

Maize (*Zea mays* L.) Nucleoskeletal Proteins Regulate Nuclear Envelope Remodeling and Function in Stomatal Complex Development and Pollen Viability

Joseph F. McKenna¹/₁, Hardeep K. Gumber²/₁, Zachary M. Turpin², Alexis M. Jalovec², Andre C. Kartick², Katja Graumann³* and Hank W. Bass²*₁

¹ School of Life Sciences, University of Warwick, Coventry, United Kingdom, ² Department of Biological Science, Florida State University, Tallahassee, FL, United States, ³ Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom

In eukaryotes, the nuclear envelope (NE) encloses chromatin and separates it from the rest of the cell. The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex physically bridges across the NE, linking nuclear and cytoplasmic components. In plants, these LINC complexes are beginning to be ascribed roles in cellular and nuclear functions, including chromatin organization, regulation of nuclei shape and movement, and cell division. Homologs of core LINC components, KASH and SUN proteins, have previously been identified in maize. Here, we characterized the presumed LINC-associated maize nucleoskeletal proteins NCH1 and NCH2, homologous to members of the plant NMCP/CRWN family, and MKAKU41, homologous to AtKAKU4. All three proteins localized to the nuclear periphery when transiently and heterologously expressed as fluorescent protein fusions in Nicotiana benthamiana. Overexpression of MKAKU41 caused dramatic changes in the organization of the nuclear periphery, including nuclear invaginations that stained positive for non-nucleoplasmic markers of the inner and outer NE membranes, and the ER. The severity of these invaginations was altered by changes in LINC connections and the actin cytoskeleton. In maize, MKAKU41 appeared to share genetic functions with other LINC components, including control of nuclei shape, stomatal complex development, and pollen viability. Overall, our data show that NCH1, NCH2, and MKAKU41 have characteristic properties of LINC-associated plant nucleoskeletal proteins, including interactions with NE components suggestive of functions at the nuclear periphery that impact the overall nuclear architecture.

Keywords: nuclear envelope, maize, lamin, nucleoskeleton, KAKU4, nucleus, peripheral nucleoplasm

INTRODUCTION

In plant cells, as with all eukaryotes, the nucleus is a conspicuous and characteristic organelle, housing the DNA (reviewed by Meier et al., 2017). The nucleus itself is a dynamic structure, organized largely by its enclosing membrane system - the nuclear envelope (NE). The NE is a double-membraned structure composed of an outer nuclear membrane (ONM) and an inner

OPEN ACCESS

Edited by:

Christopher J. Staiger, Purdue University, United States

Reviewed by:

Motoki Tominaga, Waseda University, Japan Viktor Zarsky, Charles University, Czechia

*Correspondence:

Katja Graumann kgraumann@brookes.ac.uk Hank W. Bass bass@bio.fsu.edu

[†]ORCID:

Joseph F. McKenna orcid.org/0000-0003-4838-6048 Hardeep K. Gumber orcid.org/0000-0001-5250-7207 Hank W. Bass orcid.org/0000-0003-0522-0881 ‡ These authors have contributed equally to this work and share first authorship

Specialty section:

This article was submitted to Plant Cell Biology, a section of the journal Frontiers in Plant Science

Received: 22 December 2020 Accepted: 27 January 2021 Published: 17 February 2021

Citation:

McKenna JF, Gumber HK, Turpin ZM, Jalovec AM, Kartick AC, Graumann K and Bass HW (2021) Maize (Zea mays L.) Nucleoskeletal Proteins Regulate Nuclear Envelope Remodeling and Function in Stomatal Complex Development and Pollen Viability. Front. Plant Sci. 12:645218. doi: 10.3389/fpls.2021.645218

1

nuclear membrane (INM) connected at nuclear pores (reviewed by Hetzer, 2010; Graumann and Evans, 2017). The functional properties of the NE are mediated by protein complexes linked to myriad cellular and nuclear processes, including cell division and gene expression (Kim et al., 2015; Meier et al., 2017; De Magistris and Antonin, 2018; Pradillo et al., 2019). A major conserved NE complex is the linker of nucleoskeleton and cytoskeleton (LINC) complex (Crisp et al., 2006), known for it involvement in processes such as the maintenance of nuclear architecture and mechanical structures, signaling, nuclear motility, and nuclear positioning (reviewed by Rothballer and Kutay, 2013; Chang et al., 2015; Tamura et al., 2015; Pradillo et al., 2019; Starr, 2019). Well beyond the historically recognized role of compartmentalization, NE investigations increasingly address how the NE contributes to both general and specialized functions in plant growth and development. The underlying molecular mechanisms coordinating and regulating these fundamental NE processes remain, however, largely unknown.

The hallmark of LINC complexes is their ability to form direct connections bridging the cytoplasm and the nucleoplasm. This is accomplished by a core complex of two groups of proteins, residing on the two separate membranes of the NE. The INM houses the Sad1/UNC84 homology (SUN) domain proteins and the ONM houses the Klarsicht/ANC-1/Syne homology (KASH) proteins (Hagan and Yanagida, 1995; Malone et al., 1999; Starr, 2002; Murphy et al., 2010). As a group, the KASH proteins are numerous and diverse, reflecting their various cytoplasmic binding partners, such as cytoskeletal and motor proteins (Starr and Fridolfsson, 2010; Luxton and Starr, 2014; Kim et al., 2015; Evans and Graumann, 2018; Starr, 2019). In contrast, the SUN-domain proteins are less diverse but still exhibit interactions with multiple components of the nucleoplasm, such as nucleoskeletal components and chromatin proteins (Haque et al., 2006; Janin et al., 2017). While cytoskeletal components of LINC complexes and the SUN proteins appear conserved in eukaryotes, plants have evolved unique KASH proteins and nucleoskeletal components. Plant nucleoskeletal components, while lacking sequence homology, share many of the animal lamin features, including interactions with the NE and their ability to impact chromatin structure and gene expression (Masuda et al., 1997; Dittmer et al., 2007; Wang et al., 2013; Ciska and Moreno Dí-az de la Espina, 2014; Goto et al., 2014; Zhao et al., 2016; Guo et al., 2017; Choi et al., 2019; Ciska et al., 2019; Hu et al., 2019; Sakamoto, 2020).

Plant nucleoskeletal proteins that interact directly or indirectly with the NE fall into two families of proteins. One family, the Nuclear Matrix Constituent Proteins/Crowded Nuclei (NMCP/CRWN) proteins, is found in plants with members encoded by the NMCP genes in carrot (Masuda et al., 1997), CRWN genes in Arabidopsis (Dittmer et al., 2007), and NCH genes in maize (Gumber et al., 2019a). The other family is also found in plants and encoded by the AtKAKU4 gene in Arabidopsis (Goto et al., 2014) and the MKAKU41 and MKAKU42 genes in maize (Gumber et al., 2019a). Here we refer to these two gene or protein families generally as CRWN and KAKU4.

In Arabidopsis, CRWN1 is located primarily at the nuclear periphery and interacts with SUN-domain proteins (Dittmer et al., 2007; Graumann, 2014). CRWN proteins have been implicated in the regulation of nuclear shape, nuclear size, chromatin organization, regulation of gene expression, and nuclear body formation in plants (reviewed in Sakamoto, 2020). KAKU4 was shown to interact with CRWN1 by yeast two-hybrid analysis, supporting their cooperation in the form and function of a plant nucleoskeletal system (Goto et al., 2014). Fluorescent protein fusions driven by native promoter expression and electron microscopy showed that KAKU4 is localized to the inner nuclear membrane. Interestingly, when high-expression stable lines were selected or high-expression transient transformation was performed, KAKU4 appeared to induce nuclear invaginations, which increased significantly when co-expressed with CRWN1 (Goto et al., 2014).

Together, the CRWN and KAKU proteins are known to affect phenotypes in eudicots, yet their roles in crop species are less well understood. Two maize CRWN homologs are known; NCH1 which is most closely related to AtCRWN1-3, and NCH2 which is most closely AtCRWN4. Maize MKAKU41 homologs are encoded by *MKAKU41* and *MKAKU42* (Gumber et al., 2019a). To investigate the functional conservation of these presumed nucleoskeletal proteins in maize, we characterized *NCH1* and *NCH2* and *MKAKU4* using cytological or genetic approaches.

RESULTS

Maize NCH1, NCH2, and MKAKU41 Localized to the Nucleus, Primarily at the Nuclear Periphery

In order to determine the cellular localization of the maize CRWN homologs NCH1, NCH2, and the KAKU4 homolog MKAKU41, we produced gene constructs with the protein coding region fused to either GFP or mCherry at the N-terminus. We then expressed these constructs transiently in N. benthamiana leaf tissue. All three constructs localized to the nuclear periphery with MKAKU41 also exhibiting internal structures as shown in Figure 1 for nuclei counterstained with DAPI. In order to confirm that NCH1 and NCH2 were localized at the nuclear periphery, we performed co-expression of NCH1 or NCH2 with AtCRWN1 (Supplementary Figure 1). The colocalization of NCH with CRWN confirmed that NCH1 and NCH2 did localize to the nuclear periphery when transiently expressed in N. benthamiana. Interestingly, MKAKU41 showed nuclear envelope labeling and inner nucleus labeling in most cells, including membrane invaginations (Figure 1A, white arrowheads), as has been described for Arabidopsis KAKU4 when expressed under the control of the 35S promoter (Goto et al., 2014). These included internal structures and circular ring-like invaginations within the nucleus. The structures labeled with MKAKU41 colocalized with brighter DAPI staining regions, implying that MKAKU41 may associate with heterochromatin. The ring-like invaginations lacked internal DAPI staining and therefore appeared devoid of typical nucleoplasmic chromatin.

Interestingly, the CRWN1 homolog NCH1 alone also caused these aberrant-looking intranuclear structures (**Figure 1A**, white arrow), although to a lesser extent than MKAKU41. However, NCH2, a CRWN4 homolog (Ciska et al., 2019), did not induce ring-like invaginations. The NCH1 and NCH2 also displayed different mobility proportions at the nuclear periphery (**Figure 1B** and **Supplementary Figures 1B–F**) as determined by Fluorescence Recovery After Photobleaching (FRAP). NCH2 was significantly less mobile (16% mobile fraction) than NCH1 (49% mobility) indicating that they might interact with different protein complexes or structures. The lower mobility of NCH2 compared to NCH1 is consistent with its reduced capacity to remodel the nuclear envelope membrane and cause invaginations (**Figure 1**). The large immobile fraction of NCH2, but not NCH1, was comparable to that of AtCRWN1 (Graumann, 2014).

It has been demonstrated that the degree of nuclear invagination and deformation is dependent on the expression level of KAKU4 in A. thaliana (Goto et al., 2014). We therefore asked if this causal relationship was conserved in the maize genes, MKAKU41, NCH1, and NCH2, using the doseresponse transient expression assays summarized in Figure 2. We infiltrated N. benthamiana with three different concentrations of Agrobacterium, OD 0.01, 0.05, or 0.1, and then classified live-imaged nuclei ($N \ge 30$ per condition) into one of three previously described nuclear periphery cytological image patterns (Goto et al., 2014): type I for normal nuclear periphery localization, type II for minor invagintions or inclusions in the nucleus, and type III for major invaginations and deformation of the nucleus. This classification assisted with a comparative analysis of the severity of changes in nuclear morphology across the various experiments used throughout this study. Increasing the infiltration concentration of NCH1 resulted in progressively increased nuclear deformation illustrated by type II pattern increases and the appearance of type III at the highest transfection dose (Figure 2A). NCH2 also showed a transfection dose-dependent increase in nuclear aberration coupled to type II increases, but less so and without any type III nuclei even at the highest dose (Figure 2B). For MKAKU41, increasing the transfecting plasmid concentration led from most nuclei just showing peripheral localization initially to slightly under half showing type III patterns with severe invaginations seen at the highest concentration (Figure 2C). We interpret these results as establishing that because all three of the proteins tested showed they could cause dose-dependent increases in severity of nuclear deformation patterns, they can all be considered to be part of the same process, one needed to properly organize a nuclear periphery compartment within interphase nuclei.

Co-expression of NCH1 or NCH2 With MKAKU41 Showed a Synergistic Effect on Invagination and Nuclear Deformation Phenotypes

The Arabidopsis CRWN1 and KAKU4 have previously been shown to result in increased nuclear deformation and invaginations when co-expressed (Goto et al., 2014). In order to determine whether the maize homologs similarly affect the

FIGURE 1 The maize proteins NCH1, NCH2 and MKAKU41 localize to the nuclear envelope. (A) Confocal imaging of *N. benthamiana* transiently expressing NCH1, NCH2 and MKAKU41 as fluorescent protein fusions (green/magenta) and nuclei labeled with DAPI (blue). Both MKAKU41 and NCH1 show nuclear invaginations (white arrowheads) and labeling at the nuclear envelope (white boxes). NCH2 shows predominantly nuclear peripheral localization. Scale bar denotes 5 μ m. (B) FRAP analysis demonstrates that NCH1 has a larger mobile fraction than NCH2 at the nuclear periphery. $n \ge 30$ nuclei imaged across three experimental replicates.

nuclear organization pathway, we co-expressed MKAKU41 with either NCH1 or NCH2 as presented in **Figure 3**. Upon co-expression, the nuclear invaginations and deformations were substantially enhanced compared to single-expression (**Figure 3A**). Quantifying the most severe phenotype (type III), we observed that NCH1 alone exhibited 7% and MKAKU41 alone exhibited 42%. However, the combination of NCH1 and MKAKU41 exhibited 88% type III, well beyond the combined value of 49%, and thus synergistic for this measurement. Similarly, the NCH2 and MKAKU41 co-expression reached a level of 66% type III nuclei, considerably more than 42% sum of the single-expressed levels. Therefore, NCH proteins appeared to act cooperatively with MKAKU41 to affect nuclear periphery organization as judged by changes in their localization patterns. This cumulative effect on nuclear structure suggests

that NCH1/NCH2 and MKAKU41 may act in the same protein complex. We tested this idea by checking for evidence of interaction between NCH and MKAKU41 in planta using acceptor photobleaching fluorescence resonance energy transfer (apFRET). A significant rise in FRET efficiencies would indicate interactions and such was measured when NCH1 and NCH2 were co-expressed with MKAKU41, compared to a noninteracting control, calnexin (Figure 3C). Internal control FRET efficiency% values were very low, as expected for non-bleached controls (Supplementary Table 1). This demonstrated that NCH1 and NCH2 can interact with MKAKU41, and is consistent with their synergistic effect on levels of nuclear deformations. This observation is similar to that observed for Arabidopsis homologs using yeast two-hybrid system and plant expression (Goto et al., 2014). Importantly, our findings provide evidence from live imaging for in planta interactions between these proteins at the nuclear periphery.

MKAKU41 Overexpression Remodeled Other Inner and Outer Nuclear Membrane Proteins

Both AtKAKU4 and MKAKU41 cause deformation of the NE and disruption of nuclei structure when co-expressed with AtCRWN1 (Goto et al., 2014), NCH1, or NCH2 (Figure 3). To further investigate whether this involves the entire NE,

we asked whether overexpression of MKAKU41 can result in the invagination of other proteins not previously tested but known to localize to either the INM, the ONM, or the ER. For this we used AtSUN2-YFP to mark the INM, ZmMLKP1-GFP to mark the ONM, and calnexin-GFP to mark the ER membrane. **Figure 4** shows that each of these markers showed normal nuclear periphery localization when expressed individually. However, upon co-expression with MKAKU41, all of these proteins appeared in aberrant intranuclear structures. Therefore, the expression of MKAKU41 appears to have caused the internalization of the entire NE, including the calnexin-GFP ER membrane marker, demonstrating that MKAKU41induced nuclei deformations and invaginations are not limited to nucleoplasmic and INM LINC proteins.

Previously, it has been shown that AtSUN1 and AtSUN2 interact with AtCRWN1, mediated by the SUN N-terminus (Graumann, 2014) and that the deletion construct SUN2 Δ Nterm could disrupt SUN-CRWN interactions (Graumann et al., 2010; Graumann, 2014). To investigate more specifically the role of the LINC complex in producing these aberrant nuclear structures, we overexpressed SUN2 Δ Nterm as a way to abrogate CRWN-SUN binding and thereby possibly reduce the interaction of MKAKU41 with the LINC complex. Notably, SUN2-MKAKU41 co-expression resulted in mostly type III nuclei, whereas the SUN2 Δ Nterm-MKAKU41 co-expression led to less deformation, with nuclei showing mostly type II phenotype (**Figure 4A**).

PIGORE 3 (Cobexpression of NCH1 of NCH2 with MKAK041 eminates nuclear invaginations and NCH1 and NCH2 interact with MKAKU41. (A) Confocal images of *N. benthamiana* coexpressing NCH1 or NCH2 with MKAKU41. (B) Quantification of nuclear morphologies for nuclei expressing single MKAKU41, NCH1, NCH2; or co-expression of NCH1 or NCH2 with MKAKU41; classified into types I, II, or III as described in **Figure 2**. Scale bar denotes 5 μ m. (C) The apFRET efficiency (%) demonstrates *in planta* interactions of NCH1 and NCH2 with MKAKU41 in comparison with control (CNX). Solid lines underneath plots denote negative controls, hashed positive control. Key statistical comparisons shown and more fully tabulated in **Supplementary Table 1**. Red line denotes mean, blue standard deviation. One-way ANOVA statistical test performed. **** $p \le 0.0001$. $n \ge 30$ nuclei imaged across three experimental replicates for all experiments described.

Interestingly, nuclear envelope fluorescent labeling of full-length SUN2 appeared lower than that in SUN2 Δ Nterm when coexpressed with MKAKU41 (Figures 4A,B). Signal intensity line profiles drawn over the nuclear invagination (Figure 4A, dashed line) or nuclear envelope (Figure 4A, solid line) regions showed that the SUN2 full length signal was much stronger within the invaginations but lower at the nuclear envelope when compared to those from $SUN2\Delta N$ term fluorescence (Figure 4B). We quantified the effect of co-expressed MKAKU41 on the SUN2's tendency for peripheral staining by determining the percentage of the signal in the interior versus the entire nucleus (sub-periphery/whole nucleus/, Supplementary Figure 2). For instance, if the signal was entirely peripheral, the percentage would be at or near zero. Figure 4C shows an increase in internal fluorescence for SUN2 in the SUN2 - MKAKU41 coexpression compared to SUN2 alone (p < 0.0001). Therefore, full length SUN2 is relocated away from the nuclear periphery when coexpressed with MKAKU41. The relative internal nuclear fluorescence also increased upon SUN2∆Nterm coexpression with MKAKU41 (p < 0.001), but to a lesser extent than for full length SUN2 (p < 0.001). These observations implicate the LINC complex and more specifically the nucleoplasmic N-terminal domain of the NE protein, SUN2, in the formation of aberrant MKAKU41-dependent intranuclear structures.

Impairing Nuclear Actin Anchoring Enhances Nuclear Invaginations

In addition to the SUN2 NE protein which spans the INM and has direct contact with the nucleoplasm, we also examined an ONM maker, MLKS2, and its ARM domain deletion derivative previously shown to be impaired for actin binding (Gumber et al., 2019b). Upon co-expression with MKAKU41, the ONM marker MLKS2 also appeared in intranuclear invagination-like structures as shown in **Figure 5A**. Upon co-expression of MKAKU4 and MLKS2 Δ ARM, nuclear deformations and invaginations were observed (**Figure 5A**) and found to much more severe and abundant (**Figure 5B**) compared to those from co-expression of MKAKU4 and the full length MLKS2. Therefore, the ONM KASH protein MLKS2 is brought moved to intranuclear structures by MKAKU41 co-expression, and loss of the actin-interacting ARM domain exacerbates the situation and implicates cytoplasmic F-actin in NE and nuclear periphery remodeling.

In order to further probe the interaction between peri-nuclear actin and MKAKU41-induced nuclear deformations, we used Latrunculin-B (LatB) to depolymerize the actin cytoskeleton as described previously (McKenna et al., 2019). Figure 5C shows that upon expression of MKAKU41 at a moderate level (O.D. 0.05), LatB depolymerization of the actin cytoskeleton resulted in a statistically significant increase in the number of invaginations ($p \le 0.001$). While this trend existed at lower (O.D. 0.01) and higher transfection concentrations (O.D. 0.10), it was not statistically significant. To further explore the connection between the actin cytoskeleton and MKAKU41 induced nuclear deformations, we examined the interior versus peripheral signal ratios (Supplementary Figure 2) and found that actin depolymerization quantitatively shifted the INM NE marker, LBR, toward increased interior signal (Figure 5D). This same effect was seen and found to be statistically significant for two concentrations of MKAKU41 infiltration (O.D. 0.01) (p = 0.01) and 0.05 (p = 0.05). This demonstrates that at the moderate transfection concentration of (O.D. 0.05), actin depolymerization

FIGURE 4 [MKAKU41-induced nuclear invaginations incorporate other nuclear envelope- and EH-localized proteins. (A) Contocal imaging showing that the outer nuclear Maize membrane markers MLKP1, Arabidopsis nuclear envelope proteins SUN2 and SUN2 Δ Nterm, and the ER membrane marker CNX are incorporated into invaginations when co-expressed with MKAKU41. Next to confocal images are percentages of nuclei which show deformations as classified previously. (B) SUN2 and SUN2 Δ Nterm show different incorporation into MKAKU41 induced nuclear invaginations. Graphs show 4 μ m normalized line profiles over SUN2 or SUN2 Δ Nterm Invaginations (solid white lines) and nuclear membrane (dotted white lines). Locations of line profiles can be seen in confocal micrographs. (C) Ratio of Sub-periphery/whole nuclei fluorescence of SUN2 and SUN2 Δ Nterm when expressed on their own or with MKAKU41. One-way ANOVA statistical test performed; **** $p \le 0.0001$. $n \ge 30$ for each condition.

with LatB increases the internalization of peripheral markers. These findings corroborate those from the MLKS2 ΔARM

experiments in that they implicate F-actin as a possible factor that can provide an opposing force or counterbalance to

nuclei invaginations at different MKAKU41 expression levels with actin depolymerized (LatB). (D) Sub-periphery/whole nuclei fluorescence ratio from nuclei expressing different levels of MKAKU41 (MK, from 0 to 0.1) with and without actin depolymerization (LatB). Nuclei were imaged with the NE marker LBR-GFP. Scale bar denotes 5 μ m. $n \ge 30$ nuclei imaged across three experimental replicates for panels **A** and **B**). For Panels **C** and **D**, one-way ANOVA statistical test performed; ns $p \ge 0.05$, * $p \le 0.05$, * $p \le 0.001$, and **** $p \le 0.001$. $n \ge 60$ across three biological replicates.

nucleoskeletal proteins which can invaginate the NE and create inclusion bodies in a concentration-dependent manner.

Transposon Disruption of the MKAKU41 Gene Co-segregates With Phenotypic Effects on Nuclear Shape and Development

Having seen that overexpression of maize MKAKU41 in a eudicot species resulted in nuclear architecture disruption and severe nuclear envelope misplacement, we wanted to examine the role of this gene in its native genetic background, maize. From the UniformMu transposon mutagenesis project, we found and characterized a Mutator-tagged allele of *MKAKU41*, allowing for a genetic examination of the biological consequences of gene disruption in maize.

The transposon-tagged allele, here designated mkaku41, and its wild-type counterpart, MKAKU41, are shown in Figure 6. The wild-type MKAKU41 gene (Zm00004b040444) from the colorconverted W22 inbred is annotated as being associated with three transcript models. The gene structure for transcript model T01 (Figure 6A) spans 7.9 kb, with 11 exons producing an mRNA with a single large ORF predicted to encode a protein of 579 AA. The transposon insertion site (mu1005806) is located in the 5' UTR (Figure 6B). The transposon insertion allele was characterized by genomic PCR analysis (Figure 6C) using various combinations of primers that were flanking the insertion site, and were gene-specific and *Mutator*-specific (Figure 6A, primers F, T, R). These PCR products were visualized (Figure 6C) and sequenced (Figure 6D) from the W22 wild type progenitor (W22 +) as well as F2 individuals from families segregating for mkaku41 (+ / + , \pm , or -/-), where the "-" symbol denotes the transposon-insertion allele. These PCR primers and PCR gel products were used for plant genotyping in subsequent analyses.

By inspection of the junction sequences between the wildtype reference W22 genome and the transposon (Figure 6D, lower case letters), we identified the 9-bp target site duplication as CTCCTCTC (color coded green in Figure 6). These results confirmed that the transposon was inserted in the 5' UTR at a position 23 bp upstream of the start codon, disrupting the majority of the wild-type 95 bp 5' UTR. The location of this insertion, while not in the protein coding region of the gene, is within the first exon and its location is expected, therefore, to disrupt the expression or transcript structure of the gene. Surprisingly, from transcriptome analysis we found that the gene expression levels for MKAKU41, measured as total normalized reads across the gene model, were similar in libraries made from wildtype and mutant leaf and tassel. We mined the transcript data to investigate the effect of the transposon insertion on the 5' UTR region by searching for the presence of a unique 25 bp 5' UTR sequence located just upstream of the mapped insertion site (Figures 6D,E, "Query sequence" highlighted in yellow). We found a total of 70 matches to our 25 bp query sequence in our transcriptome, which was sequenced at a depth of over 100 M reads per tissue-genotype combination (Figure 6E). All 70 occurrences of the query sequence were from the wildtype libraries except for one, which was on the reverse strand relative

FIGURE 6 Gene structure of wild-type and transposon-tagged alleles of MKAKU41. (A) Gene model of MKAKU41 (transcript model "T01") showing the positions of exons (black boxes), introns (gray), the 5' and 3' UTRs, the transposon-insertion (Mu), transposon-specific Tir6 PCR primers (T arrows), and the Mu-flanking gene-specific PCR primers (F, R arrows). (B) Diagram of the MuDR insertion site within the 95 bp 5' UTR, showing the locations of the 9 bp target site repeat (green, bp 64–72 in the mkaku41-T01 transcript model) and a 25 bp query sequence (yellow) used for transcript analysis. (C) PCR Genotyping for presence or absence of the Mu-tagged allele. The PCR products using various pairings of gene-specific (F, R) or transposon-specific primer pairs (T). Ethidium bromide-stained agarose gel 100 bp size marker (lane M) and single-plant PCR products (other lanes) from W22 + or select mkaku41 F2 siblings to illustrate wildtype (+ / +), heterozygous (±), or mutant (-/-) PCR genotype patterns from the PCR (arrows at right of gel). (D) Sequence of cloned and sequenced amplicons are aligned and show the progenitor W22 (W22 reference) and F2 segregants. The + / + individuals from the transposon mutagenesis stocks were found to be heterozygous for a 2 bp indel (-). The sequences corresponding to a 25 bp query sequence (yellow highlight), the 9 bp insertion site (green highlight), the transposon (lowercase, garnet text), and the start codon (underlined ATG) are indicated. The Mu insertion occured in the allele with the 2 bp deletion and produced a flanking 9 bp target site duplication. (E) Strand-specific transcriptome analysis is summarized for perfect match occurrences of the query sequence in libraries made from wildtype (top) or mutant (bottom) plants. All of the sense transcripts from the mutant allele had an extremely short (~21 bp or less) 5'UTR.

to the gene (**Figure 6E**). These results indicate that the 5' UTR was indeed disrupted in the mutant plants. In addition to this detailed analysis of MKAKU41, some differentially expressed genes (**Supplementary Table 2**) were observed in mutant versus wild-type leaf and meiotic-enriched whole tassel, but gene ontology analysis did not reveal any clear and reproducible enrichments that differed from those of randomized controls.

We next explored the phenotypic consequences of the *mkaku41* transposon insertion on root hair nuclei, stomatal complex, and pollen viability, as summarized in **Figure 7**. The root hair nuclei in W22 + (normal) and *mkaku41* mutant seedlings 5 days after imbibition were imaged and their shapes were analyzed (**Figures 7A–F**). The mutant nuclei were visually and quantitatively more rounded than their wildtype counterparts. The mutant nuclei had an average maximum length of 22 μ m whereas their wild-type counterparts averaged 34 μ m (**Figure 7G**). The mutant nuclei also exhibited a higher circularity index than the wildtype nuclei (**Figure 7H**). Both measures (*n* = 50) were statistically significant as determined using *T*-test, two-tailed with *p* < 0.0001.

Next, we analyzed two above-ground phenotypes, the appearances of stomatal complexes and pollen. In W22 + plants, a normal stomatal complex is composed of two guard cells flanked by two subsidiary cells as shown for W22 + (Figure 7I). In contrast, mutant plants showed irregular stomatal complexes composed of two normal-looking guard cells flanked by one or two extra and irregularly positioned subsidiary cells (arrows, Figures 7J-N). For the pollen phenotypes, we assayed viability and shape (Figures 7O-R). Using the modified Alexander's differential staining method, we found that the percent of viable pollen was dramatically reduced in the mutant, from 84 to 46%. The shape of the pollen was also affected in the mutant, where the average degree of roundness decreased from 0.93 to 0.7. Both measures (n > 1,000 for staining, n = 100 for roundness) were statistically significant as determined using a two-tailed T-test with p < 0.0001.

Taken together, these findings show that the *mkaku41* mutation was associated with multiple phenotypes including root hair nuclear shape, stomatal complex development, and pollen viability. Therefore, MKAKU41 appears to act in some of the same genetic pathways as the NE-associated LINC complex proteins such as SUN and KASH. This genetic data in maize is interesting when considered with our findings that heterologous overexpression phenotypes and actin perturbations (**Figures 1–5**) disrupt nuclear architecture and nuclear envelope organization. Taken together, all of these experiments establish biological roles for MKAKU41, NCH1, and NCH2 as nucleoskeletal proteins that regulate fundamental nuclear processes in cellular structure and function.

DISCUSSION

Regulation of nucleus size and shape is important for many fundamental cellular processes in all eukaryotes. Nuclear architecture is controlled by multiple interactions involving the NE, NE-associated complexes, and the nucleoskeleton. Here, we characterized multiple maize nucleoskeletal proteins, which, like their animal counterparts, controlled nuclear dynamics. An overarching goal motivating this study is to establish the general rules that apply across the plant domain, an evolutionarily vast space. Toward this goal, we have utilized the tobacco transient heterologous expression assay as a powerful and versatile experimental platform for plant nuclear envelope research. In this study and previously, we have established cellular localization, protein-protein interactions, dose-response phenotypes, and live cell imaging that allows for kymographic analysis, mobility via FRAP, and interactions via AP-FRET, all of which have enabled and accelerated our understanding of grass and model crop NE biology (Gumber et al., 2019a,b).

The maize nucleoskeletal proteins examined in this study are NCH1, NCH2 and MKAKU41, each of which has one or more homologs (Figure 1A) in eudicot species (Gumber et al., 2019a) and all of which exhibit nuclear localization and NE enrichment in heterologous expression systems. Interaction data from this (Figure 3C) and prior studies further indicate that these proteins are coupled to the NE via the LINC complex. These findings, together with those from other plant species, point to the broad conservation of plant nucleoskeletal proteins across angiosperms (Goto et al., 2014; Meier et al., 2017; Ciska et al., 2019; Sakamoto, 2020). The functional conservation of these components is evidenced by previously reported cross-species functional rescue (Gumber et al., 2019b) and by the current study where we show that the maize MKAKU41 (Figure 4) interacts with Arabidopsis AtSUN2, causing altered nuclear localization of the Arabidopsis AtSUN2.

Multiple lines of evidence for conservation of plant LINC complexes are also seen at the organismal and phenotypic level. For instance, we (Figure 7) and others found that mutant phenotypes commonly include the rounding up of root hair nuclei, disruption of stomatal complex development, and effects on pollen shape and viability (Dittmer et al., 2007; Goto et al., 2014, 2020; Zhou et al., 2014; Gumber et al., 2019b; Newman-Griffis et al., 2019). The nuclear shape defects in root hairs have become a hallmark of LINC defects in plants, and as such were predicted. However, the stomatal complex and pollen shape phenotypes have not been previously observed for plant mutants of MKAKU4 genes, but they resemble to some extent those of the plant KASH mutant, mlks2 (Gumber et al., 2019b). To gain genetic insight into these nucleoskeletal proteins in the crop species maize, we searched for transposon-disrupted alleles of MKAKU41, NCH1, and NCH2. Of these, we found that the MKAKU41 gene was reported to have a Mutator insertion (McCarty and Meeley, 2009), described here as the first known mutant allele, mkaku41. The insertion site was in the 5'-UTR (Figure 6), a common hot-spot for Mu insertion (Zhang et al., 2020). The transcript abundance was not significantly reduced in the mutants, but the mutant allele produced an extremely truncated 5' UTR of 23 bp or less. Given that the median 5' UTR length in maize was recently determined to be 132 bp (Leppek et al., 2018), such an extremely short 5' UTR in the mkaku41 mutants may abolish or greatly decrease the ability of the cell to utilize the native start codon for translation of the fulllength protein. If the mutant 5' UTR is too short for efficient

FIGURE 7 [Somatic phenotypes of *mkaku41*. DAPI-stained root hair nuclei in W22+ (A–C) and mkaku41 (D–F) seedlings. (G) Longest diameter of W22+ and mkaku41 root hair nuclei (n = 50). (H) Nuclear circularity index measurements using 4π (area/perimeter²), where 1 = perfect circle, of W22 + and mkaku41 root hair nuclei calculated using Fiji. (I) Mature stomatal complex in W22 + DAPI-stained leaf where two central dumbbell-shaped guard cells (GC) are surrounded by two subsidiary cells (SC). (J–N) Representative images of stomatal complexes in *mkaku41* DAPI-stained leaves. Arrows point to extra or irregularly placed subsidiary cells. Scale bars are 10 µm. *****Student's *t*-test two-tailed, p < 0.0001. (O–Q) Differential staining of anthers for testing pollen viability from W22+ (O) and mkaku41 -/- (P,Q) tassels stained with modified Alexander's stain where viable pollen grains appear magenta and aborted pollen grains appear green. (R) Quantification of pollen viability, n > 1000 per genotype. (S) Degree of pollen roundness 4*area/(π *major_axis'2) calculated for W22 + and mkaku41-/- anthers using Fiji. Scale bars are 50 µm. *****Student's *t*-test two-tailed, p < 0.0001.

ribosome assembly and scanning, the next in-frame start codon is considerably farther downstream, which would result in a loss of the first 125 AA. Additionally, the mutant 5'UTR may lack regulatory mRNA sequences in the first \sim 70 bases of the fulllength transcript. Further genetic and experimental analyses with new alleles, gene editing, or application of specific biotic or abiotic stresses will be needed to gain a better understanding of how these plant nucleoskeletal proteins functionally interact with the genomes they help to organize.

The regulation of nuclear morphology and intra-nuclear organization was further explored to gain mechanistic insight, using the tobacco transient expression assay with fluorescently tagged proteins and quantitative microscopic analyses. We used this approach to explore multiple aspects of the remarkable nuclear architecture disruption caused by overexpression of each of the three maize nucleoskeletal proteins examined. The severity of the nuclear disruption and of the NE invaginations was increased by co-overexpression of two components (e.g., MKAKU41 with NCH1 or NCH2), or by increasing the transfecting plasmid concentration, expected to increase their expression levels. These findings (Figure 2) and previous studies from plants and animals reveal that proper nucleoskeleton protein concentration may be a primary determinant for overall nuclear architecture (Goto et al., 2014; Legartová et al., 2014; Jorgens et al., 2017).

In addition to protein abundance, components of the nuclear invaginations were tested for the presence of LINC and ER proteins. Knowing that SUN proteins interact with ONM KASH proteins as part of the core LINC complex, we tested whether the intranuclear foci of MKAKU41-FP reflected protein aggregates of entire NE, checking for colocalization with two types of markers, those in the NE but not the LINC complex or those in the ER membrane. All of these, including multiple ONM markers, colocalized with the aberrant intranuclear structures (Figures 4, 5), demonstrating that these intranuclear structures contain components from both the INM and ONM of the nuclear envelope. These plant nuclei invaginations may contain, therefore, the entire NE proteome as well as NE-associated chromatin that would normally be limited to the nuclear periphery. Such invaginations are known to occur in plants and animals, which can show grooves, deformations, actin, or ER in stable structures seen as deep invaginations (Collings et al., 2000; Schermelleh et al., 2008). Interestingly, the membrane invaginations and deformations caused by MKAKU41 also resemble to some extent animal nuclear deformations associated with Lamin-A mis-expression (Lammerding et al., 2004; Schreiber and Kennedy, 2013; Swift et al., 2013; Legartová et al., 2014).

In our experimental set up, we disrupted the LINC complex at two different connections to investigate the effect of these disruptions on the NE structure. The first, a SUN2 Δ N, severed the LINC-to-nucleoskeleton connection; the second MLKS2 Δ ARM, severed the LINC-to-cytoskeleton connection. It is quite interesting that these two disruptions exhibited contrasting effects on the severity of invaginations. Our domain-deletion analyses showed that perturbation of the LINCto-nucleoskeleton connection *reduced* the severity (**Figure 4A**), whereas preventing the LINC-to-cytoskeleton connection *increased* the severity of invaginations (**Figure 5**). This has important mechanobiological implications for the idea that plant nuclear shape involves a balance of forces between actin-nucleus interactions and nucleoskeletal components. Interestingly, AtKAKU4, arabidopsis KASH proteins WIPs, and NE-associated myosin are all involved in nuclear migration in various cellular processes, such as in pollen-tube growth (Meier et al., 2017; Goto et al., 2020), which also involves changes in actin dynamics.

Moving the nucleus exerts physical stress on the NE and the opposing forces of the LINC components (nucleoskeletal and cytoskeletal) are expected to be, therefore, important for maintaining NE integrity and stability (Enyedi and Niethammer, 2017). The contrasting effects on NE integrity that we observe in this study are an indicator that maize nucleoskeletal components may be functionally associated with just such a tug-of-war process that manifests as regulation of nuclear shape. Multiple lines of evidence are consistent with this idea, including the change to spherical nuclei caused by genetic knockouts of a nuclearenvelope-localized myosin (Tamura et al., 2013) and the rounding up of root hair nuclei caused by the maize mlks2 mutation (Gumber et al., 2019b). Along these lines, our study adds to the growing body of evidence that plants deploy a general mechanism for nuclear shape in which a balance of forces is achieved through LINC-interacting components on both sides of the NE, ensuring its structure and function as a flexible cellular partition. In the current study, we note multiple indications (Figure 5) that support this tug-of-war type arrangement. These ideas align with results from mammalian studies that identify roles for the LINC complex in mediating mechanical crosstalk between the cytoplasm and nucleus (Alam et al., 2016; Jorgens et al., 2017; Agrawal and Lele, 2019; Bouzid et al., 2019; Hieda, 2019).

Previous investigations of CRWN and KAKU4 have focused on chromatin structure and nuclear architecture (Dittmer et al., 2007; Grob et al., 2014; Hu et al., 2019), but our studies indicate that nucleoplasmic disruptions can also affect normal developmental processes, an important finding for crop species. In animals, the interplay between cellular-level structural integrity and genomic responses to environmental and developmental processes is increasingly recognized as a complex process involving lamins as central players (Gerbino et al., 2018). This study advances our knowledge of the plant nucleoskeleton by identifying the components and their roles in regulating fundamental dynamic processes of the plant nuclear envelope.

MATERIALS AND METHODS

Cloning

Maize gene constructs and sequence information for the clones used in this study are listed in **Supplementary Table 3**. NCH1 ORF was custom-synthesized with *Bam*HI and *Sbf*I at the 5' and 3' ends, respectively (Genscript Biotech Corporation, NJ). The *Bam*HI-NCH1-*Sbf*I construct was sub-cloned by restriction cloning into an ECGFP donor vector containing eGFP-FLAG-HA (Gumber et al., 2019a, JCB), to create the eGFP-FLAG-HA-NCH1 entry vector, named NCH1ec. Similarly, the BamHI-NCH2-PstI construct was custom synthesized and sub-cloned into an ECGFP donor vector to create the eGFP-FLAG-HA-NCH2 entry vector, named NCH2ec. For construction of the mKAKU41vector, BamHI-mCherry-FLAG-HA-MKAKU41-BamH1 was synthesized by Genscript and cloned in pUC18 at the BamHI restriction site. From this cloning vector, the mCherry-FLAG-HA-MKAKU41 construct was amplified using KAKUattF (5'gene GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGGTTA GCAAGGGAGAAGAGG-3') **KAKUattR** (5' and GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACGTAG CCCGTCCCCGT-3') primers and inserted into pDONR221 vector by BP cloning (Invitrogen), to generate the MKAKU41 entry clone, named MKAKU41ec. For the generation of plant expression vectors, the fluorescent fusion protein constructs from these three entry clones were then transferred individually to the destination vector pH7WG2 (Karimi et al., 2002) by Gate LR recombination (Invitrogen).

For production of the p35S:SP-mCherry-GFP-HDEL positive control for apFRET, mCherry was PCR amplified with Q5 polymerase (NEB) using primers JM403 (5'-GGGGACAAGTTTGTACAAAAAGCAGGCTACAATGAAA GCCTTCACACTCGCTCTTCTTAGCTCTTTCCCTCTATC TCCTGCCCAATCCAGCCATGGTGAGCAAGGGCGAGGAG G-3') and JM404 (5'-acctccactgccaccCTTGTACAGCTCGTCC ATGCCG-3'). The primers included both the Gateway cloning attB1 site and secretion signal at the 5' end, and a 15nt overhang for Gibson assembly at the 3' end, which contained a GGSGG amino acid linker between mCherry and GFP upon fusion. GFP was amplified using primers JM367 (5'GGGGACCACTTTGTACAAGAAAGCTGGGTGtcataattcat catGCTTGTACAGCTCGTCCATGCCGAGAG-3') and JM405 (5'GTACAAGggtggcagtggaggtATGGTGAGCAAGGGCGAGGA GC-3') which contained the GGSGG linker at the 5' end, and the HDEL ER retention motif, an attB2 site, and a stop codon at the 3' end. These two products were fused together using the NEB HIFI Gibson assembly enzyme mix and incubated at 50°C for 1 h. A Gateway BP reaction into pDONR221 and subsequent LR reaction into pB7FWG2 was then performed to produce the final vector. All steps confirmed by colony PCR and sequencing.

Agrobacterium Transformation

Constructs were transformed into A. tumefaciens GV3101. Transformation was performed by incubating plasmid DNA and chemically competent agrobacterium on ice for 30 min, followed by 5 min cold shock in liquid nitrogen, then 5 min heat shock at 37°C in a rotating incubator. After heat shock, 200 μ L LB media was added and cells incubated at 28°C for 2 h. Cells were then plated in LB plates containing Spectinomycin (50 μ g/mL), Gentamycin (10 μ g/mL) and Rifampicin (25 μ g/mL) and incubated for 2 days at 28°C. Individual colonies were then picked, grown O/N and transformed into *N. benthamiana*.

Plant Growth Conditions

Nicotiana benthamiana plants were grown in 16:8 h light:dark cycle in a greenhouse maintained at 21°C. Infiltrated plants were 5–6 weeks old.

Live Cell Imaging

Fluorescently tagged proteins of interest were transiently transformed into N. benthamiana as described previously (Sparkes et al., 2006). Protein expression constructs first reported here are p35S:NCH1-GFP, p35S:NCH2-GFP and p35S:MKAKU41-mCherry. All other markers have been previously published: p35S:GFP-CNX (Irons et al., 2003), p35S:LBR-GFP (Irons et al., 2003), p35S:MLKP1-GFP (Gumber et al., 2019a), p35S:YFP-AtSUN2 (Graumann et al., 2010), p35S:YFP-AtSUN2∆Nterm (Graumann et al., 2010), p35S:MLKS2-GFP and p35S:MLKS2ARM-GFP (Gumber et al., 2019b). An agrobacterium culture of OD 0.1 was used in all conditions unless otherwise stated and cells were imaged 3 days after transformation. The GFP/mCherry combinations were imaged using a Zeiss LSM 800 confocal microscope with line switching, 488 nm and 561 nm excitation, and 500-550 nm and 565-620 nm emissions, collected for GFP and mCherry respectively. For GFP/YFP and YFP/mCherry imaging, a Zeiss LSM 880 was used with frame switching. For GFP/YFP imaging, 488 and 514 nm excitation was used with emission collected between 500-550 and 525-560 for GFP and YFP respectively. For YFP/mCherry imaging, 514 and 561 nm excitation was used, and emission collected between 517-560 nm and 561-624 nm respectively. An image size of 512 \times 512 pixels with a scan zoom of 4 and a 63×1.4 NA lens was used for all imaging described above. All combinations were performed with three independent experimental repeats; representative images are shown. For Fluorescence recovery after photobleaching (FRAP) a 100 \times 1.4NA lens was used with a 4 μm ROI in the center of the image, encompassing the nucleus. Five scans were taken pre-bleach and then the 488 nm laser bleached the ROI by using 100% transmission for 20 iterations. Recovery Images were then collected for 1 min to monitor recovery. Data was normalized and FRAP curves produced as described previously (Martiniere et al., 2012).

For acceptor photobleaching förster resonance energy transfer (apFRET) a 100 \times 1.4NA lens was used with a 4 μ m ROI in the center of the image, encompassing the nucleus. Five scans were performed with both GFP and mCherry emission/excitation, and then the mCherry construct was bleached in the ROI by the 561 nm laser at 100% transmission for 20 iterations. Following this, five post-bleach scans were taken. Data was normalized and apFRET efficiency (%) calculated as previously (Graumann et al., 2010; Graumann, 2014; Pawar et al., 2016). A minimum of 30 nuclei per condition were used for apFRET across three experimental repeats. A one-way ANOVA was performed to determine statistically significant differences between samples. For Latrunculin-B (LatB) treatment for depolymerization of the actin cytoskeleton, samples were incubated with 25 µM LatB for 1 h, as this has previously been shown to depolymerize the actin cytoskeleton sufficiently (McKenna et al., 2019). Graphs were generated with graphpad as described in the figure legends. Statistical tests were performed in Graphpad Prism and are either ANOVA or Students T-test depending on the suitability to the dataset and as specified in the figure legends. For all data sets, ns $p \ge 0.05, *p \le 0.05, **p \le 0.01, *p \le 0.001$ and $**p \le 0.0001$.

Maize Plant Material and Genotyping

The wild-type W22 used in this study is a color-converted W22 line obtained from Hugo Dooner (Waksman Inst., Rutgers, NJ, United States) derived by Brink (1956). The UF-Mu-00395 seed stock was obtained from the Maize Genetics Cooperation Stock Center¹. The plants were grown at the Florida State University Mission Road Research Facility (Tallahassee, FL, United States) during summer 2017 and 2018, and propagated by out- crossing to W22. In the fall of 2018, the progeny seeds were grown in the greenhouse in the King Life Sciences Building (Biological Science Dept, Florida State University, Tallahassee, FL, United States). The segregating plants were self-crossed to obtain mutant plants from among the progeny.

DNA was isolated from 4-week old seedlings as described previously in Gumber et al. (2019b). PCR genotyping was carried out using a combination of genespecific forward (F, 5'-CCCGTGAAGCCGAAGGCAGA-3') 5'-CGCCTCACGCTCACGCTCAC-3') and reverse (R, primers, transposon-specific Tir6 primer (5' or AGAGAAGCCAACGCCAWCGCCTCYATTTCGTC-3') in combination with F or R primer. The PCR products were resolved by agarose gel electrophoresis and cloned in pCRTM4Blunt-TOPO Vector (Invitrogen cat # K2875-20) by TA cloning. The clones were sequenced and the insert sequences were verified using M13F and M13R vector primers at the Molecular Cloning Facility, Department of Biological Sciences, Florida State University. The sequences were aligned with the W22v2 reference genome to validate the transposon insertion site.

Microscopy in Maize

Maize root hair imaging was carried out as described in Gumber et al. (2019b). Briefly, roots were harvested from 5-day old seedlings and fixed for 1 h in Buffer A (Howe et al., 2013) supplemented with 4% paraformaldehyde. Small sections of root tissue containing root hair were stained with 3 μ g/mL DAPI for 20 min at room temperature, mounted with VECTASHIELD, and imaged on an EVOS fluorescence microscope (Thermo Fisher Scientific). The images were processed using the Analyze Particle function of ImageJ to measure the longest diameter and circularity of the nuclei.

For stomatal complex imaging, plants were grown in the greenhouse and the 4th leaf was harvested at its first appearance. The harvested leaf was fixed in Buffer A with 4% paraformaldehyde for an hour at room temperature with rotation. The tissue was rinsed thrice with and stored in Buffer A at 4C, until further use. The leaf tissue was placed on a glass slide, chopped into small pieces and stained with 3 μ g/mL DAPI for 20 min at room temperature, mounted with VECTASHIELD, and imaged on an EVOS fluorescence microscope (Thermo Fisher Scientific).

Pollen grain staining was carried out as previously described in Gumber et al. (2019b). Briefly, male flowers were harvested before dehiscence and fixed in Carnoy's fixative (6 alcohol:3 chloroform:1 acetic acid) for a minimum of 2 h at room temperature. Anthers were extruded from flowers with the help of a micro scalpel and forceps on a glass slide. Staining was carried out with modified Alexander's stain containing Malachite green (0.01%), Acid Fuchsin (0.05%) and Orange G (0.005%) as described to differentiate viable (magenta) pollen grains from aborted (green) pollen grains. Bright field images of the pollen grains were collected on Revolve microscope (Echo Labs). At least 300 pollen grains each from 3 plants of every genotype were counted to calculate pollen viability. Pollen roundness was carried out using Fiji.

RNA Isolation and Library Preparation

Segregating wildtype and mutant mkaku41 plants were grown in the greenhouse. From 2 week-old plants, fourth leaves were harvested and from 6 to 8 week old plants, mid-prophase meiotic-staged male flowers were harvested. The tissues were immediately stored in liquid nitrogen. RNA was isolated from three biological replicates for each genotype using Qiagen RNeasy Plant mini kit per manufacturer's instructions. Integrity of the RNA was tested using the Bioanalyzer (Agilent) system. For library preparation, sample input was 400 ng total RNA (determined by Qubit RNA HS reagents, Thermo) with RIN > 7(Bioanalyzer RNA Nano, Agilent). Libraries were prepared with the Biomek 400 Automated Workstation (Beckman Coulter), using the NEBNEXT Ultra II RNA Library Prep kit for Illumina (New England Biolabs) according to manufacturer's instructions, with an RNA fragmentation time of 15 min, a 1/10th dilution of NEB adaptor and 11 cycles of PCR amplification with dualindexing primers. Amplified libraries were initially quantified by Qubit DNA HS reagents, checked for size and artifacts using Bioanalyzer DNA HS reagents, and KAPA qPCR (KAPA Biosystems) was used to determine molar quantities of each library. Individual libraries were diluted and pooled equimolar, and the pool was again checked by Bioanalyzer and KAPA qPCR before submission for sequencing.

RNA Sequencing and Data Analysis

RNA-seq libraries were sequenced on a Novaseq 6000 at the Translational Science Lab, College of Medicine, Florida State University. Approximately 40 million single-end 100 base reads were obtained for each biological replicate in this experiment and are available from NCBI sequence read archive project, accession number PRJNA675860. Contaminating 3' adapter sequences were trimmed from the demultiplexed raw reads using cutadapt version 1.16. Raw and trimmed reads were subjected to quality control testing with fastqc. Trimmed reads were aligned to the W22 genome assembly "Zm-W22-REFERENCE-NRGENE-2.0" using the splice-aware aligner hisat2. Briefly, Hisat2 indices were constructed from known exons, and splice sites extracted from the W22 genome annotation (Zm00004b) and the reference genome assembly (Zm-W22-REFERENCE-NRGENE-2.0.fasta). Trimmed reads were then aligned to the resulting splice-aware hisat2 index using the following optional arguments: -rnastrandness R, -dta-cufflinks, -summary-file. Predicted novel transcripts were assembled and merged across replicates and samples using stringtie2 in "conservative" mode. Per-transcript coverage tables were prepared by stringtie2 in "ballgown" format. Resulting coverage tables were converted into count tables

¹http://maizecoop.cropsci.uiuc.edu/

suitable for differential expression analysis by DEseq2 in R using the tximport package. Differential expression analysis was performed separately for each tissue group, i.e (leaf mutant vs. WT and tassel mutant vs. WT). Briefly, genes with fewer than 10 counts across all replicates were discarded and DEseq2 results were generated for both tissue groups such that log2(fold-change) estimates were reported for (mutant/WT) ratios. Statistically significant differentially expressed (adjusted *p*-value < 0.05) genes were subsequently extracted from each of the resulting DEseq2 tables for further analysis (**Supplementary Table 2**).

DATA AVAILABILITY STATEMENT

The original sequence data used in this study are publicly available from NCBI accession PRJNA675860.

AUTHOR CONTRIBUTIONS

The expression plasmids made by HG and HB and used by JM and KG for cytological analysis. The tobacco transient expression microscopy data was produced and images collected by JM with image analysis by JM and KG. The maize mutant analysis, PCR genotyping, all cloning, and RNA isolation was done by HG, the maize phenotyping was done by AJ, AK, HG, and HB. The transcriptome analysis and SRA curation were done by ZT and HB. The experiments were designed, interpreted, and written about by JM, HG, ZT, KG, and HB. All the authors have read and approved the manuscript.

FUNDING

This work was performed as part of the Cost action # CA16212 'INDEPTH' whose members are appreciated for their fruitful discussions. This work was supported in part by a grant to HB from the National Science Foundation (NSF IOS 1444532).

ACKNOWLEDGMENTS

We would like to acknowledge the Bioimaging unit at Oxford Brookes for access to the confocal microscopes.

REFERENCES

- Agrawal, A., and Lele, T. P. (2019). Mechanics of nuclear membranes. J. Cell Sci. 132:jcs229245. doi: 10.1242/jcs.229245
- Alam, S. G., Zhang, Q., Prasad, N., Li, Y., Chamala, S., Kuchibhotls, L., et al. (2016). The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity. *Sci. Rep.* 6: 38063.
- Bouzid, T., Kim, E., Riehl, B. D., Esfahani, A. M., Rosenbohm, J., Yang, R., et al. (2019). The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. *J. Biol. Eng.* 13:68.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2021. 645218/full#supplementary-material

Supplementary Figure 1 | The Maize NCH1 and NCH2 proteins co-localize with their Arabidopsis homolog CRWN1. (A) Confocal live cell imaging of cells co-expressing either NCH1 or NCH2 with Arabidopsis CRWN1 shows colocalization. (B) Plot of raw FRAP intensity values over time for two representative FRAP experiments: one for NCH1 (black) and one for NCH2 (red). (C) Normalized intensity data plotted for all NCH1 FRAP curves. Blue points show individual data points, black lines show FRAP curve fits for each nucleus, and red lines show global FRAP curves produced from all datasets (As shown in Figure 1). (D) Same as panel C except for NCH2. (E) Box plots of FRAP recovery plateau values for NCH1 and NCH2. (F) Box plots of FRAP recovery half-time values for NCH1 and NCH2. For panels E and F, the individual data points from single FRAP recovery curves (black dots), the mean (red line), standard deviations (blue lines), and statistical significance (asterisks) are indicated. Students T-test performed in **E** and **F**, $**p \le 0.01$, $**p \le 0.0001$. Mean and standard deviation values are tabulated below the plots. n > 30 nuclei imaged across three experimental repeats.

Supplementary Figure 2 | Description of Sub-periphery/whole nuclei fluorescence ratio measurement. Diagram describing how the sub-periphery over whole nuclei measurement was determined using image J. Two regions of interest (ROIs) were generated, one encompassing the whole nuclei and one only sub-periphery nuclear fluorescence (yellow ROIs with hashed boundaries). The sub-periphery fluorescence value was then divided by the whole nuclei fluorescence value in order to obtain the ratio. If the majority of fluorescence is located at the periphery/nuclear envelope, this would result in a low ratio, conversely if most fluorescence was internal, this would result in a higher ratio.

Supplementary Figure 3 | Multiple Seq Alignment of Transcripts. (A) The 5' UTR region and a small portion of the CDS are diagrammed as shown in Figure 5, and reversed (bottom configuration) as aligned in the multiple sequence alignment. (B) The multiple sequence alignment displays all of the RNA-seq reads with a perfect match to the 25 bp query sequence (yellow) using grep of the fastq files. All matches were converted to FASTA sequences for multiple sequence alignment. The reference genome sequence is shown at top for comparison. The sequence identifiers start with single characters for tissue ("L" for leaf; "T" for tassel), genotype ("1" for vildtype, "2" for mkaku41 homozygous mutant), or bioreplicate ("A," "B," or "C" for bioreplicate 1, 2, or 3, respectively), followed by unique identifier from Illumina sequence read name. The strandedness is indicated relative to the gene model, with all antisense RNAs indicated (ANTISENSE, red text).

Supplementary Table 1 | Values for apFRET efficiency with Internal controls and multiple comparisons of all treatments. (A) All apFRET efficiency% values for data presented in Figure 3C including internal control values. (B) Tukey multiple comparison one way Anova dataset from all apFRET data presented, including that presented in Figure 3C.

Supplementary Table 2 | Differentially expressed genes between *mkaku41* mutant versus wildtype plants for maize leaf and tassel.

Supplementary Table 3 | Plasmid information and Addgene IDs.

- Brink, R. A. (1956). A genetic change associated with the R locus in maize which is directed and potentially reversible. *Genetics* 41, 872–889. doi: 10.1093/genetics/ 41.6.872
- Chang, W., Worman, H. J., and Gundersen, G. G. (2015). Accessorizing and anchoring the LINC complex for multifunctionality. J. Cell Biol. 208, 11–22. doi: 10.1083/jcb.201409047
- Choi, J., Strickler, S. R., and Richards, E. J. (2019). Loss of CRWN nuclear proteins induces cell death and salicylic acid defense signaling. *Plant Physiol.* 179, 1315–1329. doi: 10.1104/pp.18.01020
- Ciska, M., and Moreno Dí-az de la Espina, S. (2014). The intriguing plant nuclear lamina. *Front. Plant Sci.* 5:166.

- Ciska, M., Hikida, R., Masuda, K., and Moreno Díaz de la Espina, S. (2019). Evolutionary history and structure of nuclear matrix constituent proteins, the plant analogues of lamins. *J. Exp. Bot.* 70, 2651–2664. doi: 10.1093/jxb/erz102
- Collings, D. A., Carter, C. N., Rink, J. C., Scott, A. C., Wyatt, S. E., Allen, N. S., et al. (2000). Plant nuclei can contain extensive grooves and invaginations. *Plant Cell* 12, 2425–2440. doi: 10.2307/3871239
- Crisp, M., Liu, Q., Roux, K., Rattner, J. B., Shanahan, C., Burke, B., et al. (2006). Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53. doi: 10.1083/jcb.200509124
- De Magistris, P., and Antonin, W. (2018). The dynamic nature of the nuclear envelope. *Curr. Biol.* 28, R487–R497.
- Dittmer, T. A., Stacey, N. J., Sugimoto-Shirasu, K., and Richards, E. J. (2007). Little nuclei genes affecting nuclear morphology in *Arabidopsis thaliana*. *Plant Cell* 19, 2793–2803. doi: 10.1105/tpc.107.053231
- Enyedi, B., and Niethammer, P. (2017). Nuclear membrane stretch and its role in mechanotransduction. *Nucleus* 8, 156–161. doi: 10.1080/19491034.2016. 1263411
- Evans, D. E., and Graumann, K. (2018). The Linker of Nucleoskeleton and Cytoskeleton Complex In Higher Plants. Hoboken, NJ: John Wiley.
- Gerbino, A., Procino, G., Svelto, M., and Carmosino, M. (2018). Role of lamin A/C gene mutations in the signaling defects leading to cardiomyopathies. *Front. Physiol.* 9:1356.
- Goto, C., Tamura, K., Fukao, Y., Shimada, T., and Hara-Nishimura, I. (2014). The novel nuclear envelope protein KAKU4 modulates nuclear morphology in *Arabidopsis. Plant Cell* 26, 2143–2155. doi: 10.1105/tpc.113.122168
- Goto, C., Tamura, K., Nishimaki, S., Maruyama, D., and Hara-Nishimura, I. (2020). The nuclear envelope protein KAKU4 determines the migration order of the vegetative nucleus and sperm cells in pollen tubes. *J. Exp. Bot.* 71, 6273–6281. doi: 10.1093/jxb/eraa367
- Graumann, K. (2014). Evidence for LINC1-SUN Associations at the plant nuclear periphery. *PLoS One* 9:e93406. doi: 10.1371/journal.pone.0093406
- Graumann, K., and Evans, D. E. (2017). "The nuclear envelope structure and protein interactions," in *Annual Plant Reviews Online*, ed. J. A. Roberts, (Chichester: John Wiley & Sons, Ltd), 19–56. doi: 10.1002/9781118472507.ch2
- Graumann, K., Runions, J., and Evans, D. E. (2010). Characterization of SUNdomain proteins at the higher plant nuclear envelope. *Plant J.* 61, 134–144. doi: 10.1111/j.1365-313x.2009.04038.x
- Grob, S., Schmid, M. W., and Grossniklaus, U. (2014). Hi-C analysis in arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of drosophila. *Mol. Cell* 55, 678–693. doi: 10.1016/j.molcel.2014.07.009
- Gumber, H. K., McKenna, J. F., Estrada, A. L., Jalovec, A. M., Kartick, A. C., and Graumann, K. (2019a). Identification and characterization of genes encoding the nuclear envelope LINC complex in the monocot species *Zea mays. J. Cell Sci.* 132:jcs221390. doi: 10.1242/jcs.221390
- Gumber, H. K., McKenna, J. F., Tolmie, A. F., Jalovec, A. M., Kartick, A. C., and Graumann, K. (2019b). MLKS2 is an ARM domain and F-actin-associated KASH protein that functions in stomatal complex development and meiotic chromosome segregation. *Nucleus* 10, 144–166. doi: 10.1080/19491034.2019. 1629795
- Guo, T., Mao, X., Zhang, H., Zhang, Y., Fu, M., and Sun, Z. (2017). Lamin-like proteins negatively regulate plant immunity through NAC with transmembrane motif1-like9 and nonexpressor of PR genes1 in *Arabidopsis thaliana*. *Mol. Plant* 10, 1334–1348. doi: 10.1016/j.molp.2017.09.008
- Hagan, I., and Yanagida, M. (1995). The product of the spindle formation gene sadl+associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol. 129, 1033–1047. doi: 10.1083/jcb.129.4.1033
- Haque, F., Lloyd, D. J., Smallwood, D. T., Dent, C. L., Shanahan, C. M., and Fry, A. M. (2006). SUN1 interacts with nuclear lamin a and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. *Mol. Cell Biol.* 26, 3738–3751. doi: 10.1128/mcb.26.10.3738-3751.2006
- Hetzer, M. W. (2010). The nuclear envelope. Cold Spring Harb. Perspect. Biol. 2, a000539–a000539.
- Hieda, M. (2019). Signal Transduction across the nuclear envelope: role of the LINC complex in bidirectional signaling. *Cells* 8:124. doi: 10.3390/cells802 0124
- Howe, E. S., Murphy, S. P., and Bass, H. W. (2013). "Three-dimensional acrylamide fluorescence in situ hybridization for plant cells," in *Plant Meiosis: Methods and Protocols*, eds W. P. Pawlowski, M. Grelon, and S.

Armstrong, (Totowa, NJ: Humana Press), 53-66. doi: 10.1007/978-1-62703-333-6_6

- Hu, B., Wang, N., Bi, X., Karaaslan, E. S., Weber, A. L., and Zhu, W. (2019). Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. *Genome Biol.* 20:87.
- Irons, S. L., Evans, D. E., and Brandizzi, F. (2003). The first 238 amino acids of the human lamin B receptor are targeted to the nuclear envelope in plants. *J. Exp. Bot.* 54, 943–950. doi: 10.1093/jxb/erg102
- Janin, A., Bauer, D., Ratti, F., Millat, G., and Mejat, A. (2017). Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. *Orphanet J. Rare Dis.* 12:147.
- Jorgens, D. M., Inman, J. L., Wojcik, M., Robertson, C., Palsdottir, H., and Tsai, W. T. (2017). Deep nuclear invaginations are linked to cytoskeletal filaments – integrated bioimaging of epithelial cells in 3D culture. *J. Cell Sci.* 130, 177–189. doi: 10.1242/jcs.190967
- Karimi, M., Inzé, D., and Depicker, A. (2002). Gatewaytm vectors for agrobacterium-mediated plant transformation. *Trends Plant Sci.* 7, 193–195. doi: 10.1016/s1360-1385(02)02251-3
- Kim, D. I., Kc, B., and Roux, K. J. (2015). Making the linc: sun and kash protein interactions. *Biol. Chem.* 396, 295–310. doi: 10.1515/hsz-2014-0267
- Lammerding, J., Schulze, P. C., Takahashi, T., Kozlov, S., Sullivan, T., and Kamm, R. D. (2004). Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378. doi: 10.1172/jci200419670
- Legartová, S., Stixová, L., Laur, O., Kozubek, S., Sehnalova, P., and Bartova, E. (2014). Nuclear structures surrounding internal lamin invaginations: morphology of internal lamins. J. Cell. Biochem. 115, 476–487. doi: 10.1002/ jcb.24681
- Leppek, K., Das, R., and Barna, M. (2018). Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. *Nat. Rev. Mol. Cell Biol.* 19, 158–174. doi: 10.1038/nrm.2017.103
- Luxton, G. G., and Starr, D. A. (2014). KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus. *Curr. Opin. Cell Biol.* 28, 69–75. doi: 10.1016/j.ceb.2014.03.002
- Malone, C. J., Fixsen, W. D., Horvitz, H. R., and Han, M. (1999). UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. *Dev. Camb. Engl.* 126, 3171–3181.
- Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., and Luu, D. T. (2012). Cell wall constrains lateral diffusion of plant plasma-membrane proteins. *Proc. Natl. Acad. Sci. U.S.A.* 109, 12805–12810. doi: 10.1073/pnas. 1202040109
- Masuda, K., Xu, Z. J., Takahashi, S., Ono, M., Nomura, K., and Inoue, M. (1997). Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long alpha-helical domain. *Exp. Cell Res.* 232, 173–181. doi: 10. 1006/excr.1997.3531
- McCarty, D. R., and Meeley, R. B. (2009). "Transposon resources for forward and reverse genetics in maize," in *Handbook of Maize*, eds J. L. Bennetzen, and S. Hake, (New York, NY: Springer), 561–584. doi: 10.1007/978-0-387-77863-1_28
- McKenna, J. F., Rolfe, D. J., Webb, S. E. D., Tolmie, A. F., Botchway, S. W., and Martin-Fernandez, M. L. (2019). The cell wall regulates dynamics and size of plasma-membrane nanodomains in *Arabidopsis. Proc. Natl. Acad. Sci. U.S.A.* 116, 12857–12862. doi: 10.1073/pnas.1819077116
- Meier, I., Richards, E. J., and Evans, D. E. (2017). Cell biology of the plant nucleus. Annu. Rev. Plant Biol. 68, 139–172. doi: 10.1146/annurev-arplant-042916-041115
- Murphy, S. P., Simmons, C. R., and Bass, H. W. (2010). Structure and expression of the maize (*Zea mays* L.). SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants. *BMC Plant Biol.* 10:269. doi: 10.1186/1471-2229-10-269
- Newman-Griffis, A. H., del Cerro, P., Charpentier, M., and Meier, I. (2019). Medicago LINC complexes function in nuclear morphology, nuclear movement, and root nodule symbiosis. *Plant Physiol.* 179, 491–506. doi: 10.1104/pp.18.01111
- Pawar, V., Poulet, A., Détourné, G., Tatout, C., Vanrobays, E., and Evans, D. E. (2016). A novel family of plant nuclear envelope-associated proteins. J. Exp. Bot. 67, 5699–5710.
- Pradillo, M., Evans, D., and Graumann, K. (2019). The nuclear envelope in higher plant mitosis and meiosis. *Nucleus* 10, 55–66. doi: 10.1080/19491034.2019. 1587277

- Rothballer, A., and Kutay, U. (2013). The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. *Chromosoma* 122, 415–429. doi: 10.1007/s00412-013-0417-x
- Sakamoto, Y. (2020). Nuclear lamina CRWN proteins regulate chromatin organization, gene expression, and nuclear body formation in plants. J. Plant Res. 133, 457–462. doi: 10.1007/s10265-020-01184-1
- Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., and Kner, P. (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. *Science* 320, 1332–1336. doi: 10.1126/ science.1156947
- Schreiber, K. H., and Kennedy, B. K. (2013). When lamins go bad: nuclear structure and disease. *Cell* 152, 1365–1375. doi: 10.1016/j.cell.2013.02.015
- Sparkes, I. A., Runions, J., Kearns, A., and Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. *Nat. Protoc.* 1, 2019–2025. doi: 10.1038/nprot.2006. 286
- Starr, D. A. (2002). Role of ANC-1 in tethering nuclei to the actin cytoskeleton. *Science* 298, 406–409. doi: 10.1126/science.1075119
- Starr, D. A. (2019). A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout *Caenorhabditis elegans* development. *Exp. Biol. Med.* 244, 1323–1332. doi: 10.1177/1535370219871965
- Starr, D. A., and Fridolfsson, H. N. (2010). Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. *Annu. Rev. Cell Dev. Biol.* 26, 421–444. doi: 10.1146/annurev-cellbio-100109-104037
- Swift, J., Ivanovska, I. L., Buxboim, A., Harada, T., Dingal, P. C., and Pinter, J. (2013). Nuclear lamin-a scales with tissue stiffness and enhances matrixdirected differentiation. *Science* 341, 1240104–1240104. doi: 10.1126/science. 1240104
- Tamura, K., Goto, C., and Hara-Nishimura, I. (2015). Recent advances in understanding plant nuclear envelope proteins involved in nuclear morphology. J. Exp. Bot. 66, 1641–1647. doi: 10.1093/jxb/erv036

- Tamura, K., Iwabuchi, K., Fukao, Y., Kondo, M., Okamoto, K., and Ueda, H. (2013). Myosin XI-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in *Arabidopsis. Curr. Biol.* 23, 1776–1781. doi: 10.1016/j.cub.2013.07.035
- Wang, H., Dittmer, T. A., and Richards, E. J. (2013). Arabidopsis crowded nuclei (crwn). proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol. 13:200. doi: 10.1186/1471-2229-13-200
- Zhang, X., Zhao, M., McCarty, D. R., and Lisch, D. (2020). Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes. *Nucleic Acids Res.* 48, 6685–6698. doi: 10.1093/nar/ gkaa370
- Zhao, W., Guan, C., Feng, J., Liang, Y., Zhan, N., and Zuo, J. (2016). The Arabidopsis crowded nuclei genes regulate seed germination by modulating degradation of ABI5 protein: CRWNs regulate seed germination. J. Integr. Plant Biol. 58, 669–678. doi: 10.1111/jipb.12448
- Zhou, X., Graumann, K., Wirthmueller, L., Jones, J. D., and Meier, I. (2014). Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants. *J. Cell Biol.* 205, 677–692. doi: 10.1083/jcb. 201401138

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 McKenna, Gumber, Turpin, Jalovec, Kartick, Graumann and Bass. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Figure S1 (McKenna, Gumber, et al., *FiPS*, 2021)

Figure S3 (McKenna, Gumber, et al., FiPS, 2021)

Supp Table S1: Values for apFRET efficiency with Internal controls and multiple comparisons of all treatments.												
												mCherry
				NCH1 &				NCH2 &		CNX &	mCherry	-GFP
	NCH1	NCH1 & CNX	NCH1 &	KAKU41	NCH2	NCH2 & CNX	NCH2 &	KAKU41	CNX &	KAKU41	-GFP	-HDEL
A)	& CNX	IC	KAKU41	IC	& CNX	IC	KAKU41	IC	KAKU41	IC	-HDEL	IC
Number of values	30	30	30	30	30	30	33	33	30	30	30	30
Mean FRET Efficiency (%)	1.4	-0.67	10	-0.94	3.3	-0.86	11	-0.76	6.6	-2.1	19	-0.9
Std. Deviation	3.7	0.53	2.4	0.3	2.7	0.4	3	0.35	4.6	0.63	6.8	1.3
Std. Error of Mean	0.67	0.097	0.43	0.055	0.5	0.074	0.53	0.061	0.84	0.11	1.2	0.23

<u>B)</u>					
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Below threshold?	Summary	Adjusted P Value
NCH1 & CNX vs. NCH1 & CNX IC	2.073	-0.4343 to 4.580	No	ns	0.2208
NCH1 & CNX vs. NCH1 & KAKU41	-8.939	-11.45 to -6.432	Yes	****	<0.0001
NCH1 & CNX vs. NCH1 & KAKU41 IC	2.343	-0.1640 to 4.850	No	ns	0.0925
NCH1 & CNX vs. NCH2 & CNX	-1.874	-4.381 to 0.6331	No	ns	0.3694
NCH1 & CNX vs. NCH2 & CNX IC	2.263	-0.2439 to 4.770	No	ns	0.122
NCH1 & CNX vs. NCH2 & KAKU41	-9.607	-12.06 to -7.158	Yes	****	<0.0001
NCH1 & CNX vs. NCH2 & KAKU41 IC	2.163	-0.2862 to 4.612	No	ns	0.1434
NCH1 & CNX vs. CNX & KAKU41	-5.199	-7.706 to -2.692	Yes	****	<0.0001
NCH1 & CNX vs. CNX & KAKU41 IC	3.473	0.9662 to 5.980	Yes	***	0.0004
NCH1 & CNX vs. mCherry -GFP -HDEL	-17.14	-19.65 to -14.64	Yes	••••	<0.0001
NCH1 & CNX VS. MCherry -GFP -HDELIC	2.303	-0.2041 to 4.810	NO	ns ****	<0.0001
NCH1 & CNX IC vs. NCH1 & KAKU41 IC	0 2703	-2 237 to 2 777	No	ns	>0.0001
NCH1 & CNX IC vs. NCH2 & CNX	-3.946	-6.453 to -1.440	Yes	****	<0.0001
NCH1 & CNX IC vs. NCH2 & CNX IC	0.1905	-2.316 to 2.697	No	ns	>0.9999
NCH1 & CNX IC vs. NCH2 & KAKU41	-11.68	-14.13 to -9.230	Yes	****	<0.0001
NCH1 & CNX IC vs. NCH2 & KAKU41 IC	0.09053	-2.359 to 2.540	No	ns	>0.9999
NCH1 & CNX IC vs. CNX & KAKU41	-7.272	-9.779 to -4.765	Yes	****	<0.0001
NCH1 & CNX IC vs. CNX & KAKU41 IC	1.401	-1.106 to 3.907	No	ns	0.7958
NCH1 & CNX IC vs. mCherry -GFP -HDEL	-19.22	-21.72 to -16.71	Yes	****	<0.0001
NCH1 & CNX IC vs. mCherry -GFP -HDEL IC	0.2303	-2.277 to 2.737	No	ns	>0.9999
NCH1 & KAKU41 vs. NCH1 & KAKU41 IC	11.28	8.775 to 13.79	Yes	****	<0.0001
NCH1 & KAKU41 vs. NCH2 & CNX	7.065	4.558 to 9.572	Yes	****	< 0.0001
NCH1 & KAKU41 vs. NCH2 & CNX IC	11.2	8.695 to 13.71	Yes	••••	<0.0001
NCH1 & KAKU41 VS. NCH2 & KAKU41	-0.6675	-3.11/ to 1.782	NO	ns ****	<0.0001
NCH1 & KAKU41 vs. NCH2 & KAKU41 IC	3 74	1 233 to 6 247	Yes	****	<0.0001
NCH1 & KAKU41 vs. CNX & KAKU41 IC	12.41	9.905 to 14.92	Yes	****	<0.0001
NCH1 & KAKU41 vs. mCherry -GFP -HDEL	-8.204	-10.71 to -5.698	Yes	****	< 0.0001
NCH1 & KAKU41 vs. mCherry -GFP -HDEL IC	11.24	8.735 to 13.75	Yes	****	<0.0001
NCH1 & KAKU41 IC vs. NCH2 & CNX	-4.217	-6.724 to -1.710	Yes	****	<0.0001
NCH1 & KAKU41 IC vs. NCH2 & CNX IC	-0.07984	-2.587 to 2.427	No	ns	>0.9999
NCH1 & KAKU41 IC vs. NCH2 & KAKU41	-11.95	-14.40 to -9.500	Yes	****	<0.0001
NCH1 & KAKU41 IC vs. NCH2 & KAKU41 IC	-0.1798	-2.629 to 2.270	No	ns	>0.9999
NCH1 & KAKU41 IC vs. CNX & KAKU41	-7.542	-10.05 to -5.035	Yes	****	<0.0001
NCH1 & KAKU41 IC vs. CNX & KAKU41 IC	1.13	-1.377 to 3.637	No	ns	0.9444
NCH1 & KAKU41 IC vs. mcherry -GFP -HDEL	-19.49	-21.99 to -16.98	Yes		<0.0001
NCH1 & KAKU41 IC VS. INCHERTY -GFP - FIDEL IC	-0.04004	-2.547 to 2.467	NO	****	>0.9999
NCH2 & CNX VS. NCH2 & CNX IC	-7 733	-10 18 to -5 284	Ves	****	<0.0001
NCH2 & CNX vs. NCH2 & KAKU41 IC	4.037	1.588 to 6.486	Yes	****	< 0.0001
NCH2 & CNX vs. CNX & KAKU41	-3.325	-5.832 to -0.8183	Yes	**	0.001
NCH2 & CNX vs. CNX & KAKU41 IC	5.347	2.840 to 7.854	Yes	****	<0.0001
NCH2 & CNX vs. mCherry -GFP -HDEL	-15.27	-17.78 to -12.76	Yes	****	<0.0001
NCH2 & CNX vs. mCherry -GFP -HDEL IC	4.177	1.670 to 6.684	Yes	****	<0.0001
NCH2 & CNX IC vs. NCH2 & KAKU41	-11.87	-14.32 to -9.421	Yes	****	<0.0001
NCH2 & CNX IC vs. NCH2 & KAKU41 IC	-0.09992	-2.549 to 2.349	No	ns	>0.9999
NCH2 & CNX IC vs. CNX & KAKU41	-7.462	-9.969 to -4.955	Yes	****	<0.0001
NCH2 & CNX IC vs. CNX & KAKU41 IC	1.21	-1.297 to 3.717	No	ns	0.9125
NCH2 & CNX IC vs. mCherry -GFP -HDEL	-19.41	-21.91 to -16.90	Yes		<0.0001
NCH2 & CNX IC VS. INCHERTY -GFP -HDELIC	11 77	-2.467 to 2.547	Vec	****	>0.9999
NCH2 & KAKU41 vs. CNX & KAKU41	4 408	1 958 to 6 857	Ves	****	<0.0001
NCH2 & KAKU41 vs. CNX & KAKU41 IC	13.08	10.63 to 15.53	Yes	****	<0.0001
NCH2 & KAKU41 vs. mCherry -GFP -HDEL	-7.537	-9.986 to -5.088	Yes	****	< 0.0001
NCH2 & KAKU41 vs. mCherry -GFP -HDEL IC	11.91	9.460 to 14.36	Yes	****	<0.0001
NCH2 & KAKU41 IC vs. CNX & KAKU41	-7.362	-9.812 to -4.913	Yes	****	<0.0001
NCH2 & KAKU41 IC vs. CNX & KAKU41 IC	1.31	-1.139 to 3.759	No	ns	0.8385
NCH2 & KAKU41 IC vs. mCherry -GFP -HDEL	-19.31	-21.76 to -16.86	Yes	****	<0.0001
NCH2 & KAKU41 IC vs. mCherry -GFP -HDEL IC	0.1397	-2.310 to 2.589	No	ns	>0.9999
CNX & KAKU41 vs. CNX & KAKU41 IC	8.672	6.165 to 11.18	Yes	****	<0.0001
CNX & KAKU41 vs. mCherry -GFP -HDEL	-11.94	-14.45 to -9.438	Yes	****	<0.0001
CNX & KAKU41 vs. mCherry -GFP -HDEL IC	7.502	4.995 to 10.01	Yes		<0.0001
CNX & KAKU41 IC vs. mCherry -GFP -HDEL	-20.62	-23.12 to -18.11	res		<0.0001
mCherny -GEP -HDEL vs. mCherny -GEP -HDEL IC	10 /5	16 94 to 21 95	Vec	****	<0.0001
menery for those valuencery for fiber it	15.45	10.34 (0 21.33	. 63	I	~0.0001

* Note IC = Internal FRET efficiency control

Supplementary Table S1 is from Mckenna, Gumber, et al., "Maize (Zea mays L.) nucleoskeletal proteins regulate nuclear envelope remodeling..." FIPS 2021

Table S2: Differentially expressed genes between mkaku41 mutant versus wildtype plants for maize leaf and tassel.

Table S2 (Tab 1 of 2) LEAF DEGs. All 225 Differentially Expressed Genes from Leaf.

		Phytomine	Uniprot		log2FoldChange				
W22v2 GeneID	B73v3 GeneID B73v4 GeneID	description Uniprot id	descriptor	baseMean-LEAF	(mutant/WT)	lfcSE st	at p	value p	adj
Zm00004b022952	GRMZM2G079381 Zm00001d05216	5 (1 of 2) K00366 - fe #N/A	#N/A	7467.22838	29.4246738	3.90677062	7.53171267	5.01E-14	4.72E-11
Zm00004b029478	GRMZM2G442804 Zm00001d03673	8 (1 of 2) 2.1.1.163 - IB4FF45	S-adenosyl-L-methi	828.430667	13.1270875	3.61827211	3.62799898	0.000286	0.02374659
Zm00004b031378	GRMZM2G163861 Zm00001d03914	1 (1 of 4) PTHR2405{A0A1D6MDU6	Mitogen-activated p	801.772225	13.0798895	3.63809059	3.59526219	0.000324	0.02627982
Zm00004b032719	GRMZM2G039586 Zm00001d04635	4 (1 of 2) PTHR1007 B4F991	GATA transcription	675.803091	12.8333192	3.58881725	3.57591882	0.000349	0.02800135
Zm00004b002158	GRMZM2G050961 Zm00001d02999	7 (1 of 3) PTHR10772B4FBN1	Chloroplast chapero	666.3195	12.8129119	3.61916377	3.54029624	4.00E-04	3.14E-02
Zm00004b031472	GRMZM2G154664 Zm00001d04474	5 (1 of 1) PTHR11777A0A1D6NR62	AlaninetRNA ligas	442.856807	12.2235394	3.60460055	3.39109402	6.96E-04	4.88E-02
Zm00004b038561	GRMZM2G052036 Zm00001d02424	1 A0A1D6IYD1	Uncharacterized pro	412 427315	12 1208047	1,25435573	9.6629723	4.33E-22	1.07E-18
Zm00004b024341	GPMZM2G110032 Zm00001d0538/	9 (1 of 5) PE00646//PK71903	Brotein SPG1	221 633369	11 2250547	1 22016070	0.13220154	6 71E 20	1 21 - 16
Zm00004b024341	GRMZM2G119932 Zm00001d05384	8 (1015) PF00646//PK70803	Protein SRG1	221.033308	11.2250547	1.22916079	9.13229154	6.71E-20	1.21E-10
Zm00004b040326	GRMZM2G148495 Zm00001d02638	4 K71SM1	Uncharacterized pro	155.731123	10.7159853	2.56855691	4.17198672	0.0000302	0.00390509
Zm00004b030713	GRMZM2G150471 Zm00001d03836	1 (1 of 2) PTHR1282; A0A1D6M5Q9	Protein YIPF	144.117489	10.6047446	1.29299803	8.20167116	2.37E-16	3.35E-13
Zm00004b036977	GRMZM2G000361 Zm00001d02170	8 (1 of 146) PF13812 A0A1D6IE64	Pentatricopeptide re	91.6284647	9.95055033	2.55206086	3.89902548	0.0000966	0.01021058
Zm00004b002460	GRMZM2G018929 Zm00001d03039	8 (1 of 2) PTHR2401{A0A1D6KCE5	Pentatricopeptide re	73.3024849	9.62871858	2.01775461	4.77199682	0.00000182	0.000344
Zm00004b037691	GRMZM2G020401 Zm00001d02260	4 (1 of 1) KOG3444 - C4J9F3	SNARE-like superfa	65.4345211	9.46628094	1.2787588	7.40271029	1.33E-13	9.78E-11
Zm00004b028573	GRMZM2G133629 Zm00001d0353	9 A0A1D6LEE8	Uncharacterized pr	61 0798391	9 3646218	1 24462084	7 52407602	5 31E-14	4 78E-11
Zm00004b012220	CBMZM2C048004 Zm00001d01461		Alpha I, fuessidess	40.0004356	0.04970444	1 54416675	E 9500953	4 635 00	0.00000144
211000040012339	GRWZW2G048904 21100001001455	0 (1013) 2.3.1.98 - CAUAID0G0F2	Alpha-L-lucosluase	49.0004236	9.046/9444	1.04410075	5.6599655	4.03E-09	0.00000144
Zm00004b012010	GRMZM2G042136 Zm00001d01418	7 (1 0f 6) K03809 - N/B6SPB2	Flavoprotein wrbA	45.2989985	8.93336195	1.23319652	7.24407002	4.35E-13	2.87E-10
Zm00004b029741	GRMZM2G142443 Zm00001d03708	5 C4J5G0	Uncharacterized pro	43.6925677	8.88172812	1.25055644	7.10222093	1.23E-12	7.36E-10
Zm00004b030995	GRMZM2G044368 Zm00001d03870	9 (1 of 5) K07897 - R; A0A1D6M9Y7	Ras-related protein	854.281322	8.80825777	2.49236587	3.534095	0.000409	0.03185181
Zm00004b006605	GRMZM2G129261 Zm00001d00265	4 (1 of 3) PTHR1059(A0A1D6E325	Naked endosperm1	793.787161	8.69986561	0.80718841	10.7779863	4.37E-27	2.16E-23
Zm00004b015807	GRMZM2G380319 Zm00001d03949	2 A0A1D6MHP7	Myb-like transcription	892.089428	8.29050629	1.78182041	4.65282935	3.27E-06	0.000573
Zm00004b015016	GRMZM2G090419 Zm00001d01795	1 (1 of 4) 3.6.1.13//3 (B4EG54	Nudix hydrolase 17	26 4253106	8.15810576	1.40186465	5.8194675	5.90E-09	1.74E-06
Zm00004b031301	GRMZM2G141252 Zm00001d03904	4 (1 of 5) PTHR1009'#N/A	#N/Δ	90 5160879	8 08452683	1 15322615	7 01035681	2 38E-12	1 38E-09
Zm00004b000717	CBMZM2C471252 Zm00001d0390		Thiomino mononho	70 5205127	7 71902700	1.09510140	7 11 21 4 260	1.14E 10	7.000-00
211000040000717	GRIVIZIVI2G47 1253 ZITIOUOU TUU2813	8 (1013) FF04481 - FA0A1D633B5		10.5505121	7.71003729	1.06519142	7.11214309	1.14E-12	7.00E-10
Zm00004b036815	GRMZM2G069928 Zm00001d02153	2 (1 of 1) K01931 - pr A0A1D6IBW0	RING/U-box superfa	67.482069	7.66883779	1.29122334	5.9392032	2.86E-09	9.89E-07
Zm00004b013399	GRMZM2G177404	(1 of 4) 1.1.1.35//4.1#N/A	#N/A	16.2942554	7.46088293	1.8357165	4.0642893	0.0000482	0.00584858
Zm00004b002499	GRMZM5G876022 Zm00001d03050	7 A0A1D6KCL1	WAT1-related prote	16.1201044	7.44434477	1.29028755	5.76952384	7.95E-09	0.0000023
Zm00004b004054	GRMZM2G413853 Zm00001d03265	5 (1 of 1) PTHR1495(A0A1D6KSK7	Dicer-like 102	8.91036307	6.59202137	1.39215016	4.73513676	0.00000219	0.000409
Zm00004b034409	GRMZM2G420926 Zm00001d04833	6 (1 of 2) PTHR1166EA0A1D6PJC8	Serine/threonine-pr	268.748915	6.50183669	1.65029566	3.93980112	0.0000815	0.00886601
Zm00004b037350	GRMZM2G312954 Zm00001d02219	4 (1 of 4) K17964 - le 404106/K37	Putative pentatricor	7 06421702	6 43041806	1 59590284	4 02032086	0.0000550	0.00654016
Zm00004b037530	GPM7M2C052474 7m00004d02210	9 (1 of 2) DTUD1304 D77759	NC domain contain	7 00705050	6 40440500	1 6794904	3 92604560	0.0000000	0.00034310
2110000400305/3	GTWIZWZGU52474 ZMUUUU1d02124		NC uumain-contain	1.83185058	0.40412598	1.0734301	3.02094502	0.00013	0.012//228
Zm00004b025146	GRMZM2G112686 Zm00001d00892	9 (1 of 1) PTHR2283(A0A1D6FGP9	GDSL esterase/lipa	6.32065121	6.09817703	1.64375468	3.70990701	0.000207	0.01831493
Zm00004b004163	GRMZM2G379656 Zm00001d03278	4 (1 of 1) PTHR2640; A0A1D6KTY7	Two-component res	6.27782711	6.08247491	1.39072809	4.37359033	0.0000122	0.00175244
Zm00004b036551	GRMZM2G017013 Zm00001d02122	1 (1 of 6) PTHR12329B6TJD1	Protein binding prot	72.3287031	6.00954777	1.72986443	3.47399926	0.000513	0.03814297
Zm00004b018053	GRMZM2G432390 Zm00001d04239	7 (1 of 15) 3.6.3.43 - A0A1D6N3I1	ABC transporter B f	612.986352	5.99792177	1.29237744	4.64099851	0.00000347	0.000586
Zm00004b000836	GRMZM2G344416 Zm00001d02827	4 (1 of 3) PTHR1017;A0A1D6JU49	Cvclin-SDS	5.65464364	5.93097241	1.51373161	3.9181136	0.0000892	0.00954532
Zm00004b024850	GRMZM2G112968 Zm00001d00852	9 (1 of 7) 3 1 30 1 - A A0A1D6FDT0	Endonuclease 2	178.036732	5,89782245	1,22968922	4,79618944	0.00000162	0.000308
Zm00004b006533	GPMZM2G038851 Zm00001d00251	0 (1 of 7) K10577 uk0001D6E1X4	SLIMO conjugating	5 44743536	5.97966026	1.61/159/3	3 6/103511	2 71E 04	2 20E 02
211000040006555	GRIVIZIVI2G038651 ZIII0000 1000257	0 (1017) K10577 - 0LA0A1D0E114	SUNO-conjugating	5.44745556	5.67600020	1.01415645	3.04193311	2.71E-04	2.29E-02
Zm00004b039730	GRMZM2G038934 Zm00001d02567	0 (1 of 2) PTHR23344A0A1D6J8H8	Glycerophosphodie	5.34966121	5.85600702	1.47791992	3.96233039	7.42E-05	8.23E-03
Zm00004b027306	GRMZM2G091973 Zm00001d01163	1 (1 of 2) PTHR10994 B7ZYI3	Reticulon-like prote	5.3177009	5.83749437	1.59890571	3.65093095	0.000261	0.02228524
Zm00004b007542	GRMZM5G858609 Zm00001d00378	3 #N/A	#N/A	4.99512044	5.75176401	1.53940107	3.73636484	1.87E-04	1.69E-02
Zm00004b009893	GRMZM2G096106 Zm00001d00684	5 (1 of 2) K14288 - e) A0A1D6F180	Exportin-T (Exportir	4.74289835	5.67384186	1.57729911	3.59718828	3.22E-04	0.0261934
Zm00004b021274	GRMZM2G085573 Zm00001d05005	1 (1 of 3) PTHR2305(A0A1D6PZJ6	Calcineurin subunit	4.65262088	5.64877774	1.44916835	3.89794445	0.000097	0.01021058
Zm00004b016770	GRMZM5G895400	(1 of 2) PE07516 - \$#N/A	#N/A	463 230769	5 52897694	1 52920236	3 61559535	0.0003	0.02460305
Zm00004b024220	CBMZM2C000076 Zm00001d0E27		Eventonin like	2 6921905	E 20076002	1 52020200	2 46262272	0.000533	0.02000122
2111000040024230	GRWZW2G000976 ZIII0000100537	9 (1012) FIRTI002A0A1D0QR00	EXOSIOSIT-IIKE	3.0031093	5.30970093	1.55500546	3.40303272	0.000533	0.03920133
Zm00004b037809	GRMZM2G036918 Zm00001d02330	1 (1 0f 20) K13648 - £A0A1D6IRJ1	Hexosyltransferase	12.9621521	5.24927925	1.29524929	4.05271732	0.0000506	0.00599844
Zm00004b020694	GRMZM2G036829 Zm00001d04934	3 (1 of 2) PTHR1334(A0A1D6PTV7	Glutamyl-tRNA redu	428.130074	5.2109914	0.56562155	9.21285867	3.18E-20	6.28E-17
Zm00004b017828	GRMZM2G170689 Zm00001d04215	0 (1 of 4) 3.1.2.12 - S A0A1D6N1Q6	S-formylglutathione	28.6707786	5.05967754	0.88129422	5.74119001	9.40E-09	0.00000266
Zm00004b000729	GRMZM2G047513 Zm00001d02815	3 (1 of 1) PTHR1170(A0A1D6JSF1	30S ribosomal prote	214.661897	4.43378056	1.1150952	3.97614531	0.00007	0.00796499
Zm00004b013031	GRMZM2G058252 Zm00001d01546	0 (1 of 2) K11098 - sn A0A1D6H288	Putative small nucle	89,9045646	4.40178796	1.16074364	3.79221374	0.000149	0.01420386
Zm00004b018106	GRMZM2G013016 Zm00001d04247	2 (1 of 99) PE03514 - A0A1D6N495	Protein SCARECR	7 5468871	4 38419021	1 26130462	3 47591704	0.000509	0.03801417
Zm00004b021E44	CBMZM2C068455 Zm00001d0504	0 (1 of 2) DTHD1154(D4EE)/2	Malata dabudragan	164 646716	4.07095252	1.20100402	2 62047202	0.000383	0.00001417
2111000040021544	GRWZW2G068455 Z1100001005040	9 (1012) FTHR1154(B4FFV5		154.545715	4.27900000	1.17000939	3.03047303	0.000283	0.02301930
Zm00004b010999	GRMZM5G854045 Zm00001d0130	2 (1 0f 2) PTHR2156'A0A1D6GEW1	HII zinc finger	46.8177556	3.90744209	1.03999381	3.75717822	0.000172	0.01574167
Zm00004b036912	GRMZM2G180082 Zm00001d02163	9 (1 of 1) 1.14.13.184 A0A1D6ID92	Taxane 13-alpha-hy	32.4905967	3.89379865	0.64241747	6.06116561	1.35E-09	4.95E-07
Zm00004b016491	GRMZM2G121404 Zm00001d04031	1 (1 of 5) K12619 - 5' A0A1D6MQ12	5'-3' exoribonucleas	17.6527176	3.5797071	0.92159871	3.88423621	0.000103	0.01062619
Zm00004b027586	GRMZM2G460566 Zm00001d01193	8 K7VM12	Uncharacterized pro	474.944398	3.48226135	0.30138449	11.5542157	7.03E-31	6.95E-27
Zm00004b005210	GRMZM2G348578 Zm00001d03412	4 (1 of 1) PTHR1086(A0A1D6L5N8	Putative prolyl 4-hy	13.4450367	3.42875627	0.8513486	4.02744102	5.64E-05	6.56E-03
Zm00004b040037	GRM7M2G322634 Zm00001d02602	5 A0A1D6JBS5	Uncharacterized pro	40,7950382	3.38071759	0.81575384	4.14428647	3.41E-05	4.32E-03
Zm00004b024374	GPMZM2G155370 Zm00001d05389	0 (1 of 52) PE06203 A0A1D6OT42		61 0716190	3 36926757	0.99060296	3 79597694	0.000153	0.01443203
Zm000046029797	GPMZM2G133512 Zm00001d0334	0 (1 of 1) PTHP20255 A0A1D61710	DNA-directed DNA	60.0752645	3 19590101	0.43393400	7 34355693	2 000 100	1 495 40
2111000040036737	GRIVIZIVIZG 133512 ZIII0000 100244	0 (1011) FTHR2005(A0A1D01210	DINA-UII ECLEU RINA	00.9752015	3.10309191	0.43363499	7.34355665	2.00E-13	1.42E-10
∠rnuuuu4b013023	GRIVIZM2G109818 Zm00001d01545	u (1072)K19347 - SIA0A1D6H268	SUN domain proteir	163.827706	3.0935191	0.8914755	3.4/011118	0.00052	0.03841063
Zm00004b032080	GRMZM2G350319 Zm00001d04549	2 (1 of 164) PF01535 A0A1D6NWB0	Pentatricopeptide re	50.0640181	3.04795717	0.72194349	4.22187779	0.0000242	0.00315389
Zm00004b032780	GRMZM2G022275 Zm00001d04644	5 (1 of 2) K13137 - seA0A1D6P2Q2	Transducin/WD40 r	88.3284389	2.96716841	0.65562993	4.52567567	6.02E-06	0.000976
Zm00004b035113	GRMZM2G410033 Zm00001d01920	6 (1 of 1) PTHR3219(B4FDE9	Tryptophan/tyrosine	18.7119239	2.90922297	0.74995711	3.87918579	0.000105	0.01068974
Zm00004b036531	GRMZM2G043600 Zm00001d02119	1 (1 of 113) PF00170 A0A1D6I8V4	Basic-leucine zippe	45,4940578	2.76864759	0.69911159	3.96023703	0.0000749	0.00823089
Zm00004b028733	GRMZM2G137930_Zm00001d0356	6 (1 of 3) PTHR1028(B4EJX6	Soluble inorganic p	1152 17637	2 42705929	0 484 14472	5 01308634	0.00000536	0.000116
Zm00004b026914	CBMZM2C00E3E0 Zm00001d01103	7 (1 of 1) DTHD1015(A0A1D6E)/1 3	MAD kingen phoop	120 660477	2.12700020	0.67501116	2 40450842	0.000475	0.03614443
211000040020014			WAF Killase priospi	133.005477	2.33003210	0.07301110	3.43430042	0.000475	0.03014443
Zm00004b040568	GRMZM2G138870 Zm00001d02662	5 (1011/)PF06/49-A0A1D6J153	Fiber protein Fb34	38.8115476	2.24905091	0.51411253	4.3/5/94/8	1.21E-05	1.75E-03
∠m00004b033483	GRMZM2G138987 Zm00001d04728	9 (1 of 2) PTHR1069(C0P7S7	Nuclear transport fa	309.501595	2.23643667	0.5744732	3.89302176	0.000099	0.01036496
Zm00004b000179	GRMZM2G089860 Zm00001d02744	5 (1 of 3) PTHR12358B4FIE8	Sphingoid long-cha	313.055498	2.1844164	0.41009395	5.32662433	0.0000001	0.0000244
Zm00004b030867	GRMZM2G117410 Zm00001d03854	0 (1 of 1) KOG2896 - C0HEV5	Uncharacterized pro	30.93028	2.18269367	0.58520405	3.72979935	1.92E-04	0.01721105
Zm00004b020935	GRMZM2G046804 Zm00001d04964	1 (1 of 2) PTHR1083(K7UBU0	Glyceraldehyde-3-p	290.988979	1.89219468	0.29262898	6.46619032	1.01E-10	4.61E-08
Zm00004b001825	GRMZM2G171022 Zm00001d02954	0 (1 of 72) PF12937 - A0A1D6K5T7	F-box protein	26.065444	1.65622357	0.45896546	3.60860178	0.000308	0.02517133
Zm00004b028101	AC194405.3 EG02 7m00001d0125	5 (1 of 2) PTHR23334 404106 C0M/P	Protein MICROPOL	43 5802206	1 60740069	0.31253502	5 14342255	0.0000027	0.0000621
Zm000046020101	GPM7M2G006367 7m00001d0125	9 (1 of 1) DTUD21E0(00D404	Easter of DNA #**	-0.0002290	1 500140000	0.01200002	3 97006364	0.0000027	0.0000021
211000040038843	GraviziviziG090507 Zm00001d02459		Factor of DINA meth	101.92685	1.30813221	0.4041015/	3.01990304	0.000104	0.01068974
∠muuu04b031527	GRMZM2G435294 Zm00001d04481	9 (1072) PTHR1314(A0A1D6NRL8	Myosin-9	220.170163	1.55391523	0.33465225	4.64337307	0.00000343	0.000586
∠m00004b040275	GRMZM2G114182 Zm00001d02629	5 (1 of 1) KOG0250 - A0A1D6JE74	Uncharacterized pro	46.1680683	1.50835262	0.33433076	4.51155799	6.44E-06	0.00103525
Zm00004b040030	GRMZM2G097848 Zm00001d02602	0 (1 of 2) PTHR3631; A0A1D6JBQ3	Protein MULTIPLE	55.809687	1.3965749	0.33510488	4.16757559	0.0000308	0.00395556
Zm00004b032020	GRMZM2G064302 Zm00001d04543	1 (1 of 8) K01689 - er B4FI65	Enolase 1	11601.3236	1.35638718	0.24653673	5.50176521	3.76E-08	0.00000979
Zm00004b037648	GRMZM2G041527 Zm00001d02255	1 (1 of 1) K01164 - rit A0A1D6IP05	Ribonuclease Ps	46.9191013	1.33158372	0.36258589	3.67246425	0.00024	0.02066647
Zm00004b017415	GRMZM2G022298 Zm00001d04163	5 (1 of 3) PTHR2400(A0A1D6MYC4	E-box family protein	1133 3013	1,32018091	0.3021743	4.36893847	0.0000125	0.0017646
Zm00004b011111	GRMZM2G028218 Zm00001d01211	1 (1 of 10) K09503 - [A0A1D6GC02	Dna.I protein	3402 18212	1 31457414	0.3028865	4 34015424	1 495-05	1 Q4E-02
Zm00004b00045	CDM7M2C175967 7~00004 J0000	2 (1 of 1) DTUD2402/#N/A	#N/A	0702.10212	4 00000000	0.17020003	7 44400005	0.045 40	1.04L-03
211000040029015	GINVIZIVIZG 1/586/ ZMUUUU1003605	2 (1011) FIRK2403 #N/A	#IN/A	920.642936	1.28068292	0.1/9258/2	1.14432695	9.04E-13	5.//E-10
∠muuuu4b012112	GRIVIZM2G3//341 Zm00001d01429	4 (1 01 3) K11262 - ac AUA1D6GRS8	Acetyl-CoA carboxy	5379.52762	1.22873173	0.33739947	3.6417714	0.000271	0.02289614

Zm00004b039163	GRMZM2G330635 Zm00001d024963	(1 of 2) PTHR1126(B6TI 20	Glutathione S-trans	821 550051	1 12368212	0 25566698	4 39510063	0.0000111	0.00162285
2.000040000100			Diddanione o-dano	021.000001	1.12000212	0.20000000	4.00010000	0.0000111	0.00102200
Zm00004b040552	GRMZM2G343149 Zm00001d026606	(1 of 2) KOG0/16 - C4J426	DNAJ neat shock N	1/5.1911//	1.11399665	0.19553823	5.69707843	1.22E-08	0.00000335
Zm00004b006763	GRMZM2G394450 Zm00001d002830	(1 of 3) PF11837 - [A0A1D6E4N9	Beta-fructofuranosic	510.860825	1.04284275	0.22253867	4.68611918	0.00000278	0.000492
Zm00004b032888	GRMZM2G069630 Zm00001d046571	(1 of 4) PTHR23042A0A1D6P3H5	Putative HLH DNA-	435.078325	1.01298064	0.15126213	6.69685548	2.13E-11	1.11E-08
Zm00004b028605	GRMZM2G410757 Zm00001d035456	A0A1D6I GG0	Uncharacterized pro	1102.34203	0.94624438	0.24964589	3,79034631	0.00015	0.01424261
Zm00004b022490	CDMZM2C002220 Zm00001d052800	(1 of 4) K00497 b: K7)/264	Host shock protein	1162 40100	0.04590224	0 15749147	6.00590040	1.005.00	6 725 07
2111000040023469	GRINZINZG002220 211000010052809	(1014) K09467 - TEK7 V304	Heat shock protein	1103.42100	0.94060201	0.15/4014/	0.00560049	1.90E-09	0.73E-07
Zm00004b030504	GRMZM2G305851 Zm00001d038085	(1 of 10) PF11891 - A0A1D6M325	Protein RETICULAT	1188.38199	0.9352027	0.22602528	4.13760226	0.0000351	0.00442314
Zm00004b005417	GRMZM2G074404 Zm00001d034432	(1 of 2) PTHR2329 B6TIC8	Bax inhibitor-1 fami	424.535285	0.86562979	0.19919175	4.34571109	1.39E-05	1.93E-03
Zm00004b028575	GRMZM2G143788 Zm00001d035321	(1 of 4) PTHR13844B6T2N1	SWIB/MDM2 doma	489.708705	0.85679437	0.23070118	3,71387084	0.000204	0.01811114
Zm00004b019760	CPM7M2C173654 7m00001d043234	(1 of 1) PTHP1261' A0A1D6N0M7	NTE2 liko	292 736690	0.92550477	0.24273462	3 40122396	0.000671	0.04740744
211000040010703	GRWZWZG175054 ZI1000010045254			202.730009	0.02333477	0.24273402	3.40122300	0.000071	0.04740744
Zm00004b016582	GRMZM2G111014 Zm00001d040416	(1 of 1) K02470 - DIA0A1D6MQM1	DNA topoisomerase	573.22022	0.79663319	0.14929919	5.33581713	9.51E-08	2.35E-05
Zm00004b003782	GRMZM2G127396 Zm00001d032334	(1 of 1) PTHR24092A0A1D6KQ39	Phospholipid-transr	307.752055	0.79617809	0.17445876	4.56370378	5.03E-06	8.29E-04
Zm00004b027549	GRMZM2G046558 Zm00001d011891	(1 of 1) K01070 - S-K7V5R6	S-formylglutathione	527,285315	0.76070436	0.19834295	3,8352982	0.000125	0.01244172
Zm00004b021214	CPM7M2C000241 7m00001d040056	(1 of 2) K00215 4 A0A1D6PV70	4 bydroxy totrabydr	112 392554	0 73597653	0 10005354	3 69023762	0.000233	0.02013407
211000040021214			- injuloxy-tetrainjul	112.002004	0.70007000	0.10000004	0.00020702	0.000200	0.02010407
Zm00004b040222	GRMZM2G129071 Zm00001d026244	(1 of 2) PTHR30222B7ZYY2	Putrescine-binding	282.623632	0.72752977	0.21154612	3.43910705	0.000584	0.04230188
Zm00004b026760	GRMZM2G086766 Zm00001d010969	(1 of 2) KOG3882 - C0PGJ5	Tetraspanin-6	207.76703	0.69786407	0.18917115	3.68906184	2.25E-04	1.97E-02
Zm00004b025751	GRMZM2G158818 Zm00001d009719	(1 of 2) PTHR1383(A0A1D6FLA0	PPM-type phosphat	532.830662	0.63346597	0.17343334	3.65250396	0.00026	0.02224501
7m00004b039221	CPM7M2C036427 7m00001d023930	(1 of 1) DTHD2106/ D6TI W2	Eiber protein Eb10	1562 27070	0.4150306	0 11035005	3 7690666	1.64E.04	1 525 02
2111000040030221				1302.27079	-0.4139390	0.11033903	-3.7009000	1.042-04	1.522=02
Zm00004b011092	GRMZM2G007260 Zm00001d013092	(1 of 5) K10573 - ULB4FH08	Ubiquitin-conjugatir	923.813124	-0.4178773	0.12114084	-3.4495159	0.000562	0.04100456
Zm00004b012273	AC207656.3_FG00 Zm00001d014507	(1 of 17) PF02362// A0A1D6GTV0	Auxin response fact	516.855693	-0.4187385	0.12013197	-3.485654	0.000491	0.0369359
Zm00004b036722	AC207722.2_FG00 Zm00001d021435	(1 of 7) K08912 - ligB4FNR1	Chlorophyll a-b binc	170912.219	-0.4331024	0.11385239	-3.8040698	0.000142	0.01373875
Zm00004b023254	GRMZM2G119175 Zm00001d052494	(1 of 2) PTHR11817A0A1D6QHK1	Pyruvate kinase (F(839.32923	-0.475611	0.12467717	-3.8147405	0.000136	0.01322297
Zm00004b012004	CDMZM2C425774 Zm00001d015203	(1 of 2) DTHD2172(A0A1D6H124	VIN2 like protein 2	107 500400	0.6010321	0.10507201	2 5207527	0.000414	0.02202847
2111000040012904	GRINZINZG423774 ZI1000010015293	(1012) FTHR2173(A0A1D0H134	vino-like protein z	197.522452	-0.0919321	0.19597291	-3.5507557	0.000414	0.03202047
Zm00004b019820	GRMZM2G339540 Zm00001d044434	(1 of 16) PF00069// A0A1D6NLS2	Putative inactive rec	227.937947	-0.7314427	0.14663392	-4.9882229	0.000000609	0.000131
Zm00004b038201	GRMZM2G001500 Zm00001d023802	(1 of 3) PTHR1937{A0A1D6IW15	Heat shock 70 kDa	390.383872	-0.7427689	0.16663045	-4.4575823	8.29E-06	1.28E-03
Zm00004b040507	GRMZM2G124466 Zm00001d026543	(1 of 14) PF04755 - A0A1D6JH82	Putative plastid-lipic	880.51809	-0.8379358	0.16072008	-5.2136345	0.000000185	0.0000436
Zm00004b024920	CDM7M2C020284 7m00001d008517	(1 of 8) DTUD1095(A0A1D6ED00	Actin interacting pro	205 024642	0.9410072	0.14260017	5 9504420	4 645 00	0.00000144
2111000040024659	GRIVIZIVI2G030364 ZI1000010008517	(1018) FIRE 1965(AUA1D0FDQ9	Actin-Interacting pro	325.234013	-0.6419972	0.14309917	-5.6594459	4.04E-09	0.00000144
Zm00004b029016	GRMZM2G110983 Zm00001d036054	(1 of 5) K10573 - ut A0A1D6LKH9	Ubiquitin-conjugatir	428.180372	-0.9107724	0.14663329	-6.2112252	5.26E-10	2.21E-07
Zm00004b031450	GRMZM2G310569 Zm00001d044717	(1 of 2) PTHR1021;K7VQ87	Potassium outward	776.082506	-0.9308469	0.17592059	-5.2912904	1.21E-07	2.90E-05
Zm00004b039612	GRMZM2G132875 Zm00001d025533	(1 of 3) PTHR11732K7TPL8	NAD(P)-linked oxid	470.476633	-0.9542234	0.25513441	-3.7400811	0.000184	0.01677435
Zm00004b010120	CDM7M2C158012 7m00001d042614	(1 of 1) DTUD1181/ A0A1DENDME	Dutative sulfate trar	220 650509	0.0006507	0.00700070	2 4724792	E 16E 04	2 025 02
Zm00004b019130	GRMZM2G158013 Zm00001d043614	(1 of 1) PTHR11814 AUATDONDM6	Putative suitate tran	220.659598	-0.9990291	0.28788078	-3.4724782	5.16E-04	3.82E-02
Zm00004b021942	GRMZM2G165231 Zm00001d050947	(1 of 1) PTHR2325; C0P3M4	Protein kinase supe	268.98269	-1.1283649	0.30233028	-3.7322261	1.90E-04	1.71E-02
Zm00004b023416	GRMZM2G097043 Zm00001d052723	(1 of 1663) 2.7.11.1 A0A1D6QJ79	Uncharacterized pro	483.959303	-1.1750113	0.3058207	-3.8421574	0.000122	0.01218775
Zm00004b031824	GRMZM2G301860 Zm00001d045204	(1 of 2) PTHR3172(K7W642	Putative AP2/FRFB	91.8123203	-1.1767874	0.26793309	-4.3920943	1.12E-05	1.63E-03
Zm00004b020801	CDM7M2C14E072 7m00001d040E07	(1 of 6) K17871 N A0A1D6DWC2	External alternative	405 710075	1 2024424	0.24440027	2 4014125	0.00049	0.02626410
2111000040020691	GRINZINZG 143972 2110000 10049597	(1010) K17871 - NAUATDOPWC3	External alternative	425.7 19275	-1.2024434	0.34440027	-3.4914125	0.00046	0.03030419
Zm00004b014169	GRMZM2G132706 Zm00001d016942	(1 of 1) PTHR1192(A0A1D6HBD6	Glycosyltransferase	88.7275892	-1.2785948	0.33703593	-3.7936455	1.48E-04	0.01419039
Zm00004b012181	GRMZM2G035405 Zm00001d014377	(1 of 19) PF02309// A0A1D6GSR8	Auxin response fact	150.839573	-1.3074657	0.2772201	-4.7163454	0.0000024	0.00044
Zm00004b028942	GRMZM2G145396 Zm00001d035948	(1 of 1) PE06592 - [A0A1D6] JT8	ATOZI1	154,479925	-1.3600375	0.30840566	-4.409898	0.0000103	0.00155027
Zm00004b025175	CPM7M2C464901 7m00001d009063	(1 of 2) PTHP1260(A0A1D6ECW5	GDT1 family proteir	130 902291	1 2026656	0.2822666	4 0374097	0.00000702	0.000163
2111000040023173	GRWZWZG404091 ZI1000010000903		GDTT failing protein	130.002201	-1.3330030	0.2022000	-4.3374007	0.000000732	0.000103
Zm00004b040292	GRMZM2G145460 Zm00001d026311	(1 of 3) K12448 - UIA0A1D6JEI6	NAD(P)-binding Ro	64.5436053	-1.3980243	0.32470084	-4.3055765	0.0000167	0.00225723
Zm00004b000155	GRMZM2G105436 Zm00001d027416	(1 of 1) 1.3.99.22 - A0A1D6JM25	Oxygen-independer	71.9333728	-1.4589143	0.32542419	-4.4831158	0.00000736	0.00117383
Zm00004b024901	GRMZM2G477503 Zm00001d008600	(1 of 39) PF00534 - A0A1D6FE41	Sulfoguinovosvl trai	135.498723	-1.4788108	0.38764344	-3.8148739	0.000136	0.01322297
7m00004b001193	GRMZM2G443265 Zm00001d028713	(1 of 2) PTHR11132B4E896	Putative sugar phos	146 810050	-1 7099847	0 36230074	-4 7107036	0.0000236	0 000437
211000040001193	GRWZWZG445205 ZI1000010020715	(1012) F THICH 132 D41 030	Futative Sugar prior	140.013333	-1.7033047	0.30230074	-4.7197930	0.00000230	0.000437
Zm00004b031260	GRMZM2G318180 Zm00001d039011	(1 of 2) PTHR1016EA0A1D6MCV5	Grx_I1-glutaredoxir	55.4235679	-1.728671	0.4362094	-3.9629385	0.000074	0.00823089
Zm00004b021606	GRMZM2G370915 Zm00001d050484	(1 of 4) PTHR1076(A0A1D6Q1U4	Transmembrane 9 :	24.9518867	-1.7731962	0.51670068	-3.4317667	0.0006	0.04330487
Zm00004b031166	GRMZM2G010349 Zm00001d038894	(1 of 1) PTHR11584A0A1D6MBR1	Serine/threonine-pr	7526.21654	-1.8467058	0.44452862	-4.1543013	0.0000326	0.00416527
7m00004b030125	CPM7M2C000845 7m00001d037606	(1 of 4) PE00514//PC0P5C0	Importin subunit als	672 163696	1 9500677	0 41775015	4 430901	0.0000030	0.00144006
2111000040030125	GRINZINZG009845 ZI1000010037606	(1014) FF00514//FC0F5C0		072.103000	-1.6509077	0.41775015	-4.430601	0.00000939	0.00144006
Zm00004b031291	GRMZM2G065757 Zm00001d039043	(1 of 4) PTHR1368(A0A1D6MD15	Aspartic proteinase	895.396897	-1.8789325	0.39154149	-4.7988081	0.0000016	0.000307
Zm00004b034200	GRMZM2G113295 Zm00001d048112	(1 of 4) PTHR1313(C4JAV5	RING/U-box superf:	14.9266987	-1.9881288	0.58232065	-3.4141479	0.00064	0.04570428
Zm00004b031703	GRMZM2G177098 Zm00001d045054	(1 of 2) 4.2.3.123 - A0A1D6NT87	Sesquiterpene cvcla	563.977223	-2.083258	0.44239875	-4.7090051	0.00000249	0.000452
7m00004b022346	CPM7M2C001258 7m00001d052620	(1 of 3) PE15346 (P4EUV0	Uncharacterized pr	94 9149944	2 0060343	0.51434005	4 0760415	0.0000456	0.0056092
2111000040023346	GRINZINZG091238 ZI1000010052620	(1013) PF15346 - 784F010		04.0140044	-2.0909343	0.51434005	-4.0709415	0.0000456	0.0030082
Zm00004b009147	GRMZM2G066516 Zm00001d005917	(1 of 18) PF04784 - A0A1D6ERJ3	Ternary complex fac	52.1992731	-2.1476846	0.60276371	-3.5630622	3.67E-04	2.91E-02
Zm00004b038557	GRMZM2G134613 Zm00001d024239	(1 of 4) K08341 - G.A0A1D6IYD0	Autophagy-related	220.308776	-2.1764262	0.29327857	-7.42102	1.16E-13	8.84E-11
Zm00004b010118	GRMZM2G473709 Zm00001d007174	A0A1D6F4F7	Uncharacterized pro	72,7028661	-2.2070216	0.60999614	-3.6180911	2.97E-04	2.45E-02
7m00004b016247	CPM7M2C360023 7m00001d030003	(1 of 5) 1 11 1 6 C RESUSA	Uncharacterized pr	54 6090476	2 4061055	0.66210063	3 7700637	0.000163	0.01522907
2111000040010247		(1010) 1.11.1.0 - 0.000004		34.0003470	-2.4001000	0.00210000	-0.1100001	0.000100	0.01022007
Zm00004b014100	GRMZM2G113453 Zm00001d016856	(1 of 15) PF07887 - A0A1D6HAV0	Calmodulin binding	896.773245	-2.5156699	0.56352855	-4.4641393	0.00000804	0.00126316
Zm00004b039718	GRMZM2G173878 Zm00001d025660	(1 of 4) K07877 - R;#N/A	#N/A	97.9240301	-2.5271222	0.5819074	-4.3428253	0.0000141	0.00194146
Zm00004b009434	GRMZM2G158629 Zm00001d006270	(1 of 2) KOG1206 - C4JA75	Enovl-CoA hydratas	85.256169	-2.5476031	0.72103652	-3.5332512	0.00041	0.03185181
7m00004b001295	GRMZM2G076537 Zm00001d028827	(1 of 1) PTHR1305(A0A1D6K021	Exonuclease DPD1	11 6682028	-2 580785	0 67760974	-3 8210417	1 32E-04	1 30E-02
2.000040001200				17.0002020	-2.000700	0.07700074	-0.0210411	1.02E-04	1.002-02
Zm00004b011960	GRMZM2G146446 Zm00001d014109	(1 of 1) PTHR1431(AUA1D6GPY5	Transmembrane pro	47.2813877	-2.634432	0.57927246	-4.5478289	5.42E-06	8.86E-04
∠m00004b000177	GRMZM2G090051 Zm00001d027443	(1 of 9) 1.14.13.129A0A1D6JM56	Hydroxylase8	165.877537	-2.6361802	0.48594064	-5.4249018	0.00000058	0.0000149
Zm00004b018443	GRMZM5G856598 Zm00001d042841	(1 of 2) K08193 - M B6SWK6	Putative anion trans	69.729378	-2.6900638	0.43660711	-6.1612919	7.22E-10	2.69E-07
Zm00004b039626	GRMZM2G104603 7m00001d025549	B4FV84	Putative carboxyles	16,7476499	-2,7905884	0.70460708	-3,9604887	0,0000748	0.00823089
7m00004b029640	CPM7M2C315767 7m000014004047	(1 of 2) DTHD3164(A0A1DelVD2	Transforaça	26 021705	3 006055	0 4954760	6 1036100	E 00E 40	0.000 07
211000040036619	GRIVIZWIZG315767 ZI11000010024317	(1012) FTHR31042A0A1D011R0	Transierase	20.921705	-3.000655	0.4654769	-0.1930100	5.00E-10	2.33E-07
∠m00004b000094	GRM2M2G077769 Zm00001d027346	(1 of 61) PF02298 - A0A1D6JL89	Early nodulin-like pr	16.7445831	-3.0378518	0.61567127	-4.9342107	8.05E-07	1.64E-04
Zm00004b019474	GRMZM2G004183 Zm00001d044033	(1 of 56) PF13839// A0A1D6NHE8	TRICHOME BIREF	32.4917945	-3.0584748	0.85118053	-3.5932152	3.27E-04	2.64E-02
Zm00004b025514	GRMZM2G387603 Zm00001d009416	(1 of 4) PTHR23244 A0A1D6FJA2	Jacalin-related lecti	17.2901888	-3.0705361	0.63395466	-4.8434632	1.28E-06	2.50E-04
7m00004b034863	GRMZM2G074323 Zm00001d018887	(1 of 5) PTHR244114041D6HT38	Speckle-type PO7 r	86 5600368	-3 2373495	0 78449684	-4 1266572	0.0000368	0 00460955
2	ODMZNOO 400000 7 000010010007		Speene-upor OZ	000 10100	0.0715005	0.000 1000	1.1200012	0.0000000	0.00+00935
Zm00004b018449	GRMZM2G400390 Zm00001d042848	(1 of 1) PTHR1170§A0A1D6N727	Laccase-7	209.16183	-3.2745927	0.88640694	-3.6942317	0.000221	0.01939589
Zm00004b012332	GRMZM2G168890 Zm00001d014587	(1 of 14) PF07800 - B4FED2	C2H2-type domain-	44.3866773	-3.4437481	1.01336395	-3.3983329	0.000678	0.04774079
Zm00004b001084	GRMZM2G160428 Zm00001d028570	(1 of 2) K08269 - scA0A1D6JXN6	Serine/threonine-pr	145.887331	-3.5479438	0.83560926	-4.2459364	0.0000218	0.00287152
Zm00004b005830	GRMZM2G077596 7m00001d034931	(1 of 3) PTHR3100(A0A1D6) CN7	COP1-interacting p	22.8653413	-3.7412166	0,97284789	-3.8456336	0.00012	0.01207723
Zm00004b002044	GPM7M2G004442 7m00004=000001	(1 of 16) DTUD224(A0A4DOIDD2	Uncharactori	04 350000	2.0764005	0.60060500	£ 3440077	0.00012	4 405 07
211000040037811	Graviziviziguo44 rz Zmuuuu rdu23304	(10110) FIRK231 AUATDORP3	oncharacterized pro	94.358603	-3.9/01305	0.02900083	-0.31400//	2.7 IE-10	1.10E-07
∠m00004b017793	GRMZM2G037452 Zm00001d042114	(1 of 9) PF12734 - (B6SGH6	CYSTM domain-cor	80.0975862	-4.0257871	0.6645981	-6.0574761	1.38E-09	4.97E-07
Zm00004b001875	GRMZM2G077316 Zm00001d029594	(1 of 2) 5.3.99.6 - A Q6RW09	Allene oxide cyclas	59.2744867	-4.202648	1.2210899	-3.4417188	5.78E-04	4.20E-02
Zm00004b037351	GRMZM2G017368 7m00001d022185	(1 of 1) PF00612//PA0A1D6IK54	Calmodulin-binding	134,853653	-4,2552721	1.0466383	-4.0656568	0,0000479	0.00584858
Zm00004b002146	GRMZM2G008208 Zm000014020079	(1 of 2) PTHR1174(A0A1DeKPD0	Casein kinase II eut	100 01157	-4 2736019	1 05206094	-4 0620904	0.0000486	0.00596709
211000040002146	GITINIZINIZGU96206 ZITIUUUU 10029978	(1012) FIRK11/4(AUA1D0K8R9	Caselli killase II sul	100.9115/	-4.2/30018	1.05206984	-4.0620894	0.0000486	0.00586798
Zm00004b018757	GRMZM5G867518 Zm00001d043223	(1 of 4) K02975 - sr C0HDX5	40S ribosomal prote	43.0334973	-4.4208247	1.00152775	-4.4140811	0.0000101	0.00153221
Zm00004b011289	GRMZM2G312738 Zm00001d013318	(1 of 2) K16278 - E: A0A1D6GI43	E3 ubiquitin-protein	65.6800622	-4.5080077	1.14236326	-3.9462121	7.94E-05	8.68E-03
Zm00004h031013	GRMZM2G052562 Zm00001d045302	(1 of 2) PTHR2283! A0A1D6NIV/49	Zea nodulation hor	245 889628	-4 5271323	0.99130819	-4 5668262	0 00000495	0 000833
Zm00004600075	CDM7M2C319002 7m000014045302	(1 of 19) DE07765 A0A4DOM071		AE 0447050	1 6010010	1 97770404	3 4050704	C.00000400	4.005.00
∠m000040030754	GINVIZIVIZG518992 ZITIUUUU10038407	(1 UI 10) FFU//00 - AUA1D6M6/1	FILEITINETWORK	40.0447659	-4.0910018	1.3///6484	-3.4052704	0.01E-04	4.69E-02
∠m00004b006255	GRMZM2G012628 Zm00001d002244	(1 of 6) PTHR2401; A0A1D6DYK9	Polyadenylate-bindi	207.03206	-5.2517456	1.36955945	-3.834624	1.26E-04	0.01244172
Zm00004b025060	GRMZM2G112681 Zm00001d008817	(1 of 3) PTHR3107{A0A1D6FFQ8	NAC domain contai	44.5506993	-5.5508241	1.27422831	-4.3562241	0.0000132	0.00185697
Zm00004b024033	GRMZM2G081644 Zm00001d053447	A0A1D6OPH7	Uncharacterized pro	4.30518018	-5.560515	1.57323927	-3.5344369	4.09F-04	0.03185181
Zm00004b044030	GRM7M2G027135 7m000014014000	(1 of 1) PTHP1219 PAFYM2	Lincharacterized or	4 39600406	-5 5937533	1 /7030337	_3 7067754	0.000147	0.01409050
2000040011936			This I disulf.	+.30009400	-J.302/533	1.4/03933/	-3.190//54	0.000147	0.01408052
∠muu004b011171	GRMZM2G033198 Zm00001d013184	(1 0T 2) PTHR1043{A0A096QB26	i nioi aisulfide interc	4.48040404	-5.6103985	1.60717577	-3.4908431	0.000481	0.03636419
Zm00004b039392	GRMZM2G151041 Zm00001d025240	(1 of 3) K00164 - 2-A0A1D6J5Q7	2-oxoglutarate dehy	1138.01393	-5.7409501	1.6081364	-3.5699398	0.000357	0.02848875
Zm00004b025158	GRMZM2G161988 Zm00001d008944	(1 of 4) KOG2887 - A0A1D6FGT7	Uncharacterized pro	4.97261301	-5.7679222	1.5915362	-3.6241226	2.90E-04	0.0240047

Zm00004b018231	GRMZM2G025703 Zm00001d042613	(1 of 2) PTHR1061{A0A1D6N5E7	RING/FYVE/PHD-ty	5.558418	-5.931268	1.52727424	-3.8835645	0.000103	0.01062619
Zm00004b015220	GRMZM2G021514 Zm00001d018189	(1 of 1) PF00400//PA0A1D6HLB9	Major facilitator sup	5.65292164	-5.9470806	1.54429679	-3.8509959	0.000118	0.01187608
Zm00004b004118	GRMZM2G167438 Zm00001d032728	(1 of 30) K15397 - 384FQN3	3-ketoacyl-CoA syn	5.68148542	-5.9587649	1.39894683	-4.2594649	0.0000205	0.00273966
Zm00004b009098	GRMZM2G134351 Zm00001d005859	(1 of 1) PTHR1368(A0A1D6ERB3	Eukaryotic aspartyl	5.80723206	-5.9856396	1.47557762	-4.0564722	4.98E-05	5.94E-03
Zm00004b030863	GRMZM2G044457 Zm00001d038536	(1 of 3) PTHR10984 A0A1D6M733	Endoplasmic reticul	21.3259172	-6.0051667	1.52724447	-3.9320271	0.0000842	0.0091077
Zm00004b038273	GRMZM2G316593 Zm00001d023907	K7TJX6	Uncharacterized pro	6.29336864	-6.1070367	1.73815496	-3.5135168	0.000442	0.03378431
Zm00004b040445	GRMZM2G007477 Zm00001d026489	(1 of 1663) 2.7.11.1 K7TP92	OSJNBb0022F16.1	39.149517	-6.3328095	1.31171634	-4.8278803	0.00000138	0.000268
Zm00004b006220	GRMZM2G114861 Zm00001d002186	(1 of 1) PTHR2411{A0A1D6DXK1	Kinesin-like protein	7.4353572	-6.3452997	1.54048688	-4.1190222	0.000038	0.00473499
Zm00004b039285	GRMZM2G081585 Zm00001d025106	(1 of 9) K04564 - st K7U2E7	Superoxide dismuta	7.93221065	-6.4429844	1.37152492	-4.6976794	0.00000263	0.000473
Zm00004b000181	GRMZM2G176585 Zm00001d027447	(1 of 3) PTHR3187(A0A1D6JM71	Det1 complexing ut	67.4247474	-6.7039036	1.08801441	-6.1615945	7.20E-10	2.69E-07
Zm00004b034890	GRMZM2G107408 Zm00001d018906	B4FF39	Uncharacterized pro	200.726775	-6.8974602	1.62732124	-4.2385363	0.0000225	0.00294816
Zm00004b038011	GRMZM2G381429 Zm00001d023553	(1 of 2) PTHR2315(A0A1D6IU36	Disease resistance	14.1893652	-7.2758491	1.37114923	-5.3063875	0.000000112	0.000027
Zm00004b026342	GRMZM2G157705 Zm00001d010455	A0A1D6ER41	Reticulon-like prote	14 4386388	-7 3062458	1 43186922	-5 102593	0.000000335	0.0000737
Zm00004b038742	GRMZM2G148316 Zm00001d024476	A0A1D6IZI6	UDP-glycosyltransfi	15.6056043	-7.4185534	1.49455082	-4.9637344	0.000000692	0.000146
Zm00004b026136	GPMZM2G149808 Zm00001d010206	(1 of 3) PTHR1328(B4FT44	SAP30 Sin3 bda d	16.0010348	-7 4530717	1 89630859	-3 9303053	8 48E-05	9 12E-03
Zm00004b013766	GPMZM2G137495 Zm00001d016440	(1 of 2) PTHP2407(A0A1D6H7) 4	DNA I heat shock fr	35 5552131	7 6372363	1 23540564	6 1910665	6.33E 10	2.46E.07
Zm00004b037040	GPMZM5G830644 Zm00001d070440	(1 of 21) PE00560// A0A1D6ITE5	Butative Jourine rid	10 9102521	7 7600494	1.20035714	4 5660009	0.0000405	2.402-07
Zm00004b001549	CDMZM3C134671 Zm00001d020470	(1 of 52) PE06303 CODI33		10.020207	7 763766	1 7767039	4.3603500	1.245.05	1 765 02
Zm00004b001530	GRMZM2G154671 ZIII00001d029149	(10152) FF00203 - C0F133	Upphorectorized pr	19.030007	-7.703730	2 10202511	-4.3097320	1.24E-03	1.70E-03
Zm00004b039025	GRMZM2G016312 Zm00001d024798		Uncharacterized pro	19.9227091	-7.7693616	2.19202511	-3.5443762	0.000394	0.03102407
Zm00004b017703	GRMZM5G813403 Zm00001d042016	(1 of 309) 6.3.2.19 · B61125	Uncharacterized pro	20.0343	-7.7752321	1.58789062	-4.8965791	0.00000975	0.000193
Zm00004b005561	GRMZM2G347056 Zm00001d034602	(1 of 1) K00297 - m A0A1D6L979	Brown midrib2	21.7107574	-7.8927693	1.98910339	-3.9680035	7.25E-05	0.0081949
Zm00004b031719	GRM2M2G455243 2m00001d045080	(1 of 2) K02603 - or A0A1D6NTH3	Origin recognition c	24.1413339	-8.0473034	1.29821421	-6.1987485	5.69E-10	0.00000023
Zm00004b037473	GRMZM2G018771 Zm00001d022337	(1 of 2) 3.5.1.88 - P A0A1D6IL69	Peptide deformylas	25.1511161	-8.1065104	1.405358	-5.7682885	8.01E-09	2.30E-06
Zm00004b022114	GRMZM2G418604 Zm00001d051183	(1 of 1) K14327 - re A0A1D6Q5H4	Regulator of nonser	25.6683286	-8.1347867	1.87357723	-4.3418476	0.0000141	0.00194146
Zm00004b018825	GRMZM2G093101 Zm00001d043291	(1 of 1) PTHR2295(A0A1D6NA73	Purple acid phosph	29.2236183	-8.3224876	1.26522035	-6.5778958	4.77E-11	2.25E-08
Zm00004b007010	GRMZM2G086486 Zm00001d003117	(1 of 3) PTHR10744A0A1D6E6T4	40S ribosomal prote	29.5062216	-8.3337836	1.31279641	-6.3481157	2.18E-10	9.58E-08
Zm00004b005777	GRMZM2G164547 Zm00001d034859	B7ZZ71	Cobalt ion binding	30.292121	-8.3727734	2.14441788	-3.9044504	0.0000944	0.01004666
Zm00004b017733	GRMZM2G059083 Zm00001d042049	(1 of 3) 1.6.99.1 - NA0A1D6N0R1	FerredoxinNADP	10464.5512	-8.4011245	1.56595333	-5.3648626	0.00000081	0.0000203
Zm00004b005843	GRMZM2G077222 Zm00001d034935	(1 of 2) KOG3251 - A0A1D6LCQ1	Uncharacterized pro	37.6670904	-8.6870873	1.69872918	-5.1138742	0.00000316	0.000071
Zm00004b019700	GRMZM2G070961 Zm00001d044293	(1 of 4) PF00069//PA0A1D6NKI4	Protein kinase prote	38.4859778	-8.716857	1.32060373	-6.6006606	4.09E-11	1.98E-08
Zm00004b031672	GRMZM2G447806 Zm00001d045009	A0A1D6NST3	Uncharacterized pro	42.7021894	-8.8681762	1.51122296	-5.8682116	4.41E-09	0.00000141
Zm00004b000867	GRMZM2G043584 Zm00001d028317	(1 of 34) PF00069// A0A1D6JUB4	Leucine-rich repeat	50.3398948	-9.1050678	1.62156852	-5.6149757	1.97E-08	5.26E-06
Zm00004b020252	GRMZM2G468260 Zm00001d048796	(1 of 3) PTHR2276: A0A1D6PQ59	RING/U-box superfi	53.9469078	-9.2054014	2.53250159	-3.6349045	2.78E-04	2.34E-02
Zm00004b015124	GRMZM2G036418 Zm00001d018057	(1 of 1) PTHR1352(A0A1D6HKI4	RINT1-like protein I	55.1481017	-9.2386971	1.2420628	-7.4381884	1.02E-13	8.08E-11
Zm00004b003465	AC234528.1_FG00 Zm00001d031928	(1 of 1) PF11595 - FB6TZS4	Uncharacterized pro	60.0901134	-9.3602792	1.25718448	-7.4454301	9.66E-14	7.97E-11
Zm00004b030599	GRMZM5G881803 Zm00001d038205	(1 of 4) PTHR31942A0A1D6M4I8	MLO-like protein	77.0738763	-9.7205791	1.63722392	-5.9372325	2.90E-09	9.89E-07
Zm00004b006558	GRMZM2G114220 Zm00001d002598	(1 of 1) PTHR1255(B6T4L6	Ubiquitin fusion dec	82.6579962	-9.8207032	1.42068652	-6.9126462	4.76E-12	2.69E-09
Zm00004b012058	GRMZM2G366638 Zm00001d014207	A0A1D6GR10	Uncharacterized pro	85,6508137	-9.8719883	1,23584383	-7.9880549	1.37E-15	1.36E-12
Zm00004b024150	GRMZM2G171452 Zm00001d053625	(1 of 21) PF01918 - B6T175	Alba DNA/RNA-bin	93.8008006	-10.004327	1,24530628	-8.0336274	9.46F-16	1.01E-12
Zm00004b031781	GRMZM2G023636 Zm00001d045147	(1 of 2) PTHR1893(A0A1D6NU12	Putative pre-mRNA	99 6267326	-10 090917	2 06077138	-4 8966697	0.000000975	0.000193
Zm00004b031625	GRMZM2G088053 Zm00001d044951	(1 of 54) PE00892 - B4ETK8	WAT1-related prote	124 401544	-10 411613	1 27855043	-8 1432945	3.85E-16	5.07E-13
Zm00004b024037	GPMZM2G020058 Zm00001d053452	(1 of 5) PE00076//PA0A1D60PS5	Polyadenylate-hindi	203 284528	-11 119527	1 67867824	-6 6239776	3.50E-11	1 77E-08
Zm00004b024037	GPMZM2G396200 Zm00001d033432	(1 of 8) KOG4293 A0A1D6K IM6	Cutochromo b561 a	203.204320	11 242145	1 30757105	9.040549	9.60E 16	1.01E 12
Zm00004b003203	CDMZM2C020001 Zm00001d0031333	(1 of 7) DTHD1260(A0A1D6E020	DINC/11 how our orf	221.202013	-11.242143	1.00064065	-0.0440340	4.70E.00	0.00000146
ZIII000040007229	GRMZM2G029001 ZIII000010003394	(1 01 7) FTHR1200. A0A 1D0E920	RING/U-DOX Superia	221.030007	-11.244202	1.92004005	-5.6544016	4.79E-09	0.00000146
Zm00004b030622	GRMZM2G175676 Zm00001d038248	(1 of 4) K12831 - SEAUATDOW4R6	RINA-binding (RRIVI.	322.000804	-11./85/83	1.82352341	-0.4031924	1.03E-10	4.61E-08
Zm00004b018149	GRMZM2G064914 Zm00001d042512	(1 0F2) PTHR1124(A0A1D6N4Q6	Ribonuclease 2	421.032858	-12.171961	3.56098798	-3.4181417	0.000631	0.04536639
Zm00004b011184	GRMZM2G114557 Zm00001d013195	(1 of 3) PTHR1238 AUA1D6GGF2	I nylakoidal process	443.480025	-12.24485	3.58774162	-3.4129687	0.000643	0.04573738
Zm00004b019678	GRMZM5G848696 Zm00001d044267	(1 of 2) K18121 - gl A0A1D6NK13	Glyoxylate/succinic	469.510211	-12.327109	1.22910896	-10.029306	1.13E-23	3.20E-20
∠m00004b037198	GRMZM2G167932 Zm00001d021999	(1 of 1) PF02136//PA0A1D6IIC4	Nuclear transport fa	497.082753	-12.409565	1.38506885	-8.9595291	3.26E-19	4.96E-16
∠m00004b019828	GRMZM2G143128 Zm00001d044445	(1 of 2) K03661 - V-#N/A	#N/A	507.068603	-12.438167	3.57743815	-3.4768365	0.000507	0.03801417
Zm00004b003707	GRMZM2G092595 Zm00001d032238	(1 of 1) PTHR1135: A0A1D6KPG0	Putative 1-phospha	598.995823	-12.678531	3.6072989	-3.5146883	0.00044	0.03378431
Zm00004b037850	GRMZM2G129804 Zm00001d023340	(1 of 1) K02356 - el A0A1D6ISX4	Elongation factor P	830.618221	-13.150242	1.20932357	-10.874048	1.53E-27	1.01E-23
Zm00004b031504	GRMZM2G026833 Zm00001d044785	(1 of 334) PF00249 K7W4V3	G2-like1	1385.73578	-13.888696	1.34835579	-10.300468	7.01E-25	2.77E-21
Zm00004b026230	GRMZM2G086464 Zm00001d010314	A0A1D6FQC3	Uncharacterized pro	1530.26023	-14.031661	3.71963824	-3.7723187	1.62E-04	0.0151673
Zm00004b000190	GRMZM2G177508 Zm00001d027456	(1 of 3) PTHR33222 B4FTJ9	PBA1 homolog1 (TI	9043.16785	-16.594887	1.31130707	-12.655226	1.05E-36	2.07E-32

TABLE NOTES:

GENEIDS 873v3 GeneIDs were obtained from the W22 GeneIDs using a MaizeGDB syntelogs lookup table made with SynMap TABULATION: Differential expression analysis was performed separately per tissue (leaf mutant vs. WT or tassel mutant vs. WT) as described in the Methods

TABLULATION: This entire table, sorted on col-H, log2(fold-change), includes statistically significant differentially expressed (adjusted p-value <0.05) genes and excludes any genes with fewer than 10 counts across sum of all replicates. COLUMNS G-L: Columns G-L tabulate output values for the baseMean, the log2(fold-change), along with the associated values for standard error (ft/SE), Wald statistic (stat), pvalue, and adjusted pvalue (padj). PROVENANCE: Supplementary Table S2 from Mckenna, Gumber, et al., "Maize (Zea mays L.) nucleoskeletal proteins regulate nuclear envelope remodeling...", submitted 12/2020, FiPS

Table S2: Differentially expressed genes between mkaku41 mutant versus wildtype plants for maize leaf and tassel.

Table S2 (Tab 2 of 2) TASSEL DEGs. All 155 Differentially Expressed Genes from Tassel.

		Phytomine	Uniprot		log2FoldChange				
W22v2 GeneID	B73v3 GeneID B73v4 GeneID	description Uniprot id	descriptor	baseMean-LEAF	(mutant/WT)	lfcSE sta	it p	value p	adj
Zm00004b019058	GRMZM2G031308 Zm00001d043551	(1 of 5) PTHR10994 B6TGL5	Reticulon-like prote	1116.51594	13.6331752	3.54537242	3.84534362	0.00012	0.01847303
7m00004b037108	GPM7M2G167032 7m00001d021000	(1 of 1) PE02136//PA0A1D6IIC4	Nuclear transport fo	027 603007	13 3657600	3 51955276	3 70965206	0.000145	0.02157566
Zm00004b037198	GRMZM2G167932 Zm00001d021999	(1 0f 1) PF02136//PA0A1D6IIC4	Nuclear transport ta	927.603007	13.305/009	3.51855276	3.79805290	0.000145	0.02157566
Zm00004b040337	GRMZM2G097854 Zm00001d026369	(1 of 3) K08695 - ar A0A1D6JF45	Anthocyanidin redu	832.100873	13.2090143	3.56596764	3.70418794	0.000212	0.02892647
Zm00004b016461	GRMZM2G091119 Zm00001d040274	(1 of 4) PF00514//PA0A1D6MPN9	Importin subunit alp	766.55018	13.0909023	1.25515948	10.4296725	1.82E-25	6.68E-22
Zm00004b012240	GRMZM2G085967 Zm00001d014467	(1 of 1) PTHR3123(B6THU9	Peroxidase (EC.1.1	759 921198	13 0781172	3 49760919	3 7391591	0.000185	0 02582228
Z==00004b000000	ORMZN2000007 Zm00001d011101	(1 of 4) DTUD4020(DCTK24	DUD fares setsis	00.021100	40.0400000	4.50000054	0.5700050	4.045.47	4.405.44
Zm00004b030603	GRMZM2G016817 Zm00001d038208	(1014) PTHR1232 B61K34	PHD tinger protein	0//.//5030	12.9132908	1.50630854	8.5728059	1.01E-17	1.49E-14
Zm00004b012451	GRMZM2G084521 Zm00001d014732	(1 of 1) PTHR11071A0A1D6GVX5	Peptidyl-prolyl cis-tr	477.323952	12.4072467	3.43872232	3.60809788	0.000308	0.03962687
Zm00004b034468	GRMZM2G063060 Zm00001d048409	(1 of 5) K13525 - tr: A0A1D6PJZ0	Cell division control	651.478524	11.8939283	2.18052918	5.45460636	4.91E-08	0.0000155
7m00004b031400	GRMZM2G000520 Zm00001d030167	(1 of 1) PTHP1038 B4F974	ATP-dependent Cin	315 8768	11 8117851	1 25206243	9 4338627	3 95E-21	7 04F-18
2				000.000	11.07011001	1.20200210	7.50040405	0.002 21	0.005 44
Zm00004b022426	GRMZM2G147701 Zm00001d051552	(1 of 2) 1.1.1.102 - K7U3E5	3-dehydrosphingan	287.984997	11.6784178	1.54025663	7.58212465	3.40E-14	2.89E-11
Zm00004b003468	GRMZM2G103258 Zm00001d031933	(1 of 2) K09598 - si B6TY57	Signal peptide pept	170.324314	10.9206558	1.90401389	5.73559672	9.72E-09	0.00000352
Zm00004b002034	GRMZM2G453832 Zm00001d029808	(1 of 3) PTHR1389(A0A1D6K7V9	Magnesium transpo	153.335766	10.7689598	1.36515021	7.88847976	3.06E-15	3.56E-12
7m00004b014513	CPM7M2C160067 7m00001d017377	(1 of 93) PE01357// A0A1D6HEG4	Rota expansin 3	145 470007	10 6032260	1 51069069	7 07941642	1 465 12	0.215 10
2.000040014010				140.470007	10.0002200	1.01000000	0.01041042	1.400-12	0.210-10
Zm00004b006032	GRMZM2G061745 Zm00001d001966	(1 0f 2) K03038 - 2EA0A1D6DUX4	26S proteasome no	141.170616	10.649926	1.29679144	8.21252027	2.17E-16	2.99E-13
Zm00004b013432	GRMZM2G130425 Zm00001d016034	(1 of 2) K03363 - c∈C0PLV0	Cell division cycle20	521.93026	10.275466	2.88710491	3.55908994	0.000372	0.04619789
Zm00004b032186	GRMZM2G459172 Zm00001d045615	(1 of 2) PTHR1266{A0A1D6NXR5	Protein FATTY ACI	86.95675	9.95034834	1.28432357	7.74754008	9.37E-15	9.10E-12
7m00004b036464	GRMZM5G822842 Zm00001d021072	(1 of 3) PE13889 - (A0A1D6880	DLIE4210 domain-c	83 2020674	0 88888472	1 23604461	7 9946059	1 30E-15	1.60E-12
2.000040000407			DOI 42 10 0011011-0	00.2020014	0.00000472	1.20004401	0.0005003	1.000-10	7.000-12
Zm00004b025017	GRMZM2G032190 Zm00001d008759	copper ion binding AUA1D6FF81	Uncharacterized pro	70.5856734	9.64930986	1.60646012	6.0065667	1.89E-09	7.48E-07
Zm00004b001099	GRMZM2G100086 Zm00001d028585	(1 of 4) PTHR3060(A0A096RK86	RNA polymerase si	49.6978463	9.14362423	1.26003287	7.25665535	3.97E-13	2.74E-10
Zm00004b012418	GRMZM2G170805 Zm00001d014692	(1 of 4) PE06094 - (B4EVZ7	AIG2-like protein	266.67295	9.11671684	0.90708367	10.0505799	9.13E-24	2.52E-20
7m00004b004132	GRMZM2G134747 Zm00001d032736	(1 of 1) 4 2 1 104 - (A0A1R3MBN3	Cvanate hydratase	338 974496	8 80622145	2 35087671	3 74593079	0.00018	0 02545775
211000040004102		(1011) 4.2.1.104 - AdATICONDINS	oyunate nyuratase	000.07 4400	0.00022140	2.00001011	0.14000010	0.00010	0.02040110
Zm00004b037937	GRMZM2G148404 Zm00001d023453	C0HI40	Uncharacterized pro	37.7204071	8.74631485	1.56432485	5.59111163	2.26E-08	0.00000755
Zm00004b023615	GRMZM2G397281 Zm00001d052963	A0A1D6QL57	EGF-like domain-co	34.783636	8.6294773	1.42645668	6.04958947	1.45E-09	6.05E-07
Zm00004b039332	GRMZM2G139407 Zm00001d025165	(1 of 4) PTHR1069(K7TNM4	Nuclear transport fa	342.380481	8.38816455	1.93661663	4.33135004	0.0000148	0.00289799
Zm00004b013393	GRMZM2G019553 Zm00001d015988	(1 of 1) K02200 - cv B6SU73	Cytochrome c-type	27 3880860	8,28329824	2 02586486	4.08877137	0.0000434	0.00772796
2	CDMZM2C010000 Z1000010010900	(1 - E 40) K40700 - D (50) 0	or up-	407 000009	7.0010102	2.02000400		0.0000404	0.00112190
∠muuuu4b027287	GRIVIZIVIZGU3U284 ZM00001d011615	(10113) K 10/32 - [B4F8V2	oo-кµa microtubule	167.362819	7.92131804	2.00239446	3.95592287	0.0000762	0.01266669
Zm00004b032576	GRMZM2G083841 Zm00001d046170	(1 of 3) PTHR3052(Q43267	PEP carboxylase (F	18.6138473	7.72779073	1.43542165	5.38363813	7.30E-08	0.0000218
Zm00004b040223	GRMZM2G415229 Zm00001d026245	(1 of 6) PTHR1003(A0A1D6JDK2	Trihelix transcription	18.160057	7.69219139	1.58572195	4.85090805	0.00000123	0.000289
7m00004b036145	GPM7M2G127537 7m00001d020670	(1 of 2) PE00046//PR4EH50	HP transcription fac	17 7079164	7 65622705	1 /1090273	5 42651252	5 755 09	0.0000170
211000040030143	GRWZWZG127337 ZIII000010020070	(1012) F100040//F D411139		17.7070104	7.03022703	1.41003273	3.42031232	3.73E-00	0.0000173
Zm00004b018381	GRMZM5G831584 Zm00001d042762	(1 of 2) 3.1.1.89 - P A0A1D6N6L2	Catalytic/ hydrolase	84.6504735	7.56126644	1.36363839	5.54492049	2.94E-08	0.0000097
Zm00004b039799	GRMZM2G005939 Zm00001d025752	A0A1D6J9A3	Transcription factor	83.7504033	7.52422242	1.202317	6.25810199	3.90E-10	1.83E-07
Zm00004b011538	GRMZM5G822180 Zm00001d013598	(1 of 65) PF14368 - B4G0Q2	Lipid binding proteir	30,752681	7.48199367	1.31879864	5.67334044	1.40E-08	0.00000491
7m00004b028308	CPM7M2C032315 7m00001d035087	(1 of 3) K02042 In R6T361	60S acidic ribosom	0.57009921	6 76511433	1 70400973	3 77075022	0.000163	0.02340051
211000040026396	GRIVIZIVIZG032315 ZIII000010035067	(1013) R02942 - Iai B61361	003 acidic fibosofia	9.57096621	0.70511433	1.79409073	3.77075922	0.000163	0.02340051
Zm00004b039943	GRMZM2G017815 Zm00001d025911	(1 of 11) PTHR1422K7U5C2	I ransducin/WD40 r	62.494728	6.76470472	1.9033603	3.55408523	0.000379	0.04654892
Zm00004b019310	GRMZM2G316223 Zm00001d043819	(1 of 1) PF00415//PA0A1D6NF99	Uncharacterized pro	9.45026789	6.74829124	1.45030119	4.65302745	0.00000327	0.00073
Zm00004b005589	GRMZM2G155329 Zm00001d034635	(1 of 1) K01859 - cl B6TJA9	Chalcone-flavonone	2498.54833	6.712817	1.6798008	3.99619824	0.0000644	0.01094105
7m00004b019191	GPM7M2G329705 7m00001d042559	(1 of 1) DTHD3170: A0A1D6N567	TPP repeat contain	9 7/3302/2	6 63700001	1 75939040	3 77409944	0.00016	0.02340051
211000040010101	GRWZW2G326793 2110000 10042330	(TOFT) FTHING T/S ADATEONSO/	TFIX Tepeat-contain	0.74333242	0.03730001	1.73030343	3.77430044	0.00010	0.02340031
Zm00004b037112	GRMZM2G092669 Zm00001d021879	(1 of 11) PF14365 - B4G0L1	NEP-interacting pro	449.338405	6.52571887	1.54959928	4.21122992	0.0000254	0.00479683
Zm00004b027462	GRMZM2G167758 Zm00001d011799	(1 of 1) PTHR3421(K7V1E4	Nuclear transport fa	7.40410104	6.39553672	1.61471115	3.96079307	0.0000747	0.0125051
Zm00004b009299	GRMZM2G179002 Zm00001d006102	(1 of 4) PTHR2288(A0A1D6ESW0	Uncharacterized pro	355,743669	6.22902942	0.6923039	8.99753627	2.31E-19	3.92E-16
Zm00004b026474	GPM7M5G927266 7m00001d010614	(1 of 3) K02076 or A0A1D6ESC6	40S ribosomal prote	4312 26069	6 11/67177	1.01709407	6.00654057	1 005 00	7 495 07
211000040020474	GRWZW3G627200 ZIII0000 10010014	(1013) R02970 - SI A0A ID01 300	403 100301181 prote	4312.20900	0.11437177	1.01730407	0.00034337	1.502=05	7.402-07
Zm00004b014767	GRMZM2G428233 Zm00001d017658	(1 of 11) PF08458 - A0A1D6HG97	Uncharacterized pro	5.23476558	5.8965248	1.65059434	3.5723646	0.000354	0.04467034
Zm00004b033022	GRMZM2G180863 Zm00001d046742	(1 of 1) PTHR1021(B7ZZ73	Ribose-phosphate p	199.077229	5.86648046	1.33522799	4.39361704	0.0000111	0.00223943
Zm00004b008843	GRMZM2G346865 Zm00001d005544	(1 of 2) PTHR1931(A0A1D6ENR8	ARM repeat superfa	46.3742592	5.855099	1,26125486	4.64228063	0.00000345	0.000761
Zm00004b026007	AC207342.3 EC00.7m00001d011145	(1 of 3) PE13474 (P4EET0	E box protein SKIP	66 4771104	5 91106553	1 49313606	3 01900333	0.0000803	0.01420134
211000040020907	AC207342.3_FG00211000010011145	(1013) PF13474 - (B4PE10	F-DOX PIOLEIN SKIP	00.4771194	5.61100555	1.403 13000	3.91009333	0.0000693	0.01429134
Zm00004b025652	GRMZM2G058913 Zm00001d009591	(1 of 4) PTHR1275{A0A1D6FKE6	GBF-interacting pro	72.2310448	5.80719248	1.51786221	3.82590228	0.00013	0.01958575
Zm00004b017977	GRMZM2G119650 Zm00001d042309	(1 of 2) PTHR3213(A0A1D6N2R0	F-box only protein 6	190.959684	5.45833106	1.22510187	4.45540997	0.00000837	0.00174552
Zm00004b033705	GRMZM2G462803 Zm00001d047540	(1 of 1) PE06920//PA0A1D6PBE4	Guanine nucleotide	134.054619	5,44016169	1,23490804	4 40531726	0.0000106	0.00216119
Z==00004b044500	CRM2M2C000240 7-000044047000		Qualia T4 0	400.000000	5.00004000	4.45077000	0.74477000	0.0000000	0.00200040
Zm00004b014532	GRMZM2G068340 Zm00001d017392	(10f2) PTHR1002(A0A1D6HEM4	Cyclin-11-3	198.893809	5.38931983	1.45077883	3./14//699	0.000203	0.02798318
Zm00004b018190	GRMZM2G070562 Zm00001d042569	(1 of 1) K03108 - si A0A1D6N584	Signal recognition p	717.560538	5.37996285	0.62550463	8.60099611	7.90E-18	1.25E-14
Zm00004b025991	GRMZM2G102745 Zm00001d010023	(1 of 2) K15115 - scA0A1D6FNM8	Nicotinamide adeni	56.4004262	4.96359461	1.39255218	3.5643868	0.000365	0.04578948
Zm00004b034487	GRMZM2G115674 Zm00001d048431	(1 of 3) PE15365 - [K7VOD7	Uncharacterized pro	96 1690586	4 93403936	1 29122851	3 82119766	0.000133	0.01982835
Z00004b045400	CDN7N0C070000 700004-040404	(1 - f 470) DTUD04(404000D005	Oherene entrie	04.0004045	4 700 477 40	4.40000004	4 47407000	0.0000000	0.0050045
Zm00004b015186	GRMZM2G072300 Zm00001d018131	(1 0F173) PTHR24(A0A096R205	Chaperone protein	21.0294045	4.72947748	1.13382031	4.1/12/603	0.0000303	0.0056245
Zm00004b032905	GRMZM2G105167 Zm00001d046592	(1 of 2) KOG3306 - K7VW99	ER membrane prote	206.287168	4.7211818	1.15860049	4.07490058	0.000046	0.00813771
Zm00004b030094	GRMZM2G034622 Zm00001d037557	(1 of 1) K10589 - ut A0A1D6LYY6	E3 ubiquitin-protein	519.15557	4.71657044	0.80201653	5.88088928	4.08E-09	0.00000155
Zm00004b030898	GRMZM2G020150 Zm00001d038585	(1 of 213) PE00847 A0A1D6M7D1	Putative AP2/FRFB	56.826908	4,70792367	0.73702313	6.38775562	1.68E-10	8.09F-08
7m00004b034054	GPM7M2G006672 7m00001d050005	(1 of 5) K00030 ic A0A1D60401	leocitrate debud	16 045000	4 63440650	1 20156412	3 77250262	0.000161	0.00040054
2.11000040021954		(1 0) 3) KOUUUU - ISIAUA IDOQ401	isociliate deliyufogi	10.040009	+.33410059	1.20100413	J.11300302	0.000101	0.02340051
∠m00004b028599	GRMZM2G036908 Zm00001d035447	(1 of 3) K14689 - scA0A1D6LGF5	Metal tolerance pro	409.16687	4.46231855	0.59555026	7.49276567	6.74E-14	5.32E-11
Zm00004b012681	GRMZM5G806358 Zm00001d014998	(1 of 1) PTHR1398(C0PP15	FACT complex sub	1291.20935	4.46041724	0.58607138	7.61070651	2.73E-14	2.41E-11
Zm00004b034033	GRMZM2G101001 Zm00001d047912	C0P8K4	Translation initiation	472.429917	4.30781299	1.1409786	3.77554232	0.00016	0.02340051
Zm000046023245	GRMZM2G059381 Zm00001d052495	(1 of 2) PTHR2409(R6SW/E6	AMP-hinding protein	230 813652	4 10842567	1 15300827	3 6384307	0 000274	0.03586/46
2.000040020240		(1012)111112405(D00WE0		200.010002	4.10042007	0.70000027	5.0004007	0.000274	0.00000440
ZITIUUUU4DU33266	GRIVIZIVIZG 116327 ZMUUUU10047063	(1012) PTHK2823(B6SKI/	Campnor resistance	230.168414	4.14211418	0.70868349	5.84480126	5.07E-09	0.0000187
∠m00004b018529	GRMZM2G359234 Zm00001d042943	(1 of 4) PTHR1036(A0A1D6N7M5	UDP-glucuronic aci	427.784759	3.8668841	0.60111732	6.43282757	1.25E-10	6.29E-08
Zm00004b015462	GRMZM5G824600 Zm00001d018468	(1 of 1) 1.2.1.1 - TraA0A1D6HP90	Formaldehyde dehy	2308.1842	3.76544431	0.24689454	15.2512258	1.62E-52	3.57E-48
Zm00004b025644	GRMZM2G413652 Zm00001d009580	(1 of 1) K03189 - ur A0A1D6EKC6	Urease accessory r	299 32788	3.73454777	0.9269234	4,02897131	0.000056	0.00967114
Zm000045000454	CDM7M6C744620 7-00004-010000		400 ribor	060 040044	0.70405000	0.76047007	4 95040407	0.0000040	0.00007114
∠11000040026151	GINVIZIVIOG741620 ZM000010010220	AUA1D6FPV2	403 noosomai prote	900.613911	3.13185328	0.70847807	4.0001010/	0.0000012	0.000284
Zm00004b004862	GRMZM2G346263 Zm00001d033654	(1 of 1) PTHR1895(A0A1D6L178	Opaque endosperm	20.3271731	3.22962957	0.83761752	3.85573308	0.000115	0.01795511
Zm00004b037008	GRMZM2G050933 Zm00001d021745	(1 of 1) K18812 - cyB6TAD6	CYCD6	1010.40449	3.1479061	0.53784676	5.85279362	4.83E-09	0.00000181
Zm00004b014509	GRM7M2G420469 7m00001d017371	(1 of 11) PTHR142: 404106HED4	Signal transducer	167 803000	2 80874052	0 80718660	3 59117606	0 000320	0.04180513
Zm000045020005	CDM7M2C202740 7-00004 dcc 1077	(1 of 2) DTUD4070(A0A4DO 10)(2	Drotoin CUDOMAT	100 740500	2.00074002	0.66700505	E 00070000	0.000020	0.00000010
∠inuuuu4bu38905	GRIVIZIVIZG393742 ZMUUUU10024677	(1012) PTHR10/9(A0A1D6J0X9	Frotein CHROMATI	108.712563	2.89269635	0.56788595	5.U9379809	3.51E-07	0.0000881
Zm00004b037289	GRMZM2G038303 Zm00001d022109	(1 of 3) PTHR1263; A0A1D6IJ95	Nuclear transcriptio	122.841214	2.5689457	0.39349329	6.52856299	6.64E-11	3.49E-08
Zm00004b022846	GRMZM2G032163 Zm00001d052050	(1 of 4) 5.3.3.2 - Iso A0A1D6QCE2	Nudix hydrolase 3	1146.62228	2.30053508	0.38821183	5.92597885	3.10E-09	0.0000012
Zm00004h034305	GRM7M5G882285	#Ν/Δ	#N/A	56 4083527	2 20386867	0.62983361	3,64202326	0 000271	0 03557029
Zm000045044404	CDM7MEC064060 7-00004-010077		Dumain light shall	70.0040070	2.2000007	0.02000000	4 64050005	0.000271	0.00001920
∠muuuu40014191	GRIVIZIVIDG861269 Zm00001d016977	(1 01 3) PTHR1188(AUA1D6HBJ3	Dynein light chain	70.3348279	2.11193342	0.45/1777	4.01950225	0.00000385	0.000842
Zm00004b030010	GRMZM2G125054 Zm00001d037438	A0A1D6LXU8	Uncharacterized pro	252.813869	2.07092393	0.29085411	7.12014676	1.08E-12	7.01E-10
Zm00004b009281	GRMZM5G866100 Zm00001d006084	(1 of 3) K00876 - ur B6T7J2	Uridine kinase (EC	1543.09642	2.01148265	0.26371773	7.62740763	2.40E-14	2.21E-11
7m00004h002266	GRMZM2G430710 Zm00001d030143	(1 of 44) PE01535// A0A1D6KA87	Tetratricopentide re	30 942965	1,95994914	0.53979606	3.63090669	0 000282	0.03671056
2	ODMZN00450000 7 000010000143		Calma dulla la la	000.042000	4 50057075	0.0007.0000	3.50050003	0.000202	3.00071000
∠rnuuuu4b002292	GRIVIZM2G159992 Zm00001d030173	(1 of 2) PTHR2700: A0A1D6KAS3	carmodulin-binding	696.971619	1.52357862	0.2028397	7.51124466	5.86E-14	4.79E-11
Zm00004b027487	GRMZM2G133926 Zm00001d011828	(1 of 2) K14325 - RIA0A1D6G432	Serine/arginine-rich	253.228795	1.43514915	0.2521224	5.69227152	1.25E-08	0.00000447
Zm00004b007010	GRMZM2G086486 Zm00001d003117	(1 of 3) PTHR10744 A0A1D6E6T4	40S ribosomal prote	402.744292	1.36119528	0.29127527	4.67322644	0.00000297	0.000669
Zm00004b037480	GRMZM2G429231 Zm00001d022346	(1 of 2) KOG1860 - A0A1D6II B3	SAC3 family protein	590 373325	1,31006904	0.3493059	3.75049219	0 000176	0.02516033
Zm00004b000000	GPM7M2G379653 7m00004 1040753	(1 of 2) PTHP1256(A0A4D0D4)/2	Butativa LI LI DAVA	004 05401	4 04740005	0.00440000	5 10050001	0.00000000	0.0000707
∠inuuuu4bu33u38	GRIVIZIVIZG378053 ZMUUUU10046759	(1012) PTHK1256(AUA1D6P4V3	Futative HLH DNA-	281.65404	1.04740925	0.20418933	5.12959831	0.0000029	0.0000737
∠m00004b002665	GRMZM2G086887 Zm00001d030774	(1 of 11) KUG0123 A0A1D6KEA9	RNA-binding (RRM	2147.22187	0.99069478	0.16462362	6.01793825	1.77E-09	7.23E-07

Zm00004b037183	GRMZM2G411916 Zm00001d021972	(1 of 7) K01530 - pł A0A1D6II79	Phospholipid-transr	599.743563	0.91273641	0.17158889	5.31932126	1.04E-07	0.0000291
Zm00004b005747	GRMZM2G056393 Zm00001d034826	(1 of 1) PTHR23115 A0A1D6LBO9	Elongation factor G	962 317187	0 88687693	0 24287944	3 65151094	0.000261	0.03491353
Z	ODM2M20000000 2m0000010001020		Coning the series as	005.050004	0.00007.000	0.00004700	0.00101001	0.000201	0.00400040
Zm00004b005063	GRMZM2G033135 Zm00001d033935	(1 0f 2) K08873 - PIAUATD6L3E8	Senne/threonine-pr	905.356031	0.8536198	0.23391793	3.04922778	0.000263	0.03496643
Zm00004b018233	GRMZM2G034639 Zm00001d042615	(1 of 1) PF08729 - IA0A1D6N5F5	Wound-responsive	672.996245	0.68630198	0.15886115	4.32013723	0.0000156	0.00302249
Zm00004b025122	GRMZM2G472625 Zm00001d008893	(1 of 2) PTHR2405 B4FE45	Shaggy-related pro	1487.53332	0.67939668	0.12409803	5.47467734	4.38E-08	0.0000142
Zm00004b038192	GRMZM2G331368 Zm00001d023795	(1 of 3) K10592 - F: A0A1D6IVN3	E3 ubiquitin-protein	4755,10766	0.65216734	0.15818723	4,12275591	0.0000374	0.00678063
Zm00004b022002	CDMZM2C440000 Zm00001d0E2110	(1 of 1) DTHD1214(A0A1D60DE1	Oneque endeenerr	1124 47956	0 55751007	0 14797222	3 77034033	0.000162	0.02240051
2111000040022902	GRWZW2G449909 ZI1000010032110			7134.47030	0.00701021	0.14707332	3.11024932	0.000103	0.02340031
Zm00004b020700	GRMZM2G026459 Zm00001d049349	(1 of 2) PTHR11654A0A1D6PTX6	Protein NRT1/PTR	791.740497	-0.6716858	0.16230397	-4.1384435	0.000035	0.00638567
Zm00004b011043	GRMZM2G115612 Zm00001d013046	(1 of 3) PTHR1496(A0A1D6GF85	Lipid phosphate pho	714.795212	-0.8131227	0.20154562	-4.0344349	0.0000547	0.00952326
Zm00004b017318	GRMZM2G098397 Zm00001d041511	(1 of 5) K07964 - heA0A1D6MWN0	Heparanase-like pro	763.079646	-0.9465329	0.22192695	-4.2650651	0.00002	0.00380686
7m00004b022535	GRMZM2G012814_Zm00001d051687	(1 of 2) PTHP1098(K71)856	Rho GDP-dissociati	102 730112	-1 3000356	0 36476726	-3 8378871	0.000124	0.0189116
Z=00004b022000	ODM2NEO070570 7-00001-000500		Dutative DNA asker	040 04047	4.0000400	0.00504004	-0.0070071	5.335 40	0.0105110
Zm00004b020861	GRMZM5G870572 Zm00001d049563	(1 of 1) K03141 - tradua1D6PW70	Putative RNA polym	249.64317	-1.0230128	0.22531901	-7.2058404	5.//E-13	3.80E-10
Zm00004b033123	GRMZM2G058162 ubiquitin-conjugatir	n (1 of 3) PTHR24061#N/A	#N/A	690.415242	-2.0449529	0.37385177	-5.4699566	4.50E-08	0.0000144
Zm00004b000914	GRMZM2G157177 Zm00001d028372	(1 of 4) PTHR2295; A0A1D6JVI5	BZIP transcription fi	71.0752415	-2.0593793	0.30429553	-6.7676948	1.31E-11	7.81E-09
Zm00004b030613	GRMZM2G153075 Zm00001d038224	(1 of 2) K03875 - F-B4F7T2	E-box protein EBI 2	218,253808	-2.0984351	0.57522464	-3.648027	0.000264	0.03496643
Zm00004b034794	CPM7M2C012031 7m00001d018705	(1 of 1) DTHP2436(A0A1D6HSC5	197 kDa microtubul	1291 92607	2 5696201	0.39603954	6 6537010	2 965 11	1 62E 09
211000040034704				7201.02097	-2.3000201	0.00000004	-0.0337919	2.000-11	1.022=00
Zm00004b029454	GRMZM5G829955 Zm00001d036709	(1 of 1) K12857 - PIAUA1D6LQJ4	Transducin/WD40 r	/2.5/53958	-2.5762318	0.34823181	-7.398037	1.38E-13	9.85E-11
Zm00004b037334	GRMZM2G371721 Zm00001d022168	(1 of 5) PTHR2407{Q5GAN9	AT hook-containing	66.8457668	-2.7007364	0.36102147	-7.4808194	7.39E-14	5.63E-11
Zm00004b011381	GRMZM2G090172 Zm00001d013431	(1 of 2) PTHR2406 A0A1D6GJ80	Ubiquitin-conjugatir	178.729135	-2.7762387	0.68518628	-4.0518014	0.0000508	0.0089133
Zm00004b016600	GRMZM2G305264 Zm00001d040445	(1 of 2) PTHR2276(C0PE84	RING/U-box superf:	134 364196	-3 1863228	0.66813468	-4 7689828	0.00000185	0 000426
Zm00004b005051	CPM7M2C040115 7m00001d001858	(1 of 45) PE03000RA004	PTP/PO7 domain o	05 666743	3 2570704	0.94535642	3 952906	0.000117	0.01903749
211000040005951	GRIVIZIVI2G040115 211000010001858	(10145) PF03000 - B6A094	BIB/POZ uomain-c	95.000745	-3.2570704	0.04555042	-3.052090	0.000117	0.01003740
Zm00004b006866	GRMZM2G176677 Zm00001d002945	(1 of 151) PF02365 A0A1D6E5L0	Ras-related protein	359.948291	-3.3304859	0.61989729	-5.3726415	7.76E-08	0.0000227
Zm00004b007683	AC235541.1_FG00 Zm00001d003948	(1 of 3) PTHR2407{C4J193	DNAJ heat shock N	109.280361	-3.4489189	0.97099931	-3.5519273	0.000382	0.04654892
Zm00004b032487	GRMZM2G057743 Zm00001d046033	(1 of 2) PTHR1028{K7W8X7	RNA-binding KH do	35.6783799	-3.4498949	0.56344471	-6.1228631	9.19E-10	3.98E-07
7m00004b030589	GRMZM2G133021 Zm00001d038194	(1 of 127) PE00646 C0P6I 8	E-boy/EBD/I RR-rer	212 536727	-3 4882886	0 6674719	-5 2261206	1 73E-07	0.0000461
Zm000045040010	CDMZMEC910070 700001-011100	(1 of 44) 5 2 4 1 D DOTUDO	Thiorodoxia	150 700000	3 5000070	0.07440544	3.2201200	0.000000	0.00040040
Zm00004b019813	GRMZM5G812270 Zm00001d044429	(1 0f 44) 5.3.4.1 - P B61H36	i nioredoxin superta	158.728386	-3.5236272	0.97410544	-3.6172955	0.000298	0.03846912
Zm00004b001427	GRMZM2G312661 Zm00001d029028	(1 of 2) PTHR1089 C0P445	Calcium-binding pro	49.7443658	-3.5317195	0.67313631	-5.2466631	1.55E-07	0.0000417
Zm00004b001119	GRMZM2G087600 Zm00001d028612	A0A1D6JY27	Uncharacterized pro	255.883023	-3.5347045	0.67840253	-5.210335	1.88E-07	0.000049
Zm00004b034015	GRMZM2G013814 Zm00001d047894	(1 of 7) PE11833 - FB6TKC3	Protein CHAPERO	119,776564	-3.546751	0.54232152	-6.5399414	6.15E-11	3.32E-08
Zm00004b027412	CDMZM2C180568 Zm00001d032356	(1 of 46) DE02624 A0A060C725	TCD transprintion fr	106 020044	4 1765000	0.41639019	10.022601	1.005.02	2.605.20
2111000040037413	GRIVIZIVIZG 180368 Z110000 10022236	(10146) PF03634 - A0A060C225	ICP transcription is	120.030044	-4.1703009	0.41020910	-10.032091	1.09E-23	2.09E-20
Zm00004b014162	GRMZM2G075637 Zm00001d016935	(1 of 2) K11290 - te Q94F78	Nucleosome/chrom	774.018655	-4.3893148	0.65387115	-6.712813	1.91E-11	1.11E-08
Zm00004b031562	GRMZM2G058560 Zm00001d044866	(1 of 1) K17605 - scA0A1D6NRY3	Serine/threonine-pr	158.722343	-4.6022265	0.85675423	-5.3716998	7.80E-08	0.0000227
Zm00004b011362	GRMZM2G152328 Zm00001d013410	(1 of 2) PTHR11937#N/A	#N/A	1408.63065	-4.8578728	0.62713761	-7.7461035	9.48E-15	9.10E-12
7m00004b005296	GRMZM2G170727 Zm00001d034254	(1 of 3) KOG3381 - A0A1D6L6E1	Protein AE7-like 1	88 6404724	-5 7478947	1 45627857	-3 9469747	0.0000791	0.01305123
211000040000200				17 1051107	-0.1410341	1.45021001	-0.0400747	0.0000701	0.01000120
Zm00004b000303	GRMZM2G009014 Zm00001d027588	AUA1D6JN74	Uncharacterized pro	47.4651127	-6.0922781	1.65823335	-3.6739571	0.000239	0.03217847
Zm00004b036142	GRMZM5G832772 Zm00001d020666	(1 of 58) 3.6.3.44 - A0A1D6I5K5	Multidrug resistance	85.8988549	-6.1525908	1.13848309	-5.4042004	6.51E-08	0.00002
Zm00004b040245	GRMZM2G018462 Zm00001d026259	(1 of 2) PTHR3397; A0A1D6JDS9	Uncharacterized pro	69.2136647	-6.6238048	1.70248072	-3.8906783	0.0001	0.01577795
Zm00004b039476	GRMZM2G095826 Zm00001d025352	(1 of 2) PTHR1937(B4FYW4	Ferredoxin	163.683221	-6.6902767	0.64379504	-10.391936	2.70E-25	8.52E-22
Zm00004b039507	CPM7M2C004452 7m00001d024212	(1 of 7) K00001 di AROM11	diacylalycorol kinac	14 1797340	7 2001496	1 36679505	5 2670/17	1 395 07	0.0000376
211000040030307	GRWZW2G094432 200000000024212			14.1707349	-7.2001400	1.000700000	-3.2073417	1.30E=07	0.0000370
Zm00004b013692	GRMZM2G029559 Zm00001d016358	(1 of 1) PF00043//PA0A1D6H6X9	Putative elongation	528.862948	-7.3168313	1.9781414	-3.6988414	0.000217	0.02936134
Zm00004b003529	GRMZM2G084583 Zm00001d032024	(1 of 2) PTHR1064 A0A1D6KN59	Myb transcription fa	15.7016476	-7.351001	1.59883276	-4.5977298	0.00000427	0.000925
Zm00004b032897	GRMZM5G805627 Zm00001d046583	(1 of 5) K02955 - sr A0A1D6P3R8	40S ribosomal prote	2049.55018	-7.3664354	1.37568503	-5.3547398	8.57E-08	0.0000243
7m00004b004185	GRMZM2G144782 Zm00001d032810	(1 of 1) PTHP2131(A0A1D6KLI49	CHV-type/CTCHV-ty	16 6302848	-7 4346907	1 64434719	-4 5213631	0.0000614	0.00130548
211000040004100				10.0002040	-7.4040307	1.04404110	-4.5210001	0.00000014	0.00100040
Zm00004b017739	GRMZM2G162250 Zm00001d042055	(1 of 3) PTHR3132(A0A1D6N012	ARGOS6	18.9738992	-7.6208123	1.68/44911	-4.5161731	0.0000063	0.00132513
Zm00004b011561	GRMZM2G038801 Zm00001d013639	(1 of 2) PTHR1585(A0A1D6GL71	DnaJ/Hsp40 cysteir	19.1338892	-7.6335474	2.14431334	-3.5599029	0.000371	0.04619789
Zm00004b013627	GRMZM2G121309 Zm00001d016277	(1 of 32) K14484 - ¿A0A1D6H6I5	Auxin-responsive p	20.9605007	-7.7652893	2.16172134	-3.5921787	0.000328	0.04180513
Zm00004b039120	GRMZM2G174671 Zm00001d024908	(1 of 1) K01476 - ar A0A1D6.I2P7	Arginase 1 mitocho	124 634851	-7 8105926	2 01527474	-3 8756962	0.000106	0.01666212
Zm00004b028454	CDMZM2C062585 Zm00001d024155		(DL) alveoral 2 pho	22 7020084	7 9903551	1 20576777	6.0915335	1 105 00	E 06E 07
2111000040036434	GRIVIZIVIZG062585 Z11000010024155	(1012) 3.1.3.21 - GB4FW43	(DL)-giyceroi-3-prio	22.7030004	-7.0002551	1.29570777	-0.0615555	1.19E-09	5.00E-07
Zm00004b007737	GRMZM2G027272 Zm00001d004022	(1 of 3) K13456 - RIA0A1D6ED15	RPM1-interacting p	85.7103695	-7.9584404	2.12649259	-3.7425197	0.000182	0.02564156
Zm00004b033732	GRMZM5G872256 Zm00001d047582	(1 of 3) 2.4.1.123 - Q7XYY1	Hexosyltransferase	31.5946066	-8.3574989	1.55936046	-5.3595683	8.34E-08	0.0000239
Zm00004b015097	GRMZM2G028325 Zm00001d018037	(1 of 5) PTHR1913(A0A1Q1ADS4	NOD26-like membr	37.5124823	-8.6059927	1.76417839	-4.8781873	0.00000107	0.000257
Zm00004b029343	GRMZM2G126920 Zm00001d000360	#N/A	#N/A	48 7785425	-8 9851403	1 817047	-4 9449135	7.62E-07	0 000185
Zm00004b040250	CBM7M2C12E742 7m00004-040000	(1 of 8) 2 4 1 17 CA041DENE 17	Hoveoultrapofor	092 742600	0.016640	0.77935005	11 594000	4.055.04	E 47E 07
211000040018250	GTTWIZINZG 133743 ZMUUUU 10042627	(1010) 2.4.1.17 - GAUATDONDJ/	riexosyluaristerase	902./42000	-9.010043	0.11835005	-11.584303	4.95E-31	5.4/E-2/
Zm00004b036596	GRMZM2G048165 Zm00001d021280	(1 of 1) PTHR2229[A0A1D6I9L5	Endoglucanase (EC	50.8729068	-9.0456557	1.81462784	-4.9848545	0.00000062	0.000152
Zm00004b011870	GRMZM2G001887 Zm00001d013999	(1 of 5) K01527 - ncA0A1D6GPC3	Basic transcription 1	53.8848989	-9.1296606	1.47437162	-6.1922384	5.93E-10	2.67E-07
Zm00004b039616	GRMZM2G097499 Zm00001d025538	A0A1D6J7M0	Uncharacterized pro	61.4228893	-9.3179732	2.14512664	-4.343787	0.000014	0.00276306
Zm00004b003203	GRM7M2G452523 7m00001d031601	(1 of 2) PE04055//PA0A1D6KK00	Riotin synthese	122 070016	-9 3438471	1 50000812	-6 2201077	4 60E-10	2 16E-07
2111000040000200			Diotin Synthase	122.070010	-3.3430471	1.00000012	-0.2251511	4.052-10	2.102-01
∠muuuu4b040319	GRIVIZM2G150950 Zm00001d026348	(IVI=2) PEU2178 - A K71SL3	AT NOOK MOTIT TAMIL	66.1902783	-9.4249272	2.11675509	-4.4525355	0.00000849	0.00175252
Zm00004b000181	GRMZM2G176585 Zm00001d027447	(1 of 3) PTHR3187{A0A1D6JM71	Det1 complexing ut	66.744177	-9.4374569	2.07279808	-4.5530035	0.00000529	0.00113457
Zm00004b009722	GRMZM2G099239 Zm00001d006626	(1 of 32) PF03763 - A0A1D6EZ75	Remorin family prot	134.038381	-9.4798187	2.21758152	-4.2748456	0.0000191	0.00367521
Zm00004b031639	GRMZM2G142072 7m00001d044971	(1 of 3) K15172 - tr: A0A1D6NSG9	Transcription elono:	85,8177719	-9,7999257	1,58831871	-6,1699996	6.83E-10	3.02E-07
Zm00004b026700	GPM7M2G131275 7m00001d001d001	(1 of 23) PE03750 A0A1DelB 14	Don quanino puelo:	02 4000004	0.0071470	1 42097292	6.0705700	2 44E 40	1 01E 00
211000040030/68	GTWIZWZG131273 ZMUUUU1d021489	(10123) FF03/39 - AUA ID0BJ1	Top guarine nucle(92.4009284	-9.90/14/6	1.42087283	-0.9/25/86	3.11E-12	1.91E-09
∠m00004b029791	GRMZM2G048194 Zm00001d037151	(1 of 3) PTHR23354A0A1D6LUX5	Erwinia induced prc	503.899342	-9.9154886	0.93584643	-10.595209	3.14E-26	2.31E-22
Zm00004b015296	GRMZM2G095778 Zm00001d018278	(1 of 2) PTHR2803(B4F9M5	Fatty-acid-binding p	96.9447582	-9.9763143	1.54298423	-6.4655971	1.01E-10	5.19E-08
Zm00004b011028	AC210013.4 FG01 Zm00001d013030	(1 of 3) PTHR2434{B4FF99	Calcium-dependent	100.245209	-10.023864	1.99183346	-5.0324812	4.84E-07	0.00012
Zm00004b026211	GRMZM2G007384_Zm00001d010204	(M=25) PE00627 - LA0A1D6E001	Libiquitin-associator	109 832550	-10 155052	2 31126259	-4 30/11//	0.0000111	0.00223043
7-000040020211	ODMZNDOG45505 7 000010010294		Ubjection (100.002008	40.000075	4.00700115	7 750005	0.0000111	0.00220540
Zm00004b035448	GRIVIZIVIZG515595 ZMUUUU1d019671	(1 0F1) PTHR1352;AUA1D6HZP9	ubiquitin tamily prof	128.430769	-10.382079	1.33796142	-7.7596254	8.52E-15	8.96E-12
∠m00004b031625	GRMZM2G088053 Zm00001d044951	(1 of 54) PF00892 - B4FTK8	WAT1-related prote	132.976976	-10.431711	1.93391696	-5.3940843	6.89E-08	0.0000208
Zm00004b012800	GRMZM2G017229 Zm00001d015138	A0A1D6GZI4	Uncharacterized pro	263.006615	-11.415653	2.71423684	-4.2058427	0.000026	0.00487091
Zm00004b004985	GRMZM2G143238 Zm00001d033839	(1 of 10) PF07714// C4J1X5	Putative LRR recen	443.323259	-12.16883	3.42896934	-3.5488303	0.000387	0.04672324
7m00004b033257	GRM7M2G144730 7m00001d047054	(1 of 2) PTHR11813K7V/GL4	Pyruvate kinase (E)	580 352570	-12 557533	1 30571317	-9 6173746	6 75E-22	1 405-19
Zm00004b03237	CDM7M2C274060 7m00004-004004	(1 of 1) DTHD1600(D6T066	Transducin/MD40 -	700.002079	10.975000	1.00071017	10 500000	7.905.00	2.455.00
211000040037132	Grunzinz G374909 Zm00001d021902	(1011) FIRK1022(B01900	mansuucifi/WD40 f	123.238902	-12.8/3086	1.22507056	-10.50909	7.80E-26	3.45E-22
∠m00004b039391	GRMZM2G159675 Zm00001d025239	(1 of 1) K12625 - UIB4FCE3	Sm-like protein LSN	856.966885	-13.119928	1.24673117	-10.523462	6.74E-26	3.45E-22

TABLE NOTES: GENEIDS 873v3 GeneIDs were obtained from the W22 GeneIDs using a MaizeGDB syntelogs lookup table made with SynMap TRANSCRIPTOM Trimmed reads were aligned using the splice-aware aligner Hisat2, indices were constructed from known exons and splice sites (W22 annotation Zm00004b & assembly Zm-W22-REFERENCE-NRGENE-2.0 as describe DEG & Differential expression analysis was performed separately per tissue (leaf mutant vs. WT) as described in the Methods TABLULATION: This entire table, sorted on col-H, log2(fold-change), includes statistically significant differentially expressed (adjusted p-value <0.05) genes and excludes any genes with fewer than 10 counts across sum of all replicates.

COLUMNS G-L: Columns G-L tabulate output values for the baseMean, the log2(fold-change), along with the associated values for standard error (IfcSE), Wald statistic (stat), pvalue, and adjusted pvalue (padj).

PROVENANCE: Supplementary Table S2 from Mckenna, Gumber, et al., "Maize (Zea mays L.) nucleoskeletal proteins regulate nuclear envelope remodeling...", submitted 12/2020, FiPS

Figure S3: Multiple Seq Alignment of Transcripts.

Addgene gene ID	Plasmid name	Plasmid type	N-terminal Tag	Backbone Name	Bacterial Resistance
131014	MKAKU41ec	entry vector	mCherry-FLAG-HA	pDONR221	Kanamycin
131015	MKAKU41exp	expression vector	mCherry-FLAG-HA	pH7WG2	Spectinomycin
131016	NCH1ec	entry vector	eGFP-FLAG-HA	pDONR221	Kanamycin
131017	NCH1exp	expression vector	eGFP-FLAG-HA	pH7WG2	Streptomycin
131018	NCH2ec	entry vector	eGFP-FLAG-HA	pDONR221	Kanamycin
131019	NCH2exp	expression vector	eGFP-FLAG-HA	pH7WG2	Spectinomycin
159097	p35S::mCherry-GFP-HDEL	expression vector	mCherry-GFP	pB7FWG2	Spectinomycin

Supplementary Table S3 is from Mckenna, Gumber, et al.,

"Maize (Zea mays L.) nucleoskeletal proteins regulate nuclear envelope remodeling...", submitted 12/2020, FiPS