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Electron Identification Motivation

• Though relatively rare, prompt electrons are very important
for ATLAS experiment, Higgs’ physics program and search
for physics beyond Standard Model

• Example: 4 out of 5 Higgs’ main signatures at LHC contain e!

• Electron classification is therefore crucial to discriminate 
prompt electrons from other electron-like signatures

• Machine learning could replace the more simple algorithms
that are presently used in ATLAS for this identification

• The goal of this project is to use the best techniques available 
to eventually classify e! as of many different types as we want
(i.g. signal, charge-flipped, from b-jets, γ-conversion, fake) 
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Electron Data from ATLAS Detector

3

Typical electron trajectory
in ATLAS detector

• 15 track candidates (e_frac, d_eta, d_phi, d_0) : (15 x 4 )
• 3 images from electromagnetic calorimeter: 3 x (56 x 11) in (η x φ)
• 2 images from hadronic calorimeter: 2 x ( 7 x 11) in (η x φ)

Available MC data for each electron 



Calorimeter Images MC Examples
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Tracks

Preliminary NN Architecture
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• Binary classification: 1) prompt e! 2)  fake + non prompt e!

• Multi-channels CNN with calorimeter images + Tracks information
• The 5-image sets are concatenated in volume images (5-channel images)
• Tracks: either used as an image (6th channel) or concatenated in the FC layer
• Both methods seems to produce similar performance

5-image set

6th image



Inside CNN Architecture
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• Layer 1: 100 convolution maps with 3x3 filter 
• Layer 2: 2x2 MaxPooling
• Layer 3: 50 convolution maps with 2x2 filter
• Layer 4: 2x2 MaxPooling
• Layer 5: maps vectorization tracks information concatenation
• Layer 6: 100-neuron fully connected
• Layer 7: binary Softmax layer (output probability-vector)

Detailed Architecture

Capacity: 118 652 trainable parameters (i.e. weights) altogether 



Classification vs ROC Curves
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Background
Distribution

• NN with Softmax layers gives class probabilities for each sample (e.g. 0.43, 0.57)
• ROC curves are used in binary classification to study the output of a classifier
• Goal: maximize the true positive rate while minimizing the false positive rate
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More on ROC Curves
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Separable Distributions 

Overlapping Distributions 

Identical Distributions

Reciprocating Distributions 

• ROC curves: better figure of 
merit than accuracy

• AUC (area under curve):
also very useful to estimate 
overall performance
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CNN Results: Accuracy and ROC Curve
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• Maximum accuracy is achieved rapidly
• 4s/epoch (generator + 4 CPU’s + RTX 1080Ti )
• Batch size of 500 e! was used  
• No sign of serious overfitting
• Bkg vs Signal ROC curve is obtained by

switching axis, expressing  1- FPR vs TPR

• LLH-tight is still performing better but NN
might outperform loose and medium LLH

• Future: deeper architectures and 5-class NN

• Training: 18 000 e!
• Testing: 2000 e!

• 10 000 signal e!
• 10 000 bkg e!

MC Data Sample



Future: RNN and 5-class Identification
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• More advanced architecture: RNN made up of 6 sub-networks (1 RNN + 5 CNN’s) 

• 5-class e! identification: 1) signal 2) charge-flipped 3) from b-jets
4) γ-conversion 5) fake

• Such an architecture already showed promising results for leptons 𝜏 classification 
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• Transition from RNN to LSTM for longer tracks or images sequences

• Training with low-level variables available from the ATLAS detector

• Eventually performing 5-class identification with real data instead of MC

• Adapt architectures to regression for estimation of variables (e.g. 𝐸 ou 𝑃) 

• Explore pre-processing methods for better image information extraction

Conclusion and Future Developments 

Long-term possible developments

• Electron identification is of great importance for the Atlas experiment

• The electron classification into different classes is a challenging problem

• CNN’s and RNN’s showed to be effective for 𝜏 and jets classification     


