator.

The Matrix 6 was notable for (at the time) its broad array of
modulation options. Both the filter and the amplifier had ded-
icated DADSR envelopes, and a third DADSR modulated the
degree of filter FM. Oscillator frequency and oscillator pulse width
also had dedicated LFOs with many shapes. The amplitude of
each LFO could be modulated by a simple envelope Oberheim
called a ramp, which shifted from 0 to 1 over time. But this was not
all. As befitted its name, the Matrix 6 also had a ten-slot modula-
tion matrix (Figure 41 on page 47) which could route modulation
signals between many sources and destinations. In addition to the
obvious sources, all of the envelopes, LFOs, and ramps could be
repurposed as sources as well. The 32 destinations included parameters for oscillators, the filter,
amplifier, and all of the modulation facilities.

A final modulation source, the tracking generator, allowed the musician to specify a five-point
piecewise linear function f (x) → y with x and y both ranging 0...1. The tracking generator was
attached to a source (as x) and its y value could be used as a modulation source. This allowed the
musician to make nonlinear changes to the output of a single modulation source before sending it
to its final destination. This is an example of a modifier function, as discussed in Section 4.6.

43You can program the Matrix 1000: but you must do so via commands sent over MIDI from a patch editor, typically
a dedicated software program.
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Figure 70 Korg MS2000.©47

Korg microKORG Korg appeared relatively early on the virtual
analog synthesizer scene with a keyboard synthesizer model called
the Korg MS2000 (Figure 70). This machine was not only a virtual
analog synthesizer, but could also serve as a digital vocoder. The
MS2000 had several versions, but Korg didn’t hit pay dirt until it
released a stripped down version of the MS2000 in 2002: the very
successful microKORG.

As shown in Figure 70, the MS2000 was a beast of a machine,
while the microKORG (Figure 71) was a tiny little thing with cheap
minikeys. Yet these two devices had, more or less, the exact same
synthesizer engine built in!44

Figure 71 Korg microKORG. This is
a repeat of Figure 61 on page 53.©48

We will skip the vocoder features of the machine and concen-
trate on the subtractive virtual analog architecture. Each voice
contained up to two parallel self-contained virtual synthesizer
pipelines Korg called “timbres”. If the microKORG was using one
timbre per voice, it could play up to four voices; with two timbres
per voice it could play only two voices.

Each timbre contained two oscillators. Both oscillators could
do sawtooth, triangle, or square waves. The first oscillator also
could do a number of other waves, including sine waves, analog in-
put, noise, and 64 different hard-coded single-cycle digital waves
(we’ll discuss this more in Section 9). The second oscillator could also be ring-modulated by the
first oscillator, synced to it, or both.

Each timbre also contained a resonant filter (4-pole or 2-pole low pass, 2-pole band-pass, or
2-pole high pass) with its own dedicated ADSR envelope. The sound was then passed through a
stereo amplifier with its own ADSR envelope and a distortion effect. A timbre had two free LFOs
available, as well as a small, four-slot patch matrix with a small number of sources an destinations.

Finally, the microKORG had a built-in arpeggiator and three effects units through which the
audio was passed. The first effects unit could provide chorus, flanging, or phasing, the second
provided equalization, and the third provided some kind of delay. We’ll discuss effects in detail
in Section 10. Overall, while the microKORG (and MS2000 before it) had more filter and oscillator
options, they had much less modulation flexibility and lower polyphony than the Matrix 6.

Eurorack Modular Synthesizers Eurorack is a popular format for modern modular synthesizers.
The format was introduced in 1995 by Doepfer, and now many manufacturers produce modules
compatible with it. Like essentially all hardware modular synthesizers, Eurorack is monophonic: it
can produce only one sound at a time.

Eurorack signals normally take one of three forms: audio signals, gate signals (which indicate a
“1” or a “trigger” by moving from a low voltage to a high voltage, and a “0” by doing the opposite),
and control voltage (or CV) signals, which typically vary in voltage to indicate a real-valued
number. Gate and CV are used for modulation. All Eurorack jacks are all the same regardless of

44This is not entirely unheard of. The entire Casio CZ series, discussed later in Section 6.5, used practically the
same synthesis engine in machines ranging from the large CZ-1 (Figure 91) for $1400 to the tiny CZ-101 for $499. The
only significant differences lay in the presence of arpeggiators, velocity- and aftertouch-sensitive keybeds, and the
hardware interface design. The CZ-101 was the first significant synthesizer to break the $500 barrier (and was the
spiritual predecessor to the microKORG, as it was an early example of a professional synthesizer with minikeys).
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Figure 72 A small Eurorack-format modular synthesizer, with Doepfer and Analogue Solutions modules.

the kind of signal they carry: thus there’s no reason you couldn’t plug an audio output into a CV
input to provide very high-rate modulation of some parameter.

The small Eurorack synthesizer shown in Figure 72 is a typical specimen of the breed. It contains
all the basic modules you’d find in a subtractive synthesizer; but be warned that the Eurorack
community has produced many kinds of modules far beyond these simple ones. This synthesizer
contains the following audio modules:

• Two Voltage-Controlled Oscillators (VCOs), which produce sawtooth, square, triangle, or
sine waves.

• A suboscillator (labelled “Audio Divider” in the Figure) capable of taking an input wave
and producing a combination of square waves which are 1, 2, 3, and 4 octaves below in pitch.

• A mixer to combine the two oscillators and suboscillator.

• A resonant four-pole filter with options for low-pass, high-pass, band-pass, and notch. In the
figure, frequency is referred to as “F” and resonance is referred to as “Q” in the labels.

• A Voltage Controlled Amplifier or VCA.

• A headphone amplifier to output the final sound at headphone levels.

(Mostly) below these modules are modulation modules which output Gate, CV, or both:

• A two-axis joystick.

• Two Low-Frequency Oscillators (LFOs) producing triangle, sine, square, or sawtooth waves.
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• A dual Sample and Hold or (S&H) module which takes an input signal and a trigger (a gate),
and outputs the held value.

• An 8-stage step sequencer. This is often clocked by a square wave LFO, and outputs up two
triggers and two CV values per step.

• Two ADSR envelopes, notionally for the filter and amplifier respectively.

The whole thing might be driven by an additional modulation source: a keyboard with gate
(indicating note on or note off) and CV (indicating pitch).

Figure 73 VCV Rack.©49

All of the signals in this synthesizer are analog. All of the
audio modules in this synthesizer are analog as well; though
many Eurorack modules use digital means to produce their
synthesized sounds. You’ll note from the picture the presence
of cables attaching modules to other modules. These cables
transmit audio, gate, or CV information.

Many Eurorack style modules have been emulated in a pop-
ular software framework called VCV Rack.45 This is an open
source program in which you can load modules and attach them
in software just as you would in Eurorack hardware. VCV Rack
comes with its own modules, but a great many third-party open
source and commercial modules have also been made for it, in-
cluding many direct emulations of popular Eurorack hardware
modules.

45https://vcvrack.com
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6 Oscillators, Combiners, and Amplifiers

A subtractive synthesis pipeline typically consists of oscillators, which produce sounds, combiners
which join multiple sounds into one, and filters and amplifiers, which modify sounds, producing
new ones (plus modulation of course, discussed in Section 4). Filters are a complex topic and will
be treated separately in Section 7. In this Section we’ll cover the others.

6.1 Oscillators

An oscillator is responsible for producing a sound. Oscillators at a minimum will have a parameter
indicating the frequency (or pitch) of the desired sound: they may also have a variety of parameters
which specify the shape of the sound wave. Many early analog oscillators took the form of Voltage
Controlled Oscillators (or VCOs), meaning that their frequency (and thus pitch) was governed by
a voltage. This voltage could come from a keyboard, or from a musician-settable dial, or could come
from a modulation signal from some modulator. VCOs are not very stable and can drift or wander
slightly in pitch, especially as temperature changes. Later oscillators had their frequency governed
by a digital signal: these were called Digitally Controlled Oscillators or DCOs. A DCO is still an
analog oscillator, but the frequency of the analog signal is kept in check by a digital timer.46 On the
other hand, Numerically Controlled Oscillators, or NCOs, are not analog devices: they produce
extremely-high-resolution faithful implementations of analog signals typical of VCOs or DCOs.

Pulse 25%

Pulse 50%
or Square

Pulse 75%

Sawtooth

Triangle

Figure 74 Triangle, sawtooth, and three pulse
waveforms at different pulse widths. The 50%
pulse width pulse wave is commonly known as
a square wave. Note relationship to Figure 31.

Other oscillator designs are unabashedly digital: they
can produce complex digital waveforms via a variety
of synthesis methods, including wavetables, pulse code
modulation (or PCM), or frequency modulation (or
FM), among many other options. We’ll discuss these
methods later.

Early on (and even now!) the most common early
oscillator waveforms were the triangle, sawtooth,47 and
square, shown in Figure 74. These waveforms were fairly
easy to produce via analog electronics. They also had a
rich assortment of partials, which provided good raw ma-
terial for downstream filters to modify, and their partials
were all harmonics, that is, their frequencies were integer
multiples of the fundamental partial. This property made
them “tonal” or “musical” sounding.

In these waves, the fundamental is loudest, and am-
plitudes of higher harmonics drop off from there. In
a sawtooth wave, the amplitude of harmonic #i is 1/i
(where i = 1 is the fundamental). A ramp wave
sounds the same because it has identical harmonics but with all phases shifted by π.

46DCOs are better technology than VCOs: but nostalgic musicians like the drifting nature of VCOs which, when
layered over one another, are thought to produce a more organic or warmer sound, despite their other failings.

47Perhaps you recall these wave shapes from Section 4.1. And now for some confusion! The term sawtooth is often
abused to describe both sawtooth and ramp waves. Indeed analog synthesizers generally implement a sawtooth sound
using a ramp wave. This distinction matters for LFOs, but not for oscillators producing audio-frequency waves, as ramp
and sawtooth have identical harmonics except for opposite phase: they’ll sound the same.
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Sawtooth: 1/i Square: 1/i when i is odd, else 0 Triangle: 1/i2 when i is odd, else 0
phase = π for every other odd

(Ramp: same but phase = π) (Pulse of width p: sin(πip)/i) harmonic (i = 3, 7, 11, 15, etc.), else 0

Figure 75 Harmonics of the sawtooth, square, and triangle waveforms. i is an integer ≥ 1

In a square wave, the amplitude of harmonic #i is 1/i when i is odd, but 0 when even: this is
quieter than a sawtooth wave. A square wave is just a special case of a pulse wave. As shown in
Figure 74, pulse waves come in different shapes, dictated by a percentage value called the pulse
width or duty cycle of the waveform. The pulse width is the percentage of time the pulse wave
stays high versus low. A square wave has a pulse width of 50%.48

A triangle wave is like square wave, except that the amplitude of harmonic #i is 1/i2, and the
phase of every second non-zero amplitude harmonic is shifted by π.49 This squared dropoff in
amplitude means that the triangle wave is quieter than a square wave and much quieter than a
sawtooth wave.

You’ll notice that one very famous wave is curiously missing. Where’s the sine wave? There
are two reasons sine is not as common in audio-rate oscillators. First, it’s nontrivial to make a high
quality sine wave from an analog circuit. But second and more importantly, a sine wave consists of
a single partial. That’s almost no material for downstream filters to work with. You just can’t do
much with the audio from a sine wave.50

Similarities to Certain Musical Instruments These waves can be used as raw material for many
artificial synthesized sounds. But some of them have properties which resemble certain musical
instruments, and thus make them useful in those contexts. For example, when a bow is drawn
across a violin string, the string is snagged by the bow (due to friction) and pulled to the side until
friction cannot pull it any further, at which time it snaps back. This process then repeats. The wave
movement of a violin string thus closely resembles a sawtooth wave.

Brass instruments also have sounds produced by processes which resemble sawtooth waves.
In contrast, many reed instruments, such as clarinets or oboes, produce sounds which resemble
square waves, and flutes produce fairly pure sounds which resemble sine waves.

Noise Another common oscillator is one which produces noise (that is, hiss). Noise is simply
random waves made up of all partials over some distribution. There are certain particularly
common distributions of the spectra of noise, because they are produced by various natural or
physical processes. One of the most common is white noise, which has a uniform distribution of

48Generally speaking, the amplitude of harmonic #i in a pulse wave of pulse width p is sin(πip)/i. You might ask
yourself what happens to this equation when the pulse width is 0% or 100% (p = 0.0 or 1.0).

49Recall that humans distinguish phase poorly, so this fact is of lesser importance.
50Note however that Low Frequency Oscillators can do a lot with sine waves, so it shows up in them all the time.

62



-80

-70

-60

-50

-40

-30

-20

100 1000 10000

In
te

n
s
it
y
 (

d
B

)

Frequency (Hz)

White Noise

-80

-70

-60

-50

-40

-30

-20

100 1000 10000

In
te

n
s
it
y
 (

d
B

)

Frequency (Hz)

Pink Noise

-80

-70

-60

-50

-40

-30

-20

100 1000 10000

In
te

n
s
it
y
 (

d
B

)

Frequency (Hz)

Brown Noise

-80

-70

-60

-50

-40

-30

-20

100 1000 10000

In
te

n
s
it
y
 (

d
B

)

Frequency (Hz)

Blue Noise

White Pink Brown Blue

Figure 76 Frequency spectra plots of four common kinds of noise: (Left to right) White, Pink, Brown, and Blue noise.
Note that the plots are logarithmic in both directions.©50

its partial spectra across all frequencies.51 Another common noise is pink noise, whose higher
frequencies taper off in amplitude (by 3dB per octave). Brown noise, so called because it is
associated with Brownian motion, tapers off even faster (6dB per octave). Finally, blue noise
increases with frequency, by 3dB per octave. There are plenty of other distributions as well. Noise is
often used to dirty up a synthesized sound. It is also used to produce explosive sounds, or sharp,
noisy sounding instruments such as snare drums.

How do you create random noise? White noise is very simple: just use a uniform random
number generator for every sample (between −1... + 1 say). Other kinds of noise can be achieved
by running white noise through a filter to cut down the higher (or in the case of Blue noise, lower)
frequencies. We’ll talk more about filters in Section 7.

Suboscillators One trick analog synthesizers use to provide more spectral material is to offer
one or more suboscillators. A suboscillator is very simple: it’s just a circuit attached to a primary
oscillator which outputs a (nearly always square) waveform that is 1/2, 1/4, 1/8, etc. of the main
oscillator’s frequency. 1/2 the frequency would be one octave down. This isn’t a true oscillator — its
pitch is locked to the primary oscillator’s pitch — but it’s a cheap and useful way of adding more
complexity and depth to the sound.

51White noise is trivial, as you can see below. But pink noise pushes white noise through a 3dB low-pass filter, which
is a bit difficult to make well. Here’s a quick-and-dirty but not super accurate one originally from Paul Kellet: see
http://www.firstpr.com.au/dsp/pink-noise/ for this and better examples. It generates random white noise and then
applies an FIR low pass filter to it. More on filters in Section 7.

Algorithm 12 White Noise Sample
1: return random real-valued number from −1 to +1 inclusive . Really Complicated!

Algorithm 13 Pink Noise Sample
1: Global b0, b1, b2 ← initially 1.0

2: w← White Noise Sample
3: b0 ← 0.99765× b0 + 0.0990460× w
4: b1 ← 0.96300× b1 + 0.2965164× w
5: b2 ← 0.57000× b2 + 1.0526913× w
6: return b0 + b1 + b2 + 0.1848× w
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6.2 Antialiasing and the Nyquist Limit

One critical problem which occurs when an oscillator generates waves is that they can be aliased in
a digital signal. This issue must be dealt with or the sound will produce many undesirable artifacts
when played. Aliasing is the central challenge in digital oscillator design.
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Figure 77 Sawtooth wave approximations
consisting of only (top) the first 20 partials or
(bottom) the first 100 partials.

A digital sound can only store partials up to a certain
frequency called the Nyquist limit. This is one half of
the sampling rate of the sound. For example, the highest
frequency that 44.1KHz sound can represent is 22,050Hz.
If you think about this it makes sense: to represent a sine
wave, even at its crudest, you need to at least go up and
then down: meaning you’ll need at least two samples.

But consider a sawtooth wave for a moment. The saw-
tooth wave has an infinite number of partials, and the
high-frequency ones are what cause it to have nice sharp
angles. However, we can only represent so many sawtooth
partials before the higher frequency partials exceed the
Nyquist limit; at which point we must stop. The lower the
sampling rate, the fewer partials we can include. Consider
Figure 77 at right. Notice that a wave consisting of just the
first 20 partials in a sawtooth wave is cruder looking than
one generated with the first 100 partials (or first 100,000!).

We have to stop at Nyquist because any higher fre-
quency partials we try to include in the signal get “reflected”
away from the Nyquist limit.52 That is, if we tried to insert
a partial of frequency N + f , where N was the Nyquist
limit, what would actually appear in the signal would be a partial of frequency N − f . Furthermore,
if N − f < 0, then this would reflect back up again as 0− (N − f ), and so on.
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Figure 78 Partials of an Aliased Sawtooth
wave. The sequence of sawtooth partials (Blue)
reflects off the Nyquist limit (here 10 1⁄3) and
continues backward (Red), then bounces again
off of 0 and continues forward again (Green),
and so on. Only the first two bounces shown.

Figure 78 illustrates this effect. The result is definitely not
a sawtooth wave; and as the wave increases in frequency
(pitch), the reflections start doing unexpected things, re-
sulting in a nonstable, strange sound. This is aliasing.

The unfortunate audio effect of aliasing is hard to ex-
plain in text: you have to hear it for yourself. But you’ve
probably seen the effect of aliasing in two-dimensional im-
ages with lots of checkerboards or straight lines: Moiré
patterns. Figure 79 shows what this looks like. Aliasing in
2D images is caused by the exact same thing as in sound:
higher frequencies than the image’s resolution is capable
of supporting.

To counter aliasing in audio we must be diligent in elim-
inating frequencies higher than Nyquist from the waves
generated by the oscillators. That is, our waves must be
band limited. There are several approaches one could take to do this:

52This is why aliasing is sometimes called foldover: the reflected partials are “folded over” the Nyquist limit.
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Figure 79 Moiré patterns (left) in an image. This effect is due to the 2D version of aliasing.©51

Additive Synthesis We could build the wave by adding sine waves up to the Nyquist limit.

Resampling This is the most common approach. We create a band limited wave at a high
sampling rate, usually with additive synthesis, and store a single cycle of it as a digital sample: this
is a single-cycle wave. When we need to convert the wave to a certain frequency, this is equivalent
to resampling it into a different number of samples. The process of resampling is discussed in
Sections 9.5 through 9.7, and an algorithm for resampling a single-cycle wave is given in Section 9.8
(Algorithm 22, “Looped Single-Cycle Wave Playback”).

Discrete Summation Formulae (DSF) This is a clever way of generating a band-limited wave
without having to add up lots of sine waves as is the case for additive synthesis.53 It turns out that
you can add up N + 1 sine waves of a certain useful pattern just by using the following identity:

N

∑
k=0

ak sin(θ + kβ) =
sin(θ)− a sin(θ − β)− aN+1(sin(θ + Nβ + β)− a sin(θ + Nβ))

1 + a2 − 2a cos(β)

That is an interesting identity: it would allow us to do a variety of waves without computing
a sum. I’d set θ = 2πt f , and set β = 2πt f m, where f is the fundamental frequency and t is the
current timestep. The value m scales the partials relative to the fundamental frequency: if m is a
positive integer, you’ll have harmonics, else you’ll get inharmonic partials.

Let’s set m = 1, so you have harmonics. We’d still not be able to create (for example) a sawtooth
from it, as a DSF can only produce something with harmonics of the form ∑k ak sin( f k), whereas a
sawtooth drops off as ∑k

1
k sin( f k), but perhaps with a judicious setting of a one could get a very

bad approximation (a = 0.55 to 0.75 seem useful). And it has other interesting timbres as well.
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Figure 80 (Left) A Delta or Impulse train. (Right) An equivalent
BLIT, band limited to quite low frequencies for illustrative purposes.

Band Limited Impulse Trains (BLITs)
An impulse train is a wave that largely
consists of zeros, but where every Nth
sample is 1.0. It’s a sequence of im-
pulses or delta functions. Not surpris-
ingly, an impulse train has many par-
tials above Nyquist: but we can create
a version of it with the high frequency
partials stripped out. This is called a
band limited impulse train, or BLIT.54

53J. A. Moorer, 1976, The synthesis of complex audio spectra by means of discrete summation formulae, Journal of
Engineering, 24, 717–727.

54Timothy Stilson and Julius O. Smith, 1996, Alias-free digital synthesis of classic analog waveforms, in International
Computer Music Conference (ICMC).
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1: Start with a BLIT 2: Integrate it over time 3: Subtract a diagonal function

Figure 81 Creating a band limited sawtooth. This is done by integrating or summing the BLIT starting at 0 to create a
stairstep, then subtracting a diagonal function from the stairstep to pull it back down every period.

A BLIT is defined as:

blit(x, P) = (M/P) sincM[(M/P)x]

M = 2bP/2c+ 1
sincM(x) =

{
1 M sin(πx/M) = 0

sin(πx)
M sin(πx/M)

otherwise
(2)

Here P is the period of the impulse train in samples, and M is related to number of partials
(harmonics) to include. x is the xth sample. The maximum number of harmonics (before exceeding
Nyquist) happens to be related to P, so we can compute M on the fly as shown.

What can we do with this? Well, a band-limited sawtooth for one. The idea, as shown in
Figure 81, is to integrate the BLIT over time, which creates a stairstep function. From this, we can
subtract a constant linear function to pull it back down to 0 every period and create a sawtooth.

We can generate this on-the-fly for every new sample x by taking our previous value at x− 1
and adding the current blit value to it (that’s the integration part) then subtracting 1/P (that’s the
linear function subtraction). The result looks like this:

saw(x, P) =

{
0 x ≤ 0
α saw(x− 1, P) + blit(x, P)− 1/P otherwise α = 1− 1/P seems good

This starts out very noisy but cleans up after about 6 cycles or so. The thing that cleans it up is
the α bit. This is a leaky integrator: it causes the algorithm to gradually forget its previous (initially
noisy) summation.55 I find this is reasonably scaled to 0...1 as saw(...)× 0.8 + 0.47.

To do a square wave, we need a new kind of BLIT, where the pulses alternate up and down.
This is a BPBLIT (for bipolar BLIT):

bpblit(x, P, D) = blit(x, P)− blit(x− PD, P)

Here D (which ranges from 0 to 1, 1/2 being the default) is the duty cycle of the BPBLIT: it’ll
cause the low pulses to move closer to immediately after the high pulses. Armed with this, we can
define a band-limited square wave as just the integration (sum) of the BPBLIT.

square(x, P, D) =

{
0 x ≤ 0
α square(x− 1, P, D) + bpblit(x, P, D) otherwise α = 0.999 seems good

I find this is reasonably scaled to 0...1 as (square(...) + D)× 0.7 + 0.15.

55The leaky integrator is a common trick not only in digital signal processing but also in machine learning, where this
pattern shows up as the learning rate in equations for reinforcement learning and neural networks.
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1: Start with Sinc 2: Apply a window 3: Integrate over x 4: Subtract from Step(x)

Figure 82 Producing a BLEP. We begin (1) with the sinc function, then (2) window it, then (3) take the integral with
regard to x, and then finally (4) subtract the result from Step(x), which is −0.5 if x < 0, and +0.5 otherwise. Windowing
is a procedure which forces a function to go to zero beyond a finite interval (+/-7 in this example). More on sinc and
windowing in Section 9.7, where they’re used heavily.

Last how might we do a triangle? With the same integration trick again, but this time summing
over the square wave. This double summing (the square wave was itself summed), with two leaky
integrators, means the triangle will have a lot of delay, so this may not work well with a fast pitch
bend. That’s why I have a very low α, but it makes crummy triangles at low frequencies.

tri(x, P, D) =

{
0 x ≤ 0
α tri(x− 1, P, D) + square(x, P, D)/P otherwise α = 0.9 seems necessary

I’d scale this as tri(...)× 4 + 0.5. Note that Triangle’s frequency is twice what you’d expect.
If you slowly scan through frequencies, you’ll get one or two pops as even 0.9 is not enough to
overcome certain sudden jumps due to numerical instability. Instead, you might try something like
α = 1.0− 0.1×min(1, f /1000), where f is the frequency.

Band Limited Step Functions Instead of building a wave carefully out of band-limited compo-
nents, wouldn’t it be easier to just draw the wave and then tweak it? You can’t apply a filter per se,
as the problematic high-frequency partials have already been aliased and added into the wave. But
there’s a trick you can apply, if you recognize that most of these aliased partials are due to the sharp
discontinuities (corners) in the wave. Perhaps if you shaved off those corners you could decrease
the aliasing significantly. That’s the idea behind the band limited step function or BLEP.56
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Figure 83 Square wave approximation con-
sisting of only the first 20 partials.

You may have noticed that, when band-limited, sharp
vertical discontinuities have little “wiggles” before and
after them. You can see this in Sawtooth (look back to
Figure 77), and Square waves (Figure 83 at right). These
wiggles happen to be derived from the sinc function,57

sinc(x) =




sin(πx)
πx x 6=0

1 x=0
We won’t go into detail about sinc

here: it’s discussed at length in Section 9.7.
The idea is to reduce aliasing by strategically introduc-

ing these wiggles both immediately before and after each
discontinuity. This introduced wiggle is called a BLEP.

56No, the acronym makes no sense to me either. BLEPs were introduced in Eli Brandt, 2001, Hard sync without
aliasing, in International Computer Music Conference.

57Yes, sinc is related to sincM in BLITs. That’s why BLITs produce band-limited square, sawtooth, and triangle waves.
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Before we drop BLEPs into our sound wave, we must first generate and store one, as shown
in Figure 82. A BLEP is just the residual left over when we take the integral of the sinc function
(the wiggles) to produce a band-limited step function, and then subtract it from a sharp (non-band
limited) step, that is, a sudden discontinuity. If you added this back to a sharp discontinuity in
your sound, you’d get the band-limited version again. The idea is to build a BLEP, store it at high
resolution, and then, for every major discontinuity in your hand-drawn sawtooth or square wave,
add a BLEP (or its reverse) to the wave centered at that discontinuity.
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Figure 84 Very simple BLEP approx-
imated with the piecewise polyno-
mial at left. Note this is flipped from
the example in Figure 82 (4), sorry.

A simpler alternative to building and pre-storing a high reso-
lution BLEP is to roughly approximate it with a polynomial that’s
easily calculated on the fly. This approach is known as a PolyBLEP.
As (just) one example, you might use a third-order piecewise La-
grange polynomial approximation, shown in Figure 84, which as
follows:

(x + 2)4/24− (x + 2)2/12 −2 ≤ x < −1
−(x + 1)4/8 + (x + 1)3/6 + (x + 1)2/2− 1/24 −1 ≤ x < 0
x4/8− x3/3− x2/4 + x− 1/2 0 ≤ x < 1
−(x− 1)4/24 + (x− 1)3/6− (x− 1)2/6 + 1/24 1 ≤ x ≤ 2

This function is scaled so that each sample is length 1. Thus this approximation doesn’t go out
very far: just 2 samples away from the discontinuity in each direction. This isn’t very costly to add,
but surprisingly is sufficient to reduce aliasing by a fair amount.58

6.3 Wave Shaping
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Figure 85 A Sine wave sin(t), and the result of waveshaping with
the function x5, producing sin5(t).

Once we have a basic sound wave, we can
then mutate it into something more inter-
esting. The first mutation method we’ll
discuss is wave shaping.

Wave shaping is very simple: it’s just
mapping an incoming sound signal using
a function. That is, a wave shaping func-
tion f (x) would be used to modify an ex-
isting sound s(t) as f (s(t)).

Because wave shapers can have arbi-
trary functions f (x), the mathematics in-
volved could impose too high a computational cost if they have to be called for every single sample
in a digital synthesizer. Thus one common approach is to use a table-based waveshaper. This is
simply a high-resolution lookup table which gives the output value of the function f (x) for every
possible input value x.

58For more on this approximation, and a number of other PolyBLEP approximations, see Vesa Välimäki and Jussi
Pekonen, 2012, Perceptually informed synthesis of bandlimited classical waveforms using integrated polynomial
interpolation, Journal of the Acoustical Society of America. Indeed, this example is taken directly from that paper. Note that
the authors also suggest post-processing the sound with a simple high pass filter because the polynomial approximation
tends to dampen certain (valid) high frequencies. They give the specific coefficients for an FIR filter which you can build
straightforwardly after reading Section 7.
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Waveshaping Polynomials Keeping aliasing in mind, you could in theory use any function
you wished to shape an incoming signal: but it’s common to use polynomials. This is because
polynomials allow us to predict and control the resulting partials in a sound. In particular, a
polynomial of order n can only generate harmonics up to n. Consider the polynomial x5 applied to
a sine wave of frequency ω and amplitude 1, as shown in Figure 85. Our waveshaped signal w(t)
would be:

w(t) = sin5(ωt)

= 1/16× (10 sin(ωt)− 5 sin(3ωt) + sin(5ωt)) Trust me, there’s a sin5(θ) identity

(Don’t confuse the w and ω) This would create a harmonic at ω, a second at 3ω, and a third at
5ω, with the amplitudes indicated.

One common set of polynomials used in waveshaping are the Chebyshev Polynomials of
the First Kind. This is a set of polynomials discovered by Pafnuty Chebyshev in 1854, and have
the property that, for x ∈ [−1, 1], their output only ranges from [−1, 1], and so they’re good for
mapping a wave. Another interesting property is: if we wave-shape a sine wave with Chebyshev
polynomial Tn(x), we will produce only harmonic number n. This allows us to make a wave-
shaping function which is the sum of several Chebyshev polynomials that builds sounds with
exactly certain harmonics.

Chebyshev polynomials of the first kind follow the following pattern. The first polynomial,
T0(x), is 1. The second polynomial, T1(x), is x. After that, polynomials are defined recursively:
Tn+1(x) = 2xTn(x)− Tn−1(x). Thus the first eight polynomials are:

T0(x) = 1
T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

T7(x) = 64x7 − 112x5 + 56x3 − 7x

6.4 Wave Folding
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Figure 86 Wave folding the function Fold(1.5 sin(t)) (left) and
the Fold(3.5 sin(t)) (right). The right figure gives an example of
recursive folding.

Related to wave shaping is wave fold-
ing, popularized by Don Buchla and West
coast synthesis methods. If the incoming
signal is greater than 1.0 or less than -1.0,
a wave folder reflects it back towards 0.0
again: it folds it back. Of course, if the
signal is much greater than 1.0 (or -1.0)
folding it will cause it to go beyond -1.0
(or 1.0), and so it will be folded again, and
again, until it’s inside the range −1...1.
Thus you can modulate the effect by amplifying the incoming wave before shaping it with a
wavefolder (see Section 6.7 coming up). The basic folding equation is recursive, but easy.

Fold(x) =





Fold(1− (x− 1)) x > 1
Fold(−1− (x + 1)) x < −1
x otherwise
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Figure 87 The Fold function is
really just a Triangle function.

This particular wave folding equation, as shown in Figure 86, in-
troduces a great deal of harmonic complexity into a sound, including
(typically) a lot of inharmonic partials. Some wave folders attempt to
produce a more rounded — and less aliased — shape. To do this, first
realize that though it’s defined recursively here, Fold(x) is in fact just
wave-shaping with the kind of Triangle wave shown in Figure 87.59

Now consider using a different, softer oscillating function to do
the waveshaping, such as Sine. If you defined Fold(x)=Sin(2πx),60

you’d get the rounded effect shown in Figure 88. It still wouldn’t do
much for sharp discontinuities (such as folding a Sawtooth or Square wave).
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Figure 88 Wave folding the function 1.5 sin(t) (left) and the func-
tion 3.5 sin(t) (right) using a sine wave, that is, sin(2π × 1.5 sin(t))
and sin(2π × 3.5 sin(t)) respectively. Compare to Figure 86.

You could create even more inharmonic
distortion using a related method called
wrapping: here, if the sound exceeds 1.0,
it’s toroidally wrapped around to -1 (and
vice versa). That is:

Wrap(x) =





(x mod 1)− 1 x > 1
1− (−x mod 1) x < 1
x otherwise
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Figure 89 Wrapping the func-
tion 1.5 sin(t).

This definition is carefully written such that u mod 1 is only per-
formed on positive values of u: because different systems interpret
mod differently for negative values. In Java you could implement
u mod 1 as u % 1.0 or simply as u - (int)u (u is floating point).

Finally, there remains the possibility of clipping: here, the sound
is simply bounded to be between -1 and 1. This should be obvious:

Clip(x) =





1 x > 1
−1 x < −1
x otherwise
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Figure 90 Clipping the function
1.5 sin(t).

Dealing with Aliasing It shouldn’t surprise you that these methods
can alias like crazy due to the hard discontinuities that occur when
these waves hit the 1.0 or -1.0 boundary. To deal with this you’ll need
to develop soft versions of these functions (such as was done with
wave folding), or perhaps add BLEPs (Section 6.2) after the fact.61

59That is, Fold(x)= Tri(x) =

{
M(x)− 1 M(x) < 2
4−M(x)− 1 otherwise

where M(x) = (x + 1) mod 4.

60If you think pushing a Sine wave through a Sine wave feels a bit like FM synthesis (Section 8), you get a gold star.
61For a proper treatment of how to deal with antialiasing in wave folding, see Fabian Esqueda, Henri Pöntynen, Julian

Parker, and Stefan Bilbao, 2017, Virtual analog models of the Lockhart and Serge wavefolders, Applied Sciences, 7, 1328.
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Figure 92 Phase distortion using g(x, α) = x
α when x < πα, else x−πα

2−α + π. This g(...) phase-distortion function is
initially the identity function at α = 0, then develops a knee at πα as x increases. This results in the cosine wave
eventually distorting into a pseudo-sawtooth wave. If we windowed the result by a triangle function, we would produce
the resulting green wave.62

6.5 Phase Distortion

Figure 91 Casio CZ-1.©52

Phase distortion, a sort of converse to waveshaping, was
special to Casio’s CZ series of synthesizers, from the
diminutive (and cheap) CZ-101 to their top of the line CZ-1.
Whereas waveshaping modifies an existing wave f (x) with
a shaping function g(x) as g( f (x)), phase distortion does it
the other way around, that is, f (g(x)). In phase distortion,
f (x) is normally a sinusoid like sine or cosine, and so g(...)
may be thought of as modifying its instantaneous phase, hence the name. Phase distortion is often
incorrectly associated with Phase Modulation, a variant of Frequency Modulation discussed in
Section 8 which also modifies phase: but they really are pretty different creatures.

If you use a sinusoid f (...) for waveshaping — which passes through 0 — and your g(...) function
is such that limx→0 g(x) = 0 mod 2π, then you’ll have a smooth, cyclic wave resulting from
waveshaping with g( f (x)). But this isn’t the case the other way around, that is, doing f (g(x))
even when f (...) is sinusoidal (as it normally is in phase distortion). Depending on your choice of
g(...), you can get all sorts of discontinuities as x approaches the periodic 2π boundary. So in order
to guarantee a smooth, cyclic function, phase distortion runs the result through a window w(...),
multiplying it by some function which is 0 at 0 and 2π.

Let’s put this all together. To make things easy to visualize, for f (...) I’ll use a negative cosine
scaled to range from 0 to 1 rather than from -1 to 1. Let’s call this “pcos”, as in pcos(x) = 1−cos(x)

2 .
This is the red curve in the left subfigure of both Figures 92 and 93. Phase distortion then outputs
the waveform PhaseDistort(t) using the following equation:

PhaseDistort(t) = pcos(g(x, α))× w(x) x = t mod 2π

Notice that we’re passing α ∈ [0, 1) into g(...). This lets us specify degree of phase distortion we
want, generally modulated by an envelope.63 How g(...) maps the distortion varies from function
to function. The CZ series provided a range of g(...) functions and w(...) window options.64

62This example, minus the triangle windowing, is more or less the example provided in the CZ series user manuals.
63On the CZ series, this was an elaborate eight-stage envelope which could do really nifty things.
64Casio seemingly went to great lengths to obscure how all this worked in their synth interfaces. Windowing

was not discussed at all, and the front panel had only a limited set of options. To get the full range of combinations
of wave and window functions required undocumented MIDI sysex commands (discussed in Section 11.2.2). See
http://www.kasploosh.com/projects/CZ/11800-spelunking/ for an explanation of how to do this.
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Figure 93 Phase distortion using g(x, α) = x mod 2πα
α . This g(...) phase-distortion function is again initially the identity

function at α = 0, then increases in frequency π as α increases, but resets at 2π. This results in the cosine wave increasing
in frequency but likewise resetting at 2π. If we windowed the result by a sawtooth function, which would eliminate the
discontinuity due to the reset, we would produce the resulting green wave.65

Figure 92 shows a sinusoid being gradually distorted by a g(...), changing according to α.
Eventually the sinusoid is distorted into a pseudo-sawtooth. Multiplying this by a triangle window
function produces an interesting final wave. Without an optional window function, the distortion
function acts as a kind of quasi-filter, stripping out the high frequencies of the sawtooth until we’re
left with a simple one-harmonic sinusoid. We’ll get to true filters in Section 7. Phase distortion’s
quasi-filters in combination with windowing can also add resonance to the wave, as shown in
another example, Figure 93.66

6.6 Combining

A subtractive synthesizer often has several oscillators per voice. The output of these oscillators is
combined, and the resulting sound is then run through various filters and amplifiers. There are
many different ways that these oscillators could be combined: we’ll cover a few of them here.

Mixing The most straightforward way to combine two or more sounds would be to mix them:
that is, to add them together, multiplied by some weights. For example, if we had n sounds
f1(t)... fn(t), each with a weight α1...αn (all αi ≥ 0), our mixer might be simply m(t) = ∑i αi fi(t).
It’s also common to play the weights off each other so as not to exceed the maximum volume and
to allow for an easy modulation parameter. For example, we might cross fade one sound into a
second with a single α value as m(t) = α f1(t) + (1− α) f2(t). More generally, a cross-fading mixer
for some n sounds might be m(t) = ∑i αi fi(t)

∑i αi
.

Vector Synthesis Let’s consider a different direction to expand on the cross-fade mechanism.
What if we had four sounds, and paired sounds 1 and 2 with a cross-fader, then paired sounds
3 and 4 with a cross-fader, and finally added the two cross-faded results? That is, we’d do
m(t) = α f1(t) + (1− α) f2(t) + β f3(t) + (1− β) f4(t). Thus we’d have two parameters, α and β, and
so we’d now have two-dimensional space of linear mixtures among the four sounds.67 We might
then define a function that wanders through the 〈α, β〉 space over time, creating a sound which
morphs and evolves. We could define this movement of α and β independently using envelopes or

65This is more or less the example provided in Figures 18–20 of Casio’s patent on PD. Masanori Ishibashi, 1987,
Electronic musical instrument, US Patent 4,658,691, Casio Computer Co., Ltd., Assignee.

66I do not know what tricks Casio employed, if any, to reduce or eliminate aliasing from Phase Distortion.
67The four sounds here are only linked pairwise, not fully. But in fact it is possible to graphically link three sounds

together. Place each sound i at a point (corner) pi of an equilateral triangle (a simplex). Let xi be the distance from a
control point within the triangle to the edge opposite point pi. Then the fraction of sound i in the total sound is xi

∑j xj
.
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LFOs, or we could define a point-by-point trajectory over time. This approach, known as vector
synthesis, was pioneered by the Sequential Circuits Prophet VS.

The VS sported a joystick with which the musician could control α and β during real-time
performance, or to program a real-time trajectory. The VS was famous for producing swirling,
complex sounds.68 Of course you could do vector synthesis with more than just four sounds, and
thus more than just two parameters: but then you’d not be able to control them all with a single
joystick, and that wouldn’t be as fun.

Detuning By far the most common trick to fatten up a sound is to take two or more oscillators at
the same pitch and detune one of them relative to the other, then mix the two together. This has an
interesting psychoacoustic effect: it creates a rich, thicker sounding tone. To detune an oscillator
means to shift its pitch by a very small amount: somewhere in the 3–10 cents range is common. See
Algorithm 19, page 130 (“Pitch Shifting for One-Shot Playback“) to pitch-shift.

Detuning also causes beating, a pattern where the sound is iteratively louder, then quieter. This
is because the frequency of one oscillator is slightly higher than the other. The two start in phase
(and so when mixed their volumes double when added), but quickly one oscillator outpaces the
other to the point that their phases are opposite one another (and thus cancel each other out in
volume). The outpacing continues until the faster oscillator laps the slower one and they get back
in phase again. When the frequency difference is large, such as two oscillators played as two notes
in a chord, this lapping is so fast that we don’t notice any beating. But when the difference is very
small, as happens with detuning, the beating is quite prominent. The smaller the detuning, the
longer the laps take and so the slower the beating.

Ring and Amplitude Modulation Whereas in mixing, the two sound sources were essentially
added, in ring modulation,69 the two sources f (t) and g(t) are multiplied against one another,
producing the sound:

r(t) = f (t)× g(t)

Figure 94 A ring modulation circuit.©53

Ring modulation is so named because of how it is com-
monly implemented in circuitry: using a ring of diodes as
shown in Figure 94.

A closely related effect occurs when one sound source —
g(t), say — is used to change the amplitude of the other
source f (t). This is known as amplitude modulation. To
do this, g(t) is interpreted as a wave that ranges from 0...2
rather than from −1... + 1, by adding 1 to it. So we have:

a(t) = f (t)× (g(t) + 1)
= f (t)× g(t) + f (t)
= r(t) + f (t)

68Vector synthesis is often compared to wavetable synthesis (Section 9.3), as they both produce complex changing
sounds. Each has their advantages: wavetable synthesis is technically more powerful (vector synthesis can only make
linear combinations of its various sound sources), but it’s easier, and more fun, to program complex sounds using a
vector synthesis joystick! The Prophet VS is often mistakenly described as a wavetable synthesizer, but it is not. Vector
and wavetable synthesis are also both connected to yet another combination approach, the wave sequence, pioneered by
a later vector synthesizer, the Korg Wavestation (see Section 9.2).

69This isn’t exactly “modulation” in sense discussed in Section 4.
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Thus amplitude modulation is simply ring modulation with one of the original signals mixed in
again. Let’s consider the effect of ring and amplitude modulation in a simple case, using sine waves
as our sound sources, with a f and ag as amplitudes and ω f and ωg as frequencies respectively.
Then we have f (t) = a f sin(ω f t) and g(t) = ag sin(ωgt). The ring-modulated signal r(t) would be:

r(t) = f (t)× g(t) = a f sin(ω f t)ag sin(ωgt)

= a f ag sin(ω f t) sin(ωgt)

= 1/2 a f ag(cos(ω f t−ωgt)− cos(ω f t + ωgt)) ∗
= 1/2 a f ag cos((ω f −ωg)t)− 1/2 a f ag cos((ω f + ωg)t)
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Figure 95 The effects of ring and amplitude modulation
when given two sine wave signals, f (t) and g(t).

Recall that the original signals were sine
waves, and thus had one partial each at fre-
quencies ω f and ωg respectively. The new com-
bined sound also consists of two partials (the
two cosines), one at frequency ω f − ωg and one
at frequency ω f + ωg. The original partials are
gone. These two new partials are called side-
bands. What happens if ω f − ωg < 0? Then the
partial is “reflected” back: so we just get |ω f −ωg|.
Similarly, if ω f + ωg is greater than Nyquist, it’s
“reflected” back off of Nyquist as was done with
aliased frequencies. We’ll see a lot more on side-
bands and reflection in Section 8.

Now, let’s consider amplitude modulation.
Here, f (t) will be our primary signal (the carrier),
and g(t) will be the modulator, the signal that
changes the amplitude of f (t). Using the same
tricks as we did for ring modulation, we have:

a(t) = f (t)× (g(t) + 1) = a f sin(ω f t)(ag sin(ωgt) + 1)

= a f ag sin(ω f t) sin(ωgt) + a f sin(ω f t)

= 1/2 a f ag(cos(ω f t−ωgt)− cos(ω f t + ωgt)) + a f sin(ω f t)

= 1/2 a f ag cos((ω f −ωg)t)− 1/2 a f ag cos((ω f + ωg)t) + a f sin(ω f t)

Here a(t) consists of not two but three partials: the same ω f −ωg and ω f + ωg sidebands as in
ring modulation, plus the original carrier partial ω f . This shouldn’t be at all surprising given the
relationship between the two as discussed earlier.

*This transformation comes from the cosine identities

cos(A + B) = cos A cos B− sin A sin B and cos(A− B) = cos A cos B + sin A sin B

Subtract these two and we get...

cos(A− B)− cos(A + B) = (cos A cos B + sin A sin B)− (cos A cos B− sin A sin B)
= 2 sin A sin B

sin A sin B = 1/2 (cos(A− B)− cos(A + B))
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Keep in mind that this fine for just two sine waves: but as soon as the mixed sounds become
more sophisticated, the resulting sounds can get more complex.70

Frequency Modulation While amplitude modulation allows a modulating signal to change the
amplitude of a carrier signal, Frequency Modulation (or FM) allows a modulating signal to change
the frequency of a carrier signal.71 Frequency modulation is an important subject in and of itself,
and has spawned an entire family of synthesis methods all on its own. It’ll be discussed in detail in
Section 8.

Sync One last combination mechanism, if it can be called that, is to sync one oscillator wave to
the other. Syncing forces oscillator A to reset whenever B has completed its period. There are
many ways that an oscillator can reset; Figure 96 shows two common ones. Hard sync causes the
oscillator to simply restart its period, that is, reset to position 0. Hard sync is very common in
analog synthesizers and has a distinctive sound. Reversing soft sync causes the oscillator to reverse
its wave, creating a mirror image. Some analog synthesizers do not support hard sync but might
support reversing soft sync or perhaps some other kind of soft sync.
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if Reverse
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Reset Reset

Reverse
Reset
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Figure 96 Hard and Reversing Soft Sync. A
Triangle wave is hard- and reverse-soft-synced
to a Sawtooth wave of a different frequency.

The point of sync methods is that they radically re-
shape triangle or sawtooth waves, stopping them cold and
resetting them. This produces sounds with complex and
often non-harmonic partials, adding to our collection of
interesting material to “subtract” from via filters.72

Architectures for Combination Many modern synths
have a fixed architecture for combination. For example, we
might have two oscillators, one of which can be detuned or
hard-synced to the other, and then the two are the mixed
along with the ring-modulation of the two, and also noise.
However some synthesizers have taken a more flexible ap-
proach to combination hearkening back to classic modular
synths. For example, the Ashun Sound Machines (ASM)
Hydrasynth pushes each of two oscillators through a chain
of two modules each (ASM calls the four modules muta-
tors). Each module modifies the incoming sound in of several ways of your choice, such as doing
hard-sync or FM against the output of any other oscillator or mutator; or adding together five
detuned copies of the wave, etc. The output of the second mutator for each of the two oscillators,
plus the output of a third oscillator, ring mod, and noise, are then fed into a mixer.

70If you have to choose between implementing ring modulation or AM, pick ring modulation. The musician could
always mix the carrier sound back into the result; but the converse is not true, that is, it’d be harder to remove the carrier
from AM to produce ring modulation. The Kawai K1 synthesizer had ring modulation, and the later Kawai K4 foolishly
replaced it with AM. While the K1 is quite primitive compared to the K4, the K1 has a cult following the K4 lacks simply
because of its ring modulation.

71Many early synthesizers sported so-called cross modulation between two oscillators. This generic term was very
often some form of FM, though it occasionally referred to other kinds of modulation.

72Sync will introduce high degrees of aliasing: BLEPs (Section 6.2) seem the right way to deal with this. Indeed BLEPs
were themselves introduced in a paper which specifically attempted to deal with aliasing in hard sync (see Footnote 56).
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6.7 Amplification

There’s really nothing special to say about amplification: it’s just multiplying the amplitude
(volume) of the signal f (t) by some constant a ≥ 0, resulting in g(t) = a× f (t). The value a can
be anything, even a < 1, and so amplification is kind of a misnomer: an amplifier can certainly
make the sound quieter. In fact, an amplifier can be used to shut off a sound entirely or to invert the
signal. Analog amplifiers are classically controlled via a voltage level, and so they are often known
as voltage controlled amplifiers or VCAs.

If an amplifier is so boring, why is it such an important module in a subtractive synthesis chain?
Because you can make a sound more realistic or interesting by changing its amplitude in real time.
For example many musical instruments start with a loud splash, then quiet down for their steady
state, and then fade away when the musician stops playing the note. Thus an amplifier module is
important in conjunction with time-varying modulation.

There are two common modulation mechanisms used for amplification. First, the musician may
specify the amplification of a voice through the velocity with which he strikes the key. Velocity
sensitive keyboards are discussed in Section 11.1. Second, a VCA is normally paired with an
envelope, often ADSR, which defines how the volume changes over time. This is so common and
useful that a great many synthesizers have dedicated ADSR envelopes solely for this purpose.
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7 Filters

Filters put the “subtractive” in subtractive synthesis, and so they are absolutely critical to the
behavior of a subtractive synthesizer. Unfortunately they are also easily the most complex elements
in a subtractive synthesis pipeline. Filters have a rich and detailed mathematical theory, and we
will only just touch on it here.

A filter takes a sound and modifies its partials, outputting the modified sound. It could modify
them in two ways: (1) it could adjust the amplitude of certain partials, or (2) it could adjust their
phase. The degree to which a filter adjusts the amplitude or phase of each partial depends on
the partial’s frequency, and so the overall the behavior of the filter on the signal is known as its
frequency response. This is, not surprisingly, broken into two behaviors, the amplitude response
(or magnitude frequency response) and the phase response of the filter. Because humans can’t
hear differences in phase very well, we’re usually more interested in the amplitude response and
will focus on it here; but there are important uses for the phase response which we will come to
later starting in Section 10.4.

A filter can describe many functions in terms of amplitude (and phase) response, but there are
certain very common ones:

• A low pass (LP) filter doesn’t modify partials below a certain cutoff frequency, but above
that cutoff it begins to decrease their amplitude. This drop-off is logarithmic, so if you see it
on a log scale it looks like a straight line: see Figure 97 (A). A low pass filter is by far the most
common filter in synthesizers: so much so that many synthesizers only have a low pass filter.

• A high pass (HP) filter is exactly the opposite: it only decreases the amplitude of partials if
they’re below the cutoff frequency. See Figure 97 (B).

• A band pass (BP) filter is in some sense a combination of low pass and high pass: it decreases
the amplitude of partials if they’re on either side of the cutoff frequency, and particularly
if they’re far from it: thus it’s “picking out” that frequency and shutting off the others. See
Figure 97 (C).73

• A notch filter is the opposite of a band pass filter: it decreases the amplitude of partials if
they’re near the cutoff frequency. See Figure 97 (D).74
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Figure 97 Amplitude response by frequency of four common filters, with a cutoff at 100. The axes are on a log scale.
Thus the notch is really more or less an inverted band pass, but looks quite different because of the log scaling.

73This term is also used more broadly to describe a filter which passes through a range of frequencies rather than just
one. Unlike for a notch filter, I don’t think there are different terms to distinguish these two cases.

74A notch filter is a degenerate case of a band reject filter, which rejects a certain range of frequencies rather than a
specific one.
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Figure 98 Low Pass filter with a cutoff at 100 and varying amounts of resonance (Q). Note that axes are on a log scale.

These aren’t all the filters you can build, not by a long shot. Another common filter is the comb
filter, discussed at length in Section 10. And another important filter is the notional brick wall low
pass filter: essentially a very, very steep low pass often used to cut out frequencies above Nyquist.

Phase The filters above are largely differentiated by how they modify the amplitude of the
partials: but it doesn’t say anything about how they modify the partial’s phase. In fact, usually
when building the four filters above our goal would be to not modify the phase at all,75 or at the
very least, to shift the phase by the same amount for all partials. Filters for the second case are
called linear phase filters. But there do exist filters designed to adjust phase of partials. The most
common subclass of filters of this type are the strangely-named all pass (AP) filters. As their name
would suggest, these don’t modify the amplitude at all; their purpose is solely to shift the phase in
various ways. We’ll see all pass filters more in Section 10.

Gain In modifying the amplitude or phase of certain partials, filters often will inadvertently
amplify the overall volume of the sound as well. The degree of amplification is called the gain of
the filter. It’s not a big deal that a filter has a gain if we know what it is: we could just amplify the
signal back to its original volume after the fact. But it’s convenient to start with a filter that makes
no modification to the volume, that is, its gain is 1. We call this a unity gain filter.
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Figure 99 Roll-off of typical low
pass filters: one-pole (6dB), two-pole
(12dB), and four-pole (24dB).©54

Order, Resonance, and Tracking Filters are distinguished by the
number of poles and zeros they have, which in turn determines
their order. We’ll get back to what these are later, but for now it’s
helpful to know two facts. First, the number of poles can determine
how steep the filter drops off: this effect is called the roll-off of the
filter. In the synthesizer world you’ll see filters, particularly low
pass filters, described in terms of their roll-off either by the number
of poles or by the steepness of the curve. A first-order low pass
filter is typically described as one pole and will have a roll-off of
6dB per octave (that is, it drops by 6dB every time the frequency
doubles). A second-order low pass filter is described as two pole
and will have a roll-off of 12dB per octave. And a fourth-order low pass filter is normally described
as four pole and will have a roll-off of 24dB per octave. These are illustrated in Figure 99. Most
filters in audio synthesizers are second order (“2 pole”, “12dB”) or fourth order (“4 pole”, “24dB”).

75If your filter is working in real-time, as is the case for a synthesizer, it’s not possible to avoid modifying the phase:
so you need to fall back to a linear phase filter.
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Second or higher order filters can be constructed to exhibit a curious behavior: just before the
cutoff point, they will increase the amplitude of partials. This is resonance, as shown in Figure 98,
and creates a squelching sound. The degree of resonance is known as the quality factor of the filter
and is defined by the value Q. A value of Q =

√
1/2 ≈ 0.707 has no resonance, and higher values

of Q create more resonance. A first-order (“one pole”) filter cannot have resonance. Some filters are
capable of self-resonance, a where the filter, when set to extreme resonance, can produce a tone all
on its own without an incoming audio signal.

Last, filters are sometimes outfitted with keyboard tracking, where the cutoff frequency of the
filter moves to some degree with the note being played. Thus high notes might have a higher
cutoff frequency than low notes and thus sound brighter. This can help the synthesizer sound more
“natural”, as many real instruments tend to follow different brightness profiles depending on pitch.
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Figure 100 Filter terms (frequency domain).

Filter Design Goals and Tradeoffs The goal of a filter is
to modify the characteristics (amplitude, phase) of partials
at certain frequencies while not overly affecting partials
elsewhere. This is not easily achieved, and filter design
is largely about compromise. Consider the low-pass filter
in Figure 100. Here we want to decrease the amplitude
of partials in the stopband but not affect the amplitude of
partials in the passband. The roll-off must largely occur
in the transition band, but if the transition band has to be
very narrow (the roll-off has to be steep), we may be forced
to accept ripple in the stopband or passband. Further, the
filter may produce an undesirable shift in phase in some
partials, that is, a bad phase response. These aren’t things
you want in an audio filter: humans ears are sensitive.
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Figure 101 Filter terms (time domain).

There are issues in the time domain as well: for example
as shown in Figure 101, filters also may be overly slow to
respond to abrupt changes in the sound, may overshoot
the goal amplitude, and may oscillate considerably before
settling down (so-called ringing). http://commons.wikimedia.org/wiki/File:Filters_order5.svg https://upload.wikimedia.org/wikipedia/commons/b/bd/Filters_orde...

1 of 1 5/17/19, 8:41 AM

Figure 102 Plots of frequency domain ampli-
tude of some common filter designs. ©55

Figure 102 shows a few classic filters which illustrate
some tradeoffs. Notice that Butterworth filters have no
ripple (which is good for an audio filter): but have a very
gradual roll-off. We can get a high-order Butterworth filter
to have a steep roll-off, but at the cost of ringing and a
considerable shift in phase (which are probably not good).

The higher-order the filter, the more parameters we
have available to achieve our design goals. But a higher-
order filter is more complex and its larger parameter space
presents a bigger design challenge. One common approach
is to build higher-order filters by composing lower-order
filters, that is, stacking them in series or in parallel. We’ll
discuss this strategy in Section 7.11, with examples in Sec-
tions 7.12 and 7.13.
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Some Well-Known Historical Synthesizer Filters Filters are so fundamental to subtractive syn-
thesizers that they have developed a history and lore all their own. It’s worthwhile discussing a
few classic ones.

Figure 103 Moog Minimoog Model D. Repeat
of Figure 51. ©56

Easily the most famous synthesizer filter in history
is Robert Moog’s 24 dB (4-pole) low pass filter, found
on many of his designs, including the Moog Minimoog
Model D (Figure 103). This filter, known as a transistor
ladder filter because of the layout of its patented circuit
(Figure 122, page 101), has often been cloned by competi-
tors and has been the subject of considerable legal wran-
gling.76 This filter gives the Model D a potent, rich sound
that made it popular as a lead or solo instrument. However
when the resonance is increased, the filter tends to morph
into a bandpass filter and so cuts bass sounds as well. This
often requires augmenting it with some kind of bass boost-
ing compensation. To this day, the Moog filter remains the standard against which new filters are
compared. Ladder filters are discussed at length in Section 7.12.

Moog’s early competitor, Don Buchla, took a different approach, employing a low pass gate
in his designs (such as Figure 47, page 50). This may be thought of as a mild (6 dB or 1-pole) low
pass filter which also acts to some degree as an amplifier, and which has a complex nonlinear
relationship between the filter cutoff and the volume of the incoming signal.

Figure 104 EDP Wasp. Yes, it really
was that yellow.©58

Another competitor, Korg, combined a 6 dB (1 pole) high pass
filter with a 12 dB (2-pole) low pass filter to create a famously
aggressive, harsh sound in several machines, notably the Korg
MS20 (Figure 49, page 50). Another example of an aggressive,
indeed “dirty” sounding, filter is found in the famous Electronic
Dream Plant (or EDP) Wasp, shown in Figure 104. Both of these
filters have been replicated in many other synths since.

Filters like Korg’s and Moog’s were good choices for creating
cutting monophonic leads. In contrast, Tom Oberheim’s early
polyphonic SEM machines (such as the Oberheim 4-Voice and
8-Voice, see Figure 53, page 51) were distinguished by their 12-dB
(2-pole) state-variable or multimode filter which could be swept
smoothly from low pass, through notch, to high pass, or could be
switched to band pass. Unusually, the SEM filter was not self-resonant. Another very well regarded
polyphonic synthesizer filter was Roland’s IR3109 2- and 4-pole filter chip used in its Jupiter, Juno,
and JX lines, such as the Roland Jupiter 8 and Roland MKS-80 Super Jupiter (Figure 59, page 53).

Doug Curtis’s company, Curtis Electromusic Specialties (or CEM), introduced many analog
chips used by synthesizer manufacturers to simplify their circuitry. CEM designs, notably the CEM
3320 multimode 24-dB (4-pole) filter chip, found their way onto synths ranging from the Prophet 5
(Figure 56, page 52) to the Oberheim OB-Xa (page 52) to the PPG Wave (Footnote 115, page 119).

While most synthesizers come with only one or two filters, a few have a great many. For
example, the E-mu Systems Morpheus would have just been a boring rompler had it not sported
hundreds of different filters, each up to 14 poles, and with dynamically tweakable parameters.

76For example, ARP changed a copycat filter in the ARP 2600, Figure 48, page 50, under threat of lawsuit.
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7.1 Digital Filters

  

in out

Figure 105 Simple second-
order low pass analog filter. No,
we’re not doing circuits.©59

Analog filters are built from capacitors, resistors, inductors, and so on,
and take a continuous signal both as input and output. But when we
build a filter in software, we’ll be modifying a digital signal. This is
quite a different process.

One conceptually simple way to make a filter is to take a digital sig-
nal, convert it into the frequency domain, manually change (through
multiplication) the amplitudes and phases we want, then convert it
back into the time domain. The conversion to the frequency domain
and back again can be done using a Fast Fourier Transform (or FFT),
discussed in Section 12. But it turns out you can do essentially the same
process while staying wholly in the time domain through a simple procedure called convolution.

In convolution, we construct a new signal y(n) from the original signal x(n) by mixing each
sample with a bit of its neighboring samples. For example, for each timestep n,77 we might take
the current sample x(n), plus some previous samples x(n− 1), x(n− 2), etc., and build y(n) as
the weighted sum of them, as in: y(n) ← b0x(n) + b1x(n− 1) + · · ·+ bkx(n− k). The constants
b0, b1, ..., bk are determined by us beforehand, and they can be positive or negative. This process is
repeated, in real time, for every single sample coming out of y(...).
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Figure 106 Filter diagram symbols.

Why does this result in a filter? Consider the equation
y(n) = 1/2 x(n) + 1/2 x(n − 1), that is, b0 = 1/2 and
b1 = 1/2. This averages each sample with the sample
before it. If your sound was just a low-frequency sine wave,
this wouldn’t have much of an effect, since each sample
would be similar to its the one before. But if you had a very
high frequency sine wave, then each successive sample
would be very different, and this procedure is essentially
using them to nullify one another. Thus this is a simple
low pass filter, as shown in Figure 109. It is smoothing the
signal, reducing the amplitude of the high frequencies.

b1    

+x(n) y(n)

Delay

b0    

Figure 107 First-order Finite Impulse Re-
sponse (FIR) filter. See Figure 106 for expla-
nation of these symbols.

A filter of this type is called a Finite Impulse Response
or FIR filter. The filter is finite because if x(n) is (say) 1.0
at n = 0 but 0.0 for n > 0 thereafter — that’s the impulse —
the filter will exhibit some interesting value for y(n = 0)
and y(n = 1), but after that, it’s always y(n > 1) = 0.0.
It’s common to describe this filter using a filter diagram, as
shown in Figure 107.

+x(n) y(n)

Delay– a1

b0    

Figure 108 First-order simple Infinite Impulse
Response (IIR) filter.

The output of the filter y(n) = b0x(n) + b1x(n− 1) is
entirely based on the current input x(n), plus the input
x(n− 1) delayed exactly one timestep prior. Because we
only need information one timestep back, this is known as
a first-order filter.78

Now consider the filter in Figure 108. The output of
this filter is specified a little differently. It’s of the form

77As a computer science guy, I’d use t for time, but n is the electrical engineering convention.
78If you increase the length of the delay, this becomes a feedforward comb filter. We’ll discuss that more in Section 10.
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Figure 109 Effects of the first-order digital filters from Figures 107 and 108 on a signal consisting of two sine waves:
f (x) = sin(x/100) + sin(x × 10). The high-frequency sine wave is tamped down, but the low-frequency wave is
preserved. Note that the amplitude has also changed (from around 2 to around 1), as these are not unity gain filters.

y(n) = b0x(n)− a1y(n− 1). This is a simple form of an Infinite Impulse Response or IIR filter.79

This filter is infinite in the sense that if x(n) is (say) 1.0 at n = 0 but is 0.0 for n > 0 thereafter — the
impulse again — the filter may continue to exhibit some non-zero value for y(n) forever, as it’s
organized as a kind of feedback loop. It shouldn’t surprise you that because of the feedback loop
this kind of filter can be unstable. This filter is first-order because, once again, we’re only going
back in time by 1 (this time, by y(n− 1) rather than x(n− 1)).

Note that the a1 is subtracted: we’ll get back to that.

b1    

+x(n) y(n)

Delay

Delay b2    

b0    

Finite Impulse Response (FIR)

+x(n) y(n)

Delay– a1

Delay– a2

b0    

Infinite Impulse Response (IIR)

Figure 110 Simple second-order filters

Figure 109 shows the effect of these two filters on a
signal consisting of the mixture two sine waves, a low-
frequency sine wave and a high-frequency one. As you can
see, they are effective at tamping down the high frequency
sine wave while preserving the low-frequency one. Note
however that they also have changed the overall amplitude
of the signal: the degree to which a filter does this is called
the gain of the filter. Ideally we’d like a unity gain filter,
that is, one which doesn’t muck with the amplitude; but if
we must, we can live with it and just re-amplify the signal
ourselves after the fact. 80

Higher Order Filters A second order filter requires in-
formation two steps back. The second order extension of
the FIR filter shown earlier is y(n) = b0x(n) + b1x(n− 1) +
b2x(n− 2), and the second order extension of the simple
IIR filter shown earlier is y(n) = b0x(n) − a1y(n − 1) −
a2y(n− 2). You can diagram these filters by stacking up de-
lay modules, as shown in Figure 110. Indeed, you can make
third-order, fourth-order, and in general nth-order filters
by stacking up more delay modules in the same pattern.

79If you increase the length of the delay, this filter becomes a feedback comb filter. We discuss that in Section 10.
80The filters shown here are linear filters: the most common kind. Consider a sound X = 〈x0, x1, ...〉. A filter y(n)

is some function of X, that is, y(n) = f (X, n). In a linear filter, the filter doesn’t change with a louder sound (it just
gets louder), and filtering two sounds added together is the same thing as filtering them separately and then adding
them. That is, ∀g : f (gX, n) = g f (X, n), and for any two X1 and X2, f (X1 + X2, n) = f (X1, n) + f (X2, n). There also
exist nonlinear filters which are more difficult to design and use but can often produce better results.
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+ y(n)

Delay– a1

Delay– a2

b1    Delay

Delay b2    

x(n) b0    

Figure 111 A full second-order IIR filter (Direct Form I).

The full Infinite Impulse Response (IIR) filter
consists of both the FIR and the basic IIR filters
shown so far. The general pattern for a second or-
der IIR filter is shown in Figure 111 and is known
as the Direct Form I of a digital IIR filter.

This diagram corresponds to the equation

y(n) = b0x(n) + b1x(n− 1) + b2x(n− 2)
− a1y(n− 1)− a2y(n− 2)

By the way, there are other forms than just Di-
rect Form I. For example, consider Direct Form
II is shown in Figure 112 at right. This form re-
arranges things to reduce the number of delays.
However, because there are two addition points,
it’s more complex in dealing with issues such as
overflow when using fixed-point arithmetic. We’ll
stick with Direct Form I.

+ y(n)

Delay– a1

Delay– a2 b1    

b2    

x(n) b0     +

Figure 112 Full second-order IIR filter (Direct Form II).

Here’s one advantage to subtracting
all the ai values: because it allows us to
rearrange the equation so that all the y
elements are on one side and all the x el-
ements are on the other, showing the sym-
metry of the thing:

y(n) + a1y(n− 1) + a2y(n− 2)
= b0x(n) + b1x(n− 1) + b2x(n− 2)

Cute! In general, we have filters of the form:81

y(n) + a1y(n− 1) + · · ·+ aNy(n− N) = b0x(n) + b1x(n− 1) + · · ·+ bMx(n−M)

This is pretty simple to implement in an algorithm. One note however: when computing our
first few samples, the algorithm relies on “previous” samples which don’t exist yet. For example,
to compute y(0), we may need x(−1). What we’ll do is define those to be zero. This is called zero
padding. And we have:

Algorithm 14 Initialize a Digital Filter
1: N ← number of y delays
2: M← number of x delays

3: Global y← 〈y1...yN〉 array of N real values, initially all zero . Note: 1-based array
4: Global x ← 〈x1...xM〉 array of M real values, initially all zero . Note: 1-based array

81We don’t need or want an a0, and it doesn’t matter anyway, because if you insisted on it you could always make
one by multiplying all the terms by whatever non-zero a0 you wanted.
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Algorithm 15 Step a Digital Filter
1: a← 〈a1...aN〉 array of N real values . Note: 1-based array
2: b← 〈b1...bM〉 array of M real values . Note: 1-based array
3: b0← real value . This is “b0”, by default 1
4: x0← real value . Current input
5: Global y← 〈y1...yN〉 array of N real values . Note: 1-based array
6: Global x ← 〈x1...xM〉 array of M real values . Note: 1-based array

7: sum ← x0× b0
8: for n from 1 to N do
9: sum ← sum − an × yn

10: for m from 1 to M do
11: sum ← sum + bm × xm

12: for n from N down to 2 do . Note backwards
13: yn ← yn−1

14: y1 ← sum
15: for m from M down to 2 do . Note backwards
16: xm ← xm−1

17: x1 ← x0
18: return sum

7.2 Building a Digital Filter

So far we’ve only seen a (trivial) low pass filter. But it turns out that with higher-order filters, and
with the right choice of constants, we can create all sorts of filter designs. At this point we still
have no idea (1) what order our filter should be nor (2) what the constants ai... and bj.. should be to
achieve our goals. How do we figure this out? Here’s the general process we’ll follow.

1. First we determine the behavior of the filter we want. Though we’re ultimately building a
digital filter, we’ll start by cooking up the requirements in the continuous realm, as if we
were planning on building an analog filter.

2. We’ll then choose the so-called poles and zeros of the analog filter in the Laplace domain, a
complex-number space, which will achieve this behavior. The poles and zeros collectively
define the transfer function of the filter which explains its behavior.

3. We can verify this behavior pretty easily by using the poles and zeros to directly plot the
amplitude and phase response. This is typically plotted using a Bode plot.

4. There is no exact conversion from a continuous (analog) filter to a digital filter: rather we will
do an approximation. To do this, we will map the transfer function from the Laplace domain
to a different complex-number space, called the Z domain. The Z domain makes it easy to
build a digital filter, but there is no straightforward conversion from Laplace coordinates to
Z coordinates. Instead we’ll use an approximate conversion called the bilinear transform.
Converting an analog filter design to a digital design is called discretizing the filter.
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5. Once the transfer function is in the Z domain, it’s simple to extract from it the coefficients
ai.... and bj.... with which we will build the digital filter in software.

6. Alternatively one could skip the Laplace domain and just define the poles and zeros in the Z
domain (and in fact designers do this as a matter of course). We’ll also discuss that strategy.

7. We’ll also discuss composing multiple filters to create a more complex one.

Along the way, we will derive the transfer functions (in both the Laplace and Z domains) of
well known filters which can be used in a basic subtractive synthesizer.

7.3 Transfer Functions in the Laplace Domain

The Laplace domain82 is a 2D complex space which is used to describe the behavior of a continuous
(not discrete) filter such as is found in an analog synthesizer. The x-axis is the real axis and the
y-axis is the imaginary axis. A complex number in the Laplace domain is by convention called s.

To describe the behavior of a filter, we start with its transfer function H(s). This function
relates the input X(s) of some kind of system to its output Y(s), that is, Y(s) = H(s)X(s). It’s more
commonly written as the ratio between X(s) and Y(s), as H(s) = Y(s)

X(s) . Both Y(s) and X(s) are (for
our purposes) polynomials in s. A filter is a system and so it has a transfer function: X(s) describes
the frequencies of the input sound and Y(s) is the output.

It turns out that we can use the transfer function to analyze the frequency response of the filter,
that is, how a filter changes the amplitude and phase of a partial of any given frequency. To do
this, we first need to understand that the Laplace domain doesn’t use the same units of measure for
frequency as we do. We’re using Hertz, that is, cycles per second; but we’ll need to convert that to
angular frequency ω (in radians per second). It’s easy: angular frequency 2πω = 1 Hz. So 1000
Hz is 2π × 1000 radians per second.

Next we need to understand that in the Laplace domain, frequency is the imaginary component
of the complex number s (the real component is zero, at least for audio).83 So we’ll use s = iω.

Example. If we want to plug f = 1000 Hz into our transfer function, we’ll use

H(s) = H(iω) = H(i 2π f ) = H(i 2π 1000) ≈ H(i 6283.185) ≈ Y(i 6283.185)
X(i 6283.185)

The output of H is a complex number which describes both the change in phase and in amplitude
of the given angular frequency. Importantly, if we wanted to know the amplitude response of the
filter, that is, how our filter would amplify a partial at a given angular frequency ω, we compute
the magnitude84 of |H(iω)| =

∣∣∣ Y(iω)
X(iω)

∣∣∣ = |Y(iω)|
|X(iω)| .

Example. If H(s) = s2−4
s2+s+2 , and we wanted to know the amplitude change at frequency

1/π Hz (I picked that to make it easy: 1/π Hz is ω = 2), we could do:

|H(s)| = |H(iω)| = |H(2i)| = |(2i)2 − 4|
|(2i)2 + 2i + 2|

=
| − 4− 4|
| − 4 + 2i + 2| =

| − 8|
| − 2 + 2i| =

8√
(−2)2 + (2)2

=
√

8

82The Laplace domain is called a domain for a reason: it’s closely related to the frequency domain from Section 2. But
don’t let that confuse you here.

83By the way, I’m using i throughout this Section to denote imaginary numbers as is customary in math and computer
science, but electrical engineers use j because they already use i for electrical current.

84The magnitude of a real number is just its absolute value. The magnitude of a complex number a + bi is
√

a2 + b2.
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We can also compute the filter’s phase response — how much the phase shifts for partials at a
given frequency — as ∠H(iω), where ∠(a + bi) = tan−1 a

b . Using our example:

H(s) =
s2 − 4

s2 + s + 2
H(2i) =

(2i)2 − 4
(2i)2 + (2i) + 2

= 2 + 2i ∠H(2i) = ∠(2 + 2i) = tan−1
(

2
2

)
=

π

4

7.4 Poles and Zeros in the Laplace Domain

Given our transfer function H(s) = Y(s)
X(s) we can determine the behavior of the filter from the roots

of the equations X(s) = 0 and Y(s) = 0 respectively. The roots of Y are called the zeros of the
transfer function, because if s was any of the roots of Y(s) = 0, all of H(s) would be equal to zero.
Similarly, if s was a root of X(s) = 0, then H(s) would be a fraction with zero in the denominator
and thus go to infinity. The roots of X(s) are thus called the poles of the transfer function: think of
them making the equation surface rise up towards infinity like a tent with a tent pole under it.

Example. Let’s try extracting the poles and zeros. We factor the numerator and denominator
of the following transfer function:

H(s) =
Y(s)
X(s)

=
2s2 + 2s + 1
s2 + 5s + 6

=

(
s +

( 1
2 +

1
2 i
)) (

s +
( 1

2 − 1
2 i
))

(s + 3) (s + 2)

From this we can see that the roots of Y(s) = 0 are − 1
2 − 1

2 i and − 1
2 +

1
2 i respectively, and the roots

of X(s) = 0 are −3 and −2 respectively. The factoring process looks like magic, but it’s just the
result of the quadratic formula, which you no doubt learned in grade school: for a polynomial of
the form ax2 + bx + c = 0 the roots are −b±

√
b2−4ac

2a .
Example. Let’s try another example:

H(s) =
Y(s)
X(s)

=
1

5s− 3
=

1
5(s− 3

5 )

Thus there are no roots of Y(s), and the single root for X(s) is 3
5 .

Finding roots gets hard for higher-order polynomials, but thankfully we won’t have to do it!
Instead, to design a filter we’d often start with the roots we want — the zeros and poles based on the
desired filter behavior — and then just multiply them to create the transfer function polynomials.

7.5 Amplitude and Phase Response

If we already have the roots we want, it’s easy to determine what the filter does to the phase and
amplitude of a partial. Recall that the magnitude (amplitude response) of a filter is |H(iω)| =
|Y(iω)|
|X(iω)| . If we have factored Y and X into their poles p1, ..., pn and zeros z1, ..., zm, then this is just

|H(iω)| = |Y(iω)|
|X(iω)| =

|(iω− z1)(iω− z2)....(iω− zm)|
|(iω− p1)(iω− p2)....(iω− pn)|

=
∏j |(iω− zj)|
∏k |(iω− pk)|

We can also compute the phase response — how much the phase shifts by — as

∠H(iω) = ∑
j
∠(iω− zj)−∑

k
∠(iω− pk)
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Figure 114 (Left) relationship between a pole p, the current frequency iω, and its impact on the magnitude of the
amplitude at that frequency. (Right) two poles and a zero and their respective magnitudes. In this example, the amplitude
at iω is |iω− p1| × |iω− p2| × 1/|iω− z1|.

Remember that the magnitude of a complex number |a + bi| is
√

a2 + b2 and its angle ∠(a + bi)
is tan−1 b

a .
Example. Given our previous poles and roots, the magnitude of H(2i) is:

|H(2i)| = |2i− (− 1
2 − 1

2 i)| × |2i− (− 1
2 +

1
2 i)|

|2i− (−3)| × |2i− (−2)|

=

∣∣ 1+5i
2

∣∣×
∣∣ 1+3i

2

∣∣
|3 + 2i| × |2 + 2i|

=

√
26
2

√
10
2√

13
√

8
=

√
5

4
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Figure 113 Bode plot of the
amplitude response (top)
and phase response (bot-
tom) of a filter with zeros
− 1

2 − 1
2 i and − 1

2 + 1
2 i, and

with poles −3 and −2.

In fact, we can easily plot the magnitude of the filter for any value of
ω, as shown in Figure 113. The plots shown are a classic Bode plot of the
amplitude and phase response. Note that the x axis is on a log scale, and
(for the amplitude plot up top) the y axis is also on a log scale.

It’s easy to conceptualize all this by considering a complex plane as
shown in Figure 114. The current frequency iω, is a positive point on the
imaginary (y) axis. As frequency sweeps from low to high, the scaling
effect of a pole p on the magnitude at frequency iω is simply the distance
between them. Similarly, the scaling effect of a zero z on a magnitude at
the frequency is 1/distance. These effects are multiplied together for all
the zeros and poles.

Thus if we know the poles and zeros of our filter, we can compute the
amplitude change and the phase change for any frequency in the signal
to which the filter is applied.

7.6 Pole and Zero Placement in the Laplace Domain

How do you select poles and filters that create a desired effect? This is a complex subject: here we
will only touch on a tiny bit of it to give you a bit of intuitive feel for the nature and complexity of
the problem. First, some rules:
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Figure 116 (Left) Position of single pole at −p. (Center) Bode plot of the amplitude response of the filter. Boldface
line represents idealized filter (and useful as a rule of thumb) while the dotted line represents the actual filter. At the
idealized cutoff frequency (p) the real filter has dropped 3 dB. This being a one-pole filter, at the limit the roll-off is a
consistent 6 dB per octave. (Right) Bode plot of the phase response of the filter. Again, the boldface line represents a
useful rule-of-thumb approximation of the filter behavior, whereas the curved dotted line represents the actual behavior.
Phase begins to significantly change approximately between p/10 and p× 10.

• Poles either come in pairs or singles (by themselves). A single pole is only permitted if it lies
on the real axis: that is, its imaginary portion is zero. Alternatively poles can exist in complex
conjugate pairs: that is, for a pair of poles 〈p1, p2〉, if p1 = a + bi, then p2 = a− bi. One is
above the imaginary axis by b and one is below by b. See Figure 115.

• The same goes for zeros. This should make sense given that poles and zeros are just roots of a
polynomial equation, and roots are either real or are complex conjugate pairs.

• Poles must be on the left hand side of the complex plane: that is, they must have zero or
negative real parts. Otherwise the filter will be unstable. This rule does not hold for zeros.

Im

Re

p

r

r

Figure 115 Two poles as
a complex conjugate pair.
The value p is the same as
in Figure 116. The value r is
related to the degree of res-
onance in the filter.

One simple intuitive idea to keep in mind is that a pole generally will
cause the slope of the amplitude portion of the Bode plot to go down, while
adding a zero generally will cause it to go up. We can use this heuristic to
figure out how to build a filter whose amplitude characteristics are what
we want.

Let’s start with a single pole lying at −p on the real (x) axis, as shown
in Figure 116. As revealed in this Figure, a pole causes the amplitude to
drop with increasing frequency. Since this is a single pole, the roll-off will
be 6 dB per octave (recall that Bode plots are in log scale in frequency and
in amplitude). The amplitude response of the ideal filter would look like
the boldface line in the Figure (center), but that’s not possible. Rather, the
filter will drop off such that there is a 3 dB drop between the idealized
filter and the actual filter at the cutoff frequency, which is at .... p!

A filter will also change the phase of partials in the signal. A typical
phase response is shown in Figure 116 (right), Again, the boldface line shows the idealized (or in
this case more like fanciful) response.
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Figure 117 (Left) positions of two poles and two zeros on the real axis. (Right) Approximate Bode plot showing impact
of each pole and zero in turn. Bold line shows final combined impact: a band reject filter of sorts. Gray bold lines are the
roll-offs of each filter starting at their respective cutoff frequency points. Note that because the figure at right is in log
frequency, to produce the effect at right would require that the poles and zeros be spaced exponentially, not linearly as
shown; for example, p1 = 1, z1 = 10, z2 = 100, p2 = 1000.

Now consider two poles. If the poles are not on the real axis, they must be complex conjugates,
as shown in Figure 115. Note that the distance r from the real axis is associated with the degree of
resonance in the filter. If all the poles are on the real axis, then r = 0 and the filter has no resonance.
If you think about it this means that a one pole filter cannot resonate since its sole pole must lie on the
real axis. Second order (and higher) filters can resonate because they have two poles and thus can
have complex conjugate pairs. Additionally, if you have two poles, either as a complex conjugate
pair, or stacked up on top of one another on the real axis, they essentially double the roll-off at p.
Thus the roll-off is now 12 dB.85

We’ve seen that the presence of a pole will cause the amplitude response to drop over time.
Correspondingly, the presence of a zero will cause the amplitude to rise by the same amount.
Furthermore, the distance p of the pole or zero from the imaginary axis (its negative real value)
roughly corresponds to when the pole or zero starts having significant effect: that is, p corresponds
to the cutoff frequency for that pole or zero.

We can use this to cause poles and zeros to approximately act against one another. Consider
the two-pole, two-zero filter shown in Figure 117. At p1 the first pole comes into effect, and begins
to pull the amplitude down. Then at z1 the first zero comes into effect, and begins to pull the
amplitude up: at this point p1 and z1 effectively cancel each other out, so the amplitude response
stays flat. Then at z2 the second zero comes into effect: combined with z1 it overwhelms p1 and
begins to pull the response up again. Finally at p2 the final pole takes effect and things even out
again. Behold, a band reject filter.86

Gain As discussed before, these filters can also change the overall amplitude, or gain, of the
signal. We’d like to avoid having a change at all (that is, we’d want a unity gain filter), or at least
be able to control the gain. Here we’ll just cover some basics. In general a first-order low pass filter
with a gain of K has a transfer function of the form:

H(s) = K
1

τs + 1
85That should sound familiar: in the synthesizer world, 2-pole filters are also (somewhat incorrectly) referred to

as “12 dB” filters. At this point, you might be able to surmise why 4-pole filters are also often referred to (even more
incorrectly) as “24 dB” filters.

86I’m not discussing the phase response, since it’s not as important for us. Consider yourself fortunate.
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Now consider a low pass filter with a single pole −p1. It has a transfer function

H(s) =
1

s + p1
=

1
p1

1
s/p1 + 1

So K = 1/p1. We’d like K = 1, so we need to multiply by p1, resulting in

H(s) =
p1

s + p1
=

1
s/p1 + 1

In general, for a multi-pole low pass filter −p1, ...,−pi, we need to have p1 × ...× pi in the
numerator to make the filter have unity gain. Thus we have:

H(s) =
p1 × ...× pi

(s + p1)× · · · × (s + pi)
=

1
(s/p1 + 1)× · · · × (s/pi + 1)

Just for fun, let’s consider the two-pole low pass case, with p1 = p2 = p. This implies that the
two poles are stacked on top of each other and thus must be on the real axis.

H(s) =
1

(s/p + 1)× (s/p + 1)
=

1
s2

p2 +
2s
p + 1

Compare this equation to Equation 3 on page 91. This is effectively a special case of the low pass
unity-gain second-order filter discussed in Section 7.7. You might try working out what happens
when p1 and p2 are complex conjugates, and its relationship to Equation 3.

7.7 Analog Second-Order Filters

Now let’s build some standard second-order analog filters. In this Section we’ll define the transfer
functions for these filters, and derive their poles, zeros, and amplitude response. In Section 7.10
we’ll then convert these filters to their digital filter forms.

A first-order filter (discussed later in Section 7.12) has essentially no parameters: you can make
a trivial low-pass or high-pass filter. But as the order of a filter increases, so does the number
parameters with which we may play to shape its frequency response. Striking the middle ground
are second-order filters. Basic second-order filters can come in low-pass, high-pass, band-pass, and
notch configurations, and they all have one major tweakable parameter: resonance.

All second-order unity gain filters have the same basic transfer function in Laplace:

H(s) =
N(s)

s2

ω2
0
+ s

Qω0
+ 1

where s is the (complex) frequency, Q ≥ 0 is the desired (real valued) resonance quality factor, and
ω0 is the desired (real valued) cutoff frequency. N(s) is a polynomial which varies for different
kinds of filters (low pass, high pass, etc.) Recall that Q =

√
1/2 is the dead-flat position (above

which resonance starts peaking). If you set the resonance to this minimum, this transfer function
degenerates to a well known filter called a second-order Butterworth filter (recall Figure 102).

You’ll often see this equation in the literature without any ω0: that is, H(s) = N(s)
s2+ s

Q+1 . This is

the canonical form where ω0, our cutoff frequency, has been set to 1. To include the cutoff frequency,
just replace s with s

ω0
everywhere, including in whatever polynomial N(s) is.
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Low Pass For a low pass second-order filter at unity gain, N(s) = 1. Thus

H(s) =
1

s2

ω2
0
+ s

ω0Q + 1
(3)

The two poles are
(
− 1

2Q ±
√

1
(2Q)2 − 1

)
× ω0 and there are (of course) no zeros.87 To get the

amplitude response, we have:

H(iω) =
1

(iω)2

ω2
0

+ iω
ω0Q + 1

=
1

−ω2

ω2
0
+ iω

ω0Q + 1

LP = |H(iω)| = 1∣∣∣−ω2

ω2
0
+ iω

ω0Q + 1
∣∣∣
=

1∣∣∣(1− ω2

ω2
0
) + i ω

ω0Q

∣∣∣
=

1√(
1− ω2

ω2
0

)2
+
(

ω
ω0Q

)2

High Pass A high pass second-order filter at unity gain has N(s) = s2

ω2
0
. So

H(s) =
s2

ω2
0

s2

ω2
0
+ s

ω0Q + 1

The poles are the same as the low pass filter of course. The two zeros are simple: 0 and 0. To get
the amplitude response, we have:

H(iω) =

(iω)2

ω2
0

−ω2

ω2
0
+ iω

ω0Q + 1
=

−ω2

ω2
0

−ω2

ω2
0
+ iω

ω0Q + 1

HP = |H(iω)| =

∣∣∣−ω2

ω2
0

∣∣∣
∣∣∣−ω2

ω2
0
+ iω

ω0Q + 1
∣∣∣
=

√(−ω2

ω2
0

)2

× LP

Band Pass A band pass second-order filter at unity gain has N(s) = s
ω0Q . So

H(s) =
s

ω0Q
s2

ω2
0
+ s

ω0Q + 1

The poles are again same as the low pass filter. The sole zero is just 0. To get the amplitude
response, we have:

H(iω) =
iω

ω0Q

−ω2

ω2
0
+ iω

ω0Q + 1

BP = |H(iω)| =

∣∣∣ iω
ω0Q

∣∣∣
∣∣∣−ω2

ω2
0
+ iω

ω0Q + 1
∣∣∣
=

√(
ω

ω0Q

)2

× LP

87You can work this out from the quadratic formula followed by some rearranging: for a polynomial of the form

ax2 + bx + c = 0, the roots are −b±
√

b2−4ac
2a . In our case, a = 1

ω2
0
, b = 1

ω0Q , and c = 1.
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Figure 118 Relationship between the Laplace (left) and Z Domains (right). Notice that the entire (infinite) left half of the
Laplace plane is mapped to inside the unit circle in the Z plane. Whereas the cutoff frequency ω in the Laplace plane
goes up along the imaginary axis from 0 to ∞ as iω, in the Z domain it runs along the unit circle as eiωT , corresponding
to going from 0 to the Nyquist frequency. Note how the example poles and zeros are warped in the mapping. This
diagram is largely a rip-off, with permission, of Figure 33-2 (p. 609) of Steven Smith, 1997, The Scientist & Engineer’s Guide
to Digital Signal Processing, California Technical Publishing, available online at https://www.dspguide.com/.

Notch Finally, a notch second-order filter at unity gain has N(s) = 1 + s2

w2
0
. So

H(s) =
1 + s2

ω2
0

s2

ω2
0
+ s

ω0Q + 1

The poles are again the same. The two zeros are ±iω0. The amplitude response is:

H(iω) =
1 + (iω)2

ω2
0

−ω2

ω2
0
+ iω

ω0Q + 1
=

1− ω2

ω2
0

−ω2

ω2
0
+ iω

ω0Q + 1

Notch = |H(iω)| =

∣∣∣1− ω2

ω2
0

∣∣∣
∣∣∣−ω2

ω2
0
+ iω

ω0Q + 1
∣∣∣
=

√(
1− ω2

ω2
0

)2

× LP

7.8 Converting to Digital: the Z Domain and the Bilinear Transform

Now we’re ready to convert our analog filter to digital, so we can extract the coefficients of the filter
to plug into Algorithms 14 and 15. But there’s a problem. It turns out that the Laplace domain,
meant for analog filters, cannot be directly used to build digital filters. To do this, we need our poles
and zeros in a completely different complex-number space called the Z domain, from which we can
directly extract the information we need to build a digital filter. While H(s) is a transfer function in
Laplace, H(z) is a transfer function in Z. The mapping from one to the other is strange: the entire
left hand side of the Laplace domain (the negative real region) gets warped and squished to within
the unit circle of the Z domain, as shown in Figure 118. In the Laplace domain, frequency ω goes
from 0 to ∞, represented as iω going up the imaginary axis. But in the Z domain, frequency only
goes from 0 to Nyquist, traveling along the upper border of the unit circle as eiωT. T is the sampling
interval, the inverse of the sampling rate. If you’re sampling at 44.1KHz, then T = 1/44100.
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Figure 119 Comparison of Magnitude (Amplitude) Responses of equivalent second-order low-pass analog and digital
filters. A Laplace Domain filter with resonance Q = 2 is compared to an equivalent Z Domain filter converted at 44.1KHz
via a Bilinear Transform with c set up so that the filters all line up at the cutoff frequency (the gray vertical line). The
same two filters (in Laplace and Z Domains) are also compared without resonance. At cutoff frequencies of 500 and
1000 Hz the two are very nearly identical (The Laplace plot sits directly on top of Z and so hides it). By 16,000 Hz the
divergence between analog and digital amplitude response is significant.

While the Laplace domain is infinite, the Z domain only goes to Nyquist, and so to convert one
to the other we must squish the infinite space into the finite. Thus all transfer function mappings
from Laplace to Z are approximate and necessarily have failings. The most commonly used
approximate mapping is called the bilinear transform. It looks like this:88

s = c
z− 1
z + 1

The primary part of this conversion is z−1
z+1 , which has the property that, in the Z domain, you

can still use |H(eiω)| to compute the amplitude response just like you’d compute it in Laplace with
|H(iw)|. Phase response is also similar, with a few tweaks.

But because we’re mapping the (0...∞) frequencies of the Laplace domain into the (0... Nyquist)
frequencies of Z, this necessarily subjects the frequencies to a nonlinear frequency warping. Thus
we cannot create exactly the same filter response in Z that we can in Laplace, though we can try to
match the responses as best we can by adjusting the c constant. Normally we’d set c so that the
Laplace and Z amplitude responses have equal value at the cutoff frequency.89 This is done by
setting c as:

c = ω0
cos(ω0T/2)
sin(ω0T/2)

= ω0 cot(ω0T/2)

88The bilinear transform is sometimes written as s = c 1−z−1

1+z−1 . It’s the same thing.
89Outside of audio, one often sees the simpler c = 2/T, which lines up the cutoff frequencies when they are very low.
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Figure 119 shows the effect of the bilinear transform. As can be seen for small cutoff frequency
values, the analog and digital frequency responses are quite close, but as the cutoff frequency
increases, they begin to diverge markedly.

Example. Let’s convert a Laplace transfer function to the Z domain. To keep things simple,
we’ll entertain the ridiculous notion that c = 2:

H(s) =
Y(s)
X(s)

=
s + 2
s2 − 1

−→ H(z) =
2 z−1

z+1 + 2
(
2 z−1

z+1

)2 − 1
=

2 z−1
z+1 + 2

4
( z−1

z+1

)2 − 1

Yuck. I have no idea how to simplify that. Fortunately, that’s what Mathematica is for:

H(z) =
4z2 + 4z

3z2 − 10z + 3

Now we’ll do two more steps. First we want all the z exponents to be zero or negative, with the
highest one in the denominator to be zero:

H(z) =
4z2 + 4z

3z2 − 10z + 3
× z−2

z−2 =
4 + 4z−1

3− 10z−1 + 3z−2

Last we want a 1 in the denominator:

H(z) =
4 + 4z−1

3− 10z−1 + 3z−2 ×
1/3
1/3

=
4/3 + 4/3z−1

1− 10/3z−1 + z−2

The Payoff These are the coefficients for our digital filter! Specifically if you have a digital filter
of the form

y(n) + a1y(n− 1) + · · ·+ aNy(n− N) = b0x(n) + b1x(n− 1) + · · ·+ bMx(n−M)

... then the transfer function, in the Z domain, is:

H(z) =
b0 + b1z−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aNz−N

Example. Let’s continue where we had left off. We had

H(z) =
4/3 + 4/3z−1

1− 10/3z−1 + z−2

Thus we have a second order digital filter with b0 = 4/3, b1 = 4/3, a1 = −10/3, a2 = 1.

Delay Notation Notice that a coefficient corresponding to a delay of length n appears alongside
z with the exponent form z−n. For this reason it is common in the digital signal processing world
to refer to an n-step delay as z−n and thus the one-step Delay element in our diagrams would be
commonly written as z-1 .
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7.9 Frequency Response and Pole and Zero Placement in the Z Domain

Even though the Z domain is shaped differently, computing the amplitude and phase response in
Z is surprisingly similar to doing it in Laplace. Given a frequency ω, we used iω in Laplace. For Z,
we’ll use eiωT instead, and add a little twist when computing the phase response.

Recall that the amplitude response of a unity gain analog filter, given poles pk and zeros zj, is:90

|H(s)| = |H(iω)| = |Y(iω)|
|X(iω)| =

∏j |(iω− zj)|
∏k |(iω− pk)|

In the Z domain, you’d more or less do the same thing, but with eiωT, which can be written91 as
cos(ωT) + i sin(ωT):

|H(z)| = |H(eiωT)| = |Y(e
iωT)|

|X(eiωT)| =
∏j |(eiωT − zj)|
∏k |(eiωT − pk)|

=
∏j |(cos(ωT) + i sin(ωT)− zj)|
∏k |(cos(ωT) + i sin(ωT)− pk)|

Remember that T is your sampling interval: if you were sampling at 44.1KHz, then T = 1/44100.
Phase is slightly different. Recall that phase response of a unity gain filter in Laplace is:

∠H(iω) = ∑
j
∠(iω− zj)−∑

k
∠(iω− pk)

In Z it’s in the same theme with a little twist at the beginning:

∠H(z) = ∠H(eiωT) = ωT(k− j)+∑
j
∠(cos(ωT)− i sin(ωT)− zj)−∑

k
∠(cos(ωT)− i sin(ωT)− pk)

Note the unexpected term ωT(k− j): j and k are the number of poles and zeros respectively. If
your transfer function has the same number of poles and zeros, then this term will equal 0.

Designing in Z Wouldn’t it be easier to define the poles and zeros in the Z domain, rather than
defining them in Laplace, then extracting the transfer function, and then converting the transfer
function via the Bilinear Transform? Sure it would.

We didn’t do that for a couple of reasons. First, since we’re largely modeling analog synths,
it’s important to learn about the Laplace domain, and how it relates to the Z domain. Second, in
the Laplace domain the poles and zeros have intuitive relationships with the amplitude and phase
response, and Z’s relationships are less intuitive. And third, most classic filters are in analog, with
well-understood properties; it makes more sense to study them in analog and then convert as best
we can to digital afterwords.92

But there’s no reason you couldn’t place poles and zeros directly in the Z domain itself, and
in fact many designers do this. The Bilinear Transform is a useful approximation, and we’ll take
advantage of it in the next two Sections (7.7 and 7.10). But defining poles and zeros directly in
the Z domain has its merits: you can avoid a lot of math if you get a hang of the impact of their
placement.93

90As a reminder, the magnitude of a complex number |a + bi| is
√

a2 + b2 and its angle ∠(a + bi) is tan−1 b
a .

91If you’ve forgotten, see Footnote 174 on page 162.
92This is very common. For example, Vadim Zavalishin’s The Art of VA Filter Design (VA referring to virtual analog

synths) goes in depth on historical filters and how to replicate them digitally: but the text largely stays in Laplace.
https://cs.gmu.edu/∼sean/book/synthesis/VAFilterDesign.2.1.0.pdf

93MicroModeler DSP is a great online tool for building filters in the Z domain directly from poles and zeros.
http://www.micromodeler.com/dsp/
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7.10 Digital Second-Order Filters

In Section 7.7 we covered analog second-order filters in the Laplace domain. Now let’s convert
them as best we can to the Z domain to extract their coefficients and build the filter.94 You’d think
that this conversion would be icky... and you’d be right. Thankfully we have tools that can do the
algebraic simplification for us! To make things clearer, I have added a substitution called J.

From the final equation in each filter case, it’s easy to derive the constants a1, a2, b0, b1, b2 as
simple equations of ω0, Q, and T. Conveniently, because all four filters have the same poles, they
also all have the same a1 and a2 constants!

Some things to remember. First, if you have a cutoff frequency of F Hz, then ω0 = 2π × F.
Second, neither ω0 nor Q should be 0. Third, we’ll assume c = ω0

cos(ω0T/2)
sin(ω0T/2) , where T is the sampling

interval (for example, if you’re sampling at 44.1KHz, then T = 1/44100).
In all these equations we can remove a 1

ω0
in several places by cancelling it with the correspond-

ing ω0 at the beginning of c. To do this simplification, I have added a substitution d for c which
strips the ω0 off. If you think about it, this is effectively converting the H(s) to its canonical form
where ω0 = 1 (recall Section 7.7) prior to doing the Bilinear Transform.

Low Pass

H(s) =
1

s2

ω2
0
+ s

ω0Q + 1

H(z) =
1

1
ω2

0

(
c z−1

z+1

)2
+ 1

ω0Q

(
c z−1

z+1

)
+ 1

Now substitute d = 1
ω0

c = cos(ω0T/2)
sin(ω0T/2)

=
1

(
d z−1

z+1

)2
+ 1

Q

(
d z−1

z+1

)
+ 1

=
Q + 2Qz + Qz2

(−d + d2Q + Q) + (−2d2Q + 2Q)z + (d + d2Q + Q)z2 Thanks to Mathematica

Now substitute J = d + d2Q + Q, and also multiply by 1/J×z−2

1/J×z−2

=
Q + 2Qz + Qz2

(−d + d2Q + Q) + (−2d2Q + 2Q)z + Jz2

=
1/J ×Qz−2 + 1/J × 2Qz−1 + 1/J ×Q

1/J × (−d + d2Q + Q)z−2 + 1/J × (−2d2Q + 2Q)z−1 + 1

94Instead of using these derivations, you might consider using the ones from a classic cookbook of equalizer and filter
coefficients found here: https://webaudio.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html They produce the
same results I believe. Note that you’ll need to divide all the coefficients by a0 (see the cookbook’s Formula 2), and the
“ω0” in the cookbook is actually ω0T, as stated in Step 2 (just after Formula 6).
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Thus we have the following coefficients for our digital filter:

Coefficient Value Because it’s multiplied by...

b0 1/J ×Q z0(= 1)
b1 1/J × 2Q z−1

b2 1/J ×Q z−2

a1 1/J × (2Q− 2d2Q) z−1

a2 1/J × (Q− d + d2Q) z−2

where J = Q + d + d2Q, and d = cos(ω0T/2)
sin(ω0T/2)

High Pass

H(s) =
s2

ω2
0

s2

ω2
0
+ s

ω0Q + 1

H(z) =
1

ω2
0

(
c z−1

z+1

)2

1
ω2

0

(
c z−1

z+1

)2
+ 1

ω0Q

(
c z−1

z+1

)
+ 1

Now substitute d = 1
ω0

c = cos(ω0T/2)
sin(ω0T/2)

=

(
d z−1

z+1

)2

(
d z−1

z+1

)2
+ 1

Q

(
d z−1

z+1

)
+ 1

=
d2Q− 2d2Qz + d2Qz2

(−d + d2Q + Q) + (−2d2Q + 2Q)z + (d + d2Q + Q)z2 Thanks to Mathematica

Now substitute J = d + d2Q + Q, and also multiply by 1/J×z−2

1/J×z−2

=
d2Q− 2d2Qz + d2Qz2

(−d + d2Q + Q) + (−2d2Q + 2Q)z + Jz2

=
1/J × d2Qz−2 − 1/J × 2d2Qz−1 + 1/J × d2Q

1/J × (−d + d2Q + Q)z−2 + 1/J × (−2d2Q + 2Q)z−1 + 1

Thus we have the following coefficients for our digital filter:

Coefficient Value Because it’s multiplied by...

b0 1/J × d2Q z0(= 1)
b1 1/J ×−2d2Q z−1

b2 1/J × d2Q z−2

a1 1/J × (2Q− 2d2Q) z−1

a2 1/J × (Q− d + d2Q) z−2

where J = Q + d + d2Q, and d = cos(ω0T/2)
sin(ω0T/2)
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Band Pass

H(s) =
s

ω0Q
s2

ω2
0
+ s

ω0Q + 1

H(z) =
1

ω0Q

(
c z−1

z+1

)

1
ω2

0

(
c z−1

z+1

)2
+ 1

ω0Q

(
c z−1

z+1

)
+ 1

Now substitute d = 1
ω0

c = cos(ω0T/2)
sin(ω0T/2)

=
1
Q

(
d z−1

z+1

)
(
d z−1

z+1

)2
+ 1

Q

(
d z−1

z+1

)
+ 1

=
−d + dz2

(−d + d2Q + Q) + (−2d2Q + 2Q)z + (d + d2Q + Q)z2 Thanks to Mathematica

Now substitute J = d + d2Q + Q, and also multiply by 1/J×z−2

1/J×z−2

=
−d + dz2

(−d + d2Q + Q) + (−2d2Q + 2Q)z + Jz2

=
1/J ×−dz−2 + 1/J × d

1/J × (−d + d2Q + Q)z−2 + 1/J × (−2d2Q + 2Q)z−1 + 1

Thus we have the following coefficients for our digital filter:

Coefficient Value Because it’s multiplied by...

b0 1/J × d z0(= 1)
b1 0 z−1

b2 1/J ×−d z−2

a1 1/J × (2Q− 2d2Q) z−1

a2 1/J × (Q− d + d2Q) z−2

where J = Q + d + d2Q, and d = cos(ω0T/2)
sin(ω0T/2)
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Notch

H(s) =
1 + s2

ω2
0

s2

ω2
0
− s

ω0Q + 1

H(z) =
1 + 1

ω2
0

(
c z−1

z+1

)2

1
ω2

0

(
c z−1

z+1

)2
+ 1

ω0Q

(
c z−1

z+1

)
+ 1

Now substitute d = 1
ω0

c = cos(ω0T/2)
sin(ω0T/2)

=
1 +

(
d z−1

z+1

)2

(
d z−1

z+1

)2
+ 1

Q

(
d z−1

z+1

)
+ 1

=
(Q + Qd2) + (2Q− 2d2Q)z + (q + d2q)z2

(−d + d2Q + Q) + (−2d2Q + 2Q)z + (d + d2Q + Q)z2 Thanks to Mathematica

Now substitute J = d + d2Q + Q, and also multiply by 1/J×z−2

1/J×z−2

=
(Q + d2Q) + (2Q− 2d2Q)z + (Q + d2Q)z2

(−d + d2Q + Q) + (−2d2Q + 2Q)z + Jz2

=
1/J × (Q + d2Q)z−2 + 1/J × (2Q− 2d2Q)z−1 + 1/J × (Q + d2Q)

1/J × (−d + d2Q + Q)z−2 + 1/J × (−2d2Q + 2Q)z−1 + 1

Thus we have the following coefficients for our digital filter:

Coefficient Value Because it’s multiplied by...

b0 1/J × (Q + d2Q) z0(= 1)
b1 1/J × (2Q− 2d2Q) z−1

b2 1/J × (Q + d2Q) z−2

a1 1/J × (2Q− 2d2Q) z−1

a2 1/J × (Q− d + d2Q) z−2

where J = Q + d + d2Q, and d = cos(ω0T/2)
sin(ω0T/2)
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7.11 Filter Composition

x(n) y(n)Filter 1 Filter 2

Figure 120 Filters in Series.

Another way to build a filter is by combining other filters.
This is pretty easy, because filters can be straightforwardly
composed to form more complex ones.

One particularly useful way to do this is to string multi-
ple filters in series, as shown in Figure 120. This has the effect of multiplying their transfer functions
(either in Laplace or in Z). Let’s say you had two filters A and B. Then you have:

Hseries(z) = HA(z)× HB(z) =
YA(z)
XA(z)

× YB(z)
XB(z)

Example. Let’s put our previous two-pole example (we’ll call it A) in series with another
two-pole filter:

Hseries(z) = HA(z)× HB(z) =
4/3 + 4/3z−1

1− 10/3z−1 + z−2 ×
1 + 3z−1 − 2z−2

1− 2z−2

=
4/3 + 28/3z−1 − 2/3z−2 − 2/3z−3

1− 10/3z− z−2 − 20/3z−3 − 1/2z−4

The important thing to notice here is what happened to the order of the filter. Previously
our highest order coefficients were z−2. Since we multiplied those together, our highest order
coefficients now can be up to z−4. In general, multiplying two filters of order a and b produces a
filter of up to order a + b. So if you want a four-pole filter, one way to get it is to put two two-pole
filters in series.95 In Sections 7.7 and 7.10 we saw some two-pole filters: if you wanted a four-pole
filter, you could just double-up those. But be aware that you’re not just changing the magnitude
(amplitude), but also the phase. Multiple filters in series can have quite an effect on phase distortion
or delay.

+x(n) y(n)Filter 1

Filter 2

Figure 121 Filters in Parallel.

Filters can also be combined in parallel, as shown in
Figure 121. The result is to add the two transfer functions:

Hparallel(z) = HA(z) + HB(z) =
YA(z)
XA(z)

+
YB(z)
XB(z)

Again, this can be done either in Laplace or in Z. This
can also increase the order of the filters, though the math
is less straightforward when XA(z) 6= XB(z).

You can guess the effect here: we’re just taking the sound, running it through two separate
filters, and then mixing the result. We’ll see an example of this in Section 7.13. Remember however
that filters change both the phase and the magnitude of a sound: if your filters are changing the
phase in different ways, then you’ll wind up with phase interference effects. This isn’t necessarily
bad: many sound effects (Section 10) rely on it. But you should be aware of the possibility.

In addition to adding two filters or sounds, you can subtract one from the other. To subtract a
sound (or filter output) A from another sound B, multiply the amplitude of A by −1, that is, invert
its wave; then put A and B in parallel. Subtraction makes it easy to build high pass, band pass, and

95Note that in an ideal math world, it won’t matter in what order you put the filters when in series. But in a digital
floating-point environment, you should expect somewhat different results due to numerical inaccuracy.
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notch filters from just one single low pass filter. For example, take a sound and run it through a low
pass filter, producing a sound with only the low frequencies remaining. Then subtract this sound
from the original sound wave: all that’s left are the high-frequency elements: you’re produced a
high pass filter. You can make a band pass filter by simply putting a low pass filter and a high-pass
filter in series. And finally, you can make a notch filter by subtracting a band pass filter from the
original sound.

7.12 First Order and Ladder Filters

Figure 122 Moog Low Pass Transistor Lad-
der Filter Circuit (Patent Filing). Note the
dashed box (center of three) labelled “Low-
Pass Filter” with four stacked transistor pairs
(the “ladder”), and the feedback line (73, bot-
tom left, gain-modulated by 74) providing res-
onance.©60

The Moog transistor ladder filter is a resonant four-pole
(24dB) low pass filter patented by Robert Moog in 1969.
It is easily the most famous filter in synthesizer history
because of its association with many Moog products, and
especially the Moog Minimoog Model D (see Figure 103,
page 80).

Moog’s filter is called a ladder filter because its
schematic, as shown in Figure 122 at right, has a series of
four pairs of transistors stacked on top of one another like
rungs in a ladder. Each of the pairs effectively forms one
6dB (1 pole) low pass filter. Related ladder filters use sim-
ilar components (such as diode ladder filters)96 to achieve
the same effect.

A basic ladder filter thus is just four 6dB filters in series,
plus a gizmo to add resonance. So before we can compose
those 6dB filters, we first need to talk a bit about them:

First Order Low Pass Filters The basic first-order filter
is a 6dB (1 pole) low pass filter.97 A unity gain filter of this
kind has a very simple transfer function:

H(s) =
1

s
ω0

+ 1

This filter has a very, very gradual roll-off. There is no
Q variable: first order filters cannot have resonance.

Converting this to a digital filter is straightforward. (For
reminders about c and T and ω0, see Section 7.10, page 96).
We start with the Bilinear Transform as usual:

H(z) =
1

1
ω0

c z−1
z+1 + 1

96There are other ladder filters with different dynamics, beyond the scope of this book.
97A first-order filter can also be a 6dB high pass filter. This has a transfer function of H(s) =

s
ω0

s
ω0

+1 = 1
ω0
s +1

. As an
exercise you might try converting this to Z and extracting its digital filter coefficients.
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Now substitute d = 1
ω0

c = cos(ω0T/2)
sin(ω0T/2)

H(z) =
1

d z−1
z+1 + 1

=
1 + z

(1− d) + (1 + d)z

Now multiply by z−1

z−1 , and substitute J = 1 + d

=
z−1 + 1

(1− d)z−1 + J
× 1/J

1/J

=
1/J × z−1 + 1/J

1/J × (1− d)z−1 + 1

Thus we have the following coefficients for our digital filter:

Coefficient Value Because it’s multiplied by...

b0 1/J z0(= 1)
b1 1/J z−1

a1 1/J × (1− d) z−1

where J = 1 + d and d = cos(ω0T/2)
sin(ω0T/2)

6dB
Filter

6dB
Filter

6dB
Filter

6dB
Filter+

k

X(s) Y(s)

Figure 123 Analog 4-pole low pass ladder filter structure.

4-Pole Low-Pass Ladder Filters A basic
4-pole low pass ladder filter consists of four
one-pole 6dB low pass filters in series (24dB
in total), plus a feedback loop to provide
resonance. Looking back at Moog’s design
in Figure 122, we can see both the ladder of
transistor pairs as well as the explicit feed-
back line. The overall structure is shown in Figure 123.

Let’s handle the four 6dB filters in series first. As discussed in Section 7.11, this just multiplies
their transfer functions:

H′(s) =
1

( s
ω0

+ 1)
× 1

( s
ω0

+ 1)
× 1

( s
ω0

+ 1)
× 1

( s
ω0

+ 1)
=

1
( s

ω0
+ 1)4

Now is a good time to understand that resonance in an analog filter is normally caused by
feedback: some of the output of the filter typically gets added back into the input. But so far we
have no feedback: we have just strung together four simple one-pole 6dB filters, and one-pole
filters cannot have resonance, no matter how many you string together. To make the filter resonant,
we need to explicitly introduce feedback. As shown in Figure 123, the ladder filter does this by
taking the output of the filter and feeding it directly into the input, multiplied by a gain of k.
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Figure 124 Poles of a 24dB low pass ladder fil-
ter, in Laplace, w0 = 1, for k = 0 (four stacked
poles), k = 1/16, k = 1/4, k = 1, and k = 4.
Notice that at k = 4 the right two poles cross
the imaginary axis, beyond which the filter is
unstable. Thus the maximum resonance for
this filter is at k = 4.

To revise our transfer function to accommodate this,
recall that the output of our basic filter (without the feed-
back portion) is Y(s) = X(s)H′(s), where X(s) is the input.
But with the feedback added, the input to the system is no
longer just X(s) but is X(s) + kY(s), that is, it is the input
plus a bit of the output rolled back in. The output is now:

Y(s) = (X(s) + kY(s))H′(s)

Solving for Y(s), we get

Y(s) =
H′(s)X(s)
1 + kH′(s)

And so our final transfer function H(s) is:

H(s) =
Y(s)
X(s)

=

H′(s)X(s)
1+kH′(s)

X(s)
=

H′(s)
1 + kH′(s)

=
1

1/H′(s) + k
=

1
( s

ω0
+ 1)4 + k

Note that there’s no Q value for resonance: instead we’ll rely on the k value. At k = 0 there’s no
feedback and hence no resonance. Resonance increases with more k. The four poles are arranged in
an interesting X-shaped configuration, located at −w0 ± (−1)3/4k1/4w0 and −w0 ± (−1)1/4k1/4w0
respectively. At k = 0, all four poles are located at −w0, but as k increases the poles head off in four
directions, as shown in Figure 124, until k = 4 when two of the poles cross the imaginary axis and
the filter becomes unstable.

5000 10000 15000 20000

0.5

1.0

1.5

Figure 125 Bode plot of the amplitude re-
sponse of a 24dB low pass analog ladder filter
with a cutoff at 4000 Hz and resonance values
of k = 0, k = 1, k = 2, and k = 3. Notice that
as k increases, the bass amplitude (near 0 Hz)
drops.

Ladder filters are notorious for having the bass drop
out with more resonance. As shown in Figure 125, as the
resonance increases, the bass (look in the 0 Hz to 2000 Hz
range) drops dramatically, and in some sense the filter
starts looking like a band pass filter. Our previous filters
didn’t have this problem (recall Figure 119, page 93). You
could fix it by scaling the volume to bring the bass back up:
but it’d increase the resonant peak amplitude too.

The transfer function for H(s) looks pretty simple, but
to convert this to the Z domain is kind of a mess because
of the power of four in the denominator. (For reminders
about c and ω0, see Section 7.10, page 96). Let’s get started:

H(s) =
1

( s
ω0

+ 1)4 + k

H(z) =
1

(
1

ω0
c z−1

z+1 + 1
)4

+ k

Now substitute d = 1
ω0

c = cos(ω0T/2)
sin(ω0T/2)

=
1

(
d z−1

z+1 + 1
)4

+ k
Oh boy, here we go...
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H(z) =
1+4z+6z2+4z3+z4

(1−4d+6d2−4d3+d4+k)+(4−8d+8d3−4d4+4k)z+(6−12d2+6d4+6k)z2+(4+8d−8d3−4d4+4k)z3+(1+4d+6d2+4d3+d4+k)z4
× z−4

z−4

=
z−4+4z−3+6z−2+4z−1+1

(1−4d+6d2−4d3+d4+k)z−4+(4−8d+8d3−4d4+4k)z−3+(6−12d2+6d4+6k)z−2+(4+8d−8d3−4d4+4k)z−1+(1+4d+6d2+4d3+d4+k)

Now set J = 1 + 4d + 6d2 + 4d3 + d4 + k and multiply by 1/J
1/J

=
1/J×z−4+1/J×4z−3+1/J×6z−2+1/J×4z−1+1/J

1/J×(1−4d+6d2−4d3+d4+k)z−4+1/J×(4−8d+8d3−4d4+4k)z−3+1/J×(6−12d2+6d4+6k)z−2+1/J×(4+8d−8d3−4d4+4k)z−1+1

Yuck! Thus we have the following coefficients:

Coefficient Value Because it’s multiplied by...

b0 1/J z0(= 1)
b1 1/J × 4 z−1

b2 1/J × 6 z−2

b3 1/J × 4 z−3

b4 1/J z−4

a1 1/J × (4 + 8d− 8d3 − 4d4 + 4k) z−1

a2 1/J × (6− 12d2 + 6d4 + 6k) z−2

a3 1/J × (4− 8d + 8d3 − 4d4 + 4k) z−3

a4 1/J × (1− 4d + 6d2 − 4d3 + d4 + k) z−4

where J = 1 + 4d + 6d2 + 4d3 + d4 + k and d = cos(ω0T/2)
sin(ω0T/2)

7.13 Formant Filters

Figure 126 First three male voice formants for an “Ahh”
sound, as simulated by three resonant bandpass filters
added together. Note the differences in frequency, ampli-
tude, and bandwidth among the three filters.

We conclude this Section with a short discussion
about modeling formants. The human vocal tract
can be thought of as a reed instrument: a pipe (the
throat, mouth, and nasal cavity) is attached to a vi-
brating reed (the vocal cords) through which air is
pumped via the lungs. Because it is fixed in shape,
the “pipe” resonates at certain frequencies regard-
less of the pitch of the sound being produced (that
is, regardless of the frequency of the vocal cord
vibration). As a result, the human vocal tract acts
essentially as a filter on the vocal cords: it emphasizes certain frequencies: these are the formants.

Formants are labelled f1, f2, ..., ordered from lowest frequency to highest. Each formant looks
very much like a resonant band pass filter: it has a frequency, a peak amplitude, and a bandwidth
(the width of the filter spread, normally handled via filter resonance).98 Different vowels are formed

98Bandwidth is the difference in frequency between the peak and the point where the amplitude has dropped by 3dB.
For a 2-pole bandpass filter, the resonance Q = formant peak frequency / bandwidth.
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by changing the shape of the tract (especially the mouth and tongue), and so each vowel has its
own set of formants with their own frequencies, amplitudes, and bandwidths.99 For similar reasons
formants also vary depending on the age or sex of the speaker, among other factors.

x(n)
Band Pass Filter

for Formant f1
+

Band Pass Filter
for Formant f2 

y(n)

Band Pass Filter
for Formant f3 

Band Pass Filter
for Formant f4 

etc...

g1

g2

g3

g4

Figure 127 Simulating formants by composing multiple
resonant band pass filters in parallel, multiplied by gains
and then summed.

It’s straightforward to model a vowel by cre-
ating a formant filter out of multiple resonant
bandpass filters, set to the right frequencies and
(via resonance) bandwidths, and mixed together
with the appropriate gains, as shown in Figure 127.
A diphthong100 could be modeled by morphing
from one vowel to another by modifying the filter
characteristics. That is, for each formant fi, we
smoothly interpolate from the first vowel’s fi fre-
quency to that of the second vowel, and similarly
the two amplitudes and bandwidths. Done right,
the input to the filters would be drawn from de-
tailed model of the vocal cords, but a sawtooth or
square wave might work in a pinch.

Formants in the human vocal tract don’t just affect vowels, but the whole gamut of speech
sounds. For example, sounds such as “s” or “t” or “ch” or “f” can be modeled by pushing a noise
source through a formant filter. And formants aren’t just for human speech: many resonating
cavities in musical instruments create formant effects and so formants can be used to model them.

Formant Synthesizers Models of the vocal tract are largely the domain of specialized speech
synthesizer software and hardware. There exists well-regarded software to model human singing,
such as Yamaha’s Vocaloid, but most music synthesizers with formant filters tend to use them as
an auxiliary effect to make an oscillator sound vaguely “human”. For example, the Kawai K5
(discussed in Section 3.5) included a fixed formant filter at the end of its pipeline.

Figure 128 Yamaha FS1R

There is one well-known exception in hardware: the
Yamaha FS1R. The FS1R was a full-throated attempt to in-
corporate formant filters as a central feature of its pipeline
in order to generate a wide range of unusual sounds, in-
cluding models of instruments, though obviously the human voice was a particular specialty. To
this end, the FS1R coupled formant filters to a sophisticated version of Frequency Modulation (or
FM) synthesis. Yamaha branded its formant filter architecture formant synthesis.

FM will be introduced later in Section 8. For purposes of discussion here, the FS1R sported
eight oscillators organized as FM operators (Section 8.3), some or all of which could be arranged to
output sound. The sound-producing oscillators were each pushed through their own dedicated
bandpass filters and then summed up. These eight bandpass filters could be customized per-
oscillator in many ways: but if the oscillators all made the same sound, the bandpass filters acted as
an up to eight-formant filter on the resulting output, producing a vowel. This would be effectively
the same result as in Figure 127.

99You’ll notice that I’m not providing a table of formants. Amazingly these tables vary quite considerably from
one another across the Internet. You might try Table III (“Formant Values”) in the back of the Csound Manual,
http://www.csounds.com/manual/html/MiscFormants.html

100A diphthong is a sound made by combining two vowels. For example, the sound “ay” (as in “hay”) isn’t really a
vowel — it’s actually the vowel “eh” followed by the vowel “ee”.
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To this the FS1R added eight more “unvoiced operators”: these were noise generators, and they
too could be pushed through their own individual bandpass filters and amplifiers with envelopes,
then summed up, resulting in consonants. The formant frequencies, pitches, and amplitudes of
the various voiced and unvoiced operators could then be controlled via a special sequencer to
produce words and phrases. Though it was well known for its voices, the FS1R’s FM + formants
architecture was capable of a broad range of synthesized musical sounds.
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8 Frequency Modulation Synthesis

Figure 129 Yamaha DX7.©61 (Repeat of
Figure 3).

In 1967, using a computer at Stanford’s Artificial Intelligence
Laboratory, composer John Chowning experimented with vi-
brato where one sine wave oscillator slowly (and linearly)
changed the frequency of a second oscillator, whose sound
was then recorded. As he increased the frequency of the first
oscillator, the resulting sound shifted from vibrato into some-
thing else entirely: a tone consisting of a broad spectrum of
partials. He then attached an envelope to the first oscillator and
discovered that he could reproduce various timbres, including
(difficult at the time) brass instrument-like sounds. This was
the birth of frequency modulation or FM synthesis.101

FM, or more specifically its more easily controllable version
linear FM, is not easy to implement in analog, and so did not
come into its own until the onset of the digital synthesizer age.
But when it did, it was so popular that it almost singlehandedly
eliminated the analog synthesizer market.

Figure 130 Yamaha YM3812 chip.©62

Yamaha had obtained an exclusive license to FM for mu-
sic synthesis from Stanford in 1973 (Stanford later patented it
in 1975), and began selling FM synthesizers in 1980. In 1983
Yamaha hit pay dirt with the Yamaha DX7, one of the, if not
the, most successful music synthesizers in history. The DX7
marked the start of a long line of commercially successful FM
synthesizers, largely from Yamaha, which defined much of the
sound of pop music in the 1980s and 1990s. Along with the
DX7, the Yamaha TX81Z rackmount synthesizer notably found its way onto a great many pop
songs due to its ubiquity in music studios.

FM synthesis then entered the mainstream with the inclusion of the Yamaha YM3812 chip
(Figure 130) on many early PC sound cards, such as the Creative Labs Sound Blaster series. From
there, the technique has since found its way into a myriad of video game consoles, cell phones, etc.
because it is so easy to implement in software or in digital hardware.

8.1 Frequency and Phase Modulation

In fact, nearly all FM synthesizers don’t do frequency modulation at all. Rather, they apply a
related method called phase modulation or PM. This isn’t bait-and-switch: phase modulation is
slightly different in implementation but achieves the same exact effect.102 Both phase and frequency
modulation are subsets of a general category of modulation methods called angle modulation.103

Phase modulation is easier to explain, so we’ll begin with that.

101The story of the birth of FM synthesis has been told many times. Here’s a video of Chowning himself telling it.
https://www.youtube.com/watch?v=w4g92vX1YF4

102Plus nobody’s ever heard of “phase modulation” or “PM” outside of music synthesis. When was the last time you
heard of a “PM radio”?

103Which for obvious reasons cannot be abbreviated “AM”.

107



Phase Modulation Let’s consider the output of a single sine-wave oscillator, called the carrier,
with amplitude ac and frequency fc, and which started at timestep t = 0 at phase φc:

y(t) = ac sin(φc + fct)

The value φc + fct is the oscillator’s instantaneous phase, that is, where we are in the sine wave
at time t. Let’s say we wanted to modulate this phase position over time. We could do this:

y(t) = ac sin(φc + fct + m(t))

The modulator function m(t) is doing phase modulation or PM. The instantaneous frequency
of this sine wave is the frequency of the sine wave at any given timestep t. It’s simply the first
derivative of the instantaneous phase, that is, it’s d

dt (φc + fct + m(t)) = fc + m′(t). Thus by
changing the phase of the sine wave in real time via m(t), we’re also effectively changing its
frequency in real time via m′(t).

Theoretically the modulator function could be anything, but they are very often oscillating
functions. For example, it would be reasonable for m(t) to be another sine wave,104 that is,
m(t) = am sin( fmt). As a result, the instantaneous frequency would be fc + am sin′( fmt) = fc +
am fm cos( fmt). Imagine if fm was small: this would effectively be a low frequency oscillator and it
would slowly push the instantaneous frequency of the carrier up and down, inducing vibrato. But
if fm was large, this would cause the frequency of the carrier to change radically before it even had a
chance to complete one period. This would create an entirely different-sounding wave. Depending
on the value of am we could control how much of an effect m(t) would have on the carrier. Thus
while fm would dictate the nature of the wave that the carrier was being mutated into, am would
could be used to largely specify the degree to which the mutation occurred.

Frequency Modulation Now let’s say we wanted to directly change the frequency in real time with
a function rather than indirectly via its derivative. That is, we want the instantaneous frequency to
be fc + m(t). Since we arrived at the instantaneous frequency in the first place by differentiating
over t, to get back to y(t), we integrate over t, and so we have:

y(t) = ac sin
(

φc +
∫ t

0
fc + m(x)dx

)

= ac sin
(

φc + fct +
∫ t

0
m(x)dx

)

Here, instead of adding m(x) to the phase, we’re effectively folding in more and more of it over
time. This direct modulation of frequency is called, not surprisingly, frequency modulation or FM.
To change the frequency by m(t), we just need to change the phase by some other function — in
this case, by

∫ t
0 m(x)dx. Either way, regardless of whether we use phase modulation of frequency

modulation, we’re changing the frequency by changing the phase (and vice versa).

104In fact, this is a very common scenario in many FM synthesizers, so it’s hardly far fetched!
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Phase and Frequency Modulation are Very Similar To hammer home just how similar phase
and frequency modulation are, let’s consider the situation where we are using a sine wave for m(...).
Carrier c will be modulated by m(t) = am sin(φm + fmt). In PM, we’d have

y(t) = ac sin(φc + fct + m(t)) = ac sin(φc + fct + am sin(φm + fmt)) (4)

In FM, let’s again modulate the instantaneous frequency using sine, that is, fc + m(t) = fc +
am sin(φm + fmt). Integrating this over t and we get

∫ t

0
fc + am sin(φm + fmx)dx = fct +

am

fm
(cos(φm)− cos(φm + fmt))

= fct +
am

fm
cos(φm)−

am

fm
cos(φm + fmt)

am
fm

cos(φm) is just a constant. Let’s call it D. So plugging this into the carrier, we have

y(t) = ac sin
(

φc + fct + D− am

fm
cos(φm + fmt)

)

= ac sin
(

φc + D + fct +
am

fm
sin(φm −

π

2
+ fmt)

) (5)

Note how similar this equation is to the phase modulation equation, Equation 4. They differ in
just a constant phase (φc versus φc + D and φm vs φm − π

2 ), and amplitude factor (am vs am
fm

). The
phases are typically disregarded anyway, so we can ignore them. The amplitude factor (which is
called the index of modulation later) will matter, but it’s just a constant change. The take-home
lesson here is: phase modulation and frequency modulation are not the same equation (one is in part
the first derivative of the other) but they can be used to produce the same result.

Linear and Exponential FM Analog subtractive synthesizers have been capable of doing fre-
quency (or, er, phase) modulation forever: just plug the output of a sine-wave oscillator module
into the frequency control of another sine-wave oscillator module, and you’re good to go. So why
wasn’t FM common until the 1980s?

There is a problem. The frequency control of oscillators in analog synthesizers is historically
exponential. Recall that most analog synthesizers were organized in volt per octave, meaning that
an increase in one volt in a signal controlling pitch would correspond to an an increase in one
octave, which is a doubling of frequency.105 Consider a sine wave going from −1 to +1 being used
to modulate the frequency of our oscillator. The oscillator has a base frequency of, say, 440 Hz.
At −1 the sine wave has cut that down by one octave to 220 Hz. At +1 it has pushed it up by one
octave to 880 Hz. But 440 is not half-way between 220 and 880: the frequency modulation is not
symmetric about 440, and the effect is distorted.

This kind of FM is called exponential FM, and it’s not all that usable. It wasn’t until the advent
of digital synthesizers, which could easily control frequency linearly, that we saw the arrival of FM
as discussed here, linear FM. With linear FM our sine wave would shift the frequency between
440− N and 440 + N, and so the modulation would be symmetric about 440.

105This is also discussed in Footnote 166.
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Figure 131 Change and spread of sidebands with increasing index of modulation (I). In all four of these graphs, fc = 440
Hz and fm = 40 Hz. As I increases, the spread (hence bandwidth) of sidebands does as well; and the pattern of sideband
amplitude, including the carrier at the center, changes. Negative amplitudes just mean a positive amplitude but shifted
in phase by π.

8.2 Sidebands, Bessel Functions, and Reflection

Just as was the case in amplitude modulation and ring modulation (see Section 6.6), frequency
modulation and phase modulation produce additional partials called sidebands. In FM and PM,
when both the carrier and modulator are sine waves, many sidebands spread out symmetrically
from both sides of the carrier’s partial ( fc), evenly spaced by fm. That is, there will be a partial
at fc ± α fm for α = 0, 1, 2, .... It is the complexity of the amplitudes of these generated sidebands
which makes frequency modulation an interesting synthesis method.

Most literature which discusses sidebands considers the simple situation of a single sine-wave
carrier being modulated by a single sine-wave modulator. In both phase modulation (Equation 4)
and frequency modulation (Equation 5) we saw that, disregarding phase, we had an equation of
roughly the form y(t) = ac sin( fct + I × sin( fmt)) if we assumed that the modulator was a sine
wave. The value I is known as the index of modulation, and it is a parameter that we can set.

Bandwidth and Aliasing One aspect of the index of modulation is its effect on the dropoff in
amplitude of the sidebands, and thus the bandwidth we have to deal with. The sidebands go on
forever, but a heuristic called Carson’s rule says that, for frequency modulation, 99% of all of the
power of the signal is contained in the range fc ± fm × (I + 1), and so we can assume that there are
only bI + 1c significant sidebands on each side.106 Recall that for PM, I = am, but for FM, I = am

fm
.

Let’s say that I = 1, and we’re playing a very high note (about 4000 Hz), and fm = 16× fc.
Then we will have sidebands out to 4000 + (4000× 16)× (1 + 1) = 132, 000 Hz. Yuck, that will
produce considerable aliasing. What to do? We have a couple of options.

• We could have a high sample rate, and then downsample, probably via windowed sinc
interpolation (Section 9.7). As an extreme example, imagine that we were sampling at
480 KHz (!) With a Nyquist frequency of 240,000 Hz, this is big enough to handle a sideband
at 132,000 Hz. Downsampling would automatically apply a low pass filter to eliminate all
frequencies higher than 22,050 Hz.

• We have to figure out how to prevent the wide bandwidth in the first place. One strategy
would be to limit the legal values of I and fm, or at least reduce the maximum value of I
when fm and fc are high.

106Or dI + 1e, whatever. Carson’s Rule is not exact. Consider when I = 0. Then y(t) = ac sin( fct + I × sin( fmt)) =
ac sin( fct) and there is no frequency modulation at all — we just have a single partial at fc — yet Carson’s Rule implies
that the bandwidth is fc ± fm × (I + 1) = fc ± fm, rather than 0 as it should be.
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Figure 132 Sideband reflection in FM, with a 220Hz carrier. (Left Figure) 40Hz Modulator: reflected negative sidebands
line up with positive sidebands, and the result sounds tonal (though with a much lower fundamental than the original
carrier). (Right Figure) 40× 4

π Hz Modulator: reflected negative sidebands do not line up and the sound is atonal.
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Figure 133 First eight orders of Bessel
functions of the First Kind, positive values
only (orders labeled in red).

Bessel Functions The index of modulation also comes into
play in determining the amplitude of each of the individual
sidebands. The specific amplitudes are tricky, and in fact the
carrier frequency fc may or may not be the loudest partial.
In short, the amplitude of each sideband is determined by a
Bessel function of the first kind. This complicated function
is denoted Jn(x), where n, an integer ≥ 0, is the order of
the function. Figure 133 shows the first eight orders, that is,
J0(x), ..., J7(x).

Figure 134 Sideband amplitudes by mod-
ulation index. Sideband numbers are inte-
gers shown as colored stripes. Note that
this surface drops below zero in places.

Here’s how it works. Given index of modulation I, then
J0(I) is the amplitude of the carrier, that is, the partial at fc.
Furthermore, Jα(I) is the amplitude of sideband numbers ±α,
located at fc ± α fm. These can get complicated fast. Figure 134
shows the amplitude of various sidebands, and the carrier
(sideband 0), for different modulation index (I) values. Fig-
ure 131 shows four cutaways from this graph for I values of
1, 2, 4, and 8. Some things to notice from these figures. First,
with a small modulation index, the spectrum of the sound
is just a few sidebands (indeed when I = 0, it’s just the car-
rier alone), but as the index increases, the number of effected
sidebands increases rapidly. Second, as the modulation index
increases, some sidebands, including the carrier, can drop in
amplitude, or go negative.107

Tonality and Reflection Think about the relationship be-
tween fm and fc. Consider first what happens when fm = fc.
Then the sidebands to the right of fc space out as 2 fc, 3 fc, and so on. These are harmonics of fc as
a fundamental. Furthermore, the sidebands to the left of fc space out as 0, − fc, −2 fc, −3 fc, etc.
But you can’t have negative frequencies, so what happens to them? They’re reflected back again, so
they appear as 0 (which just the DC offset), fc, 2 fc, 3 fc, and so on. Because fm = fc, these still line
up in frequency with fc and the sidebands to its right. Thus all the sidebands will be harmonics,
with fc as the fundamental (ignoring the DC offset), and the sound will be tonal.

107Don’t be put off by a negative amplitude. That’s just a positive amplitude with a phase that’s shifted by π.
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This is the case for any fm that is an integer multiple of fc with fm ≥ fc. Another interesting
situation occurs when fc is an integer multiple of fm and fm < fc. The reflected sidebands once
again match up and things are tonal, but fc is no longer the fundamental, because there were one
or more sidebands appearing to its left before reflection occurred. See Figure 132 (upper) for an
illustration of this.108

Overall, when fm
fc

is rational then the positive and reflected negative partials will be integer
multiples of some fundamental (maybe not fc), and we’ll get a tonal sound. But if fm

fc
is irrational,

then the reflected negative sidebands won’t line up with the positive sidebands, and the sound will
be inharmonic. That is, atonal, metallic, brash, or noisy.

8.3 Operators and Algorithms

We typically want the effect of a modulator on a carrier to change over time; otherwise the sound
would be static and boring. The most common thing to change over time is the amplitude of
each oscillator: this is typically done with its own dedicated envelope. Envelopes would thus
effect indexes of modulation as well as the volume of the final outputted sound. The pairing of an
oscillator with the envelope controlling its amplitude are together known as an operator. Thus we
often don’t refer to oscillators modulating one another but to operators modulating one another.

In the following examples, we’ll stick to phase modulation as the equations are simpler. We’ll
simplify Equation 4 to describe operators as functions being modulated by other operators, that is,
the output yi(t) of operator i is a function of the output of a modulating operator yj(t). And we’ll
ignore phase from now on. Accompanying this equation we can make a little diagram with the
modulator operator on top and the carrier operator on bottom:

yi(t) = ai(t) sin
(

fit + yj(t)
) j

i

So far we’ve just discussed a single carrier and a single modulator. But a modulator could easily
modulate several carriers. Imagine that the oscillators are called i, j, and k. We could have:

yi(t) = ai(t) sin
(

fit + yj(t)
)

yk(t) = ak(t) sin
(

fkt + yj(t)
)

i

j

k

Now, there’s no reason that a carrier couldn’t be modified by several modulators at once, with
their modulations added up:

yk(t) = ai(t) sin
(

fit + yi(t) + yj(t)
) j

k

i

... or for an operator to modulate another, while being itself modulated by yet another operator.

yj(t) = aj(t) sin
(

f jt + yk(t)
)

yi(t) = ai(t) sin
(

fit + yj(t)
)

i

j

k

108So what is the fundamental then? fc will be the fundamental when fc = fm as we’ve seen, or when 2 fc ≤ fm.
In other cases, to determine the fundamental, first set f ← fc. Then repeatedly perform f ← | f − fm| until either
f = fm or 2 f ≤ fm. At that point the ratio f : fm is in so-called normal form and f is the fundamental. See
https://www.sfu.ca/∼truax/fmtut.html for why this works.
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Figure 135 Operator modulation graphs (so-called “algorithms”) for the Yamaha DX7. Operators on the bottom layer
(with bare lines coming out from below) are mixed to produce the final sound. Other operators serve only as modulators.
Many algorithms sport self-modulating operators, and in a few cases (Algorithms 4 and 6) larger modulation cycles.

... or for an operator to modulate itself...

yi(t) = ai(t) sin ( fit + yi(t− 1)) i

... or for there to be a larger cycle in modulation.

yk(t) = ak(t) sin ( fkt + yi(t− 1))
yj(t) = aj(t) sin

(
f jt + yk(t)

)

yi(t) = ai(t) sin
(

fit + yj(t)
)

i

j

k

And of course there’s no reason why an operator has to be modulated by anyone else, that is,

yi(t) = ai(t) sin ( fit) i

The point is: the modulation mechanism in a patch is just a graph structure among some N op-
erators. Some FM synthesizer software allows fairly complex graphs (for example, Figure 136). But
many FM synths have followed an unfortunate tradition set by the Yamaha DX7: only allowing the
musician to choose between some M predefined graph structures. Yamaha called these algorithms.

The DX7 had six operators, each of which had a sine wave oscillator and an envelope to control
its amplitude. There were 32 preset algorithms using these six operators, as shown in Figure 135.
Note that in an algorithm, some operators are designated to provide the final sound, while others
are solely used to do modulation. In only three algorithms (4, 6, and 32) did an operator do both
tasks. Operators designated to provide sounds ultimately have their outputs summed together,
weighted by their operator amplitudes, to provide the final sound.
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Figure 137 Algorithms (left) and waveforms109 (right) of the Yamaha TX81Z. Operators on the bottom layer (which
have bare lines coming out from below them) are mixed together to produce the final sound: other operators serve only
as modulators. Several algorithms sport self-modulating operators.

Figure 136 OXE 8-operator FM software syn-
thesizer. Note the “modulation matrix” at
right, whose lower-diagonal structure implies
a full DAG is possible but not a cyclic graph
except for self-modulating operators.

The Yamaha FS1R (Section 7.13), had eight operators
and 88 algorithms; but the large majority of FM synths have
had just four, with a very limited set of algorithms. How-
ever, many of Yamaha’s 4-operator FM synthesizers some-
what made up for their limitation by offering oscillators
which could produce more than just sine waves. Perhaps
the most famous of these was the 4-operator, 8-algorithm, 8-
waveform Yamaha TX81Z, shown in Figure 138. The TX81Z
was a fixture in music studios, and so found its way onto
a great many songs in the late 1980s and 1990s.

Figure 137 shows the TX81Z’s eight algorithms and eight
possible waveforms. 4-operator synthesizers have since be-
come ubiquitous, having had made their way into numer-
ous PC sound cards, toy musical instruments, cell phones,
and so on.

8.4 Implementation

Figure 138 Yamaha TX81Z

FM is a perfect match for software. But how would you
implement it? Recall Equation 1 in the Additive Section,
page 28. There we were maintaining the current sine wave
phase for some oscillator i as:

x(t)i ← x(t−1)
i + fi∆t mod 1

...where ∆t was the sampling interval in seconds: for example, 1/44100 seconds for 44.1KHz. The
final output of this sine wave oscillator was:

y(t)i ← sin(2πx(t)i )× a(t)i

Let’s say that this oscillator i is being modulated by the output of one or more oscillators, whose
set is called Mods(i). Then for phase modulation we could update the state of the oscillator xi and

109It would appear that the waveforms are largely constructed out of pieces of a sine wave plus silence, and Yamaha’s
documentation would suggest exactly this. In fact the actual waves are slightly different from this: notably, the “peaky”
waves are more rounded and less peaky. But you get the idea.
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its final output yi as:

x(t)i ← x(t−1)
i + fi∆t mod 1

y(t)i ← sin

(
2π ×

(
x(t)i + bi × ∑

j∈Mods(i)
y(t−1)

j

))
× a(t)i

Keep in mind that you’re also probably modifying ai over time via the oscillator’s accompanying
envelope, and so yi is an operator. Notice the bi that I snuck into the equation above. This is just a
useful opportunity to specify the degree to which all the incoming modulation signals affect the
operator. Without it (or something like it), the index of modulation is largely defined by the ai
envelopes of the modulators, and so if some modulator is modulating different carriers, it will do
so with the same index of modulation: you can’t differentiate them.110 Anyway, if you don’t care
about this, just set bi = 1.

So how about frequency modulation? Here we’re repeatedly summing the modulation into the
updated state (that’s the integration). Note again the optional bi:

x(t)i ← x(t−1)
i + fi∆t + bi × ∑

j∈Mods(i)
y(t−1)

j mod 1

y(t)i ← sin(2πx(t)i )× a(t)i

Of course these don’t have to be sine waves: they can be any (ideally differentiable) wave you
deem appropriate: but sine has a strong tradition and theory regarding the resulting sidebands
(and what antialiasing they will require). Many FM synthesizers aren’t much more than this. Both
the DX7 and TX81Z, as well as most other Yamaha-style FM synths, lacked a filter111 and sported
just a single LFO which could modify pitch and volume.

Figure 139 PreenFM2.

Advantages of Phase Modulation FM and PM have the same
computational complexity and are both easy to implement.
There are some differences to think about though. For example,
imagine that yj was a positive constant: it never changed. Then
phase modulation would have no effect on the output of yi.
However frequency modulation would have an effect: yi would
have a higher pitch due to the added integration. Along these
same lines, phase modulation can make it a bit easier to get an
operator to modulate itself as y(t)i ← sin

(
xi + y(t−1)

i

)
× ai, or to

do similar cyclic modulations, without changing the fundamen-
tal pitch of yi.

110Traditional Yamaha-style FM synthesizers don’t have a bi. Instead, the index of modulation is entirely controlled by
the modulator’s envelopes. However certain other FM synthesizers have bi included, notably the PreenFM2 shown in
Figure 139.

111There are exceptions. For example, the Elektron Digitone has both FM synthesis and filters, as does the Yamaha
FS1R, and certain virtual analog synths with FM options.
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Overall, phase modulation seems to be somewhat easier to work with, and it is likely this
reason that Yamaha chose phase modulation over frequency modulation for their FM (or, er,
PM) synthesizers. Yamaha’s synths offered self-modulation as an option, though in truth self-
modulation tends to create fairly noisy and chaotic sounds. Partly because of these advantages,
and partly because of Yamaha’s influence, very few synthesizers in history have chosen FM over
PM: one notable exception is the open-design PreenFM2 (Figure 139).

Filter FM Last but not least: you can use audio-rate oscillators to modulate many other syn-
thesizer parameters beyond just the frequency or phase of another oscillator. Ever since there
were modular synthesizers, musicians have attached the output of oscillators to the modulation
input of any number of modules to varying degrees of effect. One particularly common method
worth mentioning here is filter FM, where an audio-rate oscillator is used to modulate the cutoff
frequency of a filter through which an audio signal is being run. This can be used to create a wide
range of musical or strongly discordant sounds.
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9 Sampling and Sample Playback

The synthesizers discussed so far have largely generated sounds algorithmically via oscillators:
sawtooth waves, etc. But increases in computer power and (critically) memory capacity have made
possible sampling sounds directly from the environment. The synthesizer’s algorithmic oscillator
is replaced in a sampler with an “oscillator”, so to speak, which plays back the sampled sound.
other portions of the subtractive synthesizer architecture remain.

This approach is now widely used in the music industry. Major film scores are produced entirely
using sampled instruments rather than a live orchestra. Stage pianos are often little more than
sample playback devices. Sampling in hip hop has caused all manner of copyright headaches for
artists and producers. Some sampled clips, such as the Funky Drummer or the Amen Break, have
spawned entire musical subgenres of their own. It is even common to sample the output of analog
synthesizers, such as the Roland TR-808 drum machine, in lieu of using the original instrument.

9.1 History

Figure 140 A 1999 Mellotron Mk VI.
This version is digital, not using the
classic Mellotron tape loop.©63

Sampling and sample playback devices originated with early op-
tical and tape-replay devices, the most well known example be-
ing the Streetly Electronics Mellotron series. These keyboards
played a tape loop on which a sample of an instrument had been
recorded.112 Digital sampling existed as early as the 1960s, but
sampling did not come into its own commercially until the late
1970s. Some notable early polyphonic examples were the Fairlight
CMI and New England Digital Synclavier, both sampling and
synthesis workstations.

Digital samples use up significant memory, and sample manip-
ulation is computationally costly, so many improvements in sam-
plers are a direct result of the exponential improvement computer
chip performance and capacity over time. This has included better
bit depth and sampling rates (eventually reaching CD quality or
better), more memory and disk storage capacity, better DACs and
ADCs, and improved sample editing facilities. Firms like E-mu
Systems and Ensoniq rose to prominence by offering less expen-
sive samplers for the common musician, and were joined by many
common brands from the synthesizer industry, including Yamaha,
Roland, and Korg.

Figure 141 Akai MPC Renaissance
sampling drum machine.©64

Many samplers emphasized polyphony and the ability to pitch
shift or pitch scale samples to match played notes. But samplers
were also increasingly used to record drums and percussion: these
samplers did not need to vary in pitch in real time, but they did
need to play many different samples simultaneously (drum sets,
for example). This gave rise to a market for phrase samplers and
sampling drum machines which specialized entirely in one-shot
sample playback. Notable in this market was the Akai MPC series,
which was prominent throughout hip-hop.

112In most cases you could not record your own samples, thus these were more akin to romplers than samplers.
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Romplers The late 1980s saw the rise of romplers. These synthesizers played samples, but
were not samplers as they could not record sounds. Instead, a rompler held a large bank of
digital samples in memory (in ROM — hence the derisive term rompler) which it played with its
“oscillators”. Romplers were omnipresent throughout the 1990s, and used in a great many songs:
indeed the Korg M1, a rompler, may be the best-selling synthesizer in history (at 250,000 units).

Romplers were very often rackmount units, and sported extensive multitimbral features, mean-
ing that they not only had high voice polyphony, but that those voices could play different sounds
from one another. This made it possible to construct an entire multi-instrument song from a single
rompler controlled by a computer and keyboard. Most romplers had poor programming interfaces,
as they were largely meant to fill a market demand for preset sound devices. As computers became
more powerful, samplers and romplers were displaced by digital audio workstations which could
do the same sampling and playback routines entirely within the computer itself.

9.2 Pulse Code Modulation

Pulse code modulation, or PCM, is just a fancy way of saying a wave sampled and stored in digital
format for playback. A PCM wave is usually an array of numbers, one per sample, which indicate
their respective amplitudes. PCM waves may be one-shot waves, or they may be meant to repeat
in an endless loop. In the latter case, a specific location inside the wave might be designated as the
point to loop back to (perhaps via a cross fade) after the wave has been exhausted.

One common looping construct is the single-cycle wave. This is a wave whose length is just
one period, and which starts and ends at 0 amplitude, so it can be seamlessly repeated endlessly
like a sawtooth or sine wave. Often a rompler patch would consist of a one-shot PCM wave for
an initial splash — a so-called transient — followed by a continuous single-cycle wave playing as
long as the key is held down.113 Single cycle waves also form the basis of many virtual analog
synthesizer oscillators. For example, a common way to produce a sawtooth wave is to store a
very high resolution, bandlimited sawtooth single-cycle wave (perhaps generated originally via
additive synthesis), and then downsample it as necessary to produce a wave at the desired pitch.
For implementations, see Algorithms 19 (page 130) and 21 (page 131) for one-shot and looped PCM
playback, and 22 (page 131) for single-cycle waves.

Romplers have long been derided as little more than sample-playback devices, and in fact many
were. But there also were many novel rompler approaches taken by synthesizer manufacturers
to capitalize on the unique opportunities afforded by PCM. For example, the Korg Wavestation
allowed you to cross-fade between many PCM sounds over time using complex envelopes. For
example, one might start with a trumpet sound, then quickly fade into a guitar sound, then fade into
silence, then into a sequence of drum sounds. This approach was known as a wave sequence.114

Another approach was to use ordinary PCM samples but run them through elaborate time-
varying filters. E-mu Systems was particularly known for romplers which sported hundreds of
complex filters. The E-mu Systems Morpheus and UltraProteus in particular were capable of
changing filter parameters in real time from among almost 300 complex filters.

113This trick is very common, so much so that Roland named an entire synthesis brand after it: so-called linear
arithmetic synthesis, the basis of a very successful line of synthesizers, such as the Roland D-50.

114The Wavestation has an interesting backstory. After the Sequential Circuits went bankrupt, its founder Dave Smith,
developed the Wavestation at Korg using the same vector synthesis (Section 6.6) approach taken by the Sequential
Circuits Prophet VS. But unlike the VS, the Wavestation was a rompler: and it added wave sequences to the vector
synthesis mix. Smith also expanded on vector synthesis for the Yamaha SY/TG Series synthesizers, where one vector
synthesis dimension was cross-faded between two FM oscillators, while the other was cross-faded between two PCM
sounds.
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9.3 Wavetable Synthesis

Figure 142 Wavetable #31 of the PPG Wave
synthesizer, with 64 single-cycle waves. Most
waves move smoothly from one to another,
but the last four do not: these are triangle,
pulse, square, and sawtooth, and appear in
PPG and (minus pulse) Waldorf wavetables
for programming convenience.©65

Another rather different use of single-cycle waves is in
the form of wavetables.115 A wavetable is nothing more
than array W = 〈w1, w2, ...wn〉 of digitized single cycle
waves. Figure 142 shows a wavetable of 64 such waves. A
wavetable oscillator selects a particular single cycle wave
wi from this table and constantly plays it. The idea is that
you can modulate which wave is currently playing via a
parameter, much as you could modulate the pulse width
of a square wave. As a modulation signal (from an en-
velope, say) moves from 0.0 to 1.0, the oscillator changes
which wave it’s playing from 0 to 63. This is more than
just cross-fading between two waves, since in the process
of going from wave 0 to wave 63 we might pass through
any number of unusual waves. Depending on the speed
of modulation, this could create quite complex sounds. For
an implementation, see Algorithm 23 (page 132).

Figure 143 Waldorf Microwave XT (rare
“Shadow” version: most were safety orange!).
Note the bottom right quadrant of the knob
array, devoted entirely to envelopes.

It’s not surprising that many early wavetable synthesiz-
ers sported a host of sophisticated modulation options to
sweep through those wavetables in interesting ways. For
example, the Waldorf Microwave series had an eight-stage
“wave envelope” with a variety of looping options, plus an
additional four-stage bipolar (signed) “free envelope”, in
addition to the usual ADSR options. Figure 143 shows the
front panel of the Microwave XT and its envelope controls.

0 … 30 … 38 … 46 … 55 … 60 61 6362
101 47 131 132 141 142 Tri SawSqu

Slot
Wave

101 47 131 132 141 142

Spectra

Wave

Figure 144 First 61 slots of the Waldorf Mi-
crowave XT’s wavetable #3, “MalletSyn”, a
sparse array of empty slots interspersed with
references to six single-cycle waves, plus the
obligatory Triangle, Square, and Sawtooth.©66

It might interest you to know that wavetables have his-
torically been stored in one of two forms. As memory is
plentiful nowadays, wavetables are now normally stored
as arrays of single-cycle waves exactly as described earlier.
But many historic Waldorf wavetable synthesizers instead
held a large bank of available single-cycle waves in mem-
ory, and each wavetable was a sparse array whose slots
were either references to a wave in the bank, or were empty.
The synthesizer would fill the empty slots on the fly with
interpolations between the wave references on either side.
This both saved memory and allowed multiple waveta-
bles to refer to the same waves. Figure 144 shows a sparse
wavetable example from the Microwave XT.

115Note that many in the music synthesis community, myself included, use the term wavetable differently than its much
later unfortunate usage in digital signal processing. In the music synthesis world, a wavetable is an array of digitized
single cycle waves, a usage popularized early on by Wolfgang Palm. But in the DSP community, a wavetable has since
come to mean a single digitized wave in and of itself! What the music synthesizer world typically calls wavetable synthesis,
some in the DSP world might call multiple wavetable synthesis. To make matters worse, in the 1980s Creative Labs
often incorrectly used the term “wavetable” to describe PCM samples generated from their Sound Blaster sound card.

Though it now appears in synthesizers from many manufacturers, wavetable synthesis is strongly linked with
Germany: it is often attributed to Wolfgang Palm and his wavetable synthesizer, the PPG Wave. Palm later consulted for
Waldorf Music, which in its various incarnations has produced wavetable synthesizers for over two decades.
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Wavetables are nearly always bounded one-dimensional arrays. But the waves could instead
be organized as an n-dimensional array.116 The array needn’t be bounded either: for example, it
could be toroidal (wrap-around). Of course, an LFO or envelope can easily specify the index of the
wave in the one-dimensional bounded case, but how would you do it in higher dimensions? One
possibility is to define a parametric equation, that is, a collection of functions, one per dimension,
in terms of the modulation value m. For example, if we had a two-dimensional space, we could
define our wave index in that space as i(m) = 〈cos( 2π

m ), sin( 2π
m )〉. As the modulation went from 0

to 1, then i(m) would trace out a circle in the space. Assuming i(0) = i(1), as was the case in this
example, we could further use a sawtooth LFO to repeatedly trace out this path forever as an orbit.

9.4 Granular Synthesis
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Figure 145 Hann window.

Granular synthesis is a family of methods which form sounds
out of streams of very short sound snippets (as short as 1ms
but more typically 5–50ms) known as grains. Though it has its
roots in acoustic experiments in the 1940s, granular synthesis
is largely attributed to the composer Iannis Xenakis, who (I
believe) also coined the terms “grain” and “granular”.

Grains can be formed out of single-cycle waves such as saw-
tooth or a wave in a wavetable, but they are also very commonly
formed by cutting up a sampled PCM sound into little pieces.
Each grain is then multiplied against a window function (per
Section 12.5) so that it starts and ends at zero and ramps smoothly to full volume in the middle.
Without the window function, you’d likely hear a lot of glitches and pops as grains came and went.
In granular synthesis, the window function is known as a grain envelope.

Early granular synthesis experiments used simple Triangular (ramp up, then down, per Fig-
ure 189) or Trapezoidal (ramp up, hold steady, ramp down) windows, but as computer power
increased, more elaborate windows became possible. One popular window nowadays, at least for
small grains, is the Hann window, discussed in Section 12.6. For an illustration, see Figure 145.

Because defining a stream of grains can require a very high number of parameters, granular
synthesis methods usually simplify things in one of two ways.117 First, synchronous granular
methods repeat one or more grains in a pattern. These could be used for a variety of purposes:

• If the grains are interspersed with silence, you’ll hear beating or rhythmic effects.

• If the grains come one right after the other (or are crossfaded into one another)118 they could
be used to compose new sounds out of their concatenation.

• You could also repeat the same grain over and over, perhaps with crossfading, to lengthen
a portion of a sound. This can form the basis of stretching the length of a sample without
changing its pitch, a form of time stretching.

116A two-dimensional array of waves is known as a wave terrain, a term coined by Rich Gold in John Bischoff, Rich
Gold, and Jim Horton, 1978, Music for an interactive network of microcomputers, Computer Music Journal, 2(3).

117These categories are co-opted out of the five categories described by Curtis Roads in Curtis Roads, 2004, Microsound,
The MIT Press.

118Does this sound like a wave sequence (Section 9.2, page 118)? It does to me. I suppose the difference is that the
sounds in a wave sequence can be long (over 100ms) whereas grains are usually very short.
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At the other end of the granular spectrum are asynchronous granular methods, which produce
a stream of randomly or pseudo-randomly chosen grains. These grains may vary randomly or
deterministically in many ways, such as choice of grain, grain length, amplitude, window, grain
density (how many of them appear in a given time interval), degree of overlap, location in the
sound source, and pitch. A blob of grains in this form is often called a grain cloud.

Figure 146 Tasty Chips Electronics GR-1.©67

The length of a grain has a significant impact on how
grains are perceived. Very short grains may simply sound
like pops or hiss. As grain length increases beyond 1ms or
so we can start to perceive the pitch of the waves embedded
in each grain, and this increases as grains grow to about
50ms. The density of the grains — that is, how much of the
sound interval is occupied by grains — also has a signifi-
cant impact. Very sparse sounds will produce beating or
rhythmic patterns; denser grain sequences result in a single
continuous sound; and very dense grains could have high
degree of overlap, producing a wall of sound.

Granular synthesis is uncommon. Most granular synthesizers are software; hardware granular
synths are rare, especially polyphonic ones. One exception is the Tasty Chips Electronics GR-1,
an asynchronous granular synth shown in Figure 146. Other recent examples include the Waldorf
Quantum and the Mutable Synthesis Clouds module. For a simple implementation of granular
playback, see Algorithm 20 (page 130).

9.5 Resampling

The primary computational concern in sampling, and the other techniques discussed so far, is
changing the pitch of a sampled sound. For example, if we have a sample of a trumpet played at
A[, and the musician plays a D, we must shift the sample so it sounds like a D. There are two ways
we could do this. The basic approach would be to perform pitch shifting, whereby we adjust the
pitch of the sound but allow it to become shorter or longer. This is like playing a record or tape
faster: a person speaking on the tape is pitched higher but speaks much faster. The more difficult
alternative (without introducing noticeable artifacts in the sound) is pitch scaling, where the pitch
is adjusted but the length is kept this same. Many samplers and romplers just do pitch shifting.

The basic way to do pitch shifting is based on resampling. Resampling is the process of
changing the sample rate of a sound: for example, converting a sound from 44.1KHz to 96KHz. We
can hijack this process to do pitch shifting. For example, to shift a sound up by one octave, that is,
to twice its frequency, we just need to squeeze the sound into half the time. To do this, we could
resample the sound to half the sampling rate (cutting it to half the number of samples), then treat
the resulting half-sized array as if it were a sound in the original sampling rate. Similarly, to shift
the sound down one octave, to half its frequency, we’d resample the sound to twice the sampling
rate (generating twice the samples), and again treat the result as if it were in the original rate.

Audio requires real-time, high-quality resampling. The right way to do this is via real-time
interpolation: estimating the original real-valued signal function using our samples, then gathering
new samples from that. We’ll do interpolation in Section 9.6 coming up. But to introduce the issue,
let’s start with classic (but flawed) bulk resampling methods: bulk downsampling and upsampling.

It’s worth mentioning that, unless you’re wiling to use great deal of computer power, resampling
and interpolation algorithms will all introduce some degree of aliasing, and the problem gets worse
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Figure 147 Resampling a sound to 3/4 its previous sampling rate. The sound is is first stuffed with two zeros per sample.
The result is smoothed over with a low-pass filter to interpolate the zeros between the original samples (and to prevent
frequencies over the final Nyquist limit). Then the sound is decimated to remove all but every fourth sample.

the further you pitch-shift. Thus historically many digital synthesizers contained not one but
several copies of the same sample (or similar ones) pre-shifted to different pitches, spaced from one
another by perhaps three octaves or so. This allowed playability all along the keyboard without
significant distortion at the extreme ends.

Downsampling To resample to a lower sampling rate is called downsampling. If the original
sampling rate is an integer multiple of the new rate (for example, if we’re downsampling to half
or a third of the rate), then we just have to delete samples, retaining every Nth sample, a process
known as decimation. For example, to cut to a third of the previous sampling rate, we remove two
out of three samples, leaving every third sample. Before we do this we must first apply a low pass
filter to sure that the original sound didn’t contain any partials above the Nyquist limit of the new
sampling rate, or else we’d have aliasing in the end result.

This all works because one consequence of the Nyquist-Shannon sampling theorem is that a
continuous signal bandlimited to contain partials no higher than a frequency F uniquely passes
through a set of discrete samples spaced 1

2F apart from one another. We’re removing samples but
the ones we retain still define the same basic signal, albeit at a lower rate.

Upsampling To resample to a higher sampling rate is called upsampling. If the new sampling
rate is an integer multiple of the original rate (for example, we’re upsampling to twice or three
times the rate), then we need to insert new samples in-between the original samples, a process
known as interpolation. Let’s say we wanted to upsample to four times the original rate. Then
we’d insert three dummy samples in-between each pair of the original samples. These dummy
samples would initially have zero amplitude: thus this process is called zero stuffing. To get them
to smoothly interpolate between the originals, we could apply a low pass filter (yet again!), to
smooth the whole thing. Note that this will reduce the overall gain of the sound, so we will need to
amplify it again.

Resampling by Rational Values Now let’s say that you needed to resample by a rational value.
For example, you wished to shift from a sample rate of X to a

b X, where both a and b are positive
integers. To do this, you’d first upsample by a factor of a, then downsample the result by a factor of
b. Figure 147 shows this two-step process.

The problem is that small pitch shifts will require fractions of a
b with large values of a or b or

both, costing lots of memory and computational time. For example, if you wanted to shift up from
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C to C], this is an increase of 21/12 ≈ 89
84 . That’s a very rough approximation, and yet it would

require upsampling to 89 times the sampling rate, then downsampling by 84! Now imagine a
smaller pitch shift, such as via a slight tap of a pitch bend wheel: you could see even closer fractions.
A common workaround is to figure out some way to break the fraction into a product of smaller
fractions, and then do up/downsampling on each.119 For example, you could break up 56

45 = 7
5 × 8

9 ,
then do upsample(7), downsample(5), upsample(8), downsample(9). Still very messy and costly.

This technique is also inconvenient to use in real-time scenarios which demand rapid, dynamic
changes in the sampling rate — such as someone moving the pitch bend wheel. It’s just not going
to work. We need a method which can do interpolation in floating point, and one where we can
change sample rates dynamically, in real time, and without computing large fractions.

9.6 Basic Real-Time Interpolation

Consider instead the following very simple (and very bad) approach. Given a sound A = 〈a0, ...〉 at
our desired sampling rate and at a pitch represented by frequency FA, we want to generate a sound
B = 〈b0, ...〉which is A shifted to a different pitch, hence a different frequency FB. To do this, instead
of moving through A one step (sample) at a time, we’ll move forward FB

FA
(real-valued) “steps” at a

time. Specifically, at timestep t we have a current real-valued position xt in the sound, and to step
forward, we set xt+1 ← xt + FB

FA
. If we have a single-cycle or other looping wave, when xt exceeds

the number of samples s in the wave, set xt ← xt mod s to wrap around to the beginning. At any
rate, we return the sample abxtc. If we are downsampling, we ought to first apply a low pass filter
to the original sound to remove frequencies above Nyquist for the new effective sampling rate.
This is the same as removing frequencies below RA

2 ×
min(FB,FA)

FA
in the original sound (where RA is

the original sound’s sampling rate).
The problem with this method is that FB

FA
may not be an integer, so this is a rough approximation

at best: we’re just returning the nearest sample. We could do a bit better by rounding to the nearest
sample rather than taking the floor, that is, returning an where n = round(xt). All this might work
in a pinch, particularly if we are shifting the pitch up, so FB

FA
is large. But what if it’s very small?

We’d be returning the same value an over and over again (a kind of sample and hold). We need
some way to guess what certain values would be between the two adjoining samples abxtc and adxte.
We need to do some kind of real-time interpolation.

Recall that for a given set of digital samples there exists exactly one band-limited real-valued
function (that is, one with no frequencies above Nyquist) which passes through all of them. Let’s
say that this unknown band-limited function is f (x). What the sampling and interpolation task is
really asking us to do is to find the value of f (x) for any needed value x given our known samples
〈a0 = f (x0), a1 = f (x1), ..., an = f (xn)〉 at sample positions x1, x2, ..., xn.

The simplest approach would be do to linear interpolation. Let’s rename the low and high
bracketing values of xt to xl = bxtc and xh = dxte respectively. Using similar triangles, we know
x−xl
xh−xl

= f (x)− f (xl)
f (xh)− f (xl)

, and from this we get

f (x) =
(x− xl)( f (xh)− f (xl))

xh − xl
+ f (xl)

This is just finding the value f (x) on the line between the points 〈xl , f (xl)〉 and 〈xh, f (xh)〉
inclusive. Linear interpolation is fine for some problems, but it’s not great in audio: its first

119Obviously you couldn’t do that with 89
84 , because 89 is prime.
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derivative is discontinuous at the sample points, as is also the case for its generalization to higher
polynomials, Lagrange interpolation.120

An alternative is to interpolate with a spline: a chunk of a polynomial bounded between two
points. Splines are often smoothly differentiable at the transition points from spline to spline, and
they avoid another problem with Lagrange interpolation, namely unwanted oscillation. One simple
spline approach is cubic interpolation. Let’s say we had four points 〈x1, f (x1)〉, ..., 〈x4, f (x4)〉
where the four xi are evenly spaced from each other and x1 < x2 < x3 < x4. That’s certainly the
case for our audio samples. We’re trying to find f (x) for a value x between x2 and x3. Let α be how
far x is relative to x2 and x3, that is, α = (x− x2)/(x3 − x2). Then

f (x) = α3(− f (x1) + f (x2)− f (x3) + f (x4))

+ α2(2 f (x1)− 2 f (x2) + f (x3)− f (x4))

+ α(− f (x1) + f (x3))

+ f (x2)

A variation, based on the Catmull-Rom cubic spline, uses successive differences in f (...) to
estimate the first derivative for a potentially smoother interpolation.121

f (x) = α3(−1/2 f (x1) + 3/2 f (x2)− 3/2 f (x3) + 1/2 f (x4))

+ α2( f (x1)− 5/2 f (x2) + 2 f (x3)− 1/2 f (x4))

+ α(−1/2 f (x1) + 1/2 f (x3))

+ f (x2)

(6)
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Figure 148 Basic cubic spine interpolation
and Catmull-Rom interpolation. Note that
Catmull-Rom is less “bouncy”. That may or
may not be desirable (compare to Figure 150).

In both cases, at the very beginning and end of the
sound, you won’t have an x1 or x4 respectively: I’d just set
x1 ← x2 or x4 ← x3 in these cases.

These interpolation schemes will produce smooth inter-
polation values, but the functions they produce are not quite
the actual band-limited function which passes through
these points. You’ll still get distortion. And you still ought
to filter beforehand when downsampling to eliminate alias-
ing.122 But it turns out that there exists a method which
will, at its limit, interpolate along the actual band-limited
function, and act as a built-in brick wall antialiasing filter
to boot. This method is windowed sinc interpolation.

120Named after the Italian mathematician Joseph-Louis Lagrange, 1736–1813, though he did not invent it. The goal is
to produce a Lagrange polynomial which passes exactly through n points: you can then use that polynomial to sample
other points between them. To start, note that with a little elbow grease we can rearrange the aforementioned linear
interpolation equation into f (x) = f (xh)

x−xl
xh−xl

+ f (xl)
x−xh
xl−xh

. It so happens that we can add a third sample fm to the mix

like this: f (x) = f (xh)
(x−xl)(x−xm)
(xh−xl)(xh−xm)

+ f (xl)
(x−xh)(x−xm)
(xl−xh)(xl−xm)

+ f (xm)
(x−xl)(x−xh)

(xm−xl)(xm−xh)
.

Notice the pattern? In general if you have samples x1...xn available, then f (x) = ∑n
i=1

(
f (xi)∏n

j=1, j 6=i
x−xj
xi−xj

)
.

As mentioned, one problem with Lagrange interpolation is that it’s not continuously differentiable at the sample
points. If you have four sample points x1, ..., x4 and you’re interpolating from x2 to x3 everything looks great. But once
you’ve reached x3 and want to start interpolating to x4, you’d likely drop x1 and add a new sample x5. But now the
polynomial has changed, so it’ll immediately launch off in a new direction: hence a discontinuity at x3.

121Smoother isn’t necessarily better: the original sound is probably somewhat overshooting: see Figure 150, page 125.
122There are lots of ways to optimize these polynomial interpolators to improve their sound quality. You might check

out http://yehar.com/blog/wp-content/uploads/2009/08/deip.pdf
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9.7 Windowed Sinc Interpolation
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Figure 149 Sinc function.

The sinc function, sometimes called the cardinal sine
function or sampling function, is shown in Figure 149.
It extends from positive to negative infinity. Sinc is:123

sinc(x) =

{
sin(πx)

πx x 6= 0
1 x = 0

Interpolation with Sinc Recall that there is exactly one
bandlimited continuous signal which passes through the
points in our digital signal. Sinc is nicknamed the sampling
function because, by applying the Whittaker-Shannon in-
terpolation formula, you can use sinc to exactly recon-
struct this continuous signal from your digital samples.124

2 4 6 8 10

Figure 150 Convolution with Sinc. For each
sample point, a sinc function is centered at that
point and scaled vertically by the sample value
at that point. The sinc functions are added up,
and the resulting function is the bandlimited
reconstruction of the original signal.

Let’s say we wanted to retrieve the value of the continu-
ous bandlimited signal C(t) at time t. For now, assume that
we have infinite number of samples A = 〈a−∞, ..., a0, ..., a∞〉
from C(t) sampled at a rate of RA. The timestep for sample
ak is thus k/RA. For each such sample ak, we center a sinc
function (scaled by RA) over its timestep, and multiply it
by ak. C(...) is just the sum of all these sincs. That is:

C(t) =
∞

∑
k=−∞

sinc(RA × (t− k/RA))× ak

2 3 4 5 6 7 8 9 10 11

Figure 151 Sinc coefficients (five on a side) for
computing a sample at time t = 6 2/3. Unwin-
dowed.

This is convolving the sinc function against A, as
shown in Figure 150. But notice that, because sinc is sym-
metric around zero, sinc(RA × (t− k/RA)) = sinc(RA ×
(k/RA − t)). This means we could instead write things as
a correlation rather than convolution procedure:

C(t) =
∞

∑
k=−∞

sinc(RA × (k/RA − t))× ak

=
∞

∑
k=−∞

sinc(k− t× RA)× ak

This is equivalent but has a rather different interpretation: you can think of it as fixing a single
sinc function so that it’s centered at t, and scaled by RA. Then, for each sample ak, we sample a
coefficient from our sinc at position k (Figure 151). Each of these coefficients is then multiplied by

123Sinc is pronounced “sink”, and is a contraction of sinus cardinalis, (cardinal sine). There are two definitions of sinc,
with and without the appearance of π. Sampling uses the one with π (the normalized sinc function) because its integral
equals 1. Note that we define sinc to be 1 when x = 0 because the function divides by zero at that point otherwise. Does
all this ring a bell? Look back at the variant of sinc used in Equation 2, page 66.

124If Windowed Sinc Interpolation can be used to perfectly reproduce the original continuous signal, why bother with
other interpolation methods? Because Windowed Sinc Interpolation is very costly, involving many calls to sin( ).
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the corresponding ak sample value and added up. I prefer this interpretation because it makes
figuring the bounds (later on) more intuitive, and it’s closer to how we did filters in Section 7.

Sinc is 0 for all integers except for 0, where it is 1. Thus when t lies right on top of one of our
original samples, sinc will zero out the other samples and so C(t) simply equals that one digital
sample. Hence for timesteps t which correspond to our digital samples, C(t) describes a function
which passes through exactly those samples.

Now consider: to resample, what we really want to do is reconstruct our continuous signal
from the original samples, then sample from this continuous function at the new rate. To compute
a sample position bj ∈ B, where B is our sound at the new sampling rate RB, the timestep t of bj is
t = j/RB, so we get:

bj =
∞

∑
k=−∞

sinc(RA × (k/RA − j/RB))× ak (7)

Using this equation we can now identify the sample values at positions j in B.
When downsampling we need to make sure that the original signal contains no frequencies

above the Nyquist limit for the new sampling rate. How can we do this? It turns out that
convolution with sinc isn’t just an interpolation function: it’s also a brick wall filter (in theory at
least, when we’re summing from −∞ to ∞). This is because convolution of two signals in the time
domain does the same thing as multiplying the two signals in the frequency domain. And cast in
the frequency domain, sinc just so happens to be the (brick wall) rectangle function:

rectangle(x) =

{
1 −0.5 ≤ x ≤ 0.5
0 otherwise

To change the cutoff frequency, all we need to do is adjust the width of our sinc function. At
present the multiplier RA in Equation 7 ensures a filter cutoff at RA/2, that is, the Nyquist limit for
the original sound. But if we’re downsampling, we need it to cut off at the (lower) Nyquist limit for
the new sound. We do this by replacing RA with min(RA, RB) like this:

bj =
∞

∑
k=−∞

sinc(min(RA, RB)× (k/RA − j/RB))× ak

This will also change the overall volume, so to keep it a unity gain filter, we need to scale it
back again by min(1, RB/RA):

bj = min(1, RB/RA)×
∞

∑
k=−∞

sinc(min(RA, RB)× (k/RA − j/RB))× ak

To simplify things later, let’s pull a 1/RA out of the (k/RA − j/RB), like this:

bj = min(1, RB/RA)×
∞

∑
k=−∞

sinc
(

min(RA,RB)
RA

× (k− RA × j/RB)
)
× ak

Now let’s define J = RA × j/RB. That is, J is the real-valued location of the new sample bj in
the coordinate system of the original samples in A. This is perhaps more intuitive if we rearrange J
to be J = j× RA/RB. Anyway, J is the spot about which the sinc function is centered (for example,
J = 6 2/3 in Figure 151), as is obvious when we substitute J into the equation:

bj = min(1, RB/RA)×
∞

∑
k=−∞

sinc
(

min(RA,RB)
RA

× (k− J)
)
× ak
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Figure 152 Blackman Window. For more
windows, see Section 12.5.

Windowing Of course, we don’t have an infinite number
of samples in our set A: at best we have A = 〈a0, ..., an−1〉,
and even that could be a huge convolution. We need to
reduce this. Instead of convolving over the full range ∑∞

k=−∞,
maybe we could convolve over just a few nearby samples.

However, the sinc function goes out to infinity: we need
it to drop to zero in a short, finite distance without just
truncating it (which would sound bad). To do this, we can
multiply it against a window. Windows were introduced in
Section 12.5. We’d like a window which drops completely
to zero, such as the Hann window (Figure 194). Another op-
tion, which we’ll use here, is the Blackman window, shown
in Figure 152.125 As usual, the Blackman window runs from 0 ... M inclusive, and we’ll set values
outside this range to 0. When discretized, this is M + 1 integers (the so-called “length” of the
window).126 An odd “length” (thus an even M) is desirable because in the trivial situation where
RB is a multiple of RA, the center of the window will be exactly above some sample in a ∈ A and
an odd-length window will be balanced exactly on both sides of a. The Blackman window is:

w(m, M) =

{
0.42− 1

2 cos
( 2πm

M

)
+ 0.08 cos

( 4πm
M

)
m ∈ [0 ... M]

0 otherwise

Armed with a window, we could now replace the sinc with a windowed sinc which tapers off at
J ±M/2, using the window centered at J like sinc was. Like most window functions, Blackman is
centered around M

2 , so to recenter it around J, we have:

bj = min(1, RB/RA)×
∞

∑
k=−∞

sinc
(

min(RA,RB)
RA

× (k− J)
)
× w(k− J +

M
2

, M)× ak

Because all values in the sum outside the window region are 0, we can now make the sum finite.
So what should our upper and lower bounds be? They should be the outermost sample positions
just inside the window taper region. That is, klow =

⌈
J − M

2

⌉
and khigh =

⌊
J + M

2

⌋
, thus:

bj = min(1, RB/RA)×
khigh

∑
k=klow

sinc
(

min(RA,RB)
RA

× (k− J)
)
× w(k− J +

M
2

, M)× ak

... where J = j× RA/RB. How big should M be? It’s a trade-off of sound quality for computa-
tional power. Some early samplers employing Windowed Sinc Interpolation used as little as M = 8.
It’s gone up since then.127 For starters, you might try M = 16 and adjust from there.128

125In the literature you’ll see better windows still, notably the Kaiser window, but they are difficult to describe here
and even tougher to implement (Kaiser is based on Bessel functions).

126I put “length” in quotes because, for real values, the length of a window region 0...M is obviously just M, not M + 1.
127Some samplers didn’t use Windowed Sinc Interpolation at all, but relied on cheaper interpolation methods such as

splines. If you’re low on computer power, you could try something like that.
128CCRMA has an efficient table-driven windowed sinc interpolation algorithm you would do well to check out.

https://ccrma.stanford.edu/∼jos/pasp/Windowed Sinc Interpolation.html For a simple implementation of the
algorithm described here (more or less) see http://www.nicholson.com/rhn/dsp.html#3
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A large value of M will also impact on the latency of the algorithm: because sinc is not a
causal filter129 we must know some of the future incoming sound samples. For basic sampling this
is probably not an issue, as we probably already have the entire PCM sample or the wavetable
available to us. But if you were using this method to do (say) pitch-shifting of incoming sounds in
real-time you should be aware of this. For example, if you were using 44 sinc coefficients per side
on a 44.1kHz sound, the delay would be about (44, 1000/44× 1000) ≈ 1 millisecond.

9.8 Implementation

Pitch shifting is fundamental to a great many sound-generation methods in music synthesis, such
as all those discussed so far in Section 9. This includes one-shot and looped PCM sound playback,
granular synthesis, playing single-cycle waves, and wavetables. In this Section we first put together
the Windowed Sinc Interpolation algorithm laid out previously, then use it to build playback
functions for these methods one by one. They’re little more than syntactic sugar, but it might be
useful to understand how they’re done.

Windowed Sinc Interpolation Algorithm Before we start with this algorithm, there’s one minor
detail that needs to be handled first. Namely, when you’re near the start or end of your sample, then
the above equation will request sample values ak outside of A = {a0, a1, ..., an−1}. What should
your ak “value” be then? It depends on what your original sound A is:

• If your sound is one-shot, such as a piano sample, then just zero-pad. That is, if the equation
asks for ak, where k ≥ n or k < 0, just return 0. (To do this right, ideally the sound ought to
start and end at 0 amplitude and have a DC offset of 0).

• If your sound is a loop, such as a single cycle in a wavetable, then just wrap it around. The
common case is where your sound is longer than your window (that is, n ≥ M). In this case,
you need only wrap once: if the algorithm asks for ak, where k ≥ n, just return ak−n. And
if k < 0 then just use ak+n.130 For the rare case (n < M), just use ak mod n, though it’s costly.
The mod operation on negative numbers is handled differently in different programming
languages: we want it to return a positive value. In Java you can do that as: k = k % n when
k ≥ n, but when k < 0, use the more general k = k % n; if (k < 0) k = k + n;

We can abstract these and other options by replacing ak with an “extraction function” e(A, k)
which extracts and returns the correct sample depending on your criteria:

bj = min(1, RB/RA)×
khigh

∑
k=klow

sinc
(

min(RA,RB)
RA

× (k− J)
)
× w(k− J +

M
2

, M)× e(A, k)

Here are simple extraction functions for the aforementioned one-shot and looped scenarios. For
simplicity, we assume that the looping goes back to 0 rather than a designated loop point.

129A causal filter is one which relies only on the past sound samples, not future ones. All the filters in Section 7 were
causal filters because the output y(n) relied solely on the current input x(n) and the past input x(n− 1), x(n− 2), ... and
output y(n− 1), y(n− 2), ... to the filter. But sinc relies in part on future samples x(n + 1), x(n + 2), .... The only way to
do that is to buffer up those samples so they’re available when sinc is running.

130If you’re just starting the sound, then perhaps you might wish to treat it as one-shot (zero-pad) with regard to
values of k < 0 until you’ve looped once. This assumes of course that your first sample starts near 0.
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Algorithm 16 One-Shot Extraction
1: A← {a0, a1, ..., an−1} samples
2: k← sample position we wish to return . May be outside the bounds 0...n− 1

3: if k < 0 or k ≥ n then
4: return 0 . Zero-pad
5: else
6: return ak

Algorithm 17 Looped Extraction
1: A← {a0, a1, ..., an−1} samples
2: k← sample position we wish to return . May be outside the bounds 0...n− 1

3: if k < 0 then
4: k← k + n . Wrap around once
5: if k < 0 then . If it’s really far out of bounds...
6: k← k mod n . Wrap around fully. In Java: k = (k % n); if (k < 0) k += n;

7: else if k ≥ n then
8: k← k− n . Wrap around once
9: if k ≥ n then . If it’s really far out of bounds...

10: k← k mod n . Wrap around fully. In Java: k = (k % n)

11: return ak

Armed with these, we can now define our full function:

Algorithm 18 Windowed Sinc Interpolation
1: RA ← original sampling rate
2: RB ← new sampling rate
3: A← {a0, a1, ..., an−1} samples in the original sampling rate RA
4: j← sample position (starting at 0) in the new sampling rate which we wish to compute
5: M← window range . Window will be from 0...M inclusive. Best if M was even

6: w(m, M)← window . Blackman: w(m, M)←
{

0.42− 1
2 cos( 2πm

M ) + 0.08 cos( 4πm
M ) m ∈ 0...M

0 otherwise

7: e(A, k)← extraction function . Might vary depending on if we’re looping or one-shot, etc.

8: J ← j× RA/RB . Location of new sample position j among the old samples a0...an−1
9: klow ← dJ −M/2e . Low and high bounds for the window

10: khigh ← bJ + M/2c
11: f ← min(RA,RB)

RA
. Scaling sinc to avoid aliasing

12: bj ← min(1, RB/RA)×
khigh

∑
k=klow

sinc ( f × (k− J))× w(k− J + M
2 , M)× e(A, k)

13: return bj

The general use is as follows. You have a set of n samples A = {a0, a1, ..., an−1} with a sampling
rate RA. You want to build a new set of samples B = {b0, b1, ...} with a different sampling rate RB.
Simply perform Windowed Sinc Interpolation for a given value j to compute each individual bj.
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Now let’s go on to some example algorithms using Windowed Sinc Interpolation for our
previous discussed methods. The goal of all of these algorithms is to shift the pitch of a sound from
an original frequency FA to a new frequency FB, both in Hz. We’ll assume that the sampling rate
RA is the same for both the original and final sound. Thus we compute RB ← RA × FA/FB.

One-Shot PCM Sound Playback Per Section 9.2, suppose that the musician has struck a note
and you wish to play a one-shot PCM sound, pitch-shifted to that note. To do this you repeatedly
compute and play samples, starting at j = 0 and incrementing j, until you no longer want to
play the sound, or until you have exhausted the original samples. You’ll exhaust them when
j× FA/FB > n1 (your sound A is n samples long), at which point the samples will all be zeros.
We’ll assume a fixed and predefined window size M and window function w(m, M).

Algorithm 19 Pitch Shifting for One-Shot Playback
1: RA ← sampling rate of original (and new) samples
2: A← {a0, a1, ..., an−1} samples in the original sampling rate RA
3: FA ← frequency (in Hz) of the pitch of the original samples
4: FB ← frequency (in Hz) of the pitch of the new sample
5: j← sample position (starting at 0) of the new sample we wish to compute

6: RB ← RA × FA/FB
7: M← window range . 8 or 16, say

8: w(m, M)← window . Blackman: w(m, M)←
{

0.42− 1
2 cos( 2πm

M ) + 0.08 cos( 4πm
M ) m ∈ 0...M

0 otherwise

9: e(A, k)← One-Shot Extraction function . Algorithm 16
10: bj ← Windowed Sinc Interpolation with RA, RB, A, j, M, w(...), and e(...) . Algorithm 18
11: return bj

Granular Playback Granular synthesis was covered in Section 9.4. Algorithm 19 can also be used
to play the samples for a generated grain. You will need to specify the length of the grain and the
grain windowing function (perhaps the Hann window). You will also need to add an offset so the
grain being played starts at the right place in the original samples.

Algorithm 20 Grain Playback
1: RA ← sampling rate of original (and new) samples
2: A← {a0, a1, ..., an−1} samples in the original sampling rate RA
3: FA ← frequency (in Hz) of the pitch of the original samples
4: FB ← frequency (in Hz) of the pitch of the new sample
5: q← grain offset in original samples, 0 ≤ q ≤ n− 1
6: M← grain length
7: w(m, M)← grain window . Hann is common: w(m, M)←

{
1/2− 1/2 cos(2πm/M) m ∈ 0...M
0 otherwise

8: j← sample position (starting at 0) of the new sample we wish to compute

9: A′ ← {aq, aq+1, ..., an−1} subset of A starting at offset q
10: bj ← Pitch Shifting for One-Shot Playback with RA, A′, FA, FB, and j . Algorithm 19
11: return bj × w(j− q, M)
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It’s possible you might wish the grain length, like the offset, to be measured relative to the
original samples rather than the new ones, as M′. Then M← M′ × RA/RB, computed like J was.

Looped PCM Sound Playback Again, per Section 9.2, let’s say that you have a repeating sound
loop, rather than a one-shot PCM sample, that you want to play when the musician strikes a note.
Unlike the one-shot scenario discussed earlier, you’ll never run out of samples to play because it’s
just wrapped around. As you can see, the function below differs from Algorithm 19 only in that it
uses a different extraction function. Again, we’ll assume a fixed and predefined window size M
and window function w(m, M).

Algorithm 21 Pitch Shifting for Looped Playback
1: RA ← sampling rate of original (and new) samples
2: A← {a0, a1, ..., an−1} samples in the original sampling rate RA
3: FA ← frequency (in Hz) of the pitch of the original samples
4: FB ← frequency (in Hz) of the pitch of the new sample
5: j← sample position (starting at 0) of the new sample we wish to compute

6: RB ← RA × FA/FB
7: M← window range . 8 or 16, say

8: w(m, M)← window . Blackman: w(m, M)←
{

0.42− 1
2 cos( 2πm

M ) + 0.08 cos( 4πm
M ) m ∈ 0...M

0 otherwise

9: e(A, k)← Looped Extraction function . Algorithm 17
10: bj ← Windowed Sinc Interpolation with RA, RB, A, j, M, w(...), and e(...) . Algorithm 18
11: return bj

Single-Cycle Wave Playback In Section 9.2 (and Section 6.2) it was mentioned that a very com-
mon way of generating a bandlimited sawtooth, square, triangle, or other wave131 was to first store
a single band-limited cycle of it in very high quality (a high sampling rate, thus large). This could
be generated using additive synthesis. Then we’d pitch-shift the cycle as necessary to play the
sound. This is simply Pitch Shifting for Looped Playback with a fixed FA, since the original pitch is
determined by the the single cycle’s length and the given sampling rate.

Algorithm 22 Looped Single-Cycle Wave Playback
1: RA ← sampling rate of original (and new) samples
2: A← {a0, a1, ..., an−1} samples in the original sampling rate RA
3: FB ← frequency (in Hz) of the pitch of the new sample
4: j← sample position (starting at 0) of the new sample we wish to compute

5: FA ← RA/n . n is the number of samples in A
6: bj ← Pitch Shifting for Looped Playback with RA, A, FA, FB, and j . Algorithm 21
7: return bj

131Looking for interesting single-cycle waves? Kristoffer Ekstrand, under the stage name Adventure Kid, has released
an enormous collection of them for free. See https://www.adventurekid.se
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Wavetable Playback Section 9.3 discussed wavetables, which are arrays of single-cycle waves.
At any time you have a value from a modulation signal between 0 and 1 which determines which
wave, or interpolation between two waves, should be played. Once you have extracted the relevant
wave or wave combination, all you need to do is apply Looped Single-Cycle Wave Playback to it to
play it at the right pitch.132

Algorithm 23 Simple Wavetable Playback
1: RA ← sampling rate of original (and new) samples
2: A ← {A0, ..., Ap−1} wavetable of p single-cycle waves, each n samples long, of sampling rate RA
3: FB ← frequency (in Hz) of the pitch of the new sample
4: j← sample position (starting at 0) of the new sample we wish to compute
5: x ← wavetable modulation value, ranging from 0 to 1 inclusive

6: w← x× (p− 1)
7: α← w− bwc
8: if α = 0 then . w is an integer, so pure wave, no interpolation
9: bj ← Looped Single-Cycle Wave Playback with RA, Aw, FB, and j . Algorithm 22

10: else . Linearly interpolate between a wave and the next one

11: b(0)j ← Looped Single-Cycle Wave Playback with RA, Abwc, FB, and j . Algorithm 22

12: b(1)j ← Looped Single-Cycle Wave Playback with RA, Abwc+1, FB, and j . Algorithm 22

13: bj ← (1− α)× b(0)j + α× b(1)j

14: return bj

132For simplicity, this algorithm resamples both cycles and then interpolates them. This is twice as expensive as you’d
need. You could instead figure out which original samples will be accessed during resampling, then interpolate those
samples first, and pass the result a single time into the resampler.
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10 Effects and Physical Modeling

Most of this text is concerned with the creation or sampled playback of sounds. But another important
aspect are algorithms meant to add some effect to a sound to enhance it. The sound being fed into
an effect doesn’t have to come from a synthesizer or sampler: in fact it’s often a live sound like
vocals or an instrument. The goal of an effect is to make the sound feel better or different somehow.

Some of the algorithms we’ve covered so far qualify as effects in and of themselves, and can
be found in guitar pedals and other devices: for example, filters, ring modulation, clipping, and
other distortion mechanisms. But many popular effects rely on some kind of some kind of time
delay to do their magic. These are the bulk of the effects covered in this Section. In some of these
effects (delay, reverb) the delays are long and so are perceived as shifts in time; but in other effects
(chorusing, flanging) the delays are very short and are instead perceived as changes in timbre.

The Section concludes with a short introduction to physical modeling synthesis, an array of
techniques for modeling the acoustic and physical properties of certain instruments. Physical
modeling is lumped in with effects in this Section because its methods often apply similar delay-
based techniques.

10.1 Delays

+x(n) y(n)

Long 
Delay Cut

Cut

Figure 153 One-shot delay. Com-
pare to the FIR filter in Figure 107.

One of the simplest time-based effects is the humble delay. Here,
the sound is augmented with a copy of itself from some m
timesteps before. A one-shot delay is quite easy to implement:
it’s essentially the extension of an FIR filter, with a delay portion
significantly longer than a single sample, as shown in Figure 153
The delay portion, commonly known as a digital delay line. If
you recall from Section 7.8, a delay of one sample is often referred
to as z−1, as in the module z-1 . Similarly, a long delay line of m
samples would be referred to as z−m. This is very easily implemented as a ring buffer:

Algorithm 24 Delay Line
1: x ← incoming sample

2: Global B← 〈b0, ..., bm−1〉 buffer (array of m samples), initially all 0
3: Global p← position in buffer, initially 0
4: y← bp
5: bp ← x
6: p← p + 1
7: if p ≥ m then
8: p = 0
9: return y +x(n) y(n)

Long 
Delay

Cut

Cut +

Cut

Figure 154 Repeated delay, augmented with
two additional cut gains to control wetness.
Compare to the basic IIR filter in Figure 108.

Note from Figure 153 that you can cut down the ampli-
tude of both the original and delayed signal. The degree
to which you cut down one or the other defines how dry
or wet the signal is. A fully dry signal is one which has no
effect at all (the delay is cut out entirely). A fully wet signal
is one which has only the effect.
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What if you wanted a repeating delay? This is also easy: you just need the equivalent of an
extended feedback (that is, IIR) filter. The cut-down is particularly important, because if we don’t
cut down enough, the recurrent nature of this delay will cause it to spiral out of control. Figure 154
shows this delay core, augmented with two outer cut-downs to make it easy to control wetness.

There are lots of variations on delays: you could ping-pong the delay back and forth in stereo,
or sync the delay length to the MIDI clock so the delays come in at the right time. Perhaps you
might pitch-shift the delay or repeatedly run it through a low-pass filter.

10.2 Flangers

+x(n) y(n)

Short 
Delay Cut

LFO

modulates
delay length

Figure 155 LFO-modulated flanger

While delay effects involve long delays, other effects involve rather
short delays which are perceived not as delays but as changes in
the spectrum of the sound. A classic example of this is the flanger.
This is an effect whose characteristic sound is due to a signal being
mixed with a very short delayed version of itself, where the degree
of delay is modulated over time via an LFO, perhaps between 1
and 10ms.

Nyquist

0.5

1.0

1.5

2.0

Figure 156 Amplitude response of a
forward comb filter with b0 = 1 and
bm set to -0.9, -0.5, and -0.2.

Comb Filters When a delay line is very short, as is the case in a
flanger, we don’t hear a delay any more. Rather we hear the effect
of a comb filter. One kind of comb filter, a forward comb filter, is
a simple extension of the classic FIR filter with a slightly longer
delay: it takes the form

y(n) = b0x(n) + bmx(n−m) (8)

where m is the length of the delay in samples. We’ll assume that
b0 = 1. Notice the repeated lobes in the amplitude response of the
comb filter in Figure 156. A larger value of m will result in more of
these lobes.133 You can also see how setting bm to different values
changes the wetness of the filter.

Re

Im

(8 poles)

Figure 157 Poles and zeros of a for-
ward comb filter, m = 8, bm = −0.5,
in the Z domain.

A comb filter is most easily described in the Z Domain where,
with b0 = 1, its transfer function is

H(z) = 1 + bmz−m =
zm + bm

zm

From this you can see that the filter will have m poles and m
zeros. The poles all pile up at the origin, while the zeros are spaced
evenly just inside the unit circle.134 It is this even spacing which
creates the lobes in the amplitude response:

|H(eiω)| =
√
(1− bm)2 + 2bm cos(ωm)

133Indeed, if m = 1, then we have a standard low-pass or high-pass filter.
134You might ask yourself what a comb filter would look like in the continuous (Laplace) domain. Since this domain

can go to infinity in frequency, a proper comb filter would wind up with an infinite number of poles and zeros. That’s
probably not reasonable to implement.
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Notice that the forward comb filter is literally nothing more than a short delay line, and so any
basic delay line of length m is just an FIR filter of the form y(n) = b0x(n) + bmx(n−m). There’s
nothing more to it.

The feedback comb filter, which is the extended equivalent to a basic IIR filter, is just as simple.
It takes the form

y(n) = b0x(n) + a1y(n−m)

Again, we may assume that b0 = 1, and so the transfer function, in the Z Domain, is just

H(z) =
1

1− a1z−m =
zm

zm − a1

Nyquist

2

4
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Figure 158 Amplitude response of a
feedback comb filter with b0 = 1 and
a1 set to -0.9, -0.5, and -0.2.

Notice how close this is to an inverse of the forward version. It
wouldn’t surprise you, then, to find that the feedback comb filter
has its zeros all at the origin and its poles spaced evenly just inside
the unit circle, the exact opposite of the forward comb filter. The
net result of this is that the amplitude response is

|H(eiω)| = 1√
(1− a1)2 − 2a1 cos(ωm)

This sort of resembles the forward comb filter turned upside
down, as shown in Figure 158.

Fractional Delays So far we’ve described m as being an integer. But a flanger’s LFO must
smoothly change the length of the delay, and so m would benefit greatly from being a floating-point
value. This means we need a delay which interpolates between two sample positions.

A simple way to do this is linear interpolation. Let α = m− bmc. That is, α is a value between
0 and 1 which describes where m is with respect to the integers on either side of it. Let’s presume
we have a delay at least length dme. Now we could modify Equation 8 to roll in a bit of each of the
samples on either side of m, that is:

y(n) = b0x(n) + (1− α)bmx(n− bmc) + αbmx(n− dme)

Linear interpolation isn’t very accurate: and it’s particularly bad at delaying high frequencies.
There exist more sophisticated interpolation options, as discussed in Section 9.6. Or you could hook
a time-varying all pass filter to the end of your delay line. We’ll discuss all pass filters coming up,
in Section 10.4.

10.3 Chorus

Chorus is another short-delay effect which sounds like many copies of the same sound mixed
together. And that is basically what it is: the copies are varied in pitch, amplitude, and delay. One
easy way to implement this effect is with a multi-tap delay line. This is a delay which outputs
several different positions in the buffer. It’s pretty straightforward:
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Algorithm 25 Multi-Tap Delay Line
1: x ← incoming sample
2: A← 〈a0, ..., aq−1〉 tap positions, each from 0 to n− 1 . q� n

3: Global B← 〈b0, ..., bn−1〉 buffer (array of n samples), initially all 0
4: Global p← position in buffer, initially 0
5: T ← 〈t0, ..., tq−1〉 results (array of q samples)
6: for i = 0 to q− 1 do . Load taps
7: j← p + ai mod n
8: Ti ← Bj
9: bp ← x . Update sample as was done in Delay Line (Algorithm 24)

10: p← p + 1
11: if p ≥ n then
12: p = 0
13: return T

Like flanging, chorusing likewise would benefit from an interpolated delay line so the tap
positions don’t have to be integers. It’s not difficult to modify the previous algorithm to provide
that.

Figure 159 Leslie speaker mounted
on a spinning turntable. As the
speaker rotates away or toward the
listener, the sound wobbles in pitch
(vibrato) due to the Doppler Effect,
and the sound is alternately blaring
or muffled (when facing away), cre-
ating tremolo.

Doppler Effect Clearly we can use this to create different delay
lengths (longer than a flanger: perhaps up to 50ms). And we can
multiply each of these outputs by their own gain to create different
amplitudes. But how can we shift the pitch up and down? This
turns out to be easy: just move the tap positions back and forth
at different speeds, controlled by an LFO. The speed at which the
tap position is being moved will effectively compress or stretch the
wave and thus change its pitch.135 Of course you can only move
the tap position so far, so at best you can shift it back and forth,
thus changing the pitch slightly up and down.

Shifting the pitch by moving the tap position is essentially
simulating the Doppler effect, where sounds from objects moving
rapidly towards a listener sound higher pitched than they should
be, and similarly lower pitched when moving rapidly away: you
may have heard this effect as an ambulance rushes by you with its
sirens blaring. One use of this is simulating a rotary speaker such
as the famous Leslie speaker attached to the Hammond Organ.
This was a speaker horn which spun in place, so that at one extreme
it was facing the listener and at the other extreme it was facing
away. Because the horn was loudest when facing the listener (of course), this resulted in tremolo.
Additionally, the rapid movement of the speaker horn produced vibrato due to the Doppler effect.

135Yes, that’s basically FM.
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10.4 Reverb

Reverb, or more properly reverberation, attempts to replicate the natural echoes which occur in
an enclosed space. These aren’t simple delay echoes: there are a very, very many of them and they
are affected by the nature of the surfaces involved and the distance from the listener. Furthermore,
echoes may bounce off of many surfaces before arriving at the listener’s ear.

It’s common to model a reverb as follows. For some n timesteps after a sound has been produced,
there are no echoes heard at all: sound is slow and hasn’t traveled the distance yet. Then come
a small collection of early reflections which have bounced directly off of surfaces and returned
to the listener. Following this come a large, smeared set of late reflections which result from the
sound bouncing of many surfaces before returning.

Early reflections are more or less multiple arbitrarily-spaced delays and hence are straight-
forwardly implemented with a multi-tap delay line. Late reflections are more complex: if you
implemented them with very short delays (comb filters, say), the result would sound artificial.
Better would be to find a way to have different delay lengths for different frequencies in the sound,
to create a smearing effect. Enter the all pass filter.

All-Pass Filters An all pass filter is a strange name: why would we want a filter which doesn’t
change the amplitude of our partials? The reason is simple: the amplitude is left alone, but the
phase is altered in some significant way. And altering the phase is just adding a small, real-valued
delay to different partials in the signal. Importantly, this delay can be very small, even less than a
single sample, and different frequencies can be (and are) delayed by different amounts.

A trivial all-pass filter is just a delay, that is, y(n) = x(n − m), but this is not particularly
interesting as it changes the phase linearly, that is, by −dω for a given angular frequency ω. We’re
interested in more complex all-pass filters. It turns out that a general IIR filter consisting of both IIR
and FIR components (recall Figure 111 on page 83) can be made into an all-pass filter if the IIR and
FIR components cancel each other out. This nullifies the magnitude-changing effects of the filter, but
interestingly does not nullify the phase-changing effects. For example, a filter of the form

y(n) = b0x(n) + x(n− 1)− a1y(n− 1)

is an all-pass filter if a1 = b0. Why? Because the transfer function of this filter is

H(z) =
b0 + z−1

1 + a1z−1 =
b0 + 1× z−1

1 + b0z−1

Notice that the coefficients of the polynomial in the denominator are the “reverse”, so to speak,
of those in the numerator.136 The coefficients in the numerator are b0 and 1, whereas the coefficients
in the denominator are 1 and b0. This reversing pattern is what causes the FIR and IIR to cancel
their magnitudes. The pattern continues for more detailed polynomials. In general, you can make
an all-pass filter with the transfer function

H(z) =
b0 + b1z−1... + bm−1z−(m−1) + z−m

1 + bmz−1 + ... + b1z−(m−1) + b0z−m

136This is only the case for real-valued filters, such as in audio. For complex-valued filters, the pattern is somewhat
more... complex. The denominator coefficients must also consist of complex conjugates of those in the numerator.
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One common pattern is to generalize our y(n) = b0x(n) + x(n− 1)− a1y(n− 1) filter to:

y(n) = b0x(n) + x(n−m)− b0y(n−m)

+x(n) y(n)Delay

-b0

b0    

+

Figure 160 A simple all-pass filter consisting
of two intertwined comb filters. Note that the
coefficients are the negatives of one another.

This is just a comb filter in the FIR section mashed to-
gether with a comb filter of the same size in the IIR section.
It’s clearly an all-pass filter as it has the transfer function

H(z) =
b0 + z−m

1 + b0z−m

You can save some computation by rearranging things
so that the two comb filters share the same delay, which pro-
duces the intertwined comb filter pattern in Figure 160.137

All-pass filters can be strung together in serial or put
in parallel, and the result is still an all-pass filter. Also, any shared delay in an all-pass filter can
be replaced an all-pass filter, so you can create an all-pass filter out of nested all-pass filters. For
example, we could nest our intertwined-comb all-pass filter inside another intertwined-comb as
shown in Figure 161.

+ Delay

-b0

b0    

++x(n) y(n)

-b1

b1    

+Delay

Figure 161 One all-pass filter nested inside another.

This transfer function has an
even, 1.0 amplitude response,
and its phase response is 0 de-
grees at 0 Hz, dropping as the
frequency increases.

Putting It Together Armed
with multi-tap delay lines,
comb-filters, and all-pass filters,
we have enough material
to string together to form a
reverberation algorithm. This algorithmic approach is often called Schroeder reverberation after
Manfred Schroeder, an early pioneer of the technique. There are lots of ways to arrange these
elements, but here’s one example architecture.

+x(n) y(n)

Delay
of m– a1

b0    

Low-Pass 
Filter

Figure 162 Low Pass Feedback Comb Filter.

Freeverb is a popular open source reverb imple-
mentation by Jeremy “Jezar” Wakefield. In this archi-
tecture, the input is handed to a bank of eight parallel
low pass feedback comb filters. These are just comb
filters where a low-pass filter has been inserted in the
feedback loop, as shown in Figure 162, to cut down the
high frequencies on successive passes. The output of
these filters are added up and then passed through a
series of all-pass filters which smear the results. The parameters of the comb filters are tuned to be
different from one another so as to provide a variety of echoes; similarly, the all pass filters are all
tuned to be different from one another. Freeverb has user parameters for “room size” (essentially
the delay length), dampening (low-pass cutoff), and of course wetness.138

137This rearrangement is directly derived from IIR Filter Direct Form II as was shown in Figure 112 on page 83.
138I’m not providing the details of these parameters here: but you can examine them, and other architectures, at

https://ccrma.stanford.edu/∼jos/Reverb/Reverb.html
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Figure 163 Freeverb architecture

Convolution Reverb A popular alternative approach to the algorithmic reverbs shown so far is
to directly sample the reverberation pattern of an environment and apply it to the sound. This
approach is called a convolution reverb. The idea behind this is actually surprisingly simple. We
first record the echoes resulting from an impulse (a single loud, extremely short sound, such as
a balloon popping), and then apply these echos over and over again in response to every single
sample in our sound. These echoes are known as the impulse response of the environment.

If we treated the impulse as a single sample of maximum volume, then the echoes from the
impulse could be thought of as the effect that this single input sample has on the volumes of future
output samples in the final sound. But if we reversed the impulse, we could think of it as the echoed
effects of all previous input samples on the current output sample. For example, let e(k), 0 ≤ k ≤ N
be the impulse response, where e(0) is the original impulse and e(k), k > 0 are future echoes. By
reversing this, we can gather the echoes from earlier samples and sum them into the current sound:

y(n) =
N

∑
k=0

x(n− k)× e(k)

...where x(n) is the sound input and y(n) is the resulting output with reverb. Obviously we
should zero pad: if n− k < 0 then x(n− k)× e(k) = 0. This equation should look very similar to
the convolution equations found in Section 7.1: indeed the impulse response is essentially being
used as a very long finite impulse response filter.139

This sampling approach cannot be tuned with a variety of parameters like the Schroeder
algorithmic approach can. However, it has the advantage of providing a nearly exact reproduction
of the reverberation qualities of a chosen environment. Convolution reverb is expensive, however.
If the impulse response sound is N samples long, then adding reverb to M samples of the original
sound is O(MN) for long reverbs.

There’s a faster way to do it: we can use the Fast Fourier Transform (or FFT). As discussed
in Section 12, the FFT converts a sound from the time domain to the frequency domain, and the
Inverse Fast Fourier Transform (or IFFT) does the opposite. A critical fact here is that convolution
in the time domain is exactly the same thing as multiplication in the frequency domain. It’s much faster to
convert the sound and impulse to the frequency domain, multiply them against each other there,
and then convert the result back to the time domain.

To start, let’s zero-pad the impulse response to be as long as the sound, so that M = N. Let’s
call the impulse response e(t) and the sound s(t). We take the FFT of the original sound to produce
S( f )— a function over frequency f — and similarly the FFT of the reversed impulse response to
produce E( f ). Next, we multiply the two, that is, for each value f , the result R( f ) = S( f )× E( f ).
Finally, we take the IFFT of R( f ) to produce the final resulting sound r(t).

Let’s count up the costs: an FFT is O(N lg N), and so is an IFFT. On top of that, we’re doing N
multiplies. Overall, this is O(N lg N), as opposed to the O(MN) required by direct convolution.
Clever! But this means we have to apply reverb in bulk to the entire sample.

139Now finally it should make sense why FIR is called a finite impulse response filter.
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That won’t do. Instead we could perform FFT-multiply-IFFT trick little-by-little on chunks of
the sound via the Short Time Fourier Transform or STFT (discussed later in Section 12.6). The
size of a chunk would determine the degree of delay (latency) in the sample. But by using clever
optimizations the delay can be reduced.140

10.5 Phasers
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Figure 164 One possible phaser am-
plitude response

A phaser is an effect very similar to a flanger. The main difference
is that while the flanger’s comb filter results in evenly sized and
spaced lobes, a phaser’s lobes change in size with increasing fre-
quency, often exponentially as shown in Figure 164. Modulating
these lobe positions with an LFO produces the phaser effect.

A phaser is typically implemented with a long string of all-pass
filters with different sizes tuned to provide the phaser’s various
peaks and troughs when remixed with the original sound. Fig-
ure 165 shows one possible implementation.

x(n) y(n)All Pass 
Filter

Cut

+All Pass 
Filter . . . Cut

Figure 165 A phaser implementation.

While an all-pass filter only modifies the
phase of its signal (and we generally can’t
detect that unless it is extreme), this creates
interference patterns when added back into
the original signal, and if carefully tuned,
can produce phaser and other lobe patterns.
Typically two all-pass filters are needed per lobe, and this may result in the need for quite a number
of them altogether.141

10.6 Physical Modeling Synthesis

Physical modeling synthesis is a cutting-edge approach to realistically reproducing instruments by
roughly approximating how they vibrate and work as a physical system. Interestingly, the basic
building blocks of physical modeling synthesis are often the same as those found in time-based
effects: different kinds of delays and filters.

y(n)Delay Line of length N
(Initially Random Noise)

1/2

+

Delay1/2

Figure 166 The Karplus-Strong algorithm.

One of the earlier, simpler, and most well-known phys-
ical modeling methods is the Karplus-Strong algorithm,
named after Kevin Karplus and Alexander Strong. This
algorithm attempts to replicate a plucked string such as
on a violin or guitar. The basic algorithm is really quite
simple:

140For a practical introduction, see https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/convolution.html
141For one such implementation, see

https:/ccrma.stanford.edu/realsimple/DelayVar/Phasing First Order Allpass Filters.html
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Algorithm 26 Karplus-Strong String Synthesis
1: Global B← 〈b0, ..., bm−1〉 buffer (array of m samples), initially all random noise
2: Global p← position in buffer, initially 0
3: Global y′ ← previous y output, initially bm−1

4: y← bp
5: bp ← 1/2 y + 1/2 y′

6: p← p + 1
7: if p ≥ m then
8: p← 0
9: y′ ← y

10: return y
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Figure 167 Karplus-Strong buffer (size 100),
after various iterations of the algorithm. Note
the gradual impact of the low-pass filter.

This should look very familiar: it’s closely related to
the basic digital delay line (Algorithm 24). But unlike a
delay line, Karplus-Strong’s delay buffer starts filled with
random noise. Furthermore, as the buffer is drained it is
not refilled with an input sound (in fact there is no input
sound) but with a modified version of the latest output.
Specifically, the buffer is filled with the average of the most
recent output and the output sample immediately before
that. See Figure 166. Thus if we have a buffer of length N,
then Karplus Strong is roughly the equation

y(n) = 1/2 y(n− N) + 1/2 y(n− N − 1)

The size N determines the frequency f of the sound.
Specifically, N = fr/ f , where fr is the sampling rate.
The idea behind Karplus Strong is that a string, when
plucked, is initially filled with high-frequency sound, but
very rapidly this sound loses its high frequencies until,
at the end, it’s largely a sine wave. The high frequencies
are lost due to the averaging: notice that the averaging is
basically a one-pole low-pass filter. Figure 167 shows this effect.

There are some issues. First N is an integer, and this will constrain the possible frequencies.
There exist ways to permit any frequency through (what else?) the judicious use of all-pass filters.
Second, high frequency sounds will decay faster than low-frequency ones because the buffers are
smaller and so all the samples pass through the filter more often. Adjusting this per-frequency
can be challenging. One can shorten the die-off very easily by replacing the 1/2 in the equation
y(n) = 1/2 y(n−N) + 1/2 y(n−N− 1) with some smaller fraction. Lengthening is more complex.
Note that making any adjustments at all may be unnecessary: in real plucked instruments it’s
naturally the case for high frequency notes to decay faster anyway.142

142For hints on how to deal with both of these issues, see David A. Jaffe and Julius O. Smith, 1983, Extensions of the
Karplus-Strong plucked-string algorithm, Computer Music Journal, 7(2). This paper also suggests improving the basic
algorithm by adding a variety of low-pass, comb, and all-pass filters in the chain.
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Figure 168 Traveling waves in a plucked
string. (Top) The string is initially plucked,
pulled away as shown. (Bottom) The wave
separates into two traveling waves going op-
posite directions, towards the endpoints. Af-
ter reaching the endpoints, the waves invert
and reflect back (then reflect back again when
reaching the opposite endpoint, and so on).

Traveling Waves One interpretation of Karplus-Strong’s
delay line is as a poor man’s simulation of a traveling
wave in a plucked string. When a string is plucked, its
wave doesn’t stay put but rather moves up and down the
string; and indeed there are two waves moving back and
forth, as shown in Figure 168. Karplus-Strong might be
viewed as a model of one of these waves as it decays. But
more sophisticated models of strings use two waves as
part of a waveguide network. Traveling waves don’t just
appear in strings: they also occur in the air in tubes or pipes,
such as woodwinds, brass, organs, and even the human
vocal tract. Modeling waves with waveguide networks has
given rise to a form of physical modeling synthesis known
as digital waveguide synthesis, where elaborate models
of waveguides can be used to closely simulate plucked or
bowed strings, blown flutes or reed instruments, voices, and even electric guitars.

Multi-Tap Delay Line

Multi-Tap Delay Line

y(n)+x(n) 1/2 Low Pass 
Filter

Low Pass 
Filter

-1

-1

Figure 169 Bidirectional waveguide model of two traveling
waves. A gain of -1, shown twice in this model, means that
the signal is inverted.

A bidirectional digital waveguide can be
simulated with two multi-tap delay lines as
shown in Figure 169. Here’s the general idea.
Each delay line represents a traveling wave in
one direction. When sound exits the delay line,
it is considered to have reached the end of the
string and is being reflected back. To do this,
the sound is first inverted (using a gain of −1)
and slightly dampened with a low pass filter —
perhaps with something better than the aver-
aging filter used in Karplus-Strong. Then the
sound is fed back into the other delay line to go the other direction.

An excitation x(n) is added into both delay lines at some symmetrical point, that is, if the delay
lines are m long, it might be added in at positions a and m− a respectively. This could be an initial
impulse noise as in Karplus-Strong, or perhaps some continuous input wave to simulate excitation
due to continuously bowing the string at a certain spot. The final sound y(n) is also tapped at some
symmetrical point in the delay lines (perhaps at the notional location of the instrument’s sound
hole), summed, and outputted.

Figure 170 Yamaha VL1.©68

This is a very simple model. There are much more so-
phisticated ones available involving networks of pairs of
delay lines connected via different kinds of junctions to
transfer sound back and forth, in order to model surpris-
ingly complex instruments.143

Commercial synthesizers which incorporate these capa-
bilities are not very common: perhaps the most famous in
history is the Yamaha VL1, a duophonic (two-voice) phys-
ical modeling keyboard (Figure 170). Physical modeling

143A good source of advanced techniques in this area, as well as delay-based effects, is Physical Audio Signal Processing
by Julius Smith, available online at https://ccrma.stanford.edu/∼jos/pasp/
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synthesizers could produce amazing sounds, but the physical modeling revolution did not take
hold in the late 1990s. I believe this was likely due to competition with romplers: why spend all that
programming and computational effort developing a beautiful sounding model of a shakuhachi
when you could just play an adequate pre-sampled one? Modern physical modeling synthesizers
are, not surprisingly, largely all softsynths. Among the most successful are Audio Modeling’s
SWAM engine, which combines physical modeling, PCM playback, and some other tricks, to very
accurately reproduce woodwinds and strings.
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11 Controllers and MIDI

A controller is a device which enables a human to control the notes or parameters of synthesizer in
a useful way. Early synthesizer designs incorporated controllers such as keyboards and pedals as
part of the system. However with the advent of the Musical Instrument Digital Interface or MIDI,
which enabled one device to remotely control another one, the keyboard and the synthesizer began
to part ways. Many synthesizers became simple rackmount devices intended to be manipulated by
a controller of one’s choosing; and the market began to see controller devices which produced no
sound at all, but rather sent MIDI signals intended for a downstream synthesizer. We’ll discuss
MIDI in Section 11.2.

With the advent of the computer and the Digital Audio Workstation we have seen another
sea change: controllers which do not send MIDI to a synthesizer, but rather directly to computer
software which then either records it or routes it to a software or hardware synthesizer. Indeed
many of the cheap controllers found on the market nowadays are outfitted only with USB jacks
rather than traditional 5-pin MIDI jacks, and intended solely for this purpose.

Controllers are essentially the user interface of synthesizer systems, and so it is critical that they
be designed well. A primary function of a good user interface is to help the musician achieve his
goals or tasks as easily, accurately, and rapidly as possible. Playing music is an operation involving
changing multiple parameters (pitch, volume, many elements of timbre, polyphony) in real-time,
and significant effort in musical interface design has been focused on new ways or paradigms to
enable a musician to control this complex, high-dimensional environment intuitively with minimal
cognitive load.

11.1 History

Keyboards Among the earliest controllers have undoubtedly been keyboards. The modern
keyboard is perhaps five hundred years old, dating largely from organs, and later migrating
to harpsichords and clavichords.144 These instruments all shared something in common: their
keys were essentially switches. No matter how hard or in what way you struck a key, it always
played the same note at the same volume. A major evolution in the keyboard came about with the
pianoforte,145 nowadays shortened to piano. This instrument hit strings with a felt hammer when
a key was played, and importantly the velocity with which the key was struck translated into the
force with which the string was hit, and thus the volume with which the note was sounded.

This critical difference caused piano keyboards to deviate from organ keyboards in their action.
The action is the mechanics of a keyboard which cause it to respond physically to being played.
Early on, Bartolomeo Cristofori (the inventor of the pianoforte) developed an action which resisted
being played because playing a key required lifting a weight (the hammer). Because the key didn’t
just give way immediately on being struck, it formed a kind of force-feedback which helped the
performer to “dial in” the amount of volume with which he wanted a note to play. As pianos
developed more and more dynamic range146 this resistive weighted action became more and more
detailed in order to serve the more sophisticated needs of professional pianists. Organs never
adopted a weighted action because they didn’t need to: organ keyboards have no dynamic range.
Typical organ actions are unweighted: the keys give way almost immediately upon being struck.

144In case you were wondering what the difference was between the two: when a note was struck, a harpsichord
plucked a string, while a clavichord would hit it with a small metal tangent.

145Italian for “soft-loud”.
146The difference between the loudest possible note and the softest.
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Modern synthesizer keyboards traditionally have unweighted actions because early synthesiz-
ers, like organs, had no dynamic range; but these unweighted keyboards perhaps stuck around
in the synth world because unweighted actions made for cheaper synthesizers. This is a poor fit
because modern synthesizers, like pianos, are largely velocity sensitive and so have a significant
dynamic range. Even more unfortunate is the recent popularity of cheap mini key keyboards (see
Figure 172) whose travel (the distance the key moves) is significantly reduced, or membrane or
capacitive “keyboards” with no travel at all. Such keyboards make it even more difficult, if not
impossible, to dial in precise volume, much less play notes accurately. There are other synthe-
sizer keyboards, known as weighted keyboards, which simulate the weighted action of a piano.
Like pianos, such keyboards vary in how much resistive weight they impart, depending on the
performer’s tastes.

Figure 171 Alexandra Stepanoff per-
forming with a theremin on NBC Ra-
dio, 1930.©69

Simple Expressive Manipulation As synthesizers became more
sophisticated, with more and more parameters which could be
changed in real time, it became clear that simple velocity-sensitive
weighted keyboards were crude tools for providing expressive
control over these parameters. The first major attempt to remedy
this, dating from far back in organ history, was the expression
pedal. This is a lever controlled by the foot which can be set to
any angle (and usually stays put until changed by the foot again).
On an organ, the expression pedal is primarily, but not entirely,
used to control the volume of the instrument.147 On a synthesizer,
which is typically velocity sensitive, an expression pedal is often
used to adjust volume, but may also be used to adjust the timbre
of the sound in some other way.

Early electronic music experimented with a number of other
ways to change pitch or timbre. The most famous early electronic
instrument, the theremin,148 was controlled by proximity of one’s
hands to two different antennas. The distance of one hand to
the vertical antenna controlled the pitch of the sound, while the
distance of the second hand to the horizontal antenna controlled the volume. Both could be adjusted
in real-time, causing both vibrato (rapid change in pitch) and tremolo (rapid change in volume), as
well as slides in these parameters (such as pitch bend or portamento).149

147On an organ the expression pedal is called a swell pedal, as early versions controlled the swell box, a set of blinds
between the organ’s pipes (stops) and the audience which could be opened or closed to varying degrees to change the
amount of sound reaching the audience.

148Named after its inventor, Léon Theremin. The theremin remains the only significant musical instrument that is
played without touching it. Its eerie sound has made it a staple in sci-fi movies and television shows, famously The Day
the Earth Stood Still. And now for an incredible story. Léon Theremin was a Russian who developed the instrument
based on his Soviet-funded research into radio-based distance sensors. He traveled the world promoting his instrument
and popularizing its use in concert halls, classical and popular music, and so on. Then he disappeared and the popularity
of the theremin collapsed. This was because Stalin has imprisoned him in a Siberian prison-laboratory and forced him to
design spy devices for the USSR for 30 years. It was there that he invented The Thing, a passive (powerless) microphone
listening device embedded in a Great Seal of the United States given to the U.S. Ambassador to Russia and which hung
in his office for almost a decade before being discovered. Look it up. It’s an amazing story.

149D-Beam was a theremin-inspired controller found on some Roland synthesizers in the 1990s. It measured the
distance to one’s hand with an infrared beam and served as a modulation option. It’s often, and I think unfairly, ridiculed.
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Figure 172 Akai MPK mini MIDI
controller, with a self-centering joy-
stick (red), drum pads, assignable
knobs, and velocity sensitive mini
keys.©70

Another approach, popularized by the Trautonium and similar
devices (see Section 5.1), was to control pitch by pressing on a wire
at a certain position; this also allowed sliding up and down the
wire to bend the pitch. Variants of this found their way into synthe-
sizers, including the pitch ribbon, a touch-sensitive strip on the
Yamaha CS-80 (Figure 54 on page 52) and the ASM Hydrasynth.
This strip was put to heavy use by Vangelis for his soundtracks
(page 52). Touch strips are found here and there on modern synthe-
sizers, but more common are sliding wheels such as the ubiquitous
pitch bend wheel and modulation wheel found next to almost
all modern synthesizer keyboards. The pitch bend wheel, which
shifts the pitch of the keyboard, is self-centering, meaning that
when the performer lets go of it, it springs back to its mid-way
position. The modulation wheel, which can often be programmed to control a variety of parameters,
stays put much like an expression pedal. A similar effect (in two simultaneous directions) can be
achieved with a joystick.150

Figure 173 Novation Remote Zero
SL Mk II, with assignable dials, but-
tons, sliders, and drum pads.

MIDI Control Surfaces We cannot ignore the most obvious way
to expressively control parameters on a synthesizer: its own knobs
and sliders. Synthesizer designers often give a lot of thought to
how these knobs might be best put to use both in programming
the synthesizer and in real-time control.151

If your synth has no knobs, fear not. MIDI provides a way for a
controller to remotely change any of the parameters the synthesizer
has exposed. As a result, many controller keyboards (for example,
Figure 172) are outfitted not only with keys but with an array of
buttons, sliders, and dials which can be programmed by the musician to send arbitrary MIDI
parameter-change commands to synthesizers. In fact, there exist standalone controllers, called
control surfaces, which have no keyboard at all, but rather consist entirely of these buttons, sliders,
and dials. Two well-known examples are the Novation Remote Zero SL and the Behringer
BCR2000. These devices can be used to control synthesizers, digital audio workstations, audio
mixers, and a host of other audio recording and reinforcement devices.

Figure 174 The Simmons SDS-5.©71

Other Instruments Designers have built controllers inspired by
common musical instruments and meant to enable musicians who
play those instruments to have access to synthesizers. An easy tar-
get has always been drums. Since at least the late 1960s musicians
have been creating makeshift devices to allow them to control
early drum synthesizers of the time. It was not until around 1976
that commercial drums became available, when Pollard Industries
released the Syndrum, notably followed by the Simmons SDS-5
(Figure 174). Many electronic and MIDI-based drum kits have

150Unlike in video games, many synthesizer joysticks are often not self-centering.
151For example: you’ll notice that often the knob for filter cutoff is larger than other knobs. This is because the larger a

knob the more precisely you can dial in a value, and filter cutoff often must be very carefully set.

147



since been designed, and drum pads have been reduced in size where they can be played with
fingers and used to augment controller keyboards (such as in Figures 172 and 173).

Figure 175 Wind controller.©72

Drums are not the only option. Software can be added to pick-
ups for guitars and other stringed instruments, converting their
audio into MIDI event signals (via guitar processors). Wind con-
trollers have been devised in the shape of woodwind instruments
(see Figure 175). Wind controllers can control more parameters
than you might imagine, including finger pressure, bite pressure,
breath speed, and other embouchure manipulations. Related is the
breath controller, where the musician simply blows at a certain
rate to maintain a certain parameter value.

Figure 176 Novation Launchpad.©73

Grid Controllers The 2000s saw a significant degree of influ-
ence on the synthesizer industry by the DJ market. One partic-
ularly popular digital audio workstation, Ableton Live, capital-
ized on this with a GUI consisting of a grid of buttons tied to
samples triggered when the corresponding button was pressed.
To support this and similar DAW UIs came a new kind of MIDI
controller, the grid controller, which provided hardware buttons
corresponding to the software ones in Ableton. The first major
controller of this type was Novation’s Launchpad (Figure 176).

A grid controller is simply an array of buttons or velocity sen-
sitive drum pads with a few additional auxiliary buttons or dials.
These are not complex devices: their grids can be configured
for many performance tasks, but are most commonly they are
used as buttons which trigger sound samples, and which light
up while the sample is playing.

Figure 177 Ensoniq SQ80 synthe-
sizer, one of the few synthesizer
keyboards with polyphonic after-
touch.©74

Multidimensional Expression There are lots of alternative op-
tions. These include Jankó keyboards which are laid out in a grid
or hexagonal grid, controllers worn as rings or gloves, and a host
of quite unusual stuff. But much of the recent effort in controller
design has been in creating controllers which increase the degree
of expressivity available to the musician. This is a fancy way of
saying the number of parameters that can be simultaneously and
straightforwardly controlled. There are two difficulties with this.
First, the musician doesn’t have twenty fingers: there is an upper
bound on his physical capability to play more notes or play more
expressively. Second, there is the cognitive limit: a musician can
only keep so many balls in the air at one time in his head. Working around these two limits is a
nontrivial psychological human factors task.

Synthesizers keyboards have attempted to add additional expressivity to individual notes by
allowing the musician to modify key values after they have been pressed. This is usually done
by pressing harder on the keys as you hold them down.152 This approach is commonly known as
pressure or aftertouch.

152There exists a very rare alternative where the musician could shift a key sideways.
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Figure 178 Haken Continuum Fin-
gerboard (Top)©75 and Roger Linn
Design LinnStrument (Bottom).©76

Many keyboards implement channel aftertouch (a MIDI term:
see Section 11.2), whereby the keyboard can detect that some key
is being pressed harder and by what amount. This only adds one
global parameter, like the mod wheel or pitch bend, rather than
per-note parameters. It is much more expensive for a keyboard
to implement polyphonic aftertouch (again, a MIDI term), where
the keyboard can report independent aftertouch values for every
key being pressed. Polyphonic aftertouch is rare: only a few synthe-
sizers and controller keyboards have historically implemented it.
Figure 177 shows an Ensoniq SQ80, one synthesizer which had
polyphonic aftertouch. Finally, when the musician releases a key,
some keyboards report the release velocity.

Figure 179 ROLI Seaboard.©77

Recent controllers have made possible even more simultaneous
parameters. The first controller in this category was the Haken
Continuum Fingerboard; others include the ROLI Seaboard and
the Roger Linn Design LinnStrument (Figures 178 and 179).

These devices all take the form of flexible sheets which the
musician plays by hitting with his fingers. When the musician
touches the sheet with a finger, it registers the location touched
and the velocity with which the finger hit the sheet: these translate
into note pitch and velocity (volume) respectively. The musician
can then move his finger about the sheet, which causes the device
to report the new pressure with which the finger is touching it, as
well as its new X and Y locations. These translate into aftertouch, pitch bend (for the X dimension)
and a third parameter of the musician’s choice for the Y dimension. Finally, as the musician releases
his finger, the sheet reports the release velocity. Critically, this information is reported for multiple
fingers simultaneously and independently.153 Related is the Eigenlabs Eigenharp, which combines a
multidimensional touch-sensitive keyboard, a controller strip, and a breath controller.

11.2 MIDI

Figure 180
Eigenharp.©78

In 1978 Dave Smith (of Sequential Circuits) released the popular and in-
fluential Prophet 5 synthesizer. The Prophet 5 was the first synthesizer to
be able to store multiple patches in memory, and to do this, it relied on a
CPU and RAM. Smith realized that as synthesizers began to be outfitted with
processors and memory, it would be useful for them to be able to talk to one
another. With this ability, a performer could use one synthesizer keyboard
to play another synthesizer, or a computer could play multiple synthesizers
at once to create a song. So in 1983 he worked with Ikutaro Kakehashi (the
founder of Roland) to propose what would later become the Musical Instru-
ment Digital Interface, or MIDI. MIDI has since established itself as one of
the stablest, and oldest, computer protocols in history.

MIDI is just a one-way serial port connection between two synthesizers,
allowing one synthesizer to send information to the other. MIDI was designed
for very slow devices and to pack a lot of information into a small space.

153Yes, this means, among other things, that these devices effectively have polyphonic aftertouch.
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MIDI runs at exactly 31,250 bits per second. This is a strange and nonstandard serial baud rate:
why was it chosen? For the simple reason that 31250× 32 = 1, 000, 000. Thus a CPU running at N
MHz could be set up to read or write a MIDI byte every N/32 clock cycles, making life easier for
early synthesizer manufacturers.

MIDI bytes are sent (in serial port parlance) with 1 start bit, 8 data bits, and 1 stop bit. This
means that a single byte requires 10 bits, and thus MIDI is effectively transmitted at 3125 bytes
per second. This isn’t very fast: many MIDI messages require three bytes, and so a typical MIDI
message, such as ”start playing this note”, requires about 1 millisecond to transmit. Keep in mind
that humans can detect audio delays of about 3 milliseconds. Pile up a few MIDI messages to
indicate a large chord, and the delay could be detectable by ordinary ears. Thus a number of tricks
are employed, both in MIDI and by manufacturers after the fact, to maximize throughput.

11.2.1 Routing

Figure 181 5-Pin DIN MIDI Cable and its In,
Out, and Thru ports.©79

MIDI is designed to enable one device to control up to 16
other devices. In its original incarnation, MIDI ran over
a simple 5-pin DIN serial cable, and a MIDI device had a
MIDI in port, a MIDI out port, and a MIDI thru port, as
shown in Figure 181. MIDI In received data from other
devices, MIDI Out sent data to other devices, and MIDI
Thru just forwarded the data received at MIDI In.

To send MIDI data from Synthesizer A to Synthesizer
B, you’d just connect a MIDI cable from A’s Out port to B’s
In port. If you wanted send MIDI data from Synthesizer
A to Synthesizers B and C, you could connect a cable from
A’s Out to B’s In, then connect another cable from B’s Thru
to C’s In (and repeat to connect to D, etc.)

Synth A

In

Out Thru

Synth B

In

Out Thru

Synth C

In

Out Thru

Synth D

In

Out Thru

Synth A

In

Out Thru

MIDI Router

In

Thru

Synth D

In

Out Thru

Synth C

In

Out Thru

Thru Thru

Synth B

In

Out Thru

Synth E

In

Out Thru

Figure 182 MIDI Routing Examples

An alternative would be to connect A to a device
called a MIDI router (or MIDI patchbay), which
contained multiple Thru ports, and connect each of
those ports the MIDI In ports of B, C, and D respec-
tively, as shown in Figure 182. And as also shown
in that Figure, there’s no reason you couldn’t mix
the two techniques: forwarding D to E for example.

It’s common to need device A to send to device
B, and B to send to device A. Just connect a MIDI
cable from A’s Out to B’s In, and likewise another
cable from B’s Out to A’s In. Or it might be the
case that you wish for A to talk to B and C, but
(say) for B to talk exclusively to D. To do this, you
simply connect A’s Out to B’s In, and B’s Thru to
C’s In. Then you connect B’s Out to D’s In. Device
A wouldn’t send data to D: but B would.

Note that while MIDI is designed to allow one sender connect to multiple receivers, it is not
designed to allow multiple senders to send to the same receiver. To enable such magic would
require a special gizmo called a MIDI merge device, and some wizardry would be involved.
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MIDI over USB Beyond its classic 5-pin DIN serial connection, MIDI has since been run over
Ethernet, Firewire, wireless, Bluetooth, fiber-optic cable, you name it. But critically MIDI is now
very often run over USB, often to connect a synthesizer or a controller keyboard to a computer.
Given that USB also allows one device to connect to many, and is much faster than old MIDI serial
specs, you’d think this was a good fit. But it’s not.

The first problem is that USB connects a host (normally your computer) with a client (your
printer, say), and indeed prior to USB-C they have had different shaped ports to enforce which is
which. USB devices generally can’t be both hosts and clients without separate USB buses. Because
USB is so focused on connecting devices to computers, nearly all hardware USB MIDI devices are
clients. This means that to just connect one device to another (a controller to a synthesizer, say),
you must go through a host device — often your laptop. The peer-to-peer connection capability
which made MIDI so useful has been lost. USB is great for connecting mice to your computer. Not
so much networking synthesizers with other synthesizers.

Another more serious problem is that USB is not electrically isolated. When two devices are
attached over USB, they are directly electrically connected, and this often creates problematic
electronic noise issues — including the infamous “ground loop”, a 50Hz or 60Hz hum produced
when two audio devices are connected which have different grounds. MIDI was originally expressly
designed to avoid these issues: its circuitry specification requires an optoisolator: essentially a
little light bulb and light detector in a small package which, when embedded in the MIDI circuitry,
allows two devices to communicate without actually being electrically connected at all.

Nonetheless, with the advent of the Digital Audio Workstation, more and more music studios
are computer-centric, with all the synthesizers and similar devices flowing into a single computer.
The popularity of MIDI over USB only promotes this, as USB is highly PC-centric.

11.2.2 Messages

MIDI messages are just sequences of bytes. The first byte in a sequence, called the status byte, has
its high bit set to 1. The remaining data bytes have their high bits set to 0. Thus MIDI can only
transfer 7 useful bits in a byte, as the first bit is used to distinguish the head of a message from the
body. For this reason, you’ll find that the numbers 128 (27) and 16384 (27×2) show up a lot in MIDI,
but 256 rarely does. Indeed, 7-bit strings in MIDI are so prevalent that they are often referred to as
“bytes”, and we will sometimes do so here as well.

The status byte indicates the type of message, and in some cases is the entire message in and of
itself. MIDI is organized so that the most time-sensitive messages are the shortest:

• Single byte messages are largely timing messages. These messages are so time critical that
they can in fact be legally sent in the middle of other messages.

• Two- and Three- byte messages usually signify events such as “play a note”, “release a note”,
“change a control parameter to a certain value”, etc.

• There is a single type of variable-length message: a system exclusive (or sysex) message. This
is essentially an escape mechanism to allow devices to send custom data to one another, often
in large dumps: perhaps transferring a synthesizer patch from a computer to a synthesizer,
for example.
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Channels Some messages (timing messages, sysex, etc.) are broadcast to any and all devices
listening. Other messages (like note information) are intended for devices listening in on one of
16 channels 1...16 (stored in MIDI as 0...15). The 3 bits indicating the channel are part of the status
byte. A synthesizer can be set up to respond to only messages on a specific channel: that way
you can have up to 16 different synthesizers responding to messages from the master. There’s no
reason a synthesizer can’t respond to different channels for different purposes (this is common);
and there’s no reason you can’t set up several synthesizers to respond to the same channel (this is
unusual). Finally, many synthesizers are set up by default to respond to messages on any channel
for simplicity. In MIDI parlance this is known as responding to the omni channel.

Running Status It takes three bytes (about 1 ms!) just to tell a synthesizer to start playing a note.
That’s costly. But recognizing that very often the same kind of message will appear many times in
a row, MIDI has a little compression routine: if message A is of a certain type (say “Note On”), and
the very next message B is the same kind of message as A and on the same channel, then B’s status
byte may be omitted. If the very next message C is again the same message type and channel, its
status byte may be omitted as well, and so on. This allows a stream of (say) Note On messages to
start with a 3-byte message, followed by many 2-byte messages.

Channel Voice Messages Most MIDI messages are of this type: they indicate events such as notes
being played or released, the pitch bend wheel being changed, etc. All of these messages have
associated channels. The channel is specified by the lower four bits of the the status byte (denoted
ch below): thus 0x86 means a status byte for Note Off (the “8”) on channel 7 (the “6”).

• Note On 0x9ch note velocity tells a synthesizer that a note should be played. This
message comes with two data values, both 0...127: the note in question (middle C is 60, that
is, 0x3c), and the velocity (how fast the key was struck), which usually translates to the note’s
volume. Some keyboards may not detect velocity, in which case 64 (0x40) should be used. A
velocity of 0 has a special meaning, discussed next.

• Note Off 0x8ch note release velocity tells a synthesizer that a note should stop being
played. This message comes with two data values, both 0...127: the note in question (middle
C is 60 or 0x3c), and the release velocity (how fast the key was released).

Many keyboards cannot detect release velocity, in which case 64 (0x40) should be used as a
default. If we didn’t care about release velocity, then instead of sending a Note Off, it is very
common to instead send a Note On with a velocity of 0, which is specially interpreted as a
Note Off of velocity 64. This allows a controller to never have to send a Note Off message,
just a string of Note On messages, and so take better advantage of Running Status.

• Polyphonic Key Pressure or Polyphonic Aftertouch 0xAch note pressure tells a synthe-
sizer that a certain key, currently being held down, is now being pressed harder than when
first played. This message comes with two data values, both 0...127: the note in question
(middle C is 60 or 0x3c), and the pressure level. A level of 0 means the key isn’t being pressed
harder. Polyphonic key pressure is difficult to implement in a keyboard and so it’s not very
common, and this is probably good because it tends to flood MIDI with lots of messages.
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• Channel Pressure or Channel Aftertouch 0xDch pressure tells a synthesizer that the key-
board as a whole is now being pressed harder than when first played. This message comes with
a single data value (0...127): the pressure level. A level of 0 is default: it means the key isn’t
being pressed harder. Many keyboards implement channel pressure. A keyboard wouldn’t
implement both channel and polyphonic key pressure at the same time; but a synthesizer
might respond to both.

• Program Change or PC 0xCch patch asks the synthesizer to change to some new patch
(0...127). Many synthesizers have more than 128 patches available, so it’s common for patches
to be arranged in banks of up to 128 patches, and thus a PC message may be preceded by a
bank change request, discussed in Section 11.2.3. A PC message is rarely real-time: many
synthesizers take quite a bit of time (milliseconds to seconds) to change to a new patch.

• Pitch Bend 0xEch LSB MSB tells a synthesizer that the pitch bend value has been

changed.154 Pitch Bend is a high resolution 14-bit value from -8192...+8191. The two values
(MSB and LSB) are both 0...127, and the bend value is computed as MSB× 128 + LSB− 8192.

• Control Change or CC 0xBch parameter value tells a synthesizer that some parameter
(0...127) has been adjusted to some value (0...127). You can think of this as informing a
synthesizer that a musician wants to tweak some knob on it. The meaning of CC parameters
and their respective values varies from synthesizer to synthesizer, and there’s some complexity
to it, discussed in Section 11.2.3. Also, 0...127 is not particularly fine-grained: also discussed
in Section 11.2.3 are options for sending more precise information.

Clock Messages Many music devices, such as drum machines, can play songs or beat patterns
on their own. It’s common to want to synchronize several of them so they play their songs or beats
at the same time. MIDI has a mechanism for a controller to send clock synchronization messages to
every listener. MIDI defines a clock pulse as 1/24 of a quarter note. This is a useful value, since
lots of things (sixteenth notes, triplets, etc.) are multiples of it. A controller can send out clock
pulses at whatever rate it likes, like a conductor, and listening devices will do their best to keep up.

To send clock pulses, a device must first send a Start message. It then sends out a stream of Clock
Pulse messages.155 It may conclude by sending a Stop message. If it wished to start up where it left
off, it could then send a Continue message and keep going with pulses. Alternatively, if it wished to
restart from the beginning, it could send another Start message after the Stop and continue pulsing.

• Clock Pulse or Timing Clock 0xF8 Sends a pulse.

• Start 0xFA Informs all devices to reset themselves to the beginning of the song and to
prepare to begin playing upon receiving pulses. Start is interpreted as a song position pointer
of 0 followed by a Continue.

154MSB stands for Most Significant Byte and LSB stands for Least Significant Byte, even though neither of them is a
byte: they’re both 7-bit values.

155One annoyance with MIDI Clock is that after a Start has been sent, you can’t realistically determine or even estimate
the clock rate until two clock pulses have been received, and you have to wing it until then.
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• Stop 0xFC Informs all devices to pause (or stop) playing.

• Continue 0xFB Informs all devices to resume playing upon receiving pulses.

• Song Select 0xF3 song Informs all devices to prepare to start playing a given song (drum-
beat pattern, whatnot) from 0...127. This is not often used.

• Song Position Pointer 0xF2 LSB MSB Informs all devices to prepare to begin playing
the current song at the given position MSB×128+LSB. The position is defined in “MIDI Beats”:
one MIDI Beat is 6 clock pulses, that is, one sixteenth note. Position 0 is the start of the song.

Sysex 0xF0 id... data... 0xF7 Sysex messages are manufacturer-specific, but they are required

to have a certain pattern. First comes the status byte 0xF0.156 Next comes a stream of data bytes. The
first few data bytes must be the ID of the manufacturer of the synthesizer for which the message
is crafted. Manufacturer IDs are unique and registered with the MIDI Association. This is a
namespace scheme, and allows synthesizers to ignore Sysex messages that they don’t recognize. At
the end of the stream of data bytes is another status byte, 0xF7, indicating the end of the message.157

Manufacturer IDs 0x7E and 0x7F are special: they are so-called Universal System Exclusive
messages reserved by the MIDI association for its own purposes. Examples of universal system
exclusive protocols include standards for sample dumps, device inquiry and response, file dumps,
tuning standards, and a variety of real-time transfer protocols.

Other Stuff There are several other non-channel messages, none particularly important:158

• MIDI Time Code Quarter Frame 0xF1 data byte A sequence of these messages send an

SMPTE159 time code stamp. This is an absolute time value (frames, seconds, minutes, etc.)
used to synchronize MIDI with video etc. These messages aren’t discussed further here.

• Tune Request 0xF6 Asks all devices to tune themselves. No, seriously. MIDI was created
when synthesizers were primitive.

• Active Sensing 0xFE An optional and only occasional heartbeat message which assures
downstream devices that the controller hasn’t been disconnected. It can be ignored.

• System Reset 0xFF Asks synthesizers to completely reset themselves as if they had just
been powered up. Again, MIDI is old.

156It is convention in C/C++, Java, and related languages to describe the hexadecimal number N as 0xN to distinguish
it from decimal numbers. So, for example, the number F0 (that is, 240) is written as 0xF0.

157Technically it doesn’t need to end with 0xF7 as long as another message immediately follows. But everyone does it.
158By the way, the status bytes 0xF4 0xF4 0xF9 and 0xFD are undefined.
159SMPTE: Society of Motion Picture and Television Engineers.
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11.2.3 Control Change (CC) Messages

Control Change (CC) messages (of the form 0xBch parameter value ) are meant to allow a con-
troller to manipulate a synthesizer’s parameters, whatever they may be. Synthesizers are free to
interpret various control change messages however they deem appropriate, though there are some
conventions. Here are a few common ones:

• Parameters 0 and/or 32 often select the patch bank. Each bank would usually contain up to
128 patches (selected with Program Change).160

• Parameter 1 often specifies the value of the modulation wheel.

• Parameter 2 often specifies the value of a breath controller device.

• Parameter 4 often specifies the value of a foot controller.

• Parameter 11 often specifies the value of an expression controller (this value is usually
multiplied against the global overall instrument volume to set its temporary volume).

• Parameter 64 often specifies whether the sustain pedal is down (≥ 64) or not (< 64).

• Parameter 74 often specifies the third dimension controller specified by MIDI Polyphonic
Expression (or MPE), discussed later in Section 11.2.6.

• Parameters 6, 38, 96, 97, 98, 99, 100, and 101 are often reserved to implement the NRPN and
RPN protocols (see Section 11.2.4, next).

• Parameters 120–123 are reserved for so-called MIDI channel mode messages:

– Parameter 120 (with value 0) is the all sound off message. This tells a synthesizer to
immediately cut all sound.

– Parameter 121 (with value 0) is the reset all controllers message. This tells a synthesizer
to reset all its parameters to their default settings.

– Parameter 122 is the local switch message. This tells a synthesizer to turn “local mode”
on (127) or off (0). When in local mode, the synthesizer’s own keyboard can send notes
to the synthesizer. When not in local mode, this connection is broken, but the keyboard
can still send messages out MIDI, and the synthesizer can still respond to MIDI.

– Parameter 123 (with value 0) is the all notes off message. This tells a synthesizer to
effectively send a Note Off message to all its voices for all notes. This does not immediately
cut all sound, as voices may have a long release time in response to a note-off.

• Parameters 124–127 are reserved for additional, now largely useless, standardized MIDI
channel mode messages which control so-called omni mode and mono vs. poly modes. An

160Early synthesizers used Parameter 0 to specify the bank, and so there could be up to 128 banks. Later synthesizers
treated Parameter 0 as the MSB and Parameter 32 as the LSB, so the bank value was LSB ×128 + MSB and thus in theory
there could be 16834 banks. However, many such synths had far fewer than 128 banks, so only the LSB (Parameter 32)
was used in reality! Kind of a mess.
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instrument in omni mode responds to any channel. An instrument in mono mode is mono-
phonic, and an instrument in poly mode is polyphonic. While these modes and messages are
not very useful nowadays, this region is nonetheless still (unfortunately) reserved.161

– Parameter 124 (with value 0) turns omni mode off.

– Parameter 125 (with value 0) turns omni mode on.

– Parameter 126 (with a value n from 0 to 16) turns mono mode on and poly mode off.
You can treat your synthesizer’s voices (or controller’s outgoing notes) as n individual
mono devices. If n ≥ 1, then the synth is treated as n individual mono synthesizers (or
n individual mono controller keyboards), one per channel, starting at the channel on
which this message was sent (and not wrapping around). If n = 0 then the device is
treated as 16 individual mono synthesizers (or controllers), one per MIDI channel.162

– Parameter 127 (with value 0) turns poly mode on and mono mode off.

11.2.4 Reserved and Non-Reserved Parameter Number Messages (RPN and NRPN)

CC messages have two serious problems. The first problem is that there are only 120 of them
(disregarding the MIDI channel mode region, 120...127). But a synthesizer often has hundreds,
sometimes thousands, of parameters! The second problem is that the value can only be 0...127. This
is a very coarse resolution: if you turned a controller knob which sent CC messages to a synthesizer
to (say) change its filter cutoff, the stepping would be very evident — it wouldn’t be smooth.

Early on, the MIDI spec tried to deal with the second problem by optionally reserving CC
parameters 32–63 to be the Least Significant Byte (LSB) corresponding to the parameters 0–31 (the
Most Significant Byte or MSB). The idea was that you could send a CC for parameter 4 as the
MSB, then send a CC for parameter 36 (32+4) as the LSB, and the synthesizer would interpret
this as a higher resolution 14-bit value 0...16383, that is, MSB× 128 + LSB. Unfortunately, there
would be only 32 high-resolution CC parameters, and this scheme reduced the total number of CC
parameters — already scarce — by 32. Thus many early synthesizers simply disregarded CC for
their advanced parameters and relied on proprietary messages via the Sysex facility (unfortunately).

But in fact MIDI has a different and better scheme to handle both of these two problems:
Reserved Parameter Numbers (RPN) and Non-Reserved Parameter Numbers (NRPN). The RPN
and NRPN schemes each permit 16384 different parameters, and those parameters can all have
values 0...16383. RPN parameters are reserved for the MIDI Association to define officially, and
NRPN parameters are available for synthesizer manufacturers to do with as they wish.

RPN and NRPN work as follows. For NRPN, a controller begins by sending CC Parameter 99
and CC Parameter 98, which which define the MSB and LSB respectively of the NRPN Parameter
number being sent. Thus if a controller wished to send an NRPN 259 message, it’d send 2 for
Parameter 99 and 3 for Parameter 98 (2× 128 + 3 = 259). For RPN, these CC parameters would be
101 and 100 respectively. Next, the controller would send the MSB and LSB of the value of the NRPN
(or RPN) message as CC Parameters 6 and 32 respectively. The MSB and LSB of the value can come
in any order and either may be omitted, unfortunately complicating matters. The controller could
alternatively send an “increment” or “decrement” message (96 and 97 respectively). For example, a

161Why 124 and 125 aren’t merged, and similarly 126 and 127, I have no idea. Also, all four of these messages are also
supposed to trigger an all-notes-off event (see Parameter 123 on page 155).

162This sounds a lot like MPE to me (Section 11.2.6): it’s not clear to me why MPE wasn’t built off of this facility.
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CC 96 with a value of 5 would mean that the parameter should be incremented by 5. Most synths
ignore the increment value and just increment (or decrement) by 1.

Inspired by Running Status, a stream of these value-messages (6, 32, 96, or 97) could be sent
without sending the NRPN/RPN Parameter Number messages again, as long as the NRPN or RPN
parameter remained the same. To shut off this running-status-ish stream (perhaps to prevent any
further inadvertent NRPN value messages from corrupting things), one could send the RPN Null
message. This is RPN parameter 16383 — that is, MSB 127 and LSB 127 — with any value.163

The problem with RPN and NRPN is that they are slow: to update the value of a new parameter
requires 4 CC messages.164 Another problem with RPN and NRPN is that only some synthe-
sizers implement them, and even more problematically, many lazy Digital Audio Workstation
manufacturers do not bother to include them as options.

11.2.5 Challenges

MIDI has been remarkably stable since it was invented in 1983: indeed, the spec is still technically
fixed to 1.0!165 But MIDI was designed in the age of synthesizer keyboards, and it was not meant to
be extended to elaborate multidimensional controllers which manipulate many parameters at once,
nor to complex routing scenarios involving software. This produces a number of problems:

• MIDI is slow. Notoriously so. MIDI was fixed to 31,250 bits per second to support early
synthesizers with 1MHz CPUs (31,250 × 32 = 1 million). This is not fast enough to guarantee
smooth transitions beyond the ability of humans to detect.

• MIDI is low resolution. Only two standard parameters (pitch bend and song position
pointer) are 14-bit: the rest are 7-bit, which is very coarse resolution. There exist two kinds of
14-bit extensions to some parameters (14-bit CC and RPN/NRPN), but they come at the cost
of making MIDI up to 3× slower. One solution to this is not to use MIDI at all, but rather to fall
back to traditional CV/Gate control used by modular synthesizers. CV/Gate is real-valued
and so can be arbitrarily high resolution (in theory) and fast (in theory). A number of current
keyboards provide both MIDI and CV/Gate for modular synthesizers such as Eurorack.166

• MIDI is a one-direction protocol. There’s no standard way to query devices for their capa-
bilities, or to negotiate to use a more advanced version of the protocol, etc.

163Actually no value at all need be provided for RPN Null to do its job.
164This is not as bad as it sounds. Let’s imagine that you wanted to send a single NRPN message. You’d send a CC

99, then a CC 98, then maybe a CC 6 and a CC 32. Normally these CC messages would be 3 bytes long each, but recall
that they are all CC messages, so you can take advantage of running status. So you’d have 3 + 2 + 2 + 2 bytes total, just
9 bytes. Every time you wanted to send another message of the same parameter but with different values — perhaps
you were doing a filter sweep — you’d probably just send one more CC 6 or CC 32 (thus just another 2 bytes). If you
wanted to add an RPN Null at the end, you’d send a CC 100 and CC 101 (no need to send the data portion). This would
be 4 more bytes.

165This is kind of a lie. MIDI 1.0 in 1983 is fairly different from the MIDI 1.0 of the 2000s. But the MIDI Association has
never updated the version number. That’s finally changing soon though, with MIDI 2.0.

166CV/Gate works as follows. A gate signal is an analog signal which goes from 0 volts to some positive voltage (or,
for some systems, from positive to 0) to indicate that a key has been struck. The opposite occurs to indicate that a key has
been released. Accompanying this is a control voltage or CV signal, which indicates the pitch of the note. Recall from
Footnote 31 (page 46) that CV is either encoded in volt per octave, where each volt means one more octave, or hertz
per volt, where voltage doubles with each octave. These are analog signals, and so they are as fast and as precise as
necessary. Additional signals could be added to indicate velocity and other parameters.
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• Many MIDI parameters are per-instrument, not per-voice. MIDI can support many pa-
rameters, but it has only has a few defined parameters which are per note: pitch, attack
velocity, release velocity, and polyphonic aftertouch. Other parameters are global to the whole
instrument, whether appropriate or not (often not).

But this situation may change soon with many new MIDI protocol features. The last of these
problems is dealt with by a new extension to MIDI called MIDI Polyphonic Expression or MPE.
The remaining three problems will be tackled by the upcoming MIDI 2.0. We discuss these below.

11.2.6 MPE

MIDI was designed with the idea that people would by and large use keyboards as controllers.
Keyboards are essentially a collection of levers, and the performer is restricted in the number of
parameters he can control for each note. In MIDI, a performer can specify, per-key, its note, the the
velocity with which it is struck, the velocity with which it is released, and (using polyphonic key
pressure) the pressure with it is being pressed. All other parameters (CC, channel pressure, NRPN,
and especially pitch bend) are global to the whole instrument rather than being per-key.

Figure 183 The Futuresonus Parva, the
first hardware synthesizer167 to support
MPE.©80

But many other instruments are more expressive than this:
for example, a guitarist can specify the volume and pitch bend
of each string independently. A woodwind musician controls
all sorts of timbre parameters with his mouth (the embouchure
with which he plays the instrument). And so on. In the same
vein, it is the goal of many current advanced MIDI controllers
to enable a musician to change a many independent parameters
on a per-note basis in order to increase the expressivity by
which he may play. But MIDI simply doesn’t permit this.

To deal with this situation, many high-parameter controller
manufacturers support a new MIDI standard which provides
CC, pitch bend, and so on on a per-key basis. This allows
these manufacturers to provide (at least) a “five-dimensional”
control surface (attack velocity and note pitch, aftertouch,168

pitch bend, release velocity, and so-called “Y” dimensional
movement, all per-key). This scheme is known as MIDI Polyphonic Expression169 or MPE.

MPE works by hijacking MIDI’s 16 channels: rather than assign each channel to a different
synthesizers, MPE uses them for different notes currently being held down on a single synthesizer. MPE
divides the 16 channels into one or two zones. If there is one zone, then one channel is designated
its master channel, for global parameter messages from the controller, and the other 15 channels
are assigned to 15 different notes (voices) played through that controller. That way each voice can
have its own unique CC messages and its own pitch bend. A special CC parameter, number 74, is
by convention reserved as a dedicated standard “third dimension” parameter (beyond pressure

167The Parva was also the first hardware synthesizer to support USB host for MIDI. This means that a USB MIDI
keyboard controller can be plugged directly into the Parva in order to play it. As mentioned in Section 11.2.1, normally
you’d have to control a synthesizer from a USB controller by attaching both to a laptop. The Parva is a rare exception.

168This is done, as it so happens, with a modified version channel aftertouch. These devices almost always support
polyphonic aftertouch too, but if we’re doing MPE, there’s no reason for it: each note is on its own channel and so the
aftertouch is already uniquely assigned to each note. Besides, polyphonic aftertouch requires an additional byte.

169The original name, which I much prefer, was Multidimensional Polyphonic Expression, but the MIDI Association
changed the name prior to its inclusion in the MIDI spec. I don’t know why.
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and pitch bend). If there are two zones — notionally to allow two instruments to be played by the
controller —- then each has its own master channel, and the remaining 14 channels may be divvied
up among the two zones (perhaps one instrument could be allocated 4 voices and the other 10, say).

The two zones are known as the upper zone and lower zone. The lower zone uses MIDI
channel 1 as its master channel, and has some number of additional channels 2, 3, ... assigned
to individual notes. The upper zone has MIDI channel 16 as its master channel and additional
channels 15, 14, ... assigned to individual notes. If there is only one zone — by far the most common
scenario — it can take up all 15 available channels beyond the master channel, and the controller
may choose to use the upper or the lower zone as this sole zone.

MPE zones are either preconfigured in the instrument, or may be specified by the controller
using RPN command #6 sent on either channel 1 (to configure the lower zone) or 16 (to con-
figure the upper zone), with a parameter value of 0 (turning off that zone) or 1...15 (to as-
sign up to 15 channels to the zone). All told the RPN message consists of three CC messages:

0xBn 0x64 0x06 0xBn 0x65 0x00 0xBn 0x06 0x0m with n being the zone (0 or F for lower or
upper zone), and m being the number of channels 0...F.

Thereafter, when a note is played on the controller, it assigns a channel to the note and sends
Note On, Note Off, and all other note-related information on that channel only. This potentially
includes pitch bend, aftertouch, and CC, NRPN, or RPN commands special to just that note.
Additionally, the controller can make changes to all the notes under its control by issuing commands
on the master channel. There are a lot of subtleties involved in allocating (and reallocating) notes to
channels for which suggestions, but not requirements, are made in the MPE specification.170

Note that MPE doesn’t extend MIDI in any way: it’s just a convention as to how MIDI channels
are allocated and used for a special purpose. There’s no reason you couldn’t (for some reason) use
channels 1...13 for a lower MPE zone, and then use channels 14 and 15 to control standard MIDI
instruments in the conventional way, for example.

11.2.7 MIDI 2.0

As of this writing, MIDI 2.0 is not quite released: so we don’t know everything about it. But MIDI
2.0 is designed to deal with a number of difficulties in MIDI, not the least of which are its speed,171

low resolution, and unidirectionality.

MIDI Capability Inquiry (MIDI-CI) MIDI 2.0 is bidirectional. One consequence of this is that
MIDI 2.0 devices can query one another, trade data, and negotiate the protocol to be used.

• Profile Configuration A device can tell another device what kinds of capabilities it has.
For example, a drum machine, in response to a query, may respond indicating that it has a
certain profile typical of drum machines. This informs the listening device that it is capable
of responding to a certain set of directives covered by that profile.

• Property Exchange Devices can query data from one another, or set data, in a standardized
format: this might mean patches, sample or wavetable data, version numbers, vendor and
device names, etc. Perhaps this might spell the end of custom and proprietary sysex formats.

170MIDI is an open protocol. The MPE specification, as well as other MIDI specifications and documents, are available
for free at https://www.midi.org/

171In fact, I do not know how MIDI 2.0 tackles speed yet, but I assume it does.
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• Protocol Negotiation Devices can agree on using a newer protocol than MIDI 1.0, such as
MIDI 2.0. The MIDI 2.0 protocol has a number of important improvements over 1.0, including
higher resolution velocity, pressure, pitch bend, RPN, NRPN, and CC messages; new kinds of
articulated event data (more elaborate Note On / Note Off messages, for example); additional
high-resolution controllers and special messages on a per-note basis; and up to 256 channels.

MIDI 2.0 tries hard to be backward compatible with 1.0 when possible. If either device fails to
respond to a profile configuration request, property exchange, or protocol negotiation, then the
other device falls back to MIDI 1.0, at least for that element.
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12 The Fourier Transform
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Figure 184 Euler’s Formula on the
complex plane. The X axis is the real
axis, and Y is the imaginary axis.©81

As discussed earlier, any sound wave can be represented as a series
of sine waves which differ in frequency, amplitude, and phase. In
Section 3, we’ll see how to use this to produce sound through
additive synthesis. Here we will consider the subject somewhat
formally, and also discuss useful algorithms which automatically
convert sound to and from the time and frequency domains. These
algorithms are useful for many reasons, which we discuss later.

For any sound wave s(t), where t is the time, we have some
function S( f ) describing the frequency spectrum. This function,
with some massaging, provides us with the amplitude and phase
of each sine wave of frequency f participating in forming the
sound wave s(t). As it turns out, both S( f ) and s(t) are functions
which yield complex numbers, though when used for sounds, the
imaginary portion of s(t) is ignored (both the imaginary and real
portions of S( f ) are used to compute phase and magnitude).

We can convert from s(t) to S( f ) using the Fourier Transform.172 The Inverse Fourier Trans-
form does the opposite: it converts S( f ) into s(t). The two transform functions are so similar that,
as we’ll see, they’re practically the same procedure. It’s useful to first see the those sines and cosines
being constructed to form a sound wave. So let’s look at the Inverse Fourier Transform initially, to
get an intuitive feel for this:

s(t) =
∫ ∞

−∞
S(iω) (cos(ωt) + i sin(ωt)) dω

Note that ω is the angular frequency of a sine wave. So what this is doing is, for every possible
frequency (including negative ones!), we’re computing the sine wave in both its real- and imaginary
components, multiplied by our (complex) spectral value at that frequency, S(iω), which includes
both the amplitude and the phase of the sine wave in question. Add all of these sine waves up and
you get the final wave.173

As it turns out, the (forward) Fourier Transform is eerily similar to the inverse. Note that the
big difference is a minus sign:

S(iω) =
∫ ∞

−∞
s(t) (cos(ωt)− i sin(ωt)) dt

Yes, that’s going from negative infinity to positive infinity in time. The Fourier Transform
reaches into the far past and the far future and sums all of it. We’ll deal with that issue in a moment.

172The Fourier Transform is named after Joseph Fourier, who in 1822 showed that arbitrary waves could be represented
as a large sum of sine waves (the Fourier Series).

173You might be asking: why all the complexity involving imaginary components along with real-valued ones? Why
not just break a sound into a bunch of real-valued sine waves? And the answer is, surprisingly: there’s not a good
reason. Indeed, as we’ll discover later, the Fourier Transform is pretty wasteful when it’s being applied to a real-valued
signal (like sound): half of the result is useless repeated information. In fact there exists another common method, called
the Discrete Cosine Transform or DCT, which does exactly what you’d want: it breaks the sound down into multiple
cosine functions and that’s it. The DCT is popular in compression schemes. But the Fourier Transform has been around
for almost 200 years, with a long and cherished history, while the DCT has been around since 1972, when it was invented
by Nasir Ahmed. So there you go.
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This isn’t the classic way to describe these transforms. Instead, we’d use Euler’s Formula,174

eiθ = cos(θ) + i sin(θ), to cast the cos and sin into an exponential. (Also remember that cos(a) =
cos(−a) while − sin(a) = sin(−a)). This all results in:

s(t) =
∫ ∞

−∞
S(iω) (cos(ωt) + i sin(ωt)) dω =

∫ ∞

−∞
S(iω)eiωtdω

S(iω) =
∫ ∞

−∞
s(t) (cos(ωt)− i sin(ωt)) dt =

∫ ∞

−∞
s(t) (cos(−ωt) + i sin(−ωt)) dt =

∫ ∞

−∞
s(t)e−iωtdt

12.1 The Discrete Fourier Transform

The Fourier Transform above is continuous, which isn’t going to happen in a computer. And it’s
also considering things like infinite positive and negative time and infinite positive and negative
frequencies. We need a discrete version.

Specifically, we have N evenly spaced samples of sound totaling a time T, and so the sampling
rate is R = N/T. The samples will be called t = 0, 1, ..., N − 1. Not only are the number of samples
discrete, but the number of frequencies will wind up being discrete too. We produce an array of N
complex numbers corresponding to angular frequencies from 0 to 2π, and thus the real frequencies
(in Hz) from 0 to R.175 Using our discretized t and f values, our two equations transform to:176

S( f ) =
N−1

∑
t=0

s(t)e−i2π f t 1
N s(t) =

1
N

N−1

∑
f=0

S( f )ei2π f t 1
N (t, f = 0, 1, ..., N − 1)

Note that because our sampled sound is no longer infinite in length, we now have a notion of a
maximal wavelength: the biggest sine wave we can use in our sound is one whose period is T.

174There are lots of ways to intuitively explain why eiθ = cos(θ) + i sin(θ) using rotation about the complex unit circle
as shown in Figure 184. But maybe it’s easier to just explain with Taylor series. Here are three classic Taylor series
expansion identities:

cos(θ) = 1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · · sin(θ) = θ− θ3

3!
+

θ5

5!
− θ7

7!
+ · · · eθ = 1+ θ +

θ2

2!
+

θ3

3!
+

θ4

4!
+

θ5

5!
+

θ6

6!
+

θ7

7!
· · ·

This means that

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+ · · · = 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+

iθ5

5!
− θ6

6!
− iθ7

7!
· · ·

=

(
1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)
+

(
iθ − iθ3

3!
+

iθ5

5!
− iθ7

7!
+ · · ·

)

=

(
1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)
+ i
(

θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

)
= cos(θ) + i sin(θ)

175Note that this means the highest frequency is R, which is impossible (remember Nyquist): but as you’ll see we’ll
only be using the first half of the slots.

176Some people prefer to split the 1
N among the two transformations as 1√

N
, which results in nearly identical equations:

S( f ) =
1√
N

N−1

∑
t=0

s(t)e−i2π f t 1
N s(t) =

1√
N

N−1

∑
f=0

S( f )ei2π f t 1
N (t, f = 0, 1, ..., N − 1)
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You could see it in sine/cosine form by applying Euler’s Formula177 again: remember it’s
eiθ = cos(θ) + i sin(θ). This yields:

S( f ) =
N−1

∑
t=0

s(t)
(

cos
(
−2π f t

1
N

)
+ i sin

(
−2π f t

1
N

))

s(t) =
1
N

N−1

∑
f=0

S( f )
(

cos
(

2π f t
1
N

)
+ i sin

(
2π f t

1
N

))
(t, f = 0, 1, ..., N − 1)

A bit of trigonometry allows us to convert the first equation to:

S( f ) =
N−1

∑
t=0

s(t)
(

cos
(

2π f t
1
N

)
− i sin

(
2π f t

1
N

))

s(t) =
1
N

N−1

∑
f=0

S( f )
(

cos
(

2π f t
1
N

)
+ i sin

(
2π f t

1
N

))
(t, f = 0, 1, ..., N − 1)

Notice that these two transforming equations are identical except for a minus sign and 1/N.
This allows us to create a unified algorithm for them called the Discrete Fourier Transform or DFT
(and the Inverse Discrete Fourier Transform or IDFT).

Algorithm 27 The Discrete Fourier Transform
1: Xr ← 〈Xr0...XrN−1〉 array of N elements representing the real values of the input
2: Xi← 〈Xi0...XiN−1〉 array of N elements representing the imaginary values of the input
3: forward← Is this a forward (as opposed to inverse) transform?

4: Yr ← 〈Yr0...YrN−1〉 array of N elements representing the real values of the output
5: Yi← 〈Yi0...YiN−1〉 array of N elements representing the imaginary values of the output
6: for n from 0 to N − 1 do
7: Yrn ← 0
8: Yin ← 0
9: for m from 0 to N − 1 do

10: if forward then
11: z← −2πmn 1

N . The only difference in the equations is the minus sign
12: else
13: z← 2πmn 1

N

14: Yrn ← Yrn + Xrm cos(z)− Xim sin(z) . This is just the e... stuff
15: Yin ← Yin + Xim cos(z)− Xrm sin(z) . and multiplying complex numbers

16: if not forward then
17: Yrn ← Yrn

N
18: Yin ← Yin

N

19: return Yr and Yi

177By the way, a degenerate case of this formula is one of the most spectacular results in all of mathematics. Specifically,
if we set θ = π, then we have eiθ = eiπ = cos(π) + i sin(π) = −1 + i(0) = −1. From this we have eπi + 1 = 0, an
amazing equation containing exactly the five primary constants in mathematics.
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Figure 185 Values of interest in the Time domain s(t) and Frequency domain S( f ) arrays for a Real-Valued DFT. Gray,
Red, and Blue boxes show numerical values of interest. Boxes with 0 in them should (or will) be set to 0. The red box at 0
is the value of the DC Offset. The blue box at N/2 is the value of the Nyquist frequency bin, and is only important to
retain if one ultimately needs to reverse the process via an inverse transform; otherwise it can be ignored. The blank
white boxes are just reflected complex conjugates of the gray boxes in S( f ), and can be ignored since they are redundant.

12.2 Computing Amplitude and Phase

In the Forward DFT, each slot in the resulting frequency domain array is known as a bin in the
Fourier transform world. For each bin n = 0...(N − 1), the frequency value is a complex number
Yn consisting of real Yrn and imaginary Yin components. From this we can extract:

• The amplitude of the bin is just the magnitude |Yn|, that is,
√
(Yrn)2 + (Yin)2. Note that

when Yn is only real valued, the magnitude is simply its absolute value.

• The phase of the bin is tan−1
(

Yin
Yrn

)

• The frequency of the bin (for the first N/2+ 1 elements) is n/N× R, where R is the sampling
rate (44.1K for example). As we’ll see in the next section, we’re really only interested in the
first N/2 + 1 elements.

12.3 Real-Valued Fourier Transforms

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 186 Two functions which differ only in
their DC offset. The red function has an offset
of 0, while the blue function has an offset of 0.5.

Now, our sound is not a bunch of complex numbers: it’s
a bunch of real-valued numbers. This means that when we
apply the DFT to it, the imaginary portion Xi will be all
zeros. This has an interesting effect: there will be a certain
mirror symmetry among the outputs Y1...YN−1. Specifically,
each output Yn will be the complex conjugate of output
YN−n starting at n = 1. That is, for all n > 1, Yin = −YiN−n.

Output Y0 will not be part of this symmetry pattern: it
will be real-valued only (that is, Yi0 = 0). This is the “0
Frequency” bin, or DC offset bin. This bin contains the
amount of DC offset contained in the sound, that is, the
degree to which the whole sound is shifted up or down
vertically. See Figure 186.

Furthermore, if N is even — which is usually the case — then this implies that output YN/2 (the
center point in the symmetry) will be equal to its own complex conjugate, which also implies that
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it must be real-valued (because YiN/2 must then be 0). This is the Nyquist frequency bin, and it
represents frequencies beyond what can properly be represented. If you are planning on doing a
DFT, modifying the values, and then doing an inverse DFT to output the result in the time domain,
you’ll need to hold onto the Nyquist frequency bin value; otherwise you can ignore it.

Figure 185 shows this situation. This symmetry means that, when the time domain is real-
valued, only slots 0...N/2 − 1 (and possibly N/2) are relevant in the frequency domain: the
remaining slots are just reflective complex conjugates which can be reconstructed from something
else. This should make sense: as was mentioned in Section 2.2, the Nyquist limit is the largest
possible frequency which can be embedded in a digital signal, and is half the sampling rate. So if
we have a 1 second clip sampled at 44.1KHz, and thus have 44,100 samples, even though we get
back 44,100 “frequency bins”, in fact only the first 22,050 (+ 1) matter.

12.4 The Fast Fourier Transform

The problem with the DFT is that it is slow: its two for-loops means that it’s obviously O(N2).
But it turns out that with a few clever tricks we can come up with a version of the DFT which is
only O(N lg N)! This faster version is called the Fast Fourier Transform or FFT.178 The FFT uses a
divide-and-conquer approach to recursively call smaller and smaller FFTs.

Recall that the forward DFT looks like this:

S( f ) =
N−1

∑
t=0

s(t)e−i2π f t 1
N

What if we divided the summing process into two parts: summing the even values of t and the
odd values of t separately? We could write it this way:

S( f ) =
N−1

∑
t=0

s(t)e−i2π f t 1
N

=
N/2−1

∑
t=0

s(2t)e−i2π f (t×2) 1
N +

N/2−1

∑
t=0

s(2t + 1)e−i2π f (t×2+1) 1
N

=
M−1

∑
t=0

s(2t)e−i2π f (t×2) 1
2M +

M−1

∑
t=0

s(2t + 1)e−i2π f (t×2+1) 1
2M (M = N/2)

=
M−1

∑
t=0

s(2t)e−i2π f (t×2) 1
2M +

M−1

∑
t=0

s(2t + 1)e−i2π f (t×2) 1
2M × e−i2π f 1

2M

=
M−1

∑
t=0

s(2t)e−i2π f t 1
M + e−i2π f 1

2M ×
M−1

∑
t=0

s(2t + 1)e−i2π f t 1
M

=
M−1

∑
t=0

s(2t)e−i2π f t 1
M + e−i2π f 1

N ×
M−1

∑
t=0

s(2t + 1)e−i2π f t 1
M (N = 2M)

178The DFT has been around since 1828, reinvented in many guises. The FFT in its current form is known as the
Cooley-Tukey FFT, by James William Cooley and John Tukey circa 1965. Tukey is famous for lots of things in statistics
as well, not the least of which is the invention of the box plot. But interestingly, the FFT in fact predates the DFT: it was
actually invented by (who else?) Carl Friedrich Gauss. Gauss developed it as part of his astronomical calculations in
1822, but did not publish the results. No one noticed even when his collected works were published in 1866.
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Let’s call those two splits E( f ) and O( f ) for even and odd:

S( f ) = E( f ) + e−i2π f 1
N ×O( f )

It turns out that if we use this equation to compute S( f ) for f from 0...S(N/2− 1), we can reuse
our E( f ) and O( f ) to compute S( f ) for N/2...N − 1. That’s the divide-and-conquer bit. So let’s
assume that the above derivation is for just the first case. We’ll derive a similar equation the second
case, S( f + N/2), otherwise known as S( f + M). To do this we take advantage of two identities.
The first is that for any integer k, it’s the case that e−i2πk = 1. The second is that e−iπ = 1:

S( f + M) =
N−1

∑
t=0

s(t)e−i2π( f+M)t 1
N

=
N/2−1

∑
t=0

s(2t)e−i2π( f+M)(t×2) 1
N +

N/2−1

∑
t=0

s(2t + 1)e−i2π( f+M)(t×2+1) 1
N

=
M−1

∑
t=0

s(2t)e−i2π( f+M)(t×2) 1
2M +

M−1

∑
t=0

s(2t + 1)e−i2π( f+M)(t×2+1) 1
2M (M = N/2)

=
M−1

∑
t=0

s(2t)e−i2π( f+M)(t×2) 1
2M + e−i2π( f+M) 1

2M ×
M−1

∑
t=0

s(2t + 1)e−i2π( f+M)(t×2) 1
2M

=
M−1

∑
t=0

s(2t)e−i2π( f+M)t 1
M + e−i2π( f+M) 1

2M ×
M−1

∑
t=0

s(2t + 1)e−i2π( f+M)t 1
M

=
M−1

∑
t=0

s(2t)e−i2π f t 1
M e−i2πMt 1

M + e−i2π( f+M) 1
2M ×

M−1

∑
t=0

s(2t + 1)e−i2π f t 1
M e−i2πMt 1

M

=
M−1

∑
t=0

s(2t)e−i2π f t 1
M + e−i2π( f+M) 1

2M ×
M−1

∑
t=0

s(2t + 1)e−i2π f t 1
M (First Identity)

=
M−1

∑
t=0

s(2t)e−i2π f t 1
M + e−i2π f 1

2M e−i2πM 1
2M ×

M−1

∑
t=0

s(2t + 1)e−i2π f t 1
M

=
M−1

∑
t=0

s(2t)e−i2π f t 1
M − e−i2π f 1

2M ×
M−1

∑
t=0

s(2t + 1)e−i2π f t 1
M (Second Identity)

=
M−1

∑
t=0

s(2t)e−i2π f t 1
M − e−i2π f 1

N ×
M−1

∑
t=0

s(2t + 1)e−i2π f t 1
M (N = 2M)

Notice that once again we have the same splits E( f ) and O( f )! So we can say:

S( f + N/2) = E( f )− e−i2π f 1
N ×O( f )

So if we wanted to compute S( f ) for all f = 0....N − 1, we could do it like this:

1. Compute E( f ) and O( f )

2. For all f = 0...N/2− 1, compute S( f ) = E( f ) + e−i2π f 1
N ×O( f )

3. For all f = 0...N/2− 1, compute S( f + N/2) = E( f )− e−i2π f 1
N ×O( f )
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What this all means is that to compute S( f ), we just need to compute O( f ) and E( f ), and then
use each of them twice. What are O( f ) and E( f )? They’re themselves Fourier Transforms on s(2t)
and s(2t + 1) respectively, and since they only go from 0...M− 1, they’re half the size of S( f )! In
short, to compute a Fourier Transform, we can compute two half-size Fourier Transforms, and then
use them twice each. This is recursive: each of them will require two quarter-size Fourier Transforms,
and so on until we get down to an array of just size 1.

Steps 3 and 4 together are N in length. Similarly when we’re inside O( f ) or E( f ), steps 3 and 4
are N/2 in length: but there’s two of them (O( f ) and E( f )). Continuing the recursion to the next
level, steps 3 and 4 are N/4 in length, but there are 4 of them, and so on, all the way down to N
individual computations of size 1. Thus at any level, we have O(N) computations.

How many levels do we have? We start with 1 size-N computation, then 2 size-N/2 computa-
tions, then 4, then 8, ... until we get to N size-1 computations. The length of 〈1, 2, 4, 8, ..., N〉 is lg N.
So our total cost is O(N lg N).

This divide-by-2-and-conquer strategy assumes, of course, that N is a power of 2. If your
sample count is not a power of 2, there are a number of options for handling this not discussed
here. The FFT is thus:

Algorithm 28 The Fast Fourier Transform (FFT)
1: Xi← 〈Xi0...XiN−1〉 array of N elements representing the imaginary values of the input
2: Xr ← 〈Xr0...XrN−1〉 array of N elements representing the real values of the input

3: N ← length of Xi (and Xr)
4: if N = 1 then
5: return Xr and Xi
6: else
7: Yi← 〈Yi0...YiN−1〉 array of N elements representing the imaginary values of the output
8: Yr ← 〈Yr0...YrN−1〉 array of N elements representing the real values of the output
9: M← N/2

10: Ei← 〈Ei0...EiM−1〉 even-indexed elements from Xi . ∀x : Eix = Xi2x
11: Er ← 〈Er0...ErM−1〉 even-indexed elements from Xr . ∀x : Erx = Xr2x
12: Oi← 〈Oi0...EiM−1〉 odd-indexed elements from Xi . ∀x : Oix = Xi2x+1
13: Or ← 〈Or0...OrM−1〉 odd-indexed elements from Xr . ∀x : Orx = Xr2x+1
14: Ei, Er ← FFT(Ei, Er)
15: Oi, Or ← FFT(Oi, Or)
16: for n from 0 to M− 1 do . e−i2π f /N = cos(2π f /N)− i sin(2π f /N)
17: θ ← −2πn/N
18: Yrn ← Ern + cos(θ)Orn
19: Yin ← Ein − sin(θ)Oin
20: for n from M to N − 1 do
21: θ ← −2πn/N
22: Yrn ← Ern − cos(θ)Orn
23: Yin ← Ein + sin(θ)Oin
24: return Yr and Yi
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You can also easily do the FFT in an iterative rather than recursive form, that is, as a big loop
largely relying on dynamic programming. It’s a bit faster and doesn’t use the stack, but it has no
computational complexity advantage.

There of course exists an Inverse Fast Fourier Transform or IFFT. We could change some signs
just like we did in the DFT: but instead let’s show off an alternative approach. It turns out that
the Inverse FFT is just the complex conjugate of the FFT on the complex conjugate of the data.179

That is:
IFFT(S) = conj(FFT(conj(S)))

...where conj(C) applies the complex conjugate to every complex number Ci ∈ C. If you have
forgotten, the conjugate of a complex number a + bi is just a− bi. So we could write it like this:

Algorithm 29 The Inverse Fast Fourier Transform
1: Xi← 〈Xi0...XiN−1〉 array of N elements representing the imaginary values of the input
2: Xr ← 〈Xr0...XrN−1〉 array of N elements representing the real values of the input

3: for n from 0 to N − 1 do
4: Xin ← 0− Xin

5: Yi, Yr ← Fast Fourier Transform(Xi, Xr)
6: for n from 0 to N − 1 do
7: Yin ← 0−Yin

8: return Yr and Yi

And that’s all there is to it!

12.5 Windows

Figure 187 Sidelobes in an FFT (note that the
Y axis is on a log scale).©82

The Fourier Transform converts a sound of length N into
amplitudes and phases for N/2 frequencies stored in N/2
bins. But those aren’t necessarily all the frequencies in the
sound: there’s no reason we can’t have a frequency that
lies (say) half-way between two bins. Storing a frequency
like this causes it to spread, or leak, into neighboring bins.

As a result, even a pure sine wave may not show up
as a 1 in a certain bin and all 0 in the other bins. Rather, it
might look something like Figure 187. In addition to the
primary (nearest) bin, we see leakage out into other bins.
The up/down pattern of leakage forms what are known as
sidelobes. Often we’d like to reduce the sidelobe leakage
as much as possible, and have the primary lobe to be as
thin as possible, ideally fitting into a single bin.

179This works for the Inverse DFT too. And why not? They’re effectively the same procedure.
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Figure 188 Rectangular Window

We can’t meet this ideal, but we have ways to rough it. The
approach is to preprocess our sampled sound with a window
before running it through the FFT. A window function w(m, M) is
just some function that runs from m = 0 to m = M inclusive.

Using a window function w(m, M) is very simple: you just
multiply it against each of your samples s0, ..., sN−1, resulting in
s0 × w(0, N − 1), s1 × w(1, N − 1), ..., sN−1 × w(N − 1, N − 1):

Algorithm 30 Multiply by a Window Function
1: Xr ← 〈Xr0...XrN−1〉 array of N elements representing sound samples
2: w()← window function

3: Yr ← 〈Yr0...YrN−1〉 array of N elements representing revised sound samples
4: for n from 0 to N − 1 do
5: Yrn ← Xrn × w(n, N − 1)
6: return Yr
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Figure 189 Triangular Window

If you have no window function, then w(n, N) = 1 for all n.
This is called the rectangular window. Most useful window func-
tions are zero or near-zero at the ends and positive in the center.
There are many window functions, depending on your particular
needs. A very simple (and often bad) example is the Bartlett or
Triangular window:

w(m, M) =

{
2m
M m < M

2

2− 2m
M m ≥ M

2

However probably the most common general-purpose window function is the Hamming window:

w(m, M) = 0.53836− (1− 0.53836)× cos
(

2πm
M

)
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Figure 190 Hamming Window

Windows are used in a variety of other ways as well, such as
creating grains for granular synthesis (Section 9.4) and tapering
off the Sinc function used in resampling (Section 9.7). And note
that the windows shown so far are far from the only windows
available: later on we’ll see Blackman and Kaiser (Section 9.7), and
the Hann (Section 12.6 coming up, as well as Section 9.4). There’s
also Gaussian, Tukey, Planck-Taper, Slepian, Dolph-Chebyshev,
Ultraspherical, Poisson, Lanczos, MLT Sine.... There’s a complex
theory behind choosing the right window for your task.
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12.6 The Short Time Fourier Transform

Figure 191 A Spectrogram (Sonogram) of
the human voice. The x axis is time, the y
axis is frequency, and brightness is the am-
plitude of the partial at that frequency.©83

So far we’ve discussed taking an entire sound and converting
all of it, with an FFT, into the frequency domain to analyze
it, or to modify it and convert back via an IFFT. But music
synthesis is a real-time thing: we rarely have the entire sound
to manipulate at once: and besides, even though the FFT is
O(lg N), with a long sound, that N could be awfully big.

Instead, it’s often the case that we might wish to deal with
the sound bit by bit, in real-time. There are three basic uses for
this:

• Analyze the sound by converting it into the frequency
domain and examining or visualizing how it changes
over time. A visualization of this sort is known as a spec-
trogram (or sonogram). Consider Figure 191, where the
amplitude of various frequencies (y axis) changes over
time (x axis).

• Synthesize a sound as chunks in the frequency domain, and then converting them into the
time domain to be played (this is not very common).

• Modify a sound by converting it bit-by-bit into the frequency domain, mucking about with it
there, and then converting it back.

To analyze the sound, we might divide the sound into small chunks, then run an FFT on each
of them independently, and display the results in a spectrogram fashion. To synthesize the sound
we could do the opposite: create chunks in the frequency domain, then do an IFFT on them and
assemble the results into the sound. Finally, to modify the sound we’d do both: first break it into
chunks, then do an FFT to cast them into the frequency domain, tinker with them there, do an IFFT
to cast back into the time domain, and reassemble. The general procedure of breaking a sound into
multiple pieces, and then performing the FFT on them, is known as Short Time Fourier Transform
or STFT.

Applications and Alternatives The STFT has many applications in sound synthesis:

• Visualization You can easily analyze how amplitudes and frequencies change over time.

• Filtering You can accentuate, lower, or entirely strip out partials by converting the sound to
the frequency domain with an STFT, modifying (or zeroing out!) the amplitudes of interest,
then converting back to the time domain with an Inverse STFT. Similarly, you could modify
the phases of various partials. Section 10.4 discusses an example of this in depth.

• Pitch Scaling It used to be that pitch shifting was done by recording at a very slow speed,
then speeding it up: the Alvin and the Chipmunks effect. But the STFT can be used in a
limited fashion to pitch shift (up or down) without changing the speed. This is known as pitch
scaling. For example, to double frequency, just do an STFT, then just move each partial in the
frequency domain to the spot representing twice its frequency. Then do an inverse STFT to
go back to the original sound.
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Original sound, zero padded on each side

Broken into overlapping chunks

Chunks windowed (Triangular Window)

Figure 192 Preparing a sound for the
STFT. Note that the Triangular Window
was used here for clarity, but this is nor-
mally not a good choice. Obviously for a
typical sound, a great many more than five
chunks would be employed.

• Resynthesis A sound is sampled and analyzed, and
then recreated (sort of) using a synthesizer. One com-
mon use of resynthesis is a vocoder, which samples the
human voice and then recreates it with a vocal synthe-
sis method. Some resynthesis techniques work entirely
in the time domain, but it’s not uncommon to perform
resynthesis by pushing the sound into the frequency
domain where it’s easier to manipulate and analyze.

• Image Synthesis Here you start with a spectrogram
in the frequency domain, perhaps drawn by the musi-
cian as if it were an image: then use the Inverse STFT
to convert the result into a sound. Such tools are called
image synthesis synthesizers. Some additive synthe-
sizer tools, such as Image-Line Software’s Harmor, also
sport image-synthesis facilities.

There are alternatives. For example, it turns out that mul-
tiplying the amplitude or phase of partials in the frequency
domain corresponds to convolution in the time domain. Con-
volution is the basic tool used to develop filters solely in the
time domain, and is the approach taken in Section 7 as well
as in Section 9.7. Similarly, there are various clever algorith-
mic tricks to approximate pitch scaling in the time domain
involving removal or interpolation of individual samples.

Okay, let’s get started.

Cutting Up the Sound If we’re performing analysis or mod-
ification, we’ll first need to cut up the sound into chunks in
order to perform the FFT on each one. A naive approach
would be to just snip the sound into pieces and apply a win-
dow called the analysis window to each piece prior to the
FFT. This might work okay for analysis, but not for modifica-
tion. Here is why. Suppose that we cut up a sound S into two
chunks A and B. Because the sound is smooth, the B wave
starts at the amplitude where A left off. Suppose that we per-
formed an FFT on A and on B respectively, heavily mucked
with their frequency components, and performed an IFFT on
each, resulting in the modified sounds A′ and B′. Now there
is no guarantee that A′ will once again end where B′ starts, so when we concatenate them to form
the final sound S′, it’ll have a big discontinuity in the middle of it, resulting in a loud pop sound.

We could deal with this by applying another window to A and B after the IFFT. This is called
the synthesis window and it will certainly guarantee that A′ and B meet at zero. And this might
work for two chunks: but if you had a large number of small chunks, they’d all be meeting at zero
at regular intervals, creating a beating sound. Instead we need a way to cross fade all these chunks
into each other, which in turn requires a more clever way of breaking them up in the first place.
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What we’ll do is break the sound into overlapping chunks, each of size M.180 In Figure 192, the
chunks overlap half-way, kind of like bricks, and so they are spaced by M/2. This spacing is known
as the hop size. There are other overlap options, but let’s stick with half-way. We also need to add
sufficient zero padding to each end of the sound. We need enough padding that the total length is
a multiple of M/2, and also so that (if we’re doing modification rather than analysis) there is at
least M/2 padding on each end so the sound doesn’t fade in and out afterwards (as we’ll see).

The next step is to apply an analysis window to each chunk. In Figure 192 we applied a
Triangular window for clarity, but something else would be better, as discussed later. After
applying the analysis window, we perform an FFT independently on each chunk. If we’re doing
analysis, we’re done. If we’re doing modification, we modify the chunks as we like in the frequency
domain, and then reassemble.

+

=

Figure 193 Reassembly of chunks
with Overlap-Add. Windowed over-
lapping chunks are summed, pro-
ducing the final (still zero-padded)
sound.

Modifying the Sound Once the sound is in the frequency do-
main, we can muck with it. We might filter out the amplitudes of
certain frequencies, or shift all the frequencies up, or modify the
phases of certain partials. Or if we’re doing synthesis, we might
construct the partials’ amplitudes and phases out of whole cloth.

Reassembling the Sound Modification and synthesis will re-
quire us to build (or rebuild) the sound in the time domain. The
general procedure is easy: we perform the IFFT to get our sound
chunks back. We then apply the synthesis window to each, overlap
them, and add them up to form the final sound, as illustrated in
Figure 193. This is known as the Overlap-Add Method. More
formally, note from the figure that every sample is covered by
two chunks: some chunk Ci = 〈Ci

0, ..., Ci
N−1〉 and the next chunk

Ci+1 = 〈Ci+1
0 , ..., Ci+1

N−1〉. Let’s say that Ci starts at position j and
Ci+1 thus starts at position j + N/2. Sample number k lying within
the boundaries of both chunks is thus just Ci

k−j + Ci+1
k−j−N/2.

Here’s the payoff comes from selecting overlapping chunks:
the sound can be elegantly recreated. In fact, because the STFT is
invertible, if we made no changes in the frequency domain, it’s
possible to perfectly reconstruct the sound. It just requires the right
choice of windowing, as we’ll see later. Once we’ve reconstructed
the sound, all that remains is to snip off the zero-padding.

Selecting a Window Choosing the right analysis and synthesis windows is tricky. The problem
is that you now have two goals in choosing a window:

• The analysis window should reduce the spectral leakage into sidelobes as much as possible
when producing the FFT.

• The synthesis window (and to some extent the analysis window) should enable chunk
overlaps to assemble (or reassemble) the sound properly.

180Since we’re doing an FFT ultimately, M ought to be a power of 2.

172



If we’re just doing analysis, there’s only one window (the analysis window) and so the objective
is simple: pick a window with the best spectral properties.

Selecting a synthesis window involves more considerations. We want a window which starts
and ends at zero, so that we don’t have pops in the sound. But we also want one which doesn’t
introduce subtle distortions in the sound as the overlapping windows go up and down. That is,
we’re looking for a window which, when overlapped with copies of itself, sums to a constant (often
1) except possibly at the ends of the sound. If you sum it up as ∑B

i=0 w(n×M/2, M), the result will
be 1 except in the end regions (0...M/2, and B−M/2...B)), because at the ends there’s no additional
window to overlap with. This is known as the Constant Overlap-Add or COLA property.

0 M

0.2

0.4

0.6

0.8

1.0

Figure 194 Hann window (Repeat of Fig-
ure 145)

The Rectangular window of course sums to 2 when over-
lapped with itself spaced half-way, so it has the COLA property:
but the Rectangular window doesn’t start and end at zero (nor
does the Hamming window). If you think about it, should be
obvious that the Bartlett or Triangular window not only starts
and ends and zero, but also has the COLA property.

Surprisingly, certain other windows have this property as
well: consider for example the Hann window, which is little
more than a cosine:181

w(m, M) = 1/2− 1/2 cos
(

2πm
M

)

1 2 3 4
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Figure 195 The Hann window’s COLA prop-
erty. When spaced half-way apart, a series of
Hann windows sums to 1 (dotted black line),
except at the ends.

The Hann window is shown in Figure 194. The COLA
property of the Hann window is illustrated in Figure 195.
This also shows why we’re adding at least M/2 zero
padding on each end of the original sound: so that a COLA
window doesn’t fade the sound in and out at the ends.

If you’re doing synthesis with the STFT, then you’d want
to pick a COLA synthesis window. But for modification it’s
more complicated. In this case are windowing the sound
twice, at the analysis step and at the synthesis step. It’s
possible to use a COLA window both times (for example),
but there’s a problem. The Inverse FFT is just that: the
inverse of the FFT: so IFFT(FFT(s)) = s. Now suppose that
we had not made any modification of the sound while we were
in the frequency domain. The sound was windowed twice
with a COLA window w(), so now for each chunk we have:

w(IFFT(FFT(w(s)))) = w(w(s)) = w2(s) 6= w(s)

That is, after performing the STFT and inverse STFT, we’re not really overlapping with a COLA
window: we’re overlapping with its square.

One plausible way around this this is to make the analysis and synthesis windows each be the
square root of a COLA window, that is, r(...) =

√
w(...). Then we’d have (at least for the identity

case where we didn’t modify anything in the frequency domain):

r(IFFT(FFT(r(s)))) = r(r(s)) = w(s)
181Oddly, the Blackman window (Section 9.7) isn’t COLA when spaced half-way, but is COLA when spaced by 1/3.

173



But this works only if we’re effectively doing nothing. The more significant modifications we
make to the sound in the frequency domain, the less or modifications look like the identity function
and the more they resemble synthesis from scratch. If we’re making light modifications, using the
square root of COLA might be a reasonable choice for the analysis and synthesis windows; but
with heavy or unusual modifications, something closer to a straight COLA window might be called
for, at least for synthesis.

Chunk Sizes One item that has been left out until now: what should be the chunk size M? Using
the FFT methods discussed so far, M should be a power of two, but which power of two involves
the following trade-off. A larger size of M will result in a larger FFT, with more bins, and so the
frequency domain will be more detailed (higher resolution). However a larger size of M also means
that each chunk will take up a larger part of your sound. Let’s suppose you had a short “blip” in
your sound, much smaller than the size of your chunk. Your STFT wouldn’t reflect its sudden
appearance and disappearance, as it’d be averaged in with other samples in its chunk. This is
known as the trade-off between the time resolution and frequency resolution of your Fourier
transform. You have to decide which is more important.

Implementation In summary, if your goal is to analyze (or visualize) the sound:

1. Perform the Short Time Fourier Transform:

(a) Zero-pad the sound to make its length a multiple of M/2

(b) Break into overlapping chunks M long

(c) Window each chunk to deal with spectral leakage

(d) Perform FFT on each chunk (thus M should be a power of 2)

2. Analyze or display the results

If your goal is to synthesize a new sound from scratch in the frequency domain:

1. Create the sound chunks from scratch in the frequency domain

2. Perform the Inverse Short Time Fourier Transform:

(a) Perform IFFT to return the chunks to the time domain

(b) Window each chunk as discussed before (the synthesis window)

(c) Overlap and sum the chunks

(d) Trim the ends if needed
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Finally, if your goal is to modify a sound:

1. Perform the Short Time Fourier Transform with a few caveats:

(a) Zero-pad the sound to make its length a multiple of M/2 and to add at least M/2
padding on each end

(b) Break into overlapping chunks M long

(c) Window each chunk as discussed before (the analysis window)

(d) Perform FFT on each chunk (thus M should be a power of 2)

2. Modify the sound in the resulting frequency domain as you like

3. Perform the Inverse Short Time Fourier Transform with a few caveats:

(a) Perform IFFT to return the chunks to the time domain

(b) Window each chunk again as discussed before (the synthesis window)

(c) Overlap and sum the chunks

(d) Remove zero-padding / trim ends if needed

Minding the appropriate choices for our analysis and synthesis windows, and for the chunk size
M, our algorithms then are:

Algorithm 31 The Short Time Fourier Transform
1: X ← 〈X0, ..., XN−1〉 samples of a sound
2: M← chunk length length . Should be a power of 2
3: wa(m, M)← analysis window function

4: X′ ← 〈X′0, ..., X′P−1〉 the original sound X padded with M/2 zeros on each end, plus additional
zeros on the end sufficient to make its length P a multiple of M/2

5: C ← {C0, ..., CP/(M/2)−1} sound X′ broken into overlapping chunks. Each chunk Ci is M samples
long and consists of the snippet 〈X′i×M/2, ..., X′i×M/2+M−1〉

6: C′ ← {C′0, ..., C′P/(M/2)−1} chunks from C, each multiplied by the window wa(m, M). Algorithm 30

7: for each C′i ∈ C′ do
8: Fi ← FFT on C′i . Algorithm ??, keeping in mind that C′i consists of all real parts

9: F ← {F0, ..., FP/(M/2)−1} . Per-chunk FFT results
10: return F
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Algorithm 32 The Inverse Short Time Fourier Transform
1: F ← {F0, ..., FP/(M/2)−1}
2: M← chunk length length . Should be a power of 2
3: ws(m, M)← synthesis window function
4: N ← length of original sound

5: for each Fi ∈ F do
6: C′i ← IFFT on Fi . Algorithm 29, disregarding imaginary parts

7: C ← {C0, ..., CP/(M/2)−1} chunks from C′, each multiplied by the window ws(m, M). Algorithm 30
8: X′ ← 〈X′0, ..., X′P−1〉 samples, all zero
9: for each X′i ∈ X′ except for the first M/2 and last M/2 samples do . Reassembly

10: j← bi/(M/2)c . j will start at 1
11: A← 〈A(j−1)×M/2, ..., A(j−1)×M/2+M−1〉 snippet of samples in chunk Cj−1
12: B← 〈Bj×M/2, ..., Aj×M/2+M−1〉 snippet of samples in chunk Cj
13: X′i ← Ai + Bi . They overlap and each will contain sample i in its range

14: X ← X′ trimmed of its first M/2 samples, then after that trimmed at the end to bring X down to
N samples long . If you’re just doing synthesis, you might not want to trim at all

15: return X

176



Sources

In building these lecture notes I relied on a large number of texts, nearly all of them online. I list the
major ones below. I would like to point out four critical sources, however, which proved invaluable:

• Steven Smith’s free online text, The Scientist & Engineer’s Guide to Digital Signal Processing,182

is extraordinary both in its clarity and coverage. I cannot recommend it highly enough.

• Julius Smith (CCRMA, Stanford) has published a large number of online books, courses, and
other materials in digital signal processing for music and audio. He’s considered among the
foremost researchers in the field, and several of the algorithms in this text are derivatives of
those in his publications. https://ccrma.stanford.edu/∼jos/

• Curtis Roads’s book, The Computer Music Tutorial.183 Roads is a famous figure in the field: in
addition to being a prolific author and composer, he is also a founder of the International
Computer Music Association and a long-time editor for Computer Music Journal.

• And of course... Wikipedia.

Introduction (No sources of consequence used)

Representation of Sound
http://www.hibberts.co.uk/index.htm
https://en.wikipedia.org/wiki/Vibrations of a circular membrane

The Fourier Transform
http://www.dspguide.com
https://en.wikipedia.org/wiki/Fourier transform
https://en.wikipedia.org/wiki/Discrete Fourier transform
https://en.wikipedia.org/wiki/Window function
https://www.dsprelated.com/showarticle/800.php
https://adamsiembida.com/how-to-compute-the-ifft-using-only-the-forward-fft/
https://dsp.stackexchange.com/questions/4825/why-is-the-fft-mirrored
https://www.gaussianwaves.com/2015/11/interpreting-fft-results-complex-dft-frequency-bins-and-fftshift/
https://www.dsprelated.com/showarticle/901.php
http://pages.di.unipi.it/gemignani/woerner.pdf
https://en.wikipedia.org/wiki/Cooley-Tukey FFT algorithm
http://fourier.eng.hmc.edu/e101/lectures/Image Processing/
http://fourier.eng.hmc.edu/e161/lectures/fourier/
http://www.robots.ox.ac.uk/∼sjrob/Teaching/SP/l7.pdf
https://engineering.purdue.edu/∼bouman/ece637/notes/pdf/CTFT.pdf
http://www.inf.ed.ac.uk/teaching/courses/ads/Lects/lectures4.5-4.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.4791&rep=rep1&type=pdf

(Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus, 1984, Gauss and the history of the fast
fourier transform, IEEE ASSP Magazine, 1(4))

182Steven Smith, 1997, The Scientist & Engineer’s Guide to Digital Signal Processing, California Technical Publishing,
available online at https://www.dspguide.com/

183Curtis Roads, 1996, The Computer Music Tutorial, The MIT Press
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Additive Synthesis
https://en.wikipedia.org/wiki/Additive synthesis
http://www.doc.gold.ac.uk/∼mas01rf/is52020b2013-14/2013-14/slides13.pdf

Modulation (No sources of consequence used)

Subtractive Synthesis
https://en.wikipedia.org/wiki/Analog synthesizer
https://en.wikipedia.org/wiki/Trautonium
http://120years.net

Oscillators, Combiners, and Amplifiers
https://en.wikipedia.org/wiki/Colors of noise
https://en.wikipedia.org/wiki/Chebyshev polynomials
https://en.wikipedia.org/wiki/Waveshaper
https://www.tankonyvtar.hu/en/tartalom/tamop412A/2011-0010 szigetvari timbre solfege/ch12.html
https://en.wikibooks.org/wiki/Sound Synthesis Theory/Modulation Synthesis
http://sites.music.columbia.edu/cmc/MusicAndComputers/chapter4/04 06.php
https://github.com/martinfinke/PolyBLEP
http://www.martin-finke.de/blog/articles/audio-plugins-018-polyblep-oscillator/
http://pilot.cnxproject.org/content/collection/col10064/latest/module/m10556/latest
http://mac.kaist.ac.kr/pubs/ValimakiNamSmithAbel-taslp2010.pdf
http://users.spa.aalto.fi/vpv/DAFX13-keynote-slides.pdf
http://www.kasploosh.com/projects/CZ/11800-spelunking/

Filters
https://www.dspguide.com/
https://ccrma.stanford.edu/∼jos/filters/
http://keep.uniza.sk/kvesnew/dokumenty/DREP/Filters/SecondOrderFilters.pdf

(“Second Order Filters”, J. McNames, Portland State University, with permission)
https://www.oreilly.com/library/view/signals-and-systems/9789332515147/xhtml/ch12 12-2.xhtml
https://en.wikipedia.org/wiki/Butterworth filter
https://en.wikipedia.org/wiki/Resonance
https://en.wikipedia.org/wiki/Comb filter
http://www.eecs.umich.edu/courses/eecs206/archive/spring02/lab.dir/Lab9/lab9 v3 0 release.pdf
https://www.staff.ncl.ac.uk/oliver.hinton/eee305/Chapter5.pdf
http://web.mit.edu/2.14/www/Handouts/PoleZero.pdf
https://cs.gmu.edu/∼sean/book/synthesis/VAFilterDesign.2.1.0.pdf
http://www.micromodeler.com/dsp/

Frequency Modulation Synthesis
https://en.wikipedia.org/wiki/Frequency modulation synthesis
http://www.indiana.edu/∼emusic/fm/fm.htm
https://www.st-andrews.ac.uk/∼www pa/Scots Guide/RadCom/part12/page1.html
https://ccrma.stanford.edu/sites/default/files/user/jc/fm synthesispaper-2.pdf
https://ccrma.stanford.edu/software/snd/snd/fm.html
https://www.sfu.ca/∼truax/fmtut.html
https://www.youtube.com/watch?v=w4g92vX1YF4
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Sampling
https://www.dspguide.com/ch16.htm
https://ccrma.stanford.edu/∼jos/resample/resample.pdf
http://www.jean-lucsinclair.com/s/Granular-Synthesis.pdf
http://www.nicholson.com/rhn/dsp.html
http://paulbourke.net/miscellaneous/interpolation/
http://msp.ucsd.edu/techniques/v0.11/book.pdf
http://yehar.com/blog/wp-content/uploads/2009/08/deip.pdf
http://paulbourke.net/miscellaneous/interpolation/

Effects and Physical Modeling
https://ccrma.stanford.edu/∼jos/pasp/
https://ccrma.stanford.edu/∼jos/Reverb/
https://en.wikipedia.org/wiki/All-pass filter
https://en.wikipedia.org/wiki/Phaser (effect)
https://en.wikipedia.org/wiki/Reverberation
https://en.wikipedia.org/wiki/Flanging
https://en.wikipedia.org/wiki/Chorus effect
https://www.cs.sfu.ca/∼tamaras/effects/effects.html
https://dsp-nbsphinx.readthedocs.io/en/nbsphinx-experiment/recursive filters/direct forms.html
http://www.dreams-itn.eu/uploads/files/Valimaki-AES60-keynote.pdf
https://www.music.mcgill.ca/∼gary/618/
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/convolution.html
http://www.csounds.com/manual/html/MiscFormants.html

Controllers
https://www.midi.org/specifications-old/item/the-midi-1-0-specification
https://www.midi.org/articles-old/midi-polyphonic-expression-mpe
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