1	Artificial reefs geographical location matters more than itsshape, age and depth for sessile		a mis en forme : Couleur de police : Automatique
2	invertebrate colonization in the Gulf of Lion (NorthWestern Mediterranean Sea)		a mis en forme : Couleur de police : Automatique
3			
4	Sylvain Blouet ^{1,2} , Lorenzo Bramanti ¹ , Katell Guizien ¹		a mis en forme : Couleur de police : Automatique
F			
5			
6	¹ CNRS-Sorbonne Université, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB,		a mis en forme : Couleur de police : Automatique
7	Observatoire Océanologique de Banyuls Sur Mer, 66650 Banyuls sur Mer, France		
8	¹² Ville d'Agde, Aire marine protégée de la côte agathoise, 34300 Agde, France.		a mis en forme : Couleur de police : Automatique
0			
9			
10	ABSTRACT		a mis en forme : Couleur de police : Automatique
11	Artificial reefs (ARs) have been used to support fishing activities. Sessile invertebrates are essential	_	a mis en forme : Couleur de police : Automatique
12	components of trophic networks within ARs, supporting fish productivity. However, colonization by		a mis en forme : Couleur de police : Automatique
13	sessile invertebrates is possible only after effective larval dispersal from source populations, usually in	\bigwedge	a mis en forme : Couleur de police : Automatique
	······	$\langle \rangle$	a mis en forme : Couleur de police : Automatique
14	natural habitat. We tested While most studies focused on short term colonization by pioneer species,		a mis en forme : Couleur de police : Automatique
15	we propose to test the relevance of geographic location, shape, duration of immersion and depth on		a mis en forme : Couleur de police : Automatique
	<u> </u>		a mis en forme : Couleur de police : Automatique
16	the ARs long term colonization processes by species found in natural stable communities in the Gulf of		a mis en forme : Couleur de police : Automatique
17	Lion. Five species We recorded the presence of five sessile invertebrates species, with contrasting life		a mis en forme : Couleur de police : Automatique
		$\overline{}$	a mis en forme : Couleur de police : Automatique
18	history traits and regional distribution in the natural rocky habitat, were inventoried on ARs with		a mis en forme : Couleur de police : Automatique
19	different shapes deployed during two immersion time periods (1985 and 2000 2009 the 2000s) and at	\backslash	a mis en forme : Couleur de police : Automatique
		$\langle \rangle \rangle$	a mis en forme : Couleur de police : Automatique
20	different depths.in two depth ranges (<20m and >20m), At the local level, (~5kms), neither shape,	\mathbb{N}	a mis en forme : Couleur de police : Automatique
21	depth nor immersion duration differentiated ARs assemblages. At the regional scale, (>30kms),	())	a mis en forme : Couleur de police : Automatique
			a mis en forme : Couleur de police : Automatique
22	colonization patterns differed between species, resulting in diverse assemblages.		a mis en forme : Couleur de police : Automatique
23	This study highlights the primacy of geographical positioning over shape, immersion duration and		a mis en forme : Couleur de police : Automatique
		///	a mis en forme : Couleur de police : Automatique
24	depth in ARs colonization, suggesting it should be accounted for in maritime spatial planning.		a mis en forme : Couleur de police : Automatique
			a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

26	KEY WORDS: ARTIFICIAL REEF, BENTHIC INVERTEBRATES, SHAPE, DEPTH, IMMERSION DURATION,
27	GEOGRAPHICAL LOCATION, LIFE TRAITS
28	
29	
30	INTRODUCTION
31	The decline of fish stocks and natural marine habitat degradation resulting from human exploitation
32	have been documented worldwide for decades (Claudet and Fraschetti, 2010; Jackson, 2001; Pauly et
33	al., 2002) <u>.</u>
34	Artificial reefs (ARs) have been primarily implemented to reduce the pressure of fisheries in coastal
35	areas, complementing other management tools such as marine protected areas or regulatory
36	measures such as fishing licenses (Claudet and Pelletier, 2004; Seaman, 2007; Wilson, 2002).
37	Moreover, ARs could provide economic benefits linked to recreational activities such as recreational
38	and traditional fishing and scuba diving (Chen et al., 2013), Beneficial effects such as increase in fish
39	biomass and capture efficiency increase, near ARs have been reported (reviewed by Bohnsack and
40	Sutherland, 1985; Tessier et al., 2014). However, but led to a debate on the effects of ARs fishery,
41	opposing attraction vs production (Grossman et al., 1997). The fish attraction argument is based on
42	the quick colonization by fish and mobile invertebrates (Powers et al., 2003; Relini, 2002; Santos and
43	Monteiro, 2007)-led to a debate opposing attraction vs production regarding the effects of ARs on
44	fishery (Grossman et al., 1997)., The fish production argument is based on the hypotheses of a better
45	protection against predators and an increase in available substrate area for larval establishment thanks
46	to habitat complexification and an increase of available trophic resource (Bohnsack, 1989). In natural
47	rocky habitats, benthic invertebrates play an essential role in fish trophic networks (Ardizzone et al.,
48	1996; Martens et al., 2006), and ARs trophic network showed similarity with natural rocky habitat-one,
49	with dominance of filter-feeders using phytoplanktonic primary production and fish predation on
50	crustacean colonizing the ARs (Cresson, 2013). Moreover, AR deployed in sandy areas are expected to
51	enhance fish productivity given that epifauna secondary production per ARs unit surface has been

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

estimated to be 30 times greater than that of natural sandy infauna (Steimle, 2002). However, those 52 53 estimates were made shortly after immersion and do not prove the long-term fish production in ARs and supporting this argument would require extending, in the long-term, data on colonization by 54 benthic invertebrates in the long-term (Svane and Petersen, 2001). Indeed, the age since deployment 55 56 has been described as a key factor to explain ARs coverage by benthic invertebrates (Svane and 57 Petersen, 2001). The assemblages of benthic communities are expected to change over time in a 58 succession between pioneer and specialist species (Connell and Slatyer, 1977). In contrast with pioneer 59 species, specialist ones have slower colonization dynamics, because of their lower fecundity (Fava et 60 al., 2016). However, after colonization, specialists are expected to outcompete pioneer species due to 61 their more efficient use of environmental resources (Connell and Slatyer, 1977), Among these, light 62 availability is an essential factor shaping marine benthic communities across the water depth gradient 63 (Odum, 1971), Several studies have shown a decrease in the density of benthic invertebrates with depth on ARs (Lewbel et al., 1986.; Moura et al., 2007; Shinn and Wicklund, 1989; van der Stap et al., 64 65 2016) explained by the decrease in light intensity (Relini et al., 1994). The structural complexity has also been put forward as important characteristics linked to ARs efficiency in ecological restoration 66 67 (Strain et al., 2018). Structural complexity increases available surface for colonization and niches 68 diversity with various shelter and light exposure conditions, the latter being related to different benthic assemblage compositions (Glasby, 2000; T. M. Glasby, 1999)(Glasby, 2000; Glasby, 1999), and higher 69 70 productivity (Vivier et al., 2021), The recent 3D printing techniques using concrete, allow the design of ARs mimicking natural habitats (Ly et al., 2021), However, those studies concerned short-term 71 72 colonization (<3.5 years) (Wendt et al., 1989) hence based on pioneer species with high dispersal capacities which colonization is likely mainly regulated by post-settlement processes such as 73 74 competition, predation and physical disturbance (Todd, 1998). In contrast to mobile species, 75 sessile benthic invertebrates can only colonize reefs after larval dispersal which is limited by 76 reproduction frequency (Thorson, 1950), Colonization implies thus an effective dispersal between 77 natural areas and ARs, which depends on source population spatial distribution, species fecundity,

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

```
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
```

78 dispersive larval traits and ocean circulation. Nevertheless, until now dispersal drivers have been 79 disregarded while colonization disparities among ARs may result from differences in both larval connectivity (which in turn depends on fecundity, dispersal capacities and adult distribution in the 80 81 natural habitat) and post-recruitment processes. 82 The objective of the present study was to test the hypothesis that the geographical location of ARs 83 deployment with respect to the natural habitat can condition ARs colonization in the long term.after 84 more than 10 years. To this aim we investigated the effects of local (shape, depth and immersion 85 duration) and regional (geographic area) factors on the presence and abundance of five species of 86 sessile invertebrates with different life history traits, endemic to the Gulf of Lion (GDLGOL) 87 (Northwestern Mediterranean Sea) and frequently found on natural hard substrates. Data were

88 collected on ARs immersed for more than 10 years in the GDL and assemblage composition analysis at

89 three nested spatial scales (~ 1kms; ~5kms; >30 kms) were combined.

90

91 MATERIALS AND METHODS

92

93 Study area and spatially stratified sampling design

94	The study area extended along 160 km of the GDLGOL coastline (Figure 1). The GDLGOL is a wide micro-
9!	tidal continental shelf dominated by soft-bottom habitat with few small rocky habitat patches of less
90	5 than 20 km ² . The GDLGOL is a homogeneous and isolated hydrodynamic unit (Rossi et al., 2014),
9	7 delimited by the northern current (Millot, 1990).
98	Between 1985 and 2009, 763 ARs with different shapes or material and a total volume of 37 575 m ³
99	(Tessier et al., 2015) have been deployed along the GDLGOL coastline over 66 km ² of state concessions
10	(Cepralmar, 2015) between 10 and 35 m depth (Figure 1, (Blouet et al., 2021)). The ARs deployed in
10:	GDLGOL represent 40% of the total AR volume in France (Tessier et al., 2015).
10	2 Deployment was performed during three major time periods: 1985, 1992-1999 and 2004-2009, but

103 for<u>in</u> the present study we examined only the oldest (1985in the 80s) and the youngest (after 2000)

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

1	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
-{	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
-	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
Y	a mis en forme : Couleur de police : Automatique
Ì	a mis en forme : Couleur de police : Automatique
ľ	a mis en forme : Couleur de police : Automatique
Ì	a mis en forme : Couleur de police : Automatique
-{	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
ľ	a mis en forme : Couleur de police : Automatique
	a mis en forme : Couleur de police : Automatique
ľ	a mis en forme : Couleur de police : Automatique
Y	a mis en forme : Couleur de police : Automatique

104	ones-in the 2000s) ARs with the most common shapes (namely pipe, steel cage, Bonna, Comin,
105	pyramid, heap of telegraph poles, and concrete box, Figure 1). For the analysis of data, we followed
106	a stratified sampling design. To this aim, the GDLGOL coastline was regularly divided into 6 geographical
107	sectors separated by a distance ranging from 12 to 117 km, with a median value of 49 km (AGM
108	referring to Aigues-Mortes, AGD to Agde, VLR to Valras, GRU to Gruissan, LEU to Leucate, CST to
109	Canet/Saint-Cyprien sectors, Figure 1). Each sector included ARs deployed during either the first (1985,
110	CST geographical sector), the last (20042002-2009, AGM, VLR, GRU, LEU geographical sectors) or both
111	periods of immersion (AGD).), and of different shapes. In each geographical sector, two sites were
112	defined except in AGD (5 sites, AGD1, AGD2, AGD3, AGD4, AGD5) and GRU (3 sites, GRU1, GRU2,
113	GRU3). To test for location effect, sites were separated by a distance ranging from 2.1 to 11.7 km
114	(median value of 7.5 km) were defined, except in AGDGRU, where 5two of the three sites (GRU1 and
115	GRU2) were defined, in the same location to account for different shapes. Hence, depending on the
116	geographical sector, sites may differ either by AR shape, immersion depth or timing of deployment
117	(Figure 1). Due to this set up, the effect of these three factors was only teste locally (see Statistical
118	analysis). In each site, (except in the geographical sector GRU), three sampling units separated by a
119	distance between 4m and 3.6 Km (median distance of 251 m) were set out by pooling neighboring ARs
120	reaching a minimum surface of 89 m^2 per sampling unit and totalling a minimum developed surface of
121	306 m ² per site- <u>(Supplementary Material Table 1). In the geographical sector GRU, GRU2 and GRU3</u>
122	included only one sampling unit because the surface of a single AR in these sites already yielded 459
123	m2 (heap of telegraph poles, Supplementary Material Table 1). Such large continuous sampling units
124	in each site aimed at limiting the effect of recruitment spatial variability over distances from 100s
125	meters to kilometers arising from the non-uniformity of the flow of larvae (Daigle et al., 2014; Glasby,
126	2000; Simpson et al., 2017; Smale, 2012). Such a spatial scale is consistent with the spatial scale of flow
127	homogeneity obtained in simulations over GDLGOL soft-bottom habitat (Briton et al., 2018). This
128	inventory methodology enabled us to test for the existence of structuring factors at the local and
129	regional scale. In the geographical sector GRU, in one of the two sites, only two sampling units could

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique

be defined given the ARs shapes, yielding a total surface of 600 m² (Supplementary Material Table 1).
 Developed reef surface was calculated on the basis of technical specifications data present in the state
 concession documents taking into account only the colonizable surface (surfaces in contact with the
 sediment were excluded).

134

154

135 Colonization assessment and species selection

136 Assessment of ARs colonization was carried out by autonomous scuba-diving in 2020 by direct visual 137 census counting the number of individuals of the five target species inon the 44 sampling units (entire surface of ARs (7295 m²; Supplementary Material Table1, totalling 80 ARs fully inventoried).). On the 138 139 ARs, all individuals older than one year (size > 2 cm) have been recorded. Among the species listed in 140 previous ARs inventories in the GDLGOL, we selected five species that were present in most inventories, 141 easy to identify by scuba divingdirect visual census, and spanning different phyla with contrasting life-142 history traits (Créocean, 2003 & 2004; Table 1). We selected two gorgonians Eunicella singularis 143 (Esper, 1791) and Leptogorgia sarmentosa (Esper, 1789), one bryozoan Pentapora fascialis (Pallas, 144 1766), one annelida Sabella spallanzanii (Gmelin, 1791) and one ascidian Halocynthia papillosa 145 (Linnaeus, 1797) (Figure 2). The five species have a similar wide natural repartition area along 146 European coasts ranging from 1m to 250m depth (Giangrande et al., 2005; Gori et al., 2011; Ponti et 147 al., 2019; Turon, 1990; Weinberg and Weinberg, 1979), In addition, S. spallanzanii has been recorded 148 along the coasts of Brazil, Australia and New Zealand where it is classified as an invasive nonindigenous species (Currie et al., 2000). 149 The five species are present in the rocky habitat of the NW Mediterranean Sea (Laubier, 1966; True, 150 151 1970; Hong, 1980). However, in the GDLGOL, where natural rocky habitat covers uneven surfaces 152 within the 6 geographical sectors (from 3,123 10⁷ m² for the AGM sector to 5 10⁵ m² for the LEU sector), 153 the five species display different spatial distributions (Dutrieux et al., 2005; Dalias et al., 2011;

and abundant throughout the GDLGOL (from the AGM sector to the CST sector), while L. sarmentosa,

PadronGuizien et al., 20182022; S. Blouet personal observation). E. singularis is frequently observed

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Police :+Corps (Calibri)
a mis en forme : Police :+Corps (Calibri), Surlignage
a mis en forme : Police :+Corps (Calibri)
a mis en forme : Police :+Corps (Calibri)
a mis en forme : Police :+Corps (Calibri)
a mis en forme : Police :+Corps (Calibri), Surlignage
a mis en forme : Police :+Corps (Calibri)
a mis en forme : Police :+Corps (Calibri)
a mis en forme : Police :+Corps (Calibri)
a mis en forme : Couleur de police : Automatique

-	a mis en forme : Couleur de police : Automatique
-	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
-	a mis en forme : Couleur de police : Automatique
-	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
X	a mis en forme : Couleur de police : Automatique
1	a mis en forme : Couleur de police : Automatique
	a mis en forme : Couleur de police : Automatique, Motif : Transparente (Blanc), Non Surlignage
1	a mis en forme : Couleur de police : Automatique
-	a mis en forme : Couleur de police : Automatique
-	a mis en forme : Couleur de police : Automatique
-	a mis en forme : Couleur de police · Automatique

156	less abundant, is present mainly in the center of the GDLGOL (AGD, VLR, LEU, CST). P. fascialis is a mis en forme	
157	abundant in the west of the GDLGoL (AGD, LEU, CST, and south of CST). The distribution of <i>H. papillosa</i>	
158	is not well known, however the species has been observed in all the rocky areas of the GDL. GoL.	
159	S. spallanzanii is present but rare in natural rocky habitat. Nevertheless, S. spallanzanii is very abundant	
160	in lagoons, ports and marinas of the GDLGOL (S. Blouet personal observation) which have been	
161	indicated as preferred habitat of the species (Currie et al., 2000).	
162		
163	The five species display different life-history traits. All five species reproduce once a year in different a mis en forme : Couleur de police : Automatique	
164	seasons and with different strategies (Table 1).	
165	S. spallanzani reproduces in January-February, when water temperature is the coldest. The species a mis en forme	
166	displays multiple reproductive strategies: internal fertilization, with larvae brooded either inside or	
167	outside the mineral tube secreted around the body, and external fertilization broadcast spawning	
168	(Giangrande et al., 2000), In addition, asexual reproduction by fission has been reported (Read et al.,	
169	2011), S. spallanzani releases lecithotrophic larvae with a planktonic larval duration (PLD) of about 4	
170	weeks (Giangrande et al., 2000), It's life span can exceed 5 years, with sexual maturity after one year	
171	(Giangrande and Petraroli 1994; Giangrande et al., 2000). Like most gorgonians, E. singularis releases	
172	lecithotrophic larvae in early summer (June to August). Even though larval competency period can	
173	reach up to 2 months (Guizien et al., 2020; Zelli et al., 2020), PLDs ranging from 7 to 14 days best	
174	explain gene flow among <i>E. singularis</i> natural populations dwelling in the fragmented rocky habitat of	
175	the GDLGOL (Padron et al. 2018). E. singularis life span can reach 25-30 years with sexual maturity	
176	before 6 years (Gori et al., 2007; Weinberg and Weinberg, 1979) (Weinberg and Weinberg 1979, Gori	
177	et al. 2007 <u>)</u> .	
178	The other gorgonian, L. sarmentosa also releases lecithotrophic larvae but in the late summer a mis en forme	
179	(September to October) and the PLD is unknown (Rossi and Gili 2009). L. sarmentosa life span can	
180	reach 20 years with female sexual maturity within 2-3 years after settlement (Rossi and Gili 2009)	

181 H. papillosa is a simultaneous hermaphrodite which releases larvae in late summer (September-October; Becerro and Turon, 1992), presumably lecithotrophic, The PLD of H. papillosa larvae is 182 unknown but PLD shorter than 12 hours has been consistently reported for other solitary ascidian 183 184 species (Ayre et al., 1997). We did not find any data about the age at sexual maturity and the life span of *H. papillosa*. However, the ascidians are considered as highly invasive, particularly because of their 185 186 rapid growth and early sexual maturity (Zhan et al., 2015), with some species such as Ciona 187 intestionalis complex and Ciona savigniy, reaching sexual maturity at the age of 2 months (Zhan et al., 188 2015) and continuous spawning (Carver et al. 2003).

P. fascialis displays both sexual and asexual reproduction. During sexual reproduction, most bryozoans release lecithotrophic larvae which settle after a few minutes or a few hours, rarely beyond several days (Keough, 1983), *P. fascialis* larval release has been inferred to happen in June based on recruitment observations (Cocito et al., 1998a), Asexual reproduction happens by colony fragmentation or budding extension (Cocito et al., 1998b), Individual life span is estimated to be about 10 years with early sexual maturity after 2 years (Cocito et al., 1998b).

195

196 Statistical analysis

197	We examined to which extent ARs colonization is affected by the location and timing of deployment.
198	To do so, we tested the effect of 4 factors (geographical sector being the regional factor, site being the
199	local factor, depth and age) onmeasured by the presence/absence of the five species and on the
200	dissimilarity between their co-occurrence assemblages. In all analyses, site was a random factor,
201	nested either in year, age or is affected by the geographical sector factor. Due to AR shape, location
202	and timing of deployment (age). Due to the GoL AR deployment set up, the effect of some factors was
203	tested only locally. We first verified that shape was not affecting colonization, by testing the effect of
204	shape in one geographical sector where different shapes were deployed at same depth and time
205	(VLR1/VLR2, Supplementary Material Table 1). Second, the effect of factors age (2 levels, 1985, 2002-
206	2009 and the 2000s) and depth (2 levels, >20 m, <20 m depth) was tested within the AGD geographical

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme · Couleur de police · Automatique

207	sector only. Factor age was tested in 3 sites at <20m (AGD1/ AGD2 & AGD3) and factor depth was	a mis
208	tested in 4 sites deployed in 2009- (AGD2&AGD3 / AGD4&AGD5). Third, factor location was tested	
209	both at regional and local level (geographical sector being the regional factor, site being the local	
210	factor), To avoid any confounding effect due to age or depth, the regional factor vs local factor were	a mis
211	tested on the 5 geographical sectors where AR were deployed during the 2002-20092000s immersion	a mis
212	phase and at <20 m depth only (AGM, AGD, VLR, GRU, LEU: 5x2 levels). A Jaccard similarity matrix was	a mis
213	built on presence/absence data across all pairwise sampling units, used in each test (Table 2:	
214	supplementary material), Two multivariate analyses were performed. Non-parametric multivariate	a mis
215	analysis of variance with permutation was applied to test for the effects of shape, age, depth and	a mis
216	geographical sector on species assemblages (NP-manova: Anderson, 2001; Zar, 1999), Site was	a mis
217	considered as a random factor, nested either in depth, age or the geographical sector. Another	a mis
218	multivariate analysis was performed to cluster most similar species assemblages in the sector of AGD	
219	(SIMPROF : Clarke et al., 2008)- (Table 2 : supplementary material).	
220	When significant differences between the five species co-occurrence assemblages were detected for	a mis
221	a factor, a non-parametric univariate analysis (ANOVA_Kruskall-Wallis) was performed for each species	a mis
222	independently to detect the species driving the difference, <u>(Table 2 : supplementary material)</u> . Fisher	a mis
223	post-hoc test was used to identify the site where the difference arose. A same p-value of 0.05 was	
224	taken for detecting significant differences. Analyses were performed with Matlab software using the	a mis
225	Fathom package for multivariate analyses (Jones, 2014) and the Matlab statistics toolbox for univariate	a mis
226	analyses.	
227	•	a mis
228	RESULTS	
229	Artificial reefs colonization by the five target species at regional scale	a mis
230	Among the five target species, S. spallanzanii was the only one whose presence was recorded in all the	a mis
231	sampling units and geographical sectors (Figure 43). In only one out of $\frac{1516}{1516}$ sites, it was the only	a mis

232 species detected. *H. papillosa* was detected in all geographic sectors but not in all the sampling units.

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique	
a mis en forme : Couleur de police : Automatique	

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

233	and L. sarmentosa waswere detected in five of the six geographical sectors (not present in GRU and	<	a mis en forme : Couleur de police : Automatique
234	AGM) and , respectively). P. fascialis wasand E. singularis were detected in 3 of the 6 geographical		a mis en forme : Couleur de police : Automatique
			a mis en forme : Couleur de police : Automatique
235	sectors (CST, LEU, and AGD). for P. fascialis and AGM, AGD and LEU, for E. singularis). Finally, E.		a mis en forme : Couleur de police : Automatique
236	singularis was the least frequently observed species, being detected in only three geographical sectors	\mathbb{N}	a mis en forme : Couleur de police : Automatique
		$\langle \rangle$	a mis en forme : Couleur de police : Automatique
237	(AGM, AGD and LEU).5 out of the 16 sites. In all geographical sectors, at least three of the five target		a mis en forme : Couleur de police : Automatique
238	species were detected, except GPU where only two of the five species were detected. Assemblages of		a mis en forme : Couleur de police : Automatique
230	species were detected, except the where only two of the five species were detected. Assemblages of		a mis en forme : Couleur de police : Automatique
239	two species were found in only one site <u>two sites</u> out of <u>1516</u> (sector AGD and GRU), assemblages of		a mis en forme : Couleur de police : Automatique
		\square	a mis en forme : Couleur de police : Automatique
240	three species were found in 87 sites, assemblages of four species were found in 2 sites and	$\langle \rangle \rangle$	a mis en forme : Couleur de police : Automatique
241	assemblages of five species were found in 3 sites.	\backslash	a mis en forme : Couleur de police : Automatique
			a mis en forme : Couleur de police : Automatique
242			
243	Shape effect on five target species at local scale		
2 13			
244	No differences in species assemblages were found in VLR between pipe and steel cage (NP-MANOVA,		
245	<u>F=9.08 e-19, P>0.05; Table 2).</u>		
246	Similarly, in the geographical sector GRU, the same assemblages were detected on sites differing by		
247	ARs shape (pipes and a heap of telegraphical poles) in the same location (GRU1 and GRU2). Conversely,		
248	different assemblages were detected between two sites (GRU2 and GRU3) separated by 9 km although		
249	ARs shape was the same (heaps of telegraphical poles). Due to the absence of replication in unit		
250	samplings, it was not possible to perform a statistical test on the effect of shape in this geographical		
251	sector.		
252			
253	Age and depth effects on five target species at local scale		a mis en forme : Couleur de police : Automatique
254	Despite all five target species being detected on ARs in the AGD sector, assemblage composition		a mis en forme : Couleur de police : Automatique
255	among sites differed (Figure 3). Clustering of sampling units within the 5 sites (A, B, C, D, EAGD1, AGD2,		
256	AGD3, AGD4, AGD5) in AGD identified 2 clusters (SIMPROF: P <0.05; Figure 4). The two sites (#AGD2		a mis en forme : Couleur de police : Automatique

257 and EAGD3) with same age (2009), depth range (less than 20 m) and reef shape (pipe) were attributed

a mis en forme : Couleur de police : Automatique	

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

to different clusters. 258

259	In fact, one cluster grouped ARs of different age at a same depth (1985 in site AAGD1 and 2009 in site
260	BAGD2) while the other cluster grouped ARs of the same age but at different depths (less than 20 m in
261	site CAGD3 and more than 20 m in sites DAGD4 and EAGD5). In both clusters, different AR shapes were
262	found (steel cage and pipes in one cluster, pipes, Comin and Bonna in the other cluster, [Figure 4].
263	The geographic distance between the two clusters (A-BAGD4-AGD5) and (C-D-EAGD3-AGD4-AGD5)
264	was 7.5 km and the median value of the intra-cluster geographic distance was 3 km.
265	Multivariate analysis of variance confirmed that neither age (NP-MANOVA, F=1.43 P<0.05-; Table 23)
266	nor depth (NP-MANOVA, F=1.37 P<0.05-; Table 34) explained site differences in the five species

assemblages found on ARs in AGD (P<0.05-; Tables 23 and 24). Differences among the five sites in AGD
were due to different ARs colonization by three species (Kruskall-wallis: *E. singularis, P. fascialis, H. papillosa*: all P<0.05; Table 45). Site <u>CAGD3</u> differed from <u>other</u> sites <u>AGD5</u>, <u>AGD1</u> and <u>AGD2</u> by the
presence of <u>E. singularis</u>, andthe sites <u>DAGD4</u> and <u>EAGD5</u> differed from sites <u>AAGD1</u> and <u>BAGD2</u> due
to the presence of <u>P. fascialis</u> and <u>the site AGD1</u> differed from sites <u>AGD5</u>, <u>AGD3</u> and <u>AGD4</u> to the
presence of <u>H</u>. papillosa (Post-hoc tests, <u>Table 3: supplementary material</u>).

274 <u>Geographical effect on five target species at local and regional scales</u>

273

275 The five species co-occurrence assemblages on ARs deployed in the same period and at same depth 276 were significantly different at both regional and local scales (NP-MANOVA : geographical sector 277 F=3.195.09 P<0.05; site (geographical sector) F=3.642.78 P<0.05; Table 56. These differences were 278 due to different colonization of ARs by three of the five species, E. singularis, L. sarmentosa and P. 279 fascialis. For the latter two species, regional differences (Kruskall-wallis: geographical sector P=0.0002) 280 were more significant than local differences (Kruskall-wallis: site P=0.001 for L. sarmentosa and 281 P=0.003005 for P. fascialis; Table 67). Both species were not detected in the north of the GDLGOL 282 (AGM). In contrast, for E. singularis, local differences (Kruskall-wallis: site P=0.01017) were more significant than regional ones (geographical sector P=0.036; Table 67), the species being detected in 283 284 geographical sectors in the north, center and south of GDLGOL.

/	a mis en forme	
λ	a mis en forme	(
Ì	a mis en forme	<u> </u>
	a mis en forme	<u> </u>
Ϊ	a mis en forme	<u> </u>
	a mis en forme	<u> </u>
	a mis en forme	
1	a mis en forme	<u> </u>
	a mis en forme	<u> </u>
	a mis en forme	
\int_{X}	a mis en forme	
7	a mis en forme	
1	a mis en forme	
	a mis en forme	<u> </u>
	a mis en forme	<u> </u>
_	a mis en forme	<u> </u>
4	a mis en forme	[
	a mis en forme	<u> </u>
	a mis en forme	
4	a mis en forme	
	a mis en forme	<u>[</u>
4	a mis en forme	<u> </u>
X		<u> </u>
$\langle \rangle$		<u> </u>
	a mis en forme	[
	a mis en forme	<u>[</u>
	a mis en forme	<u>[</u>
	a mis en forme	<u>[</u>
	a mis en forme	<u>[</u>
	a mis en forme	[
$\langle \rangle$	a mis en forme	[
$\langle \rangle$	a mis en forme	[
	a mis en forme	[
	a mis en forme	[
	a mis en forme	(
1	a mis en forme	(
	a mis en forme	
	a mis en forme	
	a mis en forme	[
	a mis en forme	_

286 DISCUSSION 287 The study of resilience of marine natural biodiversity, including benthic invertebrates, is essential to 288 ensure the sustainability of ecosystem functions. Increasing habitat is key to support the natural 289 biodiversity resilience, which in the case of rocky habitats can be achieved by effectively integrated 290 ARs. The effective integration of ARs into the rocky habitat network throughstarts with their 291 colonization by species building up their natural biodiversity is essential to assess their ecosystem 292 functions, prior and after deployment.from the natural habitat. In the present study, we showed that 293 the five species selected from the natural rocky habitat of the GoL colonized differently the ARs spread 294 along the GDLGOL coastline had been colonized by five species found in the natural rocky habitat of 295 the region, ten years after their deployment. However, spatial colonization patterns differed among 296 species, resulting in diverse assemblages in different geographical sectors of the GDL. Locally, neither 297 age, immersion depth or reef shape of the ARs significantly affected colonization patterns. 298 Colonization of ARs are expected to evolve toward a stable state comparable to that of the natural 299 environment, through the succession of opportunistic species (wide dispersal, high fertility, low 300 tolerance of reduced resource levels, short life-spans, minimal dietary specialisation) followed by 301 specialized species (limited dispersal, slow growth to a large size at maturity, delayed and limited reproduction, optimization to reduced resources and long life-spans; (Platt and Connell, 2003; Faurie 302 303 et al., 2003). Monitoring of ARs short-term colonization (<3 years) have indeed shown a dominance of 304 pioneer species (hydroids, serpulids, barnacles and bivalves), most of them having life history traits 305 typical of opportunistic species (Fariñas-Franco et al., 2013; T. Glasby, 1999; Moura et al., 2007; Pamintuan and Ali, 1994; Ponti, 2015; Relini et al., 1994; Spagnolo et al., 2014; Toledo et al., 2020) 306 307 Long-term studies confirmed successions in ARs colonization (Burt et al., 2011; Nicoletti et al., 2007; 308 Perkol-Finkel and Benayahu, 2005; Whomersley and Picken, 2003), but none have described saturation 309 (Svane and Petersen, 2001). In the Tyrrhenian Sea, Nicolleti et al., (2007) described colonization in 5 310 distinct phases: (i) A first recruitment by pioneer species (hydroids, serpulids, barnacles and bivalves)

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique	
a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique	a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique	
a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique	a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique	
a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique	a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique	a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique	a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique	a mis en forme : Couleur de police : Automatique
	a mis en forme : Couleur de police : Automatique

311 during the first months after immersion, followed by phases of (ii) cover dominance, (iii) regression 312 and (iv) absence of Mytilus galloprovincialis for more than 10 years. The installation of diverse bio-313 builders bryozoans characteristic of the natural environment was recorded after 20 years only (v). Our 314 study shows that bio-builder engineering species such as bryozoans (P. fascialis) and gorgonians (E. 315 singularis, L. sarmentosa) colonized ARs as early as 10 years after their deployment, without significant 316 difference between 10 years and 35 years old ARs. However, the presence of S. spallanzanii described 317 as an opportunistic species (sexual precocity, various reproduction modes, rapid growth, short lived; Giangrande et al., 2000) on all ARs independently of their age of deployment suggests that ARs did not 318 319 yet reach a stable state comparable to the natural environment. Thus, the presence of bio-builders is 320 not a sufficient indicator of the ARs naturalization to the local biodiversity.

321 The GDL'sGoL's ARs being located in the sandy coastal zone are likely regularly disturbed by sediment 322 deposits due to river delivery or/and their resuspension by either trawling activities or the mechanical 323 action of the swell (Dufois et al., 2014; Durrieu de Madron et al., 2005; Ulses et al., 2008). Testing the 324 impact of swell and sediment deposit on ARs requires exploring the colonization of ARs along a 325 gradient of depth and distance from the coast (van der Stap et al., 2016). However, current ARs 326 deployment in the GDLGOL ranged from 15 to 30 m depth and within 3 miles from the coast and did 327 not allow testing for differential effect of sediment disturbances as swell impact occurs every year in this area (Guizien, 2009). Testing the impact of sediment disturbance on ARs colonization would 328 329 require exploring reefs deployed deeper than 50 m, such as the anchorages of the floating wind farm that will be placed in the GDLGOL in the next future (https://info-efgl.fr/le-projet/le-parc/#). Light is 330 331 also expected to be an important factor structuring benthic assemblages, along a depth gradient in 332 natural and artificial environments (T. Glasby, 1999a; T. M. Glasby, 1999b; Svane and Petersen, 2001) 333 . Absence of depth effect in the present study, although in the GDLGOL light intensity strongly 334 attenuates within the upper 30 m of the water column (Durrieu de Madron et al., 2011) was potentially 335 a bias due to the five species selected in the present study whose distributions are not strongly 336 structured by light intensity.

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
Code de champ modifié
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

337	Another factor which has been shown to drive the intensity of ARs colonization is structural complexity
338	(see Bohnsack and Sutherland, 1985 for a review). Nevertheless, there is no consensus about the
339	relationship between complexity and subtidal benthic invertebrates abundance, due to potential bias
340	in controlling the surface and scale in ARs of different complexity Rouse et al., 2019; Strain et al.,
341	2018). The similarity in the 5 species co-occurrence between different reef shapes at the same depth
342	and of the same age found in the present study suggests structural complexity that shape is less
343	important than the geographical location in AR colonization by benthic invertebrates-when controlling
344	the colonized surface. However, shape is an imprecise measure of structural complexity. The latter is
345	rarely assessed quantitatively and can be described by different metrics which may be similar for
346	apparently different shapes (such as steel cages and pipes, (Riera, 2020).
347	Benthic invertebrate assemblages result from complex processes that operate at multiple spatial and
348	temporal scales (Smale, 2012). At the regional scale, larval availability can become a major factor
349	explaining colonization success. At the regional scale, larval availability can become a major factor
350	explaining colonization success (Padron et al., 2018). Change in the composition of assemblages during
351	the early colonization of artificial substrates by benthic invertebrates has been attributed to the
352	availability and abundance of larvae during the seasons rather than a sequence of distinct succession
353	(Bramanti et al., 2003; Turner and Todd, 1993), The larval behaviour (buoyancy and motility) and the
354	characteristics of the biological cycle of the species (spawning timing and PLD) can play a key role in
355	determining the dispersal distance (Todd, 1998), and consequently the possibility to reach habitat
356	suitable for settlement. Dispersion distance is generally correlated with PLD, thus, a species with a long
357	PLD is supposed to colonize habitats further away than species with a shorter PLD (Shanks, 2009). In
358	this study, the five species were chosen among different phyla known for their contrasting planktonic
359	durations, swimming abilities and larval dispersal periods, although these larval traits are only known
360	accurately for E. singularis (Guizien et al., 2020; Zelli et al., 2020), P. fascialis and H. papillosa, the two
361	species with short PLD (<24h and <48h, respectively) colonized ARs located close to the natural habitat
362	where they are present (< 4.8 km and <10 km, respectively). The coastal circulation of the GDLGOL

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

363 allows such dispersal distance over periods of a few days (Guizien et al., 2012). S. spallanzanii, which 364 has a PLD of 3 weeks, colonized all the inventoried ARs, in line with a dispersal distance of 40 km after 3 weeks (Guizien et al., 2012), In contrast, E. singularis did not colonize all ARs within geographical 365 sectors of 30 km width where the species is present in the natural habitat, although a 2-week PLD was 366 367 expected to enable such dispersal (Padron et al., 2018). The other gorgonian species, L. sarmentosa 368 colonized more ARs located within distances of less than 30 km from its natural habitat than E. 369 singularis while the PLD of the two species are presumably the same. This suggests that other factors 370 influence the colonization failure of *E. singularis*.

371 Reproductive traits are another key to the success in colonising new settings (Stearns, 2000). In this 372 regard, E. singularis colonization potential could be limited by its low fecundity (~25-40 larvae.cm⁻¹ of 373 colony branch, Ribes et al., 2007; Theodor, 1967) compared to that of L. sarmentosa (~75 larvae.cm⁻¹ 374 of colony branch, (Rossi et al., 2011; Rossi and Gili, 2009), The wide colonization of ARs by S. 375 spallanzanii is in line with its reproductive traits typical of opportunistic species (early sexual maturity, 376 high fecundity with more than 50 000 eggs per female, Currie et al., 2000, a fertilization close to 100%, 377 Giangrande et al., 2000). Since arriving in the Pacific Ocean, S. spallanzanii has been declared one of 378 the ten priority pest species in the marine environment by the Australian authorities and classified as 379 an invasive species (Hayes et al., 2005). Similarly to S. spallanzanii, H. papillosa colonized nearly all ARs located within its 10-km dispersal distance from the natural habitat. Within the ascidian class, a wide 380 381 disparity in species fecundity has been reported (Pandian, 2018), This suggests H. papillosa 382 reproductive traits would be close to those of invasive ascidians (Zhan et al., 2015). 383 Ultimately, understanding ARs colonization requires a precise mapping of source populations in the 384 natural environment. To this respect, the abundance of S. spallanzani on ARs is surprising, as the species is not abundant in the natural rocky habitat of the GDLGOL. For this species, other sources of 385

larval supply than natural settings should be considered, such as the numerous ports and marinas along
 the coast of the GDLGoL as S. spallanzanii is very tolerant to environmental conditions (Currie et al.,

2000). In this case of intense colonization by an endemic benthic invertebrate species, ARs apparently

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique
a mis en forme : Couleur de police : Automatique

a mis en forme : Couleur de police : Automatique	
a mis en forme : Couleur de police : Automatique	
a mis en forme : Couleur de police : Automatique	

389	extended its metapopulation, acting as stepping stones for further larval dispersal beyond its natural		
390	current colonization limits (Bishop et al., 2017; Wang et al., 2020), In the GDLGOL, the 14 500 m ³ of ARs		a mis en forme : Couleur de police : Automatique
201		\frown	a mis en forme : Couleur de police : Automatique
391	deployed 30 years ago are now decommissioned and the relevance of their removal is currently		a mis en forme : Couleur de police : Automatique
392	debated. Connectivity between natural populations has been shown to support species resilience after		
393	disturbances in fragmented habitat, and could be extended to ARs (Fahrig, 2003), However, ARs may		a mis en forme : Couleur de police : Automatique
394	also facilitate the spread of non-indigenous species introduced with maritime traffic in ports (Glasby		a mis en forme : Couleur de police : Automatique
395	et al., 2007). <u>(</u>Glasby et al., 2007).		
396	The present study advocates accounting for the geographical arrangement in planning ARs deployment		a mis en forme : Couleur de police : Automatique
397	to enhance fish productivity while avoiding the spread of invasive species extend the habitat of hard		
398	bottom benthic invertebrate natural populations.		a mis en forme : Couleur de police : Automatique
399			
400	Acknowledgements. This work was funded by the Agence de l'Eau Rhône-Méditerranée-Corse under		a mis en forme : Couleur de police : Automatique
401	project ICONE - Impacts actuels et potentiels de la CONnectivité Ecologique ajoutée par les récifs		
402	artificiels sur la biodiversité fixée des substrats durs du Golfe du Lion (PI, K. Guizien, AAP 2016). The		
403	authors gratefully acknowledge the helpful assistance during sampling of the staff of the Aire Marine		
404	Protégée Agathoise.		
405			
406	Authors contributions		
407	SB and KG conceived the study, SB carried out sampling and statistical analysis. All contributed to		
408	manuscript writing.		
409			
410	Conflict of interest disclosure		
411	The authors of this preprint declare that they have no financial conflict of interest with the content of		
412	this article.		
413			
414			

415	LITERATURE CITED	a mis en forme : Couleur de police : Automatique
416 417	Anderson, M., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x	
418	Ardizzone, G.D., Belluscio, A., Gravina, M.F., Somaschini, A., 1996. Colonization and Disappearance of	
419	Mytilus galloprovincialis Lam. on an Artificial Habitat in the Mediterranean Sea. Estuarine,	a mis en forme : Police :Italique
420	Coastal and Shelf Science 43, 665–676. https://doi.org/10.1006/ecss.1996.0095	
421	Ayre, D.J., Davis, A.R., Billingham, M., Llorens, T., Styan, C., 1997. Genetic evidence for contrasting	
422	patterns of dispersal in solitary and colonial ascidians. Marine Biology 130, 51–61.	
423	https://doi.org/10.1007/s002270050224	
424	Becerro, M.A., Turon, X., 1992. Reproductive Cycles of the Ascidians Microcosmus sabatieri and	a mis en forme : Police :Italique
425	Halocynthia papillosa in the Northwestern Mediterranean. Marine Ecology 13, 363–373.	e unio en forme e Delice déclique
426	https://doi.org/10.1111/j.1439-0485.1992.tb00360.x	a mis en forme : Police Italique
427	Bishop, M.J., Mayer-Pinto, M., Airoldi, L., Firth, L.B., Morris, R.L., Loke, L.H.L., Hawkins, S.J., Naylor,	
428	L.A., Coleman, R.A., Chee, S.Y., Dafforn, K.A., 2017. Effects of ocean sprawl on ecological	
429	connectivity: impacts and solutions. Journal of Experimental Marine Biology and Ecology 492,	
430	7–30. https://doi.org/10.1016/i.jembe.2017.01.021	
431	Blouet, S., Quittet, L., Agin, G., Thorin, S., Dalias, N., Marobin, D., Lenfant, P., Guizien, K., 2021.	
432	Database of the location and typology of artificial reefs in the Gulf of Lion (NW	
433	Mediterranean Sea). https://doi.org/10.17882/81407	
434	Bohnsack, J.A., 1989. Are High Densities of Fishes at Artificial Reefs the Result of Habitat Limitation or	
435	Behavioral Preference? Bulletin of marine science BULLETIN OF MARINE SCIENCE 44, 15.	
436	Bohnsack, J.A., Sutherland, D.L., 1985, Artificial reef research-ARTIFICIAL REEF RESEARCH: A review	
437	with recommendations for future priorities. Bulletin of marine science REVIEW WITH	
438	RECOMMENDATIONS FOR FUTURE PRIORITIES, BULLETIN OF MARINE SCIENCE 37, 30,	
439	Bramanti, L., Magagnini, G., Santangelo, G., 2003. Settlement and recruitment: The first stages in the	
440	life cvcle of two epibenthic suspension feeders (-Corallium rubrum and Anomia ephippium).	a mis en forme : Police :Non Italique
441	Italian Journal of Zoology 70, 175–178, https://doi.org/10.1080/11250000309356512	
442	Briton, F., Cortese, D., Duhaut, T., Guizien, K., 2018. High-resolution modelling of ocean circulation	
443	can reveal retention spots important for biodiversity conservation. Aquatic Conserv: Mar	
444	Freshw Ecosyst 28, 882–893, https://doi.org/10.1002/aqc.2901	
445	Burt, J., Bartholomew, A., Sale, P.F., 2011, Benthic development on large-scale engineered reefs: A	
446	comparison of communities among breakwaters of different age and natural reefs. Ecological	
447	Engineering 37, 191–198, https://doi.org/10.1016/i.ecoleng.2010.09.004	
448	Carver, CE., Chisholm, A., Mallet, AL., 2003, Strategies to mitigate the impact of Ciona intestinalis (L.)	
449	biofouling on shellfish production. J Shellfish Res 22:621–631	
450	Cépralmar, Région Languedoc Roussillon., 2015. Guide pratique d'aide à l'élaboration. l'exploitation	
451	et la gestion des récifs artificiels en Languedoc Roussillon : 236 pages.	
452	Chen, JL., Chuang, CT., Jan, RQ., Liu, LC., Jan, MS., 2013. Recreational Benefits of Ecosystem	
453	Services on and around Artificial Reefs: A Case Study in Penghu, Taiwan. Ocean & Coastal	
454	Management 85, 58–64. https://doi.org/10.1016/j.ocecoaman.2013.09.005	
455	Clarke, K.R., Somerfield, P.J., Gorley, R.N., 2008. Testing of null hypotheses in exploratory community	
456	analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine	
457	Biology and Ecology 366, 56–69. https://doi.org/10.1016/i.jembe.2008.07.009	
458	Claudet, J., Fraschetti, S., 2010. Human-driven impacts on marine habitats: A regional meta-analysis	
459	in the Mediterranean Sea. Biological Conservation 143, 2195–2206.	
460	https://doi.org/10.1016/i.biocon.2010.06.004	
461	Claudet, J., Pelletier, D., 2004. Marine protected areas and artificial reefs: A review of the	
462	interactions between management and scientific studies. Aquat. Living Resour. 17. 129–138.	
463	https://doi.org/10.1051/alr:2004017	
464	Cocito, Silvia, Ferdeghini, F., Sgorbini, S., 1998a1998. Pentapora fascialis (Pallas) [Cheilostomata:	a mis en forme : Police :Italique
465	Ascophora] colonization of one sublittoral rocky site after sea-storm in the northwestern	
	· ·	

466 467 468 469 470 471 472 473	 Mediterranean, in: Baden, S., Phil, L., Rosenberg, R., Strömberg, JO., Svane, I., Tiselius, P. (Eds.), Recruitment, Colonization and Physical-Chemical Forcing in Marine Biological Systems. Springer Netherlands, Dordrecht, pp. 59–66. https://doi.org/10.1007/978-94-017-2864-5_5 Cocito, S., Sgorbini, S., Bianchi, C.N., 1998b1998. Aspects of the biology of the bryozoan <i>Pentapora fascialis</i> in the northwestern Mediterranean. Marine Biology 131, 73–82. https://doi.org/10.1007/s002270050298 Connell, J.H., Slatyer, R.O., 1977. Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization. The American Naturalist 111, 1119–1144. 	a mis en forme : Police :Italique a mis en forme : Anglais (Royaume-Uni)
474	https://doi.org/10.1086/283241	
475	CREOCEAN., 2003. Impact des récifs artificiels sur le milieu marin et la pêche professionnelle dans le	
476	golfe d'Aigues Mortes, CREOCEAN, France, 53 pp.	
477	CREOCEAN., 2004. Suivi scientifique des récifs artificiels immergés au large de Gruissan-Rapport	
478	Annuel 2003 — Peuplements benthiques, CREOCEAN, France, 32 pp.	
479	Currie, D.R., McArthur, M.A., Cohen, B.F., 2000. Reproduction and distribution of the invasive	
480	European fanworm Sabella spallanzanii (Polychaeta: Sabellidae) in Port Phillip Bay, Victoria,	a mis en forme : Police :Italique
481	Australia. Marine Biology 136, 645–656. https://doi.org/10.1007/s002270050724	
482	Daigle, R.M., Metaxas, A., deYoung, B., 2014. Fine-Scale Distribution and Spatial Variability of Benthic	
483	Invertebrate Larvae in an Open Coastal Embayment in Nova Scotia, Canada. PLOS ONE 9,	a mis en forme : Anglais (Royaume-Uni)
484	e106178. https://doi.org/10.1371/journal.pone.0106178	
485	Dalias, N., Astruch, P., Foulquić, M., Rouanet, E., 2012. Suivi à long terme de l'impact potentiel de la	
486	plongée sous-marine sur les peuplements d'invertébrés benthiques au sein de la Réserve	
487	Naturelle Marine de Cerbère-Banyuls (2007 - 2011) - Rannort final, Contrat Conseil Général	
488	des Pyrénées Orientales & SEANEO - GIS Posidonie. SEANEO - GIS Posidonie publ. Fr. : 136 P	
489	Dufois, F., Verney, R., Le Hir, P., Dumas, F., Charmasson, S., 2014. Impact of winter storms on	
490	sediment erosion in the Rhone River prodelta and fate of sediment in the Gulf of Lions (North	
490	Western Mediterranean Sea) Continental Shelf Research 72, 57–72	
492	https://doi.org/10.1016/i.csr.2013.11.004	
103	Durrieu de Madron X Ferré B Le Corre G Grenz C Conan P Puio-Pay M Buscail B Bodiot	
101	0 2005. Trawling-induced resuspension and dispersal of muddy sediments and discolved	
105	elements in the Gulf of Lion (NW Mediterranean) Continental Shelf Research 25, 2387–2409	
495	https://doi.org/10.1016/i.csr.2005.08.002	
490	Burris da Madran X. Guiau G. Samará B. Conan B. Corsa D. D'Ortanzia E. Ertaurnal C.	
497	Garcau E. Babuillo, C. Stampan, L. Bonnot, S. Diaz, E. Koubbi, D. Baddewitch, O.	
490	Gazeau, r., Rabbuille, C., Stellindini, L., Bonnet, S., Diaz, r., Roubbi, P., Raudrovitch, O., Rabin M. Raklouti M. Rancon-Montigny C. Relvico S. Rencoussan N. Ronsang R.	
499 E00	Baulaubassi I. Brunat C. Cadiau I. E. Carlotti E. Chami M. Charmasson S. Charrièro P.	
500	Douloubassi, I., Bruner, C., Caulou, JF., Canotti, F., Chaini, M., Chainasson, S., Chainere, B.,	
501	Dacits, J., Doxarati, D., Dulay, JC., Elbaz-Poulicitel, F., Eleaunie, M., Eyrones, F., Fernandez,	
502	C., FOWIEF, S., FTAILOUT, F., Gaerther, J.C., Gaizin, K., Gasparini, S., Ginghone, JF., Gonzalez,	
505	JL., Goyet, C., Guidi, L., Guiziell, K., Heimburger, LL., Jacquet, S.H.M., Jenney, W.H., Joux, F.,	
504	Le fill, F., Leblaild, K., Lelevie, D., Lejeusie, C., Leine, A., Loye-Filot, MD., Mallet, M.,	
505	Mejdhelle, L., Mellin, F., Mellon, C., Mellon, F., Melle, PL., Migon, C., Miller, W.L., Mortler,	
500	L., WIOSIAJII, D., WIOUSSEAU, L., WIOULIN, I., Para, J., Perez, I., Petrenko, A., Poggiale, JC.,	
507	Prieur, L., Pujo-Pay, M., Pulido-Villena, Kalmbauli, P., Kees, A.P., Kidame, C., Kontani, JF.,	
508	Ruiz Mino, D., Sicre, M.A., Falilandier, V., Famburini, C., Fanaka, F., Fauper-Letage, F., Fedetti,	
509	IVI., Testor, P., Thebault, H., Thouvenin, B., Touratier, F., Tronczynski, J., Ulses, C., Van	
210	wambeke, F., vantrepotte, v., vaz, S., verney, K., 2011. Marine ecosystems responses to	
511	climatic and anthropogenic forcings in the Mediterranean. Progress in Oceanography 91, 97–	
512	Lob. https://doi.org/10.1016/j.pocean.2011.02.003	
513	Hutrieux, E., Thorin, S., Jouvenei, JY., 2005. 100 belies plongees en Languedoc-Roussillon, Edition	
514	(ъЛР, 336 р.	

515 516 517 518 519 520 521 522	 Fahrig, L., 2003. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 Fariñas-Franco, J.M., Allcock, L., Smyth, D., Roberts, D., 2013. Community convergence and recruitment of keystone species as performance indicators of artificial reefs. Journal of Sea Research 78, 59–74. https://doi.org/10.1016/j.seares.2012.10.008 Fava, F., Ponti, M., Abbiati, M., 2016. Role of Recruitment Processes in Structuring Coralligenous Benthic Assemblages in the Northern Adriatic Continental Shelf. PLOS ONE 11, e0163494. https://doi.org/10.1371/journal.pone.0163494 	
523	Giangrande, A., Petraroli, A., 1994. Observations on reproduction and growth of Sabella spallanzanii	a mis en forme : Police :Calibri, Couleur de police :
524	(Polychaeta, Sabellidae) in the Mediterranean Sea. In: Dauvin JC, Laubier L, Reish DJ (eds)	Automatique
525	Actes de la 4éme Conférence Internationale des Polychetes. Mus Hist nat Paris 162: 51±56	
526	Giangrande, A., Cavallo, A., Licciano, M., Mola, E., Pierri, C., Trianni, L., 2005. Utilization of the filter	
527	feeder polychaete Sabella. Aquacult Int 13, 129–136. https://doi.org/10.1007/s10499-004-	
528	9025-3	
529	Giangrande, A., Licciano, M., Pagliara, P., Gambi, M.C., 2000. Gametogenesis and larval development	
530	in Sabella spallanzanii (Polychaeta: Sabellidae) from the Mediterranean Sea. Marine Biology	a mis en forme : Police :Italique
531	136, 847–861. https://doi.org/10.1007/s002279900251	
532	Glasby, T. M., 1999a ., 1999. Interactive effects of shading and proximity to the seafloor on the	
533	development of subtidal epibiotic assemblages. Mar. Ecol. Prog. Ser. 190, 113–124.	
534	https://doi.org/10.3354/meps190113	
535	Glasby, T. M., 1999b. Effects of shading on subtidal epibiotic assemblages. Journal of Experimental	
536	Marine Biology and Ecology 234, 275–290. https://doi.org/10.1016/S0022-0981(98)00156-7	
537	Glasby, T.M., Connell, S., Holloway, M., Hewitt, C., 2007. Nonindigenous biota on artificial structures:	
538	Could habitat creation facilitate biological invasions? Marine Biology 151, 887–895.	
539	https://doi.org/10.1007/s00227-006-0552-5	
540	Glasby, T.M., 2000. Surface composition and orientation interact to affect subtidal epibiota. Journal	
541	of Experimental Marine Biology and Ecology 248, 177–190, https://doi.org/10.1016/S0022-	
542	0981(00)00169-6	
543	Glasby, T.M., 1999. Effects of shading on subtidal epibiotic assemblages. Journal of Experimental	
544	Marine Biology and Ecology 234, 275–290. https://doi.org/10.1016/S0022-0981(98)00156-7	
545	Gori, A., Linares, C., Rossi, S., Coma, R., Gili, JM., 2007. Spatial variability in reproductive cycle of the	
546	gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the	a mis en forme : Police :Italique
547	Western Mediterranean Sea. Mar Biol 151, 1571–1584. https://doi.org/10.1007/s00227-006-	a serie an famore. Dellas diallas
548	0595-7	a mis en forme : Police :Italique
549	Gori, A., Rossi, S., Berganzo, E., Pretus, J.L., Dale, M.R.T., Gili, JM., 2011. Spatial distribution patterns	
550	of the gorgonians Eunicella singularis, Paramuricea clavata, and Leptogorgia sarmentosa	a mis en forme : Police :Italique
551	(Cape of Creus, Northwestern Mediterranean Sea). Mar Biol 158, 143–158.	a mis en forme - Delice utalique
552	https://doi.org/10.1007/s00227-010-1548-8	
553	Grossman, G.D., Jones, G.P., Seaman, W.J., 1997. Do Artificial Reefs Increase Regional Fish	a mis en forme : Police :Italique
554	Production? A Review of Existing Data 22, 7.	
555	Guizien, K., 2009. Spatial variability of wave conditions in the Gulf of Lions (NW Mediterranean Sea).	
556	Vie Milieu 11.	
557	Guizien, K., Belharet, M., Marsaleix, P., Guarini, J.M., 2012. Using larval dispersal simulations for	
558	marine protected area design: Application to the Gulf of Lions (northwest Mediterranean).	
559	Limnology and Oceanography 57, 1099–1112. https://doi.org/10.4319/lo.2012.57.4.1099	
560	Guizien, K., Viladrich, N., Martínez-Quintana, Á., Bramanti, L., 2020. Survive or swim: different	
561	relationships between migration potential and larval size in three sympatric Mediterranean	
562	octocorals. Scientific Reports 10, 18096. https://doi.org/10.1038/s41598-020-75099-1	a mis en forme : Français (France)
563	Guizien, K., Bramanti, L., Roca, J-C., Hesse, B., Blouet, S., Charbonnel, E., Payrot, J., Ferrari, B., Bricout,	
564	<u>R., Lescure, L., Chere, E., Hartmann, V., Rivoal, R., Planque, J-F., Cadene, F., Laffon, J-F.,</u>	
565	Monin, M., Bretton, O., Dumontier, M., Labrune, C., Fanfard, S., Cornette, F., 2022. Database	

566 567 568 570 571 572 573 574 575 576 577 578	of sea fans spatial distribution in the northwestern Mediterranean sea. https://doi.org/10.17882/86176 Hayes, K.R., Australia, Department of the Environment and Heritage, CSIRO (Australia), Division of Marine Research, 2005. National priority pests. Part II, Part II, Australian Government Dept. of the Environment and Heritage, Parkes A.C.T. Hong, J.S., 1980. Étude faunistique d'un fond de concrétionnement de type coralligène soumis à un gradient de pollution en Méditerranée nord-occidentale (Golfe de Fos). Thèse de Doctorat. Université d'Aix-Marseille II. 134 pp. Jackson, J.B.C., 2001. Historical Overfishing and the Recent Collapse of Coastal Ecosystems. Science 293, 629–637. https://doi.org/10.1126/science.1059199 Jones, D. L., 2014. The Fathom Toolbox for Matlab: multivariate ecological and oceanographic data analysis. College of Marine Science, University of South Florida, St. Petersburg, Florida, USA. Available from: http://www.marine.usf.edu/user/djones/	a mis en forme : Anglais (Royaume-Uni)
579		
580 581 582 583 584	 Keough, M.J., 1983. Patterns of recruitment of sessile invertebrates in two subtidal habitats. Journal of Experimental Marine Biology and Ecology 66, 213–245. https://doi.org/10.1016/0022-0981(83)90162-4 Laubier, L., 1966. Le coralligène des Albères. Monographie biocénotique. Ann. Inst. Océanogr. : 137-316. 	
585 586 587 588 589 590 591	 Lewbel, G.S., Howard, R.L., Gallaway, B.J., n.d. Zonation of Dominant Fouling Organisms on Northern Gulf of Mexico Petroleum Platforms 26. Ly, O., Yoris-Nobile, A.I., Sebaibi, N., Blanco-Fernandez, E., Boutouil, M., Castro-Fresno, D., Hall, A.E., Herbert, R.J.H., Deboucha, W., Reis, B., Franco, J.N., Teresa Borges, M., Sousa-Pinto, I., van der Linden, P., Stafford, R., 2021. Optimisation of 3D printed concrete for artificial reefs: Biofouling and mechanical analysis. Construction and Building Materials 272, 121649. https://doi.org/10.1016/j.conbuildmat.2020.121649 	
592 593 594 595	 Martens, K., Queiroga, H., Cunha, M.R., Cunha, A., Moreira, M.H., Quintino, V., Rodrigues, A.M., Seroôdio, J., Warwick, R.M. (Eds.), 2006. Marine Biodiversity: Patterns and Processes, Assessment, Threats, Management and Conservation. Springer Netherlands, Dordrecht. https://doi.org/10.1007/1-4020-4697-9 	
596	Millot, C., 1990. The Gulf of Lions' hydrodynamics. Continental Shelf Research 10, 885–894.	
598 599 600 601 602 603	 Moura, A., Boaventura, D., Cúrdia, J., Carvalho, S., da Fonseca, L.C., Leitão, F.M., Santos, M.N., Monteiro, C.C., 2007. Effect of depth and reef structure on early macrobenthic communities of the Algarve artificial reefs (southern Portugal). Hydrobiologia 580, 173–180. https://doi.org/10.1007/s10750-006-0455-y Nicoletti, L., Marzialetti, S., Paganelli, D., Ardizzone, G.D., 2007. Long-term changes in a benthic assemblage associated with artificial reefs, in: Relini, G., Ryland, J. (Eds.), Biodiversity in 	
604 605 606 607	Enclosed Seas and Artificial Marine Habitats, Developments in Hydrobiology. Springer Netherlands, Dordrecht, pp. 233–240. https://doi.org/10.1007/978-1-4020-6156-1_20 Odum, E.P., n.d. An understanding of ecological succession provides a basis for resolving man's conflict with nature. 164, 9.	
608 609 610 611	 Padron, M., Costantini, F., Baksay, S., Bramanti, L., Guizien, K., 2018. Passive larval transport explains recent gene flow in a Mediterranean gorgonian. Coral Reefs 37. https://doi.org/10.1007/s00338-018-1674-1 Pamintuan, L.S., Ali, P.M., n.d. Early Successional Patterns of Invertebrates in Artificial Reefs 	
612 613 614	Established at Clear and Silty Areas in Bolinao, Pangasinan, Northern Philippines 11. Pandian, T.J., 2018. Reproduction and Development in Echinodermata and Prochordata. CRC Press, Boca Raton. https://doi.org/10.1201/9780815364733	

615 616	Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R., Zeller, D., 2002. Towards sustainability in world fisheries. Nature 418, 689–695.	
617	https://doi.org/10.1038/nature01017	
618	Perkol-Finkel, S., Benayahu, Y., 2005. Recruitment of benthic organisms onto a planned artificial reef:	
619	shifts in community structure one decade post-deployment. Marine Environmental Research	
620	59, 79–99. https://doi.org/10.1016/j.marenvres.2004.03.122	
621	Platt, W.J., Connell, J.H., 2003. Natural Disturbances and Directional Replacement of Species.	
622	Ecological Monographs 73, 507–522. https://doi.org/10.1890/01-0552	
623	Ponti, M., 2015. Benthic assemblages on artificial reefs in the northwestern Adriatic Sea: Does	
624	structure type and age matter? Marine Environmental Research 10.	
625	Ponti, M., Turicchia, E., Costantini, F., Gori, A., Bramanti, L., Di Camillo, C., Linares, C., Rossi, S.,	
626	Abbiati, M., Garrabou, J., Cerrano, C., 2019. Mediterranean gorgonian forests: Distribution	
627	patterns and ecological roles.	
628	Powers, S., Grabowski, J., Peterson, C., Lindberg, W., 2003. Estimating enhancement of fish	
629	production by offshore artificial reefs: uncertainty exhibited by divergent scenarios. Mar.	
630	Ecol. Prog. Ser. 264, 265–277. https://doi.org/10.3354/meps264265	
631	Read, G., Inglis, G., Stratford, P., Ahyong, S., 2011. Arrival of the alien fanworm Sabella spallanzanii	
632	(Gmelin, 1791) (Polychaeta: Sabellidae) in two New Zealand harbours. AI 6, 273–279.	
633	https://doi.org/10.3391/ai.2011.6.3.04	
634	Relini, G., 2002. Trophic relationships between fishes and an artificial reef. ICES Journal of Marine	
635	Science 59, S36–S42. https://doi.org/10.1006/jmsc.2002.1212	
636	Relini, G., Zamboni, N., Tixi, F., Torchia, G., n.d. Patterns of Sessile Macrobenthos Community	
637	Development on an Artificial Reef in the Gulf of Genoa (Northwestern Mediterranean) 27.	
638	Ribes, M., Coma, R., Rossi, S., Michell, M., 2007. Cycle of gonadal development in <i>Euricella singularis</i>	 a mis en forme : Police :Italique
639	(Unidaria: Octocorallia): trends in sexual reproduction in gorgonians: Gametogenic cycle in a	
640	temperate gorgonian. invertebrate Biology 126, 307–317. https://doi.org/10.1111/j.1/44-	a mis en forme : Français (France)
C 4 1		
641	7410.2007.00101.x	
641 642	7410.2007.00101.x <u>Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels :</u>	
641 642 643	7410.2007.00101.x <u>Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels :</u> <u>Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la</u> <u>macro-échelle 192. Théce</u>	
641 642 643 644	7410.2007.00101.x <u>Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels :</u> <u>Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la</u> <u>macro-échelle 192. Thése.</u> Rossi S. Gili L.M. 2009. <u>Reproductive factures and gonad development cycle of the soft bottom</u>	
641 642 643 644 645 646	 7410.2007.00101.x <u>Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels :</u> <u>Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése.</u> Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian. <i>Lentogorgia sarmentosa</i> (Esper. 1791) in the NW Mediterranean Sea 	
641 642 643 644 645 646 647	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. 	
641 642 643 644 645 646 647 648	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom- gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07292259.2009.9652304 	
641 642 643 644 645 646 647 648 649	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom- gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, IM., Garrofé X. 2011. Net negative growth detected in a population of <i>Leptogorgia</i> 	a mis as forms - Doligo Italians
641 642 643 644 645 646 647 648 649 650	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i> (postion a benthic soft bottom-gravel gorgonian. Mar Biol 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i>: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s0027-011-1675-x 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i> (uantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic. 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i>: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i>: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [bhysics]. https://doi.org/10.1002/2014GL059540 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i>: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 655	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i> (guantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity and provision of functional habitat 9. 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 655 656 657	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i> (guantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity and provision of functional habitat 9. Santos, M.N., Monteiro, C.C., 2007. A fourteen-year overview of the fish assemblages and yield of the 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 655 656 657 658	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i> (sarmentosa: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity and provision of functional habitat 9. Santos, M.N., Monteiro, C.C., 2007. A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (southern Portugal) 7. 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 655 656 657 658 659	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i>: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity and provision of functional habitat 9. Santos, M.N., Monteiro, C.C., 2007. A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (southern Portugal) 7. 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i> : quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity and provision of functional habitat 9. Santos, M.N., Monteiro, C.C., 2007. A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (southern Portugal) 7. Seaman, W., 2007. Artificial habitats and the restoration of degraded marine ecosystems and fisheries, in: Relini, G., Ryland, J. (Eds.), Biodiversity in Enclosed Seas and Artificial Marine 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 655 656 657 658 659 660 661	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i>: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity and provision of functional habitat 9. Santos, M.N., Monteiro, C.C., 2007. A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (southern Portugal) 7. Seaman, W., 2007. Artificial habitats and the restoration of degraded marine ecosystems and fisheries, in: Relini, G., Ryland, J. (Eds.), Biodiversity in Enclosed Seas and Artificial Marine Habitats, Developments in Hydrobiology. Springer Netherlands, Dordrecht, pp. 143–155. 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 655 656 657 658 659 660 661 662	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom- gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia</i> <i>sarmentosa</i>: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity and provision of functional habitat 9. Santos, M.N., Monteiro, C.C., 2007. A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (southern Portugal) 7. Seaman, W., 2007. Artificial habitats and the restoration of degraded marine ecosystems and fisheries, in: Relini, G., Ryland, J. (Eds.), Biodiversity in Enclosed Seas and Artificial Marine Habitats, Developments in Hydrobiology. Springer Netherlands, Dordrecht, pp. 143–155. https://doi.org/10.1007/978-1-4020-6156-1_13 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663	 7410.2007.00101.x Riera, F., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i>: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity and provision of functional habitat 9. Santos, M.N., Monteiro, C.C., 2007. A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (southern Portugal) 7. Seaman, W., 2007. Artificial habitats and the restoration of degraded marine ecosystems and fisheries, in: Relini, G., Ryland, J. (Eds.), Biodiversity in Enclosed Seas and Artificial Marine Habitats, Developments in Hydrobiology. Springer Netherlands, Dordrecht, pp. 143–155. https://doi.org/10.1007/978-1-4020-6156-1_13 Shanks, A., 2009. Barnacle settlement versus recruitment as indicators of larval delivery. II. Time- 	a mis en forme : Police :Italique
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664	 7410.2007.00101.x Riera, E., 2020. Vers une construction raisonnée d'une nouvelle génération de récifs artificiels : Analyses comparatives des facteurs intrinsèques favorisant leur colonisation de la micro à la macro-échelle 192. Thése. Rossi, S., Gili, JM., 2009. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian <i>Leptogorgia sarmentosa</i> (Esper, 1791) in the NW Mediterranean Sea. Invertebrate Reproduction & Development 53, 175–190. https://doi.org/10.1080/07924259.2009.9652304 Rossi, S., Gili, JM., Garrofé, X., 2011. Net negative growth detected in a population of <i>Leptogorgia sarmentosa</i>: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158, 1631–1643. https://doi.org/10.1007/s00227-011-1675-x Rossi, V., Ser-Giacomi, E., López, C., Hernández-García, E., 2014. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. arXiv:1407.6920 [physics]. https://doi.org/10.1002/2014GL059540 Rouse, S., Porter, J.S., Wilding, T.A., n.d. Artificial reef design affects benthic secondary productivity and provision of functional habitat 9. Santos, M.N., Monteiro, C.C., 2007. A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (southern Portugal) 7. Seaman, W., 2007. Artificial habitats and the restoration of degraded marine ecosystems and fisheries, in: Relini, G., Ryland, J. (Eds.), Biodiversity in Enclosed Seas and Artificial Marine Habitats, Developments in Hydrobiology. Springer Netherlands, Dordrecht, pp. 143–155. https://doi.org/10.1007/978-1-4020-6156-1_13 Shanks, A., 2009. Barnacle settlement versus recruitment as indicators of larval delivery. II. Time-series analysis and hypothesized delivery mechanisms. Mar. Ecol. Prog. Ser. 385, 217–226. 	a mis en forme : Police :Italique

666 667	Shinn, E.A., Wicklund, R.I., n.d. Artificial Reef Observations from a Manned Submersible off Southeast Florida 10		
668	Simpson, T.J.S., Smale, D.A., McDonald, J.I., Wernberg, T., 2017. Large scale variability in the		
669	structure of sessile invertebrate assemblages in artificial nabitats reveals the importance of		
670 671	https://doi.org/10.1016/i.jembe 2017.05.003		
672	Smale D.A. 2012 Extreme spatial variability in sessile assemblage development in subtidal habitats		
673	off southwest Australia (southeast Indian Ocean). Journal of Experimental Marine Biology		
674	and Ecology 438. 76–83. https://doi.org/10.1016/i.iembe.2012.10.002		
675	Spagnolo, A., Cuicchi, C., Punzo, E., Santelli, A., Scarcella, G., Fabi, G., 2014. Patterns of colonization		
676	and succession of benthic assemblages in two artificial substrates. Journal of Sea Research		
677	88, 78–86. https://doi.org/10.1016/j.seares.2014.01.007		
678	Stearns, S.C., n.d. Life history evolution: successes, limitations, and prospects 11.		
679	Steimle, F., 2002. Benthic macrofauna productivity enhancement by an artificial reef in Delaware		
680	Bay, USA. ICES Journal of Marine Science 59, S100–S105.		
681	https://doi.org/10.1006/jmsc.2002.1268		
682	Strain, E.M.A., Olabarria, C., Mayer-Pinto, M., Cumbo, V., Morris, R.L., Bugnot, A.B., Dafforn, K.A.,		
683	Heery, E., Firth, L.B., Brooks, P.R., Bishop, M.J., 2018. Eco-engineering urban infrastructure		
684 695	for marine and coastal biodiversity: which interventions have the greatest ecological		
686	Svane Deterson K. 2001 On the Problems of Enihioses Fouling and Artificial Reefs a Review		
687	Marine Ecology 22 $169-188$ https://doi.org/10.1046/i.1439-0485.2001.01729.x		
688	Tessier, A., Francour, P., Charbonnel, E., Dalias, N., Bodilis, P., Seaman, W., Lenfant, P., 2015.		
689	Assessment of French artificial reefs: due to limitations of research, trends may be		
690	misleading. Hydrobiologia 753, 1–29. https://doi.org/10.1007/s10750-015-2213-5		
691	Tessier, A., Verdoit-Jarraya, M., Blouet, S., Dalias, N., Lenfant, P., 2014. A case study of artificial reefs		
692	as a potential tool for maintaining artisanal fisheries in the French Mediterranean Sea. Aquat.		a mis en forme : Anglais (Royaume-Uni)
693	Biol. 20, 255–272. https://doi.org/10.3354/ab00563		
694	Theodor, J., 1967. Contribution à l'études des gorgones (VII): écologie et comportement de la		
695	planula. Vie Milieu, 18 (2A): 291-301.		
696	Thorson, G., 1950. Reproductive and larval ecology of marine bottom invertebrates. Biological		
697	Reviews 25, 1–45. https://doi.org/10.1111/j.1469-185X.1950.tb00585.x		
698	as much as we believe? Hydrobiologia 275, 1, 21, https://doi.org/10.1022/4:1017007527400		
700	as much as we believe: Hydrobiologia 575, 1–21. https://doi.org/10.1025/A.1017007527450 Toledo M -L Torres P. Díaz C. Zamora V. Lónez L. Olivares G. 2020 Ecological succession of		
700	benthic organisms on niche-type artificial reefs. Ecol Process 9, 38.	_	a mis en forme : Anglais (Poyaume-Uni)
702	https://doi.org/10.1186/s13717-020-00242-9		
703	True, M.A., 1970. Étude quantitative de quatre peuplements sciaphiles sur substrat rocheux dans la		
704	région marseillaise. Bulletin Institut Océanographique Monaco, 69(1401): 1-48.		
705	Turner, S.J., Todd, C.D., 1993. The early development of epifaunal assemblages on artificial substrata		a mis en forme : Anglais (Royaume-Uni)
706	at two intertidal sites on an exposed rocky shore in St. Andrews Bay, N.E. Scotland. Journal of		
707	experimental Marine Biology and Ecology 166, 251–272. https://doi.org/10.1016/0022-		
708	Turon X 1990 Distribution and Abundance of Ascidians from a Locality on the Northeast Coast of		
710	Spain, Marine Ecology 11, 291–308, https://doi.org/10.1111/i.1439-0485.1990.tb00385.x		
711	Ulses, C., Estournel, C., Durrieu de Madron, X., Palangues, A., 2008. Suspended sediment transport in		
712	the Gulf of Lions (NW Mediterranean): Impact of extreme storms and floods. Continental		
713	Shelf Research 28, 2048–2070. https://doi.org/10.1016/j.csr.2008.01.015		
714	van der Stap, T., Coolen, J.W.P., Lindeboom, H.J., 2016. Marine Fouling Assemblages on Offshore Gas		
715	Platforms in the Southern North Sea: Effects of Depth and Distance from Shore on		
716	Biodiversity. PLoS ONE 11, e0146324. https://doi.org/10.1371/journal.pone.0146324		

717 718 719	Vivier, B., Dauvin, JC., Navon, M., Rusig, AM., Mussio, I., Orvain, F., Boutouil, M., Claquin, P., 2021. Marine artificial reefs, a meta-analysis of their design, objectives and effectiveness. Global Ecology and Conservation e01538. https://doi.org/10.1016/j.gecco.2021.e01538	
720 721 722	Wang, W., Wang, J., Choi, F.M.P., Ding, P., Li, X., Han, G., Ding, M., Guo, M., Huang, X., Duan, W., Cheng, Z., Chen, Z., Hawkins, S.J., Jiang, Y., Helmuth, B., Dong, Y., 2020. Global warming and artificial shorelines reshape seashore biogeography. Global Ecol Biogeogr 29, 220–231.	
723	https://doi.org/10.1111/geb.13019	
724	Weinberg, S., Weinberg, F., 1979. The Life Cycle of a Gorgonian: <i>Eunicella Singularis</i> (Esper, 1794).	a mis en forme : Police :Italique
725	Contributions to zoology Bijdragen tot de dierkunde 48, 127–140.	
726	https://doi.org/10.1163/26660644-04802003	
727	Wendt, P.H., Knott, D.M., Dolah, R.F.V., n.d. COMMUNITY STRUCTURE OF THE SESSILE BIOTA ON FIVE	
728	ARTIFICIAL REFS OF DIFFERENT AGES COMMUNITY STRUCTURE OF the sessile blota on five	
729	<u>artificial reets of different ages</u> 18. Whomerslay, P. Bieken, C.B. 2002, Long term dynamics of fouling communities found on offeners	
730	installations in the North Sea. J. Mar. Riol. Ass. 82, 897–901	
732	https://doi.org/10.1017/S0025315403008014h	
733	Wilson, K., 2002, Restoration of Hong Kong fisheries through deployment of artificial reefs in marine	
734	protected areas. ICES Journal of Marine Science 59, S157–S163.	
735	https://doi.org/10.1006/jmsc.2002.1186	
736	Zar, J., 1999. Biostatistical analysis.	
737	Zelli, E., Quéré, G., Lago, N., Di Franco, G., Costantini, F., Rossi, S., Bramanti, L., 2020. Settlement	
738	dynamics and recruitment responses of Mediterranean gorgonians larvae to different	
739	crustose coralline algae species. Journal of Experimental Marine Biology and Ecology 530–	
740	531, 151427. https://doi.org/10.1016/j.jembe.2020.151427	
741	Zhan, A., Briski, E., Bock, D.G., Ghabooli, S., MacIsaac, H.J., 2015. Ascidians as models for studying	
742	invasion success. Mar Biol 162, 2449–2470. https://doi.org/10.1007/s00227-015-2734-5	
743		
744	A	a mis en forme : Couleur de police : Automatique
745		
746		
747		
, , ,		
748		
749		
750		
1		
751		
752		

754			
755			
756			
757			
758			
759			
760			
761	Figure captions:		a mis en forme : Couleur de police : Automatique
762	Figure 1: Map showing the layout of the 6 geographical sectors and 15(AGM, AGD, VLR, GRU, LEU,		a mis en forme : Couleur de police : Automatique
763	CST) and the 16 sites where prospected (indicated in dark blue) for artificial reef sampling was carried		a mis en forme : Couleur de police : Automatique
-			a mis en forme : Couleur de police : Automatique
765 766	black corresponded to natural hard-substrate areas. Some of the AR shape illustrations were taken from Tessier et al., 2014.		
767	*		a mis en forme : Interligne : Double
768	Figure 2: Photographs of the five species inventoried on AR a) Sabella spallanzanii b) Eunicella		a mis en forme : Couleur de police : Automatique
769	singularis c) l'entogorgia sarmentosa d) Halocynthia ngnillosa e) Pentanora fascialis: all © Blouet		a mis en forme : Couleur de police : Automatique
			a mis en forme : Couleur de police : Automatique
770 771	sylvain		
772	Figure 3: Map showing the five species co-occurence assemblages inventoried on ARs in the 1516		a mis en forme : Interligne : Double
772		$\overline{\ }$	a mis en forme : Couleur de police : Automatique
, , 5	אסטיז, אסויוב, אסטיג, אסטב, אסטס, אסטיי, אסטס, ערגז, ערגב, טגטז, טגטב, טגט3, LEUI, LEUZ,		a mis en forme : Couleur de police : Automatique
774	<u>CST1, CST2) i</u> n the Gulf of Lion.		a mis en forme : Couleur de police : Automatique
775			

776	Figure 4: Composite showing in the upperDiversity and dissimilarity. Upper part-the: diversity of	 a mis en forme : Interligne : D	ouble
777	species assemblageassemblages in the sampling units of the five sites (A, B, C, D, E AGD1, AGD2,		
778	AGD3, AGD4, AGD5) in AGD sector together with the type of AR, depth and years of deployment-and		
779	in the lower. Lower part, the: dendrogram obtained by group average clustering based on the		
780	Jaccard dissimilarity index using the presence /absence of species (P=0.04 at 62% of dissimilarity).		
781	The red dotted line delineates separates the two clusters identified by the analysis.		
782			
783			
784			
785			
786			
787			
788			
789			
790			
791			
792			
793			
794			
795			
796			
797			
798			
799			
800			
801	Figures :		
802	Figure 1 :		

808		
809		
310		
811		
812		
313		
814		
315		

815 816 Figure 2 :

-	
A)	

B)

C)

830 Figure 3 :

a mis en forme : Espace Après : 7 pt, Interligne : Multiple 1,2 li, Bordure : Haut: (Pas de bordure), Bas: (Pas de bordure), Gauche: (Pas de bordure), Droite: (Pas de bordure), Entre : (Pas de bordure)

859 Figure 3 :

876	Table captions	
877	Table 1: LarvalLife_history traits (Planktonicspawning period, relative fecundity, life expectancy, age	a mis en forme : Espace Après : 0 pt
878	at sexual maturity, larval type, planktonic larval duration (PLD), reproduction period, and larval	
879	trophic regimerelative abundance in the GoL) for the five species inventoried on ARs	a mis en forme : Police :Times New Roman, 12 pt
880		
881	Table 2: Results of multivariate NP-Manova testing the interactive effects effect of the year (of	
882	deployment and site (nested in year)shape between steel cage and pipe on the presence/absence	
883	assemblage. Sites tested: VLR1 vs VLR2. Significant (P<0.05) values in bold.	a mis en forme : Police :Times New Roman, 12 pt
884		
885	Table 3: Results of multivariate NP-Manova testing the interactive effects of the Age (of deployment)	
886	and site (nested in Age) on the presence/absence assemblage. Sites tested: AGD1 vs (AGD2 vs AGD3).	
887	Significant (P<0.05) values in bold.	
888		
889	Table 4: Results of multivariate NP-Manova testing the interactive effects of the depth (of	a mis en forme : Espace Après : 0 pt
890	deployment) and site (nested in depth) on the presence/absence assemblage. Sites tested: (AGD2 vs	
891	AGD3) vs (AGD4 vsAGD5). Significant (P<0.05) values in bold.	a mis en forme : Police :Times New Roman, 12 pt
892		
893	Table 4 <u>5</u> : Results of univariate Kruskall_wallis testing the <u>effectseffect</u> of year and depth<u>location</u> of	
894	deployment on the presence/absence by species. Sites tested: all sites in AGD. Significant (P<0.05)	
895	values in bold,	a mis en forme : Police :Times New Roman, 12 pt
896		
897	Table 56: Results of multivariate NP-Manova testing the interactive effects of geographical sector	
898	and site (nested in geographical sector) on the presence/absence assemblage. Sites tested: (AGM1 vs	
899	AGM2) vs (AGD2 vs AGD3) vs (VLR1 vs VLR2) vs (GRU1 vs GRU2 vs GRU3) vs (LEU1 vs LEU2).	
900	Significant (P<0.05) values in bold,	a mis en forme : Police :Times New Roman, 12 pt
901		

902	Table 67: Results of univariate Kruskall_wallis testing the effects of geographical sector and site on
903	the presence/absence by species. Sites tested: AGM1 vs AGM2 vs AGD2 vs AGD3 vs VLR1 vs VLR2 vs
904	GRU1 vs GRU2 vs GRU3 vs LEU1 vs LEU2. Significant (P<0.05) values in bold.
905	A
906	Tables:

907 Table 1:

Species Life expectancy <u>Age at</u> <u>sexual</u> <u>maturity</u> Larval type Spawning period nic larval ce in the GoL duration (PLD) Lecithotrophic ? (supposed 1- (Rossi and 4 weeks) Gili 2009)** ** Leptogorgia June -20 years 2-3 years sarmentosa August * Eunicella July - August 25-30 years Lecithotrophic 1-4 weeks (in (Guizien et al. 2020)*** <u>6 years</u> singularis aquarium) ** 10 years Pentapora ? (supposed (Cocito et al. June 2 years Lecithotrophic 1998)** fascialis <1 days) *** 21 days (in Lecithotrophic Sabella January -5 years 1 years (Giangrande spallanzani February et al. 2000)* aquarium) *** ? (supposed <2 days)<12 Halocynthia (Becerro and September unknow 2 months October lecithotrophic papillosa, (estimated (estimated Turon hours from other from (estimated 1992)<u>**</u> (estimated ascidians) other from other from other ascidians) ascidians) ascidians) . 908 Symbol legend: * = low, **=medium ***=strong 909 . Table 2: 910 Multivariate measures Df SS Ms F Pvalue Source Assemblage (Presence/Absence)

Year Shape		1	<u>3.6408e-</u>	<u>3.6408e-</u>	<u>9.8301e-18</u> 1.4330	0. 3330<u>6090</u>
			<u>19</u> 0.4825	<u>19</u> 0.4825		
Site(Year)	1	0.3367	0	1367	7.5551	0.0130
Residual		<u>64</u>	0. 2674<u>1481</u>	0. 0446<u>0370</u>		
Total		8 5,	1.0866 0.1481			

911

	a mis en forme)
	a mis en forme	
	a mis en forme	
	a mis en forme	
	Cellules insérées	
$\ $	a mis en forme	
	Cellules insérées	
	Cellules insérées	
	a mis en forme	
$\ $		<u> </u>
		<u> </u>
		<u> </u>
$\ $	a mis en forme	
1	a mis en forme	<u> </u>
	a mis en forme	<u> </u>
	a mis en forme	
Δ	a mis en forme	
Δ	a mis en forme	
	a mis en forme	
_	a mis en forme	
	a mis en forme	
7	a mis en forme	
	a mis en forme	
	a mis en forme	
	a mis en forme	
Χ	a mis en forme	
	a mis en forme	
Χ	a mis en forme	
	a mis en forme	
-	a mis en forme le tableau	
	a mis en forme le tableau	
//	a mis en forme	
/	a mis en forme	
_	a mis en forme	
	a mis en forme	
	a mis en forme	
_	a mis en forme	
	a mis en forme	
\langle	a mis en forme	
	a mis en forme	
1	a mis en forme	
$\langle \rangle$	a mis en forme	
	a mis en forme	
		<u> </u>

						•	a mis en forme : Police :+Corps (Calib
able 3:						-	a mis en forme : Espace Après : 12 pt, simple
		Mult	ivariate measures				a mis en forme : Police :+Corps (Calib police : Automatique
Source	Df	SS	Ms	F	Pvalue		a mis en forme : Espace Après : 0 pt, l
Assemblage (Prese	ence/Absence)-						a mis en forme : Police :+Corps (Calib
Age	1	0 4825	0.4825	1 4330	0 3330		a mis en forme : Police :+Corps (Calib
	÷	0.1020	0.1022	<u>11000</u>	0.000	$(\langle \langle \rangle \rangle)$	a mis en forme : Espace Après : 0 pt, I
Site(Age)	<u>1</u>	0.3367	0.3367	<u>7.5551</u>	0.0130		a mis en forme le tableau
<u>Residual</u>	<u>6</u>	<u>0.2674</u>	<u>0.0446</u>				a mis en forme : Police :+Corps (Calib
<u>Total</u>	<u>8</u>	<u>1.0866</u>					a mis en forme : Espace Après : 0 pt, I
							a mis en forme : Police :+Corps (Calib
							a mis en forme : Espace Après : 0 pt, I
able 4:							a mis en forme le tableau
							a mis en forme : Police :+Corps (Calib
		Mult	ivariate measures				
Source	Df	<u>SS</u>	<u>Ms</u>	E	<u>Pvalue</u>		
Assemblage (Prese	ence/Absence)						
Depth	1	0.2491	0.2491	1.3715	0.3280	•	a mis en forme : Police :+Corps (Calib
Site(Depth)	2	0.3633	0.1816	8.5969	0.001		a mis en forme : Espace Après : 0 pt, I
Posidual	0	0 1690	0.0211				a mis en forme le tableau
Residual	0	0.1090	0.0211				a mis en forme : Police :+Corps (Calib
Total	11	0.7816					a mis en forme : Espace Après : 0 pt,
							a mis en forme : Police :+Corps (Calik
							a mis en forme : Espace Après : 0 pt, I
							a mis en forme : Espace Après : 0 pt, a mis en forme : Police :+Corps (Calib
							a mis en forme : Espace Après : 0 pt, l a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, l
							a mis en forme : Espace Après : 0 pt, a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, a mis en forme : Police :+Corps (Calib
able 4:5:							a mis en forme : Espace Après : 0 pt, a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, l a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 12 pt, simple
able 4 <u>+5:</u>		Univ	rariate measures				a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 12 pt, simple a mis en forme : Police :+Corps (Calib police : Automatique
able 4: <u>5:</u>		Unix	rariate measures				a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 12 pt, simple a mis en forme : Police :+Corps (Calib police : Automatique a mis en forme : Police :+Corps (Calib
able 4 <u>+5:</u>		Univ Pre	rariate measures isence/absence		Bushins		a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib simple a mis en forme : Police :+Corps (Calib police : Automatique a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib
able 4 <u>;5:</u>		Univ Pre Df S	rariate measures :sence/absence S Ms	Chi_sq	Pvalue		a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 12 pt, simple a mis en forme : Police :+Corps (Calib police : Automatique a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme le tableau
able 4:<u>5:</u> Eunicella singularis		Univ Pre Df S	rariate measures :sence/absence S Ms	Chi_sq	Pvalue		a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib police : Automatique a mis en forme : Police :+Corps (Calib police : Automatique a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme le tableau
' able 4<u>+5:</u> Eunicella singularis	4	Univ Pre Df S: 1	rariate measures sence/absence S Ms 27.5 31.875	Chi_sq 10.82	Pvalue 0.0287		a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib police : Automatique a mis en forme : Police :+Corps (Calib police : Automatique a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme le tableau a mis en forme le tableau
able 4:<u>5:</u> Eunicella singularis Leptogorgia sarme	4 ntosa	Unix Pre Df S	rariate measures sence/absence S Ms 27.5 31.875	Chi_sq 10.82	Pvalue 0.0287		a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib police : Automatique a mis en forme : Police :+Corps (Calib police : Automatique a mis en forme : Police :+Corps (Calib a mis en forme : Police :+Corps (Calib a mis en forme : Espace Après : 0 pt, 1 a mis en forme le tableau a mis en forme le tableau

	4	172 5	43 125	11 5	0.0215
Sabolla spallazanii	•		101125		
		0	0		
Uslanuthia nanillasa	4	0	0	nan	nan
Halocynthia papillosa		450	27.5	44.2	0.0244
	4	130	57.5	11.2	0.0244
able 5.<u>0.</u>		Multivariate	measures		
Source	Df	SS	Ms	F	Pvalue
Assemblage (Presence/Abs	ence)				
Geographical sector	4	<u>1.99212.1671</u>	0.4 <u>9805418</u>	3.1961<u>5.0994</u>	0. 0380 00
Site(Geographical sector)	5 6,	0. 7791<u>6375</u>	0. <u>1558106</u> 2,	3.6434<u>2.78</u>12	0.001000
Residual	19 18	0. <u>8125</u> 6876	0.04270382		
Total	28	3. <u>58384921</u>			
Total	28	3. 5838<u>4921</u>			
Total	28	3.58384921	sence		
Table 67:	28 Df S:	3. 5838<u>4921</u> Presence/ab	isence	Chi_sq	Pvalue
Table 67: Source	Df SS	3. 5838<u>4921</u> Presence/ab	isence	Chi_sq	Pvalue
Table 67: Source Eunicella singularis Geographical sector	28 Df S: A 44	3.58384921	ssence	Chi_sq 10.28	Pvalue 0.036
Table 67; Source Eunicella singularis Geographical sector Site	28 Df SS <u>4</u> 44 9 9:	3.58384921	sence	Chi_sq 10.28 21.56	Pvalue 0.036 0.01040175
Total Table 67; Source Funicella singularis Geographical sector, Site Leptogorgia sarmentosa	28 Df 59 <u>4</u> 44 9 93	3.58384921	sence	Chi_sq 10.28 21.56	Pvalue 0.036 0.01040175
Total Table 67: Source Eunicella singularis Geographical sector Site Leptogorgia sarmentosa Geographical sector	28 Df SS 4 44 9 9:	3.58384921	sence	Chi_sq 10.28 21.56 22.2	Pvalue 0.036 0.04040175 0.0002

· · · · · · · · · · · · · · · · · · ·	
a mis en forme	
a mis en forme le tableau	
a mis en forme	
a mis en forme	
a mis en forme	<u>_</u>
a mis en forme	
a mis en forme la tablacu	
	<u>_</u>
a mis en forme	
a mis en forme	<u></u>
a mis en forme	
a mis en forme	(
a mis en forme	 [
a mis en forme	 [
a mis en forme	
a mis en forme	
a mis en forme le tableau	
a mis en forme	
a mis en forme le tableau	
a mis en forme	
a mis en forme	
	<u>_</u>
	<u>_</u>
	<u>_</u>
a mis en torme	
a mis en forme	
a mis en forme le tableau	
a mis en forme	

Geographical sector	4	937.66	234.41	21.56	0.0002
Site	9	1077.83	119.75 107.78,	24.78	0. 0032 0058
Sabella spallazanii		·			
Geographical sector	4	0	0	nan	nan
Site	9	0	0	nan	nan
Halocynthia papillosa					
Geographical sector	4	323.59	80.89	6.01	0.1985
Site	9	561.87 681.5	62.4368.15	10.42 12.53	0. 3166 2509

a mis en forme : Police :+Corps (Calibri) a mis en forme : Espace Après : 0 pt, Interligne : simple a mis en forme le tableau a mis en forme : Police :+Corps (Calibri) a mis en forme : Espace Après : 0 pt, Interligne : simple a mis en forme : Police :+Corps (Calibri), Non Gras a mis en forme : Police :+Corps (Calibri) a mis en forme : Police :+Corps (Calibri) a mis en forme : Espace Après : 0 pt, Interligne : simple a mis en forme : Police :+Corps (Calibri) a mis en forme : Police :+Corps (Calibri) a mis en forme : Police :+Corps (Calibri) a mis en forme : Espace Après : 0 pt, Interligne : simple a mis en forme le tableau a mis en forme : Police :+Corps (Calibri) a mis en forme : Espace Après : 0 pt, Interligne : simple a mis en forme : Police :+Corps (Calibri), Non Gras a mis en forme : Police :+Corps (Calibri) a mis en forme : Police :+Corps (Calibri) a mis en forme : Espace Après : 0 pt, Interligne : simple a mis en forme : Police :+Corps (Calibri) a mis en forme : Espace Après : 0 pt, Interligne : simple a mis en forme le tableau a mis en forme : Police :+Corps (Calibri) a mis en forme : Espace Après : 0 pt, Interligne : simple a mis en forme : Police :+Corps (Calibri) a mis en forme : Espace Après : 0 pt, Interligne : simple a mis en forme : Police :+Corps (Calibri) a mis en forme : Police :+Corps (Calibri), 9 pt, Anglais (Royaume-Uni) a mis en forme : Justifié, Espace Après : 0 pt, Interligne : simple

a mis en forme : Interligne : simple

943