MICHEL HOULÉ

# PÉTROLOGIE ET MÉTALLOGÉNIE du Complexe de Menarik, Baie James, Québec, Canada.

TOME I

Mémoire présenté à la Faculté des études supérieures de l'Université Laval pour l'obtention du grade de maître ès sciences (M.Sc.)

Département de géologie et de génie géologique FACULTÉ DES SCIENCES ET DE GÉNIE UNIVERSITÉ LAVAL

NOVEMBRE 2000

© Michel Houlé, 2000



#### National Library of Canada

#### Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre référence

Our file Notre référence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-56406-1



### Résumé

Le Complexe de Menarik (CDM) est une intrusion ultramafique archéenne de la sous-province de La Grande à la Baie-James. Le complexe est constitué principalement de dunites, de harzburgites et de chromitites. La géochimie de ces roches est contrôlée par le fractionnement de l'olivine et de la chromite tandis que l'Opx (et le Cpx) influencent peu l'évolution géochimique de l'intrusion. La chromite est le seul minéral magmatique préservé compte tenu de l'hydratation et de la carbonatisation locale du CDM. Le CDM est hôte de deux types de minéralisation, soit une minéralisation magmatique en Cr-ÉGP avec une remobilisation postérieure des platinoïdes dans les horizons de chromitites et une minéralisation filonienne de Cu-Ni-ÉGP localisée à proximité de linéaments topographiques (ou failles) facilitant la circulation hydrothermale.

#### REMERCIEMENTS

Je tiens à remercier mon directeur de recherche, Dr. Réjean Hébert, pour l'intérêt et l'enthousiasme qu'il a porté à ce projet. Également, je tiens à remercier mon co-directeur de recherche, Dr. Georges Beaudoin, qui a su me guider tout au long de ma maîtrise et spécialement lors de l'année sabbatique de mon directeur. J'aimerais également souligner la contribution toute spéciale du Dr. Marc Richer-Laflèche qui a été grandement appréciée tant pour le volet analytique que l'ensemble du projet. Ce dernier ne peut être considéré officiellement comme co-directeur malgré son implication tout au long de ma maîtrise. Mes remerciements vont également au Ministère des Ressources naturelles du Québec (MRNQ, Service du Nord-Ouest), sans qui le projet n'aurait pas été possible. Plus particulièrement Jean Goutier, Claude Dion et Jules Cimon qui m'ont conseillé et supporté sur le terrain et durant les trois années de mon projet de maîtrise. J'aimerais également souligner l'apport de monsieur Denis Bois de l'Université du Québec en Abitibi-Témiscamingue (URSTM) qui m'a permis de travailler sur le projet du lac Yasinski à l'été 1997, sur le projet du lac Sakami à l'été 1998 et sur le projet de LG-3 à l'été 1999 me permettant ainsi d'effectuer la cartographie et la vérification du site à l'étude.

Je voudrais aussi remercier tout ceux qui ont participé de près ou de loin à la réalisation de ce projet de maîtrise et ceux qui m'ont supporté pendant ces trois longues années. Je ne voudrais certainement pas passer sous silence la contribution de ma conjointe, Isabelle, et de ma famille sans qui je n'aurais peut-être jamais passé au travers de ce mémoire.

## TABLE DES MATIÈRES

| RÉSUMÉ                 | ü    |
|------------------------|------|
| REMERCIEMENTS          | iii  |
| TABLE DES MATIÈRES     | iv   |
| LISTE DES FIGURES      | x    |
| LISTE DES TABLEAUX     | xxiv |
| LISTE DES ABRÉVIATIONS | xxix |

## **CHAPITRE I - INTRODUCTION**

| 1.1 Objectifs du projet de recherche                | 1  |
|-----------------------------------------------------|----|
| 1.2 Accès et physiographie de la région             | 2  |
| 1.3 Méthodologie                                    | 4  |
| 1.4 Travaux antérieurs                              | 4  |
| 1.5 Généralités sur les gîtes de chromite et d' ÉGP | 7  |
| 1.5.1 Gîtes de chromite                             | 7  |
| 1.5.2 Gîtes d'éléments du groupe du platine         | 10 |

## **CHAPITRE II - CONTEXTE GÉOLOGIQUE**

| 2.1 Géologie régionale                      | 15 |
|---------------------------------------------|----|
| 2.2 Stratigraphie et géochronologie         | 18 |
| 2.3 Géologie locale                         | 20 |
| 2.3.1 Granodiorite du Complexe de Langelier |    |
| 2.3.2 Groupe de Yasinski                    | 22 |
| 2.3.3 Formation d'Ekomiak                   | 23 |
| 2.3.4 Intrusion de Duncan                   | 23 |
| 2.3.5 Pluton d'Amisach Wat                  | 24 |
| 2.3.6 Complexe de Menarik                   | 24 |
| 2.3.7 Dykes à xénolites                     | 25 |
| 2.3.8 Dykes protérozoïques                  | 25 |
| 2.4 Métamorphisme et structure              |    |

## CHAPITRE III - GÉOLOGIE DU COMPLEXE DE MENARIK

| 3.1 Classification des roches ultramafiques         | 27 |
|-----------------------------------------------------|----|
| 3.2 Les roches mafiques                             | 32 |
| 3.2.1 Les roches gabbroïques de la ZM               | 32 |
| 3.2.2 Les dykes gabbroïques                         | 35 |
| 3.3 Les roches ultramafiques                        | 36 |
| 3.3.1 La Zone Ultramafique (ZU)                     | 36 |
| 3.3.1.1 Les chromitites                             | 36 |
| 3.3.1.2 Les péridotites à chromite                  | 44 |
| 3.3.1.3 Les péridotites                             | 45 |
| 3.3.1.4 Les pyroxénites                             | 46 |
| 3.3.2 Dykes ultramafiques                           | 53 |
| 3.3.2.1Pyroxénites à magnétite                      | 53 |
| 3.3.2.2 Pyroxénites                                 | 53 |
| 3.3.3 Stratigraphie                                 | 54 |
| 3.3.4 Minéralisations de Ni-Cu-Co-ÉGP               | 55 |
| 3.4 Structures magmatiques dans le CDM              | 56 |
| 3.5 Le métamorphisme                                | 61 |
| 3.5.1 Zone Mafique                                  | 61 |
| 3.5.2 Zone Ultramafique                             | 62 |
| 3.6 L'ordre de cristallisation                      | 64 |
| 3.7 Contact entre le CDM et les roches encaissantes | 65 |
| 3.8 Synthèse                                        | 66 |

## CHAPITRE IV - DESCRIPTION DES STRUCTURES

| 4.1 Éléments structuraux             | . 68 |
|--------------------------------------|------|
| 4.1.1 Litage et foliation magmatique | . 68 |
| 4.1.2 Orientation des dykes          | . 70 |
| 4.1.3 Plis                           | . 72 |
| 4.1.4 Failles                        | . 75 |
| 4.1.5 Linéaments topographiques      | . 75 |
| 4.2 Géométrie du Complexe de Menarik | . 77 |
| 4.3 Chronologie des événements       | . 80 |

| 4.4 Synthèse |
|--------------|
|--------------|

## **CHAPITRE V – GÉOCHIMIE**

| 5.1 Méthodes analytiques                                       |
|----------------------------------------------------------------|
| 5.1.1 Éléments majeurs 82                                      |
| 5.1.2 Traces                                                   |
| 5.1.3 Terres Rares                                             |
| 5.1.4 Éléments du groupe du platine                            |
| 5.2 Mobilité des éléments chimiques                            |
| 5.3 Compositions moyennes                                      |
| 5.4 Diagrammes de variations des éléments majeurs et traces 91 |
| 5.5 Spectres des terres rares (TR)                             |
| 5.6 Affinité magmatique 104                                    |
| 5.7 Consanguinité des roches magmatiques du CDM 105            |
| 5.8 Éléments du groupe du platine, Ni et Cu 108                |
| 5.8.1 Comportement géochimique des ÉGP 113                     |
| 5.8.1.1 Comportement géochimique des I-ÉGP 115                 |
| 5.8.1.2 Comportement géochimique des P-ÉGP 117                 |
| 5.9 Variations stratigraphiques des abondances en ÉGP          |
| des différentes lithologies                                    |
| 5.10 Synthèse                                                  |

## **CHAPITRE VI – CHIMIE MINÉRALE**

| 6.1 Minéraux primaires 127                         |
|----------------------------------------------------|
| 6.1.1 Pyroxène 127                                 |
| 6.1.2 Chromite                                     |
| 6.1.2.1 Morphologie de la chromite                 |
| 6.1.2.2 Composition de la chromite du CDM 141      |
| 6.1.2.3 Effet du métamorphisme et de               |
| l'altération sur la composition de la chromite 147 |
| 6.1.2.4 Composition "primaire" de la chromite 148  |
| 6.2 Minéralogie secondaire 155                     |
| 6.2.1 Serpentine                                   |

| 158   |
|-------|
| . 163 |
| . 166 |
| . 167 |
| . 167 |
| . 169 |
| . 171 |
| . 172 |
| . 173 |
| . 174 |
| . 179 |
| . 181 |
|       |

## **CHAPITRE VII - DISCUSSION**

| 7.1 Pétrogenèse du Complexe de Menarik 1             | 183 |
|------------------------------------------------------|-----|
| 7.1.1 Séquence de cristallisation des                |     |
| magmas dans le CDM1                                  | 83  |
| 7.1.2 Composition du magma parental 1                | 85  |
| 7.1.3 Spectres de TR 1                               | .86 |
| 7.1.4 Un ou deux magmas ? 1                          | .90 |
| 7.2 Origine des chromitites du CDM1                  | .91 |
| 7.3 Origine des minéralisations en ÉGP 1             | .98 |
| 7.4 Comparaison avec d'autres intrusions stratiforme | :06 |
| 7.4.1 Classification2                                | :06 |
| 7.4.2 Chromite, indicateur pétrogénétique            | :08 |
| 7.4.3 Éléments du groupe du platine                  | 11  |
| 7.4.4 Comparaison pétrologique2                      | 13  |
| 7.5 Modèle métallogénique 2                          | 16  |
| 7.6 Travaux futurs                                   | 20  |
| 7.7 Synthèse                                         | 22  |
| CHAPITRE VIII - CONCLUSION                           | 25  |

| Références | BIBLIOGRAPHIQUES | 229 |
|------------|------------------|-----|
|------------|------------------|-----|

## ANNEXES

| ANNEXE A Coupes détaillées et composition des minéraux |  |  |
|--------------------------------------------------------|--|--|
| normatifs                                              |  |  |
| ANNEXE B Analyses lithogéochimiques                    |  |  |
| B.1 Analyses des majeurs et traces (ponctuelles)       |  |  |
| B.2 Analyses des coupes détaillées                     |  |  |
| B.3 Analyses des TR (ponctuelles)                      |  |  |
| ANNEXE C Analyses minéralogiques à la microsonde       |  |  |
| et au microscope éléctronique à balayage               |  |  |
| C.1 Analyses des pyroxènes                             |  |  |
| C.2 Analyses des chromites                             |  |  |
| C.3 Analyses des serpentines                           |  |  |
| C.4 Analyses des chlorites                             |  |  |
| C.5 Analyses des amphiboles                            |  |  |
| C.6 Analyses des carbonates                            |  |  |
| C.7 Analyses des sulfures (éléments majeurs)           |  |  |
| C.8 Analyses des sulfures (éléments traces et ÉGP)     |  |  |
| ANNEXE D Volet Analytique                              |  |  |
| D.1 Liste des échantillons 408                         |  |  |
| D.2 Limites de détection 413                           |  |  |
| D.3 Méthodes analytiques utilisées pour l'analyse en   |  |  |
| spectrométrie de masse à source plasma                 |  |  |
| D.3.1 Digestion acide (TR) 416                         |  |  |
| D.3.1.1 Décontamination des bombes                     |  |  |
| D.3.1.2 Mise en solution des poudres de roches 416     |  |  |
| D.3.1.3 Analyse à spectrométrie de masse à             |  |  |
| source plasma (ICP-MS)                                 |  |  |
| D.3.1.4 Évolution de la qualité des analyses des       |  |  |
| roches                                                 |  |  |
| D.3.2 Dosage et mise en solution des ÉGP 421           |  |  |
| D.3.2.1 Réactifs et matériel utilisé                   |  |  |

| D.3.2.2 Protocole analytique 4                      | ¥21             |
|-----------------------------------------------------|-----------------|
| D.3.2.3 Mode opératoire 4                           | 122             |
| D.3.2.4 Instrumentation et conditions d'analyse 4   | +27             |
| D.3.2.5 Interférences et choix des isotopes 4       | <del>1</del> 28 |
| D.3.2.6 Standards internes et calibration externe 4 | 130             |
| D.3.2.7 Limite de détection 4                       | <del>1</del> 31 |
| D.3.2.8 Contamination et blanc analytique 4         | <del>1</del> 31 |
| D.4 Microanalyse 4                                  | 135             |
| D.4.1 Conditions d'opérations 4                     | 135             |
| D.4.2 Standards utilisés et limites de détection 4  | 137             |
| D.4.3 Conditions d'analyses pour ÉGP dans les       |                 |
| sulfures 4                                          | 41              |
| D.4.4 Compositions des standards 4                  | 147             |
|                                                     |                 |

.

.

## LISTE DES FIGURES

| Figure 1.1 | Carte de localisation du Complexe de Menarik, Baie-James3                                                                                                                                                                                                             |    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.1 | Géologie régionale simplifiée de la région du Complexe de<br>Menarik (modifiée de Goutier et al., 1998b)17                                                                                                                                                            |    |
| Figure 2.2 | Colonne stratigraphique simplifiée de la sous-province de La<br>Grande dans la région du Complexe de Menarik (modifiée de<br>Goutier et al., 1998b)19                                                                                                                 |    |
| Figure 2.3 | Carte géologique simplifiée du Complexe de Menarik<br>(modifiée de Rivard 1985 ; Pelletier 1990 et 1995)21                                                                                                                                                            |    |
| Figure 3.1 | Carte géologique du Complexe de Menarik avec quelques<br>affleurements visités (modifiée de Rivard 1985; Pelletier<br>1990 et 1995)29                                                                                                                                 |    |
| Figure 3.2 | Carte de localisation des échantillonsPochet                                                                                                                                                                                                                          | te |
| Figure 3.3 | Carte géologique (faciès lithologiques et données structturales) Pochet                                                                                                                                                                                               | te |
| Figure 3.4 | Projection de la composition modale en Opx + Cpx + Ol des<br>roches ultramafiques du Complexe de Menarik. Dans le<br>diagramme ternaire tiré de Steckeisen (1976). Carré : > 50 %<br>de chromite, cercle entre 5 % et 50 % de chromite, triangle<br>< 5 % de chromite |    |
| Figure 3.5 | Veine de quartz-plagioclase avec une bordure réactionnelle<br>de chlorite dans un gabbro à grain fin (Affl. 98-MH-4104)34                                                                                                                                             |    |
| Figure 3.6 | Zone de gabbro pegmatitique dans un gabbro à grain fin. Les<br>amphiboles aciculaires ont de 1 à 4 cm de longueur pour le<br>gabbro pegmatitique comparativement à seulement 2 à 3<br>mm pour le gabbro à grain moyen (Affl. 98-MH-4104)                              |    |

| Figure 3.7  | Texture granulaire d'une chromitite du CDM. La chromite est<br>idiomorphe et les minéraux interstitiels sont la serpentine et<br>la chlorite (LM 96-CD-5115-C1)                                                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.8  | Texture anti-nodulaire d'une chromitite à olivine du CDM. Le<br>matériel silicaté interstitiel est moins abondant en raison de<br>la coalescence des grains de chromite (LM 96-CD-5113-A)                                                                                         |
| Figure 3.9  | Lit de chromitite contenant plus de 90% de chromite<br>(Faciès I). Notez la présence d'une enclave de dunite dans<br>l'horizon de chromitite (Affl. 97-MH-7502)41                                                                                                                 |
| Figure 3.10 | Dunite à chromite (Faciès II) caractérisée par des proportions<br>variables de chromite. La proportion de chromite est<br>maximum au milieu de l'horizon et diminue de chaque côté<br>pour devenir éventuellement une dunite avec moins de 5%<br>de chromite (Affl. 97-MH-7502)41 |
| Figure 3.11 | Alternance de lits de chromitite, contenant plus de 90% de<br>chromite, avec des horizons de harzburgites du Faciès III<br>(Affl. 97-MH-7371)                                                                                                                                     |
| Figure 3.12 | Alternance de lits de chromitite à silicate contenant entre<br>50% et 90% de chromite, avec des harzburgites (et des<br>webstérites à olivine) du Faciès III (Affl. 97-MH-7371)42                                                                                                 |
| Figure 3.13 | Horizon de chromitite montrant le Faciès III à la base<br>surmonté du Faciès I cumulat et du Faciès I à nodules au<br>sommet (Affl. 97-MH-7384)43                                                                                                                                 |
| Figure 3.14 | Texture d'une dunite à chromite du CDM. La chromite<br>subidiomorphe (25 à 30%) se retrouve en amas interstitiels<br>aux cumulats d'olivine (LM 97-MH-7371-12)                                                                                                                    |

| Figure 3.15 | Texture d'une dunite à chromite du CDM. La chromite<br>subidiomorphe (5 à 7%) se retrouve en amas interstitiels aux<br>cumulats d'olivine (LM 97-MH-7371-10)                                                                                                                                         |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.16 | Texture typique d'une dunite du CDM. La chromite (1 à 2 %)<br>forme des grains intercumulus subidiomorphes (LM 96-CD-<br>5113-A2)                                                                                                                                                                    |
| Figure 3.17 | Texture typique d'une lherzolite poecilitique du Complexe de<br>Menarik (Affl. 97-MH-7384)50                                                                                                                                                                                                         |
| Figure 3.18 | Texture typique d'une lherzolite poecilitique du Complexe de<br>Menarik (LM 97-MH-7371-22)                                                                                                                                                                                                           |
| Figure 3.19 | Texture typique d'une webstérite à olivine du Complexe de<br>Menarik (Affl. 98-MH-4215)51                                                                                                                                                                                                            |
| Figure 3.20 | Texture typique d'une webstérite à olivine en lame mince du<br>Complexe de Menarik (LM 98-MH-4215)51                                                                                                                                                                                                 |
| Figure 3.21 | Dunite à chromite qui est recoupée par un petit dyke de webstérite à olivine (Affl. 97-MH-7490)52                                                                                                                                                                                                    |
| Figure 3.22 | Dunite à chromite qui est recoupée par un petit dyke de<br>webstérite à olivine (Affl. 97-MH-7490). La distinction entre<br>les deux faciès lithologiques est très subtile. La présence de<br>chromite interstitielle dans la dunite est un critère pour la<br>distinguer de la webstérite à olivine |
| Figure 3.23 | Structure de chenal observée dans une chromitite à silicate<br>du Complexe de Menarik indiquant une polarité vers le sud<br>(Affl. 97-MH-7371)                                                                                                                                                       |
| Figure 3.24 | Bloc de chromitite rythmique (Faciès III) dans une harzburgite du Complexe de Menarik (Affl. 97-MH-7495)58                                                                                                                                                                                           |

- Figure 3.25 (A) Granoclassement dans une chromitite à silicate qui suggère une polarité vers le sud (Affl. 97-MH-7371). (B) Horizon de chromitite à silicate montrant un granoclassement inverse et normal définissant un pli isoclinal (Affl. 97-MH-7498). (C) Structure spectaculaire montrant une succession de dunite à chromite suivie de chromitite à silicate et finalement de chromitite
- Figure 3.26 Texture entre une dunite et une webstérite à olivine du Complexe de Menarik (Affl. 97-MH-7499) ......60
- Figure 3.28 Séquence de cristallisation de la Zone Mafique du Complexe de Menarik (ligne pointillée = phase interstitielle, ligne pleine = phase idiomorphe à subidiomorphe)......64
- Figure 3.29 Séquence de cristallisation de la Zone Ultramafique du Complexe de Menarik (ligne pointillée = phase interstitielle, ligne pleine = phase idiomorphe à subidiomorphe)......65

- Figure 4.2 Diagrammes équiaires du Complexe de Menarik. (A) Stéréogramme montrant la distribution du litage et de la

|            | foliation. (B) Stéréogramme montrant l'attitude moyenne des<br>dykes mafiques et ultramafiques dans la région du CDM71                                                                                                                                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 4.3 | Pli isoclinal dans un lit de chromitite situé à l'intérieur d'une<br>séquence rythmique. Ce type de structure est observé<br>localement dans le bloc nord du CDM (Affl. 97-MH-7384)73                                                                                                                                                                |
| Figure 4.4 | Pli en Z dans une dunite situé à l'intérieur d'une séquence<br>rythmique. Ce type de structure est probablement dû à un<br>phénomène de glissement (plan de décollement) du niveau<br>silicaté sur le niveau à chromites (Affl. 97-MH-7371)                                                                                                          |
| Figure 4.5 | <ul> <li>Pli tectonique observé dans le domaine I du bloc sud du CDM</li> <li>(Affl. 97-MH-7507). (1) So identifié par l'horizon de chromite.</li> <li>(2) Plan axial de la charnière du pli tectonique. (3) Faille fragile dextre déplaçant légèrement l'horizon de chromite</li></ul>                                                              |
| Figure 4.6 | Photo aérienne de la région du Complexe de Menarik montrant<br>les principales failles et les grands linéaments topographiques.<br>La ligne pointillée blanche correspond aux linéaments<br>topographiques. La ligne pointillée noire correspond aux<br>linéaments topographiques où des évidences de failles ont été<br>observées (Photo R1225-168) |
| Figure 4.7 | Diagrammes équiaires des différents domaines structuraux du<br>Complexe de Menarik78                                                                                                                                                                                                                                                                 |
| Figure 4.8 | Coupe schématique (nord-sud et sub-verticale) du Complexe<br>de Menarik montrant la géométrie de l'intrusion dans l'espace79                                                                                                                                                                                                                         |
| Figure 5.1 | Diagrammes de covariation des terres rares en fonction de<br>l'altération (perte au feu :PAF). (A) TR légères en fonction de la<br>PAF. (B) TR lourdes en fonction de la PAF. Légende : se référer<br>à la figure 5.2                                                                                                                                |
| Figure 5.2 | Symboles utilisés dans les diagrammes de variations                                                                                                                                                                                                                                                                                                  |

- Figure 5.4Spectres de terres rares pour les différentes lithologies duCDM. Légende : se référer à la figure 5.2.102

- Figure 5.8Spectres des ÉGP et du Ni-Cu pour les différentes lithologiesdu CDM. Légende : se référer à la figure 5.2.111

| Figure 5.9  | A à F) diagrammes de variations des ÉGP pour les différentes                                                   |
|-------------|----------------------------------------------------------------------------------------------------------------|
|             | lithologies du CDM. (H) Variation du rapport Pt/Pd en                                                          |
|             | fonction des teneurs totales en ÉGP. Légende se référer à la                                                   |
|             | figure 5.2                                                                                                     |
|             |                                                                                                                |
| Figure 5.10 | Diagrammes de variations de la teneur en Ir en fonction du                                                     |
|             | Cr <sub>2</sub> O <sub>3</sub> , du MgO, de Al <sub>2</sub> O <sub>3</sub> , du S, du Ni et du Cu pour les     |
|             | différentes lithologies du CDM. Légende : se référer à la                                                      |
|             | figure 5.2                                                                                                     |
|             |                                                                                                                |
| Figure 5.11 | Diagrammes de variations de la teneur en Pd en fonction du                                                     |
|             | Cr <sub>2</sub> O <sub>3</sub> , du MgO, de l'Al <sub>2</sub> O <sub>3</sub> , du S, du Ni, du Cu, du Co et du |
|             | Sc pour les différentes lithologies du CDM. Légende : se                                                       |
|             | référer à la figure 5.2118                                                                                     |
|             |                                                                                                                |
| Figure 5.12 | Diagrammes de variations de la teneur en Pt en fonction du                                                     |
|             | Cr <sub>2</sub> O <sub>3</sub> , du MgO, de l'Al <sub>2</sub> O <sub>3</sub> , du S, du Ni, du Cu, du Co et du |
|             | Sb pour les différentes lithologies du CDM. Légende : se                                                       |
|             | référer à la figure 5.2                                                                                        |
|             |                                                                                                                |
| Figure 5.13 | Coupe 97-MH-7371 montrant les variations du Mg#, du Cr#,                                                       |
|             | du Cr2O3, du Ni, du Cu, des ÉGP totaux, du Pd, du Ru et des                                                    |
|             | rapports Cu/Pd et Cu/Pt122                                                                                     |
|             |                                                                                                                |
| Figure 5.14 | Coupe 97-MH-7374 montrant les variations du Mg#, du Cr#,                                                       |
|             | du Cr <sub>2</sub> O <sub>3</sub> , du Ni, du Cu, des ÉGP totaux, du Pd, du Ru et des                          |
|             | rapports Cu/Pd et Cu/Pt123                                                                                     |
| Figure 6.1  | Clinopyroxène en position intercumulus dans une dunite à                                                       |
|             | chromite (97-MH-7374-11). (A) Le Cpx forme une grande                                                          |
|             | plage où il est remplacé par la serpentine et la chlorite. (B) Le                                              |
|             | Cpx est remplacé par la chlorite préférentiellement le long                                                    |
|             | des plans de clivages. Dans ce cas-ci, le remplacement du                                                      |
|             | clinopyroxène est beaucoup plus avancé128                                                                      |

- Figure 6.4 Différentes morphologies de la chromite au microscope optique dans le CDM. (A) La chromite homogène et non zonée. (B) La chromite zonée avec localement une bordure effritée. (C) La chromite lessivée. (D) La chromite spongieuse.
  (E) La chromite cataclastique. (F) et (G) La chromite avec des sulfures associée. (H) La chromite avec des inclusions de sulfures.

- Figure 6.14 Coupe 97-MH-7371 montrant les variations du Cr #, du Fe#, du Fe<sup>3+</sup>/Fe<sup>2+</sup>, du Cr/Fe, du Cr<sub>2</sub>O<sub>3</sub>, et du TiO<sub>2</sub> dans une partie du Complexe de Menarik. Légende : se référer à la figure 5.13.

| Figure 6.16 | Serpentines qui remplacent l'olivine, l'orthopyroxène et le<br>clinopyroxène dans une webstérite à olivine (LM-<br>97-MH-7499)157                                                                                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 6.17 | Cr <sub>2</sub> O <sub>3</sub> et Al <sub>2</sub> O <sub>3</sub> contenus dans les serpentines dérivées de<br>l'olivine, de l'othopyroxène et le clinopyroxène (Champs tírés<br>de Hébert et al., 1990)                                                                                         |
| Figure 6.18 | Classification des chlorites du Complexe de Menarik d'après<br>la nomenclature de Hey (1954)159                                                                                                                                                                                                 |
| Figure 6.19 | Diagrammes de covariations des éléments majeurs et des<br>rapports du nombre Mg des chlorites et des roches du<br>Complexe de Menarik. (A) MgO versus $AI_2O_3$ . (B) MgO versus<br>$Cr_2O_3$ . (C) Mg# de la roche hôte versus le Mg# de la chlorite.<br>Légende : se réfférer à la figure 5.2 |
| Figure 6.20 | Graphique de covariation du $Cr_2O_3$ versus le Mg#. Deux<br>groupes sont définis, un riche en chromite (ZU) et l'autre<br>pauvre en chromite (NZU). Légende : se référer à la<br>figure 5.2                                                                                                    |
| Figure 6.21 | Classification des amphiboles de la Zone Ultramafique du<br>Complexe de Menarik d'après la nomenclature de Leake<br>(1978)                                                                                                                                                                      |
| Figure 6.22 | Composition des carbonates projetés dans un diagramme<br>ternaire Ca-Fe-Mg. Ce diagramme indique trois types de<br>carbonates (la magnésite, la dolomite et la calcite)                                                                                                                         |
| Figure 6.23 | Thermométrie des pyroxènes à 5 kilobars selon Lindsley<br>(1983)                                                                                                                                                                                                                                |
| Figure 6.24 | Limites de stabilité, d'après Sack et Ghiorso (1991), pour la<br>chromite et la magnétite du Complexe de Menarik obtenues<br>à partir de traverse de grain à la microsonde électronique. (A)                                                                                                    |

| Calculé en équilibre avec une composition d'olivine Fo <sub>80</sub> . (B) |
|----------------------------------------------------------------------------|
| Calculé en équilibre avec une composition d'olivine Fo <sub>90</sub>       |

- Figure 6.26 Images au MEB (électrons rétrodiffusés) de sulfures et de minéraux du groupe du platine du Complexe de Menarik. (A) Grain de pentlandite zoné où le coeur (pent 1) est plus riche en nickel que la bordure (pent 2). L'ilménite (il) et le rutile (ru) enrobent le grain de sulfure de nickel. (B) Grain de laurite ((Ru, Os) S<sub>2</sub>) en inclusion dans une chromite zonée. (C) Agrandissement de (B). (D) Sudburyite (PdSb) associé à la gangue silicatée dans une chromitite à silicate à proximité de la pentlandite. (E) Agrandissement de (D). (F) MGP inconnu (Pd2(Ni, Fe) (Sb, S)) associé à des carbonates zonés (Cb), à de la pentlandite (Pent) et de la magnétite (MG) dans les filonnets de sulfures. (G) Sperrylite (PtAs<sub>2</sub>) associé à la gangue silicatée. (H) MGP associé à la gangue silicatée contenant deux phases d'ÉGP, une phase riche en platine ((Pt, Pd) As) et une phase riche en palladium (PdSbS). (I) Sudburyite ((Pd, Ni) Sb) en inclusion dans la millérite (Mi) associée à la chalcopyrite (Cpy) et à la chlorite (Chl). (J) Inclusion de testibiopalladinite (Pd(Bi, Sb) Te) et de (Po) pyrrhotite dans la millérite (Mi). Celle-ci est associée à la
- Figure 7.2Fractionnement des terres rares dans les roches du CDM.<br/>(A)  $(La/Sm)_N$  en fonction du La. (B)  $(Gd/Yb)_N$  en fonction du<br/>La. Les données sur le PM= manteau primitif, les NMORB et

- Figure 7.9
   Projection de la composition des chromites du CDM dans un diagramme ternaire Cr-Al-Fe.

   210

- Figure 7.10 Comparaison des spectres des ÉGP du CDM avec d'autres intrusions stratiformes. (A) Chromitites du CDM. (B) Chromitites du Bushveld. (C) Chromitites à silicate du CDM. (D) Chromitites du Stillwater et de Penikat. (E) Harzburgites à chromite du CDM. (F) Péridotites de la Lower et Lower Critical Zone du Bushveld. (G) Filonets de sulfures du CDM. (H) Horizon du Merensky Reef du Bushveld et l'horizon J-M Reef du Stillwater. Légende : se référer à la figure 5.2.

| Figure A.1 | Colonne stratigraphique schématique montrant la position     |
|------------|--------------------------------------------------------------|
|            | des différents échantillons de l'affleurement 97-MH-7371247  |
| Figure A.2 | Colonne stratigraphique schématique montrant la position     |
|            | des différents échantillons de l'affleurement 97-MH-7374248  |
| Figure D.1 | Graphique montrant la variation entre les valeurs certifiées |
|            | d'un standard (Bir-1, un basalte) et les valeurs analysées à |
|            | ICP-MS par une méthode de fusion au métaborate de lithium    |
|            | (a), une fusion au peroxyde de sodium (b) et une digestion   |
|            | acide (c)                                                    |
| Figure D.2 | Schéma simplifié du protocole analytique d'extraction des    |
|            | ÉGP (modifié de Gueddari, 1996)421                           |

## LISTE DES TABLEAUX

| Tableau 1.1 | Subdivision du groupe des spinelles en trois séries où il y a<br>substitution des ions trivalents Al, Fe et Cr (Deer, et |
|-------------|--------------------------------------------------------------------------------------------------------------------------|
|             | al.,1992)8                                                                                                               |
| Tableau 1.2 | Réserves et teneurs en Cr2O3 de différents gisements de                                                                  |
|             | chromites stratiformes et podiformes. Réserves exprimées en<br>millions de tonne et le CreOe en nourcentage poids        |
|             | minono de tonne et le 01203 en pourcentage poids                                                                         |
| Tableau 1.3 | Principales propriétés physico-chimiques des ÉGP et de l'Au                                                              |
|             | (tiré de Gueddari, 1996)11                                                                                               |
| Tableau 1.4 | Utilisations des ÉGP dans l'industrie (tiré de Gueddari, 1996) 11                                                        |
| Tableau 1.5 | Réserves et teneurs des gisements d'ÉGP les plus importants                                                              |
|             | dans le monde (selon Barrie, 1996)13                                                                                     |
| Tableau 1.6 | Types de dépôts d'éléments du groupe du platine associés                                                                 |
|             | aux intrusions litées (selon Naldrett, 1993)14                                                                           |
| Tableau 3.1 | Classification pour les roches riches en chromite d'après                                                                |
|             | Greenbaum (1977)28                                                                                                       |
| Tableau 3.2 | Classification des roches cumulatives selon la nomenclature                                                              |
|             | de Irvine (1982)                                                                                                         |
| Tableau 5.1 | Valeurs de normalisation utilisées pour la lithogéochimie                                                                |
|             | des terres rares et certains éléments traces (selon Mc                                                                   |
|             | Donough et Sun, 1995). [La, = Terres rares;                                                                              |
|             | HFSE et Sr, = Autres éléments traces]85                                                                                  |
| Tableau 5.2 | Valeurs de normalisation du manteau asthénosphérique                                                                     |
|             | proposées par Barnes et al. (1988). Les valeurs de Ni et Cu                                                              |

|             | sont celles proposées par Sun (1982) pour le manteau<br>primitif terrestre                                     | 36      |
|-------------|----------------------------------------------------------------------------------------------------------------|---------|
| Tableau 5.3 | Composition moyenne des différentes lithologies du CDM                                                         | 39-90   |
| Tableau 5.4 | Concentrations moyennes en platinoïdes des différentes<br>lithologies du CDM                                   | 112     |
| Tableau 5.5 | Comparaisons des concentrations en ÉGP des chromitites à silicate des sections détaillées                      | 121     |
| Tableau 6.1 | Composition moyenne des pyroxènes analysés à la microsonde électronique                                        | 129     |
| Tableau 6.2 | Intervalles de composition (% poids) des différentes zones<br>des grains de chromites du Complexe de Menarik 1 | 141     |
| Tableau 6.3 | Composition moyenne des chromites primaires des différentes unités du CDM1                                     | 50-151  |
| Tableau 6.4 | Composition moyenne de la serpentine pour les différentes<br>unités du CDM1                                    | 56      |
| Tableau 6.5 | Composition moyenne de la chlorite pour les différentes<br>unités du CDM 1                                     | .60-161 |
| Tableau 6.6 | Composition moyenne de l'amphibole pour les différentes<br>unités du CDM 1                                     | .65     |
| Tableau 6.7 | Composition moyenne des carbonates du Menarik 1                                                                | 67      |
| Tableau 6.8 | Composition moyenne des sulfures de fer et de cuivre en % 1                                                    | 72      |
| Tableau 6.9 | Composition moyenne des sulfures de nickel en %1                                                               | 72      |

| Tableau 6.10 | Composition moyenne des sulfoarséniures et arséniures<br>en %                                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tableau 6.11 | Principaux minéraux du groupe du platine175                                                                                                                                    |
| Tableau 6.12 | Composition des MGP retrouvés dans le Complexe de<br>Menarik                                                                                                                   |
| Tableau 6.13 | Minéraux ou éléments dans lesquels les platinoïdes peuvent<br>s'incorporer dans leurs structures cristallines (modifié de<br>Daltry et Wilson, 1997)                           |
| Tableau 6.14 | Concentration maximale (ppm) en éléments du groupe du<br>platine dans les sulfures du Complexe de Menarik et autres<br>complexes (dans les non-MGP)180                         |
| Tableau 7.1  | Classification des complexes mafiques-ultramafiques (Âge<br>en millions d'années) (modifié Ohnenstetter et al., 1994)                                                          |
| Tableau 7.2  | Comparaisons entre la composition de la chromite du<br>Complexe de Menarik et celle des autres complexes<br>mafiques-ultramafiques                                             |
| Tableau 7.3  | Comparaison pétrologique du Complexe de Menarik avec le<br>Complexe de Bushveld et le Complexe de Stillwater                                                                   |
| Tableau 7.4  | Sommaire de la pétrogenèse et de la géochimie du Complexe<br>de Menarik223                                                                                                     |
| Tableau A.1  | Composition des minéraux normatifs (Norme CIPW), des<br>minéraux normatifs excluant le spinelle et l'estimation du<br>mode minéralogique pour les roches des coupes détaillées |
| Tableau B.1  | Analyses lithogéochimiques pour les roches du CDM (CRM)256-267                                                                                                                 |

| Tableau B.2 | Analyses lithogéochimiques pour les roches du CDM (INRS-<br>Géoressources                                 |
|-------------|-----------------------------------------------------------------------------------------------------------|
| Tableau B.3 | Analyses lithogéochimiques pour les roches du CDM (INRS-<br>Géoressources)                                |
| Tableau C.1 | Composition des pyroxènes analysés à la microsonde<br>électroníque                                        |
| Tableau C.2 | Composition des chromites analysées à la microsonde<br>électronique                                       |
| Tableau C.3 | Composition des serpentines analysées à la microsonde<br>électronique                                     |
| Tableau C.4 | Composition des chlorites analysées à la microsonde<br>électronique                                       |
| Tableau C.5 | Compositions des amphiboles analysées à la microsonde<br>électronique                                     |
| Tableau C.6 | Composition des carbonates analysés à la microsonde<br>électronique                                       |
| Tableau C.7 | Composition des sulfures analysés à la microsonde<br>électronique                                         |
| Tableau C.8 | Concentration en platinoïdes en solution solide dans les<br>différents sulfures                           |
| Tableau D.1 | Liste des échantillons du Complexe de Menarik ayant fait<br>l'objet d'une ou plusieurs analyses chimiques |
| Tableau D.2 | Limites de détection pour les analyse effectuées au CRM414                                                |

xxviii

## LISTE DES ABRÉVIATIONS

#### Généraux

[D] = Dyke
[PC] = Poecilitique
Affl. = Affleurement
CDM = Complexe de Menarik
LM = Lame mince
NZU = Roches n'appartenant pas à la Zone Ultramafique
ZM = Zone Mafique
ZU = Zone Ultramafique
n.a. = non analysé
n.d. = non détecté

#### Lithologies

Chr = ChromititeChr Sil = Chromitite à silicate Du = DuniteDu à chro = Dunite à chromite Gab = Gabbro Harzb = Harzburgite Harzb à chro = Harzburgite à chromite Lherz = LherzoliteLherz à chro = Lherzolite à chromite Perid ou Per = Péridotite Pyrox = Pyroxénite Pyrox à MG = Pyroxénite à magnétite S-1, S-22 = Filonets de sulfures Ton = Tonalite Webst = Webstérite Webst Ol = Webstérite à olivine

### LISTE DES ABRÉVIATIONS (suite)

#### Minéraux

AM = Amphibole Ars = Arséniure Cb = CarbonateChl = ChloriteChro = Chromite Cpx = Clinopyroxène Cpy = Chalcopyrite ÉGP = Éléments du groupe du platine MG = Magnétite MGP = Minéraux du groupe du platine Mil = Millérite Ol = OlivinePG = Plagiocalse Po = Pyrrhotite Ptl = Pentlandite Py = PyriteSAs = Sulfoarséniure Sf = SulfuresTrém = Trémolite

Vio = Violarite

## Rapports

Cr# = Cr/(Cr + Al)  $Mg# = Mg/(Mg + Fe^{2+})$ Fe# ou Fe <sup>3+</sup># = Fe<sup>3+</sup>/(Fe<sup>3+</sup> + Al + Cr)  $Cr/Fe = Cr/(Fe^{3+} + Fe^{2+})$ 

#### **CHAPITRE I - INTRODUCTION**

#### 1.1 Objectifs du projet de recherche

Le projet de maîtrise, sur le Complexe de Menarik (CDM), s'insère à l'intérieur du projet de cartographie régionale du ministère des Ressources naturelles du Québec (feuillet du lac Kowskatehkakmow : 33F/06).

Le Complexe de Menarik est une intrusion ultramafique archéenne (Rivard, 1985) qui contient deux types de minéralisation:

1) Chromites stratiformes ± enrichies en éléments du groupe du platine (ÉGP)

2) Sulfures de nickel, de cuivre et d'ÉGP.

L'origine de ces minéralisations en Cr et ÉGP du Complexe de Menarik constitue le cœur de la problématique. Le projet vise à caractériser et étudier l'origine des différents types de minéralisations observées dans le Menarik. Plus spécifiquement, nous mettrons l'emphase sur l'étude des processus magmatiques et métamorphiques responsables de la mise en place des différents types de minéralisations.

Les objectifs de cette étude sont :

- Étudier la pétrographie des phases silicatées, des phases sulfurées et des oxydes (phases minéralogiques primaires et métamorphiques);
- Caractériser la géochimie des principaux faciès lithologiques de l'intrusion;
- 3) Définir la stratigraphie magmatique de cette intrusion;
- 4) Établir la typologie et la distribution des minéralisations en Cr, ÉGP, Ni et Cu;
- 5) Documenter et caractériser l'origine des structures observées sur le terrains (primaires ou secondaires);

- 6) Élaborer un modèle pétrogénétique pour cette intrusion et un (ou des) modèle(s) génétique(s) pour les minéralisations;
- Comparer les caractéristiques géochimiques, minéralogiques et métallogéniques du Complexe de Menarik avec d'autres exemples de complexes stratiformes;
- 8) Suggérer des critères favorables à la découverte de minéralisations en Cr, ÉGP, Ni et Cu dans d'autres intrusions mafiques-ultramafiques précambrienne. Ces métallotectes pourraient servir à la recherche de nouvelles minéralisations dans des roches ultramafiques dans des secteurs peu explorés comme la Baie-James.

#### 1.2 Accès et physiographie de la région

Le Complexe de Menarik, d'une superficie de 6 km<sup>2</sup> (2 x 3 km), se situe dans le secteur du lac Yasinski à 40 km au sud-est de la ville de Radisson sur le territoire de la Baie-James (Figure 1.1).

Le complexe se trouve entre les lattitudes 53°24'33" et 53°22'30" N et les longitudes 77°20'12" et 77°17'00" W (feuillet SNRC 33F/06). La route de la Baie-James (109) permet d'accéder facilement à la région. La route praticable la plus proche est celle reliant Radisson à la centrale hydroélectrique de LG-3 (embranchement à partir de la route 109, la Trans-Taïga). Pour accéder au Complexe de Menarik, il est possible d'utiliser des chemins construits pour les campagnes de forage. Ces derniers longent en partie une ligne électrique à haute tension situés à environ un kilomètre à l'ouest de l'intrusion. Dans le cadre de cette étude, l'accès au terrain cartographié se faisait par transport héliporté.

La topographie de la région est un héritage de la dernière grande période glaciaire. Le paysage est typique du nord-ouest du Québec où les affleurements, plus ou moins en reliefs, alternent avec des tourbières, des lacs et des rivières. La densité des affleurements rocheux dans le secteur est particulièrement élevée (environ 50 %), tandis que la proportion des affleurements dans la section ultramafique est d'environ 20 %. Le CDM est caractérisé par un relief accidenté où les roches ultramafiques forment des crêtes avec des parois quelques fois très abruptes qui forment de véritables falaises.



Figure 1.1 Carte de localisation du Complexe de Menarik, Baie-James.

#### 1.3 Méthodologie

Les travaux de terrain ont été effectués durant les mois d'août 1997 et juin 1998. Les travaux de cartographie ont couvert la zone ultramafique ainsi que la périphérie de l'intrusion. La cartographie de la zone périphérique de l'intrusion s'est faite sur une base de reconnaissance tandis que celle de la zone ultramafique a fait l'objet d'une cartographie plus détaillée. La cartographie du massif a été effectuée à l'échelle 1: 5 000 en s'appuyant sur les cartes géologiques existantes (Rivard, 1985, Pelletier, 1990 et 1995). Toutefois, quelques secteurs ont fait l'objet d'une cartographie plus détaillée.

Environ 250 échantillons ont été recueillis pour assurer un échantillonnage représentatif et pour déterminer les variations des différents faciès lithologiques du massif. Des échantillons représentatifs des différents faciès pétrologiques et des principales zones minéralisées ont été sélectionnés afin de fabriquer 170 lames minces polies. De ce nombre, 66 proviennent du ministère des Ressources naturelles du Québec (MNRQ : collaboration de Jules Cimon et de Claude Dion). Plus de 800 analyses minéralogiques ont été faites à la microsonde électronique ou au microscope électronique à balayage. Ces analyses ont été réalisées sur différents minéraux (spinelles, pyroxènes, serpentines, chlorites, amphiboles, carbonates, sulfures et minéraux du groupe du platine). Un total de 131 analyses géochimiques ont été effectuées dans le cadre de ce projet dont 35 nous ont été fournies par des géologues du MRNQ (Cimon, J. ; Dion, C.). De ces 131 échantillons, 35 ont été sélectionnés pour l'analyse des terres rares (TR) et des éléments du groupe du platine (ÉGP).

#### 1.4 Travaux antérieurs

La Commission géologique du Canada a réalisé dans les années 50 et 60 des travaux de reconnaissance géologique (échelle 1:506 880). Ces travaux couvrent une très grande superficie du territoire de la Baie-James (Eade et al., 1957 ; Eade, 1966). Par la suite, avant l'inondation des terres pour construire les réservoirs hydroélectriques, le ministère de l'Énergie et des Ressources du Québec a entrepris une cartographie régionale de la région de La Grande Rivière (1:63 360) (Sharma, 1977a, 1977b, 1977c). Récemment, le ministère des Ressources naturelles du Québec a effectué la cartographie à l'échelle 1:50 000 du feuillet SNRC 33F. Dans le cadre du projet Moyen-Nord, une synthèse métallogénique de la région a également été effectuée par Gauthier et al. (1996, 1997). Une revue des travaux antérieurs est présentée dans le rapport géologique du feuillet SNRC 33F/06 (Goutier et al., 1998b).

Vers la fin des années 50, les géologues de Main Exploration ont reconnu la nature ultramafique et la présence de minéralisations de chrome dans le Complexe de Menarik (Baldwin, 1959). Des levés géophysiques suivis de prospection, de tranchées, d'échantillonnages et de forages ont permis de mettre à jour plusieurs indices de cuivre, d'or, d'argent et de fer dans la région ainsi que le premier indice de chrome du Complexe de Menarik. Baldwin (1959) mentionne la présence de plusieurs accumulations de chromites dans le complexe ultramafique. Toutefois, aucune étude détaillée n'a été effectuée subséquemment à ces découvertes. En 1975, le groupe minier S.E.S. effectue des travaux d'exploration dans le Complexe de Menarik. Ces travaux se sont concentrés sur l'indice de cuivre Poirier-I inclus dans une zone de cisaillement carbonatisée située dans la portion nord-ouest de l'intrusion (Riley, 1975). En 1978, le projet de la SDBJ sur « l'évaluation du potentiel en nickel et amiante de différentes masses ultramafiques du Territoire de la Baie-James » mène à la découverte d'un important indice de chromite (Cr-1) dans une péridotite au nord du lac Menarik (Borduas, 1979). La SDBJ poursuit son exploration du Complexe en effectuant une cartographie à l'échelle 1:5 000, des travaux de géophysique, l'échantillonnage systématique des indices, la géochimie des sols et des sédiments de ruisseaux (Marchand, 1982). Une étude pétrographique préliminaire a également été effectuée sur quelques lames minces de roches ultramafiques (Sauvé, 1982).

Après les travaux de la SDBJ, la région a fait l'objet d'une thèse de maîtrise portant sur la géochimie des roches volcaniques d'une partie de la ceinture de Yasinski et du massif ultramafique de Menarik (Rivard et Francis, 1984; Rivard, 1985). Rivard interprète la zone ultramafique du Complexe de Menarik comme une
chambre magmatique stratiforme, d'âge archéen, se situant à la base de la ceinture volcano-sédimentaire et qui aurait été la source des roches volcaniques de la région. Il suggère également que les dykes gabbroïques et les cumulats de gabbros, situés en bordure de la zone ultramafique, sont le produit de la différenciation de l'unité ultramafique. Cette interprétation est cohérente avec l'absence de recoupement entre les gabbros et les péridotites.

Par la suite, Ressources minières Pro-Or ont effectué des travaux de cartographie  $(1:5\ 000),$ levés géophysiques détaillée des (magnétique, électromagnétique, polarisation provoquée), des levés pédogéochimiques et de trois campagnes de forages (forages dans le CDM) pour mettre en valeur le potentiel en chrome, cuivre, nickel, platinoïdes et en or du CDM (Pelletier, 1989; Pelletier et Folco, 1989; Sanschagrin et Pelletier, 1989; Pelletier et Folco, 1990; Gonthier, 1990; Allard, 1995; Gévry, 1997a; Gévry, 1997b; Gévry, 1997c; Gévry, 1998a; Gévry, 1998b; Gévry, 1999, Pelletier, 1999). La prospection et la campagne de forage de 1989 ont permis de mettre à jour 31 indices chromifères (Pelletier, 1989). Suite à cette campagne, le Centre de Recherche Minérale (CRM) a réalisé une étude pétrographique des différentes minéralisations chromifères et la détermination de la composition de ces différentes chromites à la microsonde. Cette étude a permis d'identifier les horizons les plus prometteurs (Wilhemy et Lacoste, 1990). Wilhemy et Lacoste (1990) conclurent à une grande variabilité de la texture, de la composition de la chromite et des horizons chromifères du Complexe de Menarik. Les résultats de la dernière campagne de forage (1997) indiquent que plusieurs horizons chromifères montrent des intersections particulièrement enrichies en platinoïdes (de 1,5 à 3,5 g/t [Pd + Pt] ) et en sulfures de Ni-Cu (0,2 à 0,5 % [Ni + Cu] ) (Gévry, 1998c). Elle a aussi permis d'augmenter le tonnage des ressources chromifères du Complexe de Menarik. Le total des ressources évaluées par sondage, par Ressources minières Pro-Or, atteint 3,7 Mt à une teneur combinée de 8,4 % Cr<sub>2</sub>O<sub>3</sub> (Pelletier, 1999, comm. pers.).

#### 1.5 Généralités sur les gîtes de chromite et d'ÉGP

Les roches encaissantes des gîtes de chromite et d'ÉGP sont essentiellement des roches mafiques et ultramafiques. La différenciation magmatique, qui mène à la formation de ces roches, permet une concentration primaire d'éléments métalliques comme le chrome, le nickel, le vanadium, le cuivre et les platinoïdes (Whitney et Naldrett, 1989). Les minéralisations en chrome et en ÉGP se rencontrent dans plusieurs environnements géologiques.

#### 1.5.1 Gîtes de chromite

Les premiers indices de chromite ont été découverts, il y a moins de 200 ans dans les montagnes de l'Oural (Russie) (Leblanc et Nicolas, 1992). Depuis le début de la métallurgie des aciers inoxydables, le chrome s'est avéré un métal stratégique et indispensable dans les sociétés industrialisées contemporaines et plus particulièrement en périodes de grandes guerres. Il y a plus de vingt pays qui sont des producteurs importants de chrome. Parmi ceux-ci, l'Afrique du Sud et la Russie sont les deux plus importants (Stowe, 1987).

#### Minéralogie de la chromite

Le minerai de chrome provient exclusivement d'un minéral, la chromite. Ce minéral fait partie de la famille des spinelles dont la composition chimique s'établit selon une solution solide { (Mg, Fe<sup>2+</sup>) (Cr<sup>3+</sup>, Al<sup>3+</sup>, Fe<sup>3+</sup>)<sub>2</sub>O<sub>4</sub> ]. Les trois principaux pôles sont : le pôle alumineux (spinelle alumineux), le pôle ferrifère (magnétite) et le pôle chromifère (chromite) (Tableau 1.1).

|                  | Série du spinelle                               | Série de la magnétite                                         | Série de la chromite                            |
|------------------|-------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|
|                  | (A1 <sup>3+</sup> )                             | (Fe <sup>3+</sup> )                                           | (Cr <sup>3+</sup> )                             |
| Mg               | Spinelle                                        | Magnésioferrite                                               | Magnésiochromite                                |
|                  | MgAl <sub>2</sub> O₄                            | MgFe <sub>2</sub> <sup>3+</sup> O <sub>4</sub>                | MgCr <sub>2</sub> O <sub>4</sub>                |
| Fe <sup>2+</sup> | Hercynite                                       | Magnétite                                                     | Chromite                                        |
|                  | Fe <sup>2+</sup> Al <sub>2</sub> O <sub>4</sub> | Fe <sup>2+</sup> Fe <sub>2</sub> <sup>3+</sup> O <sub>4</sub> | Fe <sup>2+</sup> Cr <sub>2</sub> O <sub>3</sub> |
| Zn               | Gahnite                                         | Franklinite                                                   |                                                 |
|                  | ZnAl <sub>2</sub> O <sub>4</sub>                | ZnFe <sub>2</sub> <sup>3+</sup> O <sub>4</sub>                |                                                 |
| Mn               | Galaxite                                        | Jacobsite                                                     |                                                 |
|                  | MnAl <sub>2</sub> O <sub>4</sub>                | MnFe <sub>2</sub> <sup>3+</sup> O <sub>4</sub>                |                                                 |
| Ni               |                                                 | Trevorite                                                     |                                                 |
|                  |                                                 | NiFe <sub>2</sub> <sup>3+</sup> O <sub>4</sub>                |                                                 |

**Tableau 1.1** Subdivision du groupe des spinelles en trois séries où il y a substitution des ions trivalents Al, Fe et Cr (Deer, et al., 1992).

Ulvospinelle [Fe<sup>2+</sup>TiO<sub>2</sub>] et Maghémite [ $\gamma$  - Fe<sub>2</sub><sup>3+</sup>O<sub>4</sub>] ne sont dans aucune série.

La proportion de chrome dans la chromite peut théoriquement atteindre 68 % (FeO = 32,0 % et  $Cr_2O_3$  = 68,0 %). Cependant, le fer ferreux peut être remplacé par le magnésium et le chrome par l'aluminum ou le fer ferrique, ce qui entraîne une diminution de la proportion de chrome dans la structure cristalline de la chromite. En raison de la substitution de ces constituants majeurs ou encore de la présence de certaines impuretés (Ni, Zn, Mn), la proportion de  $Cr_2O_3$  se situe généralement entre 33 % et 55 % dans la chromite industrielle.

#### Dépôts de chromite

chromite peuvent se Les gisements de retrouver dans plusieurs environnements géologiques différents (intrusions stratifiées mafiquesultramafiques, complexes ophiolitiques, dépôts alluviaux, latérites, etc.). On distingue deux grands types de gisements de chromite (Thayer, 1960; Duke, 1986, 1996a) : les gisements stratiformes constituent des horizons peu puissants mais de latérale dans des complexes magmatiques grande extension mafiquesultramafiques tandis que les gisements podiformes se retrouve dans les complexes ophiolitiques. Contrairement aux gites stratiformes, les gites podiformes sont généralement de taille beaucoup plus modeste. Le tonnage des gisements stratiformes est beaucoup plus important que celui des dépôts podiformes (rarement

plus de 1 Mt pour les gisements podiformes) (Tableau 1.2). Les gîtes stratiformes sont généralement précambriens (> 800 Ma) comparativement aux gîtes podiformes qui sont généralement phanérozoïques (< 800 Ma). Les deux types de gisements, stratiformes et podiformes, contiennent des minéralisations en platinoïdes.

En général, les chromites ophiolitiques sont plus riches en chrome ou en aluminium tandis que les chromites stratiformes sont plus riches en fer. Selon les propriétés physiques et chimiques de la chromite, elle peut avoir une utilisation industrielle en métallurgie ( $Cr_2O_3>48$  %, Cr/Fe>1,5), pour les matériaux réfractaires ( $Cr_2O_3>30$  %, Cr/Fe non critique,  $Cr_2O_3 + Al_2O_3 > 57$  %), ou l'industrie chimique ( $Cr_2O_3>45$  %) (Evans, 1993).

**Tableau 1.2** Réserves et teneurs en  $Cr_2O_3$  de différents gisements de chromites stratiformes et podiformes. Réserves exprimées en millions de tonne et le  $Cr_2O_3$  en pourcentage poids.

| Gîtes de chromites stratiformes        |          |                                | Gîtes de chromites podiformes          |          |                                    |  |
|----------------------------------------|----------|--------------------------------|----------------------------------------|----------|------------------------------------|--|
| ······································ | Réserves | Cr <sub>2</sub> O <sub>3</sub> | ······································ | Réserves | <u>Cr<sub>2</sub>O<sub>3</sub></u> |  |
|                                        | Mt       | %                              |                                        | Mt       | %                                  |  |
| Alaska, Alaska                         | 0,325    | 18                             | Coto, Phillipines                      | 13       | 36,5                               |  |
| Bushveld, Afr. du Sud                  | 1 100    | 42-45                          | Kavak, Turquie                         | 2        | 28-30                              |  |
| Campo Formoso, Brésil                  | 17       | 17-21                          | Kazak SSR, Kazakhstan                  | 90       | 50                                 |  |
| Great Dyke, Zimbabwe                   | 113      | 26-51                          | Nouvelle-Calédonie                     | 0,500    | 53-57                              |  |
| Kemi, Finlande                         | 59       | 26                             | Pakistan                               | 0,620    | 45-59                              |  |
| Munni Munni, Australie                 | n.d.     | n.d.                           | Troodos, Chypre                        | 0,600    | 48-57                              |  |
| Pennikat, Finlande                     | n.d.     | n.d.                           | Oman                                   | n.d.     | 39-56                              |  |
| Selukwe, Zimbabwe                      | 11,5     | 47                             |                                        |          |                                    |  |
| Stillwater, EU.                        | 5,140    | 20                             | Appalaches du Québec                   |          |                                    |  |
| <u>Canada</u>                          |          |                                | Reed-Bélanger, Qc                      | 1,1      | 7-14                               |  |
| Bird River, Manitoba                   | 3,6      | 21                             | Sterrett, Qc                           | 0,180    | 18                                 |  |
| Muskox, TNO.                           | 18,6     | 34-44                          | Caribou, Qc                            | 0,060    | 27                                 |  |

Source : Stowe, 1987, Duke, 1996b ; Duke, 1996c.

n.d. : Donnée non-disponible.

Au Québec, les minéralisations en chrome sont presque toutes du type podiforme (Marcotte, 19850) et sont contenues dans des séquences ophiolitiques des Appalaches. Ceci implique des corps minéralisés généralement de petite taille limitant ainsi leur impomtance économique. Cependant, il existe à la Baie-James deux ensembles archéens minéralisés en chrome et possède les principales caractéristiques des gîtes de type stratiforme. Il s'agit de l'indice du Lac des Montagnes dans la région de Némiscau (Williams, 1965; Duke, 1986; Duke, 1996b) et du Complexe de Menartik, sujet du présent mémoire.

#### 1.5.2 Gîtes d'élémients du groupe du platine

Les éléments du groupe du platine (ÉGP) comprennent six métaux : le platine (Pt), le palladium (Pd), le rhodium (Rh), le ruthénium (Ru), l'iridium (Ir) et l'osmium (Os). Ceux-ci appartienne=nt au groupe VIIIA du tableau périodique de Mendeleev. La rareté et l'importance écconomique des ÉGP leur confère l'appellation de métaux précieux au même titre= que l'or et l'argent. Les propriétés physico-chimiques (Tableau 1.3) des platineoïdes les rendent très intéressants pour de nombreuses applications industrielles. Malgré leur rareté et leur prix élevé, les ÉGP sont essentiels pour l'industrie automobile, chimique et pétrochimique (Tableau 1.4). Ils sont également utiles darns le domaine de la médecine, de la chimie, de la joaillerie et celui de l'aérospatial.

Les ÉGP peuvent être subdivisés en deux groupes selon leur numéro atomique, leur point de fusion ou encore en fonction de leur comportement chimique semblable. Les ÉGP légers sont le Ru, Rh et le Pd (respectivement 44, 45 et 46) et les ÉGP lourds :sont formés de Os, Ir et Pt (respectivement 76, 77 et 78). Cependant, la classification la plus utilisée pour les ÉGP est selon leur comportement géochimique similaire. Dans ce cas, on a le groupe de l'iridium (I-ÉGP) constitué de l'Ir, l'•Os et le Ru et le groupe du palladium (P-ÉGP) constitué du Pd, du Pt et du Rh.

|                                  | Os      | Ir      | Ru        | Rh     | Pt     | <u>Pd</u> | Au      |
|----------------------------------|---------|---------|-----------|--------|--------|-----------|---------|
| Numéro atomique                  | 76      | 77      | 44        | 45     | 78     | 46        | 79      |
| Poids atomique                   | 190,2   | 193,1   | 101,7     | 102,91 | 195,23 | 106,7     | 197,2   |
| Rayon atomique (Å)               | 1,33    | 1,35    | 1,34      | 1,34   | 1,38   | 1,37      | 1,37    |
| Valences                         | 3,4,6,8 | 1,3,4   | 2,3,4,6,8 | 1,3    | 2,4    | 2,4       | 1       |
| Réseau cristallin                | h       | c.f.c   | h         | c.f.c  | c.f.c. | c.f.c.    | c.f.c.  |
| Paramètre de maille              | a=2,714 | a=3,823 | a=2,68    | a=3,82 | a=3,93 | a=3,888   | a=4,078 |
| (a et c en A)                    | c=4,316 |         | c=4,261   |        |        |           |         |
| Densité (g/cm³) à 20°C           | 22,7    | 22,65   | 12,3      | 12,42  | 21,45  | 12,03     | 19,32   |
| T° de fusion (°C)                | 2700    | 2454    | 2400      | 1966   | 1774   | 1555      | 1064    |
| T° d'ébullition (°C)             | 5000    | 4400    | 4150      | 3727   | 4050   | 3600      | 2966    |
| Susceptibilité                   | + 10    | + 25    | + 43      | + 102  | + 189  | + 558     | -       |
| magnétique (cm <sup>3</sup> /g x |         |         |           |        |        |           |         |
| 106)                             |         |         |           |        |        |           |         |

**Tableau 1.3** Principales propriétés physico-chimiques des ÉGP et de l'Au (tiré de Gueddari, 1996).

c.f.c. : cubique à faces centrées ; h : hexagonal.

**Tableau 1.4** Utilisations des ÉGP dans l'industrie (tiré de Gueddari, 1996).

#### Caractéristiques et applications

| Os | Catalyseur,   | lampes     | à    | incandescence,  | micrographi    | e, pointe  | e des     | stylographes,  |
|----|---------------|------------|------|-----------------|----------------|------------|-----------|----------------|
|    | métallisation | , résistan | ce à | la corrosion.   |                |            |           |                |
| Ir | Catalyseur, 1 | filaments  | de l | ampes à incande | scence, fabric | ation de j | pointes p | our appareils  |
|    | de physique   | . plumes   | et d | les instruments | de chirurgie.  | contacts   | électriqu | ies, pivots en |

- horlogerie et suspension des aiguilles de boussoles, creusets pour hautes températures.
   Ru Catalyseur, lampes à incandescence, contacts électriques, alliages divers: pointes de stylographes, aiguilles de compas, électrodes, protection contre la corrosion du phosphore et de l'arsenic au cours des dosages en creusets métalliques, émulsions photographiques.
- **Rh** Catalyseur, utilisé dans la fabrication de l'or brillant, couples thermoélectriques avec Pt, contacts électriques, creusets, électrodes, résistance à l'usure mécanique et à la corrosion chimique, joaillerie, prothèses dentaires.
- **Pt** Catalyseur, métrologie (étalons mètre et kilogramme, confection du thermomètre normal), plumes stylographes, bijouterie, joaillerie, monnaie, platinage (électrodes de Pt, anodes avec feuilles de Pt), industrie chimique et du laboratoire (confection des creusets, spatules, cuillères, nacelles, cônes, agitateur pour calorimétrie, etc.), fils de résistance, contacts dans les machines d'induction, contacts des bougies d'automobiles, etc.
- **Pd** Hydrogénation catalytique, protection de l'oxydation, art dentaire, joaillerie (alliage Au-Pd = or blanc), horlogerie, papiers photographiques avec émulsion.

#### Minéralogie des éléments du groupe du platine

Dans la nature, les ÉGP peuvent montrer des tendances sidérophiles et chalcophile. Les platinoïdes sont considérés comme des éléments ayant une très grande affinité pour le fer. De plus, l'association fréquente des ÉGP avec des gisements sulfurés de Ni-Cu démontre que ces éléments peuvent être fortement chalcophile.

Les affinités géochimiques des ÉGP à former des minéraux du groupe du platine (MGP), dans les roches mafiques et ultramafiques, sont assez bien établis pour les gisements d'ÉGP. En général, les ÉGP se présentent sous la forme d'alliages métalliques, de tellurides et sélénides, de sulfoarséniures, d'arséniures, de sulfures, d'oxydes et même dans la structure cristalline de certains silicates comme l'olivine et les pyroxènes.

En somme, les ÉGP peuvent se diviser en deux groupes distincts : les ÉGP de la famille de l'iridium (I-ÉGP) et les ÉGP de la famille du palladium (P-ÉGP). Les I-ÉGP sont de nature plus réfractaire et cristallisent précocement en association avec la chromite et les silicates sous forme de sulfures de hautes températures ou d'alliages métalliques. Pour leur part, les P-ÉGP tendent à s'associer avec les sulfures comme la pyrrhotite, la pentlandite et la chalcopyrite. Cependant, il faut mentionner que sous certaines conditions les P-ÉGP peuvent également être associés à des phases plus réfractaires comme la chromite.

#### Dépôts d'éléments du groupe du platine

Les dépôts riches en éléments du groupe du platine se trouvent dans plusieurs contextes géologiques. En général, la très grande majorité des gisements d'ÉGP sont associés à des intrusions mafiques et ultramafiques dont plusieurs datent de l'Archéen. Dans le monde, il y a seulement une douzaine d'intrusions mafiques-ultramafiques caractérisées par des concentrations économiques ou subéconomiques (Tableau 1.5). Neuf dixièmes des ÉGP exploités proviennent de minerais d'ÉGP, et le reste provient essentiellement de gîtes magmatiques de Ni-Cu où les ÉGP sont exploités comme un sous-produit. Finalement, tout comme l'or, les ÉGP peuvent se retrouver dans les gîtes de placers alluviaux.

| Gisements d'ÉGP                      | Teneur en ÉGP + | Pt/Pd | Réserves<br>(Mt) |  |
|--------------------------------------|-----------------|-------|------------------|--|
|                                      | Au (g/t)        |       |                  |  |
| Complexe du Bushveld, Afrique du Sud |                 |       |                  |  |
| Horizon Merensky                     | 8,1             | 2,41  | 2160             |  |
| Lit de chromitite UG-2               | 8,7             | 1,21  | 3700             |  |
| Horizon Platreef                     | 7,3             | 0,91  | 1700             |  |
| Complexe Stillwater, Montana         |                 |       |                  |  |
| Horizon J-M                          | 18,8            | 0,31  | 421              |  |
| Lit de chromitite                    | 2,4             | 0,41  | 3,4              |  |
| Great Dyke, Zimbabwe                 | 4,7             | 1,41  | 1680             |  |
| Munni Munni, Australie               | 2,9             | 0,61  | 25               |  |
| Canada                               |                 |       |                  |  |
| Big Trout Lake, Ontario              | ~ 2             | 11    | Nd               |  |
| Bird River, Manitoba                 | ~ 0,6           | 0,51  | nd               |  |
| East Bull Lake, Ontario              | 2,5             | 0,31  | nd               |  |
| Lac des Iles, Ontario                | 5,4             | 0,141 | nd               |  |
| Muskox, T.NO.                        | ~ 1             | 0,11  | nd               |  |

**Tableau 1.5** Réserves et teneurs des gisements d'ÉGP les plus importants dans le monde (selon Barrie, 1996).

Dans des gisements de ce type, la proportion des différents éléments du groupe du platine (Pd, Pt, Rh, Ir, Ru, Os) est déterminante pour la rentabilité. Le ratio Pt/Pd est important car le palladium constitue généralement de 75 % à 90 % des platinoïdes contenu dans les gisements magmatiques.

Les gisements de minéraux du groupe du platine au sein d'intrusions mafiques et ultramafiques peuvent être regroupés de plusieurs façons. Barrie (1996) distingue deux types de gîtes platinifères : le type « horizon minéralisé » (Bushveld) et le type « brèche d'intrusion » (Lac des Iles). Ces deux types définis par Barrie (1996) possèdent des caractéristiques communes. Une des différences importantes entre le type « horizon minéralisé » et le type « brèche d'intrusion » est qu'ils représentent respectivement des minéralisations concordantes et non-concordantes. Naldrett (1993) base aussi sa classification sur la concordante de la minéralisation. Cette classification permet de diviser les différents types de minéralisations platinifères et non pas de regrouper les intrusions litées entre elles. De cette manière, une intrusion qui possède plusieurs types de minéralisations en ÉGP (Bushveld : Merensky Reef et Dunite Pipes) ne sera pas catégorisée dans une seule classe. Le tableau 1.6 montre la classification élaborée par Naldrett (1993) pour les gisements d'ÉGP.

**Tableau 1.6** Types de dépôts d'éléments du groupe du platine associés aux intrusions litées (Selon Naldrett, 1993).

| Dépôts d'ÉGP dans les intrusions litées                             |                                                                                                                                                              |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CONCORDANTS                                                         |                                                                                                                                                              |  |  |  |
| DÉPÔTS À SULFURES DOMINANTS                                         |                                                                                                                                                              |  |  |  |
| Associés à des niveaux st                                           | ratiformes enrichis en ÉGP (* reefs *)                                                                                                                       |  |  |  |
| • M<br>• J-<br>• Al<br>Pe                                           | lerensky Reef, Bushveld (Afrique du Sud)<br>-M Reef, Stillwater (Montana, É-U)<br>la-Penikka 1, Ala-Penikka 2, Sompujarvi et Paasivaara<br>enikat (Finlande) |  |  |  |
| Non-associés à des niveaux stratiformes enrichis en ÉGP (" reefs ") |                                                                                                                                                              |  |  |  |
| • M<br>• La                                                         | lain sulphide zone, Great Dyke (Zimbabwe)<br>ower sulphide zone, Great Dyke (Zimbabwe)                                                                       |  |  |  |
| DÉPÔTS À CHROMITITES DOMINANTE                                      | ES                                                                                                                                                           |  |  |  |
| <ul> <li>U0<br/>(A)</li> <li>Sc</li> <li>C)</li> </ul>              | G-1 & UG-2 chromitite, Bushveld<br>frique du Sud)<br>ompujarvi, Penikat (Finlande)<br>hromitite A, Stillwater (Montana, É-U)                                 |  |  |  |
| NON-CONCORDANTS                                                     |                                                                                                                                                              |  |  |  |
| • Ro<br>• Pl<br>• Dr                                                | obie zone, Lac des Iles (Ontario, Canada)<br>atreef, Bushveld (Afrique du Sud)<br>unite Pipes, Bushveld (Afrique du Sud)                                     |  |  |  |

#### **CHAPITRE II - CONTEXTE GÉOLOGIQUE**

#### 2.1 Géologie régionale

La géologie de la région du Menarik comprend trois ensembles de roches archéennes, des dykes protérozoïques et un bassin sédimentaire d'âge protérozoïque. Les ensembles de roches archéennes font partie de la sous-province plutonique de Bienville, de la sous-province volcano-plutonique de La Grande et de la sous-province métasédimentaire d'Opinaca (Figure 2.1).

Dans la région étudiée, la sous-province de Bienville est constituée d'une grande intrusion de monzonite porphyrique, d'un granite à hornblende, d'une tonalite et d'une monzodiorite. La limite entre les sous-provinces de Bienville et celle de La Grande peut être mise en évidence par la différence de signature magnétique (Goutier et al., 1999a). Le contact sud de la sous-province de Bienville et de la sousprovince de La Grande est une zone de faille coulissante majeure à déplacement dextre tandis que le contact sud-est serait plutôt une zone de faille de chevauchement (Goutier et al., 1999a, 1999b).

La sous-province d'Opinaca est constituée de wackes feldspathiques plissés passant progressivement à des paragneiss à biotite. Des bandes de conglomérats polygéniques, des formations de fer ainsi que des arénites quartzifères font également partie de cet ensemble métasédimentaire. Une multitude d'injections de pegmatites à tourmaline-biotite-muscovite-grenat et des plutons de granites roses se retrouvent dans l'Opinaca et recoupent le contact entre les sous-provinces de La Grande et de l'Opinaca (Goutier et al., 1998, 2000).

La sous-province de La Grande se compose d'un ensemble de gneiss tonalitique, d'une séquence volcano-sédimentaire et de multiples intrusions de compositions tonalitiques, granitiques, gabbroïques et ultramafiques. Dans cette province, l'unité la plus vieille est le Complexe de Langelier. Ce complexe comprend un gneiss tonalitique, une tonalite à hornblende et biotite ainsi qu'une tonalite foliée à gneissique. Le complexe est séparé de la séquence volcano-sédimentaire par des zones de failles ou des injections de tonalites tardives.

En deux endroits, une discordance d'érosion a été observée entre le Complexe de Langelier et la Formation d'Apple qui constitue la base de la séquence volcanosédimentaire (Goutier et al., 1999). La séquence volcano-sédimentaire est subdivisée en trois formations métasédimentaires (Formations d'Apple, de Shabudowan et d'Ekomiak) et un groupe métavolcanique (Groupe de Yasinski). La Formation d'Apple est surmontée du Groupe de Yasinski. Elle est constituée d'arénites quartzitiques et de conglomérats monogéniques uranifères à cailloux de quartz et contenant de la pyrite disséminée. Le Groupe de Yasinski surmonte la Formation d'Apple et est composé de basaltes tholéiitiques, d'andésites et de formations de fer. On retrouve localement des bandes de grès, des conglomérats polygéniques et des volcanites felsiques intercalées dans cette séquence volcanique. Les volcanites du Groupe de Yasinski sont surmontées par la séquence de wackes lithiques et de conglomérats polygéniques (contenant des fragments de tonalite) de la Formation d'Ekomiak en contact concordant à discordant avec les volcanites. La séquence volcanosédimentaire forme plusieurs bandes orientées NE-SO résultant d'une série d'imbrications et de plissements (Goutier et al., 1998, 1999).

Les formations supracrustales de la sous-provinces de La Grande sont injectées d'intrusions de tonalites à hornblende, de monzodiorites à hornblende et de diorites quartzifère (Intrusions de Duncan et au Pluton d'Amisach Wat). Ces roches sont également injectées par des intrusions mafiques et ultramafiques (dont le Complexe de Menarik). Les derniers événements magmatiques archéens consistent en la mise en place de plutons elliptiques (Pluton de Tipitipisu, Syénite du lac Bruce, Granite du lac Taylor) et de plutons granitiques tardi-tectoniques associés à des pegmatites à mica-tourmaline-grenat-béryl (Granite du Vieux-Comptoir).



**Figure 2.1** Géologie régionale simplifiée de la région du Complexe de Menarik (Modifiée de Goutier et al., 1998b).

#### 2.2 Stratigraphie et géochronologie

Les travaux de Goutier et al. (1998b, 1998c, 1999a, 1999b et 2000) ont permis de définir l'évolution tectono-stratigraphique de la région. Ces travaux ont permis de définir quatre principaux événements tectono-magmatiques archéens dont la chronologie relative est établie à partir de datations isotopiques :

- Mise en place du Complexe gneissique et plutonique de Langelier. Ce complexe est caractérisé par des âges, d'au moins 2811 ± 2 Ma (Mortensen et Ciesielski, 1987) obtenus sur des gneiss tonalitiques et de 2788 +4/-3 Ma et 2794 ±2 Ma (âge U-Pb sur zircon) obtenus pour des tonalites déformées (Goutier et al., 1998b et 1998c).
- Mise en place de la séquence volcano-sédimentaire dont la base est représentée par la Formation d'Apple. Cette formation est surmontée du Groupe de Yasinski (2732 +8/-6 Ma, âge U-Pb sur zircon; Goutier et al, 1998b).
- 3. Intrusion de la tonalite d'Amisach Wat (2716 ± 3 Ma; âge U-Pb sur zircon, Goutier et al., 1998), de Duncan et de Tipitisu, des intrusions ultramafiques de Menarik et de baie Chapus et du Granite du lac Taylor (2699 ± 3 Ma; âge U-Pb sur zircon, Goutier et al., 1999b).
- 4. Mise en place du granite à biotite du Vieux-Comptoir et des pegmatites à tourmaline datées à  $2618 \pm 2$  Ma (âge U-Pb sur zircon, Goutier et al, 1999b et 2000).

Par contre, il est impossible d'observer les principaux événements (4) tectonomagmatiques dans la région du CDM. La figure 2.2 présente d'une façon schématique, les relations chronologiques et de recoupement entre les roches supracrustales, gneissiques et plutoniques dans la sous-province de La Grande. Dans la région du CDM le socle ancien (Complexe de Langelier), s'observe sous la forme d'une enclave de granodiorite (2832 +/-3 Ma; âge U-Pb sur zircon, Goutier et al., 1998b) piégée dans la tonalite de Duncan au NE du Complexe de



**Figure 2.2** Colonne stratigraphique simplifiée de la sous-province de La Grande dans la région du Complexe de Menarik (modifiée de Goutier et al., 1998b).

Menarik (Figure 2.3). Le second événement correspond à la mise en place du Groupe de Yasinski (2732 Ma) situé à l'ouest de l'intrusion de Menarik. La mise en place du pluton d'Amisach Wat (2716 Ma), au SO, et d'une tonalite du Duncan (2709 Ma), au N-NE, sont associées au troisième événement majeur dans la région. Par la suite, le Complexe de Menarik recoupe les roches volcaniques du Yasinski et la tonalite de Duncan ce qui lui confère un âge maximum de 2709  $\pm 6/-4$  Ma. Le dernier événement magmatique dans la région du CDM consiste en l'injection d'un dyke de gabbro protérozoïque associé à un événement daté à 2,2 Ga (Ernst et al., 1998) affleurant au SO. Le 4e événement tectono-magmatique n'est pas présent dans le secteur. Cependant, ce dernier est considéré par Goutier et al. (2000) comme étant le dernier événement magmatique ayant affecté la région conférant ainsi un âge minimum de 2618  $\pm 2$  Ma.

#### 2.3 Géologie locale

Le CDM est situé dans l'extrémité NE de la ceinture volcano-sédimentaire du lac Yasinski (Figures 2.1 et 2.3). Plusieurs lithologies, dont le Complexe de Langelier, le Groupe de Yasinski, une Intrusion de Duncan, le Pluton d'Amisach Wat et des dykes à xénolites et protérozoïques, se retrouvent à proximité du CDM.

#### 2.3.1 Granodiorite du Complexe de Langelier

Dans la région, le Complexe de Langelier est identifié comme étant le socle ancien (Goutier et al., 1998b, 1998c, 1999a, 1999b, 2000). Il comprend trois principales unités : un gneiss tonalitique, une diorite quartzifère gneissique et une tonalite foliée à gneissique. Dans le secteur du Complexe de Menarik, les lithologies typiques du Complexe de Langelier ne sont pas observée. Cependant, une granodiorite, datée à 2832 +/- 5 Ma, est observée au NE de l'intrusion et est interprétée comme une enclave du Complexe de Langelier incluse dans une tonalite plus jeune (Goutier et al., 1998b).





La granodiorite est par endroit foliée avec le développement de muscovite qui lui donne une patine blanchâtre à légèrement verdâtre. Cette foliation est toutefois moins bien développée que dans la tonalite encaissante. Elle possède une texture porphyrique où les phénocristaux de feldspaths potassiques sont en proportion variable (de 0-20 %). La granulométrie de ces roches varie de 0,5 à 1,0 cm tandis que la matrice est à granulométrie moyenne (1-2 mm). La granodiorite est de plus composée de 40 à 50 % de plagioclase, de 15 à 20 % de quartz, ~ 15 % de feldspath potassique et d'environ 20 % de minéraux de biotite.

#### 2.3.2 Groupe de Yasinski

Le Groupe de Yasinski a été établi par Goutier et al. (1998b, 1998c) pour désigner une séquence de volcanites (mafiques >intermédiaires >> felsiques), de roches sédimentaires clastiques et de formations de fer. Les roches de ce Groupe affleurent dans toute la partie ouest du Complexe de Menarik et localement dans la partie à l'est de l'intrusion.

La lithologie dominante du Groupe de Yasinski est constituée de basaltes et d'andésites basaltiques (Goutier et al., 1998b). De la base vers le sommet stratigraphique, les unités de roches volcaniques du Yasinski vont de coulées de basaltes tholéilitiques aphyriques, d'une épaisseur de 100 à 200 m, à des coulées de basaltes andésitiques et à des andésites riches en porphyres de feldspath (~500m). Les unités sont recouvertes par des horizons de matériaux volcaniques dacitiques à rhyolitiques à dominance fragmentaire (~200 m) (Goutier et al., 1998b, 2000 et Laflèche et al., 2000).

Dans le secteur de l'intrusion ultramafique, les roches volcaniques sont très déformées et les structures primaires sont oblitérées. Les roches volcaniques sont métamorphisées en amphibolites foliées à grains fins à moyens et localement riches en grenat (5 à 10 %) de 2 à 5 mm de diamètre. Les zones à grains fins sont souvent mylonitisées et caractérisées par de nombreux petits plissements fermés, mais elles peuvent aussi être massives. Les zones à grains moyens forment des horizons caractérisés par le développement d'amphiboles aciculaires (5 à 10 mm, fibro-

radiées) facile à confondre avec des gabbros amphibolitisés. Localement, on observe des zones d'altérations rouillées causées par l'oxydation de sulfures finement disséminés ou en petits amas. La pyrite et la pyrrhotite (~ 1 %) se retrouvent préférentiellement dans certains niveaux, plus grenus, concordants avec la schistosité développée dans les basaltes. Des formations de fer à oxydes, localement riches en grenat, des conglomérats polygéniques, des wackes et des intrusions felsiques porphyriques sont intercalés dans les roches volcaniques. Une dacite (ouest de l'intrusion) du Groupe de Yasinski a fait l'objet d'une datation isotopique U-Pb sur zircon qui donne un âge de 2732 +8/-6 Ma et qui représente l'âge du volcanisme felsique de cette unité (Goutier et al., 1998b).

#### 2.3.3 Formation d'Ekomiak

Dans la région du Complexe de Menarik, la Formation d'Ekomiak est constituée de wackes et de conglomérats polygéniques (Goutier et al., 1998b). Les wackes lithiques sont de couleurs variables (du vert au rose et au brun). Cette variation réflète la présence de plusieurs minéraux d'altération comme l'hématite et la chlorite. Plusieurs structures sédimentaires sont conservées dans ces wackes. Les conglomérats polygéniques sont intercalées dans la séquence de wackes lithiques. Les fragments sont généralement arrondis, mal triés et supportés entre eux. Le conglomérat est massif et aucune structure sédimentaire n'a pu y être observée.

#### 2.3.4 Intrusions de Duncan

Les Intrusions de Duncan sont constituées de tonalites, de diorites, de monzodiorites et de monzonites qui sont postérieures au Groupe de Yasinski. Elles recoupent donc l'ensemble des roches volcaniques et sédimentaires et elles montrent un degré variable de déformation.

Dans le secteur du lac Menarik, les Intrusions de Duncan sont caractérisées par la présence de tonalites et de tonalites à hornblende. Ces tonalites sont grises à rosées avec une patine blanche et montrent une texture homogranulaire. Contrairement aux tonalites du Complexe de Langelier, ces roches sont affectées par une faible déformation. Les tonalites (< 10 % de feldspath potassique) sont principalement composées de plagioclase (40-50 %), de quartz (30-40 %) et de minéraux ferromagnésiens (1 à 15 % de hornblende + biotite). L'épidote, le sphène, l'apatite et le zircon constituent les principaux minéraux accessoires.

Cette masse tonalitique, qui borde le secteur N et SE du Complexe de Menarik, est injectée par de nombreux dykes gabbroïques qui seront abordés dans le chapitre sections trois.

#### 2.3.5 Pluton d'Amisach Wat

Ce pluton est constitué d'une composante majeure de composition tonalitique, et d'une composante mineure de composition dioritique. Toutefois, la composante dioritique n'est pas présente dans le secteur du Complexe de Menarik (Figure 2.3). La composante tonalitique est de granulométrie moyenne (2-5 mm) et montre une texture massive à légèrement foliée. Sa patine est blanchâtre et une légère altération produit une patine verdâtre (épidotisation) à rosée (hématisation). La tonalite est caractérisée par une texture porphyrique avec des phénocristaux de quartz (5 %) de 3 à 5 mm et de la hornblende (3 à 10 %) et de la biotite.

Cette intrusion est post-métamorphique et recoupe les roches volcaniques mylonitiques du Groupe de Yasinski. Un âge de  $2716 \pm 3$  Ma, obtenu par une datation U-Pb sur zircon est interprété comme l'âge de la mise en place de la tonalite (Goutier et al., 1998c).

#### 2.3.6 Complexe de Menarik

La Zone Ultramafique du Complexe de Menarik se compose de dunite à harzburgite (à chromite), de lherzolite (à chromite), de métapyroxénite [webstérite à olivine (à chromite), webstérite], d'horizons stratiformes de chromitites platinifères et de sulfures filoniens riches en ÉGP-Ni-Cu. Sa superficie est de 2 x 3 km<sup>2</sup> et son épaisseur est estimée à environ 500 m. Il est encaissé dans la tonalite de Duncan et dans les basaltes mylonitisés du Groupe de Yasinski.

#### 2.3.7 Dykes à xénolites

Des dykes de hornblendite recoupent toutes les unités observées dans la région. Un de ces dykes a été observé au sud de la faille majeure ESE qui recoupe les gabbros du Complexe de Menarik. Il n'est pas déformé et contient un certain nombre de xénolites (tonalites, gabbros, basaltes et péridotites). Une description plus détaillée de la minéralogie de ce dyke sera discutée dans le chapitre suivant.

#### 2.3.8 Dykes protérozoïques

Les roches les plus jeunes de la région sont des dykes protérozoïques qui recoupent toutes les autres unités géologiques précambriennes. Ces dykes ne sont affectés ni par la déformation et ni par le métamorphisme régional. L'épaisseur des dykes est variable et généralement inférieure à 100 m. Par contre, ces dykes ont une extension latérale kilométrique. Dans la région, on observe deux dykes protérozoïques dont le plus important se trouve au SE du Complexe de Menarik (épaisseur de ~60 m). Les travaux préliminaires de paléomagnétisme (Ernst et al., 1998) suggèrent que les dykes protérozoïques pourraient se rattacher à l'essaim des dykes de Senneterre qui est daté à 2,2 Ga (Ernst et al., 1998).

Les dykes sont constitués de gabbros généralement magnétiques, à grains moyens (2-5 mm) et de couleur vert foncé en cassure fraîche avec une patine brunâtre très caractéristique. Les gabbros exhibent une bordure de trempe pouvant varier de quelques centimètres à quelques mètres. Les gabbros sont fréquemment porphyriques à gloméroporphyriques. Pour ces roches, les phénocristaux de plagioclases sont relativement abondants (2 à 5 %) et grossier (0,5 à 2,0 cm de diamètre). La texture subophitique est la plus commune et les plagioclases sont légèrement saussuritisés (Goutier et al., 1998b).

#### 2.4 Métamorphisme et structure

Deux épisodes de métamorphisme régional ont été identifiés dans la région. En général, dans le secteur du Menarik, l'intensité du métamorphisme varie du faciès des schistes verts à celui des amphibolites. Le premier épisode métamorphique, qui atteint le faciès des amphibolites, affecte les gneiss et les tonalites du Complexe de Langelier. Le second épisode de métamorphisme affecte la séquence supracrustale qui est métamorphisée au faciès des schistes verts, localement à celui des amphibolites (Goutier et al., 1998b). Dans la région, les isogrades métamorphiques régionaux sont représentés par la chlorite, l'amphibole, la biotite, le grenat et la staurotide (Goutier et al., 1998b). Au voisinage du Complexe de Menarik, le Pluton d'Amisach Wat et la tonalite de Duncan sont caractérisés par l'apparition de la biotite qui remplace la hornblende. L'amphibole et localement le grenat sont présents dans les roches du Groupe de Yasinski. Dans le Complexe de Menarik, le métamorphisme se manifeste surtout par la présence de serpentine, de chlorite, de magnétite, de talc et de carbonate. Les minéraux métamorphiques témoignent des conditions prévalantes lors du deuxième épisode de métamorphisme.

Les travaux de Goutier et al. (1998a, 1998b, 1999a, 1999b, 2000) permettent de diviser la région en trois ensembles structuraux. Le premier ensemble regroupe les roches du Complexe de Langelier. Les roches sont affectées par une intense déformation soulignée par un rubanement gneissique montrant une différenciation compositionnelle fréquemment plissotée. Le deuxième ensemble structural correspond aux roches volcano-sédimentaires plissées et imbriquées. Ces roches forment deux bandes au grain structural orienté ENE et NNE. La déformation y est très irrégulière et les roches mylonitisées alternent avec des panneaux monoclinaux beaucoup moins déformés. Le troisième ensemble structural regroupe les intrusions plus tardives comme celles de Duncan, d'Amisach Wat ainsi que les intrusions ultramafiques tardives caractérisées par une foliation tectonique peu développée.

#### CHAPITRE III - GÉOLOGIE DU COMPLEXE DE MENARIK

La description pétrographique des différentes unités lithologiques du Complexe de Menarik est basée sur les données de terrain et sur l'étude pétrographique des lames minces. Ces données servant aussi à décrire le métamorphisme, la séquence de cristallisation magmatique, les faciès minéralisés et la stratigraphie ignée du Complexe de Menarik. La carte géologique simplifiée du complexe intrusif est présentée à la figure 3.1 et, en pochette, deux cartes détaillent la localisation des échantillons (Figure 3.2) et la géologie (Figure 3.3).

#### 3.1 Classification des roches ultramafiques

La classification des roches ultramafiques et mafiques est principalement basée sur l'estimation visuelle des modes minéralogiques. Cette estimation a été rendue possible grâce à l'observation des échantillons mégascopiques et sous le binoculaire. De plus, plusieurs échantillons ont été classifiés à partir de l'étude des sections polies (microscope optique). Nous avons également utilisé le calcul des minéraux normatifs pour classifier certaines roches. La nomenclature utilisée pour les roches mafiques est celle de Streckeisen (1976). La nature ultramafique et les teneurs importantes en oxydes de plusieurs roches du Menarik oblige l'utilisation de deux nomenclatures différentes. Dans ce mémoire, nous avons combiné de la classification de Greenbaum (1977) et celle de IUGS (Streckeisen, 1976).

La classification de Greenbaum (1977) (Tableau 3.1) met l'accent sur la proportion de spinelle en prenant comme exemple les roches de l'ophiolite de Troodos. Dans cette classification, seules les proportions modales de chromite sont utilisées compte tenu de la prépondérance de l'olivine comme silicate ferromagnésien. Ceci limite l'application directe de cette nomenclature pour l'ensemble des roches ignées. Par contre, en combinant cette classification à celle de Streckeison (1976) (Figure 3.4), qui met l'emphase sur la proportion modale des différents silicates (Ol, Cpx, Opx), les roches du Menarik ont pu être subdivisées

adéquatement. La nomenclature utilisée se base sur les proportions modales des silicates auxquels on accole un suffixe selon la proportion modale de chromite.

Tableau 3.1 Classification pour les roches riches en chromite d'après Greenbaum (1977).

| Dunite (avec chromite accessoire) | Moins de 5 % de chromite     |
|-----------------------------------|------------------------------|
| Dunite à chromite                 | Entre 5 et 50 % de chromite  |
| Chromitite à olivine              | Entre 50 et 90 % de chromite |
| Chromitite                        | Plus de 90 % de chromite     |

En l'absence de la minéralogie primaire des roches du CDM, la classification exacte des différentes lithologies est difficile à réaliser. Toutefois, nous avons procédé à l'estimation modale en se basant sur la présence des pseudomorphes de minéraux primaires en lames minces et du calcul des minéraux normatifs (norme CIPW modifiée pour tenir compte de la quantité importante de spinelle chromifère : Varvalvy, Thèse Ph.D., non publiée). De plus, la géochimie et plus spécifiquement celle des TR a été utilisée comme indicateurs des phases fractionnées lors de la différenciation du CDM.



**Figure 3.1** Carte géologique du Complexe de Menarik avec quelques affleurements visités (modifiée de Rivard, 1985; Pelletier, 1990 et 1995).

# **NOTE TO USERS**

Oversize maps and charts are microfilmed in sections in the following manner:

### LEFT TO RIGHT, TOP TO BOTTOM, WITH SMALL OVERLAPS

This reproduction is the best copy available.

# UMľ

٠









Municipalité de la Baie-James, Région de LG-2, Québec

# Complexe de Menarik

Figure 3.2 Carte de localisation des échantillons

- Échantillons (éch: Michel Houlé)
   Échantillons (éch: Claude Dion, MRNQ)
   Échantillons (éch: Jules Cimon, MRNQ)

60

Échantillonnages de détails (plusieurs échantillons sur un même affleurement)



Section détaillée 97-MH-7371









# Aires d'affleurements de compilation

Feuillet SNRC 33F06

500 mètres

Cartographie: Michel Houlé, MSc., Université Laval, 2000.

Collaborateurs: Jean Goutier (MRNQ), Marie-Claude Ouellet (URSTM/MRNQ)

Travaux réalisés à partir des cartes géologiques antérieures de Rivard (1984, MSc. McGill) et Pelletier (1990; 1995; Ressources minières Pro-Or)

Remerciements: Nous souhaitons souligner la collaboration de Ressources minières Pro-Or pour l'accessibilité à la propriété et l'accessibilité à leurs résultats.

# NOTE TO USERS

Oversize maps and charts are microfilmed in sections in the following manner:

# LEFT TO RIGHT, TOP TO BOTTOM, WITH SMALL OVERLAPS

This reproduction is the best copy available.

# UMI










Municipalité de la Baie-James, Région de LG-2, Québec

# Complexe de Menarik

Figure 3.3 Carte géologique (faciès lithologiques et données structurales).

- UM = Roches ultramafiques
- 141 = Péridotite

I4M = Dunite

I4L = Harzburgite

I4K = Lherzolite

I4B = Pyroxénite

I3A = Gabbro

V3B = Basalte

I1D = Tonalite

I1C = Granodiorite

S4F = Conglomérat polygénique (matrix-supported).

S2F = Sublitharénite











**Figure 3.4** Projection de la composition modale en Opx + Cpx + Ol des roches ultramafiques du Complexe de Menarik. Dans le diagramme ternaire tiré de Streckeisen (1976). Carré : > 50 % de chromite, cercle entre 5 % et 50 % de chromite, triangle < 5 % de chromite. Le champ en gris représente 90 % des données disponibles.

Compte tenu de la serpentinisation de certains échantillons, il a été impossible d'évaluer la proportion modale des différentes phases silicatées contenues dans l'ensemble des échantillons. Pour ces échantillons, l'estimation de la proportion de minéraux normatifs a été utilisée bien qu'elle semble systématiquement surestimer la proportion d'orthopyroxène par rapport à l'estimation modale en lame mince. Lorsque les pseudomorphes sont préservé, l'estimation visuelle en lame mince de la proportion modale de l'Opx est toujours plus faible que la proportion d'Opx normatif calculée par la norme CIPW. Ces fortes proportions modales d'Opx pourrait résulter d'une silicification lors de l'altération (serpentinisation) des roches ultramafiques. Ce phénomène est fréquemment observé dans les roches mafiques et ultramafiques archéennes (comm. pers. M.R. Laflèche). De plus, il faut faire attention à l'estimation des proportions normatives en clinopyroxène car cette estimation peut être faussée par la présence de carbonates. Les roches du CDM sont caractérisées par de faibles variations des minéraux silicatés. Cependant, ces petites variations réflètent quand même une grande variété de lithologies (dunite, harzburgite, lherzolite, orthopyroxénite à olivine, webstérite à olivine et webstérite) compte tenu que la composition de la majorité des échantillons s'aligne près de l'axe olivine-orthopyroxène. En effet, 90 % des données sont contenues dans la zone ombragée de la figure 3.4 qui limite la frontière entre les lherzolites et les harzburgites.

La terminologie utilisée pour décrire les roches ignées cumulatives est tirée de Wager et al. (1960) et d'Irvine (1982). Wager et al. (1960) ont proposé, pour la première fois, le terme « cumulat » pour désigner une roche magmatique s'étant formée suite à l'accumulation de cristaux extraits d'un magma lors de son refroidissement. Auparavant, le terme « roche accumulative » était utilisé (Bowen, 1928). La nomenclature de Wager et al. (1960) fait appel à la notion de cristaux cumulus et de matériel postcumulus. Selon Wager at al. (1960), les cristaux cumulus sont séparés du magma et le matériel postcumulus correspond au liquide interstitiel piégé dans cette trame cristalline (créée lors de l'accumulation de cristaux de type cumulus). À partir de cette nomenclature, Wager et al. (1960) ont suggéré une multitude de textures avec une signification génétique (orthocumulat, mésocumulat, adcumulat, hétéradcumulat et crescumulat) découlant de mécanismes de formation particuliers. La terminologie des cumulats a été redéfinie par Irvine (1982) en utilisant les textures cumulatives uniquement de façon descriptive et non pas en les reliant à des processus d'accumulation. Dans son article, Irvine (1982) fait intervenir les mêmes notions de cristaux cumulus (cristaux plus ou moins idiomorphes formés dans un premier stade de cristallisation fractionnée) et de cristaux postcumulus (cristaux plus ou moins xénomorphes formés par le remplissage des espaces interstitiels). Selon Irvine (1982), les différents types de cumulats peuvent être distingués en fonction du volume de matériel postcumulus ce qui facilite la description des roches cumulatives (Tableau 3.2).

| Roches        | Volume de matériel |
|---------------|--------------------|
| cumulatives   | postcumulus        |
| Orthocumulats | 25-50 %            |
| Mesocumulats  | 7-25 %             |
| Adcumulats    | 0-7 %              |

**Tableau 3.2** Classification des roches cumulatives selon la nomenclature de Irvine (1982).

Pour décrire les différentes lithologies dans ce chapitre, les roches sont regroupées en deux grands groupes, les roches mafiques et les roches ultramafiques. À l'intérieur de ces unités lithologiques, il est possible de distinguer des roches qui appartiennent au Complexe de Menarik et d'autres qui n'y sont probablement pas associées. De cette façon, le Complexe de Menarik est divisé en deux zones principales : la Zone Mafique (ZM) et la Zone Ultramafique (ZU). La Zone Mafique est composée essentiellement de roches gabbroïques qui représentent environ 25 % du volume de l'intrusion. La Zone Ultramafique consiste en des unités de cumulats lités ultramafiques qui représentent environ 75 % du volume de l'intrusion.

## **3.2 Les roches mafiques**

Les roches mafiques, identifiées dans la région du Menarik, sont divisées en deux groupes distincts, soit les roches gabbroïques de la ZM et les dykes gabbroïques qui recoupent le CDM.

# 3.2.1 Les roches gabbroïques de la ZM

Cette unité est constituée de roches gabbroïques qui affleurent en périphérie de l'intrusion ultramafique sous la forme de grosses masses de plusieurs centaines de mètres de diamètre. Elles se retrouvent aussi bien au pourtour du bloc sud que du bloc nord. Ces masses intrusives présentent une foliation et une linéation minérale héritée de la déformation régionale. Des veines centimétriques de quartzplagioclase, avec une bordure réactionnelle de chlorite verte foncé de 1 à 2 cm, sont présentes dans le gabbro (Figure 3.5). Dans la partie SE de l'intrusion, des dykes de pyroxénite verte foncé recoupent ce gabbro. Localement, ces pyroxénites peuvent contenir des enclaves du gabbro encaissant de quelques centimètres à plusieurs dizaines de centimètres de diamètre. Sur l'affleurement 97-MH-7421, on observe également la présence d'un litage compositionnel d'origine magmatique. Sur cet affleurement, le litage compositionnel semble tronqué par un litage sus-jacent suggérant des perturbations lors de leur formation.

Les roches gabbroïques sont principalement à grain moyen (2-3 mm), et par endroits à grain fin (< 1 mm). Localement des zones de gabbro pegmatitique (Figure 3.6), avec des amphiboles aciculaires vertes de quelques centimètres de longueur, peuvent être observées dans la plupart des masses plutoniques. La patine est vert foncé, conséquence de la présence d'une forte proportion d'amphiboles, et blanche résultant de la préservation des plagioclases. En cassure fraîche, la couleur est sensiblement la même bien que souvent elle soit légèrement plus foncée. Dans ces roches, la proportion de plagioclase varie entre 45 à 55 % comparativement à 25 et 45 % pour les minéraux ferromagnésiens.

Microscopiquement, ces roches gabbroïques sont constituées essentiellement de l'actinote, de la chlorite, de l'épidote et d'argile. La mâcle polysynthétique typique du plagioclase n'a jamais pu être observée à cause de l'altération importante de cette phase minérale en argile. Toutefois, la couleur brunâtre du plagioclase permet de l'identifier facilement. Par contre, l'amphibole est très bien préservée. Elle montre des clivages à 120° et possède un pléochroisme vert foncé à vert pâle. L'actinote est interstitielle et tend à mouler les bordures des plagioclases. La texture panidiomorphe à hypidiomorphe est une texture ignée particulièrement bien préservée dans les gabbros. Dans ces roches, le plagioclase est en petits bâtonnets idiomorphes et les pyroxènes sont subidiomorphes. D'après le calcul des minéraux normatifs, on peut supposer la présence des deux types de pyroxènes (Cpx, Opx) et probablement d'olivine qui laisse suggérer que ces gabbros seraient plutôt des gabbronorites et des gabbronorites à olivine. Compte tenu des incertitudes reliées à la pétrographie de cette unité, la terminologie de gabbro sera conservé dans le cadre de ce mémoire.



**Figure 3.5** Veine de quartz-plagioclase avec une bordure réactionnelle de chlorite dans un gabbro à grain fin (Affl. 98-MH-4104)



**Figure 3.6** Zone de gabbro pegmatitique dans un gabbro à grain fin. Les amphiboles aciculaires ont de 1 à 4 cm de longueur pour le gabbro pegmatitique comparativement à seulement 2 à 3 mm pour le gabbro à grain moyen (Affl. 98-MH-4104).

## 3.2.2 Les dykes gabbroïques

Les dykes de gabbro sont injectés aussi bien dans les roches ultramafiques du CDM que dans la tonalite encaissante. Dans le secteur N-NE de l'intrusion, la tonalite de Duncan est recoupée par une multitude de dykes gabbroïques d'orientation NNE et NNO. Les dyke gabbroïques sont observés dans tout l'intrusion ultramafique. Dans le bloc sud, les dykes observés sont beaucoup moins épais et représentent un volume beaucoup moins important dans le bloc nord. Seuls quelques dykes (métriques) ont été répertoriés dans le sud comparativement à plusieurs dykes métriques à décamétriques dans le bloc nord. À proximité du contact supérieur entre la péridotite et la tonalite, on observe une interconnection entre les dykes de gabbros et des sills gabbroïques qui s'injectent sub-parallèlement au contact entre la roche encaissante et le CDM (97-MH-7463 et 97-MH-7419).

Dépendant de l'épaisseur, les dykes gabbroïques sont à granulométrie fine (< 1 mm) à moyenne (2-3 mm). Cette caractéristique est probablement reliée au taux de refroidissement et à la température de la roche encaissante. Cependant, certains dykes recoupant la tonalite sont relativement grenus considérant leur faible épaisseur. La patine des gabbros est vert foncé et blanche causée probablement par l'amphibolitisation et l'albitisation des minéraux primaires respectivement. En cassure fraîche, la couleur est sensiblement la même bien que souvent elle soit légèrement plus foncée. La proportion de plagioclase varie de 45 à 55 % comparativement à 35 et 55 % pour les pyroxènes (où le Cpx > Opx) et de 5 à 8 % pour l'olivine. La présence du Cpx et d'Opx est fortement suggérée par le calcul de la composition en minéraux normatifs de la roche compte tenu que les pyroxènes sont complètement amphibolitisés. Ces injections de gabbros ne présentent aucun signe de la déformation régionale. Une bordure de trempe est visible sur quelques millimètres pour les dykes les moins épais et peut atteindre plusieurs centimètres lorsque la puissance est plus importante.

Microscopiquement, la minéralogie de cette unité est identique à celle des roches gabbroïques de la ZM. Les dykes sont constitués d'amphibole (essentiellement de l'actinote), de chlorite, d'épidote et d'argile. Une fois de plus, aucune mâcle n'est présente et c'est la couleur brunâtre du plagioclase qui permet de l'identifier facilement. L'actinote est très bien préservée, elle montre des clivages à 120° et possède un pléochroïsme variable allant de vert foncé à vert pâle. L'amphibole est interstitielle et tend à englober les cristaux de plagioclase. La texture observée est typique des roches filoniennes gabbroïques, soit la texture intersertale ophitique à sub-ophitique.

#### **3.3 Les roches ultramafiques**

Les roches ultramafiques dans la région du Menarik sont divisées en deux groupes, soit les roches ultramafiques de la ZU et les dykes ultramafiques qui recoupent la ZM et la ZU.

#### 3.3.1 La Zone Ultramafique (ZU)

Le CDM est séparé en trois secteurs définit par une lithologie prédominante par rapport aux autres lithologies: le secteur sud, le secteur central et le secteur nord. Le secteur sud correspond aux roches qui se retrouvent au sud de la faille majeure ESE (Figure 3.1) et se compose de dunites et de harzburgites (riches en olivine). Le secteur central correspond aux roches au nord de la faille majeure et au nord des boutons de tonalite. Ce secteur est constituée essentiellement de harzburgites, de dunites et de webstérites à olivine. Le secteur nord commence à la limite du secteur central et se termine à la limite nord de l'intrusion. Les harzburgites poecilitiques et les lherzolites poecilitiques sont les lithologies dominantes de cette région.

# 3.3.1.1 Les chromitites

Cette unité est constituée principalement de chromitites ( $\geq$  90 % de chromite) et de chromitites à silicate (50 %  $\leq$  Chro  $\leq$  90 %). Elle se retrouve seulement dans la ZU aussi bien dans le bloc nord que dans le bloc sud où elle alterne généralement avec des péridotites et/ou des péridotites à chromite.

Dépendant de la proportion de silicates dans l'unité, les chromitites présentent des surfaces lisses ou légèrement en relief positif. La patine de ces roches est noire pour les chromitites et noire tachetée de brun orangé, blanche ou violacée pour les chromitites à silicate. Les différentes couleurs observées résultent de la présence de minéraux métamorphiques qui sont respectivement brun orangé pour les silicates serpentinisés, blanc pour la trémolite et violacée pour la chlorite chromifère. La texture anti-nodulaire ou en léopard est généralement très caractéristique des chromitites à silicate ou des péridotites à chromite. La couleur, en cassure fraîche, est également noire et sur une plaque de porcelaine, le trait varie de brun (chromite) à noir (magnétite). La variabilité du trait est causée par le remplacement de la chromite par la ferritchromite. Les chromitites (Figure 3.7) et les chromitites à silicate (Figure 3.8) sont habituellement très finement grenues (< 1 mm) mais peuvent aussi être moyennement grenues (1-2 mm). La variété des chromitites à granulométrie plus grossière est observée uniquement dans la partie SO du secteur sud de la ZU (au sud de la rivière Menarik). Les chromitites sont des roches massives et homogènes. Le cas des chromitites à silicate est légèrement différent. En fait, d'après des critères structuraux, les chromitites silicate peuvent être séparées en deux groupes : les chromitites à silicate à cumulat et les chromitites à silicate à nodules. Le type à cumulat se caractérise par la présence de roches massives et homogènes comme les chromitites tandis que le type à nodule est caractérisé par la présence de nodules de silicates allongés de dimensions très variables (de mm à cm). La distinction entre ces deux types est la suivante : le type à cumulat est une roche où des cumulats de silicates (olivine, pyroxène) baignent dans une matrice de chromite tandis que le type à nodule est représenté par des glomérocristaux (Ol + Ol, Ol + Px, Px + Px) qui baignent également dans une matrice de chromite.



Figure 3.7 Texture granulaire d'une chromitite du CDM. La chromite est idiomorphe et les minéraux interstitiels sont la serpentine et la chlorite (LM 96-CD-5115-C1).



**Figure 3.8** Texture anti-nodulaire d'une chromitite à olivine du CDM. Le matériel silicaté interstitiel est moins abondant en raison de la coalescence des grains de chromite (LM 96-CD-5113-A).

La minéralogie de cette unité est principalement constituée de chromite. Les autres minéraux sont la serpentine, la chlorite et la trémolite. La chromite, généralement très finement grenue (<< 1 mm), présente toujours une texture idiomorphe. Par contre, des chromitites et des chromitites à silicate grenues (~1 mm) ont pu être observées sur certains affleurements (Affl. 97-MH-7503 et 97-MH-7504).

Il est très difficile d'observer la forme cristallographique octaédrique de la chromite à l'œil nu. Certains échantillons montrent une granulométrie variable de la chromite. Dans ces échantillons, la majorité des grains de chromite varient de 0,1 à 0,4 mm de diamètre. Cependant, ceux-ci possèdent également des chromites d'un diamètre d'environ 1 mm. L'oxydation de la chromite se traduit par la formation de ferritchromite et de magnétite entraînant ainsi un début de coalescence des grains. La coalescence peut être si avancée, qu'en lame mince (Figure 3.7), les grains d'oxydes peuvent être tous soudés les uns aux autres.

Les roches ultramafiques contiennent plusieurs types de minéralisations. Dans ces intrusions, les concentrations métallifères sont principalement constituées de chrome, de titane, de vanadium, de nickel, de cuivre, de cobalt et des éléments du groupe du platine (ÉGP). Le Complexe de Menarik fait partie de ces intrusions litées minéralisées. Dans le CDM, la minéralisation magmatique dominante est de type Cr-ÉGP. Ces zones minéralisées forment des horizons enrichis en chromite et en éléments du groupe du platine (ÉGP). Ces dernières sont distribuées à travers toute l'intrusion du CDM. La cartographie de l'intrusion a permis d'identifier trois principaux faciès d'accumulation de la chromite dans l'intrusion.

#### Faciès I

Le Faciès I est composé d'une chromitite ou d'une chromitite à silicate en lits massifs (Figure 3.9). La proportion de chromite contenue dans ce faciès minéralisé est supérieure à 50 %. La puissance des horizons riches en chromites varie de quelques centimètres à plusieurs décimètres. La puissance maximale est d'environ 1 mètre. L'extension latérale maximale, observée en affleurement, est d'environ 90 mètres (Affl. 97-MH-7374).

#### Faciès II

Le Faciès II est composé d'une harzburgite, d'une dunite ou plus rarement d'une lherzolite à chromite en banc plus ou moins homogène (Figure 3.10). La proportion de chromites contenue dans ce faciès se situe entre 5 et 50 %. La puissance des horizons de dunite ou de harzburgite à chromite varie de quelques centimètres (~5 cm) à plusieurs décimètres. Cependant, la puissance maximale est d'environ 1 mètre. L'extension latérale est généralement d'une dizaine de mêtres mais peut localement atteindre 45 à 50 mètres (97-MH-7372 et 97-MH-7374).

#### Faciès III

Le Faciès III est composé d'une harzburgite (et/ou d'une harzburgite à chromite) ou d'une dunite (et/ou d'une dunite à chromite) en alternance rythmique avec une chromitite ou une chromitite à silicate (Figures 3.11 et 3.12). Dans ce faciès, la proportion de chromite est très variable mais toujours supérieure à 50 %. La puissance des horizons riches en chromitites rythmiques est généralement très faible, de l'ordre de quelques centimètres et excédant rarement plus de 10 centimètres. L'épaisseur de la séquence rythmique varie de quelques décimètres (> 5 dm) à 2 mètres. Comparativement aux faciès I et II, l'extension latérale de ces séquences rythmiques est moindre et elle ne dépasse généralement pas une dizaine de mètres.

Les faciès minéralisés peuvent localement être observés en association. La figure 3.13 illustre l'association du faciès I et III dans un même horizon de chromite. Cette association des différents faciès (I et III) a été observée sur plusieurs affleurements. La relation stratigraphique entre les différents faciès est toujours la même, soit le Faciès III à la base (au sud), représenté par une chromitite à silicate (type à cumulats) et une chromitite surmontée du Faciès I représenté par une chromitite et avec, au sommet (au nord), la chromitite à silicate (type à nodule) du Faciès I.



**Figure 3.9** Lit de chromitite contenant plus de 90 % de chromite (Faciès I). Notez la présence d'une enclave de dunite dans l'horizon de chromitite (Affl. 97-MH- 7502).



Figure 3.10 Dunite à chromite (Faciès II) caractérisée par des proportions variables de chromite. La proportion de chromite est maximum au milieu de l'horizon et diminue de chaque côté pour devenir éventuellement une dunite avec moins de 5 % de chromite (Affl. 97-MH- 7502).



Figure 3.11 Alternance de lits de chromitite, contenant plus de 90 % de chromite, avec des horizons de harzburgites du Faciès III (Affl. 97-MH- 7371).



Figure 3.12 Alternance de lits de chromitite à silicate contenant entre 50 % et 90 % de chromite, avec des harzburgites (et des webstérites à olivine) du Faciès III (Affl. 97-MH-7371).



Figure 3.13 Horizon de chromitite montrant le Faciès III à la base surmonté du Faciès I cumulat et du Faciès I à nodules au sommet (Affl. 97-MH-7384).

## 3.3.1.2 Les péridotites à chromite

Les péridotites à chromite contiennent entre 5 et 50 % de chromite. Les péridotites à chromite du Complexe de Menarik comprennent des dunites à chromite (Du à chro), des harzburgites à chromite (Harzb à chro) et des lherzolites à chromite (Lherz à chro). Ces lithologies sont présentes dans toute la ZU selon les proportions suivantes :

# Harzb à chro >> Du à chro >>> Lherz à chro

Les péridotites riches en chromite (> 15 % de chromite) sont généralement associées à des horizons de chromitites ou de chromitites à silicate tandis que celles qui possèdent moins de 15 % de chromite sont observées indépendamment de la présence de niveau enrichi en chromite. Les péridotites à chromite sont à granulométrie moyenne (1-4 mm) bien que la chromite est très finement grenue (<< 1 mm). La patine de ces roches est orangée, ce qui est caractéristique de ces roches riches en olivine.

Les **dunites à chromite** massives sont des cumulats à granulométrie moyenne (1-2 mm) caractérisés par une texture adcumulus. L'olivine (45 à 90 %), la chromite (6 à 45 %) et l'orthopyroxène (2 à 8 %) constituent les phases cumulus tandis que le clinopyroxène (0 à 2 %) est interstitiel et remplacé par la chlorite et la calcite.

Les harzburgites à chromite massives sont des cumulats à granulométrie moyenne (1-3 mm) caractérisés par une texture adcumulus à mésocumulus. Généralement, les harzburgites ne possèdent pas plus de 8 à 10 % de phases interstitielles (matériel postcumulus). L'olivine (22 à 70 %), la chromite (6 à 45 %) et l'orthopyroxène (6 à 40 %) constituent les phases cumulus tandis que le clinopyroxène (1 à 5 %) est interstitiel.

Les **lherzolites à chromite** massives sont des cumulats à granulométrie moyenne (2-4 mm) caractérisés par une texture mésocumulus. L'olivine (38 à 76 %),

la chromite (7 à 45 %) et l'orthopyroxène (9 à 34 %) constituent les phases cumulus tandis que le clinopyroxène (5 à 20 %) est interstitiel.

Les dunites à chromite, les harzburgites à chromite et les lherzolites à chromite présentent des caractéristiques mégascopiques et microscopiques très similaires. Les figures 3.14 et 3.15 montrent les deux pôles extrêmes des dunites à chromite: une dunite avec 25 à 30 % de chromite (Figure 3.14) et l'autre avec seulement 6 à 7 % de chromite (Figure 3.15). Dans les deux situations, la roche est un cumulat caractérisé par une texture mésocumulus où la quantité de matériel interstitiel est proportionnelle à la quantité de chromite. Le spinelle chromifère est idiomorphe et il se trouve en position interstitielle par rapport aux cumulats d'olivine et d'orthopyroxène beaucoup plus grossiers. Lorsque la proportion de chromite est plus élevée, le spinelle se retrouve sous la forme de grappes qui tendent à mouler les cumulats de silicates.

#### 3.3.1.3 Les péridotites

Les péridotites du Complexe de Menarik comprennent des dunites (Du), des harzburgites (Harzb) et des lherzolites (Lherz) qui contiennent généralement moins de 5 % de chromite. Ces péridotites sont présentes dans toute la ZU dans des proportions croissantes :

Sur le terrain, les péridotites montrent une patine brune à orangée avec une cassure fraîche vert foncé à noire et une granulométrie moyenne (1-3 mm). Ces roches ne montrent pas de signe de déformation intense. La déformation se concentre dans des petits couloirs de quelques centimètres d'épaisseur caractérisés par une réduction de la granulométrie. Des veines millimétriques à centimétriques de chrysotile, de talc et de magnétite ont été observées un peu partout dans l'intrusion. Les **dunites** massives (Figure 3.16) sont des cumulats à granulométrie moyenne (1-2 mm) caractérisés par une texture adcumulus. L'olivine (88 à 92 %), la chromite (2 à 3 %) et l'orthopyroxène (3 à 8 %) constituent les phases cumulus tandis que le clinopyroxène (1 à 2 %) est interstitiel.

Les **harzburgites** massives sont des cumulats, à granulométrie moyenne (1-3 mm), caractérisés par une texture adcumulus à mésocumulus. Généralement, les harzburgites ne possèdent pas plus de 8 à 10 % de matériel postcumulus. L'olivine (42 à 75 %), la chromite (1 à 5 %) et l'orthopyroxène (20 à 42 %) constituent les phases cumulus tandis que le clinopyroxène (1 à 5 %) est interstitiel.

Les **Iherzolites poecilitiques** massives (Figures 3.17 et 3.18) sont des cumulats, à granulométrie moyenne (2-4 mm), caractérisés par une texture mésocumulus. Le Cpx forme des oikocristaux (0,5 à 1,5 cm) avec des inclusions d'olivine (~ 1 mm). La plupart des lherzolites sont à peu près toutes poecilitiques. L'olivine (53 à 73 %), la chromite (3 à 5 %) et l'orthopyroxène (15 à 36 %) constituent les phases cumulus tandis que le clinopyroxène (6 à 10 %) est interstitiel. Localement, le clinopyroxène peut être présent en proportion supérieure à 10 % mais n'excède pas 20 %.

### 3.3.1.4 Les pyroxénites

Dans cette unité les pyroxènes sont les phases silicatées qui prédominent et la chromite est généralement moins abondante que 5 %. Les pyroxénites du Complexe de Menarik comprennent des webstérites à olivine (Webst à Ol) et des webstérites (Webst). Les pyroxénites sont présentes dans toute la ZU, mais elles sont beaucoup plus abondantes dans le secteur central de l'intrusion. Leur distribution sporadique ne permet pas d'établir des unités pyroxénitiques à l'intérieur de la ZU. La proportion relative entre les différentes pyroxénites est la suivante :

Webst Ol >> Webst

Sur le terrain, les pyroxénites ont une patine chamois à orangée et en cassure fraîche une couleur vert foncé à noire. La phase silicatée qui domine l'assemblage minéralogique n'est pas l'olivine mais bien les pyroxènes. Il est quand même important de noter que même si l'olivine ne prédomine pas, elle reste tout de même une constituante importante de la roche.

Les **webstérites à olivine** massives (Figures 3.19 et 3.20) sont des cumulats à granulométrie moyenne (2 à 4 mm), caractérisés par une texture adcumulus. L'olivine (10 à 34 %), la chromite (3 à 5 %), l'orthopyroxène (53 à 76 %) et le clinopyroxène (10 à 22 %) constituent les phases cumulus. Le matériel postcumulus dans les Webst Ol n'excède généralement pas 2 %. Une webstérite à olivine à chromite a été observée contenant 45 % de chromite tout en conservant des proportions similaires pour les phases silicatées d'une webstérite à olivine typique.

Les **webstérites** massives sont constituées de cumulats à granulométrie moyenne (2 à 4 mm) caractérisées par une texture adcumulus. L'olivine (0 à 5 %), la chromite (1 à 2 %), l'orthopyroxène (53 à 55 %) et le clinopyroxène (40 à 45 %) constituent les phases cumulus. Comme pour les webstérites à olivine, le matériel postcumulus dans les webstérites est quasi inexitant.

La figure 3.21 montre un dyke de webstérite à olivine recoupant une dunite à chromite. La distinction entre ces deux lithologies n'est pas très évidente malgré la différence importante dans la proportion des silicates. La figure 3.22 montre un agrandissement de la figure précédente. La webstérite à olivine est généralement plus grossière, possède très peu de chromite et montre une texture adcumulus. Par contre, la dunite à chromite à granulométrie plus fine montre une texture adcumulus à mésocumulus et contient plus de chromite interstitielle.



Figure 3.14 Texture d'une dunite à chromite du CDM. La chromite subidiomorphe (25 à 30 %) se retrouve en amas interstitiels aux cumulats d'olivine (LM 97-MH-7371-12).



Figure 3.15 Texture d'une dunite à chromite du CDM. La chromite subidiomorphe (5 à 7 %) se retrouve en amas interstitiels aux cumulats d'olivine (LM 97-MH-7371-10).



Figure 3.16 Texture typique d'une dunite du CDM. La chromite (1 à 2 %) forme des grains intercumulus subidiomorphes (LM 96-CD-5113-A2).

Figure 3.17 Texture typique d'une lherzolite poecilitique du Complexe de Menarik (Affl. 97-MH-7384).



Figure 3.18 Texture typique d'une lherzolite poecilitique du Complexe de Menarik (LM 97-MH-7371-22).



**Figure 3.19** Texture typique d'une webstérite à olivine du Complexe de Menarik (Affl. 98-MH-4215).



**Figure 3.20** Texture typique d'une webstérite à olivine en lame mince du Complexe de Menarik (LM 98-MH-4215).



Figure 3.21 Dunite à chromite qui est recoupée par un petit dyke de webstérite à olivine (Affl. 97-MH-7490).



Figure 3.22 Dunite à chromite qui est recoupée par un petit dyke de webstérite à olivine (Affl. 97-MH-7490). La distinction entre les deux faciès lithologiques est très subtile. La présence de chromite interstitielle dans la dunite est un critère pour la distinguer de la webstérite à olivine.

### 3.3.2 Dykes ultramafiques

Dans la région du Complexe de Menarik, les dykes ultramafiques recoupent essentiellement la Zone Ultramafique (ZU) mais localement, ils peuvent recouper la Zone Mafique (ZM) ainsi que la tonalite adjacente. Ces dykes ont pu être divisés en deux groupes: les pyroxénites à magnétite et les pyroxénites.

# 3.3.2.1 Pyroxénites à magnétite

Les dykes de pyroxénites à magnétite (Pyrox à MG) sont les plus fréquents et recoupent uniquement la ZU dans le Complexe de Menarik. Ces dykes montrent une patine vert foncé et une granulométrie très variable. La présence d'octaèdres de magnétite (7 à 15 %) de dimensions variables (0,5 à 6 mm) est caractéristiques. Localement, on observe un rubanement créé par la concentration de la magnétite dans certaines zones enrichies. L'épaisseur de ces dykes varie entre 20 et 50 cm. Les dykes de pyroxénites à magnétite sont quelques fois plissés et boudinés indiquant ainsi qu'ils sont pré- à syndéformation. On peut également retrouver des enclaves de roches ultramafiques et tonalitiques dans ces dykes.

Les dykes sont constitués de chlorite magnésienne, de magnétite et d'ilménite. La texture hypidiomorphique est généralement observée, mais la texture allotriomorphique domine lorsque la granulométrie est fine. Dans ces roches, les plages de chlorite peuvent atteindre une dimension d'environ 3 mm. Elles sont fortement pléochroïques (incolores à vertes en lumière polarisée) avec un clivage parfait selon [001]. Les phénocristaux de magnétite sont plus ou moins résorbés. Des inclusions de chlorite, d'ilménite et de sulfures (chalcopyrite, pyrrhotite) sont souvent présentes dans la magnétite.

#### 3.3.2.2 Pyroxénites

Les dykes de pyroxénites recoupent la ZU et la ZM du Complexe de Menarik. Ces dykes montrent une patine vert pâle ainsi qu'une granulométrie fine (< 1 mm). L'épaisseur de ces injections est généralement comprise entre 20 et 60 cm. Les dykes de pyroxénites observés ne semblent pas être affectés par la déformation. Par contre, aucune évidence permet d'établir la relation temporelle entre ces injections et les failles affectant le CDM. Des enclaves de péridotites, de quelques millimètres à quelques centimètres de diamètre, sont trouvées dans ces dykes. La pyroxénite se compose d'amphiboles aciculaires (trémolite-actinote), de chlorites et d'un peu de chromite. La texture hypidiomorphique est généralement observée dans cette lithologie.

# 3.3.3 Stratigraphie

Les travaux de cartographie n'ont pas permis d'établir la stratigraphie de l'intrusion. Cependant, la Zone Ultramafique peut être subdivisée en trois secteurs : le secteur sud, le secteur centrale et le secteur nord (Figures 3.1 et 3.2). Les secteurs sud et central sont essentiellement constituées de harzburgites, de dunites, de chromitites et de chromitites à silicate (faciès I, II et III). Les webstérites à olivine et plus rarement les webstérites sont également présentes dans ces secteurs de l'intrusion. Cependant, les webstérites à olivine sont plus abondantes dans le secteur centrale de l'intrusion et spécialement dans la portion nord du secteur central. Les secteurs sud et central sont séparées par la faille majeure ESE. Le secteur nord est, quant à lui, constitué de harzburgites poecilitiques et plus rarement de lherzolites également poecilitiques. La majorité des roches de ce secteur possèdent une texture poecilitique. On retrouve aussi des chromitites et des chromitites à silicates mais en proportion beaucoup moins importantes dans le secteur nord.

L'étude des sections détaillées (97-MH-7371 et 97-MH-7374) montre que les variations lithologiques sont très subtiles à l'échelle d'un même affleurement. De la base au sommet, ces sections sont constituées principalement de harzburgites. La section 97-MH-7371 montre une composition légèrement plus lherzolitiques. Cependant, les lherzolites sont très similaires aux harzburgites de la section (97-MH-7371) compte tenu que seulement quelques pourcentages diffèrent dans l'estimation modale du clinopyroxène. Deux webstérites ont été échantillonnées (dans la section 97-MH-7371). La première, située à la base de l'affleurement, correspond à une pyroxénite de la Zone Ultramafique contrairement à la webstérite de la partie supérieure de l'affleurement qui correspond à un dyke quasi concordant ultramafique recoupant la ZU. La distinction entre ces deux roches ultramafiques est confirmée par la géochimie dans le chapitre 5.

#### 3.3.4 Minéralisations de Ni-Cu-Co-ÉGP

Dans le CDM, les minéralisations Ni-Cu-Co-ÉGP se présentent sous deux formes : 1) sous la forme de sulfures disséminés dans les horizons de chromite et 2) sous la forme de minéralisations filoniennes.

Les minéralisations de sulfures disséminés dans les chromitites sont relativement fréquentes. La pentlandite, la millérite et la chalcopyrite forment environ 1 à 2 % de la roche. Ils se localisent principalement dans les nodules silicatées (Chr Sil, type à nodule) ou interstitiels à la chromite. Localement, les sulfures peuvent constituer une phase importante autour de la chromite.

Les minéralisations filonniennes de Ni-Cu-Co-ÉGP se présentent, dans le CDM, comme des sulfures semi-massifs à massifs constitués de pyrrhotitechalcopyrite-pyrite-pentlandite-millérite-violarite de quelques centimètres d'épaisseur et localisées uniquement à l'intérieur de la ZU. Ces veinules de sulfures se retrouvent essentiellement dans le secteur sud et central de l'intrusion. Ces indices sulfurés sont étroitement associés aux failles qui recoupent le CDM ou en bordure du contact avec les roches encaissantes. Les filonets localisés à proximité des failles ou des grands linéaments topographiques sont généralement plus intéressants que ceux situés à la périphérie de l'intrusion. Par contre, le potentiel économique de ces minéralisations semble limité compte tenu de l'extension de ces zones sulfurées (< 1 m). Parmi les indices de sulfures, seulement les deux plus importants ont été étudiés dans le cadre de ce travail (indices S-1 et S-22).

L'indice S-1 est composé de veinules de dolomite et de magnésite contenant des amas centimétriques de sulfures disséminés. Des zones de magnétite et de sulfures semi-massifs à massifs sont également observés dans l'encaissant à proximité de ces veinules. Quant à l'indice S-22, la minéralisation sulfurée est très similaire à celle observée à l'indice S-1. Cependant, la minéralisation de S-22 est encaissée dans de la magnétite massive comparativement à l'indice S-1 qui montre quelques petites zones enrichies en magnétite. Ces deux indices diffèrent également par la minéralogie des sulfures. L'indice S-1 est caractérisé par l'assemblage pyrrhotite, chalcopyrite, pyrite, pentlandite,  $\pm$  millérite,  $\pm$  violarite tandis que l'indice S-22 est caractérisé par l'assemblage pyrrhotite, chalcopyrite, par l'assemblage pyrrhotite, chalcopyrite, par l'assemblage pyrrhotite, chalcopyrite, pyrite.

## 3.4 Structures magmatiques dans le CDM

Lors de la cartographie, plusieurs observations (compaction, ségrégation, écoulement, cristallisation, assimilation, etc.) ont été effectuées concernant la dynamique du magma lors de la différenciation de l'intrusion. Des structures de charge, de granoclassement, de fluage et la présence d'enclaves ont été répertoriées à plusieurs endroits dans le Complexe de Menarik. Ces structures ont été observées principalement dans le secteur nord du CDM. Il est important de noter que ces observations proviennent d'horizons repères comme les lits de chromite.

Des petits chenaux ont été observés à quelques endroits (Figure 3.23). Ceuxci consistent en de légères dépressions dans les horizons de chromite remplies de péridotites pauvres en chromite. Ces chenaux se retrouvent uniquement dans les chromitites de faible puissance (de cm à dm). Ces structures indiquent toujours une polarité inverse vers le sud. On peut remarquer que cette structure d'érosion tronque le litage magmatique définit par les chromitites à silicate (Figure 3.23).

Des enclaves décimétriques de dunites sont observées dans les lits de chromitite. Comparativement aux deux autres types de structures, celles-ci semblent restreintes aux horizons montrant une certaine puissance (> 20 cm). Ces enclaves sont présentes dans la partie nord de l'horizon. Il est possible de supposer que le sous-faciès à nodule des chromitites à silicate soit le résultat de la présence de fragments silicatés plutôt que d'un processus d'accumulation. Un autre type d'enclave observé consiste en un bloc minéralisé de chromitite rythmique (faciès III) dans une harzburgite. La figure 3.24 montre un exemple de ce type d'enclave où l'on

voit bien que les horizons de chromitite sont tronqués compte tenu de la redéposition d'un fragment de chromitites rythmiques dans une péridotite.

Dans les lits de chromite, des granoclassements sont fréquemment observées. En accord avec les indications de polarité des chenaux, les granoclassements semblent suggérer une polarité inverse vers le sud (Figure 3.25A). Le granoclassement est caractérisé par l'augmentation de la granulométrie des grains de chromite dans l'horizon. Par contre, l'observation d'un granoclassement vers le sud (inverse) puis vers le nord (normal) sur deux horizons contigus pourrait indiquer la présence de plis isoclinaux dans la séquence du Menarik (Figure 3.25B). Ces structures se retrouvent uniquement dans les chromitites de faibles puissances (de cm à dm).

Une structure de fluage (ou en flamme) a été observée sur l'affleurement 97-MH-7448 (Figure 3.25C). Cette structure consiste en une succession de dunite à chromite avec la chromite intercumulus suivie de la chromitite à silicate et finalement de la chromitite. La chromitite, qui se localise dans la partie nord de l'horizon, est incluse dans une structure de charge qui s'enfonce dans la dunite sous-jacente en créant des formes ondulatoires. L'extrémité des flammes laisse une traînée de chromite derrière elles. La structure de charge, illustrée à la figure 3.25C, suggère une polarité vers le sud.

On peut également observer des contrastes lithologiques concentriques. La figure 3.26 illustre la relation entre certaines dunites et webstérites à olivine du CDM. La dunite englobe complètement une portion de webstérite à olivine.


**Figure 3.23** Structure de chenal observée dans une chromitite à silicate du Complexe de Menarik indiquant une polarité vers le sud (Affl. 97-MH-7371).



**Figure 3.24** Bloc de chromitite rythmique (Faciès III) dans une harzburgite du Complexe de Menarik (Affl. 97-MH-7495).



Figure 3.25 (A) Granoclassement dans une chromitite à silicate qui suggère une polarité vers le sud (Affl. 97-MH-7371). (B) Horizon de chromitite à silicate montrant un granoclassement inverse et normal définissant un pli isoclinal (Affl. 97-MH-7498). (C) Structure spectaculaire montrant une succession de dunite à chromite suivie de chromitite à silicate et finalement de chromitite (Affl. 97-MH-7448).



Figure 3.26 Contact entre une dunite et une webstérite à olivine du Complexe de Menarik (Affl. 97-MH-7499).

## 3.5 Le métamorphisme

La minéralogie primaire du Complexe de Menarik est complètement oblitérée par un métamorphisme au faciès des schistes verts et par des processus hydrothermaux. L'effet du métamorphisme est différent si on se retrouve dans la ZU ou dans la ZM. La serpentinisation, la chloritisation, l'amphibolitisation sont caractéristiques de la ZU tandis que la chloritisation, l'amphibolitisation et la saussuritisation sont caractéristiques de la ZM.

### 3.5.1 Zone Mafique

La minéralogie primaire des roches mafiques est complètement remplacée par de l'amphibole, de la chlorite, de l'épidote et des quantités mineures de calcite. Localement, il est possible d'observer une altération en argile dans les gabbros entraînant ainsi une oblitération quasi complète des textures et de la minéralogie primaire.

Les actinotes (ou les trémolites) présentes dans la ZM sont probablement le résultat de la transformation des pyroxènes en amphiboles. Ces amphiboles sont caractéristiques du faciès métamorphique des schistes verts.

La transformation du plagioclase en un assemblage composé d'épidote, de chlorite est typique de la saussuritisation. L'altération postérieure du plagioclase en argile le transforme ainsi en une masse cryptocristalline brunâtre et localement isotrope dépendant de la proportion d'argile.

Le métamorphisme de la ZM pourrait être simplifié à la réaction suivante :

 $Px + PG \pm Ol + H_2O \rightarrow Trem (Act) + Chlo + Ep$ 

#### 3.5.2 Zone Ultramafique

La minéralogie primaire des roches ultramafiques est complètement remplacée par la serpentine, la chlorite, la trémolite, la magnétite et des quantités mineures de talc, de brucite, de carbonate (magnésite, calcite, dolomite) et d'épidote.

Lors de l'hydratation, l'olivine est pseudomorphisée en lizardite qui présente une texture en mailles caractéristique ou plus rarement une texture de sablier. La structure de la serpentine ne pouvant pas accommoder la totalité du fer de l'olivine, le fer excédent forme la magnétite au pourtour des pseudomorphes d'Ol ou dans les fractures de l'Ol. Des veinules de chrysotile recoupent la lizardite. Localement, lorsque le protolite est plus riche en olivine, on peut observer la brucite. La figure 3.27 montre une texture en pelure d'oignon ou en boule qui se développe lors de la serpentinisation.

La serpentinisation affecte également les pyroxènes. L'orthopyroxène est pseudomorphisé par la lizardite (sous la forme de bastite) qui permet la conservation du clivage de l'ancien silicate. Le clinopyroxène peut lui aussi être remplacé par la lizardite mais il peut également être remplacé par la trémolite, la chlorite et/ou la calcite. Les réactions métamorphiques ayant affectées les roches de la ZU peuvent se résumer de la façon suivante :

Ol + Chro + Opx + Cpx + H<sub>2</sub>O → Serp + Chro + Mt ± Cpx
 Serp + Chro + Mt ± Cpx → Chlo + Trém + ferritchro + Carb

À proximité de zones fortement cisaillées associées à des failles ou des linéaments topographiques importants, les roches de la ZU sont très talqueuses. En dehors de ces zones, l'altération en talc est très peu abondante et se présente sous la forme de petites veinules millimétriques blanchâtres.



Figure 3.27 Développement de structures concentriques "d'altération en boule" lors de la serpentinisation dans une harzburgite du CDM.

## 3.6 L'ordre de cristallisation magmatique

L'ordre de cristallisation pour la Zone Mafique et la Zone Ultramafique est illustré aux figures 3.28 et 3.29 respectivement. D'après l'étude pétrographie, nous pouvons suggérer l'ordre d'apparition des minéraux de la ZM et la ZU qui est le suivant:

| Zone Mafique      | 1) (Ol) + (Chro) + PG $\rightarrow$ Px $\rightarrow$ Oxydes Fe-Ti |
|-------------------|-------------------------------------------------------------------|
| Zone Ultramafique | 2) OI + Chro $\rightarrow$ Opx $\rightarrow$ Cpx                  |

L'apparition précoce du plagioclase dans la ZM et l'absence du plagioclase dans la ZU laissent suggérer une évolution différente des conditions de cristallisation et/ou impliquent des magmas parents de compositions distinctes pour la ZM et pour la ZU. La séquence de cristallisation caractérisée par l'apparition précoce du plagioclase suggère une affinité tholéiitique pour la ZM tandis que la séquence de cristallisation de la ZU suggère une affinité komatiitique (Figure 5.6) ou plutôt ultrabasique (liquide très magnésien) compte tenu que généralement l'orthopyroxène ne cristallise pas abondamment (et précocement) comme dans les liquides komatiitiques.



**Figure 3.28** Séquence de cristallisation de la Zone Mafique du Complexe de Menarik (ligne pointillée = phase interstitielle, ligne pleine = phase idiomorphe à subidiomorphe).



**Figure 3.29** Séquence de cristallisation de la Zone Ultramafique du Complexe de Menarik (ligne pointillée = phase interstitielle, ligne pleine = phase idiomorphe à subidiomorphe).

# 3.7 Contact entre le CDM et les roches encaissantes

Compte tenu de l'absence d'affleurement aux endroits stratégiques, la caractérisation des contacts entre le CDM et les roches encaissantes est difficile à observer partout. Le contact inférieur entre la ZU et la tonalite a été observé dans une apophyse située à l'extrême est du massif (bloc nord) (Figure 3.30). Le contact plonge vers le nord à environ 45° et montre une webstérite à olivine sus-jacente de la tonalite Duncan, ce qui suggère qu'il s'agit probablement du contact inférieur de l'intrusion. Il est important de noter que la roche ultramafique contient des enclaves de tonalite. Le contact supérieur entre la péridotite (lherzolite ou harzburgite poecilitique) et la tonalite est observé à plusieurs endroits (97-MH-7398, 98-MH-4113). Par contre, le contact peut quelques fois être difficile à observer dû à la présence de mort terrain (98-MH-4115) ou à cause de la présence d'un sill gabbroïque (97-MH-7463 et 97-MH-7419) injecté dans la zone de contact. En raison de l'absence de déformation de part et d'autre de la limite entre l'intrusion ultramafique et la roche encaissante, le contact supérieur est probablement un contact intrusif. Le contact a un pendage d'environ 50 à 55° vers le nord.



**Figure 3.30** Contact inférieur entre une pyroxénite (webstérite à olivine) et la tonalite de Duncan. On note la présence d'enclaves centimétriques de tonalite à la base de la roche ultramafique (Affl. 97-MH-7489).

# 3.8 Synthèse

Le Complexe de Menarik est une intrusion mafique-ultramafique dominée par des roches ultramafiques. La Zone Mafique est principalement constituée de gabbros à granulométrie moyenne et de zones de gabbros pegmatitiques. La Zone Ultramafique est composée de chromitites, de chromitites à silicate, de dunites et dunites à chromite, de harzburgite et de harzburgites à chromite, de lherzolites et de lherzolites à chromite, de webstérites à olivine et webstérites à olivine et chromite et de webstérites. Cependant, toutes les unités ultramafiques du CDM s'alignent le long de l'axe olivine-orthopyroxène selon le diagramme ternaire de Streckeisen suggérant ainsi la prédominance de ces deux silicates ferromagnésiens. Compte tenu de l'altération des roches ultramafiques, il est possible que l'abondance du clinopyroxène ait été sous-estimée, ce qui impliquerait une tendance légèrement déviée vers le pôle clinopyroxène dans le diagramme de Streckeisen. L'olivine, la chromite et l'orthopyroxène sont les minéraux cumulats tandis que le clinopyroxène est généralement une phase mineure interstitielle. La ZM et la ZU sont recoupées par des dykes gabbroïques et pyroxénitiques. Les injections de gabbro sont également observées dans la tonalite adjacente.

Les travaux de cartographie n'ont pas permis d'établir la stratigraphie interne dans l'intrusion. Toutefois, nous avons subdivisé la Zone Ultramafique en trois secteurs : le secteur sud, le secteur central et le secteur nord. Les secteurs sud et central sont constitués essentiellement de harzburgites et de dunites avec des chromitites et des chromitites à silicates (faciès I, II et III). Les webstérites à olivine et plus rarement les webstérites sont également présentes dans ces secteurs de l'intrusion. Le secteur nord est constitué de harzburgites poecilitiques et plus rarement de lherzolites poecilitiques.

Plusieurs structures d'origines magmatiques ont été observées dont des structures de charge, de granoclassement, de fluage et la présence d'enclaves. Ces structures suggèrent que les conditions de déposition qui régnaient dans la chambre magmatique étaient des conditions de déposition dynamique et non pas une simple accumulation de cristaux sous l'effet de la gravité.

Le métamorphisme de l'intrusion a transformé les assemblages primaires ignés en des assemblages caractérisés par les paragenèses Chro-Trém (Act)-Chlo-Ep pour la Zone Mafique et par les paragenèses Chro-Cpx-Serp-Mt et Chlo-Trémferritchro-Carb pour la Zone Ultramafique. Ces paragenèses suggèrent que le CDM est métamorphisé au faciès des schistes verts.

Bien que les contacts entre le CDM et les roches encaissantes soient difficiles à observer sur le terrain, le contact inférieur entre la ZU et la tonalite plonge vers le nord à environ 45°. Le contact supérieur entre la péridotite et la tonalite est un contact intrusif suggéré par l'absence de déformation de part et d'autre du contact entre l'intrusion ultramafique et la roche encaissante. Dans ce secteur, le contact a un pendage d'environ 50 à 55° vers le nord.

## **CHAPITRE IV - DESCRIPTION DES STRUCTURES**

Bien que l'étude structurale ne soit pas un des principaux objectifs de ce mémoire, il est tout même essentiel de traiter de la déformation qui affecte le Complexe de Menarik. Les campagnes cartographiques de 1997, 1998 et de 1999 ont permis de caractériser les principales structures observées dans le Menarik. Dans ce chapitre, les éléments structuraux comme le litage, la foliation, l'orientation des dykes, les failles et les linéaments topographiques seront discutés. Sur la base des stratifications magmatiques, le CDM a été divisé en différents domaines structuraux (Figure 4.1). À partir de ces domaines structuraux, nous discuterons de la géométrie de l'intrusion ainsi que de la chronologie des événements ayant affecté le Complexe de Menarik.

# 4.1 Éléments structuraux

### 4.1.1 Litage et foliation magmatique

Le litage et la foliation magmatique sont observés dans la Zone Ultramafique du Complexe de Menarik. Dans cette partie de l'intrusion, le litage est beaucoup plus fréquemment observé que la foliation magmatique.

Le litage s'exprime par une concentration élevée de chromitie (chromitite à olivine et chromitite). À l'échelle de l'affleurement, les stratifications sont généralement assez régulières et ceci malgré l'observation de variations importantes dans les stratifications de certains affleurements. La présence de petites failles fragiles tardives et le plissement peuvent expliquer les variations dans le litage magmatique du CDM. Le litage magmatique est observé aussi bien dans le secteur sud, central et nord du CDM. La figure 4.2A montre la distribution du litage pour le CDM. L'attitude moyenne des litages est 261°/57°. On remarque que la majorité des données se projettent sur un grand arc de cercle qui suggère que le litage est repris postérieurement par une phase de plissement. Cette distribution semble contrôlée par la présence de synforme avec une attitude de 074°/34° (põle 346°/56°).





Localement, on observe un litage magmatique, défini par les horizons de chromite, recoupé par un autre litage magmatique (Affl. 97-MH-7371 et 97-MH-7420).

La foliation magmatique est observée sporadiquement au sein de l'intrusion dans les faciès péridotitiques. La foliation est indiquée par l'alignement de la chromite et/ou de la magnétite finement disséminée dans la dunite, et l'harzburgite. Cette foliation est sub-parallèle au litage magmatique.

### 4.1.2 Orientation des dykes

La figure 4.2B présente un diagramme équiaire de l'attitude des dykes mafiques et ultramafiques dans la région du CDM. Les dykes mafiques et ultramafiques recoupent la ZU, la ZM et la tonalite encaissante. L'orientation de ces dykes semble définir deux orientations dont les pendages sont très abrupts : 1) NNE (012°/87°) et 2) NNO (328°/87°). Aucune de ces deux attitudes observées semble dépendante de la composition de ces injections ou de la lithologie encaissante (péridotite, gabbro et tonalite). Des dykes de gabbros recoupant la tonalite encaissante identifiée par Ressources minières Pro-Or (Allard, 1995; Sanschagrin & Pelletier, 1989) montrent des attitudes similaires à celles que nous avons observées. Cependant, une quantité supplémentaire de mesure sur l'attitude des dykes est essentielle pour confirmer l'existence de ces deux orientations compte tenu de la distribution en éventail (variation d'environ 87° entre les deux orientations) des données disponibles.



**Figure 4.2** Diagrammes équiaires du Complexe de Menarik. (A) Stéréogramme montrant la distribution du litage et de la foliation. (B) Stéréogramme montrant l'attitude moyenne des dykes mafiques et ultramafiques dans la région du CDM.

### 4.1.3 Plis

Les roches de la ZU sont localement plissées. Toutefois, en raison de l'homogénéité des roches du CDM, ces zones plissées sont extrêmement difficiles à observer. Les plis observés sont généralement de faibles (quelques centimètres à quelques mêtres). Le plissement est visible seulement dans les secteurs où l'on retrouve des faciès à chromitite ou à péridotites à chromite. La présence de chromites en abondance permet d'observer des fabriques qui peuvent être moins évidentes dans la masse péridotitique.

Deux types de plis sont distingués : 1) les plis magmatiques et 2) les plis tectoniques. Les plis magmatiques sont très limités, de l'ordre de quelques millimètres à quelques centimètres d'amplitude. Ces plis s'observent dans les lits de chromitite de faible épaisseur (quelques centimètres) et dans les dunites intercalées entre les lits de chromitite à olivine. De plus, ces plis magmatiques sont observés dans le secteur nord. Le plissement magmatique, peut être produit par plusieurs types de déformation (Naslund et McBirney, 1996), incluant l'écoulement visqueux, le glissement de pente, les courants convectifs magmatiques et la compaction. La figure 4.3 montre un pli isoclinal dans un lit de chromitite situé à l'intérieur d'une séquence rythmique. La figure 4.4 montre un pli en Z dans une dunite située à l'intérieur d'une séquence rythmique. Ce type de structure est certainement contemporaine ou légèrement postérieure au litage et elle se développe probablement dans la bouillie cristalline de la chambre magmatique. Le magma encore visqueux est sensible aux différentes perturbations qui peuvent survenir dans la chambre magmatique (choc séismique, glissement, courant magmatique, etc.).

Les plis tectoniques sont observés dans le secteur sud. Ces plis sont généralement ouverts (Figure 4.5). Contrairement aux plis magmatiques, les plis tectoniques affectent les lits de chromitite ou de chromitite à olivine de plus grande puissance (épaisseur  $\geq$  30 cm) et leur amplitude atteint quelques mètres.



**Figure 4.3** Pli isoclinal dans un lit de chromitite situé à l'intérieur d'une séquence rythmique. Ce type de structure est observé localement dans le bloc nord du CDM (Affl. 97-MH-7384).



**Figure 4.4** Pli en Z dans une dunite situé à l'intérieur d'une séquence rythmique. Ce type de structure est probablement dû à un phénomène de glissement (plan de décollement) du niveau silicaté sur le niveau à chromites (Affl. 97-MH-7371).



Figure 4.5 Pli tectonique observé dans le domaine I du bloc sud du CDM (Affl. 97-MH-7507). (1) So identifié par l'horizon de chromite. (2) Plan axial de la charnière du pli tectonique. (3) Faille fragile dextre déplaçant légèrement l'horizon de chromite.

### 4.1.4 Failles

Les roches de la ZU sont recoupées par de nombreuses failles associées à des zones fortement cisaillées et très altérées en talc. Localement, les zones cisaillées dans les péridotites sont injectées par des dykes pyroxénitiques à magnétite qui sont eux-mêmes boudinés et déformés. Cette observation implique que l'injection de ces dykes est antérieure ou contemporaine à la formation de ces zones de cisaillement. À l'échelle de l'affleurement, les failles sont observées par le déplacement d'horizons repères comme les chromitites. Les déplacements observés sont très faibles et ils indiquent un mouvement généralement dextre.

Trois familles de failles majeures ont été identifiées : la première et la plus importante a une orientation ESE qui correspond à la faille majeure qui découpe le CDM en deux blocs. La seconde a une orientation ENE-NE et la troisième a une orientation N-NNO. Les relations temporelles entre les trois familles ne sont pas très bien documentées.

## 4.1.5 Linéaments topographiques

Plusieurs linéaments topographiques peuvent être identifiés à l'aide des photos aériennes. L'intrusion est découpée par plusieurs linéaments topographiques (Figure 4.6). Ce découpage entraîne une topographie assez particulière caractérisée par de nombreux affleurements, isolés les uns des autres par des creux topographiques. La roche affleure rarement dans les vallées. Ce manque d'information ne permet malheureusement pas d'identifier avec certitude la présence de failles. Cependant, la plupart des failles observées sur le terrain sont identifiables sur les photos aériennes. D'autres linéaments topographiques importants sont identifiables et suggèrent qu'ils pourraient bien s'agir de failles. Le nombre de failles qui affectent le Menarik est certainement plus important que les observations de terrains le laissent présager. De plus, L'orientation de ces linéaments est ENE-NE, NNE et N-NNO, ce qui suggère des orientations similaires à certaines orientations observées pour les failles.



**Figure 4.6** Photo aérienne de la région du Complexe de Menarik montrant les principales failles et les grands linéaments topographiques. La ligne pointillée blanche correspond aux linéaments topographiques. La ligne pointillée noire correspond aux linéaments topographiques où des évidences de failles ont été observées (Photo R1225-168).

## 4.2 Géométrie du Complexe de Menarik

La géométrie d'une intrusion mafique-ultramafique stratifiée est un élément important dans la compréhension de l'histoire de celle-ci. Elle influence également le potentiel économique du CDM compte tenu que plusieurs des minéralisations en Cr-ÉGP sont associées à des horizons de chromite plus ou moins continus.

Pour établir la géométrie du Complexe de Menarik, l'intrusion a été subdivisée en trois domaines structuraux à partir de l'attitude du litage magmatique. L'établissement de ces domaines est basé principalement sur les observations de terrain et la présence de failles importantes recoupant la ZU (Figure 4.1). Le secteur sud correspond au domaine I tandis que les domaines II et III correspondent aux secteurs central et nord respectivement.

Dans le domaine I, les strates sont généralement à pendage relativement forte vers le nord. L'attitude moyenne des lits est 241°/64°. La distribution du litage sur le stéréogramme de la figure 4.7 définit un grand arc de cercle d'attitude 068°/27°. Cette distribution suggère un pli (une forme de cuvette) pour le domaine I (~ est-ouest). Plusieurs plis tectoniques sont observés dans la partie est du secteur sud ce qui pourraient expliquer la distribution des stratifications sur le stéréogramme.

Le bloc nord comprend le domaines II (secteur central) et III (secteur nord). Malgré les distinctions importantes entre ces deux domaines structuraux, la limite entre ces deux domaines pourrait être qualifiée de transitionnelle. Dans le domaine II, on observe des lits de chromite à pendage nord et sud en contraste avec le domaine III qui est caractérisé par des horizons de chromite à pendage vers le nord. Les pendages N et S du domaine II suggèrent une charnière de pli décrivant un antiforme. Le domaine II montre deux attitudes moyennes pour les plans moyens calculés, soit 267°/61° et 084°/67°, qui correspondraient aux deux flancs de l'antiforme.



Figure 4.7 Diagrammes équiaires des différents domaines structuraux du Complexe de Menarik.

Comparativement au domaine II, le domaine III est homogène et montre très peu de variation dans la distribution des litages magmatiques. Les lits de chromite sont approximativement est-ouest avec un pendage relativement faible. L'attitude moyenne du litage est tout de même similaire à un des flancs du pli du domaine II, soit  $267^{\circ}/48^{\circ}$ . Dans ce secteur, la distribution des stratifications définit également un grand arc de cercle suggérant un pli (une forme de cuvette) comme dans le domaine I. De plus, l'attitude ( $074^{\circ}/43^{\circ}$ ) de cette cuvette suggère la présence d'un synforme (~ est-ouest) similaire à celui observé dans le bloc sud bien que le pendage soit beaucoup plus faible.

La division en différents domaines structuraux du Complexe de Menarik nous permet de proposer une coupe structurale schématique de l'intrusion. La configuration proposée est présentée à la figure 4.8.



**Figure 4.8** Coupe schématique (nord-sud et sub-verticale) du Complexe de Menarik montrant la géométrie de l'intrusion dans l'espace.

Le Complexe de Menarik peut se diviser en deux blocs, le bloc nord et le bloc sud, séparés par une faille majeure inverse orientée ESE. Le bloc sud (domaine I) exhibe un pendage relativement abrupt (65°) vers le nord. Le bloc nord montre deux tendances, l'antiforme du Menarik (domaine II) et un domaine monoclinal (domaine III). Le domaine II expose des strates à fort pendage (70°) vers le sud en bordure de la faille. En s'éloignant de la zone de faille, les strates deviennent graduellement à pendage plus faible (59°) vers le nord. Le domaine III montre des stratifications relativement constantes et dans la continuité de la portion nord du domaine II, soit des strates à faible pendage (48°) vers le nord.

#### 4.3 Chronologie des événements

Les observations de terrains permettent de proposer une chronologie des événements ayant affecté le Complexe de Menarik en quatre principales étapes qui sont les suivantes:

- Formation de litage magmatique par différents processus comme la cristallisation fractionnée, les courants de convection magmatique, la gravité et la compaction;
- Formation des plis synformationnels produite lors de la déformation magmatique provoquée par une certaine instabilité des cumulats;
- 3) Injection des dykes recoupant la ZU;
- 4) Plissement tectonique;
- 5) Développement de failles dont la faille majeure qui divise le CDM en deux blocs.

Les étapes 4A et 4B sont probablement presque synchrones. La figure 4.5 illustre bien, à petite échelle, la chronologie des événements ayant affecté le Complexe de Menarik. Tout débute avec la formation de cet horizon de chromitite suivie du plissement tectonique de celui-ci. Plus tardivement, le lit de chromitite plissé est recoupé par une petite faille fragile avec un déplacement dextre relativement limité. Dans ce cas-ci, aucune déformation intraformationnelle et injection de dyke n'est enregistrée.

### 4.4 Synthèse

Les diverses campagnes cartographiques de 1997, 1998 et 1999 ont permis de caractériser les différentes structures observées dans le Complexe de Menarik. Les éléments structuraux comme le litage, la foliation, l'orientation des dykes, les failles et les linéaments topographiques ont permis de diviser le Complexe en différents domaines structuraux (principalement sur la base de la stratification magmatique).

Le Complexe de Menarik comprend le bloc sud (secteur sud) et le bloc nord (secteur central et nord). Le bloc sud correspond au domaine structural I qui est caractérisé par des stratifications à pendage abrupt vers le nord. Le bloc nord est beaucoup plus complexe avec les domaines structuraux II et III. Le domaine II est caractérisé par la présence d'un antiforme où la charnière est approximativement NO-SE. La partie sud du domaine est caractérisée par des stratifications à fort pendage vers le sud tandis que la partie nord du domaine est caractérisé par des stratifications à plus faible pendage vers nord. Le domaine III est quant à lui caractérisé par des stratifications homogènes à faibles pendages vers le nord. De plus, la distribution des stratifications des domaines I et III définissent des formes de cuvettes similaires suggérant peut-être la préservation de la structure initiale de l'intrusion. Les observations de terrain sur le Complexe de Menarik et régionalement ont permis d'établir la chronologie des événements pour l'intrusion. Le tout a débuté par la formation des stratifications (horizons de chromitite) par les différents processus magmatiques. Les conditions dynamiques qui règnaient dans la chambre magmatique développement du Menarik amène le de structures syndéformationnelles progressivement avant l'accumulation trop importante de cumulat limitant la fluidité du magma. Un autre événement magmatique amène l'injection d'une multitude de dykes mafiques et ultramafiques qui recoupent le CDM. Par la suite, le plissement tectonique affecte le CDM entrainant le développement du pli majeur de l'intrusion ainsi que les plis mineurs dans les horizons de chromitite. Finalement, le CDM est affecté par un réseau de failles dont la faille majeure inverse ESE qui divise le CDM en deux blocs, le bloc sud et le bloc nord.

# **CHAPITRE V - GÉOCHIMIE**

Cette section porte sur une caractérisation géochimique des roches des Zones Ultramafique et Mafique du Complexe de Menarik. Tout d'abord, nous utilisons les éléments majeurs et les éléments traces pour caractériser les principaux faciès lithologiques du complexe. Par la suite, ces éléments seront utilisés pour mieux contraindre les phénomènes magmatiques impliqués dans la pétrogénèse du Menarik. L'étude de la géochimie des terres rares (TR) et des éléments du groupe du platine (ÉGP) complétera ce chapitre.

# 5.1 Méthodes analytiques

Plusieurs méthodes analytiques ont été employées pour obtenir les données géochimiques. On retrouve, à l'annexe D, une liste de tous les échantillons qui ont fait l'objet d'une analyse. De plus, il est fait mention du type de préparation, des éléments analysés ainsi que du laboratoire d'analyse (Centre de Recherche Minérale [CRM] ou le laboratoire de géochimie de l'INRS-Géoressources).

## 5.1.1 Éléments majeurs

La majorité des éléments majeurs (SiO<sub>2</sub>, TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, MgO, Cr<sub>2</sub>O<sub>3</sub>, CaO, MnO, Na<sub>2</sub>O, K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub> et PAF) ont été analysés par fluorescence des rayons X au laboratoire d'analyse du CRM. D'autres échantillons ont été analysés au laboratoire de l'INRS-Géoressources par dosage par spectrométrie d'émission atomique à source plasma (ICP-AES: indutively coupled plasma-atomic emission spectrometry). Dans le cas d'analyse de roches réfractaires riches en chromite comme celles du Complexe de Menarik, les méthodes d'analyses physiques sont beaucoup plus fiables que les méthodes chimiques et ce, malgré des limites de détection plus élevées lors du dosage des éléments par ICP-AES. Le Fe<sub>2</sub>O<sub>3</sub>t correspond au fer total analysé tandis que l'estimation du FeO est basée selon la formule FeO = 0,8999 \* (Fe<sub>2</sub>O<sub>3</sub> total analysé - Fe<sub>2</sub>O<sub>3</sub> calculé). Les teneurs en éléments majeurs ont été recalculées sur une base anhydre.

### 5.1.2 Éléments traces

La majorité des analyses des éléments traces ont été effectuées au laboratoire d'analyse du CRM. Le dosage des éléments traces s'est effectué par spectrométrie d'émission atomique à source plasma (Ba, Be, Cd, Ce, Co, Cu, Dy, Eu, La, Li, Mo, Nd, Ni, Pb, Pr, Sm, V et Zn), par fluorescence des rayons X (Sn, Ga, Nb, Rb, Sr, Ta, Te, Th, Y et Zr) et par activation neutronique instrumentale (Sb, As, Br, Cs, Au, Se, Tm, W et U). Le soufre est dosé à l'aide d'un analyseur élémentaire LECO (S). Les échantillons qui ont été analysés au laboratoire de l'INRS-Géoressource ont été analysés par ICP-AES (Ba, Cd, Ni, Co, Cu, Mo, Sc, Sr, V, Y, Zn, Zr et S). Notons que les résultats des analyses de Sn, Nb, Ta, Te et Th en fluorescence des rayons X sont qualitatifs. De la même façon, les résultats des analyses de Dy, Eu, La, Nd, Pr et Sm en ICP-AES sont qualitatifs.

## 5.1.3 Terres rares (TR)

Les données géochimiques obtenues pour les terres rares (TR) et les éléments à faible rayon ionique et à fort potentiel ionique (HFSE) sont de deux types. Une première série d'analyses a été effectuée au CRM en utilisant le dosage par activation neutronique. Compte tenu de la nature ultramafique de nos échantillons, les données du CRM sont fragmentaires et souvent en-dessous des limites de détection. L'analyse des TR par spectrométrie de masse à émission de plasma (ICP-MS, inductively coupled plasma-mass spectrometry) a été employée pour la seconde série d'analyses. Les limites de détection de cette méthode sont beaucoup plus faibles permettant ainsi de recueillir des données géochimiques complètes sur les spectres des TR des roches mafiques et ultramafiques.

La seconde série d'analyses a été effectuée au laboratoire d'analyse de l'INRS-Géoressources. Pour les analyses en ICP-MS, il faut dissoudre complètement les échantillons de poudres de roches. Avant les digestions des échantillons, ceux-ci sont séparés en trois groupes: 1) pauvres en  $Cr_2O_3$ ; 2) riches en  $Cr_2O_3$ ; et 3) dépourvus ou pauvres en  $Cr_2O_3$ . Les échantillons pauvres en chrome a été mis en solution par une fusion alcaline au métaborate de lithium tandis que les échantillons riches en chrome ont été mis en solution suite à une fusion au peroxyde de sodium (Na<sub>2</sub>O<sub>2</sub>).

La limite de détection est, entre autres, fonction du facteur de dilution de la solution. Pour les fusions alcalines, ce facteur est de 5 000 et pour les fusions au peroxyde de sodium ce facteur est de 10 000. La limite de détection est théoriquement deux fois plus faible pour une matrice riche métaborate de lithium. Les fortes abondances en Na, par la méthode au Na<sub>2</sub>O<sub>2</sub>, complique l'analyse. De plus, les solutions riches en Na contribuent à obturer rapidement les cônes d'échantillonnage à la sortie du plasma. Pour minimiser ces problèmes, il faut augmenter considérablement le facteur de dilution des échantillons.

Le troisième groupe correspond à des échantillons ne contenant pas ou peu de  $Cr_2O_3$  (gabbros et pyroxénites pauvres en chromite). Les attaques effectuées sur ces échantillons ne faisaient pas intervenir de fondant. Ces échantillons étaient simplement dissous avec de l'acide fluorhydrique (HF) et de l'acide nitrique (HNO<sub>3</sub>) dans des bombes à haute pression. Cette méthode permet de minimiser la dilution des échantillons (facteur de dilution de 500), ce qui a pour effet de diminuer la limite de détection des éléments traces. Il est à noter que lors de la préparation des échantillons, le broyage à l'agate (et meule de ferrochrome) a été utilisé afin de minimiser la contamination des poudres en TR.

| Éléments | Chondrite | Éléments | Chondrite | Éléments | Chondrite |
|----------|-----------|----------|-----------|----------|-----------|
|          | C1        |          | <b>C1</b> |          | Cl        |
| La       | 0,237     | Но       | 0,0546    | Tì       | 440       |
| Ce       | 0,613     | Er       | 0,160     | Sr       | 7,25      |
| Pr       | 0,0928    | Tm       | 0,247     | К        | 550       |
| Nd       | 0,457     | Yb       | 0,161     | Rb       | 2,30      |
| Sm       | 0,148     | Lu       | 0,0246    | Ba       | 2,410     |
| Eu       | 0,0563    | Та       | 0,0136    | Th       | 0,029     |
| Gđ       | 0,199     | Nb       | 0,240     | Y        | 1,57      |
| ть       | 0,0361    | Zr       | 3,82      |          |           |
| Dy       | 0,246     | Hf       | 0,103     |          |           |

**Tableau 5.1** Valeurs de normalisation utilisées pour la lithogéochimie des terres rares et certains éléments traces (selon McDonough et Sun, 1995). [La,... = Terres rares ; Ta, ... = HFSE et Sr, ... = Autres éléments traces].

Unités : ppm

# 5.1.4 Éléments du groupe du platine (ÉGP)

Dans ce mémoire, la source des données géochimiques sur les ÉGP est très diversifiée. Celle-ci contient des résultats obtenus selon différentes méthodes analytiques. Une première série d'analyses par pyroanalyse (fusion plombeuse) a été effectuée au laboratoire du CRM. Cette série d'analyses comprend uniquement le dosage du Pt, Pd et Rh. La seconde série d'analyses, comprenant le spectre complet (Pt, Pd, Rh, Ir, Os, Ru), a été réalisée au laboratoire géochimie de l'Université du Québec à Chicoutimi. Ces analyses, réalisées pour le CRM, consistent en une fusion au sulfure de nickel et une analyse par activation neutronique instrumentale. La dernière série d'analyses a été effectuée au laboratoire de l'INRS-Géoressource en suivant la méthode de Gueddari (1996) et Gueddari et al. (1998). Le protocole analytique et la méthodologie sont discutés de façon exhaustive à l'annexe D. Seul l'osmium n'a pas été dosé par cette méthode à cause de sa grande volatilité.

**Tableau 5.2** Valeurs de normalisation du manteau asthénosphérique proposées par Barnes et al. (1988). Les valeurs de Ni et Cu sont celles proposées par Sun (1982) pour le manteau primitif terrestre.

| Ni   | Os  | Ir  | Ru  | Rh  | Pt  | Pd  | Cu |
|------|-----|-----|-----|-----|-----|-----|----|
| 2000 | 4,2 | 4,4 | 5,6 | 1,6 | 8,3 | 4,4 | 28 |

Unités: ppm pour le Ni et le Cu et ppb pour les ÉGP.

## 5.2 Mobilité des éléments majeurs et traces

La géochimie permet de caractériser et d'étudier la répartition des éléments majeurs et traces dans les roches. Cependant, l'altération hydrothermale et le métamorphisme sont des processus secondaires capables de modifier les propriétés géochimiques des roches. Toutefois, il est parfois difficile d'évaluer la mobilité relative des éléments. Ces derniers peuvent rester immobiles ou devenir mobiles sous différentes conditions. Plusieurs éléments considérés généralement comme immobiles peuvent devenir mobiles dans des conditions extrêmes (Jenner, 1996).

La présence de veinules dans la roche est généralement indicatrice d'un transfert chimique. Dans ce cas, la minéralogie de celle-ci est indicatrice des éléments chimiques potentiellement mobilisés (éléments majeurs). Par exemple, la présence de roches injectées de veinules de calcite implique une mobilisation probable d'éléments comme le CaO et le CO<sub>2</sub>. Plus rarement dans les roches du Menarik, des veinules de chlorite, de serpentine et de talc sont localement observés. La présence de ces veinules suggère une certaine mobilité de MgO et SiO<sub>2</sub> ( $\pm$  Al<sub>2</sub>O<sub>3</sub>). Par contre, dans le CDM, la mobilité de ces éléments semble restreinte à l'échelle microscopique (voir chapitre 6). De plus, lors de la préparation des échantillons, nous avons minimisé la quantité de veinules en sciant ces zones d'altération.

Dans les roches ignées sujettes au métamorphisme régional, les éléments comme le Ti, Zr, Hf, Nb, Ta, Y, Cr, Sc, V et Ni sont généralement considérés comme immobiles (ex. Jenner, 1996). En ce qui concerne les terres rares, elles sont généralement considérées comme immobiles pour la plupart des roches altérées dans les systèmes où l'eau est le fluide dominant (Jenner, 1996). Toutefois, en présence de carbonates, les terres rares légères peuvent être mobiles. En général, parmi les TR, seul l'Eu est considéré comme légèrement mobile. Les diagrammes de covariation des terres rares en fonction de l'altération des roches du CDM montre que les TR légères (Figure 5.1A) et les TR lourdes (Figure 5.1B) ne semblent pas significativement affectées par le degré d'altération de l'échantillon. Compte tenu de ce comportement, les TR sont considérées comme des éléments incompatibles et immobiles dans le cadre de ce travail.



**Figure 5.1** Diagrammes de covariation des terres rares en fonction de l'altération (perte au feu: PAF). (A) TR légères en fonction de la PAF. (B) TR lourdes en fonction de la PAF. Légende : se référer à la figure 5.2.

#### 5.3 Compositions moyennes

La composition moyenne (x) ainsi que l'écart-type (s) des différentes lithologies du CDM sont présentés au tableau 5.3. Pour quelques lithologies, l'écart-type peut être absent en raison d'un nombre insuffisant d'analyse.

Ce tableau montre que les teneurs en éléments majeurs et traces des différentes lithologies se chevauchent. Ce phénomène est normal étant donné la nature transitionnelle des contacts lithologiques sur le terrain. Sur la base des nombres Mg# et Cr#, des teneurs en Ni et des abondances en Y et Zr, les roches du CDM peuvent se subdiviser en deux groupes distincts, soit les roches ultramafiques de la ZU et celles mafiques. Les roches ultramafiques sont caractérisées par des nombres Mg et Cr et des teneurs en Ni beaucoup plus élevées. Également, les teneurs en Y et Zr sont plus élevées dans les dykes que dans la ZU. En plus de la ZU, le CDM comprend des masses gabbroïques et des dykes de gabbros qui recoupent la ZU et la tonalite adjacente. Sur une base pétrographique, nous ne pouvons pas distinguer ces deux types de gabbros. Toutefois, le nombre Mg et les teneurs en Ni sont plus élevées dans les masses gabbroïques tandis que les concentrations en Y, Zr sont plus élevées dans les dykes de gabbros. Nous discuterons, dans une autre section de ce chapitre, de la consanguinité de ces gabbros avec les roches ultramafiques du Complexe de Menarik.

| Unité                               | CI              | hr   | Chr   | Sil  | Dı    | 1 | Hai   | zb    | Harzb | à chro | Lhe   | erz  | Lherz | à chro | Pe    | r |
|-------------------------------------|-----------------|------|-------|------|-------|---|-------|-------|-------|--------|-------|------|-------|--------|-------|---|
|                                     | x               | 8    | x     | 5    | x     | S | X     | 8     | X     | 8      | x     | 8    | X     | 8      | x     | 8 |
| %                                   |                 |      |       |      |       |   |       |       |       |        |       |      |       |        |       |   |
| <b>SiO</b> <sub>2</sub> (%)         | 11,23           | 2,25 | 17.40 | 4.61 | 39,29 | - | 44,24 | 1.77  | 36.55 | 5,24   | 43,38 | 0.58 | 41,45 | 2,79   | 38,90 | - |
| Al <sub>2</sub> O <sub>3</sub>      | 12,93           | 1,99 | 11,99 | 3,22 | 1,03  | - | 2,29  | 1,10  | 5.52  | 1,96   | 3,11  | 1,05 | 3,90  | 1.41   | 0.67  | • |
| Fe <sub>2</sub> O <sub>3t</sub>     | 22,48           | 4,53 | 24,69 | 4,35 | 12.28 | - | 11.19 | 2.02  | 15,90 | 2,39   | 12,92 | 0,52 | 13.31 | 1,85   | 20,01 | - |
| Cr <sub>2</sub> O <sub>3</sub>      | 35.81           | 4,22 | 25.24 | 4,79 | 0.93  | • | 0,93  | 0.58  | 7.92  | 4,72   | 0,92  | 0,67 | 3,10  | 2,92   | 1,58  | • |
| MgO                                 | 16,19           | 1,83 | 18.89 | 3,58 | 46.04 | • | 39,40 | 4.02  | 32,50 | 3,59   | 37.58 | 1,42 | 35,62 | 3,90   | 37,42 | • |
| CRO                                 | 0.24            | 0,40 | 0.81  | 0.74 | 0,05  | - | 1.61  | 3,14  | 1,08  | 0,64   | 1,67  | 0,43 | 2,22  | 1,60   | 1,10  | - |
| MnO                                 | 0,55            | 0,18 | 0.44  | 0,14 | 0,18  | - | 0.12  | 0,05  | 0.20  | 0.07   | 0,19  | 0.03 | 0,16  | 0.03   | 0.14  | - |
| Na <sub>2</sub> O                   | 0,11            | 0.01 | 0.11  | 0.00 | 0.12  | • | 0,11  | 0.04  | 0,10  | 0,04   | 0.07  | 80,0 | 0,08  | 0,05   | 0.12  | • |
| <b>К</b> 20                         | 0.01            | 0.00 | 0,01  | 0,00 | 0.01  | • | 0.01  | 0,00  | 0.01  | 0,01   | 0,01  | 0.00 | 0.01  | 0,00   | 0,01  | - |
| TiO <sub>2</sub>                    | 0,30            | 0,12 | 0.30  | 0.13 | 0.04  | • | 0,07  | 0.03  | 0,18  | 0,06   | 0,13  | 0,06 | 0,12  | 0,07   | 0.02  | - |
| P <sub>2</sub> O <sub>5</sub>       | 0.01            | 0,00 | 0.01  | 0.00 | 0.01  | - | 0.01  | 0.00  | 0.01  | 0.00   | 0,02  | 0.01 | 0,01  | 0.01   | 0.01  | • |
| V <sub>2</sub> O <sub>5</sub> (%)   | 0,13            | 0,03 | 0.10  | 0.07 | 0.01  | • | 0.01  | 0,00  | 0,02  | 0,03   | 0,01  | 0.01 | 0.01  | 0.02   | 0.01  | • |
| Fe <sub>2</sub> O <sub>30</sub> (%) | 1,24            | 0.20 | 1.39  | 0,63 | 0,08  | • | 0,35  | 0,36  | 1,01  | 0,50   | 0,72  | 0.50 | 0.67  | 0,47   | 0.05  | - |
| FeO <sub>c</sub> (%)                | 10,06           | 1.60 | 11.22 | 5,06 | 0,68  | - | 2.86  | 2,92  | 8,17  | 4.07   | 5,83  | 4.01 | 5.41  | 3.82   | 0.44  | - |
| Mg#                                 | 61,39           | 7,18 | 62,44 | 6,65 | 89,19 | • | 88,45 | 2,44  | 81.59 | 3.86   | 86.48 | 0,70 | 85,32 | 2,66   | 80,45 | - |
| Cr#                                 | 64,99           | 4,68 | 58.97 | 5,81 | 37.76 | • | 23,33 | 10,14 | 45.63 | 8,58   | 15.75 | 8,30 | 30,55 | 14.20  | 61,39 | - |
| Cr/Fe                               | 1.75            | 0,46 | 1.10  | 0.26 | 0.08  | ٠ | 0.09  | 0,05  | 0.50  | 0.25   | 0.08  | 0,06 | 0,23  | 0,20   | 0.08  | - |
| NI (ppm)                            | 1464            | 676  | 1843  | 869  | 1900  | • | 2319  | 1108  | 1771  | 522    | 1579  | 134  | 1756  | 439    | 698   | - |
| Cu                                  | 69              | 80   | 418   | 600  | 10    |   | 955   | 1412  | 401   | 507    | 45    | 56   | 305   | 307    | 9     | - |
| Zn                                  | 670             | 496  | 410   | 312  | 69    | - | 52    | 23    | 138   | 72     | 80    | 20   | 98    | 51     | 111   | • |
| Co                                  | 19 <del>9</del> | 64   | 205   | 83   | 146   | - | 144   | 22    | 141   | 25     | 149   | 23   | 132   | 17     | 73    | • |
| Sc                                  | 11              | 4    | 13    | 4    | 7     | - | 11    | 2     | 12    | 1      | 13    | 2    | 13    | 3      | 4     | - |
| v                                   | 816             | 274  | 638   | 249  | 38    | • | 51    | 17    | 213   | 95     | 64    | 25   | 129   | 81     | 29    | - |
| Y                                   | 6               | 3    | 5     | 4    | n.d.  | - | 4     | 2     | 3     | 2      | 3     | 1    | 4     | 2      | 3     | - |
| Zr (ppm)                            | 8               | 3    | 9     | 4    | 4     | - | 9     | 5     | 11    | 5      | 10    | 4    | 12    | 4      | 5     | • |
| n                                   | 1               | 1    | 3     | 0    | 1     |   | 1     | 0     | 3     | 11     |       | 5    | ]     | .0     | 1     |   |

,

 Tableau 5.3 Compositions moyennes des différentes lithologies du CDM

 $Fe2O3_{c} = 10\% Fe_{2}O_{31}$   $FeO_{c} = 90\% Fe_{2}O_{31}$   $Mg \# = Mg / (Mg + Fe^{24})$  Cr # = Cr / (Cr + A)  $Cr / Fe = Cr / (Fe^{24} + Fe^{34})$ n = nombre d'analyses x =moyenne s = écart-type

| ÷    |
|------|
| Iţ   |
| (su  |
| M    |
| ã    |
| 2    |
| qr   |
| cs   |
| ğ    |
| old  |
| Ęħ   |
| s L  |
| Ite  |
| E    |
| fféi |
| Πp   |
| GS   |
| ğ    |
| les  |
| d    |
| ye   |
| ũ    |
| IS ] |
| 0    |
| siti |
| ő    |
| đ    |
| õ    |
| õ    |
| iÓ   |
| n    |
| Ĩ    |
| ab   |
| E    |

| Unité                               | Weba                            | <u>t 0</u> | Webst OI      | À chro | Web      | <u>.</u> | Pyro   | Ē    | PVTOT A | (in characteristic) | đ          |       |       | Ē        |
|-------------------------------------|---------------------------------|------------|---------------|--------|----------|----------|--------|------|---------|---------------------|------------|-------|-------|----------|
|                                     | н                               | 80         | H             | a      | Þ        | 9        | ,<br>, | ) '  |         |                     |            | ą     |       | <u>í</u> |
| %                                   |                                 |            | •             | •      | •        | a        | ×      | 50   | M       | •                   | M          | 8     | M     | 8        |
| SIO <sub>2</sub> (%)                | 48.70                           | 1.83       | 30.59         |        | KA 87    |          | 04.04  |      |         |                     |            |       |       |          |
| Al <sub>2</sub> O,                  | 3,95                            | 1.75       | 8.78          |        | 12.1     |          | 01.05  | 0,20 | 26,16   | 1.33                | 49,78      | 1.20  | 49,02 | 1.70     |
| Fe <sub>2</sub> O <sub>3</sub> ,    | 10.85                           | 1.75       | 13.60         |        | 1 00     | •        | 06.7   | 00'I | 16,93   | 0,10                | 15.78      | 1,04  | 14.72 | 0.55     |
| Cr.O.                               | 0.69                            | 0.33       | 15,40         | ,      | 50.7     |          | 10.2B  | 1.77 | 27.64   | 4.54                | 9,48       | 3.76  | 14.11 | 1.94     |
| MaD                                 | 01.05                           |            | 60'01         | •      | 0,46     |          | 0.25   | 0,09 | 0,08    | 0.02                | 0,08       | 0.06  | 0.04  | 0.01     |
|                                     | 04,14                           | 00'0       | 79'90         | •      | 22.35    | •        | 22.42  | 4,29 | 25,06   | 2.72                | 10,23      | 1.68  | 7.27  | 1.37     |
|                                     | 3.21                            | 2,32       | 1.14          | •      | 10,60    | •        | 9.38   | 2.27 | 0.08    | 0.09                | 11.82      | 2.15  | 10 63 | 777 0    |
| M DO                                | 0.14                            | 0.05       | 0.16          |        | 0.17     |          | 0.21   | 0.04 | 0.22    | 0.06                | 21.0       | 200   |       |          |
| Na <sub>2</sub> O                   | 0.14                            | 0.03       | 0,11          |        | 0.10     |          | 0.46   | 0.34 |         |                     | 1 96       |       |       | 0.03     |
| K <sub>2</sub> O                    | 0.01                            | 0.01       | 0.01          |        | 0.01     |          | 0.14   | 0 13 |         |                     |            | c/ 0  |       | 1,19     |
| TIO3                                | 0,16                            | 0,10       | 0.24          | ,      | 0.09     |          |        |      | 10.0    | 0,00                | 0.20       | 0,18  | 0,58  | 0.40     |
| P.0.                                | 0.02                            | 100        | 100           |        | 10.0     | •        | 00'0   | 0,13 | I.49    | 0,16                | 0,48       | 0.37  | 1.12  | 0,42     |
| V.O. (94)                           | 10.0                            | 10.0       | 10.0          | •      | 10.0     | •        | 0.28   | 0.10 | 0.13    | 0,08                | 0.04       | 0.03  | 0,09  | 0.05     |
| Int.) 8-00-                         | 10.0                            | In'n       | 0.05          | •      | 0.00     |          | 0,02   | 0.02 | 0.09    | 0.02                | 0,03       | 0,02  | 0.05  | 0.02     |
| Fe <sub>2</sub> O <sub>36</sub> (%) | 0.36                            | 0.16       | 0 8.0         |        |          |          |        |      |         |                     |            |       |       |          |
| FeO. (%)                            | 2 91                            | 1 34       | 0,00          |        | 2002     | •        | 0.72   | 0.17 | 1.53    | 0,00                | 1.63       | 0,11  | 1,44  | 0.05     |
| Mak                                 | 10.00                           | ÷.         | 8 <b>8</b> '0 |        | 5,89     |          | 5,82   | 1.38 | 12,39   | 0,00                | 12.39      | 0.88  | 11.64 | 0.42     |
|                                     | 00'00                           | 01.0       | 27.73         |        | 80.57    |          | 82,18  | 5.51 | 66.56   | 6.07                | 70.48      | 10,96 | 52,89 | 8.29     |
|                                     | 04,61                           | 13.76      | 54.51         |        | 15,33    |          | 2.29   | 0.80 | 0.31    | 0.06                | 0.35       | 0.03  | 0.17  | 0.08     |
| Cr/Fe                               | 0.07                            | 0.05       | 1.21          |        | 0,06     |          | 0.03   | 0.01 | 0.00    | 0.00                | 0.01       | 100   |       |          |
|                                     |                                 |            |               |        |          |          |        |      |         |                     |            | 10.0  | 0000  | 200      |
| Ni (ppm)                            | 1141                            | 351        | 1400          |        | 786      |          | 880    | 233  | 285     | đ                   | 202        | 6.0   | 001   | ā        |
| Cu                                  | 51                              | 37         | 678           |        | 25       |          | 31     | 25   |         | , c                 |            | 3 8   |       | 1        |
| 20                                  | 66                              | ß          | 107           |        | 61       |          | 87     |      |         | 10                  | 4 C<br>7 C | 7 0   | 141   | 101      |
| පී                                  | 111                             | 12         | E,            | ,      | .0       |          | 5 8    | 2 :  | 5       | 2                   | 7.         | 32    | 77    | 14       |
| 80                                  | 17                              | ¦ ư        | 5             |        |          |          | 4      | 10   | 137     | 45                  | 50         | 13    | 54    | e        |
| •                                   |                                 | • :        | 2             |        | 10       |          | 22     | 8    | 69      | -                   | 42         | 6     | 44    | ę        |
| • •                                 | 5                               | :          | 107           |        | 39       |          | 111    | 34   | 331     | 52                  | 162        | 67    | 265   | 32       |
| 7- ()                               | • ;                             | - 1        | ' ת           |        | <b>0</b> | •        | 11     | 6    | 18      | 6                   | 12         | 8     | 24    | 10       |
| zr (ppm)<br>n                       | 14                              | 7          | n.d.          |        | 2        |          | 63     | =    | 68      | 11                  | 28         | 21    | 68    | 32       |
|                                     | 4                               |            |               |        | -        |          | 8      |      | 2       |                     | 2          | ;     | 2     | 3        |
| Frons = 10%                         |                                 |            |               |        |          |          |        |      |         |                     |            |       |       |          |
| Fed = 904 Fe                        | Fe <sub>3</sub> O <sub>31</sub> |            |               |        |          |          |        |      |         |                     |            |       |       |          |
|                                     | 203(<br>14 ± Eal                |            |               |        |          |          |        |      |         |                     |            |       |       |          |
|                                     | 1g + r c)<br>+ All              |            |               |        |          |          |        |      |         |                     |            |       |       |          |
| Cr/Fe = Cr/(Fe                      | 2*+Fe <sup>3+</sup> )           |            |               |        |          |          |        |      |         |                     |            |       |       |          |
| n = nombre d'a                      | nalyses                         |            |               |        |          |          |        |      |         |                     |            |       |       |          |
| x =moyenne                          |                                 |            |               |        |          |          |        |      |         |                     |            |       |       |          |
| s = écart-type                      |                                 |            |               |        |          |          |        |      |         |                     |            |       |       |          |

#### 5.4 Diagrammes de variations des éléments majeurs et traces

Les diagrammes de variations pour les éléments majeurs (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, Na<sub>2</sub>O + K<sub>2</sub>O et PAF) et les éléments traces (Cu, Zn, Ni, Co, V, Sc, Ba, Sr, Y et Zr) des roches du Complexe de Menarik sont utilisés pour examiner l'évolution des différents éléments au cours de la différenciation magmatique du complexe. Les symboles utilisés pour l'ensemble du chapitre sont présentés à la figure 5.2.

Sur ces diagrammes, le MgO est utilisé comme indice de différenciation magmatique. Pour des roches ultramafiques et mafiques, cet indice permet d'évaluer l'influence du fractionnement des minéraux ferromagnésiens lors de la différenciation magmatique. Pour faciliter l'interprétation de ces diagrammes, nous avons projeté la composition de minéraux communs dans les roches ultramafiques (Ol, Chro, Opx, Cpx). Étant donné que les roches du CDM ne possèdent pas de minéraux primaires préservés (à l'exception de la chromite), la composition des minéraux provient des roches komatiitiques de l'Abitibi (Barnes, 1985). Sur ces graphiques, l'accumulation préférentielle d'une phase comme l'olivine et la chromite se traduit par un changement compositionnel qui tend à se traduit par une composition des phases minérales accumulées. Dans le cas extrême de roches monominéraliques, comme les dunites ou les chromities, la composition de la roche a tendance à se confondre à celle du minéral.

# SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub> et TiO<sub>2</sub>

Les concentrations de ces oxydes varient d'une façon homogène lorsque comparées aux teneurs en MgO (Figures 5.3A-B-C-D-E-F). Conséquemment, il est probable que la distribution de ces éléments soit principalement régis par l'accumulation de la chromite et de l'olivine. De moindre importance, l'accumulation de l'orthopyroxène (ou du Cpx) peut influencer la ligne de différenciation magmatique en rapprochant la composition des cumulats du pôle de l'Opx. Sur ces diagrammes, l'accumulation du clinopyroxène semble peu influencer la composition chimique des roches ultramafiques. Toutefois, ce minéral semble avoir une importance plus considérable lors de la différenciation des roches gabbroïques et des pyroxénites. La teneur en  $TiO_2$  reflète la précipitation d'oxyde dans les roches riches en chromites et la précipitation d'oxyde de Fe-Ti dans les roches mafiques.

# Alcalis (Na<sub>2</sub>O et K<sub>2</sub>O)

La concentration en éléments alcalins (Figure 5.3G) est très faible dans les roches ultramafiques du CDM. Cette situation normale est attribuable au fait que les minéraux ferromagnésiens incorporent peu les éléments alcalins dans leurs structures cristallines lors de la cristallisation et ségrégation à basse pression. À l'opposé, les teneurs en éléments alcalins augmentent beaucoup dans les gabbros. Contrairement aux roches ultramafiques, les roches gabbroïques contiennent des minéraux comme le plagioclase qui peut incorporer le sodium et le potassium.

# <u> PAF</u>

La perte au feu (PAF) varie en fonction de la lithologie rencontrée (Figure 5.3H). La PAF est plus élevée dans les dunites et diminue graduellement dans les roches ultramafiques avec l'augmentation de la proportion de pyroxène et la baiisse du MgO. Compte tenu de l'absence de serpentinisation dans les gabbros, ces roches présentent une faible perte au feu.

# <u>Cu, Zn</u>

Les concentrations en Cu (Figure 5.3I) et en Zn (Figure 5.3J) des roches du CDM sont généralement faibles. Cependant, les teneurs en ces éléments augmentent, de façon importante, dans les roches riches en chromite. Parmi les roches riches en chromite, les chromitites à silicate tendent à être systématiquement enrichies en Cu. N'ayant pas de grandes affinités pour les minéraux ferromagnésiens, les teneurs élevées en Cu s'expliquent par la présence de sulfures et tout particulièrement dans les nodules silicatées des chromitites à silicate. Contrairement au Cu, les teneurs en Zn sont associées à la proportion modale de chromite dans la roche.

# <u>Ni, Co</u>

Les éléments de transition comme le Ni (Figure 5.3K) et le Co (Figure 5.3L) ont une très forte affinité pour les minéraux ferromagnésiens. Le nickel et le cobalt sont préférentiellement incorporés dans l'olivine. Les faibles abondances en Ni et en Co observées dans les gabbros sont reliées à un degré de différenciation élevé des magmas gabbroïques. Cette différenciation se traduit par l'absence ou à la rareté de l'olivine dans ces lithologies. Certains échantillons ne sont pas régis par la différenciation de la série. Cette tendance aléatoire peut être reliée à la présence de sulfures de nickel et de cobalt souvent observés dans les chromitites et les chromitites à silicate.

## <u>Sc, V</u>

Le vanadium possède une très forte affinité pour les spinelles magmatiques (Figure 5.3M). La distribution du vanadium dans les roches ultramafiques du CDM serait alors contrôlée par l'abondance de la chromite. Ceci se traduit par un coefficient de distribution pouvant atteindre 38 selon Niu et al. (1996). Compte tenu du coefficient de distribution du Sc entre le Cpx et le liquide ( $K_d = -3$ ) (Niu et al., 1996), le scandium a une forte affinité pour le clinopyroxène. Ceci suggère que la distribution du Sc dans les roches du CDM doit être intimement liée à la présence de ce minéral (Figure 5.3N). La faible teneur en Sc confirme l'intervention minime du clinopyroxène. On remarque que les teneurs en Sc sont d'environ 10 ppm pour toutes les roches de la ZU et légèrement supérieures pour les webstérites à olivine, les webstérites et certaines chromitites et chromitites à silicate (~20). Les gabbros et les dykes de pyroxénites montrent des teneurs beaucoup plus élevées en Sc qui reflète, entre autres, l'abondance du Cpx dans ces roches.

# <u>Ba, Sr</u>

Les concentrations en Ba (Figure 5.30) et Sr (Figure 5.3P) sont généralement très faibles dans les roches du CDM. Le contenu en Ba et Sr est beaucoup plus élevé dans les roches gabbroïques. Certains échantillons de roches ultramafiques contiennent des concentrations appréciables en Sr et plus rarement en Ba. Ces échantillons sont probablement associés à la présence de minéraux carbonatés dans plusieurs des chromitites à silicate.


Figure 5.2 Symboles utilisés dans les diagrammes de variations.



**Figure 5.3** Diagrammes de variations des teneurs en éléments majeurs et traces des roches du CDM, en fonction du MgO. (A) SiO<sub>2</sub> vs MgO. (B) Al<sub>2</sub>O<sub>3</sub> vs MgO. Légende : se référer à la figure 5.2.



**Figure 5.3 (suite)** Diagrammes de variations des teneurs en éléments majeurs et traces des roches du CDM, en fonction du MgO, (C)  $Cr_2O_3$  vs MgO. (D) CaO vs MgO. (E)  $Fe_2O_3$  vs MgO. (F) TiO<sub>2</sub> vs MgO. Légende: se référer à la figure 5.2.



Figure 5.3 (suite) Diagrammes de variations des teneurs en éléments majeurs et traces des roches du CDM, en fonction du MgO. (G) Na<sub>2</sub>O et K<sub>2</sub>O vs MgO. (H) PAF vs MgO. (I) Cu vs MgO. (J) Zn vs MgO. Légende: se référer à la figure 5.2.



Figure 5.3 (suite) Diagrammes de variations des teneurs en éléments en traces des roches du CDM, en fonction du MgO. (K) Ni vs MgO. (L) Co vs MgO. (M) V vs MgO. (N) Sc vs MgO. Légende: se réfèrer à la figure 5.2.



.

Figure 5.3 (suite) Diagrammes de variations des teneurs en éléments traces des roches du CDM, en fonction du MgO. (O) Ba vs MgO. (P) Sr vs MgO. (Q) Y vs MgO. (R) Zr vs MgO. Légende: se référer à la figure 5.2.

## <u>Zr, Y</u>

L'Y (Figure 5.3Q) et le Zr (Figure 5.3R) sont des éléments incompatibles qui sont normalement exclus de la structure cristalline des minéraux de la ZU. Les éléments traces tendent plutôt à se concentrer dans les liquides interstitiels. Les abondances en Zr et Y sont généralement faibles pour les roches ultramafiques (moins de 25 ppm) et plus enrichies dans les roches mafiques. À l'intérieur de la séquence ultramafique, les diagrammes de variations illustrent que le Zr et le Y semblent peu dépendants du degré de différenciation.

L'évolution géochimique des roches mafiques et ultramafiques du CDM peut se résumer en trois étapes:

I) Épisode magmatique principal dominé par un fractionnement important de la chromite et de l'olivine qui forme les roches ultramafiques (chromitites, dunites, harzburgites et lherzolites);

II) Épisode magmatique dominé par le fractionnement de l'orthopyroxène, de l'olivine et de la chromite (webstérites à olivine et webstérites);

III) Épisode magmatique dominé par le fractionnement de pyroxènes et du plagioclase (pyroxénites et gabbros).

#### 5.5 Spectres des terres rares (TR)

Les terres rares (ou lanthanides) contenues dans les roches mafiques et ultramafiques sont des éléments traces utiles pour modéliser les différents processus magmatiques. Lors de la fusion partielle d'une source mantellique ou de la cristallisation fractionnée de magmas, ces éléments incompatibles tendent à se concentrer dans le liquide magmatique. À l'exception de l'europium, qui est un élément un peu plus compatible dans le plagioclase, les autres TR trivalentes sont des éléments incompatibles dans les principales phases cumulus des magmas mafiques et ultramafiques (olivine, orthopyroxène, plagioclase, chromite et clinopyroxène). Dans les magmas intermédiaires et felsiques, d'autres phases mineures peuvent concentrer les TR (monazite, zircon, sphène). Toutefois, ces minéraux accessoires n'ont pas été observés dans le CDM. En l'absence de ces phases, la concentration des TR des roches du CDM est principalement régie par la quantité de matériel postcumulus (liquide de fin de cristallisation) présent dans les roches et par l'abondance relative des pyroxènes par rapport à l'olivine et à la chromite.

La variation des spectres de TR des roches du CDM est illustrée à la figure 5.4. Dans l'ensemble, la concentration en TR de ces roches est généralement de type sub-chondritique. La comparaison entre les spectres des TR des péridotites pauvres en chromite (1 à 3 fois chondrite) (moins de 5 % de chromite) (Figures 3A et 3B) et des péridotites à chromite (1 à 3 fois chondrite) (entre 5 et 50 % de chromite) (Figures 3C et D) montre que la chromite ne fractionne pas les TR ou très peu. À ce sujet, Arndt et Lesher (1995) ont démontré que le fractionnement de la chromite, dans des magmas komatiitiques, n'affecte pas significativement la concentration en TR (le fractionnement). Toutefois, l'accumulation d'une forte proportion de chromite peut produire une forte dilution des abondances en TR d'une roche cumulative.

Dans le CDM, certaines webstérites (Figure 5.4F) sont caractérisées par des spectres fortement enrichis en TR légères (~70 fois chondrite). Ces roches, enrichies en TR légères, correspondent à des dykes ou des sills recoupant la ZU. Cet enrichissement en éléments hautement incompatibles contraste beaucoup avec celui de la webstérite qui montre un spectre sub-chondritique (~3 fois chondrite) du CDM. La signature de cette webstérite est semblable à celle de la webstérite à olivine (~3 fois chondrite) (Figure 5.4E) de la ZU. À l'opposé, les spectres de TR des chromitites à silicate (Figure 5.4G) montrent de plus grandes variations. Ces spectres varient de plats à légèrement enrichis en TR légères (~0,05 à 6 fois chondrite). Les spectres des pyroxénites à magnétite (~8 fois chondrite) sont caractérisés par un enrichissement en TR légères et une anomalie négative en Eu (Figure 5.4H). Compte tenu de la composition minéralogique de cette unité (essentiellement de la chlorite), sous certaines conditions, cette anomalie pourrait résulter de l'altération ou du métamorphisme. Les fluides hydrothermaux ou

métamorphiques peuvent changer la valence de l'Eu (de trivalent à divalent) et ainsi augmenter sa solubilité. Pour les roches gabbroïques, les masses de gabbros et les dykes de gabbros montrent des signatures en TR très distinctes. Les masses de gabbros présentent des spectres de TR plats à légèrement enrichis en (~3 à 7 fois chondrite) et les dykes de gabbros des spectres légèrement enrichis en TR légères et des concentrations absolues en TR beaucoup plus élevées (~10 à 12 fois chondrite).

Dans cette étude, les spectres de terres rares ont permis de subdiviser les roches du CDM en quatre groupes (Figure 5.5). Le premier (I) est caractérisé par des spectres légèrement appauvris en TR légères ([La/Sm]<sub>N</sub>= 0,69 à 0,75), alors que celui des TR lourdes sont relativement plats ( $[Gd/Lu]_N = 0.93 \text{ à } 1.01$ ). Le second (II) regroupe des roches caractérisées par des spectres de TR plats et chondritiques  $([La/Sm]_N = 0.96 \pm 0.07; \text{ pour un intervalle de } 0.87 \text{ à } 1.05 \text{ et } [Gd/Lu]_N = 0.99 \pm 0.18;$ pour un intervalle de 0,68 à 1,23). Le troisième (III) regroupe des roches caractérisées par des spectres de TR sub-chondritiques et légèrement enrichis en TR légères ( $[La/Sm]_N = 1,43 \pm 0,32$ ; pour un intervalle de 1,10 à 2,40). Les roches de ce groupe montrent des spectres de TR lourdes plats à légèrement appauvris ou enrichis ( $[Gd/Lu]_N = 1,15 \pm 0,61$ ; pour un intervalle de 0,66 à 1,49). Les roches du quatrième groupe (IV) sont caractérisées par un enrichissement en TR légères. Les roches du groupe IV peuvent être subdivisées en deux sous-groupes. Les roches du sous-groupe IVA sont caractérisées par des spectres fortement enrichis en terres rares légères ([La/Sm]<sub>N</sub>= 2,94 à 2,99) et appauvris en TR lourdes ([Gd/Lu]<sub>N</sub>= 1,99 à 2,14). Les roches du sous-groupe IVB sont caractérisées par un enrichissement en TR légères moins important que pour les roches du sous-groupe IVA.



**Figure 5.4** Spectres de terres rares pour les différentes lithologies du CDM. Légende: se référer à la figure 5.2.



Figure 5.5 Les TR des roches du CDM montrent quatre types de spectres. (A) Spectres de TR sub-chondritiques légèrement appauvris en TR légères. (B) Spectres de TR plats chondritiques. (C) Spectres de TR sub-chondritiques légèrement enrichis en TR légères. (D) Spectres de TR fortement enrichis en TR légères. Légende: se référer à la figure 5.2.

## 5.6 Affinité magmatique

Le diagramme AFM (Figure 5.6A) permet d'identifier deux tendances d'évolution magmatique possibles dans les roches du CDM. Les cumulats ultramafiques montrent un faible enrichissement en fer et de faibles concentrations en alcalis par rapport au MgO. Ceci est normal pour des roches ultramafiques. Les roches pyroxénitiques (dykes qui recoupent la ZU) et les dykes gabbroïques montrent une affinité tholéiitique traduit par un enrichissement important en fer. Cet enrichissement résulte de l'apparition précoce du plagioclase dans la séquence de cristallisation des magmas.



**Figure 5.6** (A) Diagramme AFM des cumulats et des dykes de la région du Menarik (modifié de Irvine et Baragar, 1971).Légende : se référer à la figure 5.2.

Le diagramme cationique de Jensen permet de subdiviser les différents types de roches effusives selon les pôles Mg-Fe + Ti-Al. Bien qu'il n'a pas été conçu pour les roches cumulatives comme celles du CDM, il est tout de même intéressant de comparer les roches du CDM, les dykes pyroxénitiques et les dykes gabbroïques avec les compositions de komatiites et de basaltes komatiitiques (Figure 5.6B). Les roches ultramafiques du CDM et les dykes pyroxénitiques montrent une affinité komatiitique bien que les dykes de pyroxénites sont généralement moins magnésiens que les roches du CDM. Les masses gabroïques, les dykes de gabbros et les dykes de pyroxénitiques montrent une affinité de basalte komatiitique. Cependant, l'affinité des masses de gabbros et des dykes de gabbros semble être distincte l'une de l'autre. Les masses de gabbros montrent une affinité de basalte komatiitique à tendance komatiitique tandis que les dykes de gabbros montrent une affinité de basalte komatiitique à tendance tholéiitique.



**Figure 5.6** (B) Diagramme cationique de Jensen des cumulats et des dykes de la région du Menarik (modifié de Jensen, 1976). ). Légende : se référer à la figure 5.2.

#### 5.7 Consanguinité des roches magmatiques du CDM

Les élément incompatibles sont utilisés pour déterminer l'affinité magmatique de un ou plusieurs groupes de roches ou encore pour déterminer si un groupe de roches magmatiques dérive d'un même magma parental. Comme ces n'entrent pas (ou peu) dans les principaux minéraux (Ol, Chro, Opx, Cpx) des roches mafiques et ultramafiques, les rapports entre deux de ces éléments devraient rester relativement constants au cours de la différenciation magmatique (Rollinson, 1993).

La figure 5.7 montre les évolutions de différents éléments incompatibles (Y) ou rapports d'éléments incompatibles  $(Zr/Y, [La/Ce]_N, [La/Sm]_N, [Zr/Sm]_N)$  en fonction de l'abondance en zirconium qui est utilisé comme indice de différenciation magmatique. Ces diagrammes ne permettent pas de subdiviser, sans équivoque, les différents types de roches du CDM (ZU, gabbros, dykes de gabbros et dykes pyroxénites). La figure 5.7A et 5.7B ne permettent pas de distinguer plusieurs tendances magmatiques. Du moins, ces figures suggèrent tout de même que les roches ultramafiques et les masses gabbroïques semblent associées à une même évolution magmatique tandis que les dykes de gabbros et de pyroxénites semblent associés à une tout autre évolution magmatique. Les rapports (Figures 5.7C-D) ne montrent pas de variation systématiques. On remarque que pour des teneurs semblables d'un élément incompatible comme le Zr, les roches du CDM peuvent montrer de grandes variations des rapports Zr/Sm qui suggère la présence de plusieurs types de magmas dans le CDM. Ces diagrammes montrent également que les roches ultramafiques et les gabbros sont caractérisées par de faibles concentrations de Zr (< 5 ppm) tandis que les dykes de pyroxénites sont caractérisées par des concentrations beaucoup plus élevées (~18 ppm). Les dykes de gabbros montrent des concentrations intermédiaires (~10 ppm) entre les roches du CDM et les dykes de pyroxénites. Bien que les éléments incompatibles disponibles ne permettent pas d'établir d'une façon certaine la consanguinité des gabbros et des roches de la ZU, les observations de terrains (litage magmatique) couplées à la géochimie des éléments traces (spectres chondritiques, éléments incompatibles) suggèrent que les masses gabbroïques font partie intégrante du CDM (Figure 5.7F). À l'opposé, l'affinité géochimique des dykes de gabbros, de pyroxénites et de pyroxénite à magnétite sont distincte de celle de la ZU.



**Figure 5.7** Digrammes de variations des éléments incompatibles pour les différentes lithologies du CDM. (A) Y vs Zr. (B) Zr/Y vs Zr. (C)  $(La/Ce)_N$  vs Zr. (D)  $(La/Sm)_N$  vs Zr. (E)  $(Zr/Sm)_N$  vs Zr. (F) Spectres des TR pour les gabbros et les dykes gabbroïques. Zone ombragée: péridotites de la ZU. Légende: se référer à la figure 5.2.

#### 5.8 Éléments du groupe du platine, Ni et Cu

Plusieurs échantillons du CDM ont fait l'objet d'analyses pour les platinoïdes. Dans cette étude, il est ressorti que les roches ultramafiques de la ZU sont généralement enrichies en ÉGP comparativement aux roches pyroxénitiques et gabbroïques du CDM.

Les teneurs moyennes ainsi que les teneurs minimales et maximales, pour les différentes lithologies du CDM, sont présentées au tableau 5.4. Malgré la quantité limitée de données pour plusieurs lithologies, nous pouvons tirer des observations intéressantes de ce tableau. En excluant les échantillons de filonets de sulfures, les chromitites et les chromitites à silicate sont des roches où la somme des concentrations moyennes en ÉGP ( $\Sigma$ ÉGP) est la plus importante (respectivement 991 ppb et 1404 ppb). Les lherzolites, les lherzolites à chromite et les webstérites sont les lithologies les moins platinifères avec des concentrations moyennes ( $\Sigma$ ÉGP) inférieures à 185 ppb. Malgré une grande variabilité de concentrations, les harzburgites et les harzburgites à chromite sont des lithologies localement très enrichies en ÉGP totaux. Les webstérites à olivine et à chromite montrent également des teneurs totales en ÉGP élevées (804 ppb). La variabilité des concentrations en platinoïdes, de ces différentes lithologies du CDM, est intimement liée à leur position stratigraphique (voir section 5.9).

Il est important de souligner que, même si les roches du Menarik ne sont pas toutes riches en platinoïdes, elles présentent toutes des concentrations anomales. Par exemple, la webstérite du CDM montre une concentration de 117 ppb comparativement à seulement 9 ppb en  $\Sigma$ ÉGP pour la webstérite qui recoupe le CDM et ceci malgré leur similitude pétrographique.

L'étude des spectres d'ÉGP dans les différentes lithologies du CDM a permis d'identifier de grandes variations dans les signatures en ÉGP des roches du CDM (Figure 5.8). Lorsqu'ils sont normalisés au manteau, la majorité des spectres montre des appauvrissements en Ni, Cu et des anomalies négatives plus ou moins importantes, en Pt par rapport au Pd et au Rh. Les chromitites et les chromitites à silicate montrent des spectres caractérisés par une légère pente positive et un appauvrissement important des teneurs en Ni et en Cu par rapport aux concentrations en ÉGP (Figures 5.8A-B). Dans ces roches, les concentrations en Os et Ir sont enrichies de 10 à 20 fois par rapport aux concentrations en Os et Ir du manteau tandis que les autres ÉGP montrent des concentrations nettement supérieures (~20 à 600 fois les valeurs observées dans le manteau). Dans les chromitites à silicate, on remarque un découplage au niveau du Cu qui ne semble pas associé à des teneurs particulières en ÉGP (Figure 5.8B). Ce découplage est probablement causé par les sulfures de cuivre dans les nodules silicatées des différents horizons de chromitites à silicate.

Les harzburgites et les harzburgites à chromites montrent des spectres plats ou une légère pente positive (causée principalement par les teneurs en Ru, pour le Ni et les I-ÉGP. Les P-ÉGP montrent quant à eux une pente positive et le Cu est appauvrie par rapport au P-ÉGP (Figures 5.8C-D). Les éléments les plus chalcophiles (Rh, Pt, Pd et Cu) de ces roches montrent des spectres qui se rapprochent des chromitites et des chromitites à silicate bien que l'appauvrissement en Cu soit beaucoup moins prononcé. Dans ces roches, les concentrations des ÉGP plus compatibles (Os, Ir, Ru) sont plus faibles que celles observées dans les chromitites. Ceci est compatible avec la forte compatibilité des I-ÉGP dans le spinelle. Ces lithologies ne montrent pas d'appauvrissement en Ni. Ceci est probablement relié à la présence d'une forte proportion d'olivine cumulative dans ces roches. Les lherzolites et lherzolites à chromite montrent des spectres d'ÉGP relativement plats ou avec une légère pente positive. Dans ces roches, les concentrations en ÉGP sont beaucoup plus faibles que pour les harzburgites et harzburgites à chromite (Figures 5.8E-F).

Une différence marquée existe entre le spectre d'une webstérite appartenant à la ZU et celui d'un dyke de webstérite (Figure 5.8G). L'une montre un spectre enrichi en P-ÉGP (Rh<Pt<Pd) et l'autre (Figure 5.8H) exhibe un spectre plat. À l'exception de l'appauvrissement en Ni, le spectre en ÉGP de la webstérite à olivine et chromite est tout à fait similaire à ceux des harzburgites à chromite (Figure 5.8I). L'appauvrissement en Ni, moins important que pour les chromitites et chromitites à

silicate, reflète probablement une faible proportion d'olivine par rapport aux autres lithologies du CDM qui sont généralement riches en olivine.

Les filonets de sulfures montrent des spectres différents compte tenu de leurs hautes teneurs en Ni et en Cu résultant de la présence de sulfures de nickel et de cuivre (pentlandite, millérite, violarite, chalcopyrite) (Figure 5.8J). Dans ces échantillons, les concentrations en I-ÉGP sont similaires à celles observées dans les chromitites mais les concentrations en P-ÉGP sont généralement plus élevées que dans les péridotites du Menarik.



**Figure 5.8** Spectres des ÉGP et du Ni-Cu pour les différentes lithologies du CDM. Légende: se référer à la figure 5.2.

| Lithologie | ····     | Chr |      | ••••     | Chr Sil |      |          | Harzb |      |      | Harzb à chro |      |
|------------|----------|-----|------|----------|---------|------|----------|-------|------|------|--------------|------|
|            | <u> </u> | min | max  | <u>x</u> | min     | mar  | <b>x</b> | min   | max  | X    | min          | max  |
| Ni (ppm)   | 1013     | 825 | 1200 | 1489     | 194     | 3105 | 1950     | 1456  | 2444 | 1690 | 1171         | 3500 |
| Os (ppb)   | 62       | 60  | 63   | 34       | 15      | 60   | n,a,     | n.a,  | n,a, | 15   | 12           | 17   |
| Ir         | 47       | 44  | 49   | 31       | 17      | 46   | 7        |       |      | 10   | 3            | 17   |
| Ru         | 293      | 288 | 298  | 145      | 60      | 281  | 12       | n.d.  | 7    | 47   | 16           | 94   |
| Rh         | 64       | 46  | 81   | 89       | 46      | 209  | 28       | 5     | 19   | 31   | 5            | 86   |
| Pt         | 124      | 99  | 149  | 243      | 100     | 680  | 103      | 3     | 53   | 82   | 13           | 310  |
| Pd         | 402      | 381 | 423  | 877      | 107     | 2690 | 495      | 48    | 194  | 316  | 31           | 1476 |
| Cu (ppm)   | 24       | 17  | 31   | 254      | 0       | 1200 | 1427     | 74    | 2781 | 351  | 173          | 508  |
| Σ⊃GP       | 991      | 928 | 1053 | 1404     | 645     | 3777 | 641      | 69    | 1213 | 485  | 65           | 1899 |
| n          |          | 2   |      | ,        | 16      |      |          | 2     |      |      | 19           |      |

Tableau 5.4 Concentrations moyennes en platinoïdes des différentes lithologies du CDM.

| Lithologie |      | Lherz |      |      | Lherz & chro |      | Webst (ZU) | Webst (D) | Webst à Ol |       | Filon Sf |       |
|------------|------|-------|------|------|--------------|------|------------|-----------|------------|-------|----------|-------|
|            | I    | min   | max  | I    | min          | max  |            |           | À chro     | X     | min      | max   |
| Ni (ppm)   | 1625 | 1488  | 1664 | 1791 | 1339         | 2485 | 778        | 996       | 1400       | 20400 | 15500    | 25300 |
| Os (ppb)   | n.a. | n.a.  | n.a. | n.a. | n.a,         | n.a. | n.a.       | n.a.      | 16         | 22    | 9        | 36    |
| Ir         | n.d. | n.d,  | n,d, | 4    | n,d,         | 3,58 | n.d.       | n.d.      | 15         | 31    | 22       | 40    |
| Ru         | 8    | 7     | 11   | 23   | 7            | 49   | 4          | 1         | 74         | 73    | 26       | 119   |
| Rh         | 3    | 2     | 5    | 14   | 6            | 24   | 6          |           | 48         | 151   | 105      | 197   |
| Pt         | 7    | 4     | 6    | 47   | 21           | 78   | 58         | 4         | 133        | 388   | 196      | 580   |
| Pd         | 12   | 4     | 23   | 99   | 41           | 151  | 49         | 3         | 518        | 2316  | 1909     | 2723  |
| Cu (ppm)   | 48   | 5     | 124  | 256  | 28           | 348  | 25         | 23        | 678        | 26150 | 28700    | 23600 |
| Σ⊃GP       | 30   | 16    | 51   | 185  | 75           | 280  | 117        | 9         | 804        | 2981  | 2359     | 3603  |
| <u>n</u>   |      | 3     |      |      | 3            |      | 1          | 1         | 1          |       | 2        |       |

x = concentration moyenne

min = concentration minimale

max = concentration maximale

n = nombre d'analyses

n.a. = non analysé n.d. = non détecté

## 5.8.1 Comportement géochimique des ÉGP

Les éléments du groupe du platine peuvent être divisés en deux groupes (I-ÉGP [Ir, Os, Ru] et P-ÉGP [Pd, Rh, Pt]) ayant des comportements géochimiques différents (Keays, 1982; Barnes et al., 1985; Hoatson et Keays, 1989). Mais qu'en est-il pour les roches du Complexe de Menarik? Est-ce que la géochimie des ÉGP suit cette tendance? Pour vérifier ceci, nous présentons la covariation des ÉGP entre eux et par la suite celle entre les ÉGP et les autres éléments.

Les variations de l'Os (Figure 5.9A) et du Ru (Figure 5.9B), en fonction de l'Ir, suggèrent un comportement similaire entre les différents I-ÉGP. La covariation entre le Rh et l'Ir (Figure 5.9C) ainsi que la corrélation positive entre le Rh et le Pd (Figure 5.9D) suggèrent un comportement ambivalent du rhodium. Ce comportement ambivalent du rhodium a été montré par les expériences de géochimie expérimentale portant sur la solubilité du rhodium (Amossé et Allibert, 1992, 1993) et par l'étude des péridotites alpines de Ronda et de Beni Boussera (Gueddari, 1996).

Les figures 5.9E et 5.9F montrent une covariation positive entre les concentrations en Ir et Pt (ou en Pd). Cette corrélation reflète probablement la proportion modale de chromites réfractaires dans les roches du Menarik. Pour certains échantillons du Menarik, la diminution de l'écart entre les concentrations en I-ÉGP et les concentrations en P-ÉGP est essentiellement causée par la teneur de la chromite qui fractionne les éléments du groupe du platine les plus réfractaires (famille de l'iridium). Le platine et le palladium montrent une très forte covariation positive bien que la concentration du Pt soit toujours inférieure à celle du Pd (Pt  $\sim$ 3 à 4 fois moins abondant que le Pd) (Figure 5.9G). La majorité des échantillons du CDM montrent un rapport de Pt/Pd variant de 0,2 à 0,5 et ce malgré, une grande variation des teneurs en ÉGP (Figure 5.9.H).



**Figure 5.9** A à F) diagrammes de variations des EGP pour les différentes lithologies du CDM. H) Variation du rapport Pt/Pd en fonction des teneurs totales en ÉGP. Légende: se référer à la figure 5.2.

#### 5.8.1.1 Comportement géochimique des I-ÉGP

L'hypothèse la plus fréquemment suggérée pour expliquer la collecte des I-ÉGP est la formation de particules réfractaires comme les alliages Os-Ir-Ru ou celles de sulfures de haute température comme la laurite. Ces phases réfractaires sont observées en inclusion ou en association avec la chromite (Oshin et Crocket, 1982; Stockman et Hlava, 1984; Barnes et al., 1985, 1988; Amossé et al., 1992). Elles seraient fractionnées lors de la cristallisation précoce du magma. Des travaux expérimentaux ont également confirmé cette association (Amossé et al., 1987, 1990; Amossé & Allibert, 1992, 1993). Dans les roches ultramafiques du Menarik, le rôle du spinelle chromifère est clairement établi (Figures 5.10A-B). Dans ces diagrammes, la teneur en Ir augmente avec celle de chrome et diminue avec le magnésium. La figure 5.10C montre la variation de l'Ir en fonction de l'aluminium qui suggère un comportement semblable à celui du chrome. Étant donné l'absence du plagioclase dans la ZU, l'Al est incorporé presqu'uniquement dans le spinelle et sa concentration varie donc en fonction des proportions modales de chromite dans les roches. Les concentrations en Ir (et Os, Ru) augmentent avec l'accumulation de la chromite. L'effets du soufre (Figure 5.10D), du nickel (Figure 5.10E) et du cuivre (Figure 5.10F) sur la teneur en Ir des roches du Menarik sont négligeables. Les concentrations en I-ÉGP dans les roches du CDM sont donc essentiellement associées à l'accumulation de la chromite et non pas à la présence de sulfures.



**Figure 5.10** Diagrammes de variations de la teneur en Ir en fonction du  $Cr_2O_3$ , du MgO, de  $Al_2O_3$ , du S, du Ni et du Cu pour les différentes lithologies du CDM. Légende: se référer à la figure 5.2.

#### 5.8.1.2 Comportement géochimique des P-ÉGP

Les figures 5.11A-B-C et 5.12A-B-C montrent la variation des teneurs en Pd et en Pt en fonction du  $Cr_2O_3$ , du MgO et du  $Al_2O_3$ . Dans ces diagrammes, les teneurs en Pd varient positivement avec le chrome et l'aluminium et négativement avec le MgO. Ceci suggère que les teneurs de ces ÉGP sont influencées par la présence de la chromite. Par contre, un groupe d'échantillons ne semble pas influencé par ce processus. Ces échantillons montrent une corvariation positive du Pd et Pt avec le S (Figure 5.11D et 5.12D). En effet, de nombreux travaux ont montré que la distribution des P-ÉGP, dans les roches magmatiques, est grandement influencée par la présence de sulfures. Les ÉGP sont préférentiellement incorporés au liquide sulfuré pour former des minéraux du groupe du platine (Crocket, 1981; Barnes, 1985, 1988).

Compte tenu de la forte affinité chalcophile des ÉGP en présence de soufre, on devrait s'attendre à observer des covariations avec le nickel et le cuivre. Cependant, dans le cas du CDM, une forte proportion de Ni est incorporée dans l'olivine ce qui peut atténuer la covariation entre les ÉGP et le Ni. Les diagrammes du Pd (Figures 5.11E-F) et du Pt (Figures 5.12E-F) en fonction du Ni et Cu montrent que ces deux éléments ne covarient pas avec les teneurs en Pd et Pt. Cependant, les chromitites à silicate, qui contiennent des sulfures de cuivre et de nickel, et les filonets de sulfures montrent une relation linéaire entre les concentrations en P-ÉGP et les concentrations en Ni et en Cu. Le Co montre une tendance similaire au nickel (Figures 5.11G et 5.12G). La covariation du Pd en fonction du Sc suggère une affinité du palladium pour le Cpx bien que l'importance de cette phase semble très limitée. La figure 5.12H montrant la covariation du Pt en fonction de l'antimoine (Sb), ne suggère aucune covariation entre le Pt et l'antimoine compte tenu que l'antimoine est plutôt susceptible aux processus hydrothermaux.



**Figure 5.11** Diagrammes de variations de la teneur en Pd en fonction du  $Cr_2O_3$ , du MgO, de l'Al<sub>2</sub>O<sub>3</sub>, du S, du Ni, du Cu, du Co et du Sc pour les différentes lithologies du CDM. Légende: se référer à la figure 5.2.



**Figure 5.12** Diagrammes de variations de la teneur en Pt en fonction du  $Cr_2O_3$ , du MgO, de l'Al<sub>2</sub>O<sub>3</sub>, du S, du Ni, du Cu, du Co et du Sb pour les différentes lithologies du CDM. Légende : se référer à la figure 5.2.

# 5.9 Variations stratigraphiques des abondances en ÉGP des différentes lithologies

Les teneurs en platinoïdes des roches du CDM sont anomales. Certaines roches comme les chromitites et les chromitites à silicate sont potentiellement intéressantes pour leurs contenus en ÉGP. Les harzburgites et les harzburgites à chromite présentent des teneurs variables en ÉGP pouvant localement être très élevées.

Deux sections détaillées ont été effectuées dans le bloc nord du CDM (voir annexe A). Dans l'ensemble, les tendances observées dans les sections 97-MH-7371 (Figure 5.13) et 97-MH-7374 (Figure 5.14) sont similaires. Le Mg#, le Cr# et les abondances en  $Cr_2O_3$  sont tous fortement influencés par la présence de chromite. Le nombre Mg# est généralement de 85 pour les péridodites et diminue dans les roches riches en chromite (ex. chromitites). Pour les chromitites, le Mg# varie de 50 à 65 et pour les chromitites à silicate, ce rapport varie de 65 à 75. Le Cr# et les teneurs en  $Cr_2O_3$  montrent des tendances identiques et à l'opposé de celles du Mg#. Les valeurs de Cr# des péridotites est d'environ 20 par opposition à des valeurs variant de 40 à 60 pour les chromitites et les chromitites à silicate. Un échantillon, provenant d'un dyke de webstérite de la section 97-MH-7371, est caractérisé par un Cr# ~5. Les teneurs normales en chrome des péridotites varient de 2 à 5 % de  $Cr_2O_3$ .

Les teneurs en Ni, dans les deux sections, sont caractérisées par de faibles concentrations dans les chromitites à silicate (250 à 500 ppm) et par de fortes concentrations dans les roches péridotitiques. Les teneurs en Ni peuvent atteindre jusqu'à 3000 ppm après un horizon chromifère. Dans ces sections, la concentration moyenne en Ni des péridotites est d'environ 1500 ppm. Dans les roches du CDM, le comportement du cuivre est très similaire à celui du nickel. Les horizons chromifères sont appauvris en Cu (quelques ppm) et la péridotite au-dessus de ces horizons est enrichie en Cu (de 250 à 2500 ppm). L'abondance du cuivre dans les péridotites sont de l'ordre de la dizaine de ppm. Les concentrations élevées en platinoïdes sont directement associées aux horizons de chromite. Ces unités montrent des abondances en ÉGP qui varient de 1000 à 2140 ppb. La majorité des péridotites du Menarik montrent des teneurs en ÉGP qui varient de 15 à 120 ppb. Bien que les chromitites à silicate du CDM soient enrichies en ÉGP, les différentes observations nous indiquent que certains horizons possèdent des concentrations beaucoup plus importantes en platinoïdes que d'autres. Les chromitites à silicate de la section 97-MH-7371 sont généralement beaucoup plus riches en ÉGP que celles de la section 97-MH-7374 (Tableau 5.5 et Figures 5.13 et 5.14).

| Position sur ÉGP<br>l'affleurement |                         | Pd     | Pt    | Rh    | Ru    | Ir<br>(ppb) |  |
|------------------------------------|-------------------------|--------|-------|-------|-------|-------------|--|
|                                    |                         | (ppb)  | (ppb) | (ppb) | (ppb) |             |  |
| Base                               |                         | ****** |       |       |       |             |  |
| Sud-Est                            | 97-MH-7371              | 1348   | 238   | 93    | 110   | 26          |  |
|                                    | Chromitites             | 1484   | 366   | 132   | 134   | 23          |  |
| Nord-ouest                         | À                       | 796    | 155   | 75    | 157   | 35          |  |
| Sommet 🔻                           | Silicate                | 675    | 202   | 84    | 155   | 31          |  |
| Base                               | 97-MH-7374              | 595    | 160   | 70    | 173   | 35          |  |
| Sud                                | Chromitit <del>es</del> | 632    | 178   | 76    | 158   | 33          |  |
| Nord                               | À                       | 649    | 190   | 63    | 102   | 17          |  |
| Sommet 🔶                           | Silicate                |        |       |       |       |             |  |

**Tableau 5.5** Comparaisons des concentrations en ÉGP des chromitites à silicate des sections détaillées.

Les comportements des P-ÉGP (Pd) et des I-ÉGP (Ru) sont très similaires et évoluent comme les teneurs en ÉGP totaux en fonction de la présence des horizons de chromite. Les péridotites, spatialement associées à des niveaux enrichis de chromite, sont plus platinifères (jusqu'à 1900 ppb) que les autres péridotites du Complexe de Menarik.

١.





Dyke de we

3.





webstérite

Chromitite /\_ Chromitite à silicate Harzb / Lherz / Dun à chromite

an an an an an Arganan 122












#### 5.11 Synthèse

La Zone Ultramafique du Complexe de Menarik présente une grande variété de lithologies (don't les plus abondantes sont les dunites, les harzburgites, les lherzolites et les webstérites à olivine (Figure 5.1).

L'étude des éléments majeurs montre une évolution géochimique qui se caractérise essentiellement par un fractionnement dominé par l'olivine et la chromite. Dans les roches mafiques et ultramafiques du Complexe de Menarik, le fractionnement des différents silicates ferromagnésiens peut se résumer en trois étapes: I) fractionnement important de la chromite et de l'olivine (formation des chromitites, des dunites, des harzburgites et des lherzolites); II) fractionnement de l'orthopyroxène, de l'olivine et de la chromite (des webstérites à olivine aux webstérites); III) fractionnement des pyroxènes, du plagioclase et de l'olivine (formation des pyroxénites et gabbros).

Les roches du Menarik sont caractérisées par des spectres de TR essentiellement sub-chondritiques. Toutefois, certaines variations dans les spectres de TR permettent de subdiviser les roches du CDM en quatre groupes. Le premier groupe (I) est caractérisé par des spectres légèrement appauvris en TR légères ( $[La/Sm]_N = 0.69 \text{ à } 0.75$ ), alors que les spectres de TR lourdes sont plats. Le second groupe (II) est caractérisé par des spectres de TR plats de type sub-chondritiques  $([La/Sm]_N = 0.96 \pm 0.07)$ . Les lithologies appartenant à ces deux groupes forment la ZU. Le groupe (III) montre par des spectres de TR légèrement enrichis en TR légères  $([La/Sm]_{N}= 1,43 \pm 0,32)$ . Ce groupe comprend des échantillons de roches de la ZU, de gabbros injectés en périphérie de l'intrusion et des dykes de gabbros recoupant le CDM et la tonalite. Le dernier groupe (IV) est caractérisé par un enrichissement en TR légères. Deux sous-groupes peuvent être définis. Le sous-groupe IVA est caractérisé par des spectres fortement enrichis en terres rares légères ([La/Sm]<sub>N</sub>= 2,94 à 2,99). Le sous-groupe IVB montre un enrichissement en TR légères beaucoup moins important que pour le sous-groupe IVA ( $[La/Sm]_N = 1,68$ ). Ces roches montrent également un léger appauvrissement en TR lourde. L'étude des éléments incompatibles et des spectres de TR suggère que les gabbros du Menarik ne sont

pas tous comagmatiques avec les roches ultramafiques. Toutefois, les masses gabbros semblent provenir d'une source mantellique comparable. On peut conclure que ceux-ci sont comagmatiques avec la ZU du CDM. À l'opposé, les dykes de gabbros ne sont probablement pas reliés à cet événement magmatique.

Le découplage entre les I-ÉGP et les P-ÉGP, démontré dans de nombreux travaux (Keays, 1982; Barnes et al., 1985; Hoatson et Keays, 1989), n'est pas réellement observé dans les roches du CDM. Les ÉGP (Os?, Ir, Ru, Rh, Pt, Pd) sont fortement associés aux horizons de chromite que l'on retrouve dans la partie ultramafique de l'intrusion. L'influence des sulfures sur le comportement des P-ÉGP est probablement atténuée par le contrôle dominant de la chromite. Les teneurs en ÉGP des péridotites sont anomales et varient de 15 à 120 ppb. La minéralisation en platinoïdes est généralement confinée aux chromitites et chromitites à silicate où les teneurs varient généralement entre 1000 à 2150 ppb. De plus, les harzburgites sont localement enrichies en ÉGP lorsqu'elles se localisent à proximité des horizons de chromite. Dans ces cas, la teneur en ÉGP de ces péridotites peut atteindre jusqu'à 1900 ppb.

## **CHAPITRE VI - CHIMIE MINÉRALE**

La composition chimique des solutions solides de l'olivine, des pyroxènes, du spinelle, du plagioclase, etc. d'une intrusion ultramafique et/ou mafique sont d'excellents traceurs des processus de différenciation qui agissent dans une chambre magmatique (cristallisation fractionnée, mélange de magma, rééquilibration subsolidus, altération hydrothermale, etc.). L'étude minéralogique à la microsonde électronique, combinée à la géochimie, permet d'estimer plusieurs facteurs importants comme la composition du magma parent et les conditions de cristallisation.

Parmi les échantillons récoltés, plusieurs minéraux ont été analysés dans le but de connaître la composition chimique en oxydes des éléments majeurs et mineurs. Les analyses chimiques des phases minérales (annexe D) ont été effectuées au Laboratoire de Microanalyse de l'Université Laval en utilisant une microsonde électronique CAMECA SX-100 et le microscope électronique à balayage JEOL JSM-6400. Lors de l'analyse, les conditions habituelles d'opération pour la microsonde sont : spectrométrie à dispersion de longueur d'onde (WDS), un voltage d'excitation de 15 kV, un ampérage de 20 nA, un diamêtre du faisceau de 5 µm et une durée de comptage 20 s sur la raie et de 10 s sur le bruit de fond. Les données sont corrigées avec le programme PAP (procédure de correction ZAF modifiée par CAMECA), qui considère des corrections comme le numéro atomique (Z), l'absorption (A) et la fluorescence secondaire (F). Les conditions d'opération variaient quelque peu dépendant de la phase analysée. Les minéraux du groupe du platine (MGP) ont été analysées à l'aide du MEB. Les conditions d'opération pour le microscope électronique à balayage sont : la spectrométrie en dispersion de longueur d'onde (EDS), un voltage d'excitation de 15 à 20 kV, un courant de 10-9 A, un diamètre de faisceau à ~ 5 nm et une durée de comptage d'environ 50 secondes. Les données ont été corrigées en utilisant un programme de correction ZAF. Les standards utilisés pour la calibration de l'appareil sont des cristaux naturels ou synthétique. (annexe D).

#### 6.1 Minéralogie primaire

Le faible degré de conservation de la minéralogie primaire de l'intrusion empêche la caractérisation de la pluipart des minéraux ferromagnésiens. Les seuls minéraux préservés partiellement ou en totalité sont des pyroxènes et le spinelle chromifère (chromite). Les analyses de minéraux ont porté sur la chromite plus particulièrement.

#### 6.1.1 Pyroxène

Dans le Complexe de Menarik, seul le clinopyroxène (Cpx) a pu être analysé à l'aide de la microsonde. Le Cpx est préservé dans certaines lherzolites et harzburgites à chromite peocilitiques (Figures 6.1A et 6.1B). Il se présente comme une phase interstitielle associée à la chromite ou encore comme un oikocristal.

La composition moyenne est donnée au tableau 6.1 et les différentes analyses projetée dans le diagramme ternaire cle classification des pyroxènes (Figure 6.2). Les pyroxènes du Complexe de Menariik sont du diopside et de l'augite. Ils sont particulièrement riches en magnésium (Mg# = 0,87-0,97), ce qui reflète le caractère magnésien des roches ultramafiques du Menarik. Dans les roches ultramafiques, la composition du pyroxène est généralement celle du diopside et l'augite est habituellement retrouvée dans des roches mafiques comme des gabbros. Dans le cas du CDM, la présence d'augite est inhabituelle vu la composition très magnésienne des harzburgites et des Iherzolites à chromite.





Figure 6.1 Clinopyroxène en position intercumulus dans une dunite à chromite (97-MH-7374-11). (A) Le Cpx forme une grande plage où il est remplacé par la serpentine et la chlorite. (B) Le Cpx est remplacé par la chlorite préférentiellement le long des plans de clivages. Dans ce cas-ci, le remplacement du clinopyroxène est beaucoup plus avancé.

| Clinopyroxène                  |        |          |                     |  |  |  |  |  |
|--------------------------------|--------|----------|---------------------|--|--|--|--|--|
|                                | Augite | Diopside |                     |  |  |  |  |  |
|                                |        | Moyenne  | <u>± Écart-type</u> |  |  |  |  |  |
|                                | %      | %        |                     |  |  |  |  |  |
| SiO <sub>2</sub>               | 53,72  | 53,84    | 1,88                |  |  |  |  |  |
| TiO <sub>2</sub>               | 0,09   | 0,09     | 0,07                |  |  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> | 2,52   | 1,71     | 0,35                |  |  |  |  |  |
| Cr <sub>2</sub> O <sub>3</sub> | 0,88   | 0,54     | 0,19                |  |  |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | 0,01   | 0,67     | 0,56                |  |  |  |  |  |
| MgO                            | 20,58  | 17,15    | 0,42                |  |  |  |  |  |
| CaO                            | 16,46  | 24,13    | 2,20                |  |  |  |  |  |
| MnO                            | 0,21   | 0,10     | 0,14                |  |  |  |  |  |
| FeO                            | 5,32   | 1,99     | 1,78                |  |  |  |  |  |
| NiO                            | 0,00   | 0,03     | 0,05                |  |  |  |  |  |
| Na <sub>2</sub> O              | 0,22   | 0,15     | 0,07                |  |  |  |  |  |
| K20                            | 0,01   | 0,01     | 0,00                |  |  |  |  |  |
| Total                          | 100,01 | 100,41   | -                   |  |  |  |  |  |
| Wo                             | 33,46  | 48       | 3,65                |  |  |  |  |  |
| En                             | 58,14  | 48       | 3,16                |  |  |  |  |  |
| Fs                             | 8,40   | 3        | ,19                 |  |  |  |  |  |
| n                              | 1      |          | 3                   |  |  |  |  |  |

Tableau 6.1 Composition moyenne des pyroxènes analysés à la microsonde électronique.

n : Nombre d'analyses

La covariation inverse entre  $Al_2O_3$  et le SiO<sub>2</sub> (Figure 6.3A) suggère une rééquilibration sub-solidus. La composition primaire ou du moins la composition du pyroxène le moins affecté par la rééquilibration sub-solidus ou par les processus métamorphiques est celle contenant le plus d'aluminium (Hébert et al., 1989). Les diagrammes de covariation (Figures 6.4B et 6.4C), en fonction de l'indice de différentiation (Mg#), montrent une augmentation du FeO et une diminution du CaO avec la diminution du Mg#. Un Mg# élevé et une concentration faible en aluminium suggèrent une rééquilibration vers un pyroxène métamorphique. La composition du pyroxène initial du Menarik se rapproche probablement de la composition du diopside montrant le moins de perturbations (Wo<sub>47</sub> Fs<sub>5</sub> En<sub>49</sub>, Mg# = 0,92). Cette composition du pyroxène est très similaire à celles des pyroxènes provenant d'autres complexes mafiques et ultramafiques comme celui de Tonsina en Alaska où la composition de ce pyroxène varie de  $Wo_{47.48}$  Fs<sub>2-4</sub> En<sub>49-50</sub> avec un Mg# de 0,92-0,97 pour des dunites et des harzburgites (DeBari et Coleman, 1989). La composition du clinopyroxène du CDM est également similaire à la composition moyenne des clinopyroxènes des komatiites archéennes de l'Abitibi (Wo<sub>43</sub> Fs<sub>15</sub> En<sub>42</sub>) (Arndt et al., 1986).



Figure 6.2 Projection En-Fs-Wo des compositions des pyroxènes analysés dans les harzburgites et les lherzolites à chromite du Complexe de Menarik ( $\blacktriangle$  harzburgite à chromite,  $\bigstar$  lherzolite à chromite) (Morimoto, 1988).



**Figure 6.3** (A)  $SiO_2$  versus le  $Al_2O_3$  dans le Cpx.(B) FeO versus le Mg# dans le Cpx. (C) CaO versus le Mg# dans le Cpx. Légende: se référer à la figure 5.2.

#### 6.1.2 Chromite

La chromite est le seul minéral primaire bien préservé dans le Complexe de Menarik. Son étude peut fournir des informations uniques et essentielles pour la compréhension de la pétrogenèse du CDM.

### 6.1.2.1 Morphologie de la chromite

La chromite du Complexe de Menarik se caractérise par un habitus granulaire et idiomorphe en position intercumulat dans les roches ultramafiques où l'olívine prédomine généralement sur l'orthopyroxène. Wilhelmy et Lacoste (1990) ont divisé la chromite CDM selon huit textures à partir de leurs observations microscopiques. Les chromites du CDM peuvent être décrites selon cette classification:

1) La chromite **homogène (non zonée)** présente une homogène à l'intérieur d'un même grain (Figure 6.4A).

2) La chromite **zonée** présente une variation dans la teinte reliée à la différence de réflectivité entre les différentes portions d'oxydes. La bordure est généralement beaucoup plus claire que le cœur. Cette zonation est très variable, elle peut être simple ou multiple et d'épaisseur variable (Figure 6.4B).

3) La chromite **avec bordure effritée** est homogène (non zonée) ou zonée avec des franges irrégulières plus ou moins épaisses. Ceci suggère une recristallisation d'oxyde de fer (magnétite ± chromifère) dans les espaces interfoliaires des phyllosilicates en association avec la serpentine et la chlorite (Figure 6.4B).

4) La chromite **lessivée** est homogène et ne montre pas de zonation. La différence entre celle-ci et la chromite homogène est que tout le matériel de la chromite lessivée possède la même réflectivité que les bordures pâles des chromites zonées décrites (Figure 6.4C).

5) La chromite **spongieuse** est remplie d'inclusions silicatées et de petites cavités. La quantité d'inclusions et/ou de cavités peut atteindre des proportions pouvant aller jusqu'à 30 à 35 % de la surface du grain (Figure 6.4D). Ces inclusions sont essentiellement composées de chlorite, de serpentine, d'amphibole et plus rarement de micas. Des sous-types de cette texture pourraient être définis. Lorsque les inclusions sont réparties entièrement dans le grain, la chromite est spongieuse. Par contre, il est également possible d'observer une chromite spongieuse avec certains secteurs dépourvus d'inclusion ou même de retrouver la chromite spongieuse uniquement dans les bordures des chromites zonées (Figure 6.4E).

6) La chromite **cataclastique** ne posséde pas l'habitus hexagonal généralement observé. Sa forme est plutôt triangulaire exhibant ainsi une ou plusieurs faces brisées (Figure 6.4E). La chromite cataclastique peut être le résultat de deux processus : i) un événement tectonique qui cataclase une partie de la roche, ou ii) un éclatement de la chromite lors de l'augmentation de volume des silicates suite à la serpentinisation des silicates contenus dans les chromites riches en inclusions.

7) La chromite **associée à des sulfures** est généralement zonée et des sulfures se logent généralement au pourtour de la chromite (Figure 6.4F), dans les fractures (Figure 6.4F) ou encore s'associent avec la bordure de couleur plus pâle de la chromite (Figure 6.4E). Les sulfures peuvent également être concentrés à l'intérieur des nodules de silicates dans les chromitites à silicate (Figure 6.4G).

8) La chromite **riche en inclusions de sulfures** contient des inclusions de pyrite, de pyrrhotite avec des flammes de pentlandite, de chalcopyrite, de pentlandite, de millérite et plus rarement des arséniures et sulfoarséniures (Figure 6.5H). Localement, des minéraux du groupe du platine ont été observés en inclusions dans la chromite du Menarik.



**Figure 6.4** Différentes morphologies de la chromite au microscope optique dans le CDM. (A) La chromite homogène et non zonée. (B) La chromite zonée avec localement une bordure effritée. (C) La chromite lessivée. (D) La chromite spongieuse. (E) La chromite cataclastique. (F) et (G) La chromite associée avec des sulfures. (H) La chromite avec des inclusions de sulfures.

Le développement de ces textures est contrôlé soit par les conditions qui prévalaient dans la chambre magmatique ou par des processus d'altération secondaires. Les textures 1-5-8 sont des textures d'origine magmatique. Par contre, les textures 2-3-4-6-7 sont des textures secondaires formées lors de la serpentinisation ou l'hydrothermalisme des roches ultramafiques. Les chromites du Menarik peuvent exhiber une ou plusieurs morphologies décrites précédemment. On peut ainsi subdiviser l'ensemble de ces texture en deux groupes plus fondamentaux. Le premier groupe (I) correspond à des chromites non zonées (textures 1-3-4-8) et le deuxième groupe (II) à des chromites zonées (textures 2-3-5-6-7-8).

Dans le Groupe I (Figure 6.5) aucune variation de réflectivité de la chromite est observée aussi bien au microscope optique qu'à la microsonde en mode d'analyse par électrons rétrodiffusés (Figure 6.5A). La concentration des éléments majeurs comme le fer (Figure 6.5B), le chrome (Figure 6.5C), l'aluminium (Figure 6.5D), le titane (Figure 6.5E) et le magnésium (Figure 6.5F) ne présente aucune variation importante à l'intérieur d'un grain. Dans ces chromites, les concentrations en Al et en Mg sont relativement faibles comparativement aux concentrations des autres éléments majeurs Cr et Fe contenus dans la chromite du Menarik.

Le Groupe II est constitué de chromites zonées qui montrent des variations dans la réflectivité aussi bien au microscope optique qu'à la microsonde électronique. Deux sous-types sont définis dans le Groupe II. Le sous-type IIA est caractérisé par une zonation concentrique et une réflectivité qui augmente vers la bordure du grain. Le sous-type IIB est caractérisé par une zonation en secteurs distribués irrégulièrement dans le grain de chromite.

La zonation concentrique du sous-type IIA est la plus fréquente (Figure 6.6A). Cette zonation est omniprésente dans le Complexe de Menarik. La zonation concentrique comprend de deux à quatre zones d'épaisseurs variables. Habituellement, la zonation est triple (cœur, intermédiaire et bordure). Le fer montre un enrichissement vers la bordure de la chromite (Figure 6.6B) tandis que les teneurs en chrome sont généralement constantes dans le cœur et dans la partie intermédiaire mais chute rapidement dans la bordure (Figure 6.6C). L'aluminium et le titane présentent des variations similaires, c'est-à-dire un enrichissement dans le cœur et un appauvrissement dans la partie intermédiaire et dans la bordure (Figures 6.6D-E). La chromite de la figure 6.7 montre une zonation concentrique mais cette dernière exhibe une plus grande variabilité dans sa zonation. Les concentrations en fer (Figure 6.7B), en chrome (Figure 6.7C), en aluminium (Figure 6.7D) et en magnésium montre des tendances similaires (Figure 6.7F). Cependant, le titane montre une zonation concentrique à quatre secteurs au lieu de trois (Figure 6.7E). Le titane est enrichi au cœur et dans la partie intermédiaire et appauvrie dans la bordure. Par contre, la limite entre le cœur et la partie intermédiaire est caractérisée par une mince zone concentrique où la concentration du titane diminue pour ensuite revenir à la concentration du cœur dans la portion intermédiaire.

Dans le CDM, le sous-type IIB est beaucoup moins fréquent que le sous-type IIA. Cette zonation particulière se retrouve uniquement dans la chromite spongieuse. La distribution des éléments majeurs dans ces chromites est totalement irrégulière. Ceci résulte probablement de la présence de nombreuses inclusions silicatées et/ou des cavités dans la chromite. La figure 6.27B montre un bel exemple de cette zonation.

Dans le CDM, les sous-types IIA et IIB représentent des cas extrêmes de la zonation de la chromite. Toutefois, les zonations intermédiaires peuvent être observées. La présence d'inclusions et de fractures peuvent modifier la distribution de la zonation. Par exemple, dans la partie centrale de la chromite, la présence de grandes inclusions à l'intérieur définit une auréole d'altération autour de l'inclusion (Figure 6.8A). Cependant, l'aspect concentrique de la zonation est tout de même préservé. La présence de fractures ou de plans de faiblesse dans le grain de chromite affecte également la zonation. On observe toujours l'aspect concentrique de la zonation bien qu'elle est beaucoup plus irrégulière avec de nombreux réentrants à plus forte réflectivité vers le cœur. Ces réentrants résultent de la circulation de fluides par l'entremise de ces plans de faiblesse (Figure 6.8B).







Figure 6.6 Cartographie d'un grain de chromite appartenant au Groupe II et du sous-type A. (A) Image en électrons rétrodiffusés. (B) Fer total. (C) Chrome. (D) Aluminium. (E) Titane.







**Figure 6.8** Grain de chromite appartenant au sous-type IIA en mode électrons rétrodiffusés. (A) La présence d'inclusions modifie le patron de zonation.(B) La présence de fractures et de pians de faiblesses modifie le patron de zonation.

#### 6.1.2.2 Composition de la chromite du CDM

La projection de la composition des chromites, dans le diagramme ternaire des cations trivalents Fe-Cr-Al (Whittaker, 1986), indique qu'elles correspondent à des chromites alumineuses, des chromites ferrifères ou à des magnétites chromifères (Figure 6.9). Bien que les cœurs, les zones intermédiaires et les bordures des chromite ne se retrouvent pas tous dans le même champ, la figure 6.9 montre que : 1) la majorité des cœurs sont constitués de chromites alumineuses, 2) que la majorité des zones intermédiaires sont constituées de chromites ferrifères et 3) que la majorité des bordures sont constituées de magnétites chromifères. La grande variabilité de la distribution de la composition des différentes zones est le reflet des différentes morphologies et des différents patrons de zonations observés dans les chromites du Complexe de Menarik.

Étant donné que la transformation entre les cœurs, les zones intermédiaires et les bordures de la chromite est graduelle, la moyenne de chaque zone peut être évaluée à partir des analyses des chromites du Complexe de Menarik (Figure 6.10). Le tableau 6.2 donne les intervalles de variations pour les éléments majeurs de la chromite pour chaque zone.

| Éléments                       | Zone I  | Zone II       | Zone III |  |  |
|--------------------------------|---------|---------------|----------|--|--|
|                                | Cœur    | Intermédiaire | Bordure  |  |  |
| Al <sub>2</sub> O <sub>3</sub> | 16-18   | 0-1           | 0        |  |  |
| Cr <sub>2</sub> O <sub>3</sub> | 41-44   | 35-38         | 0-2      |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | 4-8     | 25-30         | 65-69    |  |  |
| FeO                            | 21-24   | 26-27         | 29-32    |  |  |
| TiO <sub>2</sub>               | 0,3-0,7 | 0,9-1,1       | 0-0,1    |  |  |
| MgO                            | 3-5     | 0-1           | 0        |  |  |

**Tableau 6.2** Intervalles de composition (% poids) des différentes zones des grains de chromites du Complexe de Menarik.







**Figure 6.10** Histogrammes montrant la distribution des analyses de chromites du Complexe de Menarik pour les principaux éléments majeurs (Zone I, coeur des chromites, Zone II, zone intermédiaire des chromites et Zone III, bordure des chromites).

Étant donné la nature graduelle des variations de composition, des traverses à la microsonde électronique ont été effectuées sur les grains de chromite pour documenter la distribution des différents éléments (Figure 6.11).



**Figure 6.11** Exemple de traverse, à la microsonde électronique, dans un grain de chromite (groupe IIA) illustrant les variations de réflectivité entre les différentes zones de la chromite du Menarik (LM 97-MH-7371-19).

Les teneurs en  $Cr_2O_3$  sont généralement constantes dans les zones I et III. Les concentrations en chrome sont élevées (~40 %) dans le cœur et baisse rapidement dans la zone de transition (zone II) pour atteindre des concentrations minimales dans la zone de bordure (~2%) (Figure 6.12).

L'Al<sub>2</sub>O<sub>3</sub> et le MgO montrent des tendances similaires. Ils sont enrichis dans la zone I (~12 % Al<sub>2</sub>O<sub>3</sub> et ~5 % MgO) et appauvris dans la zone III (Al<sub>2</sub>O<sub>3</sub> et MgO < 1 %) (Figure 6.12). La zone de transition (II) se caractérise généralement par des baisses importantes et rapides pour ces éléments.

Dans la chromite, le Fe<sub>2</sub>O<sub>3</sub> et le FeO montrent des tendances inverses de celles du Cr<sub>2</sub>O<sub>3</sub>. Les teneurs en FeO (~22 %) et en Fe<sub>2</sub>O<sub>3</sub> (~10 %) sont faible dans le cœur des grains et augmentent plus ou moins rapidement dans les zones intermédiaires pour atteindre des teneurs maximales et constantes de ~68 % (Fe<sub>2</sub>O<sub>3</sub>) et de ~30 % (FeO) dans la zone III (Figure 6.12). La zone I est caractérisée un patron convexe qui illustre une diminution graduelle et symétrique du FeO à proximité de la zone II. Ceci résulte possiblement d'un processus de diffusion du FeO.

Le MnO et le TiO<sub>2</sub> montrent des tendances similaires. La zone I est enrichie en ces deux éléments (~1,5 % MnO et ~1,2 % TiO<sub>2</sub>) comparativement à la zone de bordure (<<1 %) (Figure 6.12). La zone II montre des pics d'enrichissement pour ces deux éléments bien que beaucoup plus marqué pour le MnO. La distribution du MnO dans la zone I montre également un patron concave qui illustre une augmentation importante de la concentration en MnO dans la zone II (~6,5 %) qui chute ensuite dans la zone de bordure.

Le NiO et ZnO montrent des tendances inversées. Le NiO est appauvri dans le cœur (<<<1 %) et légèrement enrichi dans la zone de bordure (~0,4 %). Le ZnO est légèrement enrichi dans la zone I (~0,6 %) et appauvri dans la zone III (~0,2 %). Dans la zone II, la zone de transition pour ces deux éléments est graduelle (Figure 6.12).

La distribution des différents éléments chimiques dans la chromite du Menarik montrent des spectres généralement similaires à ceux de la figure 6.12. Par contre, certaines variantes sont localement observées. Les spectres pour les différents éléments chimiques peuvent constituer des plateaux ou des formes convexes ou concaves.





# 6.1.2.3 Effet du métamorphisme et de l'altération sur la composition de la chromite

Dans les roches ignées, la composition de la chromite est sensible à la composition du magma, à la pression de cristallisation et au degré de fusion partielle de la source mantellique (Irvine, 1965, 1967; Dick et Bullen 1984). Cependant, l'altération et le métamorphisme de la chromite s'exprime par un changement de composition chimique caractérisé par trois effets principaux (Spangenberg, 1943; Mihalik et Saager, 1968; Beeson et Jackson, 1969; Frisch, 1971; Onyeagocha, 1974; Ulmer, 1974; Evans et Frost, 1975; Bliss et MacLean, 1975; Hoffman et Walker, 1978; Loferski et lipin, 1983; Kimball, 1990; Burkhard, 1993; Liipo et al., 1995; Abzalov, 1998; Barnes, 1998; Bédard et Hébert, 1998; Barnes, 2000). Premièrement, il se produit généralement des échanges postcumulus Mg-Fe entre la chromite et les silicates magnésiens, essentiellement l'olivine (Roeder et Campbell, 1985; Peltonen, 1995). Deuxièmement, la composition de la chromite est progressivement modifiée lors du métamorphisme prograde par la diffusion des éléments majeurs comme Mg, Fe, Al et Cr vers les minéraux silicatés environnants (Evans et Frost, 1975; Kimball, 1990). Troisièmement, la chromite développe progressivement une zonation résultant d'une transformation en magnétite chromifère ou en ferritchromite (Spangenberg, 1943).

Les figures 6.13A et B montrent les compositions des chromites du CDM selon le nombre Cr# et le nombre Fe<sup>3+</sup># en fonction du nombre Mg#. Le vecteur 1 représente l'évolution de la composition de la chromite en fonction de l'augmentation du taux de fusion partielle tandis que le vecteur 2 est fonction de la cristallisation fractionnée (Dick et Bullen, 1984). Dans le diagramme, les compositions des chromites du CDM ne montrent pas ces deux tendances (vecteurs 1 et 2) mais plutôt les tendances 3 et 4 (Figure 6.13A et B). La tendance horizontale (3) résulte d'un échange Mg-Fe (rééquilibration subsolidus) entre la chromite et l'olivine combinée avec la migration du magnésium vers les silicates environnants. La tendance verticale (4) résulte de la transformation graduelle de la chromite en ferritchromite. Cette transformation est causée essentiellement par la migration de l'aluminium, et quelque peu du chrome, vers les silicates environnants et ceci au détriment du fer dans le site des cations trivalents du spinelle. Cette substitution progressive de l'Al par le Fe<sup>3+</sup> favorise la formation de minéraux alumineux et chromifères comme la chlorite, au détriment de la serpentine, et l'apparition de chlorite et d'amphiboles chromifères. Les variations de composition observées dans les chromites du CDM sont donc principalement dues à des processus postérieurs à la cristallisation de celle-ci.

## 6.1.2.4 Composition "primaire" de la chromite

Plusieurs facteurs doivent être pris en considération lors de l'utilisation de la chromite à des fins pétrogénétiques. Pour la modélisation pétrogénétique la composition de la chromite doit refléter la composition primaire du minéral lors de sa cristallisation. Dans l'étude des chromites du Menarik, un filtrage des données de spinelle est nécessaire compte tenu du métamorphisme. Ainsi, les analyses possédant les caractéristiques suivantes seront rejetées:

- les magnétites chromifères résultent de la tranformation de la chromite originelle en ferritchromite (toutes les analyses contenant 8 cations et plus de Fe<sup>3+</sup> par unité structurale) (Figure 6.9);
- les analyses contenant < 10 % aluminium. La distribution des éléments lors des cartographies et des traverses de grains de chromite démontrent la grande mobilité de l'aluminium dans le spinelle du CDM (appauvrissement de l'Al vers la bordure). La limite est fixée à 10 % compte de tenu de la distribution des analyses dans l'histogramme de l'Al (Figure 6.10).</li>

Après le filtrage des données, la composition moyenne de la chromite a été calculée pour les différents faciès lithologiques du Complexe de Menarik (Tableau 6.3). Toutefois, la composition calculée du spinelle primaire des webstérites (NZU) et des pyroxénites à MG ne respectent pas les critères de filtrage déterminés précédemment car la magnétite est le spinelle primaire dans ces lithologies générées à partir d'une source magmatique différente (également suggéré par les relations de terrain et la géochimie des éléments traces).



Figure 6.13 Diagrammes montrant la distribution des analyses de chro-mites du Complexe de Menarik pour les principaux éléments majeurs (Zone I, coeur des chromites, Zone II, zones intermédiaires des chromites et Zone III, bordures des chromites). Légende: se référer à la figure 6.9. Champs tirés de Dick et Bullen (1984).

|                                    | Chr    |       | Chr Sil |       | Du     | Du à chro |       | Harzb  |      | Harzb à chro |       | Lherz         |       |
|------------------------------------|--------|-------|---------|-------|--------|-----------|-------|--------|------|--------------|-------|---------------|-------|
| Unité                              | x      | \$    | x       | \$    | х      | х         | \$    | x      | 8    | x            | s     | x             | 8     |
| <b>SIO</b> 2                       | 0,03   | 0,02  | 0,02    | 0,02  | 0,04   | 0,03      | 0,01  | 0,03   | 0,01 | 0,02         | 0,02  | 0,02          | 0,01  |
| TiO <sub>2</sub>                   | 0,29   | 0,11  | 0,54    | 0,33  | 0,79   | 0,69      | 0,07  | 0,92   | 0,45 | 0,77         | 0,35  | 1,26          | 0,48  |
| Al <sub>2</sub> O <sub>3</sub>     | 17,15  | 2,26  | 16,91   | 1,27  | 15,47  | 16,96     | 1,06  | 14,16  | 1,17 | 16,28        | 1,51  | 14,23         | 1,19  |
| V <sub>2</sub> O <sub>3</sub>      | 0,18   | 0,05  | 0,16    | 0,08  | 0,37   | 0,19      | 0,07  | 0,29   | 0,10 | 0,19         | 0,08  | 0,30          | 0,12  |
| Cr <sub>1</sub> O <sub>3</sub>     | 48,20  | 3,03  | 43,30   | 2,47  | 41,80  | 42,63     | 0,51  | 39,64  | 1,39 | 41,43        | 1,43  | 37,19         | 1,69  |
| Fe <sub>2</sub> O <sub>3</sub>     | 3,95   | 0,88  | 6,52    | 1,90  | 6,73   | 6,60      | 0,11  | 10,51  | 2,21 | 7,71         | 1,45  | 12,19         | 2,19  |
| MgO                                | 8,89   | 2,37  | 5,38    | 2,65  | 2,15   | 4,81      | 2,43  | 1,55   | 0,57 | 3,64         | 2,22  | 2,46          | 2,35  |
| MnO                                | 0,47   | 0,12  | 0,62    | 0,34  | 0,86   | 0,63      | 0,10  | 0,83   | 0,38 | 0,80         | 0,38  | 1,48          | 0,72  |
| FeO                                | 20,86  | 3,46  | 26,07   | 3,81  | 30,39  | 27,10     | 3,35  | 31,50  | 0,94 | 28,61        | 3,08  | 29,49         | 3,63  |
| CoO                                | 0,08   | 0,02  | 0,08    | 0,07  | D.a.   | Д.А.      | n.a.  | 0,14   | 0,03 | 0,12         | 0,10  | 0,09          | 0,06  |
| NIO                                | 0,08   | 0,05  | 0,05    | 0,05  | 0,09   | 0,12      | 0,02  | 0,06   | 0,05 | 0,06         | 0,06  | 0,11          | 0,05  |
| ZnO                                | 0,15   | 0,10  | 0,23    | 0,23  | 1,39   | 0,19      | 0,07  | 0,54   | 0,18 | 0,30         | 0,21  | 0,77          | 0,20  |
| Total:                             | 100,27 |       | 99,83   |       | 100,10 | 99,96     |       | 100,11 |      | 99,89        |       | 99,44         |       |
| <b>S</b> 1                         | 0,01   |       | 0,01    |       | 0,01   | 0,01      |       | 0,01   |      | 0,01         |       | 0,01          |       |
| TI                                 | 0,06   |       | 0,11    |       | 0,16   | 0,14      |       | 0,19   |      | 0,16         |       | 0,26          |       |
| Al                                 | 5,21   |       | 5,30    |       | 5,00   | 5,33      |       | 4,62   |      | 5,18         |       | 4,64          |       |
| v                                  | 0,04   |       | 0,03    |       | 0,08   | 0,04      |       | 0,06   |      | 0,04         |       | 0,07          |       |
| Cr                                 | 9,85   |       | 9,11    |       | 9,06   | 9,00      |       | 8,68   |      | 8,85         |       | 8,15          |       |
| Fe <sup>3•</sup>                   | 0,77   |       | 1,31    |       | 1,39   | 1,33      |       | 2,19   |      | 1,57         |       | 2,55          |       |
| Mg                                 | 3,41   |       | 2,11    |       | 0,88   | 1,90      |       | 0,64   |      | 1,45         |       | 1,00          |       |
| Mn                                 | 0,10   |       | 0,14    |       | 0,20   | 0,14      |       | 0,19   |      | 0,18         |       | 0,34          |       |
| Fe <sup>2</sup> '                  | 4,52   |       | 5,83    |       | 6,97   | 6,06      |       | 7,30   |      | 6,48         |       | 6,85          |       |
| Co                                 | 0,02   |       | 0,02    |       | D.a.   | II. A.    |       | 0,03   |      | 0,03         |       | 0,02          |       |
| Ni                                 | 0,02   |       | 0,01    |       | 0,02   | 0,03      |       | 0,01   |      | 0,01         |       | 0,02          |       |
| Zn                                 | 0,03   |       | 0,05    |       | 0,28   | 0,04      |       | 0,11   |      | 0,06         |       | 0,16          |       |
| Total:                             | 24,00  |       | 24,01   |       | 24,06  | 24,00     |       | 24,02  |      | 24,01        |       | 24, <b>04</b> |       |
| Fe <sup>3•</sup> /Fe <sup>2•</sup> | 0,17   | 0,05  | 0,23    | 0,07  | 0,20   | 0,22      | 0,02  | 0,30   | 0,06 | 0,24         | 0,04  | 0,38          | 0,07  |
| Cz#                                | 65,37  | 4,25  | 63,22   | 1,91  | 64,45  | 62,80     | 1,25  | 65,30  | 1,76 | 63,12        | 1,88  | 63,72         | 1,64  |
| Mg#                                | 42,96  | 10,56 | 26,56   | 12,38 | 11,20  | 23,83     | 11,67 | 8,02   | 2,87 | 18,23        | 10,58 | 12,72         | 12,06 |
| Fe#                                | 4,85   | 1,10  | 8,35    | 2,68  | 8,99   | 8,47      | 0,34  | 14,15  | 3,03 | 10,09        | 2,14  | 16,61         | 3,16  |
| Cr/Fe                              | 1,92   | 0,35  | 1,32    | 0,27  | 1,08   | 1,23      | 0,13  | 0,92   | 0,08 | 1,12         | 0,17  | 0,89          | 0,15  |
| n                                  | 43     |       | 43 259  |       | 1      | 3         |       | . 1    | 8    | 101          |       | 23            |       |

Tableau 6.3 Composition moyenne des chromites primaires des différentes unités du CDM.

Formules structurales calculées sur 32 oxygènes

 $Cr = 100 \times Cr/(Cr+Al)$ 

Mg# = 100 x Mg/(Mg+Fe<sup>2+</sup>)

 $Fe# = 100 \times Fe^{3+}/(Fe^{3+}+Al+Cr)$ 

N2U = Roche n'appartenant pas à la Zone Ultramafique

n = nombre d'analyses

x = moyenne

a = écart-type

|                                       | Lherz à chro |       | Perid |      | Webst Ol |      | Webst |      | Webst (NZU) |       | Px à MG (NZU) |       |
|---------------------------------------|--------------|-------|-------|------|----------|------|-------|------|-------------|-------|---------------|-------|
| Unité                                 | <u>x</u>     | 5     | x     | 5    | x        | 5    | x     | 8    | x           | 8     | x             |       |
| 8iO <sub>2</sub>                      | 0,05         | 0,12  | 0,20  | 0,24 | 0,02     | 0,01 | 0,01  | 0,00 | 0,38        | 0,17  | 0,04          | 0,02  |
| TiO <sub>2</sub>                      | 1,18         | 0,61  | 0,33  | 0,00 | 0,95     | 0,47 | 2,70  | 2,44 | 0,28        | 0,07  | 0,14          | 0,14  |
| <b>Al</b> <sub>2</sub> O <sub>3</sub> | 14,82        | 1,48  | 14,61 | 0,36 | 16,03    | 0,96 | 12,47 | 0,47 | 0,01        | 0,01  | 0,04          | 0,02  |
| V2O3                                  | 0,23         | 0,06  | 0,16  | 0,05 | 0,28     | 0,05 | 0,32  | 0,17 | 0,00        | 0,00  | 0,17          | 0,08  |
| Cr <sub>2</sub> O <sub>3</sub>        | 40,02        | 2,10  | 43,14 | 0,01 | 41,20    | 0,63 | 33,28 | 1,27 | 0,06        | 0,01  | 0,10          | 0,10  |
| Fe <sub>2</sub> O <sub>3</sub>        | 9,93         | 2,41  | 7,15  | 0,17 | 6,57     | 1,38 | 13,68 | 5,68 | 67,22       | 0,37  | 67,62         | 0,43  |
| MgO                                   | 3,62         | 2,14  | 3,30  | 0,86 | 2,26     | 0,17 | 0,48  | 0,01 | 0,04        | 0,04  | 0,06          | 0,03  |
| MnO                                   | 1,38         | 1,15  | 0,49  | 0,06 | 0,73     | 0,08 | 1,37  | 0,31 | 0,07        | 0,05  | 0,05          | 0,03  |
| FeO                                   | 28,13        | 3,46  | 28,12 | 1,31 | 30,65    | 0,35 | 33,29 | 1,81 | 30,64       | 0,14  | 30,59         | 0,17  |
| CoO                                   | 0,08         | 0,07  | п.а.  | n.a. | 11.a.    | n.a. | 0,20  | 0,08 | 0,39        | 0,04  | n.a.          | n.a.  |
| NIO                                   | 0,07         | 0,06  | 0,05  | 0,02 | 0,09     | 0,03 | 0,00  | 0,00 | 0,02        | 0,02  | 0,04          | 0,03  |
| ZnO                                   | 0,50         | 0,29  | 2,27  | 0,16 | 0,71     | 0,12 | 1,28  | 0,20 | 0,33        | 0,08  | 0,02          | 0,04  |
| Total:                                | 99,90        |       | 99,83 |      | 99,49    |      | 99,07 |      | 99,44       |       | 98,89         |       |
| <b>Si</b>                             | 0,01         |       | 0,06  |      | 0,01     |      | 0,00  |      | 0,12        |       | 0,01          |       |
| Ti                                    | 0,24         |       | 0,07  |      | 0,20     |      | 0,58  |      | 0,06        |       | 0,03          |       |
| Al                                    | 4,75         |       | 4,72  |      | 5,18     |      | 4,19  |      | 0,00        |       | 0,01          |       |
| v                                     | 0,05         |       | 0,04  |      | 0,06     |      | 0,07  |      | 0,00        |       | 0,04          |       |
| Cr                                    | 8,61         |       | 9,35  |      | 8,94     |      | 7,50  |      | 0,02        |       | 0,02          |       |
| Fo <sup>3</sup> '                     | 2,04         |       | 1,48  |      | 1,36     |      | 2,93  |      | 15,65       |       | 15,84         |       |
| Mg                                    | 1,45         |       | 1,35  |      | 0,93     |      | 0,20  |      | 0,02        |       | 0,03          |       |
| Mn                                    | 0,32         |       | 0,11  |      | 0,17     |      | 0,33  |      | 0,02        |       | 0,01          |       |
| Fe <sup>3</sup> '                     | 6,42         |       | 6,45  |      | 7,03     |      | 7,94  |      | 7,93        |       | 7,96          |       |
| Co                                    | 0,02         |       | Ц.А.  |      | n.a.     |      | 0,05  |      | 0,10        |       | 11.8.         |       |
| NI                                    | 0,02         |       | 0,01  |      | 0,02     |      | 0,00  |      | 0,00        |       | 0,01          |       |
| Zn                                    | 0,10         |       | 0,46  |      | 0,14     |      | 0,27  |      | 0,08        |       | 0,01          |       |
| Total;                                | 24,02        |       | 24,08 |      | 24,03    |      | 24,07 |      | 23,99       |       | 23,99         |       |
| Fe <sup>3•</sup> /Fe <sup>2+</sup>    | 0,32         | 0,10  | 0,23  | 0,01 | 0,19     | 0,04 | 0,37  | 0,17 | 1,97        | 0,01  | 1,99          | 0,02  |
| Cr#                                   | 64,48        | 1,74  | 66,46 | 0,55 | 63,31    | 1,67 | 64,15 | 1,74 | 80,89       | 18,16 | 51,48         | 23,71 |
| Mg#                                   | 18,49        | 10,64 | 17,27 | 4,41 | 11,63    | 0,77 | 2,49  | 0,19 | 0,22        | 0,22  | 0,36          | 0,20  |
| Fet                                   | 13,26        | 3,44  | 9,49  | 0,27 | 8,75     | 1,76 | 19,81 | 6,86 | 99,87       | 0,04  | 99,76         | 0,19  |
| Cr/Fe                                 | 1,04         | 0,16  | 1,18  | 0,05 | 1,07     | 0,03 | 0,69  | 0,08 | 0,00        | 0,00  | 0,00          | 0,00  |
| n                                     | . 4          | 1     |       | 2    |          | 4    | ·     | 2    | . 1         | ٥     |               | 6     |

Tableau 6.3 Composition moyenne des chromites primaires des différentes unités du CDM (suite).

Formules structurales calculées sur 32 oxygènes

 $Cr# = 100 \times Cr/(Cr+Al)$ 

Mg# = 100 x Mg/(Mg+Fe<sup>2+</sup>) Fe# = 100 x Fe<sup>3+</sup>/(Fe<sup>3+</sup>+Al+Cr)

•

NZU = Roche n'appartenant pas à la Zone Ultramafique

n = nombre d'analyses

x = moyenne

s = écart-type

Les compositions des cœurs de chromites du Complexe de Menarik sont généralement très constantes. Peu importe la lithologie, les valeurs calculées varient très peu pour le Cr# (entre 62 et 66) et le ratio  $Fe^{3+}/Fe^{2+}$  (entre 0,17 et 0,42). La valeur du  $Fe^{3+}$ # est plus variable (entre 4,85 et 19,81). Par contre, le Mg# est plus variable (entre 42,96 et 2,49). Bien que les analyses retenues, après filtrage, représentent la composition des coeurs primaires de la chromite de cette intrusion, ils ont de tout même subi une rééquilibration sub-solidus entraînant cette variation dans le nombre Mg (Figure 6.13A). La chromite contenue dans les horizons de chromitites semble être celle qui se rapproche le plus de la composition du spinelle chromifère en équilibre avec le ou les magmas parentaux du Menarik.

L'étude de sections détaillées permet de déterminer des variations cryptiques de la composition de la chromite. Toutefois, ces variations ne sont pas très importantes. Ces dernières sont contrôlées par la proportion de chromite. Les figures 6.14 et 6.15 illustrent certaines variations cryptiques observées dans deux indices minéralisés du CDM. Dans les sections, le Cr#, le Fe<sup>3+</sup>#, le ratio Fe<sup>3+</sup>/Fe<sup>2+</sup> montrent des tendances similaires. Les valeurs pour ces rapports sont plus faibles dans les zones à chromitites et chromitites à silicate comparativement aux zones silicatées. Sur une épaisseur de moins de un mètre, on peut observer l'effet de la précipitation abondante de chromite où le Cr/Fe et le  $Cr_2O_3$  montrent des tendances inverses. Ceci démontre un enrichissement de ces éléments dans les horizons de chromite. Ces ratios, pour une zone silicatée située entre deux lits de chromite, sont légèrement enrichis par rapport aux valeurs observées dans les roches silicatées éloignées des chromitites (Figures 6.14 et 6.15). La composition des spinelles des autres lithologies ultramafiques qui recoupent le CDM est très différente de celle du spinelle de la ZU. Par exemple, une webstérite provenant de la ZU montre des valeurs de 0,37 pour le ratio  $Fe^{3+}/Fe^{2+}$ , 64,15 pour le Cr#, 2,49 pour le Mg#, 19,81 pour le Fe# et de 0,69 pour le ratio Cr/Fe comparativement à des valeurs de 1,97 pour le ratio Fe<sup>3+</sup>/Fe<sup>2+</sup>, 80,89 pour le Cr#, 0,22 pour le Mg#, 99,87 pour le Fe# et de 0,69 pour le ratio Cr/Fe pour une webstérite qui recoupe le CDM. Ces deux roches ultramafiques sont par contre similaires pétrographiquement.





٩

ĵ





j

153



Figure 6.15 Coupe 97-MH-7374 montrant les variations du Cr#, du Fe#, du Mg#, du Fe<sup>3</sup> Légende: se référer à la figure 5.14.

S

ţ

j

ĩ




#### 6.2 Minéralogie secondaire

### **6.2.1** Serpentine

Dans certains cas, il a été démontré que la composition de la serpentine peut refléter partiellement la composition du silicate primaire remplacé (Hébert et al., 1990; Cantin, 1988; Dungan, 1979; Golightly et al., 1979; Wicks et al., 1979). Ceci explique l'intérêt de caractériser la composition de la serpentine dans les roches du CDM (Tableau 6.4). Généralement les pseudomorphes d'olivine sont nickélifères et appauvris en aluminium et en chrome. Les pseudomorphes d'orthopyroxène montrent des concentrations plus faibles en nickel et un contenu plus élevé en fer, en aluminium et en chrome. Les pseudomorphes de clinopyroxènes montrent un contenu en nickel très faible et des contenus en aluminium et en chrome relativement élevés (Hébert et al., 1990; Dungan, 1979). Les figures 6.16 et 6.17 suggèrent la présence des trois silicates ferromagnésiens communément observés dans les roches ultramafiques soit: l'olivine, l'orthopyroxène et le clinopyroxène. La serpentine, remplaçant l'olivine, présente des textures en maille et/ou en sablier. La serpentine, remplaçant l'orthopyroxène, est constituée de bastite, un type de lizardite, qui préserve très bien le clivage du pyroxène (Figure 6.16). Quant au clinopyroxène, la serpentine qui le remplace est constituée d'une multitude de petits feuillets très finement grenus et se retrouve en position interstitielle aux cumulats d'olivine et d'orthopyroxène. La calcite est associée aux pseudomorphes de Cpx qui a pour effet d'incorporer une partie du calcium initial du silicate. La composition des serpentines suggèrent l'existence d'olivine, d'orthopyroxène et de clinopyroxène avant la serpentinisation complète des roches ultramafiques (Figure 6.17).

|                                | Chr      | <b>Sil</b> | Du à   | chro | На     | zb   | Harzb             | à chro | Lhe    | erz  | Lherz    | à chro | Webs   | it 01 | Filon Sf |
|--------------------------------|----------|------------|--------|------|--------|------|-------------------|--------|--------|------|----------|--------|--------|-------|----------|
| Unité                          | <b>X</b> | 5          | X      | 5    | X      | 5    | x                 | \$     | X      | 8    | <b>x</b> | 5      | X      | 5     | x        |
| <b>SiO</b> 2                   | 42,03    | 1,66       | 43,20  | 0,27 | 42,51  | 0,41 | 42,50             | 1,22   | 42,01  | 1,50 | 42,22    | 1,36   | 42,67  | 0,60  | 46,34    |
| TiO <sub>2</sub>               | 0,01     | 0,01       | 0,01   | 0,00 | 0,01   | 0,01 | 0,02              | 0,01   | 0,03   | 0,01 | 0,01     | 0,01   | 0,02   | 0,01  | 0,00     |
| Al <sub>2</sub> O <sub>3</sub> | 2,06     | 1,26       | 1,20   | 0,01 | 1,31   | 0,43 | 1,98              | 1,45   | 2,35   | 1,61 | 1,54     | 0,62   | 1,36   | 0,35  | 1,30     |
| Cr <sub>2</sub> O <sub>3</sub> | 0,43     | 0,45       | 0,12   | 0,09 | 0,14   | 0,15 | 0,40              | 0,56   | 0,13   | 0,15 | 0,13     | 0,19   | 0,32   | 0,35  | 0,02     |
| MgO                            | 37,31    | 2,18       | 38,40  | 0,51 | 36,57  | 0,55 | 37,66             | 1,58   | 37,81  | 1,74 | 39,81    | 1,46   | 37,94  | 0,40  | 34,36    |
| CaO                            | 0,01     | 0,01       | 0,01   | 0,00 | 0,02   | 0,03 | 0,32              | 1,06   | 0,02   | 0,01 | 0,02     | 0,04   | 0,01   | 0,01  | 0,05     |
| MnO                            | 0,05     | 0,02       | 0,06   | 0,01 | 0,07   | 0,06 | 0,06              | 0,03   | 0,08   | 0,04 | 0,04     | 0,03   | 0,03   | 0,02  | 0,01     |
| FeO                            | 5,53     | 2,13       | 4,68   | 0,14 | 7,36   | 0,36 | 5,10              | 0,90   | 5,27   | 1,91 | 3,35     | 1,78   | 5,13   | 0,19  | 4,81     |
| NIO                            | 0,12     | 0,05       | 0,09   | 0.01 | 0,05   | 0.04 | 0,12              | 0.03   | 0.07   | 0.02 | 0.06     | 0.07   | 0.09   | 0.01  | 0.40     |
| H <sub>1</sub> O               | 12.73    | 0.23       | 12.85  | 0.10 | 12.70  | 0.05 | 12.84             | 0.20   | 12.79  | 0.15 | 12.81    | 0.15   | 12.78  | 0.06  | 12.90    |
| Total:                         | 100,30   |            | 100,63 |      | 100,71 | .,.  | 101,01            |        | 100,56 |      | 99,98    | .,     | 100,36 | .,    | 100,19   |
| Sì                             | 1,98     |            | 2,02   |      | 2,01   |      | 1, <del>9</del> 8 |        | 1,97   |      | 1,98     |        | 2,00   |       | 2,15     |
| Ti                             | 0,00     |            | 0,00   |      | 0,00   |      | 0,00              |        | 0,00   |      | 0,00     |        | 0,00   |       | 0,00     |
| Al                             | 0,11     |            | 0,07   |      | 0,07   |      | 0,11              |        | 0,13   |      | 0,09     |        | 0,08   |       | 0,07     |
| Cr                             | 0,02     |            | 0,00   |      | 0,01   |      | 0,01              |        | 0,00   |      | 0,00     |        | 0,01   |       | 0,00     |
| Mg                             | 2,62     |            | 2,67   |      | 2,57   |      | 2,62              |        | 2,64   |      | 2,78     |        | 2,65   |       | 2,38     |
| Ca                             | 0,00     |            | 0,00   |      | 0,00   |      | 0,02              |        | 0,00   |      | 0,00     |        | 0,00   |       | 0,00     |
| Mn                             | 0,00     |            | 0,00   |      | 0,00   |      | 0,00              |        | 0,00   |      | 0,00     |        | 0,00   |       | 0,00     |
| Fe <sup>2+</sup>               | 0,22     |            | 0,18   |      | 0,29   |      | 0,20              |        | 0,21   |      | 0,13     |        | 0,20   |       | 0,19     |
| Ni                             | 0,00     |            | 0,00   |      | 0,00   |      | 0,00              |        | 0,00   |      | 0,00     |        | 0,00   |       | 0,02     |
| Total                          | 4,96     |            | 4,95   |      | 4,95   |      | 4,95              |        | 4,96   |      | 4,98     |        | 4,95   |       | 4,81     |
| AL IV                          | 0,03     | 0,03       | 0,00   | 0,00 | 0,00   | 0,01 | 0,02              | 0,03   | 0,03   | 0,06 | 0,03     | 0,03   | 0,01   | 0,01  | 0,00     |
| AI VI                          | 0,08     | 0,04       | 0,07   | 0,00 | 0,07   | 0.02 | 0,08              | 0,06   | 0.10   | 0.04 | 0,05     | 0.03   | 0.07   | 0.01  | 0.07     |
| Mg#                            | 92,25    | 3,13       | 93,61  | 0,26 | 89,84  | 0,55 | 92,95             | 1,18   | 92,70  | 2,73 | 95,47    | 2,44   | 92,94  | 0,30  | 92,72    |
| Cr#                            | 10,43    | 7,03       | 6,10   | 4,49 | 6,50   | 6,39 | 9,37              | 5,56   | 3,53   | 2,82 | 5,56     | 7.01   | 11,06  | 8,07  | 1,04     |
| n                              | 1        | 5          |        | 2    |        | •    | 2                 | 8      | . 1    | 3    | 1        | 3      | 1      | 3     | 1        |

2

Tableau 6.4 Composition moyenne de la serpentine pour les différentes unités du CDM.

Formules structurales calculées sur 28 oxygènes

Mg # = Mg / (Mg + Fe<sup>2+</sup>)

Cr # = Cr / (Cr + Al)

n = nombre d'analyses

x = moyenne

s = écart-type

156



Figure 6.16 Serpentines qui remplacent l'olivine, l'orthopyroxène et le clinopyroxène dans une webstérite à olivine (LM-97-MH-7499).



Figure 6.17  $Cr_2O_3$  et  $Al_2O_3$  contenus dans les serpentines dérivées de l'olivine, l'orthopyroxène et le clinopyroxène (Champs tirés de Hébert et al., 1990).

### 6.2.2 Chlorite

Les différents types de chlorites dans les chromitites, les chromitites à silicate, les dunites à chromite, les harzburgites à chromite, les lherzolites à chromite, les péridotites, les harzburgites, les webstérites, les pyroxénites à magnétite et les filonnets de sulfure ont été analysés. D'après la nomenclature de Hey (1954), les chlorites peuvent être regroupées en deux groupes, soit les clinochlores, les penninites et les talc-chlorite font partie du groupe I qui correspond aux chlorites de la ZU; et les shéridanites, les clinochlores (plus ferrifère) et les pinochlorites font partie quant à elles du le groupe II qui correspond aux chlorites n'appartenant pas à la ZU (Figure 6.18 et Tableau 6.5). On note que les compositions des chlorites du groupe II (Mg#<sub>Groupe I</sub> = 89-97) sont beaucoup plus magnésiennes que celles du groupe II (Mg#<sub>Groupe II</sub> = 76-81).

Les diagrammes de covariation (Figure 6.19) entre le magnésium versus l'aluminium et le chrome montrent que le groupe I est constitué de chlorites plus alumineuses et chromifères que celles du groupe II. Cathelineau et Nieva (1985), Bevins et al. (1991) et Turcotte (1999) ont démontré que les rapports  $Fe^{2+}/(Fe^{2+}+Mg^{2+})$  [Mg#] dans les chlorites et la roche encaissante sont directement proportionnelis. La figure 6.19C montre la relation qui existe entre le Mg# des chlorites et le Mg# de la roche encaissante pour le CDM. Cette relation suggère un déséquilibre important entre la composition de la chlorite et celle de la roche encaissante qui pourrait être reliée au remplacement de la serpentine par la chlorite dans les roches du CDM. La composition de la chlorite du CDM est probablement également le reflet de l'altération de la chlorite. La chlorite montre généralement un enrichissement en chrome dépendant de la quantité de chromite contenue dans la roche encaiss-ante et également de la proximité de celle-ci (Figure 6.19B). La chlorite se retrouve plus le fréquemment au pourtour de la chromite.



| ппауот = x<br>үt-тизэ = a               | 9d<br>9          |               |               |               |              |              |        |                                           |               |
|-----------------------------------------|------------------|---------------|---------------|---------------|--------------|--------------|--------|-------------------------------------------|---------------|
| n mombre                                | aesviana'b       |               |               |               |              |              |        |                                           |               |
| Cr#=Cr/                                 | (Cr+A])          |               |               |               |              |              |        |                                           |               |
| is selumion<br>M = # 2M                 | UNG + Boga cen   | 7 JNS 599100  | ο αλθουσα     |               |              |              |        |                                           |               |
| 1                                       | l.               |               | 9             | L.            | ĩ            | T            | 6      | 9                                         |               |
| #=0                                     | -<br>E\$'\$I     | 245           | 73°21         | _<br>د9'9     | 5'64         | 66,39        | 4S.4   | 2,24                                      | 68'9          |
| # <b>2</b> 19                           | <b>**</b> '26    | 98'0          | 62'83         | 69'1          | 16'26        | 92'86        | 2'03   | 16'86                                     | 10'2          |
| IAT                                     | 91'1             | 81,0          | 21'1          | 16,0          | 1+'1         | 17,27        | 82,0   | 61'1                                      | 02'0          |
| AI IV                                   | 89'T             | 0'12          | 1'24          | 4£,0          | 7'20         | ts't         | 06,00  | 8C'T                                      | 96,35         |
| :Intol                                  | 10'0Z            |               | 00'0Z         |               | 50'02        | <b>50'04</b> |        | <b>50,04</b>                              |               |
| н                                       | 00'0             |               | 00'0          |               | 00'0         | 00'0         |        | 00'0                                      |               |
| Δ                                       | το'ο             |               | 00'0          |               | 00'0         | 00'0         |        | 00'0                                      |               |
| К                                       | 00'0             |               | 00'0          |               | 80,0         | 6,03         |        | το'ο                                      |               |
| w.N                                     | 10'0             |               | 10'0          |               | 00'0         | 00'0         |        | το'ο                                      |               |
| TN                                      | <b>ZO</b> 'O     |               | <b>\$0'0</b>  |               | £0'0         | 20'0         |        | το'ο                                      |               |
| وم                                      | 0'3 <del>2</del> |               | <b>44</b> ,0  |               | 42'O         | T2'0         |        | <b>99'0</b>                               |               |
| uN                                      | 00'0             |               | 00'0          |               | 10'0         | το'ο         |        | 00'0                                      |               |
| 20                                      | 00'0             |               | 10'0          |               | 00'0         | <b>20'0</b>  |        | 00'0                                      |               |
| <b>B</b> <sub>M</sub>                   | 90'01            |               | <b>46'6</b>   |               | 69'6         | 84'6         |        | 50'OT                                     |               |
| <b>4</b> 0                              | 64,0             |               | 0'45          |               | 80'0         | 61'0         |        | 51'O                                      |               |
| Π                                       | 2,83             |               | 99'Z          |               | <b>26'</b> 2 | 8L,2         |        | 78,£                                      |               |
| T.                                      | 00'0             |               | 00'0          |               | 00'0         | 00'0         |        | 00'0                                      |               |
| 36                                      | 2E'9             |               | <b>3</b> 4,8  |               | 09'9         | 64'9         |        | 29'9                                      |               |
| fotal:                                  | 6†'66            |               | 99'66         |               | 1+'001       | 66'66        |        | 56,001                                    |               |
| (%) O <sup>z</sup> H                    | 13'99            | 60'0          | 15'95         | 01'0          | 13,70        | 13'64        | C1'0   | e7,51                                     | 90'0          |
| °O <sup>r</sup> A                       | <del>1</del> 0,0 | £0,03         | £0'0          | <b>P</b> 0,04 | 00'0         | <b>20'0</b>  | 6,03   | 10'0                                      | 10'0          |
| O <sup>r</sup> X                        | τ0'0             | 00'0          | το'ο          | 10'0          | 96,0         | £1,0         | 02,0   | 90'0                                      | 90'0          |
| Oran                                    | 20'0             | 10'0          | <b>20'0</b>   | 20'0          | <b>TO'O</b>  | το'ο         | to'o   | <b>20'0</b>                               | 10'0          |
| OIN                                     | 91'0             | 80,0          | 0 <b>`</b> 5¢ | 01'0          | 91'0         | 6,13         | S0'0   | 60'0                                      | 20'0          |
| 0.                                      | <i>L</i> 9'T     | 95'0          | ST,2          | 61'1          | 89Ԡ          | L4'4         | 1'32   | 4ï'4                                      | 8E, I         |
| Qu'                                     | το'ο             | 10'0          | <b>20,0</b>   | 20,02         | <b>†0'0</b>  | £0'0         | 20'0   | <b>20,0</b>                               | 20'0          |
| 0*0                                     | 00'0             | 00'0          | <b>£0'0</b>   | 20 <b>'</b> 0 | το'ο         | 01'0         | 05,0   | <b>20'0</b>                               | 40 <b>'</b> 0 |
| O                                       | 32'95            | 98'0          | 81'SC         | 64'0          | 34,42        | 34,58        | 1'05   | 22'9E                                     | £8,0          |
| °0'10'                                  | 72,E             | 58'1          | <i>LL</i> 'T  | 6 <b>†</b> 'I | 6,63         | 1'5¢         | 98'0   | 18'0                                      | 69'0          |
| го <sup>г</sup> П                       | 89'ZI            | <b>\$6</b> '0 | 88'11         | 5'2           | 60'EI        | 12,43        | 5'25   | 69'11                                     | 78,2          |
| <sup>t</sup> OIJ                        | <b>20,0</b>      | 0'03          | <b>z</b> 0'0  | 20'0          | 20,0         | 0'03         | 20,02  | 10'0                                      | 10'0          |
| (%) <sup>5</sup> 019                    | 96'EE            | 86'0          | <b>66'EE</b>  | 62'1          | 34,40        | 34,21        | 69'I   | 32'11                                     | 68'I          |
| ទំរាំធប                                 | x                | 8             | x             | S             | x            | x            | 8      | x                                         | \$            |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 10               | n,            | лаЭ           | 118           | Du à chro    | Harzh        | й срто | гу та | у суго        |

Tableau 6.5 Composition moyenne de la chlorite pour les différentes unités du CDM.

160

|                                | Périd        | На    | rzb  | Webst          | Px à  | MG   | Filon Sf          |
|--------------------------------|--------------|-------|------|----------------|-------|------|-------------------|
| Unité                          | <u>x</u>     | x     | 8    | x              | ж     | 5    | ж                 |
| <b>510</b> 2 (%)               | 36,84        | 34,03 | 1,07 | 30,50          | 29,11 | 0,67 | 28,00             |
| TiO <sub>2</sub>               | 0,02         | 0,02  | 0,01 | 0,00           | 0,03  | 0,02 | 0,02              |
| Al <sub>2</sub> O <sub>3</sub> | 10,24        | 11,95 | 0,79 | 15 <b>,66</b>  | 18,46 | 1,42 | 19,40             |
| Cr <sub>2</sub> O <sub>3</sub> | 2,43         | 0,10  | 0,01 | 0,43           | 0,10  | 0,04 | 0,02              |
| MgO                            | 33,41        | 32,97 | 0,60 | 26, <b>9</b> 4 | 27,31 | 1,37 | 24,92             |
| CaO                            | 0,01         | 0,02  | 0,01 | 0,02           | 0,01  | 0,01 | 0,01              |
| MnO                            | 0,05         | 0,05  | 0,03 | 0,14           | 0,14  | 0,04 | 0,22              |
| FeO                            | 4,64         | 7,31  | 0,40 | 13,08          | 11,22 | 2,47 | 13,77             |
| NIO                            | 0,07         | 0,09  | 0,01 | 0,21           | 0,06  | 0,05 | 0,22              |
| Na <sub>2</sub> O              | 11.R.        | 0,00  | 0,00 | 0,01           | 0,01  | 0,00 | 0,02              |
| K <sub>2</sub> O               | n.a.         | 0,01  | 0,01 | D.A.           | 0,00  | 0,01 | n.a.              |
| V <sub>2</sub> O <sub>5</sub>  | n.a.         | 0,04  | 0,05 | <b>D.</b> A.   | 0,05  | 0,06 | 11.a.             |
| H <sub>2</sub> O (%)           | 12,72        | 12,40 | 0,16 | 12,05          | 12,11 | 0,09 | 11, <del>94</del> |
| Total:                         | 100,42       | 98,99 |      | 99,02          | 98,61 |      | 98,54             |
| Si                             | 6,95         | 6,58  |      | 6,07           | 5,77  |      | 5,62              |
| Ti                             | 0,00         | 0,00  |      | 0,00           | 0,00  |      | 0,00              |
| Al                             | 2,28         | 2,73  |      | 3,68           | 4,31  |      | 4,59              |
| Cr                             | 0,36         | 0,02  |      | 0,07           | 0,02  |      | 0,00              |
| Mg                             | 9,39         | 9,51  |      | 8,00           | 8,06  |      | 7,46              |
| Ca                             | 0,00         | 0,01  |      | 0,00           | 0,00  |      | 0,00              |
| Mn                             | 0,01         | 0,01  |      | 0,02           | 0,02  |      | 0,04              |
| Fe <sup>2</sup> '              | 0,73         | 1,18  |      | 2,18           | 1,86  |      | 2,31              |
| NI                             | 0,01         | 0,01  |      | 0,03           | 0,01  |      | 0,04              |
| Na                             | <b>n.a</b> . | 0,00  |      | 0,00           | 0,00  |      | 0,01              |
| к                              | n.a.         | 0,00  |      | n.a.           | 0,00  |      | n.a.              |
| v                              | 21.8.        | 0,01  |      | 11.8.          | 0,01  |      | n.a.              |
| н                              | 0,00         | 0,00  |      | 0,00           | 0,00  |      | 0,00              |
| Total:                         | 19,73        | 20,05 |      | 20,06          | 20,07 |      | 20,08             |
| AL IV                          | 1,05         | 1,42  | 0,12 | 1,93           | 2,23  | 0,15 | 2,38              |
| Al VI                          | 1,22         | 1,31  | 0,10 | 1,75           | 2,08  | 0,16 | 2,22              |
| Mg#                            | 92,78        | 88,94 | 0,36 | 78,59          | 81,27 | 4,09 | 76,35             |
| Cr#                            | 13,72        | 0,57  | 0,07 | 1,82           | 0,36  | 0,12 | 0,07              |
| n                              | 1            |       | 2    | 1              |       | 6    | 1                 |

Tableau 6.5 Composition moyenne de la chlorite pour les différentes unités du CDM (suite).

Formules structurales calculées sur 28 oxygènes

 $Mg # = Mg / (Mg + Fe^{4^{+}})$ Cr # = Cr / (Cr + Al)

n = nombre d'analyses

x = moyenne

s = écart-type



Mg # Roche

Figure 6.19 Diagrammes de covariations des éléments majeurs et des rapports du nombre Mg des chlorites et des roches du Complexe de Menarik. (a) MgO versus  $Al_2O_3$ . (b) MgO versus  $Cr_2O_3$ . (c) Mg # de la roche encaissante versus le Mg# de la chlorite. Légende: se référer à la figure 5.2.

### 6.2.3 Amphibole

La figure 6.20 montre les amphiboles du CDM se regroupent, comme les chlorites, en deux groupes. Le groupe I ( $Mg#_{Groupe I} = 95-97$ ) est plus magnésien et plus chromifère comparativement au groupe II ( $Mg#_{Groupe II} = 84$ ) compte tenu que les roches du groupe I sont constituées de roches riches en Ol et chromite. Le groupe I comprend des analyses d'amphiboles provenant de la ZU du CDM tandis le Groupe II provient d'échantillons de roches qui recoupent le CDM.

Les compositions des amphiboles dans les chromitites, les chromitites à silicate, les harzburgites à chromite, les lherzolites et les webstérites sont présentées selon la nomenclature de Leake (1978) (Figure 6.21 et Tableau 6.6). Les amphiboles CDM sont toutes des amphiboles métamorphiques don't la plupart sont de compositions calciques (trémolite, trémolite actinolitique et hornblende actinolitique). Deux d'entre eux sont des amphiboles calco-sodiques (barroisite). Les amphiboles ne sont pas observées dans toutes les lithologies mais reflètent plutôt l'existence de protolites plus riches en pyroxènes.



**Figure 6.20** Graphique de covariation du  $Cr_2O_3$  versus le Mg#. Deux groupes sont définis, un riche en chromite (ZU) et l'autre pauvre en chromite (NZU). Légende : se référer à la figure 5.2.



Figure 6.21 Classification des amphiboles du la Zone Ultramafique du Complexe de Menarik d'après la nomenclature de Leake (1978).

|                                       | CI     | ۱۲   | Chr    | Sil  | Harzb i       | h chro | Lherz | Wel         | bst  |
|---------------------------------------|--------|------|--------|------|---------------|--------|-------|-------------|------|
| Unité                                 | ж      |      | x      | 8    | x             | 8      | x     | x           | 8    |
| <b>SiO</b> <sub>2</sub> (%)           | 59,00  | 0,07 | 58,23  | 1,09 | 57,84         | 0,27   | 46,68 | 54,44       | 2.79 |
| TIO2                                  | 0,02   | 0,02 | 0,08   | 0,24 | 0,03          | 0,02   | 1,58  | 0,01        | 0,02 |
| <b>Al</b> <sub>2</sub> O <sub>3</sub> | 0,10   | 0,04 | 0,73   | 1,44 | 0,59          | 0,15   | 11,50 | 2,75        | 2,62 |
| FeO                                   | 2,10   | 0,15 | 1,63   | 0,56 | 1,64          | 0,13   | 1,38  | 6,76        | 1,17 |
| MnO                                   | 0,08   | 0,02 | 0,01   | 0,02 | 0,06          | 0,02   | 0,11  | 0,22        | 0,09 |
| MgO                                   | 23,33  | 0,26 | 23,80  | 0,53 | 23,93         | 0,26   | 28,05 | 20,20       | 0,94 |
| CaO                                   | 13,45  | 0,08 | 12,75  | 2,67 | 13,23         | 0,08   | 0,46  | 11,48       | 1,46 |
| Na <sub>2</sub> O                     | 0,12   | 0,04 | 0,35   | 0,88 | 0,17          | 0,03   | 5,06  | 0,94        | 0,88 |
| K2O                                   | 0,02   | 0,00 | 0,02   | 0,03 | 0,05          | 0,02   | 0,09  | 0,04        | 0,03 |
| ZnO                                   | 0,01   | 0,01 | 0,01   | 0,01 | 0,03          | 0,04   | 0,03  | n.s.        | n.a. |
| Cr <sub>2</sub> O <sub>3</sub>        | 0,09   | 0,03 | 0,27   | 0,78 | 0,36          | 0,20   | 1,92  | 0,01        | 0,01 |
| NIO                                   | 0,14   | 0,07 | 0,09   | 0,06 | 0,05          | 0,04   | 0,12  | 0,05        | 0,02 |
| H <sub>2</sub> O                      | 2,21   | 0,00 | 2,19   | 0,03 | 2,19          | 0,02   | 2,06  | 2,12        | 0,03 |
| F                                     | 0,00   | 0,00 | 0,07   | 0,08 | 0,02          | 0,04   | 0,24  | 11.a.       | n,a. |
| Cl (%)                                | 0,01   | 0,01 | 0,01   | 0,00 | 0,00          | 0,00   | 0,00  | <b>B.</b>   | n.a. |
| Total                                 | 100,66 |      | 100,20 |      | 100,19        |        | 99,27 | 99,01       |      |
| 81                                    | 8,00   |      | 7,92   |      | 7,88          |        | 6,43  | 7,68        |      |
| Ti                                    | 0,00   |      | 0,01   |      | 0,00          |        | 0,16  | 0,00        |      |
| AI                                    | 0,02   |      | 0,12   |      | 0,09          |        | 1,87  | 0,46        |      |
| Fe                                    | 0,24   |      | 0,19   |      | 0,19          |        | 0,16  | 0,80        |      |
| Mn                                    | 0,01   |      | 0,00   |      | 0,01          |        | 0,01  | 0,03        |      |
| Mg                                    | 4,72   |      | 4,82   |      | 4,86          |        | 5,76  | 4,25        |      |
| Ca                                    | 1,95   |      | 1,86   |      | 1,93          |        | 0,07  | 1,73        |      |
| Na                                    | 0,03   |      | 0,09   |      | 0,05          |        | 1,35  | 0,26        |      |
| K                                     | 0,00   |      | 0,00   |      | 0,01          |        | 0,02  | 0,01        |      |
| Zn                                    | 0,00   |      | 0,00   |      | 0,00          |        | 0,00  | п.а.        |      |
| Cr                                    | 0,01   |      | 0,03   |      | 0,04          |        | 0,21  | 0,00        |      |
| NI                                    | 0,02   |      | 0,01   |      | 0,01          |        | 0,01  | 0,01        |      |
| F                                     | 0,00   |      | -0,03  |      | -0,01         |        | -0,10 | 11.a.       |      |
| CI                                    | 0,00   |      | 0,00   |      | 0,00          |        | 0,00  | <b>R.a.</b> |      |
| Total                                 | 15,00  |      | 15,04  |      | 15, <b>06</b> |        | 15,95 | 15,22       |      |
| A1 IV                                 | 0,00   | 0,00 | 0,08   | 0,16 | 0,12          | 0,03   | 1,57  | 0,32        | 0,30 |
| AL VI                                 | 0,01   | 0,01 | 0,04   | 0,07 | 0,00          | 0,00   | 0,30  | 0,14        | 0,14 |
| (Ca+Na) <sub>B</sub>                  | 1,99   | 0,01 | 1,94   | 0,16 | 1,98          | 0,01   | 1,42  | 1,95        | 0,05 |
| Na <sub>D</sub>                       | 0,03   | 0,01 | 0,08   | 0,23 | 0,04          | 0,01   | 1,35  | 0,22        | 0,20 |
| (Na+K) <sub>A</sub>                   | 0,00   | 0,00 | 0,01   | 0,02 | 0,01          | 0,01   | 0,02  | 0,05        | 0,06 |
| Mg#                                   | 0,95   | 0,00 | 0,96   | 0,01 | 0,96          | 0,00   | 0,97  | 0,84        | 0,03 |
| <u>n</u>                              |        | ŧ    | 1      | .2   | 1             | 9      | 1     |             | 4    |

Tableau 6.6 Composition moyenne de l'amphibole pour les différentes unités du CDM

Formules structurales calculées sur 23 oxygènes n = nombre d'analyses s = écart-type Mg # = Mg / (Mg + Fe<sup>2+</sup>) x =moyenne

#### 6.2.4 Carbonate

La composition des carbonates projetés dans un diagramme ternaire Ca-Fe-Mg indique la présence de trois types de carbonates (magnésite, dolomite, calcite) (Figure 6.22 et Tableau 6.7). Dans le Menarik, on retrouve ces minéraux sous la forme de veinules ou remplacement des minéraux cumulats et interstitiels. La composition des différents carbonates est dépendante de la position dans laquelle on les retrouve (veinules/« cumulats »/interstitiels). La dolomite, la calcite et la magnésite sont tous présentes dans les veinules de carbonates. Cependant, seule la dolomite est observée en remplacement des cumulats. Ceci s'explique par la composition des cumulats qui sont toujours de l'olivine ou de l'orthopyroxène, des silicates riches en fer et magnésium. Les carbonates interstitiels sont la calcite et la dolomite. Les minéraux primaires interstitiels observés sont généralement le clinopyroxène et l'orthopyroxène d'où la présence de ce type de carbonates. La précipitation de la calcite permet l'incorporation du calcium libéré lors du remplacement du clinopyroxène par la chlorite d'autant plus que la serpentine est instable à de forte activité de CO<sub>2</sub>.



**Figure 6.22** Composition des carbonates projetés dans un diagramme ternaire Ca-Fe-Mg. Ce diagramme indique trois types de carbonates (la magnésite, la dolomite et la calcite).

| <u></u> | Dolo  | mite     | Calc   | ite  | Magne | ésite |
|---------|-------|----------|--------|------|-------|-------|
| -       | x     | <b>S</b> | X      | S    | x     | S     |
| Mg(CO3) | 42,04 | 1,986    | 0,99   | 0,51 | 87,91 | 0,63  |
| Ca(CO3) | 52,82 | 1,689    | 99,76  | 1.10 | 0,29  | 0,03  |
| Mn(CO3) | 0,61  | 0,367    | 0,11   | 0,06 | 0,63  | 0,84  |
| Fe(CO3) | 3,28  | 1,069    | 0.16   | 0,11 | 10,99 | 0,77  |
| Sr(CO3) | 0,09  | 0,054    | 0,10   | 0,06 | 0,02  | 0,00  |
| Total   | 98,82 |          | 101,12 |      | 99,84 |       |
| Mg(CO3) | 0,94  |          | 0,02   |      | 1,82  |       |
| Ca(CO3) | 0,99  |          | 1,97   |      | 0,01  |       |
| Mn(CO3) | 0,01  |          | 0,00   |      | 0,01  |       |
| Fe(CO3) | 0,05  |          | 0,00   |      | 0,17  |       |
| Sr(CO3) | 0,00  |          | 0.00   |      | 0,00  |       |
| Total   | 2,00  |          | 2,00   |      | 2,00  |       |
| N       | 7     |          | 4      |      | 3     |       |

 Tableau 6.7 Composition moyenne des carbonates du Menarik

### 6.3 Géothermobarométrie

Compte tenu de la nature des minéraux primaires et métamorphiques contenus dans les roches du Complexe de Menarik, seulement quelques approximations géothermobarométriques peuvent être effectuées à partir de la composition du clinopyroxène, de la chromite et de la chlorite.

### 6.3.1 Pyroxène

Les pétrologues s'entendent pour reconnaître le potentiel de la coexistence de deux types de pyroxène (Cpx : contenu élevé en calcium et Opx : faible contenu en calcium) permettant d'obtenir des renseignements sur les conditions thermométriques dans une grande variété de roches (Lindsley, 1983). Il en découle que la température calculée sera une température minimale d'équilibre.

Le géothermomètre de Lindsley (1983) calibré pour une pression de 5 kbar a été utilisé. Aucune phase minéralogique ne nous permet de définir une pression, de sorte qu'on doit utiliser des considérations géologiques régionales. Les travaux effectués dans la région du lac Menarik suggèrent que les roches sédimentaires et volcaniques du Groupe de Yasinski se sont mises en place dans un environnement de rift continental immature ce qui implique la mise en place du Menarik à faible profondeur (Goutier et al., 1998b, 2000 ; Laflèche et al., 2000). La composition des pyroxènes est projetée sur l'abaque de Lindsley (1983) (Figure 6.23). Les températures estimées pour les diopsides varient ~500 à 700°C, ce qui suggèrent des températures de rééquilibration métamorphique. L'enrichissement en calcium du Cpx souligne également une rééquilibration sub-solidus ou une altération par des processus métamorphiques (Lindsley, 1983 ; Jaques, 1981). La température estimée pour l'augite est ~1200°C suggérant une température magmatique.



Figure 6.23 Thermométrie des pyroxènes à 5 kilobars selon Lindsley (1983)

### 6.3.2 Chromite

Sous des conditions de métamorphisme de faible intensité, la chromite peut être utilisée comme indicateur de l'environnement de cristallisation (Barnes, 1998). Cependant, la chromite est susceptible de subir des modifications durant l'hydratation précoce et pendant le métamorphisme prograde de la roche encaissante. La coexistence de la chromite avec la magnétite peut être considérée comme un bon indicateur de la température du pic métamorphique (Barnes, 2000). En effet, le développement de cœurs de chromite enrichis en Fe<sup>3+</sup> est causé par la diminution de la zone d'immiscibilité entre la chromite et la magnétite, en équilibre avec olivine, avec l'augmentation de la température (Sack et Ghiorso, 1991). La figure 6.24 montre les champs de stabilité de la chromite et de la magnétite en équilibre avec l'olivine Fo<sub>80</sub> et Fo<sub>90</sub>. Ces diagrammes de phases vont être employés étant donné que la composition de l'olivine du CDM semble correspondre à des valeurs de (F0<sub>81</sub>) pour cette étude et entre (F0<sub>84</sub> et F0<sub>90</sub>) d'après Rivard (1984). Les données provenant de deux traverses de grains de chromite analysées à la microsonde électronique sont comparées avec les isothermes modélisés dans les diagrammes ternaire Fe<sup>3+</sup>-Cr-Al. Pour le CDM, la zone d'immiscibilité correspond, d'après le modèle de Sack et Ghiorso (1991), à des températures avoisinantes les 500 et 550°C (quelques points tombent à l'extérieur de ces isothermes, ceux-ci correspondent à des bordures intermédiaires) (Figure 6.25). L'intervalle de températures d'équilibration des spinelles dans les roches du CDM est similaire aux températures suggérées par des assemblages métamorphiques observés.



**Figure 6.24** Limites de stabilité, d'après Sack et Ghiorso (1991), pour la chromite et la magnétite du Complexe de Menarik obtenues à partir de traverse de grain à la microsonde électronique. (A) Calculé en équilibre avec une composition d'olivine  $Fo_{80}$ . (B) Calculé en équilibre avec une composition d'olivine  $Fo_{90}$ .

#### 6.3.3 Chlorite

La chlorite est un des silicates les plus communs dans plusieurs environnements géodynamiques où les conditions thermobarométriques sont faibles à modérées (Cathelineau et Nieva, 1985). En projetant les valeurs de Al <sup>IV</sup> des chlorites analysées dans les différents faciès du CDM (Figure 6.25) sur l'abaque de Cathelineau et al. (1985) calibré pour des roches volcaniques intermédiaires (andésites), il a été possible d'estimer la température de formation des différentes chlorites. Il est de plus possible de distinguer deux groupes de températures. Le groupe I, où les chlorites appartiennent toutes à des roches provenant de la ZU, montre des températures variant de 150°C à 260°C comparativement à des températures entre 220°C à 275°C pour les chlorites qui ne proviennent pas de la ZU (chlorites des filonnets de sulfures et de dykes pyroxénitiques qui recoupent la ZU). Il est à noter que certaines températures obtenues sont inférieures à 150°C (entre 90°C et 120°C), mais ces chlorites sont certainement un mélange de chlorite et de serpentine.



**Figure 6.25** Thermométrie des chlorites qui utilise la variation Al IV dans les chlorites d'après Cathelineau et Nieva (1985).

# 6.4 Sulfures

Les roches du Complexe de Menarik contiennent de la chalcopyrite (Tableau 6.8), de la pyrite (Tableau 6.8), de la pyrrhotite, de la pentlandite (Tableau 6.9), de la millérite (Tableau 6.9),, de la cobaltite (Tableau 6.10), de la gersdorffite (Tableau 6.10), et des arséniures.

| Minéral<br>Formule |                   | Chaice<br>Cul |       | Pyrite<br>FeS2 |                      |      |  |
|--------------------|-------------------|---------------|-------|----------------|----------------------|------|--|
| Lithologie         | <u>Filonets</u> d | le sulfures   | Chron | nitite         | Filonets de sulfures |      |  |
|                    | x                 | S             | x     | s              | x                    | s    |  |
| s                  | 34,81             | 0,12          | 34,98 | 0,06           | 53,47                | 0,25 |  |
| Fe                 | 30,42             | 0,16          | 30,47 | 0,12           | 44,71                | 0,87 |  |
| Ni                 | 0,04              | 0,04          | 0,04  | 0,03           | 0,26                 | 0,27 |  |
| Cu                 | 33,64             | 0,27          | 34,25 | 0,18           | 0,06                 | 0,06 |  |
| Co                 | 0,00              | 0,00          | 0,00  | 0,00           | 1,35                 | 0,84 |  |
| As                 | 0,03              | 0,01          | 0,03  | 0,01           | 0,09                 | 0,15 |  |
| Total              | 98,94             | -             | 99,77 | -              | 99,94                | -    |  |
| n                  | 10                |               | e     | 5              | 10                   |      |  |

**Tableau 6.8**Composition moyenne des sulfures de fer et de cuivre en %.

n: Nombre d'analyses

| <b>Tableau 6.9</b> ( | Composition | moyenne | des sulfures | de nickel | en %. |
|----------------------|-------------|---------|--------------|-----------|-------|
|----------------------|-------------|---------|--------------|-----------|-------|

| Minéral    |                   | Mille       | érite |               | Pentlandite          |      |  |  |
|------------|-------------------|-------------|-------|---------------|----------------------|------|--|--|
| Formule    |                   | N           | iS    |               | (Ni, Fe)9S8          |      |  |  |
| Lithologie | <u>Filonets d</u> | le sulfures | Chron | <u>nitite</u> | Filonets de sulfures |      |  |  |
|            | x                 | S           | x     | S             | x                    | s    |  |  |
| s          | 35,39             | 0,20        | 35,51 | 0,45          | 33,26                | 0,08 |  |  |
| Fe         | 1,34              | 0,09        | 0,76  | 0,45          | 27,24                | 2,70 |  |  |
| Ni         | 61,90             | 0,27        | 63,06 | 0,98          | 38,91                | 2,48 |  |  |
| Cu         | 0,00              | 0,00        | 0,00  | 0,00          | 0,05                 | 0,07 |  |  |
| Со         | 0,52              | 0,04        | 0,56  | 0,09          | 0,24                 | 0,31 |  |  |
| As         | 0,02              | 0,01        | 0,01  | 0,01          | 0,03                 | 0,01 |  |  |
| Total      | 99,17             | -           | 99,90 | -             | 99,73                | -    |  |  |
| п          | 5                 | 5           | e     | <b>j</b>      | 1                    | 0    |  |  |

n: Nombre d'analyses

| Minéral    |       | Cobaltite- | Gersdorflite |               | Nick  | eline  |
|------------|-------|------------|--------------|---------------|-------|--------|
| Formule    | CoAsS | [(Co, Ni   | , Fe) AsS]   | NiAss         | NiAs  |        |
| Lithologie | Chron | nitite     | Chron        | <u>nitite</u> | Chron | nitite |
|            | x     | S          | x            | S             | x     | s      |
| S          | 20,06 | 0,10       | 19,97        | 0,55          | 0,30  | 0,08   |
| Fe         | 3,41  | 0,71       | 3,49         | 1,00          | 0,73  | 0,23   |
| Ni         | 8,17  | 0,98       | 14,45        | 1,18          | 43,33 | 0,32   |
| Cu         | 0,01  | 0,02       | 0,04         | 0,07          | 0,00  | 0,00   |
| Co         | 23,16 | 1,74       | 18,09        | 1,51          | 0,01  | 0,02   |
| As         | 44,71 | 0,21       | 44,91        | 0,89          | 55,09 | 0,23   |
| Total      | 99,52 | -          | 100,95       | -             | 99,46 | -      |
| n          | 1:    | 2          | 12           | 2             | 10    | 0      |

Tableau 6.10 Composition moyenne des sulfoarséniures et arséniures en %.

n : Nombre d'analyses

La figure 6.27A montre un exemple de sulfures de nickel observé dans le CDM. Le grain de pentlandite est zoné où le cœur est plus riche en nickel que la bordure du grain. L'ilménite et le rutile enrobent le grain de sulfure de nickel.

La composition des sulfures est similaire peu importe si les sulfures sont associés aux filonnets de sulfures ou aux chromitites. Il semble toutefois ressortir que le contenu en cuivre de la chalcopyrite et le contenu en nickel de la millérite sont légèrement enrichis dans les roches riches en chromites par rapport aux roches hydrothermales (filonets).

# 6.5 Éléments du groupe du platine

Les éléments du groupe du platine peuvent se retrouver sous la forme de minéraux du groupe du platine (MGP) ou sous la forme d'une solution solide dans des minéraux comme les sulfures, les arséniures et les tellures. Il existe 96 espèces de MGP approuvées et plus de 500 phases d'éléments du groupe du platine nonidentifiées. On doit ajouter aux MGP, plus de 20 des minéraux autres que les MGP qui contiennent en concentration variable un à plusieurs éléments du groupe du platine (Daltry et Wilson, 1997).

# 6.5.1 Minéraux du groupe du platine (MGP)

Les minéraux du groupe du platine peuvent être divisés en deux groupes : les espèces minérales nommées comme étant des minéraux du groupe du platine (MGP) lesquels sont approuvés par le International Mineralogical Association et les espèces non-identifiées de MGP dont la caractérisation est incomplète.

Dans les minéraux du groupe du platine, les ÉGP s'associent au fer, au cuivre et au nickel pour former des alliages ou encore des oxydes. Les alliages peuvent être simples (isoferroplatine Pt<sub>3</sub>Fe; tétraferroplatine PtFe; alliage Cu-Pt) ou très complexes comme des alliages de Cu-Ni-Fe-Pt-Pd, Pt-Pd-Cu-Fe et Ni-Cu-Fe-Ir. En général, les alliages d'ÉGP incorporent préférentiellement le palladium et le platine plutôt que les autres platinoïdes. Parmi les oxydes, le minéral le plus intéressant pour la concentration des ÉGP est certainement la chromite. Le rôle de la chromite comme concentrateur de ÉGP dépend de la fugacité en soufre dans le magma à partir duquel ils cristallisent (Crocket et al., 1976). Dans certains cas où le magma est pauvre en soufre, le spinelle chromifère peut incorporer certains ÉGP dont le Ru, l'Os et l'Ir. Cependant, lorsque le magma atteint la saturation en soufre, le coefficient de partage très élevé des ÉGP dans la phase sulfurée devient un facteur prédominant qui contrôle la distribution des platinoïdes (Amossé et al., 1987, 1990, 1992 ; Ohnenstetter et al., 1992 ; Leblanc 1992). Le partage préférentiel de Pt et Pd dans les sulfures comparativement aux spinelles implique que le spinelle est un collecteur dominant seulement dans des magmas pauvres en sulfures (Crocket et al., 1976). De plus, le rôle de la chromite comme collecteur des ÉGP n'est pas très bien expliqué. Certains auteurs proposent que les platinoïdes peuvent se substituer dans la structure cristalline de la chromite (Naldrett et al., 1976) ou de petites particules de platinoïdes (laurite ou alliage métallique) pourraient servir de nucléus pour la formation de la chromite (Stockman et al., 1984). Certains MGP montrent des ressemblances minéralogiques avec plusieurs autres minéraux au niveau de leur structure cristalline et de leur chimie minérale. D'autres forment des solutions solides en remplaçant certains platinoïdes. Par ailleurs, Daltry et al. (1997) suggèrent le regroupement suivant pour les MGP ayant des affinités avec les autres minéraux (Tableau 6.11).

| - Groupe de l'arsénopyrite : | Osariste [(Os,Ru,)AsS], ruarsite [(Ru,Os,Ir)AsS]                                                                                   |  |  |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| - Groupe de la nickeline :   | Niggliite [(Pt,Pd)(Sn,Sb,Bi,Te)], sobolevskite [(PdBi)],                                                                           |  |  |  |  |  |  |
|                              | stumpflite [ <b>Pt(Sb,</b> Bi)], sudburyite [( <b>Pd,</b> Ni)( <b>Sb,</b> Te,Bi)]                                                  |  |  |  |  |  |  |
| - Groupe de la pyrite :      | Erlichmanite [(Os,Rh,)(S,As) <sub>2</sub> ], geversite [Pt(Sb,As,Bi) <sub>2</sub> ],                                               |  |  |  |  |  |  |
|                              | insizwaite [(Pt,Pd,Ni)(Bi,Te,Sb,Sn) <sub>2</sub> ], laurite [(Ru,Os,Ir)S <sub>2</sub> ],                                           |  |  |  |  |  |  |
|                              | maslovite [( <b>Pt</b> ,Pd)( <b>Bi</b> , <b>Te</b> ,Sb) <sub>2</sub> ], michenerite [( <b>Pd</b> ,Pt)( <b>Bi</b> ,Se) <b>Te</b> ], |  |  |  |  |  |  |
|                              | sperrylite [( <b>Pt</b> ,Rh)( <b>As</b> ,Sb,S) <sub>2</sub> ], testibiopalladite [ <b>Pd</b> ( <b>Sb</b> ,Bi) <b>Te</b> ]          |  |  |  |  |  |  |
| - Groupe de la melonite :    | Merenskyite [( <b>Pd</b> ,Pt,Ni)( <b>Te</b> ,Bi) <sub>2</sub> ], moncheite [( <b>Pt</b> ,Pd)( <b>Te</b> ,Bi) <sub>2</sub> ]        |  |  |  |  |  |  |
| - Groupe de la cobaltite :   | Hollingworthite [{ <b>Rh</b> ,Ru,Pt,Ir) <b>AsS</b> ], platarsite [( <b>Pt</b> ,Rh,) <b>AsS</b> ],                                  |  |  |  |  |  |  |
|                              | irarsite [(Ir,Rh,Pt,Ru,Pd)AsS], tolovkite [(Ir,Pt,Os)AsS ?]                                                                        |  |  |  |  |  |  |

# Tableau 6.11 Principaux minéraux du groupe du platine

**Gras** : formule idéale Standard : formule générale

Le tableau 6.12 montre la composition, le type de MGP, la fréquence ainsi que leurs associations avec la roche encaissante du Complexe de Menarik.

| Composition                                                                                       | Minéral                                      | Ass         | ociati    | ion        | NЬ |
|---------------------------------------------------------------------------------------------------|----------------------------------------------|-------------|-----------|------------|----|
|                                                                                                   |                                              | <u>Chro</u> | <u>Sf</u> | <u>Mat</u> |    |
| (Ru <sub>0,88</sub> Os <sub>0,12</sub> ) S <sub>2,03</sub>                                        | Laurite,(Ru, Os) S <sub>2</sub>              | x           |           |            | 3  |
| Pt1,04 As1,96                                                                                     | Sperrylite, PtAs <sub>2</sub>                |             |           | x          | 2  |
| (Pd <sub>0,92</sub> Ni <sub>0,17</sub> ) Sb <sub>0,90</sub>                                       | Sudburyite, (Pd, Ni) Sb                      |             | х         | х          | 3  |
| Pd <sub>1,11</sub> (Sb <sub>0,60</sub> Bi <sub>0,17</sub> S <sub>0,13</sub> )                     | Sudburyite ( ?), Pd (Sb, Bi, S)              |             |           | х          | 1  |
| Pd <sub>0,82-0,99</sub> (Sb <sub>0,58-0,73</sub> Te <sub>0,2-0,44</sub> Bi <sub>0,12-0,16</sub> ) | Sudburyite, Pd (Sb, Te, Bi)                  |             | х         | x          | 3  |
| Pd <sub>0,94-0,99</sub> (Bi <sub>0,7-0,77</sub> Sb <sub>0,21-0,28</sub> ) Te <sub>1,03-1,08</sub> | Testibiopalladite, Pd (Bi, Sb)Te             |             | х         | х          | 2  |
| (Pt <sub>0,88</sub> Pd <sub>0,21</sub> ) As <sub>2,91</sub> ( ?)                                  | Pt As <sub>3</sub> ( ?)                      |             |           | х          | 1  |
| (Pt <sub>1,43</sub> Pd <sub>0,24</sub> ) As <sub>3,34</sub> S <sub>0,99</sub> ( ?)                | (Pt, Pd) <sub>2</sub> As <sub>3</sub> S ( ?) |             |           | х          | 1  |
| $Pd_{1,95}$ (Fe <sub>1,04</sub> Ni <sub>0,06</sub> ) (Sb <sub>0,82</sub> S <sub>0,13</sub> ) ( ?) | Pd <sub>2</sub> (Ni, Fe) (Sb, S) (?)         |             |           | х          | 2  |
| Total des MGP                                                                                     |                                              |             |           |            | 18 |

Tableau 6.12 Composition des MGP retrouvés dans le Complexe de Menarik.

Nb : nombre de MGP observés Chro : inclusion dans la chromite Sf : inclusion dans les sulfures Mat : en association avec la matrice silicatée

Dans les roches UM du CDM, les MGP sont observés en association avec la chromite, avec la gangue silicatée (serpentine, chlorite et carbonates) et avec des sulfures. Il existe deux types de minéraux du groupe du platine en association avec la chromite. Le premier consiste en des inclusions de MGP dans la chromite (Figures 6.27B-C). La laurite (2-3 µm) est le seul minéral de MGP observé en inclusion cubique dans le spinelle. Le deuxième groupe est observé dans les roches riches en chromite où les MGP, principalement la sudburyite (3-4 µm) sont associés à la serpentine et la chlorite (Figures 6.27D-E). Dans les chromitites, à proximité des minéraux platinifères, on note toujours la présence de sulfures de nickel (pentlandite et millérite). L'association avec la gangue silicatée est également observée dans les filonets de sulfures. La figure 6.27F montre un grain de Pd<sub>2</sub>(Ni,Fe)(Sb,S), un MGP non-identifié, associé avec des carbonates, des grains de pentlandite et de la magnétite zonés dans les filonets de sulfures. Les phases riches en palladium sont les plus abondantes bien que les phases riches en platine ont aussi été identifiées (4 à 5 µm). La figure 6.27G présente la sperrylite, un des minéraux riches en platine identifié qui est associé à la serpentine d'une chromitite à silicate. La figure 6.27H illustre deux MGP, une phase riche en platine par rapport au palladium tandis que l'autre phase contient uniquement du palladium. Les MGP forment des inclusions en association avec les sulfures de nickel dans les filonets de sulfures ou les chromitites. Les grains MGP se présentent sous forme de petites gouttelettes (~1µm) (Figure 6.27I) ou encore sous forme de cristaux hypidiomorphes (Figure 6.27J) de quelques micromètres dans la millérite.

Les minéraux du groupe du platine observés sont généralement de très petites dimensions qui n'excèdent pas 10  $\mu$ m (en moyenne 3 à 5  $\mu$ m). Dans le CDM, le palladium prédomine sur le platine qui forme généralement des assemblages de Sb-Te-Bi-As. Ces MGP sont observés aussi bien dans de la ZU (chromitite, chromitite à silicate) que dans les filonets de sulfures. Par contre, les MGP associés avec des IPGE (Ir, Os, Rh) sont confinés aux roches chromifères.





Figure 6.26 Images au MEB (électrons rétrodiffusés) de sulfures et de minéraux du groupe du platine du Complexe de Menarik. (A) Grain de pentlandite zoné où le coeur (pent 1) est plus riche en nickel que la bordure (pent 2). L'ilménite (il) et le rutile (ru) enrobent le grain de sulfure de nickel. (B) Grain de laurite ((Ru, Os) S<sub>2</sub>) en inclusion dans une chromite zonée. (C) Agrandissement de (B). (D) Sudburyite (PdSb) associé à la gangue silicatée dans une chromitite à silicate à proximité de la pentlandite. (E) Agrandissement de (D). (F) MGP inconnu (Pd<sub>2</sub>(Ni, Fe) (Sb, S)) associé à des carbonates zonés (Cb), à de la pentlandite (Pent) et de la magnétite (MG) dans les filonnets de sulfures. (G) Sperrylite (PtAs<sub>2</sub>) associé à la gangue silicatée. (H) MGP associé à la gangue silicatée contenant deux phases d'ÉGP, une phase riche en platine ((Pt, Pd) As) et une phase riche en palladium (PdSbS). (I) Sudbyryite ((Pd,Ni)Sb) en inclusion dans la millérite (Mi) associée à la chalcopyrite (Cpy) et à la chlorite (Chl). (J) Inclusion de testibiopalladinite (Pd(Bi, Sb)Te) et de (Po) pyrrhotite dans la millérite (Mi). Celle-ci est associée à la serpentine et la chlorite (silicates).

# 6.5.2 Présence d'ÉGP dans les autres minéraux

Les ÉGP peuvent se substituer dans des sulfures, des arséniures, des sufoarséniures, des antimoniures, sulfoantimoniures, des tellures et des séléniures (Tableau 6.13). Les minéraux nickélifères sont les plus souvent l'hôte d'un remplacement par des ÉGP.

**Tableau 6.13** Minéraux ou éléments dans lesquels les platinoïdes peuvent s'incorporer dans leurs structures cristallines (modifié de Daltry et Wilson, 1997).

```
- Éléments
                  Or (Au), cuivre (Cu), rhénium (Re)
         - Sulfures
                  Bornite
                              (Cu_5FeS_4),
                                               chalcopyrite
                                                                 (CuFeS<sub>2</sub>),
cubanite
                  (CuFe<sub>2</sub>S<sub>3</sub>), pentlandite ([Fe,Ni]<sub>9</sub>S<sub>8</sub>), pyrite (FeS<sub>2</sub>),
                  pyrrhotite (Fe<sub>1-x</sub>S)
         - Arséniures/sulfoarséniures
                 Cobaltite
                                 (CoAsS),
                                                gersdorffite
                                                                  (NiAsS)),
maucherite
                 (Ni_{11}As_8), nickeline (NiAs),
                                                         rammelsbergite
(NiAs<sub>2</sub>)
         - Antimoniures/sulfoantimoniures
                 Breithauptite (NiSb), ullmanite (NiSbS)
         - Tellures
                 Altaite (PbTe), hessite (Ag<sub>2</sub>Te), melonite (NiTe<sub>2</sub>)
         - Seleniures
                 Trogtalite (CoSe<sub>2</sub>), teimannite (HgSe)
```

Les concentrations en platinoïdes dans les phases métalliques du Complexe de Menarik ne sont pas très importantes. Il en ressort tout de même que les minéraux les plus propices pour incorporer les éléments du groupe du platine sont certainement les sulfoarséniures de Co-Ni pour le palladium et les arséniures de nickel pour le platine (Tableau 6.14).

| Minéral                               | LDM (ppm) | Pd (ppm)    | Référence                        |
|---------------------------------------|-----------|-------------|----------------------------------|
|                                       | ······    | Iridium     |                                  |
| Pyrite-Pyrrhotite                     | 114       | 190         | Ce travail (CDM)                 |
| Chalcopyrite                          | 70        | 220         | Ce travail (CDM)                 |
| Millérite                             | 133       | 190         | Ce travail (CDM)                 |
|                                       |           | Osmium      |                                  |
| Pyrite-Pyrrhotite                     | 77        | 150         | Ce travail (CDM)                 |
| Chalcopyrite                          | 91        | 100         | Ce travail (CDM)                 |
| Millérite                             | 95        | 180         | Ce travail (CDM)                 |
|                                       |           | Palladium   |                                  |
| Pyrite-Pyrrhotite                     | 125       | 460         | Ce travail (CDM)                 |
|                                       | -         | 6100        | Stone et Fleet (1990)            |
| Cobaltite-Gersdorffite (1)            | 217       | <b>5880</b> | Ce travail (CDM)                 |
|                                       | -         | 5000        | Cabri et Laflamme (1976)         |
| Cobaltite-Gersdorffite <sup>(2)</sup> | 217       | 1400        | Ce travail (CDM)                 |
|                                       | -         | 1600        | Cabri et Laflamme (1976)         |
|                                       |           | Platine     |                                  |
| Pyrite-Pyrrhotite                     | 108       | 160         | Ce travail (CDM)                 |
|                                       | -         | 5200        | Stone et Fleet (1990)            |
| Chalcopyrite                          | 136       | 140         | Ce travail (CDM)                 |
| Nickeline                             | 105       | 290         | Ce travail (CDM)                 |
|                                       | -         | 5100        | Watkinson et Ohnenstetter (1992) |
|                                       |           | Rhodium     |                                  |
| Pyrite-Pyrrhotite                     | 34        | 260         | Ce travail (CDM)                 |
| Chalcopyrite                          | 43        | 320         | Ce travail (CDM)                 |
| Millérite                             | 53        | 56          | Ce travail (CDM)                 |

Tableau 6.14 Concentration maximale (ppm) en éléments du groupe du platine dans les sulfures du Complexe de Menarik et autres complexes (dans les non-MGP).

200 : teneur significative > 2 x LDM

<sup>(1)</sup>**Cobaltite**-Gersdorffite, pôle enrichi en cobalt <sup>(2)</sup>Cobaltite-Gersdorffite, pôle enrichi en nickel

Dans les sulfures de Ni et de Fe-Cu, les concentrations en ÉGP sont très faibles. Aucune teneur n'a pu être détectée dans les sulfures des filonets S-1 et S-22. Cependant, des teneurs jusqu'à 460 ppm ont été mesurées dans ces sulfures lorsqu'ils forment des inclusions dans la chromite. La présence d'inclusions de sulfures n'indique pas nécessairement que les chromites sont porteuses d'inclusions sulfurées platinifères. Par contre, la morphologie de la chromite peut être un bon indicateur de la présence de ÉGP. Par exemple, les phases sulfurées contenues dans la chromite ne présentent aucune concentration anomale en platinoïde lorsque celleci est spongieuse ou présente de nombreuses fractures ou d'inclusions silicatées permettant la circulation de fluide tandis que les chromites les moins affectées par l'altération et le métamorphisme montrent localement des teneurs en ÉGP dans les sulfures piégés dans le spinelle.

### 6.6 Synthèse

Le Complexe de Menarik est une intrusion mafique et ultramafique où le clinopyroxène et la chromite sont les seuls minéraux magmatiques préservés. D'après la paragenèse serpentine-chlorite-trémolite-ferritchromite, la minéralogie secondaire de l'intrusion est le reflet d'un métamorphisme au faciès des schistes verts supérieurs. Cette paragenèse est également compatible avec les données géothermométriques qui suggèrent un pic métamorphique entre 500-550°C.

Cet équilibre est dépendant de la température. La décroissance de la température entraîne un enrichissement en Mg de l'olivine et un enrichissement en Fe du spinelle (Irvine, 1965; Jackson, 1966; Roeder et al., 1979). La seconde conséquence est la transformation de la chromite en ferritchromite résultant du remplacement de l'Al par le fer ferrique dans le site trivalent inoccupé dû à la migration de Al vers les silicates. L'Al de la chromite est incorporé dans la serpentine formant ainsi des serpentines alumineuses et, par le fait même, favorisant le développement de la chlorite au pourtour de la chromite au détriment de la serpentine.

Bien que la chromite du Complexe de Menarik ait subi des modifications lors de l'altération et du métamorphisme, elle possède souvent des zones centrales qui reflètent sa composition ignée originale. Une des principales conséquences majeures du processus d'altération est l'échange Mg-Fe<sup>2+</sup> entre la chromite et l'olivine d'après la réaction suivante :

$$Mg_{spinelle} + Fe^{2+}_{olivine} = Mg_{olivine} + Fe^{2+}_{spinelle}$$

La composition des coeurs de la chromite est relativement homogène à travers toute l'intrusion du CDM. Elle se projette dans le champ de composition typique des intrusions litées et près de celui des komatiites (Cr# légèrement inférieur à celui des komatiites). Des variations cryptiques du Cr#, du Fe<sup>3+</sup>#, du Mg#, du Fe<sup>3+</sup>/Fe<sup>2+</sup>, du Cr/Fe, du Cr<sub>2</sub>O<sub>3</sub> et également du TiO<sub>2</sub> sont observées sur quelques sections détaillées. Ces variations dans la composition de la chromite sont intimement liées à la présence d'horizons enrichis en chromite, soit les chromitites et les chromitites à silicate.

D'après les observations effectuées, les éléments du groupe du platine se retrouvent essentiellement dans les minéraux du groupe du platine (MGP) et dans les arséniures et sulfoarséniures. Le Complexe de Menarik contenait initialement des concentrations anomales en ÉGP d'origine magmatique suggéré par la présence d'inclusions de MGP et par la présence de teneurs anomales en platinoïdes de certaines phases sulfurées en inclusion dans la chromite. Une mobilisation des ÉGP à basse température est également suggérée par la présence d'assemblages de Sb-Te-Bi-As. Selon nos observations les sulfoarséniures sont les phases sulfurées les plus susceptibles d'incorporer des platinoïdes.

# **CHAPITRE VII – DISCUSSION**

### 7.1 Pétrogenèse du Complexe de Menarik

# 7.1.1 Séquence de cristallisation des magmas dans le CDM

L'étude pétrographique et les caractéristiques géochimiques des roches mafiques et ultramafiques suggèrent deux séquences de cristallisation. La première séquence explique bien la différenciation des roches de la Zone Mafique  $[(Ol) + (Chro) + PG \rightarrow Px \rightarrow Oxydes Fe-Ti]$  tandis que la seconde explique bien la differenciation des roches de la Zone Ultramafique [Ol + Chro  $\rightarrow$  Opx  $\rightarrow$  Cpx]. Compte tenu de l'enrichissement en Fe des roches mafiques de l'intrusion, cette séquence suit une tendance de différenciation tholéiitique. À l'opposé, les teneurs élevées en MgO de la séquence ultramafique suggère une affinité komatiitique (Figure 5.6) ou du moins une affinité ultrabasique pour la séquence de cristallisation. Ceci est généralement dû au fait que les magmas komatiitiques ne sont pas saturés en SiO<sub>2</sub> ne permettant pas la cristallisation précoce de l'orthopyroxène. Cependant, l'assimilation d'un contaminant siliceux comme la tonalite peut entraîner la cristallisation précoce de l'orthopyroxène dans les magmas komatilitiques. En tenant compte de la composition de la chromite dans les roches ultramafiques du Menarik (Figure 7.1), qui est appauvrie en Cr# par rapport aux komatiites archéennes et enrichie par rapport aux MORB, nous ferons donc référence à une séquence ultrabasique plutôt que komatiitique. Cette progression d'une séquence ultrabasique à tholéiitique peut tout même suggérer que la ZM et la ZU appartiennent à une même suite intrusive.

Les travaux sur le Complexe de Stillwater ont montré que la séquence de cristallisation des minéraux silicatés change drastiquement en passant de la Série Ultramafique à la Série Rubanée (Todd et al., 1982; Irvine et al., 1983). Dans le Complexe du Stillwater, la séquence de cristallisation de la Série Ultramafique (olivine + chromite; bronzite; plagioclase; augite) est remplacée par une nouvelle séquence impliquant, dans un premier temps, le plagioclase, olivine + chromite, bronzite et l'augite dans la zone de troctolites-anorthosites de la Série Rubanée (Todd et al., 1982; Irvine et al., 1983). Dans le cas du Stillwater, le fractionnement des éléments traces et les variations des données isotopiques suggèrent que ce phénomène est relié à l'injection de nouveau magma de composition différente dans la chambre magmatique (Lambert et Simmons, 1988; McCallum, 1996). Dans le Stillwater (et dans d'autres intrusions comme le Bushveld), les types des magmas impliqués dans ce processus sont un magma boninitique précoce de "Type-U" (enrichi en MgO et SiO<sub>2</sub>) et un magma plus tardif de "Type-A" qui correspond à un magma tholéiitique enrichi en aluminium (Irvine et al., 1983). Dans le cas du CDM, les spectres de TR et la composition de la chromite ne suggèrent pas l'implication de magmas boninitiques (Figure 7.1). La distribution de la composition de la chromite suggère plutôt un magma hybride entre les komatiites et les tholéiites.



**Figure 7.1** Cr# versus Mg# pour les cœurs des spinnelles du Complexe de Menarik. Les champs des MORB et des boninites proviennent de Bédard et Hébert (1996) et des komatiites de Liipo et al. (1995).

# 7.1.2 Composition du magma parental

Les observations pétrographiques sur les roches ignées du Menarik permettent d'identifier les principales caractéristiques du magma parental. Premièrement, des évidences pétrographiques (pseudomorphes de Opx, Figure 6.16), et minéralogiques (composition de serpentine provenant d'Opx, Figure 6.17) suggèrent la présence d'orthopyroxène comme phase cumulative. Cette phase est également présente dans la séquence de cristallisation du Complexe de Stillwater (McCallum, 1996), du Complexe de Bushveld (Campbell et al., 1983; Eales et Cawthorn, 1996) et dans le Great Dyke (Wilson, 1996). La présence d'orthopyroxène dans la séquence de différenciation du CDM indique que le magma était saturé en SiO<sub>2</sub>. Notons toutefois que dans le CDM, cette phase semble volumétriquement moins abondante que dans les autres complexes magmatiques. Typiquement, la composition du magma parent des intrusions litées est généralement déterminée à partir des bordures figées de l'intrusion ou à partir de dykes comagnatiques. Dans le cas du CDM, aucune de ces roches n'a pu être échantillonnée. La présence de nombreux horizons suggère une cristallisation à partir de magmas parentaux primitifs (magnésiens) et saturés en chrome (Barnes et al., 1996). Bien que le métamorphisme régional et l'altération hydrothermale aient affecté la composition de la chromite (Figure 6.13), le Cr# est très peu affecté comparativement au Mg# de la chromite (Barnes, 2000). De plus, la cartographie d'éléments des spinelles du CDM suggère que les cœurs des spinelles reflètent une composition primaire bien qu'ils ont subit une certaine rééquilibration lors du refroidissement en présence de l'olivine (Figures 6.5, 6.6, 6.7). La figure 7.1 montre les champs de compositions de la chromite typiquement en équilibre avec des magmas boninitiques, komatiitiques et de type MORB. Les spinelles du CDM ne possèdent pas un Cr# excessivement enrichi comme celui des spinelles associés aux roches boninitiques et montrent des Cr# trop élevés pour des roches océaniques de type MORB. Les chromites du CDM sont caractérisées par des valeurs de Cr# qui se rapprochent des valeurs observées dans les spinelles de roches komatilitiques. Toutefois, la composition des chromites est légèrement déviée vers le champ des chromites associées aux MORB. Ce phénomène est probablement le résultat d'un magma parental moins magnésien que les komatiities typiques.

### 7.1.3 Spectres de TR

La majorité des échantillons du CDM montrent des spectres de terres rares sub-chondritiques (Figure 5.4). Toutefois, certaines roches montrent des spectres de TR légèrement fractionnés (Figure 5.5). Les péridotites (et chromitites) du CDM sont caractérisées par des compositions en TR (spectres des lanthanides plats et légèrement appauvris en lanthanides légers), en éléments traces (rapports chondritiques des éléments incompatibles) et en éléments majeurs (affinité komatiitique ou ultrabasique) compatibles avec une pétrogenèse dominée par la fusion partielle d'une source asthénosphérique. Cette source serait semblable à celle impliquée dans la pétrogenèse des komatiites non appauvries en Al (Nesbitt et al., 1979; Arndt, 1986) ou avec celles des NMORB (Viereck et al., 1989) (Figure 7.2).

Il existe plusieurs façons de générer des magmas possédant des spectres chondritiques de TR semblables à ceux observés pour les roches du Menarik:

(1) Fusion partielle d'une source appauvrie (manteau asthénosphérique) avec contamination des magmas ultrabasiques par une source crustale responsable de l'enrichissement en éléments traces incompatibles;

(2) Variations du taux de fusion partielle d'une source homogène (ex: manteau convectif) à hétérogène (ex: points chauds);

(3) Une combinaison des deux hypothèse précédentes.

Peut-on réellement impliquer un processus de contamination crustale pour expliquer la formation des péridotites du Menarik? Les processus magmatiques de type assimilation et cristallisation fractionnée (ACF) permettent d'enrichir les magmas en silice et éléments incompatibles comme les TR légères (Perring et al., 1996). La figure 7.3 présente un modèle d'ACF basé sur les algorithmes de Nielsen (1991). Ce modèle simule l'assimilation et la cristallisation fractionnée d'un magma au cours de la différenciation magmatique. La composition d'un liquide komatiitique a été utilisée comme magma parental tandis que les roches rhyodacitiques, basaltiques du Yasinski ainsi que des tonalites archéennes ont été utilisées comme contaminants (Figure 7.3) (source pour les contaminants Laflèche et al., 2000). Il est

à noter que le premier liquide généré par le modèle d'ACF correspond à un taux d'assimilation du contaminant de 0,2 % ce qui implique que le premier liquide généré par le modèle correspond à une très bonne approximation du liquide originel, en l'occurrence un liquide komatiitique. Le modèle d'ACF confirme la possibilité d'une contamination crustale des magmas ultrabasiques lors de la différenciation du CDM. Les spectres obtenus à partir de l'assimilation des contaminants rhyodacitiques ou tonalitiques montrent des enrichissements très rapides en TR légères comparativement aux enrichissements en TR légères obtenus par l'assimilation des basaltes du Yasinski. Les basaltes du Yasinski (Figure 7.3C) ne permettent pas d'enrichir suffisamment les magmas hybrides en TR légères pour expliquer la formation des spectres de TR du CDM. Les rhyodacites (Figure 7.3A) et les tonalites (Figure 7.3B) semblent être capables de générer des spectres de TR montrant un fractionnement des TR légères et lourdes semblables à celui observé dans les péridotites du Menarik. Les taux d'assimilations suggérés par le modèle d'ACF se situe entre 3 et 10% (Figure 7.3B). Compte tenu des observations de terrain, il est fort probable que la principale source de contamination soit la tonalite et non pas la rhyodacitique. Ceci est corroboré par la présence d'enclaves de la tonalite de Duncan dans les péridotites du Menarik (Figure 3.24) et que les roches felsiques du Yasinski sont rares dans la région. Il est à noter que les concentrations en TR, dans les roches ultramafiques du CDM, est de 2 à 5 fois inférieure à celle calculée par les modèle d'ACF. Ceci est normal car ces programmes calculent la composition des liquides magmatiques et non pas celle des cumulats. Arndt (1986) a montré que l'accumulation d'olivine (± chromite) dans les roches komatiites produit un effet de dilution sur les spectres de TR. Les spectres de TR des roches cumulatives sont sub-parallèles à ceux des roches extrusives mais avec des abondances moindres.



**Figure 7.2** Fractionnement des terres rares dans les roches du CDM. (A)  $(La/Sm)_N$  en fonction du La. (B)  $(Gd/Yb)_N$  en fonction du La. Les données sur le PM= manteau primitif, les NMORB et les OIB proviennent de Sun et McDonough (1989). Légende: se référer à la figure 5.2.



**Figure 7.3** Diagrammes représentant l'effet de l'assimilation et de la cristallisation fractionnée lors de la différentiation d'un liquide komatiitique. Les courbes sont calculées à l'aide du programme MixFrac de Nielsen (1999). Le champ ombragé correspond à l'ensemble des données sur les péridotites de la ZU du CDM.
#### 7.1.4 Un ou deux magmas?

Les variations pétrographiques et géochimiques observées dans les roches du Complexe de Menarik sont-elles le résultat de la différenciation d'un magma ou de la différenciation de magmas hybrides issus du mélange de deux magmas différents ? Plusieurs observations suggèrent la présence de deux magmas différents, le premier ultrabasique et le second tholéiitique. Les deux séquences de cristallisation et l'apparition précoce du plagioclase dans la deuxième séquence de cristallisation sont des arguments en faveur de deux magmas. De plus, la géochimie des éléments majeurs et traces, les rapports d'éléments incompatibles similaires, les spectres de TR sub-parallèles entre les gabbros et la ZU suggèrent que les roches de la ZU et la ZM sont génétiquement reliées. Pour générer la ZM et la ZU, on doit probablement impliquer la différenciation de magmas hybrides issus de mélange de deux magmas différents pour la formation du Complexe de Menarik.

En ce qui concerne les roches de la ZU, les différents spectres de TR (Figure 5.5) et les différents rapports d'éléments incompatibles (Zr/Sm), pour des valeurs semblables de Zr (Figure 5.7) suggèrent la présence de plusieurs magmas. Cependant, si la ZU s'est effectivement formée à la suite d'une injection de plusieurs magmas, on doit absolument faire intervenir des magmas de compositions similaires. La faible variation dans la composition de la chromite (Cr#), les faibles variations des abondances en éléments majeurs et traces de la ZU, les faibles variations des rapports d'éléments incompatibles et les spectres de TR subchondritiques avec de légères variations suggèrent que les différents magmas proviendraient d'une même source mantellique (probablement asthénosphérique) semblable à celle produisant les magmas komatiitiques archéens.

### 7.2 Origine des chromitites du CDM

Pendant de nombreuses années, les roches cumulatives étaient considérées comme le produit de l'accumulation de cristaux formés par la décantation et la compaction des cumulats à la base de la chambre magmatique. Ce processus implique une ségrégation gravitationnelle des minéraux qui est responsable de la différenciation des magmas par cristallisation fractionnée. L'origine du litage magmatique dans les complexes stratiformes s'exp-liquait par l'entremise de processus analogues à ceux qui régissent la formiation de certaines roches sédimentaires détritiques. Ces modèles impliquent un tri mécanique des cristaux par l'action de courants magmatiques ou par la compaction différentielle des minéraux selon leurs différences de densité ou par la taille des grains obéissant ainsi à la loi de Stoke (Cameron et Emerson, 1959; Irvine et Smith, 1969). Cependant, l'origine des horizons monominéraliques de chromite, dans les intrusions litées, est un problème que les pétrologues côtoient depuis plusieurs décennies. Sous la seule influence de la cristallisation fractionnée normale, il est extrêmement difficile, voire même impossible, selon le dliagramme de phase olivinechromite-quartz, de produire une précipitation sélective de la chromite (sans olivine) pour constituer des niveaux massifs d'oxyde.

Par la suite, plusieurs hypothèses ont été sunggérées pour expliquer ce phénomène sans toutefois le résoudre totalement. Ulimer (1969) et Cameron et Desborough (1969) ont proposé que l'augmentation de la fugacité de l'oxygène pourrait jouer un rôle déterminant dans la cristallissation de la chromite. La géochimie expérimentale, effectuée par Hill et Roeder (1974), confirme l'influence de la fugacité de l'oxygène sur la cristallisation de la chromite. Cependant, Cameron (1977) conclut que les variations cryptiques, observées dans les chromites du Bushveld ne sont pas cohérentes avec l'hypothèse selom laquelle l'augmentation de la fugacité de l'oxygène aurait induit la précipitation de ce minéral.

Le changement dans la pression lithostatique (Cameron, 1977, 1980) est également un mécanisme qui a été envisagé pour causer la précipitation importante de chromite. Ce mécanisme ne répond que très partiellement aux problèmes observés par les pétrologues étudiant les complexes ignés lités. Subsequemment, Irvine (1975) proposa deux modèles pour tenter de solutionner ce problème. Tout d'abord, la cristallisation de la chromite serait induite par une contamination crustale du magma. Bien que très intéressant, ce modèle permet difficilement d'expliquer la cyclicité des unités observées dans de nombreuses intrusions stratiformes comme le Bushveld et le Stillwater. Irvine (1977) élabora un modèle de mélange magmatique qui consiste essentiellement à introduire de nouveaux influx de magmas dans une chambre magmatique. Ce processus favorise le mélange entre le magma, plus ou moins évolué, de la chambre magmatique avec un magma primitif. La conséquence de ce mélange est l'obtention d'un nouveau liquide caractérisé par une saturation du chrome qui provoque une précipitation sélective de la chromite.

Ce dernier modèle de Irvine (1977) semble bien répondre aux nombreuses interrogations entourant le mécanisme de précipitation de la chromite. Toutefois, il est important de se rappeler que les autres processus, peuvent dans certains cas, expliquer la cristallisation de la chromite.

Plusieurs hypothèses similaires ont été proposées pour la genèse des chromitites ophiolitiques (ex. l'accumulation gravitationnelle: Thayer, 1969; Dickey, 1975). Certains modèles permettent d'expliquer la formation de dyke de chromite ainsi que la formation de chromitites réactionnelles. Ces hypothèses ont été envisagées récemment pour expliquer l'origine des chromitites qui se situent endessous de la zone de transition dunitique des séquences ophiolitiques (dyke de chromitite: Lago et al., 1982; Leblanc et Ceuleneer, 1992; chromitite réactionnelle: Zhou et al., 1996; Bédard et Hébert, 1998). La formation de chromitites dans des conduits magmatiques (Lago et al., 1982; Leblanc et Ceuleneer, 1992), suggère qu'un flux de magma ascendant peut se charger progressivement de chromite et en produire des quantités importantes. Un autre modèle, basé sur la contamination d'intrusions péridotitiques par des gabbros ou des pyroxénites, consiste en l'assimilation de la roche encaissante entraînant la saturation du liquide péridotitique en chromite et en orthopyroxène (Zhou et al., 1996; Bédard et Hébert, 1998). Ce mécanisme de syntexie, pour expliquer la formation des chromitites, est analogue au modèle de contamination crustale du magma proposé par Irvine (1975). Dans le diagramme de phase olivine-chromite-quartz, le mécanisme de syntexie déplace la composition du liquide dans le champ de précipitation de la chromite, où la chromite est le seul minéral à cristalliser tel que le suggère le modèle de la contamination crustale.

Mais qu'en est-il pour les horizons de chromitites du Complexe de Menarik? Quels processus peut-on impliquer pour expliquer la cristallisation d'autant de chromite dans cette intrusion ultramafique de taille relativement modeste?

L'observation de structures d'origine magmatique telles des structures de charge, de granoclassement, de fluage et la présence d'enclaves de la ZU à l'intérieur de la masse péridotitique suggèrent des conditions dynamiques. Les conditions dynamiques qui prévalaient lors de la différenciation dans la chambre magmatique du Menarik éliminent la simple déposition gravitationnelle de la chromite suite cristallisation fractionnée de magmas ultrabasiques (Cameron et Emerson, 1959; Irvine et Smith, 1969; Thayer, 1969; Dickey, 1975). À cause de l'épuisement rapide du chrome, le magma ne peut précipiter uniquement de la chromite tel que le montre le diagramme de phase olivine-chromite-quartz (Figure 7.4B). Lors de la cristallisation fractionnée d'un magma ultrabasique, la composition du liquide se déplace le long de la cotectique olivine-chomite mais ne se retrouve en aucun temps à l'intérieur du champ de la chromite.

Le modèle de Irvine (1975) faisant appel à l'assimilation de roches crustales pour expliquer la formation des horizons de chromites, est envisageable car les chromitites à silicate du CDM montrent un léger enrichissement systématique en TR légères. L'enrichissement en TR légères des roches du Menarik peut être attribuable à la contamination crustale comme le propose le modèle ACF qui suggère l'assimilation de 3 à 10% de roches tonalitiques (Figure 7.3). L'augmentation de la teneur en silice dans le magma permet au liquide magmatique de franchir la ligne cotectique olivine-chromite et d'entrer dans le champ de la chromite. Dans ce modèle, suite au fractionnement de la chromite, la composition du magma revient progressivement le long de la ligne cotectique olivine-chromite (Figure 7.4C). Le modèle d'AFC, les grains de chromite bourrés d'inclusions silicatées et les enclaves tonalitiques au contact de la ZU et de la tonalite encaissante suggère une certaine contamination des magmas parentaux du CDM. Par contre, il semble difficile d'évoquer ce processus pour expliquer la formation de tous les horizons de chromitites, dont les horizons rythmiques observés sur l'affleurement 97-MH-7371, par la simple contamination crustale.

Un autre modèle envisageable pour expliquer la formation des chromitites du CDM est certainement le mélange de magma proposé par Irvine (1977). Ce modèle est souvent utilisé pour expliquer la formation des chromitites situées à la base ou près de la base dans les intrusions stratiformes du Stillwater et du Bushveld (Irvine et Sharpe, 1986). Dans le cas du Menarik, plusieurs évidences suggèrent la présence de plusieurs injections de magmas. De nombreuses chromitites (en particulier à la base de l'affleurement 97-MH-7371) consistent en une alternance de niveau de chromitites et de dunites. Perring et Vogt (1990, 1991) suggèrent que ces faciès de cumulats sont la conséquence d'un mélange dynamique entre une nouvelle venue de magma et le magma fractionné. Ce nouvel apport de magma produit une stratification d'un magma hybride avec le nouveau magma situé à la base. Le magma le plus primitif cristallise l'olivine ou l'olivine-chromite d'abord. Puis le magma hybride cristallise d'abord la chromite uniquement et ensuite il cristallise l'olivine et la chromite (Figure 7.4D). Dans ce modèle, les niveaux de dunites et de chromitites sont produits simultanément. Dans le cas du CDM, un autre facteur appuie la thèse du mélange de magma. Pour des teneurs semblables d'éléments incompatibles comme le Zr, on retrouve des variations dans les rapports d'éléments incompatibles (Zr/Sm) implique un fractionnement des éléments incompatibles qui peut être expliqué par l'apport de nouveaux magmas dans la chambre magmatique (Figure 5.7). Si on exclut la possibilité de contamination crustale des magmas (peu d'inclusions silicatées dans les chromites des sections détaillées), les différents spectres de TR suggèrent la présence de plusieurs injections magmatiques, bien que probablement génétiquement apparentées. Cependant, dans le cas du Menarik, les indices de fractionnement ne sont pas très variables (Cr#, Mg#) ce qui tend à suggérer que si les chromitites résultent d'un mécanisme de mélange magmatique, la composition en éléments majeurs des deux magmas doit être semblable. Dans

l'ensemble, ces éléments compatibles, comme le Mg (Mg#) et le Ni, augmentent rapidement après un horizon de chromite mais varient très peu à l'extérieur de la zone d'influence des chromitites.

Le modèle le plus probable pour la formation des horizons de chromitites du Complexe de Menarik est certainement le mélange de magma. Toutefois, un problème reste entier même si le modèle de mélange magmatique est le plus approprié. Comment expliquer l'absence de changement dans les indices de fractionnement et que l'on n'observe aucune variation importante, sauf pour le Mg#, dans la composition de la chromite? Deux phénomènes peuvent expliquer ces observations. Tout d'abord, pour expliquer la formation des chromitites nous suggérons un mélange de magmas ayant une même affinité géochimique et non pas le mélange d'un magma boninitique de type "U" avec un autre magma tholéiitique de type "A" comme proposé pour expliquer la formation des lits de chromitites du Complexe de Bushveld (Campbell et Murck, 1993). Le mode de formation de la ZU du Menarik ressemble d'avantage à celui proposé pour expliquer l'origine de la Série Ultramafique du Complexe de Stillwater. Dans le cas du Stillwater, le mélange fait intervenir uniquement des magmas boninitiques (Type "U"). Dans le cas de la ZU du Menarik, le mélange impliquerait des magmas komatiitiques ou basaltokomatiitiques. La nature komatiitique ou basalto-komatiitique expliquerait pourquoi l'orthopyroxène est un constituant moins dominant dans le CDM comparativement au Stillwater. Si la Zone Mafique est bel et bien une partie intégrante du CDM, le mélange de magmas primitifs (ZU) avec un magma tholéiitique serait tardif dans l'évolution du CDM. Un tel phénomène est suggéré pour expliquer l'origine de la Zone Rubanée du Complexe de Stillwater (Campbell et Murck, 1993).



Figure 7.4 (A) Diagramme ternaire du système olivine-chromite-silice (d'après Irvine, 1975, 1977).(B) Évolution normale du liquide lors de la cristallisation fractionnée. (C) Évolution du liquide lors de la contamination par des roches crustales riches en silice. (D) Évolution du liquide lors du mélange de magma.

Dans le CDM, la faible variation de composition de la chromite peut également être expliquée par la cristallisation de la chromite à l'intérieur de courants magmatiques multicellulaires (Lago et al., 1982; Leblanc et Ceuleneer, 1992). Dans un tel modèle, plusieurs injections de magmas ascendants circulent dans un conduit magmatique et se chargent progressivement de chromite. Étant donné son solidus élevé, la chromite demeure en suspension dans les cellules d'élutriations (zone d'élargissement des conduits magmatiques). La chromite précipite éventuellement lorsque l'intensité de la convection diminue. Ce modèle permet d'expliquer les diverses structures magmatiques observées dans les intrusions stratiformes et aussi la composition homogène de la chromite. La coexistence de chromites dépourvues d'inclusions avec des chromites criblées d'inclusions dans le CDM pourrait être le résultat de la variation dans le temps de résidence des chromites à l'intérieur des cellules d'élutriation. Dans ces conduits magmatiques, les conditions évoluent sans changer drastiquement compte tenu d'un apport magmatique uniforme (montrant peu de variation en éléments majeurs). Évidemment, ce modèle a été utilisé pour expliquer l'origine des objets géologiques de petites tailles (formation des dykes de chromite dans les ophiolites) et non pas pour expliquer l'origine des horizons de chromitites des intrusions.

Finalement, le modèle le plus probable pour expliquer la formation des horizons de chromitites du CDM est probablement une combinaison du modèle du mélange de magmas (Irvine, 1977) avec un apport probablement limité du modèle de la contamination crustale (Irvine, 1975) et le modèle conceptuel des cellules d'élutriation (Lago et al., 1982; Leblanc et Ceuleneer, 1992) . Les horizons de chromitites du CDM se sont probablement formés à l'intérieur de courants magmatiques multicellulaires dans un grand conduit magmatique qui représenterait peut être une racine de lopolite. Dans un même temps, le conduit magmatique serait alimenté continuellement par la venue de nouvelles injections de magmas d'affinité komatiitique ou picritique permettant ainsi la précipitation importante de chromite dans le Menarik. La combinaison de ces modèles semble expliquer la plupart des caractéristiques pétrologiques du CDM.

## 7.3 Origine des minéralisations en ÉGP

Comme la concentration du Pt (8 ppb) et du Pd (4 ppb) dans le manteau (Barnes et al., 1985), on doit pouvoir concentrer les ÉGP d'un facteur de 100 à 1000 fois pour former des dépôts de platinoïdes économiquement exploitables. Pour former un magma riche en ÉGP, la source mantellique doit subir une fusion partielle suffisante pour dissoudre les sulfures du manteau et ainsi les incorporer dans le magma. Selon Barnes et al. (1985) et Keays (1995) le taux de fusion nécessaire est d'environ 20 à 25 %. Pour obtenir un tel taux de fusion des péridotites, la fusion partielle du manteau doit être élevée comme dans le cas des komatiites (ou basalte riche en MgO), ou encore provenir d'une fusion partielle répétée du manteau produisant des magmas de type boninitique (type "U"). Dans le cas du Menarik, le caractère primitif (ex. chromitites; Cr# de la chromite = 0,60-0,65; affinité komatiitique ou picritique) du magma parental suggère un taux de fusion du manteau a été suffisamment élevé pour obtenir des magmas enrichis en ÉGP.

La capacité du magma à dissoudre les sulfures est un facteur important pour former des gisements d'ÉGP. De la même façon, le mode de transport des magmas vers le site d'intrusion est également un paramètre critique. Si le magma perd sa phase sulfurée avant sa mise en place dans la croûte, alors le magma sera appauvri en ÉGP. Cet appauvrissement s'explique par la ségrégation précoce des sulfures qui collectent et précipitent les ÉGP (Barnes et al., 1993, 1996; Maier et al., 1998).

Jusqu'à maintenant, les travaux effectués dans la région du CDM suggèrent que les roches sédimentaires et les roches volcaniques du Groupe de Yasinski se sont mises en place dans un environnement rift continental immature (Goutier et al., 1999; LaFlèche et al., 2000). Ce réseau de fractures translithosphériques offre un environnement favorable pour l'intrusion des magmas mafiques et ultramafiques comme ceux impliqués dans la formation du CDM. Cet environnement géodynamique serait favorable à la formation de gîtes de platinoïdes. Le moment de la séparation des sulfures est donc un paramètre important. Les travaux de Barnes et al. (1985, 1988, 1993, 1996) et Maier et al. (1996, 1998) ont montré qu'il est possible d'évaluer si les mécanismes magmatiques des roches intrusives ont antérieurement précipité des sulfures avant leur mise en place finale dans la croûte. Pour ce faire, les rapports d'éléments comme Ni/Pd, Cu/Ir, Cu/Pt et Cu/Pd peuvent être utilisés afin de vérifier si les ÉGP ont été ségrégés.



**Figure 7.5** Graphique Cu/Pd en fonction du Pd pour les diverses lithologies du Complexe de Menarik (modifié de Barnes et al., 1985). Légende comme dans la figure 5.2.



**Figure 7.6** Graphiques de rapports d'éléments pour les diverses lithologies du CDM. (A) Ni/Pd en fonction de Cu/Pt. (B) Ni/Pd en fonction de Cu/Ir. (modifiés de Barnes et al., 1985). Légende: se référer à la figure 5.2.

Les ÉGP ont des coefficients de partage beaucoup plus élevés dans les phases sulfurées que le Ni et le Cu. Si tous les sulfures sont dissous dans le magma et que le Cu, le Pd, le Pt et le Ni sont solubilisés, alors les rapports Cu/Pd et Cu/Pt devraient se rapprocher de ceux suggérés pour le manteau soient  $6 \times 10^3$  et  $3 \times 10^3$ respectivement (Barnes et al, 1993). Si il y a immiscibilité d'un liquide sulfuré dans le manteau ou durant l'ascension du magma, les ÉGP seront préférentiellement extraits du magma de sorte que ces rapports seront nettement supérieurs à ceux observés pour le manteau. Des rapports Ni/Pd et Cu/Pt élevés suggèrent un faible potentiel pour des minéralisations en ÉGP.

Les figures 7.5 et 7.6 montrent que la majorité des échantillons du CDM ont des rapports Cu/Pd, Cu/Pt et Cu/Ir inférieurs ou légèrement supérieurs à ceux suggérés pour le manteau. Les roches du CDM forment un essaim dans le diagramme Ni/Pd versus Cu/Pt (Figure 7.6A) qui indique que ces rapports sont principalement contrôlés par la cristallisation de la chromite et la ségrégation d'un liquide sulfuré. Dans le diagramme Ni/Pd versus Cu/Ir (Figure 7.6B), les roches du CDM forment également un essaim qui suggère que ces rapports sont principalement contrôlés par la ségrégation d'un liquide sulfuré. Ces rapports indiquent probablement que le magma n'a pas perdu son contenu en platinoïdes lors de l'ascension vers le lieu de mise en place. Il est donc possible que l'intrusion soit hôte d'un dépôt de ÉGP.

L'incorporation des I-ÉGP dans les magmas est étroitement liée à la température et au degré de fusion partielle des péridotites mantelliques. Lors de la fusion partielle du manteau, les I-ÉGP ont un comportement fortement compatible. Tandis que les P-ÉGP ont généralement un comportement incompatible et sont relativement solubles dans les magmas sous-saturés en soufre. Ceci explique l'importance d'étudier la saturation du soufre dans les magmas potentiellement porteurs de ce type de minéralisation.

Les teneurs en Ni, en Ir, en Os et en Ru diminuent dès le début du fractionnement magmatique compte tenu de leurs incorporations dans les minéraux réfractaires comme l'olivine et la chromite (Figure 7.7). Le Pd, le S et le Cu sont des

éléments plus incompatibles qui contrastent avec les I-ÉGP (Figure 7.7). Lors de la différenciation magmatique, le degré de saturation du soufre influence grandement le comportement des P-ÉGP. Généralement, les teneurs en Cu et en S atteignent un maximum à la saturation du magma en soufre. Durant la cristallisation d'un magma ultramafique ou mafique, le Pd et le Pt s'accumulent dans le liquide résiduel jusqu'à la saturation en S du magma.



**Figure 7.7** Variation des abondances en métaux de bases et précieux au cours de la différenciation magmatique (modifiée de Keays, 1995).

Lors de la saturation en soufre, les gouttelettes de sulfures magmatiques immiscibles incorporent les ÉGP en fonction du coefficient de partage très élevé entre le liquide silicaté et le liquide sulfuré (Keays, 1995). Cette ségrégation explique l'appauvrissement très rapide du magma de tous les ÉGP.

En supposant une faible mobilité du S, lors du métamorphisme régional et de l'altération hydrothermale, la figure 7.8 suggère que toutes les roches de la Zone Ultramafique du CDM semblent avoir cristallisé à partir d'un magma ou plusieurs magmas sous-saturé(s) en S. Selon cette figure, les chromitites et les chromitites à silicate semblent cristallisé à partir d'un magma très sous-saturé en soufre compte tenu de leurs rapports Pd/Cu très élevés. Étant donné que le contenu en soufre n'est pas disponible pour l'ensemble des échantillons du CDM, nous sommes limités dans l'interprétation de ces données. Cependant, les quelques données disponibles sur la teneur en soufre suggèrent des rapports Pd/S et Pt/S élevés (Pd/S = 1700, Pt/S = 480) à modérément élevés (Pd/S = 350, Pt/S = 95) typiques des magmas sous-saturés en S (Keays, 2000).



**Figure 7.8** Diagramme Pd versus Cu servant à évaluer le degré de saturation en S des magmas de la ZU du CDM (Modifié de Vogel, et al., 1999). Légende : se référer à la figure 5.2.

Les roches de la ZU du CDM sont projetées dans le diagramme pour démontrer l'état de saturation en S des échantillons du CDM. Le comportement idéalisé des ÉGP lors du fractionnement d'un magma (Figure 7.7) montre que les dépôts de Cu-Ni-ÉGP sont généralement formés par la ségrégation d'un liquide immiscible à partir d'un magma silicaté. Cette ségrégation peut être provoquée en réponse à un mélange de magmas, à la baisse de température, à la différenciation, à la contamination et à des variations de  $fO_2$  et  $fS_2$ .

Comme le montre la figure 7.8, le magma du CDM était probablement soussaturé en S, donc riche en ÉGP dissous. Cependant, il est difficile d'établir à quel moment la saturation du soufre s'est produite pour former les zones enrichies en ÉGP.

Un des problèmes majeurs rencontré lors de l'exploration des gîtes d'ÉGP, associés à des intrusions stratiformes, est que les horizons enrichis en ÉGP (reefs) sont généralement très minces par rapport à l'épaisseur de la séquence de roches cumulatives. Contrairement aux reefs, ces cumulats montrent habituellement des concentrations faibles en ÉGP. Les variations de certains éléments ou rapports d'éléments en fonction de la position des échantillons dans une colonne stratigraphique peuvent permettre d'estimer le moment où le système atteint la saturation en soufre du magma et ainsi indirectement de déterminer le moment de la déposition des platinoïdes. Le rapport Cu/Pd est un excellent traceur pour déterminer s'il y a eu ségrégation ou non de sulfures dans un système magmatique (Maier, et al., 1996, 1998). Ce rapport peut donc devenir un outil très puissant pour localiser les zones potentiellement minéralisées en ÉGP. Barnes et al (1993) ont montré que les rapports Cu/Pd des roches magmatiques du Complexe de Munni Munni en Australie exhibent des enrichissements très distinctifs en Cu/Pd à l'approche des horizons riches en ÉGP (reefs). Toutefois, dans le cas du CDM, aucun horizon enrichi en ÉGP de type Munni Munni (ex. Merensky Reefs ou J-M Reefs) n'a été observé. Il n'est pas dit par contre qu'un horizon minéralisé de ce type n'existe pas dans le CDM. Cependant, l'étude des variations des rapports Cu/Pd et Cu/Pt dans les sections détaillées permet de cibler les zones les plus prometteuses (Figures 5.13 et 5.14). La vaste majorité des échantillons du CDM montrent des concentrations anomales en ÉGP qui sont reflétées par des rapports Cu/Pd inférieurs aux valeurs observées pour le manteau. Dans le détail, les rapports Cu/Pd des roches du CDM montrent une cyclicité où toutes les chromitites sont caractérisées par de faibles rapports Cu/Pd et Cu/Pt tandis que les péridotites adjacentes montrent des rapports plus élevés. Ceci indique que les horizons de chromitites correspondent à des épisodes de saturation en S du ou des magmas parentaux. La présence de nombreuses inclusions de sulfures dans les chromites du CDM suggèrent ces épisodes de saturation en S dans les chromitites.

Les mécanismes responsables de la concentration des ÉGP, dans les intrusions litées, sont très controversés. D'un côté, l'hypothèse orthomagmatique (Campbell et al., 1983; Irvine et al., 1983; Barnes et Naldrett, 1985, 1986) propose que la saturation en S est le résultat du mélange de deux magmas sous-saturés provoquant ainsi la formation d'un liquide sulfuré immiscible collectant les ÉGP dans des grains de sulfures disséminés dans les roches ultramafiques. Le modèle hydrothermal implique la présence d'un fluide riche en volatiles qui permet le transport des ÉGP. Ce modèle propose la concentration des ÉGP dans le magma fractionné jusqu'à ce qu'un fluide magmatique se forme. Les ÉGP peuvent alors être transportés dans la phase fluide et percoler à travers l'empilement de la séquence cumulative jusqu'à la rencontre d'une barrière (ex. horizon de chromitite) ou d'une zone de changement abrupte des conditions de Eh-pH des fluides (Ballhaus et Stumpfl, 1986; Boudreau et al., 1986).

De nombreuses études récentes suggèrent que la présence de fluides est déterminante lors de la formation du Merensky Reef (Bushveld) et du J-M Reef (Stillwater). Une des caractéristiques des chromitites et des horizons enrichis en ÉGP du Stillwater et du Bushveld appuyant le modèle hydrothermal est l'association avec des roches pegmatitiques. Ces zones pegmatitiques résulteraient de l'infiltration des fluides et du métasomatisme (Von Gruenewaldt, 1979; Stumpfl, 1982; Schiffries, 1982).

Dans le CDM, cette association entre les zones pegmatitiques et les chromitites n'a pas été observée. De plus, les minéraux hydratés comme la phlogopite et la biotite n'a pas été observée dans les roches du Menarik. La seule évidence de l'influence d'un fluide lors de la mise en place des ÉGP est la présence d'assemblages platinifères de Sb-Te-Bi-As en association avec les sulfures ou avec la gangue silicatée constituée de serpentines, de chlorites ou de carbonates. Mathez (1989), Watkinson et Ohnenstetter (1992) et Farrow et al. (1997) ont montré que ce type d'assemblage avec les platinoïdes est généralement associé à la circulation hydrothermale de basse température. Souvent, ces assemblages secondaires sont des remobilisations d'assemblages platinifères magmatiques (Mathez, 1989; Watkinson et Ohnenstetter, 1992). On trouve les mêmes assemblages platinifères dans les filonets de sulfures hydrothermaux localisés en bordures des failles recoupant le CDM. Ces observations n'impliquent pas nécessairement que la minéralisation en ÉGP du Menarik soit essentiellement reliée à l'hydrothermalisme. Les travaux de Meurer et al. (1999) ont montré que des fluides riches en chlore ont la capacité de redistribuer ces métaux. L'absence d'évidence de roches métasomatisées (zone pegmatitique, phases riches en volatils) limite l'implication d'un fluide hydrothermal dans la minéralisation platinifère du CDM. Le modèle le plus probable reste le modèle magmatique impliquant le mélange de plusieurs magmas amenant la saturation en S en la collection des ÉGP avec la matte sulfurée. De plus, ce modèle est compatible avec la précipitation de la chromite par mélange. Cependant, il est probable que la minéralisation hydrothermale favorisant ainsi la reprécipitation des ÉGP magmatiques sous la forme d'assemblages platinifères de basse température (Sb-Te-Bi-As) dans ces horizons de chromitites et probablement dans les péridotites adjacentes.

### 7.4 Comparaison avec d'autres intrusions stratiformes

### 7.4.1 Classification

La comparaison du Complexe de Menarik avec d'autres intrusions stratiformes à travers le monde exige certains regroupements. Depuis de nombreuses années, la classification des gisements métallifères a été approchée de différentes façons. Les critères utilisés pour la classification des intrusions stratiformes sont les suivants:

- Association avec la roche encaissante (intrusions mafiques/ultramafiques);
- Association minéralogique (Ni-Cu, ÉGP et Cr) (Naldrett, 1981, Naldrett, 1989);
- Localisation géographique (péridotite alpine);
- Age de la minéralisation (Archéen, Protérozoïque, ...);
- Environnements géotectoniques (Naldrett et al., 1980, 1981, 1989);
- Processus minéralisateur (orthomagmatique, etc.) (Macdonald, 1987);

 Phases qui apparaissent au liquidus avec ou après l'olivine (Opx, Cpx, Pl) (Ohnenstetter et al., 1994)

L'environnement géotectonique est le critère le plus fréquemment utilisé pour établir la classification des intrusions litées. Cette classification a permis d'établir la distribution des intrusions et des gisements en fonction d'un environnement tectonique particulier. Cependant, aucun lien n'a pu être dégagé avec la composition du magma, la nature des cumulats et les caractéristiques des gisements vis-à-vis une telle classification géodynamique. La classification utilisée pour comparer le Menarik et d'autres intrusions stratiformes est celle proposée par Ohnenstetter et al. (1994) compte tenu que cette classification fait intervenir la composition du magma originel en plus de considérer l'environnement géodynamique (Tableau 7.1).

**Tableau 7.1** Classification des complexes mafiques-ultramafiques (Âge en millions d'années) (modifié Ohnenstetter et al., 1994).

| Classes             | Lopolites<br>intra-continentaux         |                              | Dykes et rifts.<br>Autres intrusions                     |                              | Ophiolites, rifts<br>évoluant vers des<br>arcs insulaires |                            | Complexes<br>alaskéens. Arcs<br>insulaires |             | Complexes<br>mafiques     |              |
|---------------------|-----------------------------------------|------------------------------|----------------------------------------------------------|------------------------------|-----------------------------------------------------------|----------------------------|--------------------------------------------|-------------|---------------------------|--------------|
| Classe I<br>Ol-Opx  | Bushveld<br>Stillwater<br>Jimberlana    | 2800<br>2700<br>Arch.        | Great Dyke<br>Penikat<br>Kemi<br>Jinchuan<br>(?) Lac des | 2500<br>2440<br>1509         | Vourinos<br>Kempirsei<br>N-Calédo.<br>Troodos             | 160<br>Dév.<br>Olig.<br>90 |                                            |             | Noril' <b>sk</b>          | 300          |
| Classe II<br>Ol-Cpx | <b>Menarik</b><br>Munni Munni<br>Muskox | 2618<br>2709<br>2800<br>1220 | Montagnes<br>Menarik<br>Dumont<br>Sill                   | 2618<br>2709<br>2700<br>2800 | Shetlands<br>Albanie                                      | Caléd.<br>Jur.             | Alaska<br>Tulameen                         | Jur.<br>186 | Dufek                     | Jur.         |
|                     |                                         |                              | Lac des Iles<br>Bird River<br>(?) Lac des<br>Montagnes   | Prot.<br>2745                |                                                           |                            | Island<br>Oural                            | Dev.        |                           |              |
| Classe III<br>Ol-PG | Skaergaard<br>Insizwa                   | Tert.<br>Jur.                | Rhum                                                     | Tert.                        | Philippines<br>Oman<br>Appenin N.                         | Crét.<br>Crét.<br>Jur.     |                                            |             | Duluth<br>Crystal<br>Lake | 1100<br>1100 |

Cette classification est définie d'après les phases qui apparaissent au liquidus simultanément ou postérieurement à l'olivine. La classe I est constituée de Ol-Opx qui traduit une forte saturation en silice du magma. La classe II est constituée de Ol-Cpx qui indique une forte activité en calcium tandis que la classe III est constituée de Ol-PG qui montre une teneur importante en alumine. Le Complexe de Menarik fait partie de la classe I (dominée par l'olivine et l'orthopyroxène). Le CDM s'est probablement mis en place dans un environnement de rift intra-continental compte tenu du contexte géologique de la région (Goutier et al., 1999; LaFlèche et al., 2000). Nous considérons que le CDM peut faire partie des lopolites intracontinentaux ou intrusions litées et dykes reliées à des rifts (Tableau 7.1). Le Menarik fait donc partie du même groupe que la plupart des grands complexes stratiformes à travers le monde comme le Bushveld, le Stillwater et le Great Dyke (Tableau 7.1). La majorité des gisements de chromite et de ÉGP sont localisés dans des intrusions appartenant à la classe I.

Au Ouébec, les minéralisations en chrome et platinoïdes sont presqu'entièrement toutes du type podiforme (Marcotte, 1980). L'intrusion du Lac des Montagnes (région de Némiscau, Baie-James) est l'une des rares intrusions ultramafiques, au Québec, considérée comme ayant les caractéristiques d'un gisement de type stratiforme (Williams, 1965; Duke, 1986; Duke, 1996). L'intrusion du Lac des Montagnes montre plusieurs similitudes avec le Complexe de Menarik comme les textures magmatiques pour les roches ultramafiques et les chromitites. La minéralogie secondaire est dominée par la serpentine, la chlorite et la trémolite tout comme le CDM. Cependant, les comparaisons ne peuvent être poussées très loin compte tenu du manque de données disponibles sur l'indice du Lac des Montagnes.

# 7.4.2 Chromite, indicateur pétrogénétique

La composition de la chromite est un élément important pour comparer les similitudes entre plusieurs intrusions ultramafiques. Le tableau 7.2 montre que la composition de la chromite du CDM est similaire à celle d'autres complexes stratiformes. Les chromites du CDM montrent des valeurs similaires, pour le Mg#, Cr#, Cr/Fe et la proportion Fe<sup>3+</sup>/Fe<sup>2+</sup>, à celles observées dans le Bushveld, le Great Dyke, le Stillwater et le Kemi qui sont toutes des intrusions de la classe I (Ol-Opx). Les chromites du CDM montrent également des similitudes avec les chromites du Bird River pour le Cr# et avec le rapport Cr/Fe et ce, même si cette intrusion fait partie de la classe II. Par contre, le Mg# et le rapport Fe<sup>3+</sup>/Fe<sup>2+</sup> sont généralement plus faibles pour le Bird River que pour le CDM. La composition des chromites de l'ophiolite de Oman (type III) et de la Nouvelle-Calédonie (type II) est très différente de la composition des chromites du CDM pour le Mg#, le Cr#, le Cr/Fe et le Fe<sup>3+</sup>/Fe<sup>2+</sup>.

**Tableau 7.2**Comparaisons entre la composition de la chromite du Complexe de Menarik etcelle des autres complexes mafiques-ultramafiques.

|             | Mg#       | Cr#       | Cr/Fe     | Fe <sup>3+</sup> /Fe <sup>2+</sup> |
|-------------|-----------|-----------|-----------|------------------------------------|
| Menarik     | 0,02-0,61 | 0,58-0,69 | 0,70-2,48 | 0,10-0,52                          |
| Bushveld    | 0,24-0,58 | 0,60-0,75 | 0,95-3,0  | 0,16-1,12                          |
| Great Dyke  | 0,36-0,67 | 0,70-0,80 | 2,1-3,9   | 0,14-0,26                          |
| Stillwater  | 0,39-0,57 | 0,60-0,66 | 1,0-2,1   | 0,14-0,70                          |
| Kemi        | 0,11-0,54 | 0,60-0,70 | 0,70-1,88 | 0,15-0,79                          |
| Bird River  | 0,13-0,43 | 0,57-0,64 | 1,0-1,5   | 0,04-0,12                          |
| Oman        | 0,47-0,71 | 0,11-0,80 | 0,8-3,9   | 0,00-0,24                          |
| N-Calédonie | 0,36-0,72 | 0,21-0,84 | 1,4-4,6   | 0,00-0,46                          |

Stowe, 1994; Alapieti et al., 1989

Conséquemment, si on projette les données des coeurs de chromite dans un diagramme ternaire Cr-Al-Fe<sup>3+</sup>, elles tombent dans les champs du Bushveld et du Stillwater (Figure 7.9). La composition de la chromite du Menarik est tout à fait similaire à celle de la chromite de grandes intrusions stratiformes minéralisées en chrome et ÉGP comme le Complexe de Bushveld et le Complexe de Stillwater.



Figure 7.9 Projection de la composition des chromites du CDM dans un diagramme ternaire Cr-Al-Fe.

## 7.4.3 Élements du groupe du platine

La comparaison des patrons d'ÉGP entre les roches ultramafiques du CDM à celles associées aux complexes minéralisés du Bushveld et du Stillwater est très intéressante. Les chromitites du Bushveld (Lower Group Chromitites, Middle Group Chromitites, Upper Group Chromitites et le UG-2 Reef) montrent des spectres d'ÉGP concaves comme les chromitites et les chromitites à silicate du CDM (Figure 7.10A-B-C). Les concentrations en platinoïdes sont similaires à celles des horizons de chromite du Bushveld (Lower, Middle et Upper Group) mais inférieures à celles observées dans l'horizon UG-2. Une distinction importante entre les horizons minéralisés du Menarik et du Bushveld est la présence d'une anomalie négative en Pt dans les chromitites du Menarik (Figure 7.10A-B-C). Par contre, d'autres chromitites associées au Stillwater (É.U.) et à l'intrusion de Penikat (Finlande) montrent également des anomalies négatives en platine (Figure 7.10D). Les concentrations en ÉGP sont semblables pour les chromitites de Penikat et celles du Menarik. Les spectres des roches silicatées du Menarik diffèrent de ceux des roches appartenant à la Lower Zone et à la Lower Critical Zone du Complexe de Bushveld (Figure 7.10E-F). Nous avons observé que dans le Menarik, les spectres des roches silicatées étaient grandement influencés par la présence de chromite calquant ainsi l'allure observée dans les spectres des chromitites pour les P-ÉGP et les I-ÉGP. Cepandant, les roches silicatées montrent des teneurs beaucoup plus faibles que celles du Bushveld. Ce phénomène ne semble pas présent dans les péridotites du Bushveld compte tenu que la chromite présente dans ces roches, en proportion, est beaucoup moins importante que dans les péridotites du Menarik.



Figure 7.10 Comparaison des spectres des ÉGP du CDM avec d'autres intrusions stratiformes. (A) Chromitites du CDM. (B) Chromitites du Bushveld. (C) Chromitites à silicate du CDM. (D) Chromitites du Stillwater et de Penikat. (E) Harzburgites à chromite du CDM. (F) Péridotites de la Lower et Lower Critical Zone du Bushveld. (G) Filonets de sulfures du CDM. (H) Horizon du Merensky Reef du Bushveld et l'horizon J-M Reef du Stillwater. Légende: se référer à la figure 5.2.

En général, la grande proportion des minéralisations platinifères associées aux intrusions litées se situe dans des horizons enrichis en ÉGP (reef). Aucun horizon de ce type n'a été identifié à l'intérieur du CDM. Il est intéressant de comparer les spectres du Merensky Reef (Bushveld) et du J-M Reef (Stillwater) avec les spectres des chromitites, des péridotites et des filonets de sulfures du Menarik. Les chromitites et les péridotites du Menarik montrent des spectres très différents des spectres montrés par les horizons enrichis en ÉGP (Figure 7.10). Par contre, les filonets de sulfures ne possèdent pas les concentrations et l'extension latérale des reefs. Il est tout même intéressant de faire la comparaison compte tenu que la minéralisation est associée, dans les deux cas, à des zones enrichies en sulfures de métaux de bases (Figure 7.10G-H). Dans le cas du Menarik, les filonets de sulfures montrent également de faibles anomalies en Pt. Les spectres d'ÉGP de ces sulfures exhibent une légère pente positive similaire à celle observée dans les zones minéralisées du Merensky Reef. Par contre, dans les veines de sulfures, on n'observe pas l'appauvrissement en Ni et Cu par rapport aux ÉGP. Ce phénomène est facilement explicable par la nature même de la minéralisation. Les indices de sulfures au Menarik sont constitués de veines de chalcopyrite, pentlandite, millérite semi-massive à massive contrairement à l'horizon du Merensky Reef qui contient généralement moins de 2 % de S en pourcentage poids.

## 7.4.4 Comparaison pétrologique

La composition de la chromite, les teneurs en ÉGP du CDM sont comparables à celles d'autres complexes stratiformes, mais qu'en est-il des caractéristiques pétrologiques des roches intrusives du Menarik? Dans cette section, nous comparons le Menarik au Complexe de Bushveld (Lower Zone et Lower Critical Zone) et au Complexe de Stillwater (Peridotite Zone). Des sections spécifiques du Bushveld et du Stillwater sont utilisées compte tenu de leurs natures ultramafiques. Premièrement, une comparaison pétrologique montre que le Menarik est similaire à la Lower Zone et à la Lower Critical Zone du Complexe de Bushveld et à la Peridotite Zone de la Série Ultramafique du Complexe de Stillwater (Tableau 7.3).

| Comparaisons Menarik/Bushveld/Stillwater |                            |                           |                          |  |  |
|------------------------------------------|----------------------------|---------------------------|--------------------------|--|--|
|                                          | Menarik                    | Bushveld                  | Stillwater               |  |  |
| Olivine                                  | Cumulat,                   | Cumulat,                  | Cumulat,                 |  |  |
|                                          | Fo 84-89 (2)               | Fo 82-89                  | Fo 79-90 (US)            |  |  |
|                                          | Fo 81 (1)                  |                           | Fo 84-86 (PZ)            |  |  |
| Орж                                      | Cumulat, intercumulat (?), | Cumulat,                  | Cumulat                  |  |  |
|                                          | En (?)                     | En 90-85, LZ              |                          |  |  |
|                                          |                            | En 88-70, LCZ             |                          |  |  |
| Сря                                      | Phase PC ou intercumulat,  | Phase PC ou intercumulat, | Intercumulat, mineur     |  |  |
|                                          | mineur, localement > 10%   | mineur, localement > 10%  |                          |  |  |
| Chromite                                 | Chromite disséminée et     | Chromite disséminée       | Chromite disséminée (PZ) |  |  |
|                                          | horizon de chromitite      | (LZ, LCZ) et horizon de   | et horizon de chromitite |  |  |
| ······                                   |                            | chromitite (LCZ)          | (PZ)                     |  |  |

**Tableau 7.3** Comparaison pétrologique du Complexe de Menarik avec le Complexe de Bushveld et le Complexe de Stillwater.

Note: Données provenant de(1) ce travail; (2) Rivard, 1984; Maier et Barnes, 1998; McCallum, 1996. La Lower Critical Zone (LCZ) et la Lower Zone (LZ) sont utilisées pour le Bushveld. La Ultramafic Series (US) et la Peridotite Zone (PZ) sont utilisées pour le Stillwater.

Les spectres de TR du CDM présentent des similitudes avec la LZ et la LCZ malgré un enrichissement en TR légères plus marqué dans les roches du Bushveld (Figure 7.11A-B). Cependant, la majorité des lithologies présentes dans ces sections du Bushveld sont des pyroxénites. Étant donné la prédominance de l'olivine dans le CDM, la figure 7.11C montre la similitude entre les harzburgites de la LZ et LCZ comparativement aux roches du Menarik (essentiellement des harzburgites). On remarque alors que les spectres de TR du Menarik sont légèrement moins enrichis en TR légères et quelque peu plus riches en TR lourdes malgré que les deux groupes de roches présentent des spectres de TR lourdes relativement plats.



**Figure 7.11** Comparaison des profils de TR du Menarik avec ceux de la LZ et LCZ du Complexe de Bushveld (zone ombragée). (A) ZU vs LCZ. (B) ZU vs LZ. (C) ZU vs les harzburgites de la LCZ et la LZ.

Les spectres de TR des komatiites du Lac Guyer montrent certaines analogies avec les spectres observés dans la ZU. Les spectres de TR lourdes sont plats dans les deux cas, mais les spectres des TR légères sont légèrement plus appauvris dans les komatiites que dans le Menarik (Figure 7.12). Cependant, on remarque que les spectres associés au groupe I du CDM montrent un appauvrissement similaire et ressemblent étrangement aux spectres des komatiites du Lac Guyer. Cependant, les teneurs absolues en TR sont plus faibles dans le Menarik compte tenu de la nature cumulative des roches du Complexe de Menarik.



**Figure 7.12** Comparaisons des spectres de TR de la ZU du CDM (zone ombragée, TR de la ZU)avec les spectres des komatiites du Lac Guyer. (données des komatiites tirées de Stamatelopoulou-Seymour et al., 1983).

#### 7.5 Modèle métallogénique

Le modèle magmatique unifié, proposé par Naldrett et al. (1990), explique relativement bien la formation des horizons de chromite et la concentration des ÉGP dans les intrusions litées. Ce modèle fait appel à quatre étapes de formation de niveaux enrichis en ÉGP associés avec des sulfures ou avec des horizons de chromitites (Figure 7.13).



Figure 7.13 Section hypothétique à travers une intrusion litée montrant les différents types de chromitites et dépôt de sulfures enrichis en ÉGP. Les différentes minéralisations sont le résultat de la cristallisation fractionnée, du mélange magmatique (mélange de deux magmas ou plus) et d'un enrichissement de la minéralisation par l'entremise d'une zone de raffinage (Modifiée de Naldrett et al., 1990). Détails dans le texte.

L'étape I consiste, dans la zone ultramafique en profondeur, en un mélange entre de nouveaux flux de magma et le magma résiduel. Ce processus de mélange intervient avant que le magma du réservoir atteigne un niveau critique de saturation en soufre. À ce moment, les chromitites ne sont pas enrichies en sulfures et sont pauvres en Pt et Pd. Il est tout même important de mentionner que même si les chromitites sont considérées comme "pauvres" en ÉGP (par rapport aux reefs), elles peuvent contenir environ un à deux g/t d'ÉGP. Cette étape est impliquée dans la formation des chromitites de la Lower Zone du Bushveld et de la majorité des chromitites du Stillwater. La saturation en S de la zone II est le résultat de la cristallisation fractionnée sans mélange magmatique. Les zones minéralisées 2 et 3 du Great Dykes font partie de ce groupe. Ce mode de formation de minéralisations en ÉGP peut se produire n'importe où à l'intérieur de l'intrusion. Il dépend uniquement du degré de saturation en S initial du magma en présence. Dans le magma résiduel, lors de l'apparition du plagioclase sur le liquidus, la courbe de saturation du S est relativement plate et l'apport de nouveaux magmas entraîne le magma hybride dans le champ de saturation des sulfures. Dans ce cas, on peut former des chromitites enrichies en sulfures et en ÉGP (comme le UG-2) ou encore on peut former des horizons riches en ÉGP mais particulièrement enrichis en chrome (sans pour autant être des chromitites) comme le Merensky Reef. L'étape IV concerne la formation de gisement de type brèche d'intrusion comme celle du Lac des Iles (Canada). Dans ce cas, le niveau de fractionnement élevé des ÉGP n'est probablement pas directement relié à une minéralisation hydrothermale. Celui-ci serait plutôt le résultat d'un enrichissement de la minéralisation magmatique (zone de raffinage) par les volatiles qui induisent la fusion partielle des roches minéralisées permettant ainsi d'enrichir le liquide sulfuré en ÉGP.

Définitivement, l'étape IV, où la minéralisation est le résultat d'un enrichissement de la minéralisation par une zone de raffinage, est totalement à exclure. L'étape II est également à exclure parce que la cristallisation fractionnée peut facilement produire des niveaux enrichis en ÉGP mais très difficilement les horizons rythmiques de chromitites du Menarik. L'étape III fait appel au mélange d'un magma très fractionné (apparition du plagioclase au liquidus) avec le magma résiduel pour former une minéralisation de type UG-2. Dans le cas du Menarik,

nous n'observons pas la précipitation du plagioclase comme minéral cumulat dans la Zone Ultramafique. De plus, la géochimie des unités de la ZU suggère le mélange d'un magma légèrement fractionné (similaire au magma primitif) pour expliquer la formation des lits de chromitites du Menarik. Compte tenu de ce fait, le mélange magmatique ne peut provoquer une brusque saturation en sulfures (Figure 7.15, étape I). L'ensemble des observations permet de conclure que les lits de chromite riches en ÉGP du CDM se sont probablement formés précocement lors de l'étape I. La formation des chromitites du Menarik ressemblerait beaucoup plus au chromitites du Complexe de Stillwater qu'à celles du Bushveld. Par contre, le contenu en ÉGP des chromitites du Menarik semble légèrement supérieur à celui observé dans le Stillwater. Il est possible de produire des chromitites enrichies en ÉGP dans l'étape I comme en témoigne les caractéristiques de la chromitite A du Stillwater (Figure 7.16). Dans cette chromitite, les concentrations plus élevées pourraient résulter de l'atteinte d'une saturation en S du mélange par un autre processus. Mathez (1999) suggère que la précipitation simultanée de la chromite et des sulfures est le résultat de la cristallisation de la chromite qui amène le magma vers une saturation en S. Ce modèle est une variante du modèle de Mathez (1976) qui suggère une augmentation de la saturation en S lors de la cristallisation de l'olivine. Lors du refroidissement, les sulfures réagissent avec la chromite et produisent une chromite plus riche en fer créant ainsi un excès de S perdu en partie dans la vapeur et dans les alliages résiduels des ÉGP. La recristallisation produirait de nouveaux grains de chromite et favoriserait le développement de minéraux du groupe du platine (Mathez, 1999). Cet enrichissement pourrait être également le résultat d'une redistribution des métaux de base et des métaux précieux par un facteur de 2 ou 3 (Meurer et al., 1999) Ce modèle a été utilisé pour expliquer l'origine des minéralisations d'ÉGP dans la Middle Banded series du Stillwater.



**Figure 7.14** Projection des concentrations des ÉGP ( $\Sigma$  ÉGP) pour des chromitites des complexes de Bushveld et de Stillwater en fonction de la stratigraphie (Modifiée de Naldrett et al., 1990). La zone ombragée représente les concentrations des  $\Sigma$  ÉGP des chromitites et chromitites à silicate compte tenu que nous avons pu déterminer la position stratigraphique des différents échantillons.

### 7.6 Travaux futurs

Cette section consiste à faire le point sur quelques problèmes qui n'ont pas été résolus durant ce mémoire de maîtrise. Également, nous voudrions signaler quelques nouveaux problèmes qui ont été mis à jour durant les présents travaux sur le Complexe de Menarik.

La géométrie du Complexe de Menarik est de mieux en mieux. Cependant, le couplage des données géologiques de surface et de forages est essentiel à la poursuite des travaux et permettrait l'élaboration d'un modèle tridimensionnel de l'intrusion. Dans un tel contexte, l'établissement précis de la stratigraphie de l'intrusion et de la continuité de celle-ci pourrait avoir de grandes implications pour l'exploration des minéralisations en Cr-ÉGP.

Le comportement et le potentiel en ÉGP du CDM sont maintenant mieux connus. Cependant, l'étude des platinoïdes est restreinte à deux indices parmi les 32 existants. Il serait intéressant et même important de connaître l'extension latérale de ces minéralisations platinifères. De plus, une coupe-type, à travers l'intrusion complète, pourrait être réalisée pour identifier les variations des rapports Cu/Pd et Cu/Pt. Les variations de ces rapports pourraient probablement orienter les nouveaux travaux d'exploration pour les minéralisations d'ÉGP du Menarik.

Le rapport isotopique du strontium (<sup>87</sup>Sr/<sup>86</sup>Sr) est un outil fréquemment utilisé pour expliquer l'origine des intrusions stratiformes. Les variations de ce rapport isotopique pourraient être utilisées pour mettre en évidence d'éventuels mélanges, si il existe bien, des mélanges de magmas qui sont difficiles à établir uniquement sur la base des données actuelles. Des variations importantes du <sup>87</sup>Sr/<sup>86</sup>Sr ont été observées au niveau du Merensky Reef dans le Bushveld (Kruger et Marsh, 1982; Sharpe, 1985) suggérant que la minéralisation en ÉGP soit génétiquement relié au mélange de magma de composition très contrastée (Irvine et al., 1982).

Finalement, le volet minéralogique de ce projet a permis de caractériser les minéralisations en Cr et ÉGP. Malgré l'altération de la chromite (transformation en ferritchromite), la concentration en  $Cr_2O_3$  est relativement constante. Les hautes teneurs en fer ferrique de la chromite résultent du remplacement de l'aluminium par le fer ferrique. Une méthode métallurgique appropriée (ex. chloruration à haute température de la chromite) pourrait peut-être améliorer la qualité du spinelle chromifère de cette intrusion. La minéralisation platinifère présente des teneurs très intéressantes dans les chromitites et augmente la rentabilité de l'exploitation de la chromite. Cependant, la minéralogie platinifère est très finement grenue et pourrait entraîner des problèmes importants lors de la séparation.

#### 7.6 Synthèse

Le tableau 7.4 présente les principales caractéristiques de cette intrusion mafique-ultramafique de la Baie James.

Le CDM est caractérisé par deux séquences de cristallisation. L'une est associée à la Zone Ultramafique (ZU) et présente des cumulats lités (75 %) d'affinité komatiitique ou picritique tandis que l'autre est reliée à la Zone Mafique (ZM) et montre des gabbros (25 %) d'affinité tholéiitique compte tenu de l'apparition précoce du plagioclase dans la séquence de cristallisation.

Le fractionnement des roches du Menarik est contrôlé essentiellement par l'accumulation de l'olivine et de la chromite. Les pyroxènes (Opx  $\pm$  Cpx) influencent beaucoup moins l'évolution géochimique des roches du CDM. Les spectres de TR sont caractérisés par de très faibles teneurs et montrent des tendances subchondritiques. On observe un léger enrichissement en TR légères dans plusieurs spectres de TR des roches du Menarik et en particulier dans les chromitites et les chromitites à silicate.

Les signatures en ÉGP des roches du Menarik montrent des teneurs anomales pour des roches de ce type. Les roches ultramafiques sont généralement enrichies en P-ÉGP et I-ÉGP tandis que les roches mafiques sont appauvries en ÉGP. Les teneurs absolues les plus élevées en ÉGP se localisent dans les chromitites, les chromitites à silicate et dans les péridotites adjacentes.

Le modèle le plus probable, pour la formation des horizons de chromitites et des horizons enrichis en ÉGP fait appel à un mélange magmatique de magmas de même affinité géochimique peut être combiné avec un faible apport de contamination crustale. La ZU du CDM est probablement la racine d'un ancien lopolite ou d'un conduit magmatique où les minéralisations en chrome et en (ou les) platinoïdes ont pu se développer.

|                                      | Complexe de Menarik                                          |                         |  |  |  |
|--------------------------------------|--------------------------------------------------------------|-------------------------|--|--|--|
|                                      | Zone Ultramafique                                            | Zone Mafique            |  |  |  |
| Séquence de                          | ZU                                                           | ZM                      |  |  |  |
| cristallisation                      | Ol+Chro-Opx-Cpx                                              | PG-Ol+Chro-Px           |  |  |  |
| Affinité pétrogénétique              | Komatiitique ou picritique                                   | Tholéiitique            |  |  |  |
| Mg#                                  | 71-93                                                        | 56-78                   |  |  |  |
| Caractéristiques des TR              | Sub-chondritique,                                            | Sub-chondritique,       |  |  |  |
|                                      | - Enrichissement TR                                          | - Enrichissement TR     |  |  |  |
|                                      | légères, spectres plats de                                   | légères, spectres plats |  |  |  |
|                                      | TR lourdes                                                   | de TR lourdes           |  |  |  |
| Caractéristiques des ÉGP             | Fortement enrichie en                                        | Sous le seuil de        |  |  |  |
|                                      | P-ÉGP/enrichie en I-ÉGP                                      | détection (<6 ppb)      |  |  |  |
| Magma parent                         | - Magma primitif                                             | - Magma tholéiitique    |  |  |  |
|                                      | komatiitique/picritique                                      |                         |  |  |  |
|                                      | - Saturé en Cr                                               |                         |  |  |  |
|                                      | - Saturé en SiO2                                             |                         |  |  |  |
| Contamination possible               | Tona                                                         | alite                   |  |  |  |
| Taux d'assimilation                  | 5-10%                                                        |                         |  |  |  |
| Pétrogénèse                          | Mélange de magma de même affinité géochimique                |                         |  |  |  |
|                                      | (Komatiitique/picritique), +/- de contamination crustale     |                         |  |  |  |
|                                      | (tonalite)                                                   |                         |  |  |  |
| Modèle métallogénique                | - Minéralisations d'ÉGP magmatiques                          |                         |  |  |  |
|                                      | Mélange magmatique entraînant:                               |                         |  |  |  |
|                                      | $\Rightarrow$ la saturation en chrome (chromitites)          |                         |  |  |  |
|                                      | $\Rightarrow$ la saturation en S entraînant la précipitation |                         |  |  |  |
|                                      | de sulfures (exsolution des ÉGP)                             |                         |  |  |  |
| - Remobilisation des ÉGP magnatiques |                                                              |                         |  |  |  |
|                                      | $\Rightarrow$ MGP similaires dans les chromitites et         |                         |  |  |  |
|                                      | les filonets de sulfures                                     | ets de sulfures         |  |  |  |
|                                      | ⇒Assemblages de basses températures pour les MGP             |                         |  |  |  |
|                                      | (Sb, Te, Bi, As)                                             |                         |  |  |  |

 Tableau 7.4
 Sommaire de la pétrogenèse et de la géochimie du Complexe de Menarik.

L'aspect important qui ressort de ce chapitre est certainement le potentiel économique de l'intrusion de Menarik. On retrouve la plupart des conditions à la formation d'un gisement de Cr-ÉGP dans le secteur du lac Menarik. La géochimie des TR et la composition de la chromite indiquent une similitude avec d'autres grandes intrusions stratiformes comme le Bushveld et le Stillwater. La source de l'intrusion est un magma primitif ayant une température suffisante de fusion pour dissoudre les ÉGP du manteau. La ségrégation des sulfures ne s'est pas effectuée en profondeur ce qui est confirmé par le rapport Cu/Pd généralement inférieur à celui du manteau. De nombreuses conditions favorables sont présentes dans le cas du Complexe de Menarik qui suggère un excellent potentiel pour le développement d'un gisement de chrome mais également pour les minéralisations en platinoïdes.

## **CHAPITRE VIII - CONCLUSION**

La mise en œuvre de divers types de résultats (pétrographique, minéralogique et géochimique) a permis de caractériser le Complexe de Menarik. Les diverses observations permettent de supporter les conclusions suivantes:

- La cartographie a permis de clarifier la nature des structures retrouvées dans • le Complexe de Menarik, soit des structures d'origine primaire et secondaire. La principale structure primaire observée est le litage compositionnel souligné, dans la ZU, par les horizons de chromitite et souligné, très localement dans la ZM par un litage compositionnel dans les gabbros. Les plis tectoniques et les failles fragiles tardives correspondent aux structures secondaires observées régionalement sur le terrain. D'autres structures magmatiques ont été observées. Par exemple, des structures de chenaux, des granoclassements, du fluage, la présence d'enclaves de dunite dans les chromitites ou la présence de blocs de chromitites à s!ilicate rythmique sont retrouvés dans les harzburgites et la présence de xénolites de tonalite au contact inférieur del'intrusion. La présence de ces structures indique un milieu de déposition dynamique (courants magmatiques, déformation magmatique, compaction,...) plutôt qu'une simple déposition gravitationnelle des cristaux cumulats dans une chambre magmatique.
- À l'exception de la chromite et de quelques pyroxènes, la minéralogie primaire de l'intrusion est très peu préservée. Tous les minéraux primaires sont remplacés par la serpentine, la chlorite, la trémolite, le talc et des carbonates. Les roches ultramafiques, basés sur le calcul des minéraux normatifs et l'estimation modale en lame mince, sont essentiellement des dunites, des harzburgites et des lherzolites caractérisées par des textures adcumulats à mésocumulats où l'olivine et l'orthopyroxène sont les cumulats. Le clinopyroxène est généralement une phase accessoire interstitielle. La chromite est généralement idiomorphe. La migration de l'aluminium de la
structure cristalline de celle-ci (transformation en ferritchromite) favorise le développement de la chlorite au détriment de la serpentine.

- Des horizons stratiformes de chromitite platinifère et des sulfures filoniens riches en ÉGP-Ni-Cu représentent les deux principaux types de minéralisations dans la ZU du CDM. Les minéralisations chromifères du CDM se présentent sous trois faciès distincts : 1) chromitite et chromitite à silicate en lits massifs de 30 cm à 1 m (> 50 % chromite); 2) lherzolite/harzburgite à chromite en banc homogène de 5-30 cm (< 50% chromite); 3) lherzolite/harzburgite en alternance rythmique de chromitite et/ou de lherzolite/harzburgite à chromite en lits  $\leq 3$  cm. Dans le CDM, deux types de minéralisations en ÉGP ont été identifiés. Le premier est une minéralisation syngénétique en ÉGP. Il est caractérisé par la présence de minéraux du groupe du platine (MGP) en inclusion dans la chromite. Le second type de minéralisation est épigénétique. Il est constitué de MGP de basse température (assemblages Sb-Te-Bi-As) présents sous la forme de sulfures disséminés à massifs associés à des veinules de carbonate et de magnétite. La minéralisation en sulfures filoniens est spatialement associée à des failles tardives. Cette minéralisation tardive est également présente dans les nodules de silicates des chromitites.
- Malgré la grande variété des lithologies de la ZU du CDM (chromitite, dunite, harzburgite, lherzolite, webstérite à olivine, webstérite, orthopyroxénite), les données géochimiques indiquent un contrôle important de l'olivine et de la chromite lors de la différenciation du CDM. La présence de pseudomorphes, la géochimie et la norme ont permis d'effectuer une reconstitution de la minéralogie primaire des roches et ceci indépendamment de la qualité de la préservation des minéraux primaires des roches du CDM.
- Les travaux n'ont pas permis d'établir la stratigraphie de l'intrusion.
   Cependant, le CDM a été divisé en une Zone Mafique et une Zone Ultramafique. La Zone Ultramafique est subdivisée en trois parties: inférieure, intermédiaire et supérieure. La partie inférieure est

principalement constituée de dunites et de harzburgites avec des chromitites. La partie intermédiaire est constituée essentiellement de harzburgites, de dunites, de webstérites à olivine et de chromitites. La partie supérieure est constituée d'harzbugites, de lherzolites poecilitiques et de chromitites.

- Compte tenu de la dominance de la chromite et de l'olivine dans les roches du CDM, les différentes lithologies sont similaires au niveau compositionnel. Les spectres de TR sont sub-chondritiques et ce, malgré un léger enrichissement en TR légères. Par contre, certains spectres sont légèrement appauvris en TR légères. Les concentrations en ÉGP sont anomales dans la plupart des roches. Les spectres normalisés au manteau montrent systématiquement une anomalie négative du Pt par rapport au Pd. La majorité des spectres des roches silicatées ressemblent aux spectres de chromitites (moins enrichis en I-ÉGP) en raison de la grande proportion de chromites dans les roches silicatées.
- La pétrogenèse de cette intrusion implique un magma d'affinité très riche en magnésium (magma komatiitique ou picritique) qui s'est injecté dans les roches du Groupe de Yasinski et une tonalite des Intrusions de Duncan. La minéralisation en chrome et ÉGP est probablement le résultat d'un mélange de magma primitif avec un magma de même affinité différencié entraînant ainsi la formation des horizons de chromitites. Simultanément, le mélange de magma amène la saturation en S précipitant ainsi les ÉGP avec la chromite. Par la suite, un fluide de basse température aurait probablement remobilisé les assemblages platinifères primaires à proximité des roches ultramafiques riches en chromites. Cette remobilisation résulterait en la formation des différents assemblages de MGP de Sb-Te-Bi-As.
- Le Complexe de Menarik partage plusieurs caractéristiques avec d'autres intrusions stratiformes comme le Buhsveld ou le Stillwater. Le magma est dominé par l'olivine et l'orthopyroxène. Par contre, l'influence de l'orthopyroxène n'est pas aussi importante dans le cas du CDM que dans le cas du Complexe de Bushveld ou du Stillwater où l'on retrouve des niveaux

de bronzitite (orthopyroxénite). La composition de la chromite est similaire et les spectres de TR sont similaires malgré un enrichissement en TR légères moins prononcé suggérant une contamination beaucoup moins importante. Les TR dans les roches du Groupe I montrent de fortes similitudes avec les komatiites du Lac Guyer de la sous-province de La Grande.

 L'essentiel de la minéralisation du Complexe de Menarik est relié aux horizons de chromitites pour leur contenu en chrome. La minéralisation en ÉGP associée à ces horizons est également plus prometteuse quire la minéralisation associée aux filonets de sulfures, et ce, malgré que les concentrations soient plus élevées dans les filonets. La minéralisationes en ÉGP dans les filonets de sulfures est très discontinue.

......

#### **RÉFÉRENCES BIBLIOGRAPHIQUES**

- Abzalov, M.Z., 1998. Chrome-spinels in gabbro-wehrlite intrusions of the Pechanga area, Kola Peninsula, Russia: emphasis on alteration features. Lithos, 43, 109-134.
- Alapieti, T.T., Kujanpää, J., Lahtinen, J.J., Papunen, H., 1989. The Kemi stratiform chromitite deposit, Northern Finland. Economic Geology, 84, 1057-1077.
- Allard, P., 1995. Rapport de la campagne de forage et prospection 1994. GM 53928, Rapport statutaire déposé au Ministère des Ressources naturelles par Ressources minières Pro-Or, 48 pp.
- Amossé, J., Allibert, M., Fischer, W., Piboule, M., 1987. Étude de l'influence des fugacités d'oxygène et de soufre sur la différenciation des platinoïdes dans les magmas ultramafiques. C.R. Acad. Sc. Paris, 304, Série II (19), 1183-1185.
- Amossé, J., Allibert, M., Fischer, W., Piboule, M., 1990. Experimental study of the solubility of platinum and iridium in basic silicate melts - Implications for the differentiation of platinum-group elements during magmatic processes. Chemical Geology, 81, 45-53.
- Amossé, J., Allibert, M., Ostrosi, B., Qoku, E., Lleshi, B., 1992. Comportement géochimique et minéralogie des éléments du groupe du platine (PGE) dans le gisement de Krasta (Albanie). C.R. Acad. Sci. Paris, 315(2), 559-564.
- Amossé, J., Allibert, M., 1993. Partioning of iridium and platinum between metals and silicate melts: evidence for passivation of the metals depending on fO<sub>2</sub>. Geochemica et Cosmochemica Acta, 57 (2), 2395-2398.
- Ancey, M., Bastenaire, F., Tixier, R., 1979. Applications des méthodes statistiques en microanalyse, Microanalyse microscopie électronique à balayage. Dans : Microanalyse microscopie électronique à balayage, Édition de Physique, Orsay, 323-344.
- Arndt, N.T., 1986. Differentiation of komatiite flows. Journal of Petrology, 27 (2), 279-301.
- Arndt, N.T., Lesher, C.M., 1992. Fractionation of REEs by olivine and origin of Kambalda komatiites, Western Australia. Geochimica et Cosmochimica Acta, 56, 4191-4204.
- Baldwin, A.B., 1959. Report Project no 286-Yasinski Lake area, New Quebec. Main Exploration Company Ltd. GM 10200, Ministères des Ressources naturelles du Québec.

- Ballhaus, C.G., Stumpfl, E.F., 1986. Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid intrusions. Contributions to Mineralogy and Petrology, 94, 193-204.
- Barnes, S.-J., Naldrett, A.J., Gorton, M.P., 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology, 53, 303-323.
- Barnes, S.-J., Naldrett, A.J., 1985. Geochemistry of the J-M (Howland) Reef of the Stillwater Complex, Minneapolis Adit Area. I. Sulfide chemistry and sulfide-olivine equilibration. Economic Geology, 80, 627-645.
- Barnes, S.-J., Naldrett, A.J., 1986. Geochemistry of the J-M (Howland) Reef of the Stillwater Complex, Minneapolis Adit Area. I. Sulfide chemistry and sulfide-olivine equilibration - a reply. Economic Geology, 81, 203-206.
- Barnes, S.-J., Boyd, R., Korneliussen, A., Nilsson, L.-P., Often, M., Pederson, R.B., Robins, B., 1988. The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: Examples from Norway. Geo-platinum 87, 113-143.
- Barnes, S.-J., Couture, J.-F., Poitras, A., Tremblay, C., 1993. Les éléments du groupe du platine dans la partie québécoise de la ceinture de roches vertes de l'Abitibi. ET 91-04, Ministère de l'Énergie et des Ressources du Québec, 100 pp.
- Barnes, S.-J., Therrien, M.-C., 1996. Potentiel de la Province de Grenville pour des gîtes du groupe du platine. MB 96-03, Ministère des Ressources naturelles du Québec, 100 pp.
- Barnes, S.J., 1998. Chromite in komatiites, 1. Magmatic controls on crystallization and composition. Journal of Petrology, 39 (10), 1689-1720.
- Barnes, S.J., 2000. Chromite in komatiites, II. Modification during Greenschist to Mid-Amphibolite Facies Metamorphism. Journal of Petrology, 41 (3), 387-409.
- Barrie, T.C., 1996. Gîtes magmatiques d'éléments du groupe du platineDans: Géologie des types de gîtes minéraux du Canada, # 8. Commission géologique du Canada, 674-684.
- Beeson, M.H., Jackson, E.D., 1969. Chemical composition of altered chromites from the Stillwater Complex, Montana. The American Mineralogist, 54, 1084-1100.
- Bevins, R.E., Robinson, D., Rowbotham, G., 1991. Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer. Journal of Metamorphic Geology, 9 (6), 711-721.

- Bédard, J.H., Hébert, R., 1996. The lower crust of the Bay of Islands ophiolite, Canada: Petrology, mineralogy, and the importance of syntexis in magmatic differentiation in ophiolites and at ocean ridges. Journal of Geophysical Research, 101 (B11), 25105-25124.
- Bédard, J.H., Hébert, R., 1998. Formation of chromitites by assimilation of crustal pyroxenites and gabbros into peridotic intrusions: North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland, Canada. Journal of Geophysical Research, 103 (B3), 5165-5184.
- Bliss, N.W., MacLean, W.H., 1975. The paragenesis of zoned chromite from central Manitoba. Geochimica et Cosmochimica Acta, 39, 973-990.
- Borduas, B., 1979. Recherche de nickel en d'amiante dans la région du lac Sakami. Rapport interne de la SDBJ, Société de Développement de la Baie James.
- Boudreau, A.E., Mathez, E.A., McCallum, I.S., 1986. Halogen geochemistry of the Stillwater and Bushveld Complexes: Evidence for transport of the platinum-group elements by Cl-rich fluids. Journal of Petrology, 27 (4), 967-986.
- Bowen, N.L., 1928. The evolution of igneous rocks. Princeton University Press, Princeton, New Jersey, 332 pp.
- Burkhard, D.J.M., 1993. Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochimica et Cosmochimica Acta, 57, 1297-1306.
- Cabri, L.J., Laflamme, J.H.G., 1976. The mineralogy of the platinum-group elements from some copper-nickel deposits of the Sudbury area, Ontario. Economic Geology, 71, 1159-1195.
- Cabri, L.J., Harris, D.C., Nobiling, R., 1984. Trace silver analyses by proton microprobe in ore evaluation. In: V. Kudryk, Corrigan, D.A., Lang, W.W., (Editor), Precious Metals: Mining, Extraction and Processing, Los Angeles, 93-100.
- Cameron, E.N., Emerson, M.E., 1959. The origin of certain chromite deposits in the eastern part of the Bushveld Complex. Economic Geology, 54, 1151-1213.
- Cameron, E.N., Des borough, G.A., 1969. Occurrence and characteristics of chromite deposits - Eastern Bushveld Complex. Economic Geology, Monograph 4, 23-40.
- Cameron, E.N., 1977. Chromite in the central sector of the Eastern Bushveld Complex, South Africa. The American Mineralogist, 62, 1082-1096.
- Cameron, E.N., 1980. Evolution of the lower critical zone, central sector, Eastern Bushveld Complex, and its chromite deposits. Economic Geology, 75, 845-871.

- Campbell, I.H., Naldrett, A.J., Barnes, S.J., 1983. A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater Complexes. Journal of Petrology, 24 (2), 133-165.
- Campbell, I.H., Murck, B.W., 1993. Petrology of the G and H chromitite zones in the mountain view area of the Stillwater Complex, Montana. Journal of Petrology, 34 (Part 2), 291-316.
- Cantin, N., 1988. L'étude pétrographique des serpentines dans les roches ultramafiques du Complexe Ophiolitique de Thetford Mines. Projet de fin d'étude (non-publié), Université Laval, Ste-Foy.
- Cathelineau, M., Nieva, D., 1985. A chlorite solid solution geothermometer: the Los Azufres (Mexico) geothermal system. Contributions to Mineralogy and . Petrology, 91, 235-244.
- Chartrand, F., Gauthier, M., 1995. Cadre géologique et potentiel minéral des roches archéennes du bassin de La Grande Rivière, Baie James. Pro-95-06, Ministère des Ressources naturelles, 8 pp.
- Crocket, J.H., Teruta, Y., 1976. The relative importance of sulphides, spinels, and platinoid minerals as carriers of Pt, Pd, Ir and Au in Merensky Reef at Western Platinum Limited, near Marikana, South Africa. Economic Geology, 71, 1308-1323.
- Crocket, J.H., 1981. Geochemistry of the platinum group elements. In: Cabri, L.J. (Editor), Platinum group elements: Mineralogy, geology, recovery: Canadian Institution of Mining and Metallurgy, Special Volume 23, 47-64.
- Daltry, V.D.C., Wilson, A.H., 1997. Review of platinum-group mineralogy: compositions and elemental associations of the PG-minerals and unidentified PGE-phases. Mineralogy and Petrology, 60, 185-229.
- DeBari, S., M., Coleman, R.G., 1989. Examination of the deep levels of an Island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. Journal of Geophysical Research, 94 (84), 4373-4391.
- Deer, W.A., Howie, R.A., Zussman, J., 1992. An introduction to the rock-forming minerals. Longman, Hong Kong, 696 pp.
- Dick , H.J.B., Bullen, T., 1984. Chromian spinel as apetrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 886, 54-76.
- Dickey, J.S., Jr, 1975. A hypothesis of origin for podiform chromite deposits. Geochemica et Cosmochemica Acta, 39, 1061-1074.

- Duke, J.M., 1988. Magmatic segregation deposits of chromite. In: Geoscience Canada, Vol 14, Ottawa, 155-166.
- Duke, J.M., 1996a. Gites de chromite dans les roches mafiques et ultramafiques. Dans: Géologie des types de gîtes minéraux du Canada, # 8. Commission géologique du Canada, Ottawa, 685-686.
- Duke, J.M., 1996b. Gîtes stratiformes de chromite. Dans: Géologie des types de gîtes minéraux du Canada, # 8, Ottawa, Commission géologique du Canada, 687-691.
- Duke, J.M., 1996c. Gîtes podiformes de chromite. Dans: Géologie des types de gîtes minéraux du Canada, # 8, Ottawa, Commission géologique du Canada, 692-696.
- Dungan, M.A., 1979. A microprobe study of antigorite and some serpentine pseudomorphs. The Canadian Mineralogist, 17, 771-784.
- Eade, K.E., Heywood, W.W., Lee, H.A., 1957. Sakami Lake area, New Quebec. Geological Survey of Canada, Map 23-1957.
- Eade, K.E., 1966. Fort George River and Kaniapiskau River (west half) map-areas, New Québec. memoir 339, Geological Survey of Canada, Memoir 339, 84 pp.
- Eales, H.V., Cawthorm, R.G., 1996. The Bushveld Complex. In: R.G.E. Cawthorm (Editor), Layered Intrusions. Developments in Petrology. Elsevier, Amsterdam, 181-229.
- Ernst, R.E., Buchan, K.L., Goutier, J., Leclair, A., Lamothe, D., 1998. Reconnaissance paleomagnetic study of diabase dykes of James Bay and Ashuanipi regions of Quebec. Programme et résumé, Réunion conjointe: Association Géologique du Canada, Association Minéralogique du Canada, Association Professionnelle des Géologues et Géophysiciens du Québec, Association Internationale des Hydrogéologues et Union Géophysique Canadienne, Vol 23, A-53.
- Evans, B.W., Frost, B.R., 1975. Chrome-spinel in progressive metamorphisme preliminary analysis. Geochimica et Cosmochimica Acta, 39: 959-972.
- Evans, A.M., 1993. Ore geology and industrial minerals : An introduction. B;ackwell Science Ltd, Cambridge, Massachusetts, 389 pp.

- Farrow, C.E.G., Watkinson, D.H., 1997. Diversity of precious-metal mineralization in footwall Cu-Ni-PGE deposits, Sudbury, Ontario; implications for hydrothermal models of formation. The The Canadian Mineralogist, 35, 817-839.
- Fleischer, M., 1955. Minor elements in some sulfide minerals. Economic Geology, 50th Anniversary Vol., 971-1024.
- Frisch, T., 1971. Alteration of chrome spinel in a dunite nodule from Lanzarote, Canary Islands. Lithos, 4, 83-91.
- Gait, R.J., 1964. The mineralogy of chrome spinels of the Bird River Sill, Manitoba. Unpublished M.Sc thesis, University of Manitoba, 64 pp.
- Gauthier, M., Chartrand, F., Larocque, M., 1996. Géologie de la région du lac Sakami (SNRC 33F), Territoire de la Baie James. MB 96-13, Ministère des Ressources naturelles du Québec, carte.
- Gauthier, M., Larocque, M., Chartrand, F., 1997. Cadre géologique, style et répartition des minéralisations métalliques du bassin de La Grande Rivière, Territoire de la Baie James. MB 97-30, Ministère des Ressources naturelles du Québec, 65 pp.
- Gévry, P., 1997a. (16 juillet 1997). Pro-Or: Importante campagne d'exploration et de forages à la Baie-James. Http//www.pro-or.com.
- Gévry, P., 1997b. (25 août 1997). Prospection fructueuse à la Baie-James. Http//www.pro-or.com.
- Gévry, P., 1997c. (6 octobre 1997). Début des sondages à la Baie-James. Http//www.pro-or.com.
- Gévry, P., 1998a. (22 décembre 1998). Mise à jour des activités dans Pro-Or. Http//www.pro-or.com.
- Gévry, P., 1998b. (22 octobre 1998). Mise à jour des activités dans Pro-Or. Http//www.pro-or.com.
- Gévry, P., 1998c. (25 février 1998). Pro-Or: Campagne de forages fructueuse pour Pro-Or à la Baie-James. Http//www.pro-or.com.
- Gévry, P., 1999 (6 septembre 1999). Mise à jour des activités dans Pro-Or. Http//www.pro-or.com.
- Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Fiory, C., Lifshin, E., 1981. Scanning electron microscopy and X-ray microanalysis; a text for biologists, material scientists, and geologists. Plenum Press, New York, 673 pp.

- Golightly, J.P., Arancibia, O. N., 1979. The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine from a nickeliferous laterite profile, Soroako, Indonesia. In: Wicks, F. J. (Editor), Serpentine mineralogy, petrology and paragenesis. The The Canadian Mineralogist, 17 (Part 4), 719-728.
- Gonthier, M., 1990. Propriété du lac Menarik: géologie et prospection, campagne 1990. GM 50363, Rapport statutaire déposé au Ministère des Ressources naturelles du Québec par Ressources minières Pro-Or, 48 pp.
- Goutier, J., Doucet, P., Beasoleil, C., Chalifour, S., Houlé, M., 1998a. Lac Kowskatehkamow (33F/06). Ministère des Ressources naturelles du Québec, carte SIGÉOM.
- Goutier, J., Doucet, P., Dion, C., Beasoleil, C., David, J., Parent, M., Dion, D.-J., 1998b. Géologie de la région du lac Kowskatehkamow (SNRC 33F/06). RG 98-16, Ministère des Ressources naturelles du Québec, 48 pp.
- Goutier, J., Doucet, P., Dion, C., Beasoleil, C., Dion, D.-J., 1998c. Géologie de la région du lac Esprit (SNRC 33F/05). RG 98-09, Ministère des Ressources naturelles du Québec, 39 pp.
- Goutier, J., Dion, C., David, J., Dion, D.-J., 1999a. Géologie de la région de la passe Chimusumini et du lac Vion (SNRC 33F/11 et 33F/12). RG 98-17, Ministère des Ressources naturelles du Québec, 41 pp.
- Goutier, J., Dion, C., Lafrance, I., David, J., Parent, M., Dion, D.-J.,, 1999b. Géologie de la région des lacs Langelier et Threefold (SNRC 33F/03 et 33F/04). RG 98-18, Ministère des Ressources naturelles du Québec, 52 pp.
- Goutier, J., Dion, C., Ouellet, M.-C., David, J., Parent, M., 2000. Géologie de la région des lacs Guillaumat et Sakami (SNRC 33F/02 et 33F/07). RG 99-15, Ministère des Ressources naturelles du Québec, 37 pp.
- Govindaraju, K., 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, 18, special issue, 158.
- Greenbaum, D., 1977. The chromitiferous rocks of the Troodos Ophiolite Complex, Cyprus. Economic Geology, 72 (7), 1175-1194.
- Gueddari, K., 1996. Approche géochimique et physico-chimique de la différentiation des éléments du groupe du platine (PGE) et de l'or dans le manteau supérieur Betico-Riftain et dans les xénolites de péridotites souscontinentales, These de doctorat (non-publiée), Université Joseph-Founier-Grenoble I, Grenoble, 305 pp.

- Gueddari, K., LaFlèche, M.R., Amossé, J., 1998. Extraction chimique des éléments du groupe du platine et de l'or et détermination de leurs teneurs par spectrométrie de masse à émission de plasma. Recherches en cours 1998-D, Commission géologique du Canada, 59-64.
- Harris, D.C., Cabri, L.J., Nobiling, R., 1984. Silver-bearing chalcopyrite, a principal source of silver in the Izok Lake massive sulfide deposit: confirmation by electron-and proton-microprobe analyses. The Canadian Mineralogist, 22, 493-498.
- Hawley, J.E., Nichol, I., 1961. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores. Economic Geology, 56, 467-487.
- Hey, M.H., 1954. A new review of the chlorites. Mineralogical Magazine, 30, 227-292.
- Hébert, R., Serri, G., Hekinian, R., 1989. Mineral chemistry of ultramafic tectonites and ultramafic to gabbroic cumulates from the major oceanic basins and northern Apennine ophiolites (Italy);. Chemical Geology, 77 (3-4), 183-207.
- Hébert, R., Adamson, A.C., Komor, S.C., 1990. Metamorphic petrology of ODP LEG 109, Hole 670A serpentinized peridotites: serpentinization processes at a slow spreading ridge environment. Proceedings of the Ocean Drilling Program, Scientific Results, 106/109, 103-115.
- Hill, R.R., P., 1974. The crystallization of spinel from basaltic liquid as function of oxygen fugacity. Journal of Geology, 82, 709-730.
- Hoatson, D.M., Keays, R.R., 1989. Formation of platiniferous sulfide horizons by crystal fractionation and magma mixing in the Munni Munni Layered Intrusion, West Pilbara Block, Western Australia. Economic Geology, 84, 1775-1804.
- Hoffman, M.A., Walker, D., 1978. Textural and chemical variations of olivine and chrome spinel in the East Dover ultramatic bodies, south-central Vermont. Geological Society of America Bulletin, 89, 699-710.
- Irvine, T.N., 1965. Chromian spinel as a petrogenetic indicator. Part I. Theory. Canadian Journal of Earth Sciences, 2, 648-672.
- Irvine, T.N., 1967. Chromian spinel as a petrogenetic indicator. Part II. Petrologic applications. Canadian Journal of Earth Sciences, 4, 71-103.
- Irvine, T.N., Smith, C.H., 1969. Primary oxide minerals in the layered series of the Muskox Intrusion. Economic Geology, Monograph 4, 76-94.
- Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8 (5), 523-548.

- Irvine, T.N., 1975. Crystallization sequences of the Muskox intrusion and other layered intrusions - II. Origin of chromitite layers and similar deposits of other magmatic ores. Geochimica et Cosmochimica Acta, 39, 991-1020.
- Irvine, T.N., 1977. Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation. Geology, 5, 273-277.
- Irvine, T.N., 1982. Terminology for layered intrusions. Journal of Petrology, 23 (2), 127-162.
- Irvine, T.N., Keinth, D.W., Todd, S.G., 1983. The J-M platinum palladium reef of the Stillwater Complex, Montana: II. Origin by double-diffusive convective magma mixing and implications for the Bushveld Complex. Economic Geology, 78, 1287-1334.
- Irvine, T.N., Sharpe, M.R., 1986. Magma mixing and the origin of stratiforme oxide ore zones in the Bushveld and Stillwater Complexes. In : Gallagher, M.J., Ixer, R.A., Neary, C.R., and Pritchard, H.M. (Editors), Metallogeny of basic and ultrabasic rocks. Institute of Mining and Metallurgy, London, 183-198.
- Jackson, E.D., 1969. Chemical variation in coexisting chromite and olivine chromitite zones of Stillwater Complex. Economic Geology, Monograh 4, 41-71.
- Jackson, S.E., Fryer, B.J., Gosse, W., Healy, D.C., Longerich, H.P., Strong, D.F., 1990. Determination of the precious metals in geological materials by inductively coupled plasma-mass spectrometry (ICP-MS) with nickel sulphide fire-assay collection and tellurium coprecipitation. Chemical Geology, 83, 119-132.
- Jaques, A., L., 1981. Petrology and petrogenesis of cumulate peridotites and gabbros from Marum Ophiolite Complex, Northern Papua New Guinea. Journal of Petrology, 22 (1), 1-40.
- Jarvis, I., Jarvis, K.E. and Hall, G.E.M., 1992. Inductively coupled plasma-atomic emission spectrometry in exploration geochemistry. Special issue; Geoanalysis. Journal of Geochemical Exploration, 44 (1-3), 139-200.
- Jenner, G.A., 1996. Trace element geochemistry of igneous rocks: geochemical nomenclature and analytical geochemistry. In: Wyman, D.A. (Editor) Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12, 51-77.
- Jensen, L.S., 1976. A new cation plot for classifying subalkalic volcanic rocks. Ontario Geological Survey; Miscellaneous, Paper 66.

- Keays, R.R., 1982. Palladium and iridium in komatiites and associated rocks: application to petrogenetic problems. In : Arndt, N.T. and Nisbet, E.G. (Editors), Komatiites, George Allen & Unwin, London, 435-457.
- Keays, R.R., Nickel, E.H., Groves, D.I., McGoldrick, P.J., 1982. Precious metals in volcanic peridotite-associated nickel sulfide deposits in Wester Australia. Part II: Distribution within the ores and host rocks at Kambalda. Economic Geology, 76, 1645-1674.
- Keays, R.R., 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 34, 1-18.
- Keays, R.R., 2000. Magmatic Ore-Forming Processes III. In: Exploration for Magmatic Ore Deposits (GEOL 5606). Courses notes, Departments of Earth Sciences, Laurentian University and University of Western Ontario.
- Keith, L.H., Crummett, W., Deegan, J., Jr., Libby, R.A., Taylor, J.K., Wentler, G., 1983. Principles of environmental analysis. Analytical Chemistry, 55, 2210-2216.
- Kimball, K.L., 1990. Effects of hydrothermal alteration on the compositions of chromian spinels. Contributions to Mineralogy and Petrology, 105, 337-346.
- Kruger, F.J., Marsh, J.S., 1982. Significance of Sr87/Sr86 ratios in the Merensky cyclic unit of the Bushveld complex. Nature, 298, 53-55.
- LaFlèche, M.R., Moorhead, J., Goutier, J., Fallara, F., 2000. Géochimie des roches volcaniques et des formations de fer du Groupe de Yasinski, sousprovince de La Grande. MB 200-13, Ministère des Ressources naturelles du Québec, 76 pp.
- Lago, B.L., Rabinowicz, M., Nicolas, A., 1982. Podiform chromite ore bodies: a genetic model. Journal of Petrology, 23 (1), 103-125.
- Lambert, D.D., Simmons, E.C., 1992. Magma evolution in the Stillwater Complex, Montana: II. Rare earth evidence for the formation of the J-M Reef. Economic Geology, 83, 1109-1126.
- Leake, B., E., 1978. Nomenclature of amphiboles. The Canadian Mineralogist, 16 (4), 501-520.
- Leblanc, M., Ceuleneer, G., 1992. Chromite crystallization in a multicellular magma flow: evidence from chromitite dike in the Oman ophiolite. Lithos, 27, 231-257.
- Leblanc, M., Nicolas, A., 1992. Les chromitites ophiolitiques. Chronique. de recherche. minière, no 507, 3-25.

- Liipo, J.P., Vuollo, J.I, Nykänen, V.M., Piirainen, T.A., 1995. Zoned Zn-rich chromite from the Näätäniemi Serpentinite Massif, Kuhmo greenstones belt, Finland. The Canadian Mineralogist, 33, 537-545.
- Lindsley, D., H., 1983. Pyroxene thermometry. American Mineralogist, 68, 477-493.
- Loferski, P.J., Lipin, B.R., 1983. Exsolution in metamorphosed chromite from Red Lodge district, Montana. American Mineralogist, 68, 777-789.
- Long, G.L., Winefordner, J.D., 1983. Limit of dectection: acloser look at the IUPAC definition. Analytical Chemistry, 55, 712A-724A.
- Macdonald, A.J., 1988. The platinum group element deposits: classification and genesis. In: Ore Deposit Models. Geoscience Canada, 14, 155-166.
- Maier, W.D., Barnes, S.-J., De Klerk, W.J., Teigler, B., Mitcell, A.A., 1996. Cu/Pd and Cu/Pt of silicate rocks in the Bushveld Complex: implications for platinum-group element exploration. Economic Geology, 91, 1151-1158.
- Maier, W.D., Barnes, S.-J., de Waal, S.A., 1998. Exploration for magmatic Ni-Cu-PGE sulphide deposits: a review of recent advances in the use geochemical tools, and their application to some South African ores. South African Journal of Geolology, 101 (3), 237-253.
- Maier, W.D., Barnes, S.-J., 1998. Concentrations of rare earth elements in silicate rocks of the Lower, Critical and Main Zones of the Bushveld Complex. Chemical Geology, 150, 85-103.
- Marchand, P., 1982. Campagne d'exploration 1981. Rapport interne de la SDBJ, Société de Développement de la Baie James.
- Marcotte, R., 1980. Gîtes et indices de chromite au Québec. DPV-724, Ministère de l'Énergie et Ressources du Québec, 58 pp.
- Mathez, E.A., 1976. Sulfur solubility and magmatic sulfides in submarine basalte glass. Journal of Geophysical Research, 81, 4269-4276.
- Mathez, E.A., 1989. Interactions involving fluids in the Stillwater and Bushveld complexes: Observations from the rocks In : Whitney, J.A. and Naldrett, A.J. (Editor), Ore deposition associated with magmas, 4. Reviews in Economic Geology, 167-179.
- Mathez, E.A., 1999. On factors controlling the concentrations of platinum group elements in layered intrusions and chromitites. In: Keaks, R.R., Lesher, C.M., Lightfoot, P.C., Farrow, C.E.G. (Editors), Dynamic processes in magmatic ore deposits and their application in mineral exploration. Geological Association of Canada, Short Course, Volume 13, 251-285.

- McCallum, I.S., 1996. The Stillwater Complex. In: R.G.E. Cawthorm (Editor), Layered Intrusions. Developments in Petrology. Elsevier, Amsterdam, 441-483.
- McDonough, W.F., Sun, S.-s., 1995. The composition of the Earth. Chemical Geology, 120, 223-253.
- Meurer, W.P., Willmore, C.C., Boudreau, A.E., 1999. Metal redistribution during fluid exsolution and migration in the Middle Banded series of the Stillwater Complex, Montana. Lithos, 47, 143-156.
- Mihalik, P., Saager, R., 1968. Chromite grains showing altered borders from the basal reef, Witwatersrand system. The American Mineralogist, 1543-1550.
- Morimoto, N., 1988. Nomenclature of pyroxenes. Mineralogical Magazine, 52, 535-550.
- Mortensen, J.K., Ciesielski, A., 1987. U-Pb zircon and sphene geochronology of Archean plutonic and orthogneissic rocks of the James Bay region and Bienville Domain, Quebec. In: Radiogenic Age and Isotopic Studies. Report 1, Paper 87-2, Geological Survey of Canada, 129-134.
- Naldrett, A.J., 1976. Ultramafic and related rocks: Their classification and genesis with special reference to the concentration of nickel sulfides and platinum-group elements. Economic Geology, 71, 1131-1158.
- Naldrett, A.J., Duke, J.M., 1980. Platinum metals in magmatic sulfide ores. Science, 208, # 4451, 1417-1424.
- Naldrett, A.J., 1981. Pt group element deposits. In: Cabri, L.C. (Editors) Platinum group elements: mineralogy, geology, geochemistry: Canadian Institute Mining and Metallurgy, Special Volume 23, 197-232.
- Naldrett, A.J., 1989. Magmatic sulfide deposits. Oxford University Press, Oxford, New York, 196 pp.
- Naldrett, A.J., Brügmann, G.E., Wilson, A.H., 1990. Models for the concentration of PGE in layered intrusions. The Canadian Mineralogist, 28, 389-408.
- Naldrett, A.J., 1993. Models for the formation of strata-bound concentrations of platinum-group elements in layered intrusions. In: Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M. (Editor), Mineral Deposit Modeling. Geological Association of Canada, 373-387.
- Naslund, H.R., McBirney, A.R., 1996. Mechanisms of formation of igneous layerind. In: R.G.E. Cawthorm (Editor), Layered Intrusions. Developments in Petrology. Elsevier, Amsterdam, 1-43.

- Nesbitt, R.W., Sun, S.S., Purvis, A.C., 1979. Komatiites; geochemistry and genesis nickel-sulfide and platinum-group-element deposits. Mineralogical Association of Canada nickel sulfide field conference, 17 (Part 2), 165-186.
- Nielsen, R.L., 1991. CHAOS 5 (Fortran) program to model petrologic processes. Oceanogr., Oregon State University, Corvallis, Oregon.
- Niu, Y., Waggoner, D.G., Sinton, J.M., Mahoney, J.J., 1996. Mantle source heterogeneity and melting processes beneath seafloor spreading centers : The East Pacific Rise, 18°-19° S. Journal of Geophysical Research, 101 (12), 27,711-27,33.
- Niu, Y., Batiza, R., 1997. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth and Planetary Science Letters, 148, 471-483.
- Oguri, K., Shimoda, G., Tatsumi, Y., 1999. Quantitative determination of gold and the platinum-group elements in geological samples using improved NiS fire-assay and tellurium coprecipitation with inductively coupled plasmamass spectrometry (ICP-MS). Chemical Geology, 157, 189-197.
- Ohnenstetter, M., Ohnenstetter, D., Johan, Z., Fontaine, C., 1994. Où sont les minéralisations des intrusions mafiques-ultramafiques? Géochronique, 49, 21-24.
- Onyeagocha, A.C., 1974. Alteration of chromite from the Twin Sisters Dunite, Washington. The American Mineralogist, 59, 608-612.
- Oshin, I.O., Crocket, J.H., 1982. Noble metals in Thetford mines ophiolites, Québec, Canada; Part I: distribution of gold, iridium, platinum and palladium in the ultramafic and gabbroic rocks. Economic Geology, 77, 1556-1570.
- Pagé, P. (en préparation). Étude comparative de la géochimie des ÉGP dans les roches mafiques et ultramafiques : Exemple du Massif de North Arm Mountain, Complexe Ophiolitique de Bay of Island, Terre-Neuve, et de la Faille Transformante Garrett, Sud de l'Océan Pacifique. Mémoire M.Sc., Université Laval, Ste-Foy.
- Pelletier, Y., Folco, P., 1989. Rapport d'une campagne de sondage au diament avec 18 journaux des trous MK-88-01 à MK-88-18, propriété du lac Menarik. GM 48862, Rapport statutaire déposé au Ministère des Ressources naturelles du Québec par Ressources minières Pro-Or, 216 pp.
- Pelletier, Y., 1989. Rapport d'un levé géologique et d'une évaluation du potentiel chromifère, propriété du lac Menarik. GM 49676, Rapport statutaire déposé au Ministère des Ressources naturelles du Québec par Ressources minières Pro-Or, 73 pp.

- Pelletier, Y., Folco, P., 1990. Rapport d'une campagne de sondage au diamant avec 21 journaux des trous MK-89-1 à 21, propriété du lac Menarik. GM 49677, Rapport statutaire déposé au Ministère des Ressources naturelles du Québec par Ressources minières Pro-Or, 170 pp.
- Pelletier, Y., 1995. Cartographie géologique 1986-1994. Projet Menarik, Canton 21-14, Québec. Ressources minières Pro-Or. Carte géologique.
- Peltonen, P., 1995. Crystallization and re-equilibration of zoned chromite in ultramafic cumulates, Vammala Ni-Belt, Southwestern Finland. The Canadian Mineralogist, 33, 521-535.
- Perring, R.J., Vogt, J.H., 1991. The Panton Sill. In: Barnes, S.J., Hill, R.E.T. (Editors), Guidebook for the post-symposium field excursion, Geological Society of Australia, 97-105.
- Perring, R.J., Vogt, J.H., 1991. Panton Sill annual report. P90-12 (V1), Pancontinental Mining Limited, Degussa Explorations GMBH, Perth, Western Australia, 17 pp.
- Perring, C.S. et al., 1996. Geochemistry of komatiites from Forrestania, Southern Cross Province, Western Australia; evidence for crustal contamination mafic magmatism through time. Symposium on Evolution of mafic magmatism through time, 37 (2-3), 181-197.
- Potts, P.J., 1987. A handbook of silicate rock analysis. Chapman and Hall, London, 622 pp.
- Riley, J.C., 1975. Report on prospecting of anomalies in the Yasinski area. Rapport interne, S.E.S.
- Rivard, B., Francis, D., 1984. Preliminary models for basalt evolution in the LaGrande Greenstone Belt. Canadian Institute Metallurgy, CIM Special, 34, 48-56.
- Rivard, B., 1985. Petrochemistry of layered archean magma chamber and relation to models of basalt evolution, McGill University, Montreal, 73 pp.
- Roeder, P.L., Campbell, I.H., Jamieson, H.E., 1979. Re-evaluation of the olivinespinel geothermometer. Contributions to Mineralogy and Petrology, 68, 325-334.
- Roeder, P.L., Campbell, I.H., 1985. The effect of postcumulus reactions on composition of chrome-spinels from Jimberlana Intrusion. Journal of Petrology, 26 (3), 763-786.
- Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical. John Wiley & Sons, Inc., New York, 352pp.

- Sack, R.O., Ghiorso, M.S., 1991. Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. American Mineralogist, 76, 827-847.
- Sanschagrin, Y., Pelletier, Y., 1989. Cartographie géologique, prospection et levé géochimique, propriété du lac Menarik. GM 49054, Rapport statutaire déposé au Ministère des Ressources naturelles du Québec par Ressources minières Pro-Or, 64 pp.
- Sauvé, P., 1982. Étude pétrographique des lames minces de Menarik. Rapport interne de la SDBJ, Société de Développement de la Baie James.
- Schiffries, C.M., 1982. The petrogenesis of a platiniferous dunite pipe in the Bushveld Complex: inflitration metasomatism by a chloride solution. Economic Geology, 77, 1439-1453\_
- Sharma, K.N.M., 1977. Région de La Grande Rivière. RG-184, Ministère des Richesses Naturelles du Québec, 7.5 pp.
- Sharma, K.N.M., 1977. La Grande Rivière area (projet 1976 project). DPV-493, Ministère des Richesses Naturelles du Québec, 18 pp.
- Sharma, K.N.M., 1977. La Grande Rivière area (projet 1977 project). DPV-558, Ministère des Richesses Naturelles du Québec, 32 pp.
- Sharpe, M.R., 1985. Strontium isotopic evidence for preserved density stratification from the main zone of the Bushvelld Complex, South Africa. Nature, 316, 119-126.
- Skulski, T., Hynes, A., Francis, D., 1985. Continental rifting in the Archean La Grande greenstone belt, Quebec. Program with Abstracts, Vol 10, A57.
- Spangenberg, K., 1943. Die chromitlaagerstatte von tampedal in Zobten. Z. Pprakt. Geol., 51, 13-35.
- Stamatelopoulou-Seymour, K., Francis, D. and Ludden, J., 1983. The petrogenesis of Lac Guyer komatiites and bas-alts and the nature of the komatiitekomatiitic basalt compositional gap. Contributions to Mineralogy and Petrology, 84 (1), 6-14.
- Stockman, H.W., Hlava, P.F., 1984. Platinum-group minerals in alpine chromitites from southwestern Oregon. Economic Geology, 79, 491-508.
- Stone, W.E., Fleet, M.E., 1990. Platinum-iron\_alloy (Pt<sub>3</sub>Fe) in kimberlite from Fayette County, Pennsylvania. The American Mineralogist, 75, 881-885.
- Stowe, C.W.E., 1987. Evolution of chromium ore fields. Hutchinson Ross Publ. Van Nostrand Reinhold, New York, 340 pp.

- Stowe, C.W., 1994. Compositions and tectonic settings of chromite deposits through time. Economic Geology, 89, 528-546.
- Streckeisen, A.L., 1976. To each plutonic rock it's proper name. Earth Science Review, 12, 1-33.
- Stumpfl, E.F., Rucklidge, J.C., 1982. The platiniferous dunite pipes of the Eastern Bushveld. Economic Geology, 77, 1419-1431.
- Sun, S.S., 1982. Chemical composition and origin of earth's primitive mantle. Geochemica et Cosmochemica Acta, 46, 179-192.
- Sun, S.-S., 1982. Chemical composition and origin of the Earth's primitive mantle. Geochimica et Cosmochimica Acta, 46 (2), 179-192.
- Thayer, T.P., 1960. Some critical differences between alpine-type and stratiform peridotite-gabbros complexes, 21st International. Geo Congress, Copenhagen, 247-259.
- Thayer, T.P., 1969. Gravity differentiation and magmatic re-emplacement of podiform chromite deposits. Economic Geology, Monograph 4, 132-146.
- Todd, S.G., Keith, D.W., LeRoy, L.W., Shissel, D.J., Mann, E.L., Irvine, T.N., 1992. The J-M Pt-Pd reef of the Stillwater Complex, Montana: I. Stratigraphy and petrology. Economic Geology, 77, 1454-1480.
- Turcotte, B., 1999. Métamorphisme et hydrothermalisme dans le massif ophiolitique du Mont Chagnon, Québec, Canada, Université Laval, Ste-Foy, non publiée, 204 pp.
- Ulmer, G.C., 1969. Experimental invertigations of chromite spinels. Economic Geology, Monograph 4, 114-131.
- Ulmer, G.C., 1974. Alteration of chromite during serpentinization in the Pennsylvania-Maryland District. The American Mineralogist, 59, 1236-1241.
- Varvalvy, V., 2000. Interactions magma-manteau dans les péridotites du massif de North Arm Mountain, Complexe Ophiolitique de Bay of Islands, Terre-Neuve, Canada: implications sur la genèse des magmas en contexte de subduction. Thèse Ph.D., Université Laval, Ste-Foy, non publiée, 234 pp.
- Viereck, L.G., Floer, M.F.J., Hertgen, J., Schincke, H.V., Jenner, G.A., 1989. The genesis and significance of N-MORB sub-types. Contributions to Mineralogy and Petrology, 102, 112-126.
- Vogel, D.C., Keays, K.K, James, R.S., Reeves, S.J., 1999. The geochemistry and petrogenesis of the Agnew Intrusion, Canada: a product of Sundersatured, high-Al and low-Ti tholeiitic magmas. Journal of Petrology, 40 (3), 423-450.

- Von Gruenewaldt, G. and Naldrett, A.J.e., 1979. A review of some recent concepts of the Bushveld Complex, with particular reference to sulfide mineralization Nickel sulfide and platinum group element deposits. Mineralogical Association of Canada Nickel Sulfide Field Conference, 17, Part 2, 233-256.
- Wager, L.R., 1960. Types of igneous cumulates. Journal of Petrology, 1, 73-85.
- Watkinson, D.H., Ohnenstetter, D., 1992. Hydrothermal origin of platinum-group mineralization in the Two Duck Lake Intrusion, Coldwell Complex, Northwestern Ontario. The Canadian Mineralogist, 30, 121-136.
- Whitney, A.J., Naldrett, A.J. (Editors), 1989. Ore deposition associated with magmas, 4. Reviews in Economic Geology, 248 pp.
- Whittaker, P.J., Watkinson, David H., 1986. Origin of chromite in dunitic layers of the Mt. Sydney-Williams ultramafic rock complex, British Columbia. In : Gallagher, M. J., Ixer, R. A., Neary, C. R., Prichard, H. M. (Editors), Metallogeny of basic and ultrabasic rocks, 217-228.
- Wicks, 1979. Electron-microprobe and X-ray microbeam studies of serpentine textures. In: Wicks, F. J. (editor), Serpentine mineralogy, petrology and paragenesis,. The The Canadian Mineralogist,, 17 (Part 4), 785-830.
- Wilhelmy, J.-F., Lacoste, P., 1990. Caractérisation de minerais de chromite: projet Menarik. Rapport interne, Ressources minières Pro-Or, Projet: 89-PM-41, Centre de Recherches Minérales (Ministère de l'Énergie et des Ressources du Québec), XX pp.
- Williams, D., 1965. Mountain Lake Chromite deposits Mitassini Territory Quebec, Université Laval, Ste-Foy, 37 pp.
- Wilson, A.H., 1996. The Great Dyke of Zimbabwe. In: R.G.E. Cawthorm (Editor), Layered Intrusions. Developments in Petrology. Elsevier, Amsterdam, 365-402.
- Worst, B.G., 1958. The differentiation and structure of the Great Dyke of Southern Rhodesia. Geological Society of South Africa, Transactions and Proceedings, 61, 283-358.
- Zhou, M.-F., Robinson, P.T., Malpas, J., Li, A.Z., 1996. Podiform chromitites in the Luobusa Ophiolite (Southern Tibet): implications for melt-rock interaction and chromitite segregation in the upper mantle. Journal of Petrology, 37 (1), 3-21.

MICHEL HOULÉ

# PÉTROLOGIE ET MÉTALLOGÉNIE du Complexe de Menarik, Baie James, Québec, Canada.

TOME II

Mémoire présenté à la Faculté des études supérieures de l'Université Laval pour l'obtention du grade de maître ès sciences (M.Sc.)

Département de géologie et de génie géologique FACULTÉ DES SCIENCES ET DE GÉNIE UNIVERSITÉ LAVAL

NOVEMBRE 2000

© Michel Houlé, 2000

## ANNEXE A

# COUPES DÉTAILLÉES ET COMPOSITION DES MINÉRAUX NORMATIFS



Figure A.1 Colonne stratigraphique schématique montrant la position des différents échantillons de l'affleurement 97-MH-7371.



Figure A.2 Colonne stratigraphique schématique montrant la position des différents échantillons de l'affleurement 97-MH-7374.

#### A.2 Composition des minéraux normatifs

La détermination de la composition des minéraux normatifs et de l'estimation des modes minéralogiques en lame mince fait l'objet de cette section. La raison d'être de cette partie est de permettre aux lecteurs de se familiariser avec la procédure utilisée pour déterminer les différentes lithologies désignées pour les roches du CDM.

La composition des minéraux normatifs s'est effectuée à l'aide de la norme CIPW. Cependant, quelques modifications y ont été apportées compte tenu de la proportion importante de chromite dans les roches du CDM. La norme CIPW, conçue pour les roches mafiques et granitiques, calcule la composition du plagioclase avant celle du diopside. Pour les roches du CDM, nous avons utilisé la norme CIPW modifiée par Varfalvy (Thèse de doctorat, 2000) qui adapte le calcul de la norme CIPW aux roches ultramafiques. Cette modification consiste à calculer la composition du diopside et du spinelle avant celle du plagioclase. Le calcul est présenté pour les roches des coupes détaillées du CDM au tableau A.1 (minéraux normatifs).

Ces résultats semblent surestimer grandement la proportion de l'orthopyroxène dans les roches du CDM. Un des problèmes pour les roches du CDM est que la proportion de chromite produit un effet de dilution lors des calculs de la composition normative des minéraux. Une des solutions envisagées pour corriger ce phénomène est de soustraire la teneur des différents oxydes rentrant dans la structure cristalline de la chromite de l'analyse totale. Ce calcul a pour effet de conserver uniquement les teneurs des oxydes reliés à la proportion des différents silicates contenus dans la roche excluant la chromite. Par la suite, le calcul de la composition des minéraux normatifs pour les roches ultramafiques est appliqué à la nouvelle composition de la roche totale (excluant la chromite). Ces résultats sont présentés au tableau A.1 (Mx normatifs excluant le spinelle).

Méthode de calcul pour extraire l'effet de la chromite :

#### Analyse Totale - (moyenne des Chro x mode de Chro) = Analyse sans Chro

- Tout le chrome contenu dans les analyses entre dans la structure de la chromite compte tenu que le chrome est contenu en teneur négligeable dans les pyroxènes et dans l'olivine par rapport à la chromite.
- Moyenne des analyses à la microsonde des cœurs de chromite contenus dans chaque échantillon analysé.
- Multiplier la moyenne des analyses à la microsonde par le mode de chromite dans chaque échantillon.
- 4) Soustraire cette quantité (3) à l'analyse totale comprenant la chromite.
- 5) Obtention de la nouvelle composition exluant l'effet de la chromite.

La détermination du mode minéralogique pour les différents silicates est basée sur la reconnaissance des différents pseudomorphes d'olivines, d'orthopyroxènes et de clinopyroxènes.

La méthode de détermination pour établir les différents noms lithologiques pour chaque échantillon est une combinaison de la composition des minéraux normatifs excluant l'effet du spinelle et de l'estimation modale des minéraux en lame mince (Tableau A.1, mode minéralogique estimé). La composition des minéraux normatifs (avec et sans spinelle) demeure une approximation et l'application directe n'est pas toujours réaliste avec l'estimation visuelle en lame mince. Une des raisons pouvant expliquer ce phénomène est certainement la serpentinisation des roches du CDM qui peut entraîner la modification de certains oxydes comme la silice (Laflèche, comm. Pers.). L'augmentation de quelques pourcentages en silice dans un échantillon peut causer une surestimation de l'orthopyroxène par rapport à l'olivine dans le calcul des minéraux normatifs. La composition de l'orthopyroxène et l'olivine sont similaires (silicates de fer et de magnésium) malgré que l'Opx possède des teneurs plus élevées en silice que l'olivine. **Tableau A.1** Composition des minéraux normatifs (Norme CIPW), des minéraux normatifs excluant le spinelle et de l'estimation du mode minéralogique pour les roches des coupes détaillées.

| 1 144 - 14 - 14 |               | Webst         | Harzb è chro  | Harzb         | Harzb à chro  | Chr 81        | Harzb à chro  | Chr Bil       | Harzb à chro  | Harzb à chro  | Chr Sit        | Chr Sil       | Harzb à chro  | Harzbàchro   | Harzb à chro  | Lherz à chro  | Lherz & chro  | Lherz à chro  | Webst (Dvke)  | Lherz à chro   | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb à chro  | Lherz à chro  | Harzb à chro  | Harzb à chro  | Chr SII       | Chr Sil       | Harzb à chro  | Lherz à chro  | Harzb à chro  | Chr Sil       | Harzb         | Lherz         | Harzb à chro  |                                        |
|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|--------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------------------------------|
|                 | Totaux nm     | 8             | 18            | <u>8</u>      | 18            | 90            | 100           | 8             | 8             | 8             | 100            | <u>8</u>      | 8             | 8            | 100           | 8             | 8             | ŝ             | 8             | 100            | 18            | 100           | 8             | 8             | 1 <u>8</u>    | 1 <u>8</u>    | 18            | 100           | 100           | 100           | 8             | <u>8</u>      | -<br>8        | 100           | ŝ             | 8             |                                        |
| alianta anila   | CDX NM        | 46            | 4             | 4             | 4             | 5             | 2             | 6             | 5             | 0             | 28             | 24            | 2             | -            | 2             | 13            | 12            | 5             | 37            | 5              | 2             | 9             | 0             | 5             | 3             | 4             | 5             | 11            | 11            | 2             | e             | 4             |               | 3             | 5             | -             |                                        |
| AV NAMEDIA      |               | 54            | 43            | 47            | 48            | 45            | 48            | 88            | 41            | 0             | 36             | 02            | 49            | 56           | 38            | 35            | 39            | 45            | 63            | 43             | 55            | 43            | 46            | 37            | 43            | 38            | 40            | 73            | 71            | 51            | 51            | 45            | ଛ             | 44            | 37            | 43            |                                        |
| and non a       | -<br>me<br>IO | 0             | 50            | 48            | 84            | 51            | 50            | 26            | 54            | 100           | 36             | 9             | 49            | 43           | 60            | 53            | 48            | 20            | 0             | 53             | 42            | 54            | 54            | 61            | 54            | 59            | 55            | 16            | 18            | 47            | 45            | 20            | 8             | 53            | 57            | 56            |                                        |
|                 | Totaux nm     | 100           | 100           | 100           | 8             | 9 <u>6</u>    | 100           | 8             | 90            | 100           | 100            | 100           | 100           | 100          | 100           | 100           | 100           | 100           | 100           | 100            | 100           | 100           | 100           | 100           | 100           | 100           | 100           | 100           | 100           | ₽             | 100           | 100           | 100           | 100           | 100           | 100           |                                        |
|                 | Sp nm         | e<br>e        | 12            | 5             | 8             | 64            | 2             | 87            | 12            | 33            | 77             | 81            | 38            | 44           | 23            | 6             | 8             | 9             | 12            | <del>1</del> 0 | 13            | 35            | 18            | 31            | 16            | 27            | 28            | 88            | 85            | g             | 30            | 21            | 60            | 7             | 7             | 11            |                                        |
| néraux normati  | Cpx nm        | 44            | 9             | 4             | 3             | 2             | 2             | -             | 5             | 9             | 6              | 7             | 1             | 0            | 1             | 11            | 11            | 5             | 32            | 4              | 2             | 2             | 0             | 1             | e             | 3             | 4             | e             | е             | -             | 2             | 3             | 7             | 3             | 5             | 1             |                                        |
| W               | Орх пт        | 53            | æ             | 45            | 41            | 25            | 46            | 12            | 38            | 38            | 15             | 12            | 37            | 37           | 45            | 32            | 36            | 41            | 56            | 6              | 49            | 33            | 42            | 33            | 99<br>99      | S             | 35            | 1             | 5             | g             | 42            | 40            | 21            | 42            | 35            | 40            |                                        |
|                 | Olnm          | 0             | 43            | 46            | 36            | 6             | 45            | 0             | 46            | 26            | 0              | 0             | 24            | 19           | ຮ             | 48            | <b>4</b> 5    | 48            | ţ             | 46             | æ             | 31            | ð             | ß             | 43            | 88            | 8             | 0             | 0             | 23            | 26            | æ             | 11            | 49            | 53            | 47            |                                        |
|                 | Échantilions  | 97-MH-7371-01 | 97-MH-7371-02 | 97-MH-7371-03 | 97-MH-7371-04 | 97-MH-7371-05 | 97-MH-7371-07 | 97-MH-7371-08 | 97-MH-7371-10 | 97-MH-7371-12 | 97-MH-7371-13A | 97-MH-7371-14 | 97-MH-7371-15 | 97MH-7371-16 | 97-MH-7371-17 | 97-MH-7371-18 | 97-MH-7371-19 | 97-MH-7371-20 | 97-MH-7371-21 | 97-MH-7371-22  | 97-MH-7374-01 | 87-MH-7374-02 | 97-MH-7374-03 | 97-MH-7374-04 | 87-MH-7374-05 | 97-MH-7374-08 | 97-MH-7374-07 | 97-MH-7374-08 | 97-MH-7374-10 | 87-MH-7374-11 | 97-MH-7374-15 | 97-MH-7374-16 | 97-MH-7374-17 | 97-MH-7374-18 | 97-MH-7374-19 | 97-MH-7374-22 | nm: normalisés à 100 %<br>Mx: minéraux |

251

|                |    |     |     |    | Mode minéra | logique estimé |              |        |             |           | Lithologies                           |  |  |
|----------------|----|-----|-----|----|-------------|----------------|--------------|--------|-------------|-----------|---------------------------------------|--|--|
| Échantilions   | 0  | Орх | Срх | Sp | indiff.     | Total          | Ol nm        | Opx nm | Cpx nm      | Totaux nm | Cidiologiss                           |  |  |
|                |    |     |     |    |             |                | 1            |        |             |           | · · · · · · · · · · · · · · · · · · · |  |  |
| 97-MH-7371-01  | 0  | 54  | 44  | 2  | 0           | 100            | ō            | 55     | 45          | 100       | Webst                                 |  |  |
| 97-MH-7371-02  | 70 | 13  | 4   | 12 | 0           | 100            | 80           | 15     | 5           | 100       | Harzb à chro                          |  |  |
| 97-MH-7371-03  | 60 | 33  | 3   | 4  | 0           | 100            | 63           | 34     | 3           | 100       | Harzb                                 |  |  |
| 97-MH-7371-04  | 50 | 31  | 2   | 17 | 0           | 100            | 60           | 37     | 3           | 100       | Harzh à chro                          |  |  |
| 97-MH-7371-05  | 17 | 11  | 8   | 65 | 0           | 100            | 48           | 30     | 22          | 100       | Chr Sil                               |  |  |
| 97-MH-7371-07  | 51 | 40  | 2   | 7  | 0           | 100            | 55           | 43     | 2           | 100       | Harzh à chro                          |  |  |
| 97-MH-7371-08  | 6  | 9   | 0   | 85 | 0           | 100            | 40           | 60     | 0           | 100       | Chr Sil                               |  |  |
| 97-MH-7371-09  | 0  | 0   | 0   | 0  | 100         | 0              |              |        |             | 0         | Chr Sil                               |  |  |
| 97-MH-7371-10  | 58 | 30  | 3   | 10 | 0           | 100            | 64           | 33     | 3           | 100       | Harzh à chro                          |  |  |
| 97-MH-7371-12  | 61 | 5   | 1   | 32 | 0           | 100            | 90           | 8      | 2           | 100       | Harzh à chro                          |  |  |
| 97-MH-7371-13A | 0  | 0   | 6   | 75 | 25          | 100            |              |        |             |           |                                       |  |  |
| 97-MH-7371-14  | 0  | 0   | 0   | 80 | 20          | 100            | <del> </del> |        |             |           | Chr Bil                               |  |  |
| 97-MH-7371-15  | 36 | 27  | 3   | 35 | 0           | 100            | 55           |        |             | 100       | Unit Sil                              |  |  |
| 97-MH-7371-16  | 23 | 30  | 2   | 45 |             | 100            | 41           | 55     |             | 100       | Harzb à chro                          |  |  |
| 97-MH-7371-17  | 45 | 26  | 4   | 25 | 0           | 100            | 60           | 35     |             | 100       | Harzb à chro                          |  |  |
| 97-MH-7371-18  | 55 | 28  | 9   | 8  | 0           | 100            | 60           | 30     | 10          | 100       |                                       |  |  |
| 97-MH-7371-19  | 55 | 28  | 9   | 8  | 0           | 100            | 60           | 30     | 10          | 100       | Literz à chro                         |  |  |
| 97-MH-7371-20  | 53 | 33  | 9   | 5  | 0           | 100            | 56           | 35     |             | 100       |                                       |  |  |
| 97-MH-7371-21  | 5  | 54  | 40  | 1  | 1 0         | 100            | 5            | 55     | 40          | ( 100     | Webst (Dyka)                          |  |  |
| 97-MH-7371-22  | 54 | 29  | 7   | 10 | 1 Ö         | 100            | 60           | 32     | <u></u>     | 100       | I berz à chro                         |  |  |
|                |    |     |     |    |             |                |              |        |             |           |                                       |  |  |
| 97-MH-7374-01  | 57 | 28  | 3   | 12 | 1 0         | 100            | 65           | 30     | 3           | 100       | Linnh à chun                          |  |  |
| 97-MH-7374-02  | 39 | 23  | 3   | 35 |             | 100            | 60           | 35     | 5           | 100       | Harzb à chro                          |  |  |
| 97-MH-7374-03  | 46 | 34  | 2   | 18 | 1 0         | 100            | 56           | 42     | <del></del> | 100       | Harzb à chro                          |  |  |
| 97-MH-7374-04  | 50 | 20  | 1 1 | 28 | 1 0         | 100            | 70           | 28     | 2           | 100       | Harzb à chro                          |  |  |
| 97-MH-7374-05  | 46 | 34  | 5   | 15 | 1 0         | 100            | 54           | 40     | <u> </u>    | 100       | I harzb a cilito                      |  |  |
| 97-MH-7374-06  | 51 | 21  | 3   | 25 | <u> </u>    | 100            | 68           |        |             | 100       | Linerz a chiro                        |  |  |
| 97-MH-7374-07  | 42 | 28  | 1 1 | 28 |             | 100            | 59           | 30     | <del></del> | 100       | Harzba chro                           |  |  |
| 97-MH-7374-08  | 0  | 0   | 0   | 85 | 15          | 100            | <u> </u>     |        |             | 100       | Chr Bil                               |  |  |
| 97-MH-7374-10  | 0  | 0   | 0   | 80 | 20          | 100            | · · · ·      |        |             |           | Chr Sil                               |  |  |
| 97-MH-7374-11  | 34 | 25  | 2   | 38 | 0           | 100            | 55           | 41     | 4           | 100       | Harzh à chro                          |  |  |
| 97-MH-7374-15  | 39 | 27  | 4   | 30 | 0           | 100            | 55           | 30     | 8           | 100       | I herr à chro                         |  |  |
| 97-MH-7374-16  | 42 | 34  | 3   | 20 | 1 <u>0</u>  | 100            | 53           | 43     | 4           | 100       | Harrh à chro                          |  |  |
| 97-MH-7374-17  | 20 | 14  | 1 1 | 65 | 0           | 100            | 56           | 40     |             | 100       | Che SII                               |  |  |
| 97-MH-7374-18  | 48 | 43  | 5   | 5  | 0           | 100            | 50           | 45     |             | 100       |                                       |  |  |
| 97-MH-7374-19  | 53 | 36  | 6   | 5  | 1 0         | 100            | 56           |        |             | 100       |                                       |  |  |
| 97-MH-7374-22  | 51 | 34  | 5   | 10 | 1 0         | 100            | 57           | 38     | 5           | 100       | LINIA                                 |  |  |
|                |    | A   |     |    |             | 144            |              | ~      |             | 100       |                                       |  |  |

 

 Tableau A.1 Composition des minéraux normatifs (Norme CIPW), des minéraux normatifs excluant le spinelle et de l'estimation du mode minéralogique pour les roches des coupes détaillées (suite).

nm: normalisés à 100 %

Indiff.: indifférenclée

## ANNEXE B

# ANALYSES LITHOGÉOCHIMIQUES

INCLUANT

ANALYSES LITHOGÉOCHIMIQUES DES ÉLÉMENTS MAJEURS, DES ÉLÉMENTS MINEURS, DES ÉLÉMENTS EN TRACES, DES ÉLÉMENTS DU GROUPE DU PLATINE ET DES TERRES RARES

### ANNEXE B

L'annexe B est divisé en trois sections. L'annexe B.1 comprend les analyses des éléments majeurs, mineurs, traces et certains platinoïdes effectuées au laboratoire d'analyse du Ministère des Ressources naturelles (Centre Recherche Minérale, CRM). L'annexe B.2 comprend les analyses des éléments majeurs, mineurs, traces, terres rares et platinoïdes effectuées au laboratoire de l'INRS-Géoressources par l'auteur. Ces résultats proviennent tous de sections détaillées dans la portion nord de l'intrusion de Menarik (Affleurement 7371 et 7374). L'annexe B.3 comprend les analyses des terres rares pour certains échantillons ponctuels qui ont déjà fait l'objet d'analyses pour les éléments majeurs et pour les éléments traces.

Dans cette partie, quelques totaux d'analyse sont faibles pour certaines roches riches en chromite. Ceci s'explique par la difficulté à doser le chrome lorsque les échantillons contiennent beaucoup de chromite. Ces analyses ont été reprises une seconde fois. Le dosage était de meilleure qualité sans toutefois donner des totaux très près de 100 %. Lors des deux analyses, les teneurs des différents oxydes sont très similaires mais le contenu en chrome semble être légèrement sous-évalué dans ces échantillons.

# **ANNEXE B.1**

ANALYSE DES ÉLÉMENTS MAJEURS ET EN TRACES

| Échantillon                                   | 96-CD-5002-4 | 96-CD-5006-P                          | 196-CD-5007.91 | 106-CD-5007 P | 06-CD 5009        | 106.CD 5000 5 | loc on toos | loc on        |
|-----------------------------------------------|--------------|---------------------------------------|----------------|---------------|-------------------|---------------|-------------|---------------|
| Lithologie                                    | Chr Sil      | Lherz à chm                           | Harzb à chro   | Chr Sil       | Chr Sil           | Harzh & ch-   | Ch- 63      | Webet 01 + at |
| # analyse                                     | 96010502     | 96010501                              | 96010503       | 96010504      | 96010505          | 96010506      | 96010507    | 06010509      |
| %                                             | 1            | t                                     | 1              |               | 1                 | 1             |             | 20010208      |
| SiO <sub>2</sub>                              | 27.30        | 38.10                                 | 31.40          | 14.30         | 13 90             | 26.90         | 1150        | 27.00         |
| A1,03                                         | 6.84         | 0.66                                  | 5.82           | 12.90         | 13.00             | 7.66          | 13.60       | 8.01          |
| Fe <sub>2</sub> O <sub>3t</sub>               | 15.40        | 8,12                                  | 14,80          | 19.70         | 22.80             | 14.10         | 27.20       | 12 40         |
| Cr <sub>2</sub> O <sub>3</sub>                | 14,61        | 0,58                                  | 8,25           | 25,80         | 22,90             | 10.49         | 28.00       | 14.31         |
| MgO                                           | 24,80        | 39,00                                 | 28,60          | 17,40         | 15,60             | 26,20         | 13.60       | 27.00         |
| CaO                                           | 1,56         | 0,02                                  | 0,67           | 0,46          | 1,60              | 2,07          | 0,02        | 1.04          |
| MnO                                           | 0,34         | 0,12                                  | 0,27           | 0,27          | 0,48              | 0,24          | 0.66        | 0.16          |
| Na <sub>2</sub> O                             | 0,10         | 0,10                                  | 0,10           | 0,10          | 0,10              | 0,10          | 0,10        | 0.10          |
| K <sub>2</sub> O                              | 0,01         | 0,01                                  | 0,02           | 0,01          | 0,01              | 0,01          | 0,01        | 0,01          |
| TiO <sub>2</sub>                              | 0,21         | 0,02                                  | 0,18           | 0,32          | 0,39              | 0,19          | 0,44        | 0,22          |
| P <sub>2</sub> O <sub>5</sub>                 | 0,01         | 0,01                                  | 0,01           | 0,01          | 0,01              | 0,01          | 0,01        | 0,01          |
| V <sub>2</sub> O <sub>5</sub>                 | 0,06         | 0,01                                  | 0,05           | 0,15          | 0,15              | 0,06          | 0,19        | 0,05          |
| PAF                                           | 8,06         | 14,00                                 | 9,70           | 5,14          | 5,92              | 10,60         | 3,58        | 8,14          |
| total                                         | 99,30        | 100,75                                | 99,87          | 96,56         | 96,86             | 98,63         | 98,91       | 99,35         |
| <u> </u>                                      | ļ)           | · · · · · · · · · · · · · · · · · · · |                |               |                   | Į             |             |               |
| <u> </u>                                      | 1,25         | 3,56                                  | 0,93           | 0,49          | 1,37              | 3,26          | 0,25        | 0,69          |
| 3                                             | 0,42         | 0,16                                  | 0,26           | 0,03          | 0,12              | 0,14          | 0,21        | 0,10          |
| Fee                                           |              |                                       |                |               |                   | <u> </u>      |             |               |
| FeO                                           | 0,08         | 0,07                                  | 0,58           | 1,29          | 1,30              | 0,77          | 1,36        | 0,80          |
| Mg#                                           | 77.00        | 0,50                                  | 4,/1           | 10,45         | 10,53             | 0,20          | 11,01       | 6,49          |
| Cr#                                           | 58.90        | 37.09                                 | 49.74          | 60,02         | 60,09             | 47 97         | 52,38       | 82,73         |
| Cr/Fe                                         | 100          | 0.00                                  | 0.50           | 1 20          | 37,10             | 41,51         | 38,00       | 34,51         |
| ppm                                           | ·····        |                                       | 5,55           | 1,00          | 1,00              | ·····         | 1,08        | i,21          |
| Cr                                            | 100000       | 4000                                  | 58700          | 200000        | 130000            | 71800         | 177000      | 97000         |
| Ni                                            | 2700         | 2300                                  | 3500           | 1900          | 2400              | 1800          | 2000        | 1400          |
| Cu                                            | 1200         | 47                                    | 390            | 497           | 703               | 630           | 992         | 678           |
| Zn                                            | 241          | 84                                    | 209            | 295           | 422               | 167           | 55          | 107           |
| Co                                            | 181          | 131                                   | 170            | 159           | 164               | 114           | 43          | 81            |
| Au                                            | 14           | n.d.                                  | 14             | 200           | 48                | n.d.          | 70          | 18            |
| Ag                                            | n.d.         | n.d.                                  | n.d.           | p.d.          | n.d.              | n.d.          | n.d.        | p.d.          |
|                                               |              |                                       |                |               |                   |               |             |               |
| As                                            | 11           | 23                                    | 44             | 720           | 3                 | 5             | 4           |               |
| Se                                            | n.d.         | n.d                                   | n.d.           | 22            | n.d.              | 10            | n.d.        | <u>n.d.</u>   |
| Sb                                            | 0,9          | 2                                     | 1,2            | 18            | 5                 | 3             | 5,8         | 2,2           |
| Te                                            | n.d.         | n.d.                                  | n.d.           | n.d.          | 10                | n.d.          | n.d.        | n.d.          |
| 81                                            | n.d.         | n.d.                                  | n.d.           | n.d.          | n.d.              | n.d.          | n.d.        | n.d.          |
|                                               | I            | l                                     | ]              |               |                   | L7            |             |               |
| Re                                            | 5            | 3                                     | 3              | 6             | 4                 | 4]            | 3           | 9             |
| Br                                            |              | <u>n.a</u>                            |                | 24            | 21                | 9             | 2           | 7             |
| <del></del>                                   | <u>u.a.</u>  | <u> </u>                              | <u>n.a.</u>    | <u>n.a.</u>   | <u>n.a.</u>       | n.a.          | n.d.        | n.d.          |
| <del></del>                                   | <u></u>      | <u> </u>                              | <u>n.a</u>     | <del></del>   | <u>n.a.</u><br>12 | <u>n.a.</u>   | <u>n.d.</u> | <u>n.a.</u>   |
| Cs                                            | n.d          | <u>n.</u>                             | n_             | <u> </u>      | 12                |               | <u>n.a.</u> | <u>n.a.</u>   |
| Dy                                            | n.d.         | n.d.                                  | n.d.           | 1             | n.d.              | <u> </u>      | <u> </u>    | <u>u.a.</u>   |
| Eu                                            | n.d.         | n.d.                                  |                |               | 12                | n.d.          | <br>        | n.u.          |
| Ga                                            | 6            | n.d.                                  | 5              | 23            |                   | 17            | 21          | 17            |
| La                                            | n.d.         | <u>n.d.</u>                           | n.d.           | <u>n.d.</u>   | n.d.              | n.d.          |             | n.d.          |
| Li                                            | 3            | <u>n.d.</u>                           | 3              | 4             | 2                 | 3             | 1           | 2             |
| Mo                                            | n.d.         | <u>n.d.</u>                           | <u>n.d.</u>    | 5             | n.d.              | n.d.          | n.d.        | n.d.          |
| ΝЪ                                            | 11           | 11                                    | 14             | 14            | 13                | 13            | 17          | 13            |
| Nd                                            | ¤.d.         | <u>n.d.</u>                           | n.d.           | 68            | 50                | 28            | n.d.        | n.d.          |
|                                               | n.d.         | n.d.                                  | n.d.           | n.d.          | <u>n.d.</u>       | n.d.          | n.d.        | n.d.          |
|                                               | 15           | n.d.                                  | 14             | 73            | 44                | n.d.          | n.d.        | n.d.          |
| 50 So                                         | <u>n.d.</u>  | <u>n.d.</u>                           | <u>n.d.</u>    | <u>n.d.</u>   | n.d.              | <u>n.d.</u>   | n.d.        | n.d.          |
| <u>~</u>                                      | 13           |                                       | 14             | 15            | 18                | 14            | 10          | 13            |
|                                               | 230          |                                       | 189            | 615           | 536               | 219           | 65[         | 167           |
| 3r                                            | <u>a.d.</u>  | <u> </u>                              | <u> </u>       | <u>n.d.</u>   | <u>n.d.</u>       | <u>n.d.</u>   | <u>n.d.</u> | <u>n.d.</u>   |
| Ta la                                         | n d          | <u>nd</u>                             |                |               | <u>n.a.</u>       | <u> </u>      | n.d.        | <u> </u>      |
| rh +                                          | n.d.         | <u> </u>                              |                | <u> </u>      | <u> </u>          | <u>n.a.</u>   | <u></u>     | n.d.          |
| <u> </u>                                      | <u></u>      | 2                                     | <u>n.d.</u>    | <u> </u>      | <u> </u>          | <u>a.</u>     | <u> </u>    | <u> </u>      |
| <del>,</del>                                  | n.d.         |                                       | <u></u>        |               | <u>u.u.</u>       | <u> </u>      | <u> </u>    | 0.2           |
| <del>,</del> +                                | 317          | 39                                    | 272            | 808           | 807               | 328           | 105         |               |
| w                                             | n.d.         | n.d.                                  | n.d.           |               |                   |               |             | n.d.          |
| <u>,                                     </u> | 10           |                                       | 11             |               |                   | 11            |             | <u></u>       |
| lr                                            | n.d.         | n.d.                                  |                | n.d.          | 5                 | 3             |             | n.d.          |
| ръ                                            |              |                                       |                |               |                   |               |             |               |
| Ds                                            | 15           | n.a.                                  | 17             | 29            | 21                | 12            | 30          | 16            |
| r                                             | 16           | <b>D.a.</b>                           | 17             | 32            | 27                | 14            | 46          | 15            |
| tu I                                          | 60           | n.a.                                  | 75             | 132           | 100               | 59            | 122         | 74            |
| (B)                                           | 58           | n.d.                                  | 52             | 87            | 122               | 51            | 209         | 48            |
| <u>r                                     </u> | 186          | <u>n.d.</u>                           | 200            | 209           | 391               | 165           | 680         | 133           |
| <b>'d</b> '                                   | 725          | n.d. T                                | 833 T          | 674           | 1563              | 620           | 2600        | 518           |

## Tableau B.1 Analyses lithogéochimiques pour les roches du CDM (CRM).

| Febantillon                     | 96-CD-5112-C | 96-CD-5113-C | 96-CD-5114-B2 | 96-CD-5114C1 | 96-CD-5115-C1 | 96-CD-5115-C2 | 96-CD-5115-D | 96-CD-5116-C |
|---------------------------------|--------------|--------------|---------------|--------------|---------------|---------------|--------------|--------------|
| Lithologie                      | Chr Sil      | Chr Sil      | Chr Sil       | Chr Sil      | Chr Sil       | Chr           | Harzb        | Chr          |
| # analyse                       | 96010509     | 96010510     | 96010514      | 96010511     | 96010512      | 96010513      | 96010516     | 960 10515    |
| * allalyse                      | 30010303     |              |               |              |               |               |              |              |
| 70                              | 15.00        | 12.40        | 14.90         | 17.60        | 17.40         | 9.76          | 41.90        | 7.64         |
| 5102                            | 15,00        | 12,40        | 4.62          | 871          | 11 70         | 13.40         | 0.46         | 11.70        |
| Ab03                            | 13,90        | 05.50        | 7,02          | 26.10        | 17.20         | 20.30         | 5 50         | 16.90        |
| Fe <sub>7</sub> O <sub>3r</sub> | 20,50        | 25,50        | 35,50         | 20,10        | 04.40         | 20,30         | 0.34         | 40.48        |
| Cr <sub>2</sub> O <sub>3</sub>  | 26,80        | 27,70        | 20,10         | 21,20        | 24,40         | 32,70         | 0,04         | 40,40        |
| MgO                             | 17,50        | 15,20        | 16,10         | 18,90        | 21,30         | 15,80         | 38,00        | 14,90        |
| CaO                             | 0,66         | 0,02         | 0,02          | 0,09         | 0,02          | 0,02          | 0,27         | 0,02         |
| MnO                             | 0,22         | 0,47         | 0,74          | 0,37         | 0,61          | 0,84          | 0,05         | 0,56         |
| Na <sub>7</sub> O               | 0,10         | 0,10         | 0,10          | 0,10         | 0,10          | 0,10          | 0,10         | 0,10         |
| K <sub>2</sub> O                | 0,02         | 0,01         | 0,01          | 0,01         | 0,01          | 0,01          | 0,01         | 0,01         |
| TiO <sub>2</sub>                | 0,34         | 0,21         | 0,16          | 0,20         | 0,21          | 0,28          | 0,02         | 0,26         |
| P.O.                            | 0,01         | 0,01         | 0,01          | 0,01         | 0,01          | 0,01          | 0,01         | 0,01         |
| V.O.                            | 0.15         | 0.13         | 0,08          | 0,08         | 0,12          | 0,14          | 0,01         | 0,07         |
| PAF                             | 5.39         | 3,10         | 4,93          | 5,07         | 6,84          | 3,01          | 12,60        | 1,78         |
| total                           | 100.59       | 96.05        | 97,37         | 98,44        | 99,92         | 96,37         | 99,87        | 94,43        |
| loun                            |              |              |               |              |               |               |              |              |
| <u> </u>                        | 0.51         | 0.22         | 2 19          | 0.51         | 0.20          | 0.13          | 0.80         | 0.17         |
| CU <sub>7</sub>                 | 0,51         | 60.01        | < 0.01        | < 0.01       | < 0.01        | < 0.01        | 0.76         | 0.02         |
| 3                               | <u> </u>     | < 0.01       | - 0.01        | - 0.01       |               |               | 4,10         |              |
|                                 |              |              | 0.46          | 0.97         | 1 17          | 1.34          | 0.05         | 1 17         |
| re <sub>1</sub> O <sub>3c</sub> | 1,39         | 1,12         | 0,40          | 7.05         | 0.47          | 10.85         | 0.03         | 9 47         |
| FeO <sub>e</sub>                | 11,26        | 9,07         | 3,/4          | 7,05         | 70 15         | 67.12         | 02.00        | 65.09        |
| Mg#                             | 65,26        | 56,74        | 49,88         | 01,44        | 73,15         | 60.07         | 93,92        | 60.90        |
| Cr#                             | 56,39        | 62,39        | 74,48         | 62,01        | 58,31         | 62,07         | 33,14        | 09,88        |
| Cr/Fe                           | 1,37         | 1,14         | 0,59          | 0,85         | 1,49          | 1,69          | 0,06         | 2,52         |
| ppm                             |              |              |               |              |               |               |              |              |
| Сг                              | 188000       | 228000       | 152000        | 155000       | 168000        | 249000        | 2300         | 277000       |
| Ni                              | 1600         | 1100         | 1500          | 2000         | 1600          | 1200          | 4700         | 825          |
| Cu                              | 437          | 41           | 37            | 28           | 27            | 31            | 3200         | 17           |
| Zn                              | 314          | 688          | 1300          | 436          | 857           | 547           | 29           | 307          |
| Co                              | 168          | 174          | 424           | 259          | 168           | 143           | _177         | 75           |
| An                              | 49           | n.d.         | n.d.          | n.d.         | n.d.          | 10            | 21           | n.d.         |
| Ac                              | nd nd        | n.d.         | n.d.          | n.d.         | n.d.          | n.d.          | n.d.         | n.d.         |
| ng                              |              |              |               |              |               |               |              |              |
| A.c.                            | 220          | 5            | 6             | 7            | 7             | 6             | 13           | 6            |
| A3                              | 330          |              | nd            | 13           | 13            | n.d.          | n.d.         | n.d.         |
| St                              | 10           | 45           | 3.3           | 3.4          | 6.6           | 8             | 1.4          | 7.4          |
| 50                              |              |              | 11            | <b>n</b> d   | 0,0           | n d           | n d          | 15           |
| Ic                              |              | n.d.         |               | n.u.         | <u>u.u.</u>   | nd            | n d          | n.d          |
| Bi                              | n.d.         | <u>n.d.</u>  | 0.0.          | ц.ц.         | <u>n.u.</u>   | <u>11.u.</u>  | 11.4.        | <u></u>      |
|                                 |              |              |               |              |               | 12            |              |              |
| Ba                              | 8            | 12           | 11            | 5            | 8             | 13            | <b>0</b>     |              |
| Be                              | 25           | 28           | 22            | 20           | 23            | 29            | n.d.         | 13           |
| Br                              | n.d.         | n.d.         | n.d.          | <u>n.d.</u>  | n.d.          | n.d.          | n.d.         | <u>n.d.</u>  |
| Cd                              | 6            | n.d.         | n.d.          | a.d.         | n.d.          | <u>n.d.</u>   | n.d.         | n.d.         |
| Cc                              | 9            | 7            | 11            | 7            | 7             | 7             | n.d.         | p.d.         |
| Cs                              | n.d.         | n.đ.         | n.d.          | n.d.         | n.d.          | n.d.          | n.d.         | n.d.         |
| Dy                              | n.d.         | n.d.         | n.d.          | n.d.         | n.d.          | n.d.          | n.d.         | n.d.         |
| Eu                              | 15           | 17           | 6             | 9            | 14            | 20            | n.d.         | 8            |
| Ga                              | 22           | 13           | n.d.          | 9            | 14            | 18            | n.d.         | n.d.         |
| ها                              | 3            | n.d.         | n.d.          | n.d.         | n.d.          | n.d.          | n.d.         | n.d.         |
| Li                              | 4            | 4            | 2             | 5            | 14            | 18            | 2            | 6            |
| Mo                              | n.d.         | 7            | 6             | n.d.         | 4             | 9             | n.d.         | 4            |
| Nh                              | 15           | 17           | 14            | 12           | 14            | 18            | 11           | 18           |
| Nd                              | 63           | 86           | 64            | 59           | 68            | 90            | n.d.         | 39           |
| Dh                              |              | nd           | n.d.          | n.d.         | n.d.          | n.d.          | n.d.         | n.d.         |
| P=                              | <u>n.u.</u>  | 66           | 52            | 45           | 50            | 65            | n.d.         | 25           |
| C1                              |              |              | 74            |              | n.d           | p.d.          | n.d.         | n.d.         |
| R.0                             | <u>n.a.</u>  | <u>u.u.</u>  | Q.U.U.        | 0            | 11            | 9             | 9            | 6            |
| 3C                              | 15           | 704          | 550           | 501          | 567           | 719           | 6            | 311          |
| 50                              | 024          | /04          | 339           | 301          |               | nd            | 10           | n.d.         |
| Sn                              | n.d.         | <u>n.d.</u>  | n.d.          | <u>n.a.</u>  | <u>n.a.</u>   | <u></u>       | 10           | n d          |
| Sr                              | 5            | n.d.         | n.d.          | n.d.         | n.a.          | <u> </u>      | <u>u.u.</u>  | n            |
| Ta                              | n.d.         | n.d.         | n.d.          | n.d          | n.d.          | <u>a.a.</u>   | <u>u.a.</u>  | n.u.         |
| Th                              | n.d.         | n.d.         | n.d.          | <u>n.d.</u>  | <u>n.d.</u>   | n.a.          | n.a.         | <u>n.u.</u>  |
| Tm                              | n.d.         | n.d.         | 2             | <u>n.d.</u>  | n.d.          | n.d.          | 2            | <u>n.q.</u>  |
| U                               | n.d.         | n.d.         | n.d.          | <u>n.d.</u>  | 0,2           | 0,3           | n.d.         | n.d.         |
| v                               | 896          | 744          | 552           | 527          | 661           | 759           | 22           | 388          |
| W                               | n.d.         | 1            | n.d.          | n.d.         | n.d.          | 1             | n.d.         | 1            |
| Y                               | 10           | 8            | 9             | 6            | 10            | 10            | 8            | 11           |
| Zr                              | 5            | n.d.         | n.d.          | n.d.         | n.d.          | n.d.          | n.d.         | n.d.         |
| σαά                             | 1            |              |               |              |               |               |              |              |
| Os                              | 30           | 60           | 27            | 45           | 46            | 63            | n.a.         | 60           |
| lr                              | 29           | 51           | 25            | 40           | 34            | 49            | D.8.         | 44           |
| Ru                              | 141          | 281          | 127           | 175          | 194           | 288           | p.a.         | 298          |
| Rh                              | 85           | 46           | 73            | 106          | 52            | 81            | n.d.         | 46           |
| D+                              | 220          | 100          | 201           | 274          | 123           | 149           | 7            | 99           |
| D.1                             | 720          | 107          | 232           | 800          | 334           | 423           | 24           | 381          |

## Tableau B.1 Analyses lithogéochimiques pour les roches du CDM (suite).

| Échaptillon                    | 97-CD-5642-A | 97-CD-5642-B | 97-JC-5096-A | 97-JC-5096-H     | 97-JC-5098-D     | 97-JC-5098-E | 97-JC-5098-F                          | 97-JC-5098-G                          |
|--------------------------------|--------------|--------------|--------------|------------------|------------------|--------------|---------------------------------------|---------------------------------------|
| Lithologic                     | Per          | Chr          | Chr Sil      | Harzb à chro (Pc | Chr Sil          | Chr sil      | Chr Sil                               | Lherz à chro (Pc                      |
| # analyse                      | 97015189     | 97015170     | 97012879     | 97012880         | 97012881         | 97012882     | 97012883                              | 97012884                              |
| %                              |              |              |              |                  |                  |              |                                       |                                       |
| SiO <sub>2</sub>               | 31,50        | 13,00        | 20,50        | 37,50            | 19,40            | 13,40        | 12,10                                 | 38,40                                 |
| Al <sub>2</sub> O <sub>3</sub> | 0,54         | 9,33         | 10,70        | 2,95             | 12,10            | 14,10        | 14,50                                 | 3,45                                  |
| Fe <sub>2</sub> O <sub>3</sub> | 16,20        | 24,40        | 22,00        | 10,40            | 21,90            | 25,30        | 24,30                                 | 13,00                                 |
| Cr <sub>2</sub> O <sub>3</sub> | 1,28         | 30,80        | 19,80        | 1,34             | 20,00            | 24,70        | 28,90                                 | 0,57                                  |
| MgO                            | 30,30        | 16,10        | 18,70        | 34,70            | 18,50            | 15,50        | 14,/0                                 | 1 20                                  |
| CaO                            | 0,89         | 0,65         | 1,00         | 0,78             | 1,35             | 0.58         | 0,65                                  | 0.18                                  |
| MnO                            | 0,11         | 0,57         | 0,10         | 0.10             | 0.10             | 0,00         | 0.01                                  | 0.10                                  |
| Na <sub>2</sub> O              | 0,10         | 0,10         | 0.01         | 0.01             | 0.01             | 0.01         | 0.01                                  | 0.01                                  |
| TiO-                           | 0.02         | 0.19         | 0,30         | 0.01             | 0.04             | 0,02         | 0,01                                  | 0,01                                  |
| P <sub>2</sub> O <sub>2</sub>  | 0.01         | 0.01         | 0.01         | 0.01             | 0,01             | 0,01         | 0.01                                  | 0,01                                  |
| V <sub>2</sub> O <sub>5</sub>  | 0,01         | 0,10         | 0,12         | 0,01             | 0.12             | 0,16         | 0.19                                  | 0,02                                  |
| PAF                            | 19,20        | 5,03         | 4,33         | 11,50            | 4,27             | 4,32         | 3,91                                  | 10,50                                 |
| total                          | 100,17       | 100,29       | 98,62        | 99,47            | 98,19            | 99,34        | 100,02                                | 99,45                                 |
|                                |              |              |              |                  |                  |              |                                       |                                       |
| CO <sub>7</sub>                | 17,10        | 1,23         | -            | -                | •                | -            |                                       | · ·                                   |
| s                              | 0,01         | 0,03         | •            | -                |                  |              | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
|                                |              |              | 1.07         | 0.20             |                  | 141          | 1.45                                  | 0.25                                  |
| Fe2O3+                         | 0,05         | 0,93         | 1,0/         | 0,30             | 1,21             | 11 42        | 11 74                                 | 2 70                                  |
| reOe                           | 0,44         | 7,50         | 65 16        | 88.01            | 65.02            | 57.41        | 57 10                                 | 84.37                                 |
| Crt                            | 61 30        | 68.89        | 55.38        | 23.35            | 52.57            | 54.02        | 57.20                                 | 9,98                                  |
| Cr/Fe                          | 0.08         | 1,33         | 0,95         | 0,14             | 0,96             | 1,03         | 1,25                                  | 0.05                                  |
| ppm                            | -,           | -,           |              |                  |                  |              |                                       |                                       |
| Cr                             | 9000         | 182000       | 135472       | 9168             | 136840           | 168998       | 197734                                | 3900                                  |
| Ni                             | 698          | 1400         | 1800         | 1900             | 1900             | 2900         | 2100                                  | 1300                                  |
| Cu                             | 9            | 29           | 36           | 17               | 21               | 770          | 1400                                  | 24                                    |
| Zn                             | 111          | 1900         | 573          | 89               | 235              | 572          | 733                                   | 78                                    |
| Co                             | 73           | 266          | 228          | 142              | 118              | 236          | 232                                   | 142                                   |
| Au                             | 5            | 5            | p.a.         | 0.9.             | <u>n.a.</u>      | n.a.         | n.a.                                  | <u>n.a.</u>                           |
| Ag                             | <u>n.d.</u>  | n.d.         | п.а.         | <u>n.a.</u>      | n.a.             | <u>д.а.</u>  | <u>n.a</u>                            | <u>n.a.</u>                           |
|                                |              |              |              |                  |                  |              |                                       |                                       |
| As                             |              |              | <u>n.a.</u>  | <u>1.a.</u>      | <u>n.a.</u>      |              | 11.4                                  | 1.4-                                  |
| SC                             | 10           | 10           | <u>L.a.</u>  | <u> </u>         | 1.2              | п.а.         | п.а                                   | n.a.                                  |
| Te                             | 10           | 10           | n.d.         | n.d.             | n.d.             | n.d.         | n.d.                                  | n.d.                                  |
| Bi                             | n.a.         | n.a.         | п.а.         | D.8.             | n.a.             | n.a.         | n.a.                                  | <b>n.a</b> .                          |
|                                |              |              |              |                  |                  |              |                                       |                                       |
| Ba                             | 3            | 7            | 6            | 6                | 6                | 10           | 5                                     | 3                                     |
| Be                             | 1            | 31           | 23           | 1                | 12               | 28           | 30                                    | n.d.                                  |
| Br                             | 1            | 1            | <u>D.a.</u>  | <b>D.</b> 8.     | n.a.             | <b>n.a.</b>  | <u>n.a</u> .                          | n.a.                                  |
| Cd                             | 2            | 2            | n.d.         | n.d.             | n.d.             | n.d.         | n.d.                                  | n.d.                                  |
| Ce                             | 5            | 5            | <u>n.d.</u>  | n.d.             | n.d.             | n.d.         | <b>n.d</b> .                          | n.d.                                  |
| Cs                             | 1            | 1            | <u>n.a.</u>  | <u>n.a.</u>      | <u>n.a.</u>      | n.a.         | <u>n.a.</u>                           | n.a.                                  |
| Dy                             | 1            | 17           | <u>n.d.</u>  | n.d.             | <u>n.a.</u><br>7 | 18           | 21                                    | n.d.                                  |
| Eu                             |              | 17           | 22           | 4                | 23               | 28           | 31                                    | 4                                     |
| Ga<br>Le                       | 2            | 2            | n.d.         | n.d.             | n.d.             | n.d.         | n.d.                                  | n.d.                                  |
| Li                             |              | 2            | n.d.         | n.d.             | n.d.             | n.d.         | n.d.                                  | n.d.                                  |
| Мо                             | 4            | 16           | 14           | n.d.             | 7                | 15           | 16                                    | n.d.                                  |
| Nb                             | 3            | 3            | n.d.         | n.d.             | n.d.             | n.d.         | n.d.                                  | n.d.                                  |
| Nd                             | 25           | 118          | 83           | n.d.             | 45               | 98           | 112                                   | n.d.                                  |
| Рь                             | 12           | 12           | n.d.         | n.d.             | n.d.             | n.d.         | 312                                   | n.d.                                  |
| Pr                             | 10           | 10           | 25           | n.d.             | n.d.             | 40           | 48                                    | n.d.                                  |
| Rb                             | 3            | 3            | 4            | n.d.             | 3                | 3            | n.d.                                  |                                       |
| Sc                             | 4            |              | 12           | 13               |                  |              | 661                                   | nd                                    |
| Sm                             | 10           | 4            | 408          | <u>a.a.</u>      | <br>n.d          | n.d.         | n.d                                   | n.d.                                  |
| Sr                             |              | 18           | 4            | 6                | n.d.             | 5            | 3                                     | 4                                     |
| Та                             | 5            | 5            | p.d.         | p.d.             | n.d.             | n.d.         | n.d.                                  | n.d.                                  |
| Th                             | 10           | 10           | 14           | 10               | 10               | 16           | 13                                    | 10                                    |
| Tm                             | 2            | 2            | <b>n.a</b>   | ц.а              | <b>D.</b> 8      | n.a          | п.а                                   | D.A.                                  |
| U                              | 0,2          | 0,2          | D.a.         | <b>n.a.</b>      | n.a.             | n.a.         | D.a.                                  | <u>n.a.</u>                           |
| v                              | 29           | 722          | 844          | 83               | 465              | 1100         | 1200                                  | 72                                    |
| W                              | 1            | 2            | <u>D.a.</u>  | n.a.             | n.a.             | D.a.         | <b>D.</b> 8.                          | <u>n.a.</u>                           |
| Y                              | 3            | 4            | 3            | 4                | 7                | 5            | 6                                     | 3                                     |
| Zr                             | 5            | 8            | 10           | 11               | 16               | 12           | 10                                    | 11                                    |
| ppb                            |              |              |              |                  |                  |              |                                       |                                       |
| Us                             | <u>n.a.</u>  | n.a.         | <u>n.a.</u>  | <u>n.a.</u>      | <u>u.a.</u>      | n.a.         | n.e.                                  | p.8.                                  |
| II                             | <u> </u>     | <u> </u>     | 11.8.        | <u> 1.a.</u>     | <u>n.e</u>       | n.a.         | n.a.                                  | n.a.                                  |
| Rh                             | 12           | n.d.         | <u>n.a</u>   | n.a.             | n.a.             | n.a.         | <u>n.a.</u>                           | D.a.                                  |
| Pt                             | 83           | 15           | n.a.         | n.a.             | n.a.             | Д.А.         | <u>n.a.</u>                           | D.8.                                  |
| Pd                             | 52           | 69           | <b>n.a</b> . | n.a.             | <u>ந.</u> சு     | n.a.         | n.a.                                  | D.8.                                  |

### Tableau B.1 Analyses lithogéochimiques pour les roches du CDM (suite).

| Echantillon                     | 97-1C-5099-B | 97-JC-5099-E     | 97-JC-5112-B | 97-JC-5112-D      | 97-JC-5113-A | 97-JC-5114A  | 97-JC-5115-CI | 97-JC-5115-E |
|---------------------------------|--------------|------------------|--------------|-------------------|--------------|--------------|---------------|--------------|
| Lithologic                      | Chr          | Lherz à chro (Pc | Chr Sil      | Lherz à chro (Pc) | Chr          | Chr          | Chr           | Du           |
| # analyse                       | 97012885     | 97012886         | 97012887     | 97012888          | 97012889     | 97012890     | 97012891      | 97012892     |
| %                               |              |                  |              |                   |              |              |               |              |
| SiO <sub>2</sub>                | 9,46         | 33,80            | 12,50        | 37,70             | 7,39         | 10,40        | 9,89          | 32,00        |
| Al <sub>2</sub> O <sub>3</sub>  | 14,00        | 4,96             | 15,70        | 3,23              | 14,70        | 14,30        | 13,10         | 0,84         |
| Fe <sub>2</sub> O <sub>3t</sub> | 33,40        | 13,10            | 21,70        | 11,50             | 18,10        | 18,50        | 20,10         | 10,00        |
| Cr <sub>7</sub> O <sub>3</sub>  | 28,40        | 4,06             | 27.10        | 1,18              | 39,90        | 35,20        | 35,40         | 0,76         |
| MgO                             | 10,80        | 30,50            | 16,00        | 34,50             | 16,60        | 17,50        | 16,70         | 37,50        |
| CaO                             | 0,05         | 1,70             | 0,89         | 1,68              | 0,03         | 0,06         | 0,03          | 0,04         |
| MnO                             | 0,71         | 0,15             | 0,34         | 0,17              | 0,40         | 0,47         | 0,68          | 0,15         |
| Na <sub>2</sub> O               | 0,10         | 0,10             | 0,10         | 0,10              | 0,10         | 0,10         | 0,10          | 0,10         |
| K <sub>2</sub> O                | 0,01         | 0,01             | 0,01         | 0,01              | 0,01         | 0,01         | 0,01          | 0,01         |
| TiO <sub>2</sub>                | 0,57         | 0,15             | 0,47         | 0,14              | 0,27         | 0,31         | 0,28          | 0,03         |
| P <sub>2</sub> O <sub>5</sub>   | 0,01         | 0,01             | 0,01         | 0,01              | 0,01         | 0,01         | 0,01          | 0,01         |
| V <sub>2</sub> O <sub>3</sub>   | 0,19         | 0,04             | 0,16         | 0,01              | 0,14         | 0,13         | 0,14          | 0,01         |
| PAF                             | 2,07         | 11,50            | 4,20         | 10,10             | 1,63         | 3,17         | 3,74          | 18,70        |
| total                           | 99,77        | 100,08           | 99,18        | 100,33            | 99,20        | 100,16       | 100,18        | 100,15       |
|                                 |              |                  |              |                   |              |              |               |              |
| CU <sub>2</sub>                 | ·            |                  | -            |                   |              |              |               |              |
| 3                               |              |                  |              |                   |              |              |               |              |
| Fe O                            | 1.40         | 0.50             | 157          | 0.32              | 1 47         | 1 43         | 1.31          | 0.08         |
| FeO                             | 11 24        | 4.02             | 12.71        | 2.62              | 11.90        | 11.58        | 10.61         | 0.68         |
| Mat                             | 41 57        | 83.67            | 61.86        | 86.84             | 66.85        | 67.55        | 64,64         | 89.19        |
| Crt                             | 57.64        | 35.44            | 53.65        | 19.68             | 64.54        | 62.28        | 64.44         | 37,76        |
| Cr/Fe                           | 0.89         | 0,33             | 1,31         | 0,11              | 2,32         | 2,00         | 1,85          | 0,08         |
| ppm                             | -,           |                  |              |                   |              |              |               |              |
| Cr                              | 194313       | 27779            | 185419       | 8074              | 272997       | 240839       | 242208        | 5200         |
| Ni                              | 1800.        | 1500             | 2100         | 1800              | 1200         | 1500         | 1300          | 1900         |
| Cu                              | 75           | 470              | 1300         | 15                | 35           | 53           | 54            | 10           |
| Zn                              | 1300         | 151              | 339          | 76                | 301          | 601          | 707           | 69           |
| Co                              | 278          | 117              | 204          | 136               | 153          | 235          | 283           | 146          |
| Au                              | D.a.         | n.a.             | <b>D.a.</b>  | <u>n.a.</u>       | <b>q.a.</b>  | <b>D.</b> a. | p.a.          | n.a.         |
| Ag                              | n.a.         | n.a.             | n.a.         | <b>n.a.</b>       | n.a.         | <b>n.a.</b>  | n.a.          | <u>n.a.</u>  |
|                                 |              |                  |              |                   |              |              |               |              |
| As                              | n.a.         | n.a.             | n.a.         | n.a.              | <u>n.a.</u>  | n.a.         | <b>D.</b> a.  | n.a.         |
| Se                              | D.a.         | n.a.             | n.a.         | n.a.              | n.a.         | <u>D.a.</u>  | n.a.          | n.a.         |
| Sp                              | n.a.         | n.a.             | <u>0.a.</u>  | <u>n.a.</u>       | n.a.         | <u>n.a.</u>  | n.a.          | n.a.         |
| Te                              | n.d.         | n.d.             | <u>n.d.</u>  | n.d.              | n.d.         | n.d.         | n.d.          | n.d.         |
| Bi                              | 1.a.         | n.a.             | n.a.         | n.a.              | <b>q.a</b> . | <u>n.a.</u>  | <u>n.a.</u>   | n.a.         |
|                                 |              |                  |              |                   |              |              | 10            |              |
| Ba                              | 7            | 5                |              |                   |              | 15           | 18            |              |
| Be                              | 30           | 4                | 20           | <u>n.a.</u>       | 20           | 40           | 39            |              |
| Dr<br>Cd                        | 0.a.         | <u>n.a.</u>      | <u>u.a.</u>  | a                 | n d          | n_           | n d           | n d          |
| Ca                              | <u></u>      | <u>u.u.</u>      | n.u.         | nd                | <u>n.u.</u>  | n d          | n.d.          | n.d.         |
| Ce                              | <u>n.u.</u>  | <u> </u>         | <u> </u>     |                   | n.a.         | D.a.         | n.a.          | n.a.         |
| Dv                              | nd           | n.d.             | 3            | n.d.              | 1            | 3            | n.d.          | n.d.         |
| Eu                              | 17           | n.d.             | 21           | n.d.              | 21           | 29           | 28            | n.d.         |
| Ga                              | 22           | 9                | 29           | 5                 | 25           | 23           | 22            | n.d.         |
| La                              | 2            | n.d.             | 2            | n.d.              | n.d.         | 2            | n.d.          | n.d.         |
| Li                              | n.d.         | n.d.             | 4            | n.d.              | 3            | 18           | 20            | n.d.         |
| Mo                              | 17           | n.d.             | 14           | <u>n.d.</u>       | 18           | 24           | 25            | n.d.         |
| Nb                              | n.d.         | n.d.             | n.d.         | n.d.              | n.d.         | n.d.         | n.d.          | n.d.         |
| Nd                              | 103          | n.d.             | 107          | n.d.              | 109          | 159          | 149           | n.d.         |
| РЪ                              | n.d.         | ŋ.d.             | n.d.         | n.d.              | n.d.         | 312          | 312           | <12          |
| Рт                              | 56           | n.d.             | 42           | n.d.              | 39           | 70           | 70            | n.d.         |
| Kb                              | 3            | 3                | 4            | n.d.              | 5            |              | 5             | <u>n.q.</u>  |
| sc                              | 13           | 15               | 15           | 13                | 9            | 11           |               |              |
| Sm                              | 669          | 88               | 629          | n.d.              |              | <u>834</u>   | 821           | n.u.         |
| Sn                              | <u>n.a.</u>  | <u>n.a.</u>      | 11           | <u>n.q.</u>       | 2            | n.u.<br>n.d  |               |              |
| 5r<br>To                        | <u>n.a.</u>  |                  | nd           |                   |              | <u>n.u.</u>  | nd            | n.d.         |
| та<br>тъ                        | <u>n.</u>    | 10               | 16           | 10                | - 22         | 17           | 19            | 10           |
| Τm                              |              | <u> </u>         | n.e          | n.e               | n.a          | <u>n.a</u>   | n.a           | n.a          |
| <u>u</u>                        | a            | n.a.             | <br>B.8.     | n.a.              | na           | n.a.         | D.8.          | n.a.         |
| v                               | 1300         | 243              | 1000         | 85                | 744          | 1000         | 1100          | 38           |
| w                               | n.a.         | n.a.             | n.a.         | n.a.              | n.a.         | D.8.         | D.a.          | D.a.         |
| Y                               | n.d.         | 5                | 3            | 4                 | n.d.         | n.d.         | n.d.          | n.d.         |
| Zr                              | 8            | 8                | 11           | 11                | 5            | 4            | 6             | 4            |
| ppb                             |              |                  |              |                   |              |              |               |              |
| Os                              | n.a.         | n.a.             | D.a.         | <u>n.a.</u>       | n.a.         | n.a.         | D.a.          | <b>D.a.</b>  |
| lr                              | D.a.         | n.a.             | n.a.         | D.a.              | D.8-         | n.a.         | D.8.          | <b>D.a.</b>  |
| Ru                              | n.a.         | n.a.             | n.a.         | п.а.              | <b>D.a.</b>  | n.a.         | n.a.          | 0.8.         |
| Rh                              | n.a.         | D.A.             | n.a.         | n.a.              | <b>n.a</b> - | n.a.         | D.a.          | n.a.         |
| Pt                              | n.a.         | n.a.             | n.a.         | n.a.              | D.8.         | <u>n.a.</u>  | n.a.          | _n.a.        |
| Pd                              | <b>n.a.</b>  | n.a.             | n.a.         | <b>D.a.</b>       | D.a.         | n.a.         | n.a.          | n.a.         |

#### Tableau B.1 Analyses lithogéochimiques pour les roches du CDM (suite).
| Echantillon                     | 07-10-5115-6 | 97-JC-5116-F | 97-JC-5557-D1 | 97-JC-5557-D2 | 97-MH-7371-02 | 97-MH-7371-03 | 97-MH-7371-04 | 97-MH-7371-05      |
|---------------------------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|--------------------|
| Lithologie                      | Herrb        | Harzb        | Chr Sil       | Chr           | Harzb à chro  | Harzb         | Harzb à chro  | Chr Sil            |
| # analyse                       | 97012893     | 97012894     | 97012895      | 97012896      | 97015190      | 97015191      | 97015182      | 97015183           |
| %                               | 77012030     |              |               |               |               |               |               |                    |
| SiO                             | 37,40        | 36,60        | 12,30         | 11,90         | 36,70         | 37,70         | 34,50         | 27,80              |
| ALO3                            | 1,52         | 1,24         | 14,80         | 14,20         | 2,90          | 2,28          | 3,48          | 6,24               |
| Fe <sub>2</sub> O <sub>3t</sub> | 8,93         | 10,70        | 23,00         | 23,50         | 12,60         | 10,40         | 14,10         | 17,70              |
| Cr <sub>2</sub> O <sub>3</sub>  | 1,15         | 0,67         | 28,20         | 30,40         | 2,66          | 2,10          | 4,06          | 10,60              |
| MgO                             | 37,00        | 36,40        | 16,10         | 15,30         | 32,20         | 34,10         | 31,60         | 26,80              |
| CaO                             | 0,09         | 0,08         | 0,17          | 0,42          | 1,34          | 1,69          | 0,96          | 1,03               |
| MnO                             | 0,10         | 0,14         | 0,45          | 0,48          | 0.12          | 0,09          | 0,17          | 0,24               |
| Na <sub>2</sub> O               | 0,11         | 0,13         | 0,10          | 0,10          | 0,14          | 0,14          | 0,13          | 0.10               |
| K <sub>2</sub> 0                | 0,01         | 0.01         | 0,01          | 0.01          | 0.01          | 0.08          | 0.01          | 0.21               |
| 110 <sub>2</sub>                | 0,04         | 0,04         | 0,41          | 0,41          | 0.01          | 0.01          | 0.01          | 0.01               |
| F205                            | 0,01         | 0.01         | 0.16          | 0.17          | 0.02          | 0.01          | 0.03          | 0.07               |
| PAF                             | 14.00        | 14.10        | 3.99          | 3,55          | 10,70         | 11,10         | 10,50         | 8,88               |
| total                           | 100.37       | 100,13       | 99,70         | 100,45        | 99,53         | 99,71         | 99,67         | 99,69              |
|                                 |              |              |               |               |               |               |               |                    |
| CO <sub>2</sub>                 | -            | -            | -             | -             | 2,13          | 2,63          | 1,45          | 1,65               |
| S                               | -            | -            | -             | -             | 0,59          | 0,72          | 0,41          | 0,19               |
|                                 |              |              |               |               |               |               |               |                    |
| Fe <sub>7</sub> O <sub>3r</sub> | 0,15         | 0,12         | 1,48          | 1,42          | 0,29          | 0,23          | 0,35          | 0,62               |
| FcOc                            | 1,23         | 1,00         | 11,99         | 11,50         | 2,35          | 1,85          | 2,82          | 5,05               |
| Mg#                             | 90,11        | 88,21        | 60,63         | 58,89         | 84,90         | 87,83         | 83,14         | 70,91              |
| Cr#                             | 33,66        | 26,60        | 56,10         | 38,95         | 38,09         | 38,18         | -+3,90        | 0.63               |
| CT/Fe                           | 0,14         | 0,07         | 1,29          | 1,30          | 0,22          | 0,21          | 0,50          | 0,00               |
|                                 | 7869         | 4584         | 192945        | 207997        | 18400         | 14600         | 28700         | 81100              |
| Ni                              | 2000         | 1800         | 2800          | 3200          | 2200          | 2800          | 1500          | 1900               |
| Cu                              | 11           | 10           | 2500          | 81            | 1200          | 3000          | 224           | 698                |
| Zn                              | 84           | 75           | 129           | 425           | 81            | 39            | 95            | 140                |
| Co                              | 131          | 140          | 87            | 217           | 161           | 147           | 131           | 145                |
| Au                              | n.a.         | п.а.         | n.a.          | D.a.          | 13            | 17            | 5             | 15                 |
| Λg                              | n.a.         | п.а.         | D.a.          | D.8.          | n.d.          | n.d.          | n.d.          | n.d.               |
|                                 |              |              |               |               |               |               |               |                    |
| As                              | n.a.         | <u>n.a.</u>  | n.a.          | n.a.          | 87            | 120           | 63            | 130                |
| Se                              | n.a.         | D.A.         | <u> </u>      | n.a.          | 10            | 13            | 10            | 10                 |
| Sb                              | n.a.         | n.a.         | <u>n.a.</u>   | <u>n.a.</u>   | 1,3           | 1,7           | 0,9           | ····· <del>2</del> |
| Te                              | n.d.         | <u>n.d.</u>  | <u>n.d.</u>   | n.d.          | 10            | 10            | 10            | 10                 |
| Bi                              | n.a.         | <u>n.a.</u>  | 1.8.          | <u>n.a.</u>   | ц.а.          | 11.41.        | 11.4.         |                    |
| Re                              |              | 7            | 10            | 12            | 2             | 2             | 2             | 2                  |
| Be                              |              | nd           | 10            | 30            | 2             | 1             | 1             | 1                  |
| Br                              |              | n.a.         | n.a.          | D.a.          | 1             | 1             | I             | 1                  |
| Ca                              | n.d.         | n.d.         | n.d.          | n.d.          | 2             | 2             | 2             | 2                  |
| Ce                              | 5            | n.d.         | n.d.          | n.d.          | 5             | 5             | 5             | 5                  |
| Cs                              | n.a.         | <b>n.a.</b>  | n.a.          | D.a.          | 1             | 1             | 1             | 1                  |
| Dy                              | n.d.         | n.d.         | n.d.          | n.d.          | 1             | 1             | 1             | 1                  |
| Eu                              | n.d.         | n.d.         | 6             | 20            | 5             | 5             | 5             | 5                  |
| Ga                              | 3            | n.d.         | 27            | 27            | 6             | 6             | 7             | 12                 |
| La                              | n.d.         | n.d.         | n.d.          | 3             | 2             | 2             | 2             | 2                  |
| Li                              | n.d.         | <u>n.d.</u>  | n.d.          | 4             | 1             | 1             | 1             |                    |
| Mo                              | n.d.         | <u>n.d.</u>  |               | 15            |               | +             |               | 3                  |
| NB                              | <u>n.d.</u>  | <u>n.a.</u>  | n.d.          | <u>n.q.</u>   |               |               | 25            | 25                 |
| Ph                              | n.a.         | <u>n.a.</u>  |               | nd            | 12            | 12            | 12            | 12                 |
| Pr                              | n.u.         | n.d.         | n.d.          | 32            | 10            | 10            | 10            | 10                 |
| Rb                              | n.d.         | 3            | 4             | 4             | 3             | 3             | 3             | 3                  |
| Sc                              | 8            | 8            | 13            | 15            | 12            | 11            | 12            | 12                 |
| Sm                              | n.d.         | n.d.         | 198           | 632           | 2             | 2             | 2             | 2                  |
| Sn                              | n.d.         | n.d.         | n.d.          | n.d.          | 10            | 10            | 10            | 10                 |
| Sr                              | 3            | 3            | 8             | 11            | 47            | 59            | 31            | 37                 |
| Та                              | <u>n.d.</u>  | n.d.         | n.d.          | 5             | 5             | 5             | 5             | 5                  |
| Th                              | 10           | 10           | 14            | 16            | 10            | 10            | 10            | 10                 |
| Tm                              | n.a          | <u> </u>     | <b>D.</b> A   | D.A           | 2             | 2             | 2             |                    |
| U                               | <u>n.a.</u>  | <u>n.a.</u>  | D.a.          | D.a.          | 0,2           | 74            | 127           | 304                |
| v                               | 62           | 41           | 303           | 1000          |               | 14            | 121           | 1                  |
| v                               | п.а.         | <u>a.</u>    | 4.8.          | 4 H.H.        | - 3           | 4             | 5             | 3                  |
| 7.r                             | 5            | 4            | 11            | 13            | 10            | 10            | 9             | 8                  |
| ppb                             |              |              |               |               |               |               |               |                    |
| Os                              | n.a.         | n.a.         | ŋ.a.          | n.a.          | <u>n.a.</u>   | <b>ŋ.a.</b>   | n.a.          | D.a.               |
| lr                              | <u>n.a.</u>  | D.a.         | п.а.          | n.a.          | D.a.          | <b>n.a.</b>   | п.а.          | <b>D.a.</b>        |
| Ru                              | D.a.         | n.a.         | D.8.          | D.a.          | <u>n.a.</u>   | <b>D.a.</b>   | 1.8.          | <b>n.a.</b>        |
| Rh                              | n.a.         | n.a.         | <b>D.</b> 8.  | n.a.          | 27            | n.d.          | 29            | 14                 |
| Pt                              | D.A.         | n.a.         | <b>D.a.</b>   | n.a.          | 182           | 236           | 77            | 128                |
| Pd                              | п.а.         | n.a.         | 0.8.          | D.a.          | 972           | 1300          | 324           | 562                |

| Échantillon                    | 97-MH-7371-04 | 97-MH-7371-00 | 97-MH-7371-10 | 97-MH-7271-1 | 497-MH-7271-15 | 97-MH-7371-10     | 97-MH-7271-21 | 97-MH-7374-01 |
|--------------------------------|---------------|---------------|---------------|--------------|----------------|-------------------|---------------|---------------|
| Lithologie                     | Harrh & ch-   | Horzh é chro  | Harth & che   | Ch-          | Harrh & abox   | Harth & chm /D    | Weber (D)     | Harrh & che-  |
| LILLEDIDE                      | narzo a cilio | Harzo a Cino  | 114120 4 1110 |              | Harzo a cino   | narzo a cillo (PC | Webst (D)     | Harzo a chio  |
| # analyse                      | 9/015184      | 97015185      | 91012135      | 97015171     | 97015172       | 97015193          | 97015194      | 97015195      |
| %                              |               | l             |               |              |                |                   |               |               |
| SiO7                           | 29,40         | 26,60         | 36,10         | 13,70        | 25,00          | 35,00             | 46,00         | 35,70         |
| Al <sub>2</sub> O <sub>3</sub> | 4,86          | 6,06          | 3,04          | 12,00        | 8,98           | 4,47              | 5,78          | 3,71          |
| Fc <sub>2</sub> O <sub>3</sub> | 16,10         | 17,90         | 12,60         | 19,80        | 17,30          | 12,60             | 9,80          | 12,20         |
| Cr <sub>2</sub> O <sub>3</sub> | 8,79          | 11,50         | 2,54          | 32,90        | 17,00          | 4,91              | 0.20          | 4,41          |
| MgO                            | 28.00         | 25.50         | 32.20         | 15.20        | 24.00          | 31.20             | 22.60         | 32.50         |
| CoO                            | 1 70          | 2.07          | 156           | 1.21         | 0.78           | 2.45              | 22,00         | 0.71          |
| Mag                            | 1,70          | 2,07          | 1,50          | 1,21         | 0,78           | 4,45              | 9,01          | 0,71          |
| MnO                            | 0,21          | 0,25          | 0,16          | 0,31         | 0,22           | 0,20              | 0,23          | 0,14          |
| Na <sub>2</sub> O              | 0,10          | 0,12          | 0,11          | 0,10         | 0,10           | 0,10              | 0,28          | 0,10          |
| K <sub>2</sub> O               | 0,01          | 0,01          | 0,01          | 0,01         | 0,01           | 0,02              | 0,04          | 0,01          |
| TiO <sub>7</sub>               | 0,18          | 0,19          | 0,18          | 0,30         | 0,22           | 0,12              | 0,37          | 0,10          |
| P <sub>2</sub> O <sub>3</sub>  | 0.01          | 0.01          | 0.01          | 0.01         | 0.01           | 0.01              | 0.38          | 0.01          |
| V.O.                           | 0.06          | 0.07          | 0.02          | 0.13         | 0.09           | 0.02              | 0.01          | 0.02          |
| PAF                            | 10,00         | 0.20          | 11.10         | 4 66         | 6.82           | 8.71              | 5.02          | 10 70         |
| total                          | 10,10         | 9,39          | 00.62         | 100.00       | 100.54         | 00.81             | 3,23          | 10,70         |
| waa                            | 99,52         | 39,07         | 99,00         | 100,33       | 100,54         | 99,01             | 99,93         | 100,31        |
|                                |               |               |               |              | L              |                   |               |               |
| CO <sub>2</sub>                | 2,83          | 3,00          | 2,39          | 0,85         | 0,45           | 0,13              | 0,42          | 0,97          |
| S                              | 0,38          | 0,25          | 0,59          | 0,08         | 0,20           | 0,19              | 0,17          | 0,08          |
|                                | 1             |               |               |              |                |                   |               |               |
| Fe <sub>2</sub> O <sub>2</sub> | 0,49          | 0,61          | 0,30          | 1,20         | 0.90           | 0,45              | 0.58          | 0,37          |
| FeO.                           | 3.94          | 4.91          | 2.46          | 9.72         | 7.27           | 3.62              | 4 68          | 3.00          |
| Mat                            | 70.00         | 75.91         | 84.90         | 62.91        | 75.30          | 84.40             | 82 54         | 85.42         |
| C-#                            | F4 01         | 55.00         | 25.01         | 64.01        | 55.04          | 40.40             | 0.04          | 44.04         |
|                                | 54,81         | 56,00         | 35,91         | 04,77        | 55,94          | 42,42             | 2,27          | 44,30         |
| Cr/Fe                          | 0,57          | 0,67          | 0,21          | 1,75         | 1,03           | 0,41              | 0,02          | 0,38          |
| ррт                            |               |               |               |              |                |                   |               |               |
| Cr                             | 60800         | 79200         | 18100         | 180000       | 109000         | 35800             | 1300          | 31100         |
| Ni                             | 2400          | 2100          | 1300          | 1900         | 2300           | 2000              | 877           | 1600          |
| Cu                             | 1700          | 640           | 167           | 303          | 800            | 585               | 33            | 9             |
| 7n                             | 120           | 211           | 84            | 250          | 222            |                   | 54            | 100           |
| Ca                             | 109           | 411           | 110           |              | 223            | 120               |               | 100           |
| 6                              | 162           | 157           | 119           | 192          | 148            | 132               | 64            | 127           |
| Au                             | 8             | 13            | 5             | 33           | 5              | 7                 | 5             | 5             |
| Ag                             | n.d.          | n.d.          | n.d.          | p.d.         | n.d.           | n.d.              | n.d           | n.d.          |
|                                |               |               |               |              |                |                   |               |               |
| As                             | 160           | 93            | 31            | 180          | 4              | 1                 | 23            | 99            |
| Se                             | 10            | 10            | 10            | 18           | 10             | 10                | 10            | 10            |
| Sh                             | 21            | 16            | 0.6           | 6.0          | 13             | 0.4               | 0.4           | 0.5           |
| Te                             | 4,1           | 10            | 10            | 0,9          | 1,5            | 10                | 10            | 10            |
| 10                             | 10            | 10            | 10            | 10           | 10             | 10                | 10            | 10            |
| B1                             | <u>n.a.</u>   | <u>n.a.</u>   | <u>n.a.</u>   | <b>D.a</b> . | n.a.           | n.a.              | û.a.          | <u>n.a.</u>   |
|                                | i             |               |               |              |                |                   |               |               |
| Ba                             | 2             | 4             | 6             | 7            | 2              | 6                 | 9             | 2             |
| Be                             | 1             | 1             | 1             | 29           | 1              | 1                 | 1             | 1             |
| Br                             | 1             | 1             | I             | 1            | 1              | 1                 | 1             | 1             |
| Cd                             | 4             | 2             | 2             | 2            | 2              | 2                 | 2             | 2             |
| Ce                             |               |               |               |              |                |                   | 20            |               |
| <u>~</u>                       | — <u>,</u>    |               |               |              |                |                   | 29            |               |
| <u></u>                        | <u> </u>      | 1             | 1             | <u>I</u>     | <u>+</u>       |                   |               |               |
| Dy                             | 1             | 1             | 1             | 3            | 1              | 1                 | 1             |               |
| Eu                             | 5             | 5             | 5             | 17           | 5              | 5                 | 5             | 5             |
| Ga                             | 11            | 13            | 5             | 26           | 18             | 6                 | 7             | 8             |
| La                             | 2             | 2             | 2             | 2            | 2              | 2                 | 13            | 2             |
| Li                             | 1             | 1             | 1             | 2            | 1              | 1                 | 2             | 1             |
| Mo                             | 4             | 4             | 4             | 12           | 4              | 4                 | 4             | 4             |
| Nb                             |               |               |               |              |                | 3                 | 2             | 3             |
| Nd                             |               |               | 75            |              |                |                   |               | 25            |
|                                |               | 20            | 43            | 98           | 25             | <u></u>           |               | 23            |
| r0                             | 12            | 12            | 12            | 12           | 12             | 12                | 12            | 12            |
| Рт                             | 10            | 10            | 10            | 10           | 10             | 10                | 10            | 10            |
| Rb                             | 3             | 3             | 4             | 3            | 3              | 3                 | 3             | 5             |
| Sc                             | 11            | 12            | 13            | 19           | 14             | 13                | 22            | 13            |
| Sm                             | 2             | 2             | 2             | 2            | 2              | 2                 | 2             | 2             |
| Sa                             | 10            | 10            | 10            | 10           | 10             | 10                | 10            | 10            |
| Sr                             | 106           | 08            | 36            | 17           |                | 4                 | 173           |               |
| To                             | 100           |               |               |              |                |                   |               |               |
| 1a                             | 3             |               | 3             | 5            | 3              |                   | 3             |               |
| 10                             | 10            | 10            | 10            | 11           | 10             | 10                | 10            | 10            |
| 1 m                            | 2             | 2             | 2             | 2            | 2              | 2                 | 2             | 2             |
| υ                              | 0,2           | 0,2           | 0,3           | 0,2          | 0,2            | 0,2               | 0,8           | 0,2           |
| v                              | 247           | 381           | 102           | 891          | 310            | i08               | 87            | 159           |
| W                              | 1             | I             | 1 1           | 1            | 1              | 1                 | 1             | 1             |
| Y                              | 4             | 3             |               | 5            | 3              | 5                 | 14            | 3             |
| 7.5                            |               | 10            |               |              |                |                   | 64            | 6             |
| anh                            |               | 10            | 10            |              | 13             |                   |               |               |
| 6hn                            |               |               |               |              |                |                   |               |               |
| 18                             | n.a.          | д.а.          | D.a.          | n.a.         | n.a.           | D.8.              | n.a.          | <u>D.A.</u>   |
| r                              | n.a.          | n.a.          | n.a.          | n.a.         | D.8.           | n.a.              | n.a.          | D.A.          |
| Ru                             | n.a.          | D.8.          | D.8.          | <b>D.a.</b>  | <u>n.a.</u>    | д.а.              | n.a.          | n.a.          |
| Rh                             | 24            | 21            | 11            | 38           | 18             | 21                | 6             | 8             |
| Pt                             | 332           | 276           | 21            | 136          | 191            | 156               | p.d.          | 34            |
| 24                             | 1500          | 1200          |               | 600          | 580            | 222               | n d           | 117           |
| -                              | 1300          | 1200          | 50 1          | 522          | 384            | 333               | <b>D</b> .d.  |               |

Tableau B.1 Analyses lithogéochimiques pour les roches du CDM (suite).

| Echantillon                     | 97-MH-7374-02 | 97-MH-7374-05 | 97-MH-7374-08 | 97-MH-7374-11 | 97-MH-7374-19 | 97-MH-7382-B | 97-MH-7384-03 | 97-MH-7384-05 |
|---------------------------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|---------------|
| Lithologic                      | Harzh à chro  | Harzb à chro  | Chr Sil       | Harzb à chro  | Lherz         | Gab (D)      | Lherz à chro  | Chr Sil       |
| # analyse                       | 97015186      | 97015196      | 97015173      | 97015187      | 97015197      | 97015062     | 97015198      | 97015174      |
| %                               |               |               |               |               |               |              |               |               |
| SiO <sub>2</sub>                | 23,00         | 37,00         | 14,30         | 29,80         | 38,00         | 45,20        | 35,20         | 17,80         |
| Al <sub>2</sub> O <sub>3</sub>  | 7,79          | 3,47          | 13,00         | 6,29          | 2,58          | 14,80        | 3,40          | 11,80         |
| Fe <sub>2</sub> O <sub>3</sub>  | 19,70         | 11,20         | 21,00         | 13,80         | 10,60         | 13,30        | 13,80         | 22,20         |
| Cr203                           | 16,10         | 3,39          | 27,50         | 11,00         | 0,70          | 0,03         | 3,92          | 22,00         |
| MgO                             | 23,30         | 33,60         | 17,80         | 28,40         | 34,10         | 7,58         | 29,20         | 17,90         |
| CaQ                             | 1,24          | 0,60          | 0,30          | 1,24          | 1,17          | 16,30        | 2,97          | 0,42          |
| MnO                             | 0,40          | 0,11          | 0,37          | 0,18          | 0,15          | 0,21         | 0,15          | 0,38          |
| Na <sub>2</sub> O               | 0,10          | 0,11          | 0,10          | 0,10          | 0,15          | 0,67         | 0,10          | 0,10          |
| K <sub>2</sub> O                | 0,01          | 0,01          | 0,01          | 0,01          | 0,01          | 0,23         | 0,01          | 0,01          |
| TiO <sub>2</sub>                | 0,24          | 0,10          | 0,29          | 0,19          | 0,06          | 0,83         | 0,12          | 0,28          |
| P202                            | 0,01          | 0,01          | 0,01          | 0.01          | 0,01          | 0,06         | 0,01          | 0,01          |
| V <sub>2</sub> O <sub>3</sub>   | 0,09          | 0,02          | 0,14          | 0,06          | 0,01          | 0,04         | 0,03          | 0,12          |
| PAF                             | 7,95          | 10,90         | 4,81          | 9,12          | 11,70         | 1,12         | 11,50         | 4,94          |
| total                           | 99,93         | 100,52        | 99,63         | 100,20        | 99,24         | 100,37       | 100,41        | 97,90         |
|                                 |               |               |               |               |               |              |               | 0.79          |
| CO2                             | 1,76          | 0,98          | 0,28          | 0,83          | 1,51          | 0,09         | 4,58          | 0,78          |
| s                               | 0,06          | 0,11          | 0,04          | 0,10          | 0,16          | 0,01         | 0,20          | 0,02          |
|                                 |               | 0.05          | 1.00          | 0.60          | 0.05          | 1 49         | 0.24          | 1 19          |
| Fe <sub>2</sub> O <sub>3c</sub> | 0.78          | 0,35          | 1,30          | 0,63          | 0,26          | 1,40         | 0,34          | 0.56          |
| Mat                             | 0,31          | 4,61          | 65.00         | 81.01         | 97.60         | 55.62        | 82.22         | 63.95         |
| Cr#                             | 58.00         | 30.59         | 58.66         | 53.08         | 15 30         | 0.14         | 43.61         | 55.56         |
| Cr/Fe                           | 0.86          | 032           | 1 28          | 0.94          | 0.07          | 0.00         | 0.30          | 1.04          |
| 01/10                           | 0,80          | 0,02          | 1,50          |               |               |              |               |               |
| C-                              | 110000        | 24300         | 188000        | 81800         | 5000          | 605          | 28600         | 155000        |
| Ni                              | 1500          | 1400          | 2100          | 2600          | 1500          | 120          | 2200          | 1500          |
| Cu                              | 22            | 356           | 30            | 49            | 13            | 51           | 1000          | 24            |
| Zn                              | 236           | 75            | 290           | 174           | 70            | 59           | 116           | 348           |
| Co                              | 156           | 121           | 177           | 136           | 122           | 59           | 152           | 196           |
| Au                              | 5             | 5             | 14            | 11            | 5             | a.d.         | 26            | 15            |
| Ag                              | n.d.          | n.d.          | n.d.          | n.d.          | n.d.          | n.d.         | n.d.          | n.d.          |
|                                 |               |               |               |               |               |              |               |               |
| As                              | 15            | 62            | 6             | 7             | 100           | n.d          | 6             | 4             |
| Se                              | 10            | 10            | 10            | 10            | 10            | n.d          | 10            | 11            |
| Sb                              | 1             | 0,5           | 6,3           | 4,8           | 1,1           | n.d          | 2,3           | 5             |
| Те                              | 10            | 10            | 10            | 10            | 10            | 10           | 10            | 10            |
| Bi                              | D.a.          | n.a.          | n.a.          | n.a.          | D.a.          | D.a.         | <u>n.a.</u>   | D.a.          |
|                                 |               |               |               |               |               |              |               |               |
| Ba                              | 2             | 3             | 3             | 3             | 4             | 16           | 2             | 5             |
| Be                              | 1             | 1             | 1             | 1             | 1             | 1            | 1             | 1             |
| Br                              | 1             | 1             | 1             | 1             | 1             | <u>n.d.</u>  | 1             | 1             |
| Cd                              | 2             | 2             | 2             | 2             | 3             | 2            | 2             | 2             |
| Ce                              | 5             | 5             | 5             | 5             | 5             | 6            | 5             |               |
| Cs                              | 1             | 1             | 1             | 1             | 1             | <u>n.d.</u>  | 1             |               |
| Dy                              | 1             | 1             | 1             | 1             | 1             | 1            | <u>_</u>      |               |
| Eu                              | 5             | 5             | 5             |               |               |              |               |               |
| Ga                              | 16            | 9             | 24            | 14            |               | - 17         |               | 2             |
| La                              | 2             | 2             | 2             | 2             | 2             |              |               |               |
| Mo                              | 1             | 1             | 3             |               | 4             | 4            | 4             | 4             |
| Nb                              |               |               |               |               | 3             | 3            | 3             | 3             |
| Nd                              |               | - 25          |               | 25            | - 25          | 25           | 25            | 25            |
| Pb                              | 12            | 12            | 12            | 12            | 12            | 12           | 12            | 12            |
| Pr                              | 10            | 10            | 10            | 10            | 10            | 10           | 10            | 10            |
| Rb                              | 5             | 3             | 3             | 3             | 3             | 4            | 3             | 3             |
| Sc                              | 12            | 12            | 14            | 12            | 12            | 49           | 12            | 14            |
| Sm                              | 2             | 2             | 2             | 2             | 2             | 2            | 2             | 2             |
| Sn                              | 10            | 10            | 10            | 10            | 10            | 10           | 10            | 10            |
| Sr                              | 19            | 9             | 6             | 17            | 11            | 120          | 21            | 5             |
| Ta                              | 5             | 5             | 5             | 5             | 5             | 5            | 5             | 5             |
| Th                              | 11            | 10            | 11            | 10            | 10            | 10           | 10            | 10            |
| Тт                              | 2             | 3             | 2             | 2             | 2             | n.d.         | 3             | 2             |
| Ŭ                               | 0,2           | 0,2           | 0,2           | 0,2           | 0,2           | n.d.         | 0,2           | 0,2           |
| v                               | 382           | 129           | 630           | 233           | 53            | 285          | 158           | 565           |
| w                               | 1             | 1             | 1             | 1             | 1             | n.d.         | 1             | 1             |
| Y                               | 3             | 3             | 3             | 5             | 3             | 21           | 5             | 5             |
| Zr                              | 7             | 6             | 10            | 10            | 6             | 49           | 9             | 18            |
| ррь                             |               |               |               |               |               |              |               |               |
| Os                              | D.a.          | <u>n.a.</u>   | n.a.          | n.a.          | <u>n.a.</u>   | <u>n.a.</u>  | n.a           | <u>n.a.</u>   |
| Ir                              | <b>D.</b> a.  | <u>n.a.</u>   | 11.8.         | <u>n.a.</u>   | <b>D.A.</b>   | 0.8.         | n.a.          | n.a.          |
| Ru                              | D.8.          | <u>n.a.</u>   | <b>n.a.</b>   | <u> </u>      | <b>n.a.</b>   | <u>n.a.</u>  | <u>n.a.</u>   | <u>n.a.</u>   |
| KA                              | 8             | 7             | 9             | 7             | 8             | 23           | 25            | 120           |
|                                 | 81            | 20            | 15            | 72            | <u>p.d.</u>   | n.d.         | 1200          | 428           |
| ra                              | 268           | 57            | 50            | 328           | 10            | <b>n.</b> a. | 1300          |               |

| Echantillon                    | 97-MH-7385-01 | 97-MH-7402-A | 97-MH-7420-01 | 97-MH-7421-A | 97-MH-7463- | 97-MH-7463-B | 97-MH-7468 | 97-MH-7484-01 |
|--------------------------------|---------------|--------------|---------------|--------------|-------------|--------------|------------|---------------|
| Lithologie                     | Chr Sil       | Gab          | Chr Sil       | Gab          | Pyrox (D)   | Gab (D)      | Harzb      | Chr Sil       |
| # analyse                      | 97015176      | 97015063     | 97015177      | 97015064     | 97015061    | 97015065     | 97015199   | 97015178      |
| %                              |               |              |               |              |             |              |            |               |
| SiO7                           | 16,00         | 47,90        | 16,10         | 50,40        | 42,70       | 47,60        | 38,80      | 14,70         |
| AL <sub>2</sub> O <sub>3</sub> | 12,50         | 16,90        | 4,54          | 15,40        | 7,80        | 13,80        | 3,37       | 13,00         |
| Fe <sub>2</sub> O <sub>3</sub> | 23,00         | 6,66         | 27,40         | 6,14         | 11,00       | 17,20        | 11,30      | 19,60         |
| Cr <sub>2</sub> O <sub>3</sub> | 23,70         | 0,17         | 23,00         | 0,04         | 0,26        | 0,01         | 0,90       | 28,80         |
| MgO                            | 16,50         | 11,20        | 20,10         | 10,20        | 23,70       | 4,65         | 34,00      | 17,50         |
| CaO                            | 2,04          | 12,70        | 0,02          | 13,50        | 6,84        | 9,30         | 0,74       | 0,53          |
| MnO                            | 0,40          | 0,14         | 0,36          | 0,12         | 0,17        | 0,23         | 0.10       | 0,30          |
| Na <sub>2</sub> O              | 0,10          | 1,07         | 0,10          | 1,84         | 0,08        | 0.52         | 0,10       | 0,10          |
| K <sub>2</sub> O               | 0,01          | 0.16         | 0.15          | 0,25         | 0.45        | 1.80         | 0.01       | 0.36          |
| 102                            | 0,35          | 0,24         | 0,15          | 0,17         | 0.28        | 0.20         | 0.01       | 0.01          |
| P <sub>2</sub> O <sub>5</sub>  | 0,01          | 0,03         | 0.07          | 0,01         | 0,20        | 0.03         | 0.01       | 0.12          |
| V <sub>2</sub> U <sub>5</sub>  | 5.03          | 3.06         | 7.04          | 1 46         | 5.55        | 1.06         | 10,70      | 5.21          |
| total                          | 99.78         | 100.25       | 98.90         | 99.54        | 99.60       | 99.72        | 100.21     | 100.30        |
| wiai                           | 39,10         |              |               |              |             |              |            |               |
| CO.                            | 1.09          | 0.10         | 3.16          | 0.13         | 0.11        | 0,14         | 0.39       | 0,40          |
| s                              | 0.17          | 0.01         | 0.08          | 0.01         | 0.01        | 0.78         | 0.16       | 0,10          |
| <u> </u>                       |               |              | <u> </u>      |              |             |              |            |               |
| FraQa                          | 1.25          | 1.69         | 0.45          | 1.54         | 0.78        | 1.38         | 0.34       | 1,30          |
| FeO.                           | 10.12         | 13.69        | 3.68          | 12.47        | 6.32        | 11.18        | 2.73       | 10,53         |
| Mat                            | 61.22         | 78.72        | 61,74         | 78.52        | 82,58       | 37,30        | 86,88      | 66,27         |
| Cr#                            | 55.98         | 0.67         | 77,26         | 0.17         | 2,19        | 0,05         | 15,19      | 59,77         |
| Cr/Fe                          | 1.08          | 0,03         | 0,88          | 0,01         | 0,02        | 0,00         | 0,08       | 1,54          |
| ppm                            | 1             |              |               |              |             |              |            |               |
| Cr                             | 155000        | 1100         | 162000        | 202          | 1700        | 35           | 6100       | 165000        |
| Ni                             | 2800          | 214          | 3100          | 134          | 904         | 138          | 1600       | 1600          |
| Cu                             | 665           | 17           | 53            | 33           | 14          | 480          | 41         | 931           |
| Zn                             | 331           | 63           | 964           | 40           | 79          | 80           | 80         | 458           |
| Co                             | 192           | 42           | 350           | 40           | 73          | 57           | 124        | 196           |
| Au                             | 60            | n.d.         | 8             | n.d.         | n.d.        | n.d.         | 5          | 28            |
| Ag                             | n.d.          | n.d.         | n.d.          | n.d.         | n.d.        | <u>n.d.</u>  | n.d.       | n.d.          |
|                                |               |              |               |              |             |              |            |               |
| As                             | 2             | n.d          | 36            | n.d          | n.d         | n.d          | 2          | 2             |
| Se                             | 10            | <u>n.d</u>   | 10            | n.d          | n.d         | n.d          | 10         | 10            |
| Sb                             | 6,6           | <u>n.d</u>   | 4,5           | n.d          | n.d         | n.d          | 0,6        | 4             |
| Те                             | 10            | 10           | 10            | 10           | 10          | 10           | 10         | 10            |
| Bi                             | n-a-          | D-8.         | <u>n.a.</u>   | <u>D.a.</u>  | <u>n.a.</u> | <u>n.a.</u>  | <u> </u>   | p.a.          |
|                                |               |              |               |              | 16          | 176          |            | 2             |
| Ba                             | 3             | 29           | <u>-</u>      | 39           | 10          | 1/0          |            | ,             |
| Be                             | 1             |              |               |              |             |              | 1          |               |
| Br                             |               | п.а.         |               | ш.а.         | <u> </u>    | 1.0.         |            |               |
|                                | 4             |              |               | <u>-</u>     | 20          | 26           | 5          | 5             |
| <u>Ce</u>                      |               |              |               |              | 23<br>      | nd           | 1          | 1             |
| Dv                             | <u> </u>      | 1.0.         | <u> </u>      | 1            | 1           | 3            | 1          | 1             |
| Fu                             |               | 5            | 5             | 5            | 5           | 5            | 5          | 5             |
| Ga                             | 25            | 12           | 11            | 13           | 11          | 22           | 4          | 24            |
| la                             | 2             | 2            | 2             | 2            | 13          | 11           | 2          | 2             |
| Li                             | <u> </u>      | 16           | 1             | 4            | 1           | 8            | 1          | 4             |
| Mo                             | 4             | 4            | 8             | 4            | 4           | 4            | 4          | 4             |
| Nb                             | 3             | 3            | 3             | 3            | 3           | 5            | 3          | 3             |
| Nd                             | 25            | 25           | 25            | 25           | 25          | 25           | 25         | 25            |
| Pb                             | 12            | 12           | 12            | 12           | 12          | 12           | 12         | 12            |
| Pr                             | 10            | 10           | 10            | 10           | 10          | 10           | 10         | 10            |
| RЪ                             | 3             | 5            | 5             | 5            | 5           | 1 5          | 3          | 3             |
| Sc                             | 16            | 36           | 7             | 54           | 21          | 46           | 13         | 17            |
| Sm                             | 2             | 2            | 2             | 2            | 2           | 2            | 2          | 2             |
| Sa                             | 10            | 10           | 10            | 10           | 10          | 10           | 10         | 10            |
| Sr                             | 7             | 96           | 3             | 79           | 203         | 256          | 16         | 5             |
| Ta                             | 5             | 5            | 5             | 5            | 5           | 5            | 5          | 5             |
| Th                             | 10            | 10           | 19            | 10           | 10          | 10           | 10         | 10            |
| Тш                             | 2             | <u>n.d.</u>  | 2             | n.d.         | n.d.        | n.d.         | 2          | 2             |
| U                              | 0,2           | n.d.         | 0,2           | n.d.         | <u>n.d.</u> | n.d.         | 0,2        | 0,2           |
| v                              | 591           | 121          | 328           | 89           | 109         | 249          | 66         | 649           |
| w                              | 1             | n.d.         | 1             | <u>n.d.</u>  | n.d.        | n.d.         | l          |               |
| Y                              | 5             | 7            | 3             | 5            | 12          | 45           |            | 10            |
| <u>2</u> г                     | .11           | 18           | 4             | 7            | 04          | 130          | 8          | 10            |
| рры                            |               |              |               |              |             |              |            |               |
| 03                             | <u>n.a.</u>   | <u></u>      | <u>4.a.</u>   | <u>n.a.</u>  | <u>u.a.</u> | <u>u.a.</u>  |            | n.e.          |
| 1 <b>F</b>                     | <u>n.a.</u>   | <u> </u>     | <u></u>       | <u>n.a.</u>  | <u> </u>    |              |            | n.e.          |
|                                | n.a.          | <u> </u>     | <u> </u>      | 7            | u.a.        | <u>R</u>     | nd         | 11            |
| De                             | 215           |              | 31            |              |             |              | n d.       | 45            |
| Del                            | 1200          | <u> </u>     | 169           |              | n.u.        | <u>R</u>     | 8          | 177           |
| - 4                            | 1200          |              | 109           | <b>n.</b> q. | 11.4.       | 1            |            |               |

| <b>Tableau B.1</b> Analyses lithogeochimiques pour les roches du CDM (suite) |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

| Échantillon                   | 97-MH-7485  | 97-MH-7487  | 97-MH-7503-A | 97-MH-7503-B2 | 97-MH-7504-A | 97-MH-7507-B | 97-MH-7513  | 08-MH-4083-A |
|-------------------------------|-------------|-------------|--------------|---------------|--------------|--------------|-------------|--------------|
| Lithologic                    | Chr Sil     | Harzb       | Harzb        | Chr           | Chr          | Chr Sil      | Lherz (Pc)  | Gab (D)      |
| # analyse                     | 97015188    | 97015051    | 97015052     | 97015179      | 97015180     | 97015181     | 97015053    | 98018763     |
| %                             |             | 1           |              | 1             |              |              | 7/010000    | 30010700     |
| SiO.                          | 20.90       | 37.50       | 38.40        | 12.50         | 12.90        | 19.00        | 27.60       | 48.20        |
| ALO                           | 7 78        | 2.04        | 0.94         | 9.46          | 10,00        | 5 47         | 37,00       | 40,30        |
| Fe-O-                         | 22.60       | 11.30       | 9.15         | 20.00         | 22 60        | 30.70        | 1,44        | 14,50        |
| Cr.O.                         | 16.60       | 0.83        | 0.52         | 20,00         | 22,00        | 30,70        | 11,50       | 11,80        |
| Mc0                           | 77,00       | 22.00       | 26.50        | 16.00         | 15.80        | 20,00        | 0,18        | 0,05         |
| CoO                           | 23,20       | 33,90       | 30,50        | 16,20         | 15,80        | 18,10        | 34,70       | 7,64         |
|                               | 0,02        | 0,13        | 0,02         | 0,02          | 0,02         | 0,14         | 1,74        | 10,70        |
| MINU                          | 0,45        | 0,11        | 0,06         | 0,31          | 0,45         | 0,44         | 0,12        | 0,22         |
| Na <sub>2</sub> O             | 0,10        | 0,10        | 0,10         | 0,14          | 0,10         | 0,10         | 0,10        | 1,67         |
| К <sub>2</sub> О              | 0,01        | 0,01        | 0,01         | 0,01          | 0,01         | 0,02         | 0,01        | 1,13         |
| TiO <sub>2</sub>              | 0,21        | 0,07        | 0,04         | 0,18          | 0,16         | 0,37         | 0,06        | 0,93         |
| P2O5                          | 0,01        | 0,01        | 0,01         | 0,01          | 0,01         | 0,01         | 0,01        | 0,07         |
| V <sub>7</sub> O <sub>5</sub> | 0,08        | 0,01        | 0,01         | 0,11          | 0,10         | 0,10         | 0.01        | 0.06         |
| PAF                           | 7,67        | 14,00       | 14,30        | 3,59          | 3,71         | 4,94         | 12.70       | 2.34         |
| total                         | 99,63       | 100,03      | 100,06       | 100.03        | 100.36       | 99.39        | 100.17      | 99.41        |
|                               |             | 1           |              |               |              |              |             |              |
| CO,                           | 1.79        | 5,18        | 4.25         | 0.07          | 0.07         | 0.28         | 3 15        | 0.10         |
| s                             | 0.10        | 0.07        | 0.73         | 0.01          | 0.01         | 0.03         | 0.15        | 0,19         |
|                               |             |             |              |               | 0,01         | 0,00         | 0,15        | 0,07         |
| Fe-O-                         | 0.78        | 0.20        | 0.00         | 0.05          | 1.04         | 0==          | 0.1         |              |
| FeO                           | 6 20        | 1.45        | 0.05         | 7.44          | 1,04         | 0,33         | 0,14        | 1,45         |
| Mak                           | 60.21       | 06.04       | <u> </u>     | 1,00          | 0,42         | 4,43         | 1,17        | 11,74        |
|                               | 1 6,40      | 00,84       | 09,11        | 04,06         | 60,60        | 50,47        | 86,91       | 58,75        |
| Cul#                          | 58,80       | 21,44       | 27,06        | 72,67         | 68,74        | 71,03        | 7,73        | 0,23         |
| Cr/re                         | 0,77        | 0,08        | 0,06         | 1,97          | 1,59         | 0,68         | 0,02        | 0,00         |
| ppm                           |             |             |              |               |              |              |             |              |
| Cr                            | 121000      | 5000        | 3400         | 210000        | 234000       | 131000       | 1200        | 303          |
| Ni                            | 2900        | 1700        | 3600         | 968           | 808          | 2700         | 1700        | 150          |
| Cu                            | 22          | 9           | 181          | 50            | 36           | 18           | 108         | 77           |
| Zn                            | 667         | 68          | 30           | 381           | 543          | 963          | 55          | 77           |
| Co                            | 301         | 120         | 177          | 172           | 178          | 302          | 138         | 50           |
| Au                            | 5           | n.d.        | n.d.         | 5             | 5            | 230          | n.d.        | n.d.         |
| Ag                            | n.d.        | n.d.        | n.d.         | n.d.          | n.d.         | n.d.         | n.d.        | n.9          |
|                               | †           |             |              |               |              |              |             | <u></u>      |
| As                            | 5           | n.d         | n.d          | 7             | 5            | 2100         |             |              |
| Se                            | <u> </u>    | nd          | nd           | 10            |              | 10           | <u>a.u</u>  |              |
| Sh                            | 51          | n d         | nd           |               |              | 26           | <u></u>     | <u> </u>     |
| Te                            | 10          | 10          | 10           |               |              |              | <u>n.a</u>  | 0,5          |
| Ri                            |             | 10          | 10           |               |              |              | 10          | <u>n.d.</u>  |
|                               |             | 11.82       | п.а.         | <u>n.a.</u>   | n.a.         | n.a.         | <u>n.a.</u> | n.a.         |
| Ř.                            |             |             |              |               |              |              |             |              |
|                               | 4           | 3           | 2            | 5             | 6            | 2            | 3           | 280          |
| <u>be</u>                     | 1           | 1           | 1            | 1             | 1            | 1            | 1           | n.d.         |
| Br                            | 1           | n.d.        | n.d.         | 1             | <u> </u>     | 1            | n.d.        | n.d.         |
|                               | 2           | 2           | 2            | 2             | 2            | 32           | 2           | n.d.         |
| Ce                            | 5           | 5           | 5            | 5             | 5            | 5            | 5           | 7            |
| Cs                            | 1           | n.d.        | n.d.         | 1             | 1            | 1            | n.d.        | n.d.         |
| Dy                            | 1           | 1           | 1            | 3             | 1            | 1            | 1           | n.d.         |
| Eu                            | 5           | 5           | 5            | 5             | 5            | 5            | 5           | n.d.         |
| Ga                            | 16          | 4           | 3            | 21            | 17           | 13           | 3           | 16           |
| la                            | 2           | 2           | 2            | 2             | 2            | 2            | 2           | 4            |
| Li                            | 1           | 1           | 1            | 13            | 12           | 1            |             | 13           |
| Mo                            | 4           | 4           | 4            | 10            |              | 4            | 4           | n.d.         |
| NB                            | 3           | 3           | 3            | 3             | 3            | 3            | 3           | n.d.         |
| Nd                            | 25          | 25          | 25           | 158           | 152          | 70           |             |              |
| ъ                             | 12          | 12          | 12           | 12 -          | 12           | 12           |             |              |
|                               | 10          | 10          | 10 1         | 10            | 10           |              |             |              |
| 20                            | 4           |             |              |               |              |              |             | 277          |
| šc                            |             | - <u>.</u>  | <del></del>  |               |              |              |             |              |
| Sm                            |             |             |              | <del></del>   | <u>-</u>     |              |             | 40           |
| 30                            | <u>+</u>    |             | <u> </u>     | - 4           |              | <u></u>      | - 2         | n.a.         |
| 2                             |             |             |              |               |              |              | 10          | <u>n.d.</u>  |
| 74<br>To                      | 3           |             |              | 3             | 3            | 3            | 11          | 143          |
| a                             | 3           |             |              | 5             | 5            | 5            | 5           | <u>n.d.</u>  |
|                               | <u> </u>    | 10          | 10           | <u>I4</u>     | 13           | 18           | 10          | n.d          |
| <u>ш</u>                      | 2           | n.d.        | n.d.         | 2             | 2            | 7            | n.d.        | n.d          |
| J                             | 0,2         | <u>n.d.</u> | n.d.         | 0,2           | 0,2          | 0,4          | n.d.        | n.d.         |
| <u></u>                       | 350         | 58          | 27           | 566           | 504          | 510          | 30          | 256          |
| V                             | 1           | n.d.        | n.d.         | 2             | 2            | 1            | n.d.        | 2            |
|                               | 3           | 3           | 3            | 3             | 3            | 3            | 3           | 19           |
| ir (                          | 6           | 6           | 6            | 6             | 7            | 7            | 6           | 53           |
| ръ                            |             |             |              |               |              |              |             |              |
| )s                            | <b>D.a.</b> | p.a.        | n.a.         | n.a.          |              |              | n.a.        | n.a.         |
| r                             | n.a.        | n.a.        | n.a.         | n.a.          | n.a.         | n.a.         | n.a         | n.a          |
| tu                            | D.8.        | n.a.        | n.a.         |               | n.a          | n.a          |             | n.a          |
| 2h                            | 24          |             | n.d.         |               |              | 66           |             |              |
|                               | 94          | 6           | 35           | 10            |              |              |             |              |
|                               | 308         | 16          |              |               |              | 617          | <u>u.u.</u> | <u></u>      |
| <u> </u>                      |             | 10          |              | 55            | 33           | 01/          | 20          | n.a.         |

| Echantillon                     | 198-MH-4083-B | 198-MH-4104-A | 98-MH-4104-B | 198-MH-4117-A2 | 98-MH-4216  | 98-MH-7392-CI | 98-MH-7392-C2 | 98-MH-7421    |
|---------------------------------|---------------|---------------|--------------|----------------|-------------|---------------|---------------|---------------|
| Lithologie                      | Gab (D)       | Gab           | Pyrox (D)    | Gab (D)        | Gab (D)     | Pyrox (D)     | Pyrox (D)     | Pyrox (D)     |
| # analyse                       | 98018761      | 98018760      | 98018754     | 98018764       | 98018762    | 98018758      | 98018751      | 98018756      |
| %                               |               |               |              | 1              |             |               |               | 1             |
| SiO <sub>2</sub>                | 48,60         | 49,00         | 49,50        | 48,10          | 45,90       | 40,60         | 44,90         | 49,10         |
| Al <sub>2</sub> O3              | 14,70         | 15,60         | 7,01         | 14,50          | 14,10       | 6,28          | 7,45          | 9,52          |
| Fe <sub>2</sub> O <sub>3t</sub> | 12,10         | 7,01          | 13,30        | 12,40          | 13,60       | 9,22          | 8,91          | 9,42          |
| Cr <sub>7</sub> O <sub>3</sub>  | 0,05          | 0,12          | 0,11         | 0,05           | 0,03        | 0,36          | 0,33          | 0,22          |
| MgO                             | 7,58          | 11,20         | 14,20        | 7,18           | 9,78        | 23,10         | 23,40         | 15,90         |
| CaO                             | 8,92          | 12,50         | 11,60        | 10,60          | 8,05        | 12,50         | 0,84          | 9,41          |
| MnO                             | 0,19          | 0,13          | 0,23         | 0,21           | 0,21        | 0,17          | 0,21          | 0,18          |
| NayO                            | 3,07          | 1,12          | 0,45         | 0.53           | 0.05        | 0.10          | 0,46          | 0.40          |
| N20                             | 0.29          | 0.21          | 0.10         | 0.97           | 0.72        | 0.35          | 0.36          | 0.47          |
| P.O.                            | 0.07          | 0.01          | 0.07         | 0.07           | 0.06        | 0.26          | 0.22          | 0.36          |
| V <sub>2</sub> O <sub>2</sub>   | 0.06          | 0.03          | 0.05         | 0.06           | 0.04        | 0,02          | 0,02          | 0.03          |
| PAF                             | 2,92          | 2,37          | 1,80         | 2,25           | 3,94        | 6,60          | 6,00          | 3,85          |
| total                           | 99,47         | 99,54         | 99,34        | 99,17          | 99,19       | 99,67         | 99,25         | 99,95         |
|                                 |               |               |              |                |             |               |               |               |
| CO <sub>7</sub>                 | 0,64          | 0,18          | 0,22         | 0,14           | 0,63        | 0,09          | 0,18          | 7,53          |
| S                               | 0,13          | 0,01          | 0,01         | 0,12           | 0,01        | 0,08          | 0,08          | < 0.01        |
|                                 |               |               |              |                |             |               |               |               |
| Fe <sub>2</sub> O <sub>3e</sub> | 1.47          | 1,56          | 0,70         | 1,45           | 1,41        | 0,63          | 0,75          | 0,95          |
| FeOe                            | 11,90         | 12,63         | 5,68         | 11,74          | 11,42       | 5,09          | 6,03          | 7,71          |
| Mg#                             | 57,95         | 77,85         | 70,14        | 56,02          | 61,27       | 84,64         | 85,25         | 18,79         |
| Cr#                             | 0,23          | 0,51          |              | 0,23           | 0,14        | 0.04          | 2,88          | 1,53          |
| CT/FC                           | 0,00          | 0,02          | 0,01         | 0,00           | 0,00        | 0,04          | 0,04          | 0.02          |
|                                 | 305           | 804           | 780          | 265            | 195         | 2300          | 2100          | 1400          |
| Ni                              | 145           | 206           | 463          | 141            | 341         | 974           | 1000          | 622           |
| Cu                              | 104           | 57            | 52           | 73             | 32          | 74            | 23            | n.d.          |
| Zn                              | 92            | 45            | 184          | 103            | 108         | 80            | 68            | 84            |
| Co                              | 51            | 42            | 81           | 55             | 70          | 87            | 70            | 59            |
| Au                              | n.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n_d           | n.d.          |
| Ag                              | D.a           | n.a           | <b>D.</b> 8  | <b>D.</b> A    | <b>D.</b> a | n.a           | <b>D.</b> a   | n.a           |
|                                 |               |               |              |                |             |               |               |               |
| As                              | 9             | n.d.          | n.d.         | 14             | 9           | n.d.          | <u>n.d.</u>   | n.d.          |
| Se                              | n.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | <u>n.d.</u>   | <u>n.d.</u>   |
| Sb                              | 0,3           | 0,3           | 0,4          | 0,7            | 0,3         | 1.4           | 0,1           | 0,2           |
| Te                              | n.d.          | n.d.          | n.d.         | <u>n.d.</u>    | n.d.        | <u>n.u.</u>   | <u> </u>      | <u>n.a.</u>   |
| Bi                              | <u> </u>      | n.a.          | 11+8t+       | <u> 11.a.</u>  | 11.42       |               | <u>11-a.</u>  | 1.4.          |
| Be                              | 97            | 37            | 7            | 158            | 25          | 28            | 28            | 113           |
| Be                              | n.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n.d.          | n.d.          |
| Br                              | n.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n.d.          | a.d.          |
| Ca                              | n.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n.d.          | n.d.          |
| Ce                              | n.d.          | n.d.          | 26           | 5              | n.d.        | 14            | 18            | 20            |
| Cs                              | n.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n.d.          | n.d.          |
| Dy                              | n.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n.d.          | n.d.          |
| Eu                              | n.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n.d.          | n.d.          |
| Ga                              | 15            | 11            | 10           | 17             | 14          | 8             | 8             | 11            |
| La                              | 3             | n.d.          | 9            | 3              | 2           | 7             | 8             | 8             |
| Li                              | 12            | 9             | 9            | 13             | 26          | 4             | 4             | 21            |
| Mo                              | n.d.          | n.d.          | <u>n.d.</u>  | <u>n.d.</u>    | <u>n.a.</u> | <u>4.a.</u>   | <u>a.a.</u>   | <u>n.d.</u>   |
| Nd                              |               | <u> </u>      |              | 0.4            | n.d.        | n.d.          | n.d.          | n.d.          |
| Ph                              | n d           | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n.d.          | n.d.          |
| Pr                              | p.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n.d.          | n.d.          |
| Rb                              | 6             | 6             | 3            | 8              | n.d.        | 3             | 6             | 9             |
| Sc                              | 42            | 43            | 39           | 45             | 32          | 18            | 19            | 20            |
| Sm                              | n.d.          | n.d.          | 3            | n.d.           | n.d.        | n.d.          | 3             | 2             |
| Sn                              | n.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | n.d.          | n.d.          |
| Sr                              | 182           | 126           | 10           | 135            | 57          | 40            | 162           | 68            |
| Ta                              | a.d.          | n.d.          | n.d.         | n.d.           | n.d.        | n.d.          | <u>n.d.</u>   | <u>n.d.</u>   |
| Th                              | n.d.          | p.d.          | 10           | <u>n.d.</u>    | n.d.        | <u>n.d.</u>   | n.d.          | <u>n.d.</u>   |
| Tm                              | 2             | n.d.          | n.d.         | 3              | n.d.        | <u>n.d.</u>   | <u>n.d.</u>   | 4             |
| <u> </u>                        | n.d.          | n.d.          | 0,5          | 0,3            | 180         | 90            | 111           | 112           |
| v                               | 201           | 150           | 191          | 202            | n.d         | 7             | n.d           | n.d.          |
| w                               | <u>n.a.</u>   | 2             | <u> </u>     | 24             | 15          |               | 7             | 11            |
| 7.                              | 52            | 17            | 65           | 58             | 42          | 46            | 48            | 65            |
| nnh                             |               |               |              |                | 12          |               |               |               |
| 0s                              | p.a.          | n.a.          | n.a.         | D.A.           | n.a.        | <b>D.a.</b>   | D.a.          | D.8.          |
| lr                              | n.a.          | n.a.          | D.a.         | ц.а.           | D.8.        | D.a.          | D.8.          | p.a.          |
| Ru                              | n.a.          | D.a.          | п.а.         | n.a.           | <b>q.a.</b> | n.a.          | D.a.          | D.a.          |
| Rh                              | n.a.          | n.a.          | n.a.         | n.a.           | n.a.        | <b>n.a.</b>   | n.a.          | <b>11.</b> 8. |
| Pt                              | п.а.          | D.A.          | <b>D.a.</b>  | n.a.           | <b>D.a.</b> | n.a.          | <u>n.a.</u>   | n.a.          |
| Pd                              | n.a.          | n.a.          | D.A.         | n.a.           | D.a.        | n.a.          | n.a.          | n.a.          |

| Échantillon                    | 98-MH-7443  | 98-MH-7463  | 98-MH-7490-A     | 98-MH-7499  | 98-MH-7507-C   | 88-18-B23 (138 | 88-18-B29 (175 | 88-18-B5 (34) |
|--------------------------------|-------------|-------------|------------------|-------------|----------------|----------------|----------------|---------------|
| Lithologic                     | Harzb       | Gab (D)     | Pyrox à MG (D)   | Webst Ol    | Pyrox à MG (D) | Lherz (Pc)     | Lherz à chro   | Webst Ol      |
| # analysc                      | 98018752    | 98018759    | 98018755         | 98018753    | 98018757       | 97015055       | 97015054       | 97015058      |
| %                              |             |             |                  |             |                |                |                |               |
| SiO <sub>7</sub>               | 37,20       | 48,60       | 26,20            | 41,50       | 24,70          | 38,00          | 37,60          | 42,30         |
| Al <sub>2</sub> O <sub>3</sub> | 3,33        | 13,50       | 15,30            | 1,32        | 15,30          | 4,25           | 3,36           | 4,49          |
| Fe <sub>2</sub> O <sub>3</sub> | 9,70        | 15,60       | 22,00            | 7,77        | 28,00          | 11,40          | 10,60          | 11,80         |
| Cr <sub>2</sub> O <sub>3</sub> | 0,33        | 0,03        | 0,08             | 1,03        | 0,06           | 0,42           | 2,32           | 0,38          |
| MgO                            | 25,90       | 5,94        | 24,30            | 35,80       | 21,00          | 31,90          | 27,10          | 28,00         |
| CaO                            | 8,89        | 7,65        | 0,13             | 0,02        | 0,02           | 2,11           | 4,75           | 2,73          |
| MIIO No.O                      | 0,18        | 0,25        | 0,25             | 0,08        | 0,10           | 0.13           | 0.10           | 0,13          |
| Kap0                           | 0.10        | 0.37        | 0.01             | 0,10        | 0.10           | 0.01           | 0.01           | 0.01          |
| TiO                            | 0.06        | 143         | 1.45             | 0.02        | 1.25           | 0.12           | 0.15           | 0.16          |
| P <sub>2</sub> O <sub>2</sub>  | 0.01        | 0.11        | 0.17             | 0.01        | 0.07           | 0.02           | 0.03           | 0.01          |
| V <sub>2</sub> O <sub>4</sub>  | 0.01        | 0.08        | 0.07             | 0.01        | 0.09           | 0,01           | 0,02           | 0,01          |
| PAF                            | 13,80       | 2,07        | 9,50             | 12,30       | 8,91           | 11,40          | 13,10          | 9,03          |
| total                          | 99,52       | 99,43       | 99,54            | 99,95       | 99,67          | 99,94          | 99,25          | 99,20         |
|                                |             |             |                  |             |                |                |                |               |
| CO <sub>7</sub>                | 9,17        | 0,30        | 0,23             | 1,38        | 0,15           | 1,52           | 8,08           | 1,66          |
| S                              | 0,52        | 0,14        | < 0.01           | 0,12        | < 0.01         | 0,05           | 0,25           | 0,14          |
|                                |             |             |                  |             |                |                |                |               |
| FegO3e                         | 0,33        | 1,35        | 1,53             | 0,13        | 1,53           | 0,43           | 0,34           | 0,45          |
| Mat                            | 2,70        | 10,93       | 70.85            | 1,07        | 62.07          | 86.07          | 84.01          | 87.07         |
| Crit                           | 6 22        | 45,59       | 0.35             | 34.35       | 0.26           | 6.22           | 31.65          | 5.37          |
| Cr/Fe                          | 0,23        | 0,15        | 0.00             | 0 14        | 0.00           | 0.04           | 0.23           | 0.03          |
| ppm                            |             | 0,00        | 0,00             | 0,14        | 0,00           |                |                |               |
| Cr                             | 2300        | 151         | 448              | 5800        | 358            | 2700           | 16000          | 2400          |
| Ni                             | 1100        | 90          | 278              | 1600        | 291            | 1400           | 1300           | 1200          |
| Cu                             | 248         | 113         | n.d.             | 5           | n.d.           | 4              | 470            | 62            |
| Za                             | 47          | 94          | 65               | 58          | 83             | 66             | 75             | 70            |
| Co                             | 120         | 55          | 105              | 114         | 168            | 127            | 109            | 125           |
| Au                             | 6           | n.d.        | n.d.             | n.d.        | n.d.           | n.d.           | n.d.           | n.d.          |
| Ag                             | n.a.        | n.a.        | n.a              | <u>n.a.</u> | n.a            | n.d.           | n.d.           | n.d.          |
|                                |             |             |                  |             |                |                |                |               |
| As                             | 2           | 2           | 3                | 10          | 2              | n.d            | b,d            | n.d           |
| Se                             | <u>n.d.</u> | n.d.        | <u>n.d.</u>      | <u>n.d.</u> | n.d.           | <u>n.d</u>     | <u>n.a</u>     | <u></u>       |
| 50<br>Te                       | 1,1         | 0,5         | 0,1              | 1           | 0,3            | 10             | 10             | 10            |
| Ri                             | <u> </u>    | <u>n.a.</u> | n.a.             | <u>n.a.</u> | <u>n.a.</u>    | <u>п.а.</u>    | <u></u>        | D.a.          |
|                                |             | La          |                  | 4.0         |                |                |                |               |
| Ba                             | 1           | 121         | 4                | 5           | 4              | 8              | 2              | 3             |
| Be                             | n.d.        | <u>n.d.</u> | n.d.             | n.d.        | n.d.           | 1              | 1              | 1             |
| Br                             | n.d.        | n.d.        | n.d.             | n.d.        | n.d.           | n.d.           | n.d.           | n.d.          |
| Cd                             | n.d.        | n.d.        | n.d.             | n.d.        | n.d.           | 2              | 2              | 2             |
| Ce                             | p.d.        | 13          | 7                | n.d.        | 23             | 5              | 5              | 5             |
| Cs                             | <u>n.d.</u> | n.d.        | n.d.             | n.d.        | n.d.           | n.d.           | <u>n.d.</u>    | <u>n.d.</u>   |
| Dy                             | n.d.        | n.d.        | n.d.             | n.d.        | n.d.           | 1              | 1              |               |
| Eu                             | <u>a.d.</u> | n.d         | <u>n.d.</u>      | n.d.        | <u>n.d.</u>    | 5              |                | 5             |
| Ga                             | 4           | 19          | 13               | <u>n.d.</u> | 12             | 3              |                |               |
|                                | n.a.        |             |                  | <u>n.a.</u> | 12             | 2              |                |               |
| Mo                             | <u>n.u.</u> |             | nd               |             | - <u>2</u>     | 4              | 4              | 4             |
| Nb                             | n.d.        | 4           | n.d.             | n.d.        | 3              | 3              | 3              | 3             |
| Nd                             | n.d.        | p.d.        | n.d.             | n.d.        | n.d.           | 25             | 25             | 25            |
| Pb                             | n.d.        | n.d.        | n.d.             | n.d.        | n.d.           | 12             | 12             | 12            |
| Pr                             | n.d.        | n.d.        | n.d.             | n.d.        | n.d.           | 10             | 10             | 10            |
| Rb                             | n.d.        | 7           | 3                | n.d.        | n.d.           | 3              | 5              | 3             |
| Sc                             | 13          | 47          | 68               | 9           | 70             | 11             | 14             | 20            |
| Sm                             | n.d.        | n.d.        | n.d.             | n.d.        | n.d.           | 2              | 2              | 2             |
| Sn                             | <u>n.d.</u> | n.d         | n.d.             | <u>n.d.</u> | n.d.           | 10             | 10             | 10            |
| or<br>To                       | n.d.        | 386         | 4                | 3           | n.d.           | 12             | 5              | - 10          |
| та<br>Тр                       | <u>n.d.</u> | <u>n.d.</u> | <u>n.a.</u>      | <u>n.a.</u> | <u>n.a.</u>    | 10             | 10             | 10            |
| Tm                             | <u>n.a.</u> | <br>2       | <u>n.u.</u><br>2 | 3           | 4              |                | n.d.           | n.d.          |
| U                              | <u>_</u>    | 0.4         | n.d.             | <u>ь.</u>   | n.d.           | n.d.           | n.d.           | n.d.          |
| v                              | 55          | 328         | 294              | 62          | 367            | 49             | 120            | 87            |
| w                              | n.d.        | 1           | 5                | n.d.        | n.d.           | n.d.           | n.d.           | n.d.          |
| Y                              | 7           | 28          | 11               | n.d.        | 24             | 5              | 3              | 6             |
| Zr                             | 9           | 81          | 76               | 7           | 60             | 10             | 17             | 13            |
| ppb                            |             |             |                  |             |                |                |                |               |
| 0 <del>3</del>                 | ц.а.        | n.a.        | D.a.             | n.a.        | п.а.           | n.a.           | n.a.           | n.a.          |
| lr                             | n.a.        | <u>1.a.</u> | <b>D.a.</b>      | n.a.        | D.a.           | <u>n.a.</u>    | n.a.           | D.8.          |
| Ru                             | n.a.        | п.а.        | р.а.             | D.a.        | n.a.           | <u>п</u> .а.   | n.a.           | n.a.          |
| КП                             | <u>n.a.</u> | <b>n.a.</b> | <u>n.a.</u>      | <u>p.a.</u> | D.A.           | 7              | 9              |               |
| P4                             | <u>n.a.</u> | D.a.        | D.8.             | 0.a.        | n.a.           | <u>n.d.</u>    |                | 20            |
| ru                             | n.a.        | <b>D.a.</b> | n.a.             | <b>n.a.</b> | n.a.           | п.а.           | 25             | 4.4.          |

Tableau B.1 Analyses lithogéochimiques pour les roches du CDM (suite).

| Échantillon                    | 88-18-88 (56) | 88-18-89 (60) | 88-18-B13 (75) | 88-2-B9 (52) | 88-8-B15 (85) | 97-CD-5638-B     | 97-CD-5639-B | 88-8-B6 (32) |
|--------------------------------|---------------|---------------|----------------|--------------|---------------|------------------|--------------|--------------|
| Lithologic                     | Webst Ol      | Webst Ol      | Pyrox (D)      | Gab (D)      | Gab (D)       | S-22             | S-1          | Ton          |
| # analyse                      | 97015057      | 97015056      | 97015060       | 97015066     | 97015067      | 97015124         | 97015126     | 97015068     |
| %                              |               |               |                |              |               |                  |              |              |
| SiO7                           | 47,30         | 45,00         | 51,20          | 48,70        | 48,00         | 4,20             | 17,90        | 74,60        |
| A1 <sub>2</sub> O <sub>3</sub> | 9.73          | 3,50          | 7 16           | 14,50        | 14,80         | 63.30            | 42.80        | 0.97         |
| Cr <sub>2</sub> O <sub>2</sub> | 0.50          | 0.56          | 0.16           | 0.04         | 0.04          | 0.8.             | 0.15         | 0.01         |
| MgO                            | 25,70         | 26,20         | 23,60          | 8,37         | 7,92          | 4,73             | 19,00        | 0,54         |
| CaO                            | 4,91          | 4,09          | 7,14           | 9,44         | 9,77          | 1,10             | 1,19         | 1,08         |
| MnO                            | 0,13          | 0,17          | 0,14           | 0,19         | 0,18          | 0,03             | 0,14         | 0,04         |
| Na <sub>2</sub> O              | 0,17          | 0,10          | 0,10           | 1,67         | 1,30          | n.d.             | n.d.         | 3,58         |
| K <sub>2</sub> O               | 0,02          | 0,01          | 0,02           | 0,28         | 0.75          | 0,05             | 0,01         | 4,21         |
| P-O-                           | 0,16          | 0,23          | 0.28           | 0,89         | 0,75          | 0,24             | 0.07         | 0.10         |
| V-0+                           | 0.01          | 0.02          | 0.01           | 0.04         | 0.04          | n.a.             | n.a          | 0.01         |
| PAF                            | 5,85          | 10,10         | 4,75           | 2,76         | 2,58          | 13,30            | 12,00        | 1,31         |
| total                          | 99,56         | 99,97         | 99,42          | 99,64        | 100,34        | 88,85            | 94,32        | 100,18       |
|                                |               |               |                |              |               |                  |              |              |
| CO <sub>2</sub>                | 0,10          | 4,94          | 0,13           | 0,12         | 0,15          | 1,14             | 6,40         | 0,65         |
| s                              | 0,26          | 0,14          | 0,01           | 0,01         | 0,11          | 18,00            | 3,56         | 0,01         |
| Fr-0                           | 0.51          | 0.35          | 0.45           | 1.45         | 148           |                  |              | 1 37         |
| FeO.                           | 4.11          | 2.83          | 3,60           | 11.74        | 11.99         |                  |              | 11.09        |
| Mg#                            | 85,32         | 85,27         | 87,88          | 59,18        | 55,81         | -                | -            | 55,05        |
| Cr#                            | 6,20          | 9,69          | 2,35           | 0,18         | 0,18          | -                | -            | -            |
| Cr/Fe                          | 0,05          | 0,06          | 0,02           | _0,00        | 0,00          |                  | -            | -            |
| ppm                            |               |               |                |              |               |                  | 1500         |              |
| Cr                             | 3100          | 3600          | 1200           | 260          | 280           | 2 5 2 9 2        | 1500         | 20           |
| Cu                             | 963           | 41            | 1200           | 79           | 80            | 2,33%            | 2.36%        |              |
| Zu                             | 67            | 68            | 78             | 61           | 74            | 12               | 7            | 22           |
| Co                             | 107           | 97            | 69             | 52           | 56            | 2300             | 503          | 3            |
| Au                             | n.d.          | n.d.          | n.d.           | n.d.         | n.d.          | 0,39             | 0,21         | n.d.         |
| Ag                             | n.d.          | n.d.          | n.d.           | <u>n.d.</u>  | n.d.          | 2,7              | 4,2          | n.d.         |
|                                |               |               |                |              |               | 700              | 42           |              |
| AS                             | p.d           | n.d           | <u>n.a</u>     | n.a          | <u>n.d</u>    | 120              | 43           | nd           |
| Sb                             | n.d           | n.d           | n.d            | n.d          | n.d           | 15               | 5.2          | n.d          |
| Te                             | 10            | 10            | 10             | 10           | 10            | n.d.             | p.d.         | 10           |
| Bi                             | <u>n.a.</u>   | D.a.          | n.a.           | n.a.         | <b>n.a</b> .  | n.a.             | n.a.         | <b>n.a.</b>  |
|                                |               |               |                |              |               |                  |              |              |
| Ba                             | 2             | 2             | 2              | 49           | 93            | 7                | 6            | 648          |
| Be                             | 1             | 1             | <u>1</u>       | 1            | <u>1</u>      | <u>n.d.</u>      | <u>n.d.</u>  | 2            |
| Cd                             | <u>n.a.</u>   | 2             | 2              | 2            | 2             | 2                | n.d.         | 2            |
| Ce                             | 5             | 5             | 41             | 10           | 8             | 7                | n.d.         | 48           |
| Cs                             | n.d.          | n.d.          | n.d.           | n.d.         | n.d.          | n.d.             | p.d.         | n.d.         |
| Dy                             | 1             | 1             | 1              | 1            | 1             | 4                | n.d.         | 1            |
| Eu                             | 5             | 5             | 5              | 5            | 5             | n.d.             | n.d.         | 5            |
| Ga                             | 7             | 6             | 9              | 16           | 15            | 3                | 3            | 16           |
|                                | $\frac{2}{1}$ | 2             | 24             | 3            | 3             |                  | <u>n.d.</u>  | 4            |
| Mo                             | 4             | 4             | 4              | 4            | 4             | 7                | 54           | 4            |
| Nb                             | 3             | 3             | 9              | 3            | 3             | n.d.             | n.d.         | 12           |
| Nd                             | 25            | 25            | 28             | 25           | 25            | n.d.             | n.d.         | 25           |
| Pb                             | 12            | 12            | 12             | 12           | 12            | <u>n.d.</u>      | n.d.         | 37           |
| Pr                             | 10            | 10            | 10             | 10           | 10            | u.d.             | n.d.         | 10           |
| Kb                             |               | 3             | 3              | 9            | 47            | 8                | 5            | 129          |
| Sm                             | 19            |               | 2              |              | 42            | n d              | nd l         |              |
| Su                             | 10            | 10            | 10             |              | 10            | <u>n.d.</u>      | n.d.         | 10           |
| Sr                             | 7             | 41            | 32             | 171          | 133           | 19               | 12           | 120          |
| Ta                             | 5             | 5             | 5              | 5            | 5             | n.d.             | n.d.         | 5            |
| Th                             | 10            | 10            | 10             | 10           | 10            | 54               | 20           | 14           |
| Tm                             | n.d.          | n.d.          | <u>n.d.</u>    | n.d.         | <u>n.d.</u>   | 7                | 5            | n.d.         |
| U                              | <u>n.d.</u>   | n.d.          | n.d.           | n.d.         | n.d.          | 0,3              | n.d.         | n.d.         |
| w                              | 83            | 82<br>2       | 02             | 205          | 221           | <u>u.a.</u><br>3 | 21           | n.d.         |
| Y                              | <u> </u>      | 6             | 11             | 23           | 16            | 6                | 3            | 13           |
| Zr                             | 14            | 23            | 77             | 58           | 45            | 74               | 13           | 80           |
| ppb                            |               |               |                |              |               |                  |              |              |
| 03                             | <u>n.a.</u>   | n.a.          | n.a.           | n.a.         | <b>n.a</b> .  | 8,85             | 36           | n.a.         |
| lr                             | D.A.          | <u>n.a.</u>   | <u>n.a.</u>    | n.a.         | D.a.          | 21,5             | 40,1         | n.a.         |
| Ru                             | na            | n.a.          | <u>n.a.</u>    | <b>n.a.</b>  | n.a.          | 26,4             | 119          | n.a.         |
| Kn                             | 7             | n.d.          |                | 7            | 8             | 197              | 105          | n.d.         |
| Pd                             | n.d.          | 7             | n.d.           | <u>a.a.</u>  | 10            | 1900             | 2723         | n.d.         |

## ANNEXE B.2

# ANALYSES DES COUPES DÉTAILLÉES

•

-

| Echantillon       | 97-MH-7371-01 | 97-MH-7371-02 | 97-MH-7371-03  | 97-MH-7371-04 | 97-MH-7371-05                         | 97-MH-7371-07 | 97-MH-7371-08 |
|-------------------|---------------|---------------|----------------|---------------|---------------------------------------|---------------|---------------|
| Lithologic        | Webst         | Harzb à chro  | Harzb          | Harzb à chro  | Chr Sil                               | Harzb à chro  | Chr Sil       |
| # analyse         | HR981-7371-01 | HR981-7371-02 | HR981-7371-03  | HR981-7371-04 | HR981-7371-05                         | HR981-7371-07 | HR981-7371-08 |
|                   |               |               |                |               |                                       |               |               |
| <b>%</b>          | 64.00         |               |                |               | · · · · · · · · · · · · · · · · · · · |               |               |
| SiO7              | 54,20         | 35,03         | 39,90          | 35,09         | 18,30                                 | 39,20         | 10,90         |
|                   | 1,63          | 2,49          | 2,07           | 3,98          | 10,90                                 | 2,05          | 13,00         |
| 190 <u>*</u>      | 0.44          | 13,37         | 0,69           | 14,49         | 24,40                                 | 13,30         | 29,50         |
| Ma                | 21 30         | 2,00          | 33.00          | 3,34          | 20,40                                 | 1,26          | 29,60         |
| CaO               | 10.10         | 1.52          | 1.07           | 29,10         | 18,30                                 | 0.55          | 12,60         |
| MnO               | 0.16          | 0.13          | 0.05           | 0.18          | 0.37                                  | 0.09          | 0.32          |
| Na <sub>2</sub> O | 0,10          | 0.01          | 0.10           | 0.01          | 0.10                                  | 0.10          | 0.10          |
| K20               | 0,01          | 0,00          | 0,01           | 0.00          | 0.01                                  | 0.01          | 0.01          |
| TiO <sub>2</sub>  | 0,09          | 0,22          | 0,06           | 0,16          | 0.38                                  | 0.07          | 0.49          |
| P205              | 0,01          | 0,03          | 0,01           | 0,01          | 0,01                                  | 0,01          | 0.01          |
| PAF               | 3,92          | 13,14         | 12,90          | _11,21        | 5,52                                  | 11,10         | 2,96          |
| total             | 99,23         | 97,19         | 98,72          | 100,58        | 99,20                                 | 98,84         | 99,96         |
|                   |               |               |                |               |                                       |               |               |
| <u>s</u>          | n.d.          | 0,78          | n.d.           | 0,36          | n.d.                                  | n.d.          | n.d.          |
|                   | 0.70          |               |                |               |                                       |               |               |
| Feo               | 0,73          | 1,34          | 0,89           | 1,45          | 2,44                                  | 1,33          | 2,95          |
| Malt              | 3,89          | 10,82         | 7,20           | <u> </u>      | 19,76                                 | 10,77         | 23,89         |
| Cr#               | 15.33         | 43 53         | 09,09<br>17.60 | 61,56         | 55.66                                 | 83,73         | 48,45         |
| Cr/Fe             | 0.06          | 0.23          | 0.08           | 0.30          | 00,00                                 | 73'13         | 1.05          |
|                   |               |               | 0,00           | 0,37          | 0,00                                  |               |               |
| ppm               |               |               |                |               |                                       |               |               |
| Ni                | 785,80        | 2136,67       | 2435,98        | 1537,31       | 259.40                                | 2507.30       | 824.60        |
| Cu                | 25,12         | 1431,03       | 2780,62        | 316,62        | 4,17                                  | 37,40         | 18.20         |
| Zn                | 61,25         | 106,48        | 20,58          | 148,18        | 128,30                                | 15,40         | 174,30        |
| Co                | 97,25         | 211,01        | 159,66         | 155,46        | n.d.                                  | n.d.          | n.d.          |
|                   |               |               |                |               |                                       |               |               |
| Ba                | 6,50          | 4,39          | 3,03           | 3,63          | 3,11                                  | 3,34          | 3,20          |
|                   | 1,24          | 1,23          | 1,31           | 1,25          | n.d.                                  | n.d.          | n.d.          |
| Mo                | 2,93          | 3,96          | 1,60           | 2,65          | n.d.                                  | n.d.          | <u>n.d.</u>   |
| Sr.               | 9.02          | 60.44         | 52.57          | 12,12         | n.d.                                  | <u>n.d.</u>   | <u>n.d.</u>   |
| Ca                | n d           | n d           | 0.03           | 0.02          |                                       | 0.14          | 63,21         |
| P6                | 13.02         | 8.07          | 11.96          | 6.48          | 5.63                                  | 0,14          | 2.20          |
| Rb                | 0.27          | 0.50          | 0.43           | 0.82          | 2 65                                  | 173           | 5 36          |
| Th                | 0,20          | 0,19          | n.d.           | n.d.          | n.d.                                  | p.d.          | 0,00          |
| U                 | 0,06          | 0,14          | 0,04           | 0,04          | 0.05                                  | 0.13          | 0.07          |
| v                 | 39,29         | 131,75        | 51,15          | 198,71        | 579,20                                | 62,30         | 982,80        |
| Y                 | 3,12          | 2,64          | 2,18           | 2,42          | 0,64                                  | 1,38          | 0,17          |
| Zr                | 7,23          | 25,53         | 19,94          | 10,60         | n.d.                                  | n.d.          | n.d.          |
|                   |               |               |                |               |                                       |               |               |
|                   | 0,48          | 0,47          | 0,49           | 0,43          | 0,32                                  | 0,75          | 0,13          |
| <u>~</u>          | 1,65          | 1,24          | 1,14           | 1,07          | 0,78                                  | 1,38          | 0,30          |
| Nd I              | 0,29          | 0,18          | 0,15           | 0,15          | 0,11                                  | 0,18          | 0,05          |
| Sm                | 1,48          | 0,93          | 0.08           | 0,70          | 0,44                                  | 0,82          | 0,20          |
| Eu                | 0.15          | 0.07          | 0.09           | 0.22          | 0.05                                  |               |               |
| Ga ·····          | 0.56          | 0.45          | 0.30           | 0.32          | 0,05                                  | 0.00          | 0,03          |
| ть                | 0,10          | 0.08          | 0.05           | 0.05          | 0.03                                  | 0.05          | 0.02          |
| Dy                | 0,60          | 0.51          | 0.38           | 0.41          | 0.19                                  | 0.34          | 0.02          |
| Ho                | 0,13          | 0,11          | 0,09           | 0,09          | 0,04                                  | 0.08          | 0.02          |
| Er                | 0,42          | 0,32          | 0,25           | 0,26          | 0,13                                  | 0,22          | 0.08          |
| Tm                | 0,07          | 0,05          | 0,04           | 0,04          | 0,02                                  | 0,03          | 0,01          |
| ΥЪ                | 0,44          | 0,27          | 0,23           | 0,24          | 0,13                                  | 0,23          | 0,07          |
| Lu                | 0,07          | 0,04          | 0,04           | 0,04          | 0,02                                  | 0,03          | 0,01          |
| ppb               |               |               |                |               |                                       |               |               |
| 03                | <u>n.a.</u>   | n.a.          | n.a.           | n.a.          | n.a.                                  | п.а.          | D.a.          |
|                   | n.d.          | 6,58          | 6,79           | n.d.          | 25,97                                 | 8,54          | 22,84         |
|                   | 4,14          | 32,36         | 18,54          | 24,26         | 109,79                                | 17,61         | 133,97        |
| Pt I              | 58.22         | 49,51         | 33,18          | 41,04         | 92,92                                 | 86,09         | 132,03        |
| Pri               | 40.27         | 348.00        | 193,53         | 120,20        | 237,45                                | 310,01        | 365,56        |
|                   |               | 340,20        | 210,01         | 343,31        | 1348,00                               | 1470,37       | 1484,44       |

## Tableau B.2 Analyses lithogéochimiques pour les roches du CDM (INRS-Géoressources).

| Échantillon       | 97-MH-7371-10 | 97-MH-7371-12 | 97-MH-7371-13A | 97-MH-7371-14 | 97-MH-7371-15 | 97-MH-7371-16 | 97-MH-7371-17 |
|-------------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Lithologic        | Harzb à chro  | Harzb à chro  | Chr Sil        | Chr Sil       | Harzb à chro  | harzb à chro  | Harzb å chro  |
| # analyse         | HR981-7371-10 | HR981-7371-12 | HR981-7371-13A | HR981-7371-14 | HR981-7371-15 | HR981-7371-16 | HR981-7371-17 |
|                   |               |               |                |               |               |               |               |
| %                 |               |               |                |               |               |               |               |
| SiO2              | 36,50         | 30,90         | 15,40          | 15,60         | 29,40         | 27,20         | 34,93         |
|                   | 2,97          | 6,70          | 13,30          | 12,60         | 6,85          | 7,69          | 4,81          |
| (FC)03            | 13,60         | 14,20         | 19,70          | 21,30         | 16,20         | 17,50         | 12,03         |
| Mac)              | 2,40          | 9,15          | 24,90          | 27,30         | 11,50         | 13,70         | 6,59          |
| CaO               | 1 19          | 0.97          | 2 23           | 15,80         | 20,30         | 0.25          | 30,20         |
| MnO               | 0.16          | 0.14          | 0.19           | 0.27          | 0.18          | 0.22          | 0.17          |
| Na <sub>2</sub> O | 0,10          | 0,10          | 0.10           | 0,10          | 0,10          | 0.10          | 0.00          |
| K <sub>2</sub> O  | 0,02          | 0,01          | 0,01           | 0.01          | 0.02          | 0,04          | 0.01          |
| TiO <sub>2</sub>  | 0,22          | 0,21          | 0,36           | 0,33          | 0,18          | 0,21          | 0,16          |
| P2O5              | 0,02          | 0,01          | 0,01           | 0,01          | 0,01          | 0,01          | 0,01          |
| PAF               | 12,00         | 9,71          | 5,96           | 4,45          | 8,25          | 7,43          | 10,44         |
| total             | 99,16         | 99,00         | 98,96          | 99,46         | 99,44         | 98,95         | 99,88         |
|                   |               |               |                |               |               |               |               |
| s                 | n.d.          | <u>n.d.</u>   | n.d.           | n.d.          | n.d.          | n.d.          | 0,24          |
|                   |               |               |                |               |               |               |               |
| FeO               | 1,30          | 1,92          | 1,97           | 2,13          | 1,02          | 1,/5          | 1,20          |
| Mail              | 82.87         | 80.65         | 65 23          | 62.01         | 13,12         | 75 57         | 9,79          |
| Cr#               | 35.90         | 47.81         | 55.67          | 59.24         | 52.96         | 54 44         | 47.87         |
| Cr/Fe             | 0.19          | 0.68          | 1.33           | 1.35          | 0.75          | 0.82          | 0.58          |
|                   |               |               |                |               |               |               |               |
| ppm               |               |               |                |               |               |               |               |
| Ni                | 1331,25       | 1208,39       | 1404,00        | 0,00          | 2061,03       | 1374,00       | 1214,96       |
| Cu                | 152,12        | 25,78         | 77,70          | 1,30          | 1702,20       | 22,08         | 619,33        |
| Zn                | 138,60        | 173,39        | 92,50          | 123,80        | 219,88        | 351,75        | 187,40        |
| <u>Co</u>         | 168,13        | 103,37        | n.d.           | n.d.          | 128,59        | 101,18        | 117,19        |
|                   |               |               |                |               |               |               |               |
| Ba                | 5,42          | 3,46          | 5,64           | 5,60          | 4,06          | 9,71          | 8,72          |
| Va<br>Ma          | 1,29          | 0,91          | <u>n.d.</u>    | <u>n.d.</u>   | 0,78          | 0,88          | 1,13          |
| Sc.               | 14.22         | 2,25          | n.d.           | <u>n.d.</u>   | 3,21          | 2,70          | 12.07         |
| Sr                | 34 78         | 13.87         | 63.53          | 51.70         | 954           | 6 58          | 5 55          |
| Cs                | 0.02          |               | 0.02           | 0.05          | 0.03          | n.d.          | n.d.          |
| Pb                | 7,05          | 6,11          | 2,96           | 1.69          | 8,64          | 6,37          | 6,42          |
| Rb                | 0,88          | 1,30          | 3,13           | 4,27          | 1,35          | 2,08          | 1,51          |
| Th                | 0,28          | n.d.          | n.d.           | n.d.          | 0,13          | 0,18          | 0,11          |
| U                 | 0,11          | 0,04          | 0,11           | 0,06          | 0,03          | 0,06          | 0,05          |
| <u>v</u>          | 136,91        | 287,26        | 712,00         | 673,10        | 304,76        | 302,09        | 210,07        |
| ¥                 | 3,81          | 1,75          | 1,92           | 1,83          | 2,38          | 2,74          | 2,72          |
| <u>ZF</u>         | 26,24         | 8,74          | n.d.           | n.d.          | 13,14         | 11,44         | 13,94         |
| 1.9               | 0.57          | 0.38          | 0.64           | 0.42          | 0.08          | 0.29          | 0.69          |
| <del>~</del>      | 147           | 0.77          | 1 43           | 1.04          | 0.80          | 0.89          | 1.58          |
| Pr                | 0.22          | 0.10          | 0.19           | 0.17          | 0.13          | 0.14          | 0.23          |
| Nd                | 1,05          | 0,43          | 0,85           | 0.85          | 0,66          | 0,71          | 1.07          |
| Sm                | 0,36          | 0,14          | 0,26           | 0,29          | 0,17          | 0,23          | 0,31          |
| Eu                | 0,09          | 0,04          | 0,20           | 0,06          | 0,03          | 0,04          | 0,10          |
| Gd                | 0,49          | 0,18          | 0,35           | 0,43          | 0,30          | 0,32          | 0,35          |
| тъ                | 0,10          | 0,03          | 0,07           | 0,08          | 0,05          | 0,06          | 0,06          |
| Dy                | 0,69          | 0,23          | 0,45           | 0,51          | 0,35          | 0,46          | 0,48          |
| H0                | 0,15          | 0,05          | 0,10           | 0,11          | 0,08          | 0,10          | 0,10          |
| CI                | 0,46          | 0,15          | 0,31           | 0,31          | 0,24          | 0,29          | 0,31          |
| vh +              | 0,07          | 0.12          | 0.20           | 0.05          | 0.04          | 0.04          | 0,05          |
| Lu                | 0.07          | 0.02          | 0.04           | 0.21          | 0.03          | 0.04          | 0.04          |
| dag               |               |               | 0,04           | 0,04          |               |               |               |
| 03                |               | <u>n.a.</u>   | n.a.           | n.a.          | n.a.          | <u>n.a.</u>   | n.e.          |
| Ir I              | 3,94          | 7,69          | 34,74          | 31.02         | 17.14         | 12,64         | n.d.          |
| Ru                | 23,08         | 60,97         | 157,06         | 154,70        | 94,43         | 71,11         | 38,43         |
| Rh                | 16,40         | 23,76         | 75,27          | 83,96         | 60,63         | 29,30         | 16,59         |
| Pt                | 56,95         | 42,71         | 154,39         | 201,61        | 110,34        | 56,12         | 53,51         |
| Pd T              | 98.58         | 148.53        | 796.84         | 674 47        | 508.05        | 168.48        | 115.69        |

| Échantillon                    | 97-MH-7371-18 | 97-MH-7371-19 | 97-MH-7371-20 | 97-MH-7371-21 | 97-MH-7371-22 | 97-MH-7374-01 | 97-MH-7374-02 |
|--------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Lithologic                     | Lherz à chro  | Lherz à chro  | Lberz         | Webst         | Lherz         | Harzb à chro  | Harzb à chro  |
| # analyse                      | HR981-7371-18 | HR981-7371-19 | HR981-7371-20 | HR981-7371-21 | HR981-7371-22 | HR981-7374-01 | HR981-7374-02 |
|                                |               |               |               |               |               |               |               |
| %                              |               |               |               |               |               |               |               |
| SiO <sub>2</sub>               | 38,80         | 38,61         | 40,23         | 45,78         | 38,27         | 38,07         | 29,00         |
| Al <sub>2</sub> O <sub>3</sub> | 3,42          | 3,02          | 2,34          | 7,07          | 3,13          | 3,46          | 6,31          |
| 16,0 *                         | 11,70         | 10,38         | 12,02         | 9,19          | 11,13         | 9,94          | 16,80         |
| McO                            | 1,05          | 21.02         | 22.17         | 0,25          | 1,91          | 2,88          | 10,40         |
| CaO                            | 277           | 2.80          | 1.35          | 7.83          | 1 15          | 0.66          | 26,40         |
| MnO                            | 0.11          | 0.13          | 0.20          | 0.25          | 0.18          | 0.10          | 0.26          |
| NavO                           | 0.10          | 0.01          | 0.01          | 0.39          | 0.01          | 0.00          | 0,10          |
| К,О                            | 0.01          | 0,00          | 0,01          | 0.06          | 0.02          | 0.00          | 0.01          |
| TiO <sub>2</sub>               | 0,08          | 0,08          | 0,21          | 0,42          | 0,13          | 0,12          | 0.20          |
| P205                           | 0,01          | 0,01          | 0,02          | 0,27          | 0,02          | 0,01          | 0,01          |
| PAF                            | 9,58          | 13,43         | 10,83         | 6,60          | 11,14         | 11,97         | 9,03          |
| total                          | 99,33         | 100,33        | 101,21        | 101,13        | 99,70         | 98,96         | 99,08         |
|                                |               |               |               |               |               |               |               |
| s                              | n.d.          | 0,70          | 0,12          | 0,11          | 0,11          | 0,13          | n.d.          |
|                                |               |               |               |               |               |               |               |
| Feo                            | 1.17          | 1,04          | 1,20          | 0,92          | 1,11          | 0,99          | 1,68          |
| Mat                            | 9,47          | 8,41          | 9,73          | 7,44          | 9,01          | 8,05          | 13,60         |
| Cr#                            | 17.07         | 15.61         | 18.87         | 2 22          | 29.08         | 35.84         | 52.50         |
| Cr/Fe                          | 0.09          | 0.08          | 0.07          | 0.03          | 0.18          | 0.30          | 0.65          |
|                                |               |               |               | 0,20          |               |               |               |
| ppm                            |               |               |               |               |               |               |               |
| Ni                             | 2484,60       | 1801,51       | 1663,80       | 996,31        | 1724,09       | 1580,30       | 1188,10       |
| Cu                             | 28,30         | 317,45        | 124,22        | 22,67         | 5,49          | 49,31         | 2,00          |
| Zn                             | 25,20         | 65,97         | 87,27         | 69,29         | 111,08        | 83,41         | 76,60         |
| Co                             | <u>n.d.</u>   | 157,99        | 170,78        | 86,41         | 170,71        | 145,90        | <u>n.d.</u>   |
|                                |               |               |               |               |               |               |               |
| Ba                             | 6,73          | 4,35          | 5,01          | 6,29          | 5,00          | 2,59          | 3,43          |
|                                | <u> </u>      | 1,37          | 1,58          | 1,55          | 1,39          | 1,18          | n.d.          |
| 80                             | n.d.          | 12.02         | 16.05         | 3,48          | 13 53         | 2,78          | n.d.          |
| Sr                             | 42.15         | 23.70         | 5.66          | 186.86        | 4.90          | 11.81         | 47.29         |
| Cs                             | n.d.          | n.d.          | 0.01          | n.d.          | n.d.          | n.d.          | n.d.          |
| Pb                             | 7,47          | 4,94          | 4,55          | 5,77          | 9,75          | 6,11          | 2,01          |
| Rb                             | 1,75          | 0,38          | 0,42          | 0,35          | 0,56          | 0,77          | 2,05          |
| Th                             | 0,35          |               | 0,16          | 2,90          | n.d.          | p.d.          | n.d.          |
| U                              | 0,11          | 0,03          | 0,06          | 0,69          | 0,03          | 0,04          | 0,07          |
| v                              | 86,50         | 52,20         | 87,10         | 108,49        | 97,09         | 118,87        | 355,60        |
| Y                              | 2,66          | 2,42          | 4,01          | 11,13         | 2,52          | 2,38          | 1,07          |
| 2 <b>r</b>                     | <u>n.d.</u>   | 10,61         | 17,46         | 76,01         | 11,20         | 10,03         | n.d.          |
| la                             | 0.55          | 0.81          | 0.75          | 14 27         | 0 49          | 0.29          | 0.27          |
| Ce                             | 1.50          | 1.43          | 1.63          | 30,94         | 1.04          | 0.77          | 0.70          |
| Pr                             | 0,21          | 0,16          | 0,22          | 3,87          | 0,14          | 0,10          | 0.10          |
| Nd                             | 1,02          | 0,80          | 1,02          | 15,63         | 0,64          | 0,48          | 0,48          |
| Sm                             | 0,36          | 0,21          | 0,36          | 2,98          | 0,21          | 0,16          | 0,18          |
| Eu                             | 0,14          | 0,07          | 0,10          | 0,92          | 0,10          | 0,06          | 0,05          |
| Gd                             | 0,49          | 0,30          | 0,50          | 2,63          | 0,31          | 0,22          | 0,22          |
| тъ                             | 0,09          | 0,06          | 0,10          | 0,37          | 0,06          | 0,04          | 0,04          |
| Dy                             | 0,61          | 0,42          | 0,75          | 2,28          | 0,42          | 0,38          | 0,31          |
| H0                             | 0,14          | 0.09          | 0,16          | 0,45          | 0,09          | 0,09          | 0,07          |
| Tm                             | 0,42          | 0.04          | 0.07          | 1,15          | 0.04          | 0.04          | 0.21          |
| Yb                             | 0.37          | 0.27          | 0.42          | 1.08          | 0.26          | 0.24          | 0.20          |
| Lu                             | 0.06          | 0.04          | 0.07          | 0.16          | 0.04          | 0.04          | 0.03          |
| ppb                            |               |               |               |               |               |               |               |
| 03                             | n.a.          | n.a.          | п.а.          | n.a.          | D.a.          | n.a.          | D.a.          |
| lr                             | n.d.          | п.d.          | n.d.          | n.d.          | n.d.          | 3,36          | 11,23         |
| Ru                             | 11,10         | 6,93          | 6,50          | 1,19          | 11,23         | 20,26         | 70,00         |
| Rh                             | 12,54         | 6,13          | 1,81          | n.d.          | 4,71          | 8,34          | 27,84         |
| Pt                             | 77,78         | 20,74         | 3,88          | 4,22          | 12,02         | 28,52         | 63,66         |
| Pd I                           | 150,96        | 40.96         | 3.69          | 3.44          | 23.00         | 64,22         | 185.18        |

| Echantillon                     | 97-MH-7374-03 | 97-MH-7374-04 | 97-MH-7374-05 | 97-MH-7374-06 | 97-MH-7374-07 | 97-MH-7374-08 | 97-MH-7374-10 |
|---------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Lithologic                      | Harzb à chro  | Harzh à chro  | Lherz à chro  | Harzb à chro  | Harzb à chro  | Chr Sil       | Chr Sil       |
| # analyse                       | HR981-7374-03 | HR981-7374-04 | HR981-7374-05 | HR981-7374-06 | HR981-7374-07 | HR981-7374-08 | HR981-7374-10 |
|                                 |               |               |               |               |               |               |               |
| %                               |               |               |               |               |               |               |               |
| SiO <sub>2</sub>                | 35,90         | 30,30         | 35,28         | 31,46         | 31,60         | 13,90         | 13,80         |
| ALO3                            | 3,88          | 5,55          | 3,57          | 5,08          | 5,64          | 13,00         | 13,10         |
| Fe <sub>2</sub> O <sub>3t</sub> | 14,20         | 17,80         | 11,97         | 14,82         | 13,90         | 22,70         | 22,80         |
| Cr <sub>2</sub> O <sub>3</sub>  | 4,43          | 8,79          | 4,03          | 7,51          | 8,02          | 29,50         | 28,80         |
| MgO                             | 30,50         | 26,70         | 31,22         | 28,86         | 28,20         | 15,40         | 15,60         |
| CaO                             | 0,03          | 0,48          | 0,79          | 0,77          | 1,01          | 0,74          | 0,76          |
| MnO                             | 0,13          | 0,25          | 0,11          | 0,16          | 0,15          | 0,36          | 0,33          |
| Na <sub>2</sub> O               | 0,10          | 0,10          | 0,01          | 0,01          | 0,10          | 0,10          | 0,10          |
| K <sub>2</sub> O                | 0,01          | 0,01          | 0,00          | 0,00          | 0,01          | 0,01          | 0,01          |
| TiO7                            | 0,14          | 0,19          | 0,13          | 0,18          | 0,17          | 0,33          | 0,34          |
| P2O5                            | 0,01          | 0,01          | 0,01          | 0,01          | 0,01          | 0,01          | 0,01          |
| PAF                             | 10,20         | 9,13          | 11,64         | 10,13         | 10,20         | 4,17          | 4,14          |
| total                           | 99,53         | 99,31         | 98,77         | 99,00         | 99,01         | 100,22        | 99,79         |
|                                 |               |               |               |               |               |               |               |
| S                               | n.d           | n.d.          | 0,09          | 0,11          | <u>n.d.</u>   | n.d.          | <u>n.d.</u>   |
|                                 |               |               | _             |               |               |               |               |
| Fe2O3r                          | 1,42          | 1,78          | 1,20          | 1,48          | 1,39          | 2,27          | 2,28          |
| FeOr                            | 11,50         | 14,41         | 9,70          | 12,01         | 11,26         | 18,38         | 18,46         |
| Mg#                             | 82,53         | 76,75         | 85,16         | 81,07         | 81,70         | 59,88         | 60,09         |
| Cr#                             | 43,37         | 51,51         | 43,06         | 49,78         | 48,81         | 60,35         | 59,59         |
| Cr/Fe                           | 0,33          | 0,52          | 0,35          | 0,53          | 0,61          | 1,37          | 1,33          |
|                                 |               |               |               |               |               |               |               |
| ppm                             |               |               |               |               |               | 700.40        |               |
| Ni                              | 1482,90       | 1171,10       | 1339,19       | 1409,12       | 1354,60       | 508,10        | 194,30        |
| Cu                              | 7,16          | 0,22          | 331,01        | 602,52        | 2,88          | 0,00          | 2,64          |
| Zn                              | 39,50         | 60,10         | 100,88        | 179,75        | 54,90         | 127,20        | 125,00        |
| <u>Co</u>                       | n.d.          | n.d.          | 117,56        | 141,21        | p.d.          | n.q           | n.d.          |
|                                 | 0.50          | 0.00          |               | 0.00          |               | 14.49         | 160.64        |
| Ba                              | 2,53          | 3,79          | 3,42          | 2,00          | 4,14          | 14,40<br>p.d  | 109,04        |
|                                 | <u>n.a.</u>   | <u>n.a.</u>   | 1,10          | 1,15          | n.a.          | n.u.          | n.d.          |
| MO                              | <u>u.a.</u>   | <u> </u>      | 3,50          | 11.07         | n.u.          |               | <u>. u.u.</u> |
| SC                              | 35.03         | 40.28         | 11,01         | 14.08         | 54.17         | 48.28         | 62.94         |
| Sr<br>Ca                        | 0.04          | 19,20<br>nd   | nd            | n d           | 0.05          | n d           | n.d.          |
| C-3                             | 2 78          | 5.20          | 5.89          | 9.81          | 1.35          | 1.03          | 2.03          |
| Rh                              | 1.61          | 2 10          | 1.01          | 1.55          | 1.61          | 3.82          | 3.62          |
| Th                              | n.d.          |
| U                               | 0.05          |               | 0.05          | 0.04          |               | 0.09          | 0,76          |
| v l                             | 180,40        | 221.50        | 149.65        | 264.27        | 247.00        | 674.10        | 626,00        |
| Y                               | 1.53          | 1.34          | 1,98          | 1,95          | 1.47          | 1,18          | 1,99          |
| Zr                              | n.d.          | n.d.          | 12.97         | 11,97         | n.d.          | n.d.          | n.d.          |
|                                 |               |               |               |               |               |               |               |
| La                              | 0,23          | 0,28          | 0,24          | 0,31          | 0,33          | 0,49          | 1,13          |
| Ce                              | 0,65          | 0,75          | 0,65          | 0,68          | 0,79          | 0,98          | 2,54          |
| Pr                              | 0,09          | 0,11          | 0,09          | 0,09          | 0,11          | 0,13          | 0,32          |
| Nd                              | 0,45          | 0,56          | 0,43          | 0,43          | 0,47          | 0,62          | 1,19          |
| Sm                              | 0,16          | 0,20          | 0,14          | 0,14          | 0,17          | 0,20          | 0,35          |
| Eu                              | 0,04          | 0,05          | 0,04          | 0,04          | 0,05          | 0,07          | 0,16          |
| Gd                              | 0,26          | 0,28          | 0,21          | 0,21          | 0,23          | 0,28          | 0,46          |
| ТЪ                              | 0,05          | 0,05          | 0,04          | 0,04          | 0,05          | 0,05          | 0,08          |
| Dy                              | 0,37          | 0,38          | 0,32          | 0.32          | 0,37          | 0,40          | 0,54          |
| Но                              | 0,09          | 0,08          | 0,07          | 0,07          | 0,09          | 0,08          | 0,11          |
| Er                              | 0,25          | 0,24          | 0,24          | 0,22          | 0,25          | 0,25          | 0,31          |
| Tm                              | 0,04          | 0,03          | 0,04          | 0.03          | 0,04          | 0,04          | 0,05          |
| ΥЪ                              | 0,24          | 0,22          | 0,23          | 0,21          | 0,26          | 0,22          | 0,31          |
| Lu                              | 0,04          | 0,04          | 0,04          | 0,04          | 0.04          | 0,03          | 0,04          |
| ррь                             |               |               |               |               |               |               |               |
| 03                              | n.a.          | <u>n.a.</u>   | <u>n.a.</u>   | <u>n.a.</u>   | <u>na</u>     | D.a.          | D.a.          |
| lr                              | 6,40          | 10,57         | 3,58          | <u>n.d.</u>   | 8,87          | 34,48         | 32,75         |
| Ru                              | 32,96         | 59,41         | 26,11         | 51,13         | 48,02         | 173,33        | 157,63        |
| Kh                              | 17,10         | 25,62         | 11,34         | 20,09         | 17,91         | 10,60         | /0,20         |
| Pt                              | 23,29         | 41,49         | 33,65         | 02,56         | 35,21         | 199,00        | 1/8,50        |
| rd í                            | 42,75         | 173.24        | 56,96         | 136,41        | 105,70        | 595,52        | 032,11        |

| Echantillon                     | 97-MH-7374-11 | 97-MH-7374-15 | 97-MH-7374-16 | 97-MH-7374-17 | 97-MH-7374-18 | 97-MH-7374-19 | 97-MH-7374-22 |
|---------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Lithologie                      | Harzb à chro  | Lherz à chro  | Harzb à chro  | Chr Sil       | Harzb         | Lherz         | Harzb à chro  |
| # analyse                       | HR981-7374-11 | HR981-7374-15 | HR981-7374-16 | HR981-7374-17 | HR981-7374-18 | HR981-7374-19 | HR981-7374-22 |
|                                 |               |               |               |               |               |               |               |
| %                               |               |               |               |               |               |               |               |
| SiO2                            | 29,40         | 32,93         | 34,30         | 19,50         | 38,30         | 37,61         | 37,10         |
| Al <sub>2</sub> O <sub>3</sub>  | 6,90          | 5,55          | 4,62          | 9,90          | 2,61          | 2,72          | 3,21          |
| Fe <sub>2</sub> O <sub>3t</sub> | 14,70         | 13,75         | 12,60         | 22,70         | 11,22         | 11,75         | 12,00         |
| Cr203                           | 11,90         | 9,09          | 5,63          | 19,50         | 0,65          | 0,84          | 2.26          |
| MgO                             | 26,60         | 28,83         | 29,30         | 18,40         | 32,33         | 32,46         | 31,90         |
| CaO                             | 0,45          | 0,77          | 0,94          | 1,85          | 0,92          | 1,32          | 0,44          |
| MnO                             | 0,16          | 0,17          | 0,19          | 0,49          | 0,11          | 0,10          | 0.19          |
| Haju I                          | 0,10          | 0,00          | 0,10          | 0,10          | 0,00          | 0,00          | 0.01          |
| TiO-                            | 0.01          | 0.20          | 0.18          | 0.30          | 0.11          | 0.11          | 0.12          |
| P-0-                            | 0.01          | 0.02          | 0.02          | 0.01          | 0.02          | 0.01          | 0.01          |
| PAF                             | 8.66          | 10.05         | 10,90         | 6.62          | 12.17         | 12,67         | 11,50         |
| total                           | 99.08         | 101,37        | 98,79         | 99,38         | 98,43         | 99,65         | 98,84         |
|                                 |               |               |               |               |               |               |               |
| S                               | n.d.          | 0,08          | n.d.          | n.d.          | 0,31          | 0,19          | n.d.          |
|                                 |               |               |               |               |               |               |               |
| Fe <sub>2</sub> O <sub>3</sub>  | 1,47          | 1,37          | 1,26          | 2,27          | 1,12          | 1,18          | 1,20          |
| FeO,                            | 11,90         | 11,13         | 10,20         | 18,38         | 9,09          | 9,52          | 9,72          |
| Mg#                             | 79,92         | 82,19         | 83,65         | 64,07         | 86,38         | 85,87         | 85,40         |
| Cr#                             | 53,63         | 52,32         | 44,97         | 56,91         | 14,23         | 17,21         | 32,07         |
| CT/Fe                           | 0,85          | 0,69          | 0,47          | 0,90          | 0,06          | 0,08          | 0,20          |
|                                 |               |               |               |               |               |               |               |
| ppm<br>N;                       | 1757 71       | 1537.64       | 1766.14       | 3105 50       | 1456.07       | 1487.96       | 1724.73       |
| <u>Cr</u>                       | 22.48         | 348 18        | 633.67        | 2.71          | 74.04         | 14.98         | 21.06         |
| Zn                              | 190,68        | 209.38        | 156.01        | 173.80        | 44.00         | 88,15         | 126,14        |
| Co                              | 117,96        | 124,27        | 130,08        | n.d.          | 142,72        | 165,01        | 172,19        |
|                                 |               |               |               |               |               |               |               |
| Ba                              | 3,82          | 3,47          | 3,35          | 2,96          | 2,70          | 2,65          | 2,70          |
| Cd                              | 0,90          | 0,92          | 1,12          | n.d.          | 1,36          | 1,41          | 1,37          |
| Мо                              | 3,97          | 3,49          | 4,20          | n.d.          | 2,60          | 3,53          | 2,96          |
| Sc                              | 12,10         | 11,94         | 11,54         | <u>n.d.</u>   | 11,83         | 12,58         | 12,77         |
| Sr                              | 9,75          | 11,62         | 15,93         | 58,38         | 10,76         | 12,56         | 4,34          |
| Cs                              | n.d.          | 0,01          | n.d.          | <u>n.d.</u>   | n.d.          | 0,01          | 0,03          |
| Pb                              | 9,48          | 6,20          | 11,70         | 1,13          | 8,88          | 10,50         | 0.74          |
| KD<br>Th                        | 1,08          | 2,03          | 0.20          | 2,00          | <br>n d       | 0,00          | 0.13          |
|                                 | 0,13          | 0.22          | 0,20          | 0.05          | 0.04          | 0.03          | 0.05          |
| <del>v</del>                    | 323.47        | 283.84        | 194.99        | 578.30        | 54.64         | 70.35         | 119,98        |
| Ý I                             | 2.15          | 2.95          | 3.02          | 1,24          | 2,42          | 2,33          | 2,35          |
| Zr                              | 12,83         | 18,38         | 17,39         | n.d.          | 12,58         | 8,51          | 10,32         |
|                                 |               |               |               |               |               |               |               |
| La                              | 0,33          | 0.44          | 0,51          | 0,42          | 0,30          | 0,28          | 0,34          |
| Ce                              | 0,82          | 1,27          | 1,51          | 1,03          | 0,88          | 0,77          | 0,88          |
| Pr                              | 0,11          | 0,18          | 0,22          | 0,15          | 0,12          | 0,11          | 0,13          |
| Nd                              | 0,52          | 0,90          | 1.07          | 0,64          | 0,63          | 0,53          | 0,58          |
| Sm                              | 0,16          | 0,27          | 0,36          | 0,20          | 0.20          | 0,18          | 0,19          |
| Eu<br>Cd                        | 0,05          | 0,07          | 0,09          | 0,05          | 0,07          | 0.08          | 0.00          |
| Ga I                            | 0,22          | 0,38          | 0,43          | 0,29          | 0,29          | 0.05          | 0.05          |
| Dw                              | 0,04          | 0.52          | 0,00          | 0.33          | 0.36          | 0.36          | 0.38          |
| Ho                              | 0.08          | 0,11          | 0,12          | 0.08          | 0.09          | 0.09          | 0,08          |
| Er                              | 0.24          | 0,34          | 0.34          | 0,22          | 0.28          | 0,27          | 0,25          |
| Tm                              | 0,04          | 0,05          | 0,05          | 0,04          | 0,04          | 0,04          | 0,04          |
| ΥЪ                              | 0,20          | 0,30          | 0,30          | 0,20          | 0,25          | 0,23          | 0,24          |
| Lu                              | 0,03          | 0,05          | 0,05          | 0,03          | 0,04          | 0,03          | 0,04          |
| ppb                             |               |               |               |               |               |               |               |
| Os                              | D.a.          | <b>D.</b> 8.  | n.a.          | n.a.          | п.а.          | n.a.          | n.a.          |
| lr                              | 10,27         | n.d.          | 4,62          | 16,87         | n.d.          | n.d.          | n.d.          |
| Ru                              | 56,25         | 49,00         | 38,39         | 102,00        | 4,99          | 7,34          | 15,46         |
| Rh                              | 27,55         | 24,18         | 18,71         | 62,84         | 2,92          | 2,33          | 4,57          |
| <u>P1</u>                       | 74,58         | 57,43         | 49,57         | 189,83        | 12,85         | 5,98          | 21.46         |
| PG 1                            | 254.79        | 149.10        | 177.68        | 649.11        | 48.19         | 8.95          | 31,40         |

## **ANNEXE B.3**

ANALYSE DES TERRES RARES

.

| Echantillon | 97-MH-4083A | 97-MH-4104A | 97-Mil-7382B | 97-MH-7402A | 97-MH-7421A         | 97-MH-7463A     | 97-MH-7400A    | 08-MU-7463 | MV 00 10 D0  |
|-------------|-------------|-------------|--------------|-------------|---------------------|-----------------|----------------|------------|--------------|
| Lithologic  | Gab (D)     | Gab         | Gab (D)      | Gab         | Gab                 | Pvmx (D)        | Purry A MG (D) | COLUMNIA   | 00-01-00-VIW |
| # analyse   | 0960-66     | 1860-66     | 99-0982      | 69-0983     | 99-0984             | 99-0978         | 90-002         | 00.0076    | 00 0077      |
|             |             |             |              |             |                     |                 |                | njen-66    | 1160-66      |
| ppm         |             |             |              |             |                     |                 |                |            |              |
| Ca          | 60'0        | 0,26        | 0.06         | 0.03        | 104                 | 010             |                | 202        |              |
| Rb          | 26,25       | 5.48        | 1.56         | 0 46        | 1 2 1               | 0,10            | 10,0           | 0,20       | 0,21         |
| Ba          | 241.46      | 32.65       | 11 73        | 00.01       | 1211                | 40'I            | 17.0           | 5,12       | 0,77         |
| Sr          | 157.45      | 150.43      | 140.41       | 100 47      | 10,04               | 14,10<br>016 0F | 1,08           | 100,06     | 2,29         |
| lth         | 0.36        | 0.15        | 051          | 100         | 000                 | cn'o17          | 2,14           | 431,82     | 17,35        |
| Ta          | 0.05        | 200         | 1712         | 0,02        | 20'0                | 2,43            | 0,19           | 0,59       | 0,15         |
| NP.         |             | 0010        | 0110         | 0,07        | 0,02                | 0,32            | 0,25           | 0,36       | 0,05         |
|             | 4 12        | 0,83        | 2,60         | 0,93        | 0,22                | 4,74            | 3,72           | 5,76       | 0.75         |
| E C         | 3,76        | 1,01        | 4,21         | 1,51        | 0,63                | 14,95           | 1,79           | 6.08       | 0.67         |
| 3           | 9,49        | 2,14        | 9,36         | 3,09        | 0,98                | 32.02           | 4.59           | 16.45      | 1 57         |
| 2           | 1,46        | 0,35        | 1,37         | 0,44        | 0.18                | 4.00            | 0.60           | 2.44       |              |
| PN          | 6,83        | 1,58        | 6,23         | 1,84        | 0.79                | 15.78           | 2.68           | 11.00      | 141          |
| Zr          | 34,98       | 7,91        | 39,50        | 12,65       | 3,52                | 71.38           | 43.72          | 45.17      | 500          |
| Hſ          | 1,22        | 0,35        | 1,58         | 0.49        | 0.20                | 250             | 1 06           | 21 JU      | 50'6         |
| Sm          | 2,07        | 0,57        | 2.05         | 0.59        | 0.33                | 3 18            | 0.55           | 1,94       | <u>95.0</u>  |
| Eu          | 0,77        | 0,26        | 0.92         | 0.30        | 0.16                | 0.87            | 200            | 040        | 0,42         |
| Gd          | 3,01        | 0,92        | 3.09         | 0.80        | 0.60                | 2 00            | 500            | 1,22       | 0,13         |
| 11          | 0,45        | 0,16        | 0,53         | 0.15        | 010                 | 70.02           | 10/0           | 101        | 90'0         |
| ٨           | 15,26       | 5.63        | 20.28        | 5.41        | 98.6                | 1717            | 0,40           | 4/14       | 61,0         |
| DV          | 2.99        | 01.1        | 376          | 1.05        | 0440                | 6111            | 271/2          | 24,58      | 4,41         |
| Ho          | 0.61        |             | 040          | 1,00        | +, ) <sup>1</sup> / | 2,29            | 0,50           | 5,00       | 0,88         |
| - 2         | 100         | 0,60        | 0/10         | 0,22        | 0,15                | 0,43            | 0,10           | 1,03       | 0,19         |
| 5           | 1,04        | 0,69        | 2,44         | 0,66        | 0,46                | 1,28            | 06,0           | 3,09       | 0,59         |
|             | 0,27        | 0,10        | 0,36         | 0'09        | 0'02                | 0,19            | 0.04           | 0.45       | 000          |
| 4           | 1,69        | 0,63        | 2,30         | 0,61        | 0,41                | 1,15            | 0.27           | 2.05       | 0.5R         |
| 14          | 0.25        | 60'0        | 0,34         | 60'0        | 0.06                | 0 17            | 0.05           | 0.47       |              |

Tableau B.3 Analyses lithogéochimiques pour les roches du CDM (INRS-Géoressources).

### ANNEXE C

# ANALYSES MINÉRALOGIQUES

ANALYSES MINÉRALOGIQUES À LA MICROSONDE ET AU MICROSCOPE ÉLÉCTRONIQUE À BALAYAGE

### ANNEXE C

L'annexe C est divisée en huit sections distinctes : Annexe C.1 Pyroxène, C.2 Chromite, C.3 Serpentine, C.4 Chlorite, C.5 Amphibole, C.6 Carbonate, C.7 Sulfures, éléments majeurs et C.8 Sulfures, Éléments du Groupe du Platine.

## ANNEXE C.1

ANALYSES DES PYROXÈNES

| Échantillons                   | 97-MH-7371-18 | 97-MH-7371-22 | 97-MH-7371-22 | 97-MH-7374-11 |
|--------------------------------|---------------|---------------|---------------|---------------|
| Point                          | 1             | 2             | 2             | 1             |
| Lithologie                     | Lherz à chro  | Lherz à chro  | Lherz à chro  | Harz à chro   |
| Minéral                        | Срх           | Срх           | Срх           | Срх           |
|                                |               |               |               |               |
| SiO2                           | 53,723        | 51,713        | 54,758        | 55,046        |
| TiO <sub>2</sub>               | 0,091         | 0,174         | 0,000         | 0,087         |
| Al <sub>2</sub> O <sub>3</sub> | 2,522         | 3,295         | 0,032         | 0,187         |
| Cr <sub>2</sub> O <sub>3</sub> | 0,877         | 1,218         | 0,000         | 0,403         |
| Fe <sub>2</sub> O <sub>3</sub> | 0,009         | 1,374         | 0,645         | 0,000         |
| MgO                            | 20,581        | 16,421        | 17,823        | 17,190        |
| CaO                            | 16,464        | 21,911        | 25,410        | 25,070        |
| MnO                            | 0,208         | 0,118         | 0,043         | 0,130         |
| FeO                            | 5,317         | 2,701         | 0,944         | 2,332         |
| NiO                            | 0,000         | 0,000         | 0,000         | 0,088         |
| Na <sub>2</sub> O              | 0,215         | 0,392         | 0,030         | 0,026         |
| K <sub>2</sub> O               | 0,006         | 0,003         | 0,008         | 0,006         |
| Total                          | 100,013       | 99,320        | 99,693        | 100,565       |
|                                |               |               |               |               |
| Si                             | 1,939         | 1,901         | 1,992         | 1,993         |
| Ti                             | 0,002         | 0,005         | 0,000         | 0,002         |
| Al                             | 0,107         | 0,143         | 0,001         | 0,008         |
| Cr                             | 0,025         | 0,035         | 0,000         | 0,012         |
| Fe <sup>3+</sup>               | 0,000         | 0,038         | 0,018         | 0,000         |
| Mg                             | 1,107         | 0,900         | 0,966         | 0,928         |
| Ca                             | 0,637         | 0,863         | 0,990         | 0,973         |
| Mn                             | 0,006         | 0,004         | 0,001         | 0,004         |
| Fe <sup>2+</sup>               | 0,160         | 0,083         | 0,029         | 0,071         |
| Ni                             | 0,000         | 0,000         | 0,000         | 0,003         |
| Na                             | 0,015         | 0,028         | 0,002         | 0,002         |
| к                              | 0,000         | 0,000         | 0,000         | 0,000         |
| Total                          | 3,998         | 4,000         | 3,999         | 3,996         |
|                                | L             |               |               |               |
| ALIV                           | 0,061         | 0,099         | 0,001         | 0,007         |
| AIVI                           | 0,046         | 0,044         | 0,000         | 0,001         |
| Mg#                            | 87,37         | 91,56         | 97,09         | 92,89         |
| En                             | 58,14         | 48,75         | 48,66         | 47,06         |
| Fs                             | 8,40          | 4,50          | 1,46          | 3,60          |
| Wo                             | 33,46         | 46,75         | 49,87         | 49,34         |

 Tableau C.1 Composition des pyroxènes analysés à la microsonde électronique.

.

## ANNEXE C.2

# ANALYSES DES CHROMITES

.

.

| 25'0         | 81,1              | 1'93              | 1'23             | 84,1                | 8ħ,I         | <b>48,1</b>    | 1,42         | 84'I             | ZS'I          | Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  |
|--------------|-------------------|-------------------|------------------|---------------------|--------------|----------------|--------------|------------------|---------------|---------------------------------------------|
| 45'23        | £9'L              | 9+'2              | 15'2             | S9'L                | 21'2         | 12'2           | 85,7         | 6,82             | 44'L          | Fe <sup>3+</sup> /(Pe <sup>3+</sup> +AI+Cr) |
| 87,0         | 12'21             | 06'51             | 45'53            | 69'0 <del>1</del> ⁄ | 48'ZE        | 21'22          | 22'tE        | 88,84            | SE'6E         | Mg/(Mg+Fc <sup>2</sup> )                    |
| 08'68        | 81'89             | 61/19             | 90'92            | 26'19               | 19'19        | 63,12          | <b>95'03</b> | 09'29            | 62,80         | Cr/(Cr+Al)                                  |
| 88,0         | 81'0              | 22'0              | 0'52             | 97,0                | 0'53         | 0'50           | 0'55         | 0'59             | 0'54          | եշ <sup>3+</sup> /Բշ <sup>3+</sup>          |
|              |                   |                   |                  |                     |              |                |              |                  |               |                                             |
| 24,022       | 54'001            | 54,000            | 53'666           | 23'882              | \$4,004      | 866'82         | 54'003       | 53'665           | 566'67        | lato'T                                      |
| £60'D        | 0'033             | 900'0             | 420'O            | 810,0               | 0'039        | 620,0          | 210'0        | 0'012            | ¢10'0         | uz                                          |
| 0'055        | 120'0             | SI0'0             | 910'0            | 800,0               | 1 50'0       | 610'0          | 610'0        | 010'0            | t 10'0        | IN                                          |
| .8,0         | n.a.              | ,в,п              | ם, פ,            | . <b>8</b> .0       | .а.п         | גי.            | ה.מ.         | ายาน             | ה.פ.          | හ                                           |
| 999'2        | 572,ð             | 4'320             | 4'932            | £87, <del>1</del>   | 4'622        | 9 <b>28</b> 'E | 2'164        | E80,4            | 248'4         | <sup>دو</sup> ي.                            |
| 918'0        | 191'0             | 620'0             | 780,0            | 880,0               | 601 '0       | 290'0          | 601 '0       | 170,0            | £60'0         | пM                                          |
| 090'0        | 996'1             | 3'690             | 585,5            | 3'383               | 910'6        | 4'154          | 592'2        | \$004<br>5       | 341,6         | 8M                                          |
| 602'9        | 961'1             | 041't             | 741,1            | 161'1               | 1'139        | 1132           | 191'1        | 920'1            | 021'1         | ارد <sup>ه د</sup>                          |
| 8,140        | 4CI'6             | \$26 <b>'</b> 8   | 718,8            | 8,842               | £72,8        | 6,217          | 6'045        | 961'6            | 8+148         | Ct                                          |
| .8.0         | 810,0             | 0 <sup>,034</sup> | 960,0            | 1 <sup>0</sup> 024  | 940,0        | ₽20'0          | 6,053        | 660,0            | 220'0         | ٨                                           |
| S26'0        | 2'355             | 2'230             | 2'131            | 6,543               | \$19'S       | 285,3          | 8,538        | \$6 <b>\$</b> ,8 | 814,8         | ۷۲                                          |
| 220'0        | 261'0             | 661'0             | 0'158            | 681,0               | 601'0        | 660'0          | 101'0        | 880,0            | 801'0         | 1.1                                         |
| <b>₩10'0</b> | C10'0             | 0'003             | 010'0            | S00,0               | £00′0        | 0'002          | 000'0        | 910'0            | <b>+</b> 10'0 | is                                          |
|              |                   |                   |                  |                     |              |                |              |                  |               |                                             |
| 695'86       | 812,001           | 100'284           | 868,001          | 128'001             | 148,001      | 700'265        | 100'443      | 100'038          | 186'66        | [ato]                                       |
| 414,0        | 6,163             | 0'033             | 0'159            | 860'0               | 861,0        | 0'133          | 780,0        | <i>LL</i> 0'0    | E70,0         | O <sup>u</sup> Z                            |
| 260'0        | 260'0             | £20'0             | 920'0            | 140'0               | 0'125        | 690,0          | 0'035        | 1 20'0           | 0'024         | OIN                                         |
| טיפי         | .a.n              | .в.л              | .a.n             | τı.a.               | .8.0         | 'в·u           | ,B,Q         | ,8,0             | 19.61         | 000                                         |
| 30,271       | \$26 <b>'</b> 324 | 20,427            | 51'932           | 55'310              | \$10,62      | 506'81         | 53'885       | SC1'61           | 55'300        | 094                                         |
| 1'533        | 0'115             | 296'0             | \$0 <b>\$</b> '0 | 904,0               | 674,0        | 0'315          | £64'0        | 0'358            | 0'455         | OuM                                         |
| 0'135        | 92424             | 072'6             | 668'8            | 685,8               | 788,7        | 10'032         | 2+1+2        | 10'564           | 611'9         | 08M                                         |
| 29,444       | 666,2             | 901'9             | ¢76,8            | 6,172               | 2'810        | 096'\$         | 2'331        | 909'9            | 986'5         | ڊد <sup>ر</sup> 0ء                          |
| 34'000       | 181,54            | 75E,44            | 927,64           | 43'658              | E80,111      | S40'94         | \$26'E\$     | 685'S¥           | 44'232        | Ct3O3                                       |
| 8'U          | 0'333             | L91'0             | 871,0            | P95,0               | 0'555        | 0'398          | 0'525        | 061'0            | 821'0         | V2O3                                        |
| 3'203        | 628'91            | 18'939            | 16'035           | 845,81              | E03,81       | 840,81         | 890,81       | 18'596           | £69'21        | <sup>13</sup> O <sup>2</sup>                |
| 0'330        | 629'0             | 0'123             | £99'0            | 246'0               | 199'0        | 0'250          | SI S'0       | 95+'0            | SSS'0         | <sup>2</sup> ON                             |
| 960,0        | 640,0             | 110'0             | 660,0            | 810,0               | 0,020        | 810,0          | 000'0        | 690'0            | 920'0         | ¢OI8                                        |
|              |                   |                   |                  |                     |              |                |              |                  |               |                                             |
| alisibômatal | Cœm               | Cœur              | Cœnt             | Cœm                 | Cœur         | Cœnt           | Cœnt         | Cœur             | ມແສວ          | chromite                                    |
| rperz        | Chr Sil           | CPt BI            | CPt 31           | Chr Sil             | Chr Sil      | Chr Sil        | Chr Sil      | CPr. BII         | Chr Sil       |                                             |
| [+8]         | +                 | 6                 | 3                | T                   | 2            | ÷              | 3            | 5                | t             | tulo <sup>q</sup>                           |
| A-8608-01-76 | 97-5-5096-F       | 9-1C-5096-F       | 97-JC-5096-F     | 4-9605-01-76        | D-960S-Df-76 | D-9605-DF-26   | 0-9605-01-76 | 0-9605-01-76     | 0-960S-DL-76  | enollinanda                                 |

•

| Échantillons                                | 97-JC-5098-A  | 97-JC-5098-A | 97-JC-5098-A | 97-JC-5098-A | 97-JC-5098-A | 97-JC-5098-A | 97-JC-5098-A  | 97-JC-5098-A | 97-JC-5098-A | 97-JC-5098-A |
|---------------------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|
| Point                                       | 18-2          | 1a-3         | 1a-4         | Ia-5         | 1a-6         | 16-1         | 1b-2          | 6-41         | 1b-4         | 16-5         |
| Lithologic                                  | Lherz         | Lherz        | Lherz        | Lherz        | Lherz        | Lherz        | Lherz         | Lherz        | Lherz        | Lherz        |
| Chromite                                    | Intermédiaire | Cœur         | Cœur         | Cœur         | Bordure      | Bordure      | Intermédiaire | Cœur         | Cœur         | Cœur         |
|                                             |               |              |              |              |              |              |               |              | ť            |              |
| sio,                                        | 0,039         | 0,002        | 0,019        | 0,019        | 0,048        | 0,039        | 200'0         | 0,017        | 0,025        | 0,008        |
| rio,                                        | 0,331         | 0,905        | 0,901        | 0,739        | 0,098        | 0,271        | 0,335         | 1,015        | 1,132        | 1,124        |
| Al <sub>3</sub> O <sub>3</sub>              | 4,988         | 13,572       | 13,489       | 13,492       | 000'0        | 0,338        | 2,483         | 12,890       | 12,880       | 12,811       |
| V <sub>2</sub> O <sub>3</sub>               | n,a           | п,а          | n,a          | п,а          | n,a          | п,я          | n,a           | n,a          | n,a          | n,a          |
| Cr <sub>3</sub> O <sub>3</sub>              | 34,452        | 35,870       | 36,103       | 36,201       | 10,135       | 31,522       | 32,093        | 35,308       | 35,145       | 34,114       |
| Fe <sub>2</sub> O <sub>5</sub>              | 26,831        | 13,614       | 13,922       | 14,036       | 58,273       | 34,998       | 31,867        | 15,389       | 15,207       | 15,673       |
| MgO                                         | 0,185         | 0,694        | 0,762        | 0,625        | 0'000        | 0,065        | 0,123         | 0,639        | 0,651        | 0,646        |
| МпО                                         | 1,251         | 1,362        | 1,333        | 1,350        | 0,384        | 1,215        | 1,150         | 1,292        | 1/2/1        | 1,332        |
| FcO                                         | 30,871        | 31,655       | 31,746       | 31,783       | 30,795       | 30,025       | 30,475        | 32,074       | 32,015       | 31,725       |
| CoO                                         | л.а.          | л.а.         | п.а.         | п.а.         | п.а,         | n.a.         | n.a.          | n.a.         | n.a.         | n.a.         |
| NIO                                         | 0,125         | 0,151        | 0,176        | 0,102        | 0,121        | 0,101        | 0,093         | 0,159        | 0,182        | 0,127        |
| ZnO                                         | 0,554         | 1,128        | 0,954        | 1,109        | 0,109        | 0,450        | 0,507         | 0,887        | 0,862        | 0,873        |
| Total                                       | 99,627        | 98,953       | 99,405       | 99,456       | 99,963       | 99,024       | 99,133        | 029'66       | 99,470       | 98,433       |
|                                             |               |              |              |              |              |              |               |              |              |              |
| Si                                          | 0,012         | 0,001        | 0,005        | 0,005        | 0,015        | 0,012        | 0,002         | 0,005        | 0,007        | 0,002        |
| H.                                          | 0,074         | 0,193        | 0,191        | 0,157        | 0,023        | 0,062        | 0,076         | 0,216        | 0,241        | 0,242        |
| AI                                          | 1,739         | 4,534        | 4,485        | 4,490        | 0,000        | 0,122        | 0,883         | 4,293        | 4,296        | 4,319        |
| >                                           | D.A.          | n.a.         | п.а.         | n.a.         | n.a.         | п.а.         | л.я.          | n.a.         | n.a.         | n.a.         |
| с <sub>г</sub>                              | 8,056         | 8,039        | 8,053        | 8,082        | 2,459        | 7,623        | 7,658         | 7,888        | 7,865        | 7,715        |
| Fe <sup>3+</sup>                            | 5,971         | 2,904        | 2,955        | 2,982        | 13,454       | 8,055        | 7,237         | 3,272        | 3,239        | 3,374        |
| Mg                                          | 0,081         | 0,293        | 0,321        | 0,263        | 0'000        | 0,030        | 0,055         | 0,269        | 0,275        | 0,275        |
| Ma                                          | 0,313         | 0,327        | 0,319        | 0,323        | 0,100        | 0,315        | 0,294         | 0,309        | 0,329        | 0,323        |
| Pe <sup>20</sup>                            | 7,635         | 7,505        | 7,490        | 7,505        | 7,902        | 7,680        | 7,692         | 7,580        | 7,578        | 7,589        |
| ა                                           | п.а.          | П.А.         | п.а.         | n.a.         | n.a.         | n.a.         | n.a.          | n.a.         | n.a.         | n.a.         |
| N                                           | 0,030         | 0,034        | 0,040        | 0,023        | 0,030        | 0,025        | 0,023         | 0,036        | 0,041        | 0,029        |
| Zn                                          | 0,121         | 0,236        | 0, 199       | 0,231        | 0,025        | 0,102        | 0,113         | 0,185        | 0,180        | 0,184        |
| Total                                       | 24,032        | 24,066       | 24,058       | 24,061       | 24,008       | 24,026       | 24,033        | 24,053       | 24,051       | 24,052       |
|                                             |               |              |              |              |              |              |               |              |              |              |
| Fe'/Fe'                                     | 0,78          | 0,39         | 0,39         | 0,40         | 1,70         | 1,05         | 0,94          | 0,43         | 0,43         | 0,44         |
| Cr/(Cr+Al)                                  | 82,25         | 63,94        | 64,23        | 64,29        | 100,00       | 98,42        | 89,66         | 64,76        | 64,67        | 64,11        |
| Mg/(Mg+Fc <sup>2</sup> )                    | 1,05          | 3,76         | 4,11         | 3,39         | 00'0         | 0,39         | 0,71          | 3,43         | 3,50         | 3,50         |
| Pe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 37,87         | 18,76        | 19,07        | 19,17        | 84,55        | 50,98        | 45,87         | 21,17        | 21,03        | 21,90        |
| Cr / (Fc <sup>2+</sup> +Fe <sup>3+</sup> )  | 0,59          | 0,77         | 0,77         | 0,77         | 0,12         | 0,48         | 0,51          | 0,73         | 0,73         | 0'20         |

| 28,0           | 98,0          | <b>68,0</b>   | 19'0          | 0'23         | <u> 28'0</u>   | 58,0         | 65'0          | 65,0         | 12'0            | Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  |
|----------------|---------------|---------------|---------------|--------------|----------------|--------------|---------------|--------------|-----------------|---------------------------------------------|
| 04,21          | 94'91         | 19'32         | 38'20         | 59,84        | 61'81          | 11'61        | 94'6E         | 48'32        | 15'12           | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Ct) |
| 99'6           | \$9'V         | 6E,4          | 04'1          | 84,0         | 5,84           | 2'60         | 86'1          | 92'0         | 3'48            | Mg/(Mg+Pc <sup>2+</sup> )                   |
| 66'49          | 52'59         | 4C,34         | 94'98         | 80'86        | 66'09          | Z6'09        | 25,28         | 19'86        | 00,43           | Cr/(Cr+AJ)                                  |
| 16,0           | 16,0          | 66,0          | 08,0          | 00'1         | 82'0           | 0'30         | 0,82          | 00'1         | 44,0            | եշ <sub>2+</sub> \եշ <sub>3+</sub>          |
|                |               |               |               |              |                |              |               |              |                 |                                             |
| 54'033         | 54'039        | 54'031        | 24,027        | 54'008       | 440,45         | 54'032       | 34'010        | 54'003       | 54'024          | িধেন                                        |
| 6,133          | 161'0         | 0'145         | \$01'0        | 160'0        | 961'0          | 861,0        | 120'0         | 190'0        | 961'0           | uz                                          |
| 910'0          | 010'0         | 6,013         | 910'0         | 210'0        | 200'0          | 0'015        | 900'0         | 010'0        | 0'036           | IN                                          |
| л.а.           | .в.п          | .a.n          | ับ'ย          | 'B,r         |                | 'B,N         | .a.n          | ,в,п         | ם,ם.            | 9 <u>0</u>                                  |
| 555'2          | 055'2         | 412,7         | 2'953         | 629'2        | ¢2€,7          | 265'2        | 2,632         | 699'2        | ₩2S'2           | <sup>يو</sup> ء،                            |
| \$00°          | S62'0         | 0'305         | ₽0E,0         | 626,0        | 192'0          | 0'593        | 162'0         | 0,342        | 0'358           | uW                                          |
| 696,0          | 895,0         | 0'342         | 801'0         | 2000         | 954'0          | £9£,0        | 201'0         | 0'050        | \$22 <b>'</b> 0 | 8M                                          |
| 3'328          | 57373         | 5'215         | 980,8         | EIL'L        | 5,054          | 5,198        | 6,241         | 249'2        | 116,6           | <sup>5</sup> €3+                            |
| 8'432          | 6,530         | 824,8         | 686,8         | 486'L        | <b>\$</b> 91,8 | 841,8        | 61'8          | £80,8        | 467,7           | Ct                                          |
| 140'0          | 6+0'0         | 960,0         | 200,0         | 000'0        | 210'0          | 810'0        | 800,0         | 000'0        | 17,17,          | ^                                           |
| 8CS'+          | 644,4         | <b>38</b> 4,4 | £16'1         | 991'0        | \$324          | 2'538        | 1'385         | \$T1'0       | 126,4           | IV                                          |
| 0,283          | 0/2'0         | 212'0         | S70,0         | 690'0        | 0'123          | 891'0        | 190'0         | 0'023        | 0'536           | N                                           |
| 900'0          | 200'0         | 900'0         | 900'0         | 800'0        | 800'0          | 0'005        | 810'0         | 0'032        | 800,0           | 15                                          |
|                |               | [             |               |              |                |              |               |              |                 |                                             |
| <b>+08</b> '66 | 199'66        | 262,66        | 100'028       | £\$\$'86     | 279'66         | 100120       | SE8,89        | 68'333       | S26'26          | lato'                                       |
| 249,0          | <b>₽</b> £9,0 | 989'0         | 624'0         | 90'139       | 856'0          | 229'0        | 0'335         | 0'534        | 976'0           | Out                                         |
| t 20'0         | S+0'0         | 690'0         | <b>290'0</b>  | 0'020        | 0'033          | 950'0        | 0'032         | 0'045        | 691'0           | OIN                                         |
| וזיפי          | ,6,0          | טיפי<br>ני    | ה.ת           | ,B,Ω         | n.a.           | л.а.         | , <b>в</b> .д | 'B'U         | <b>e</b> .a     | 0%                                          |
| 25'262         | 35'528        | 32'046        | 30,806        | 59'945       | S18'16         | 25'153       | 30°¢85        | 56'166       | 31'230          | 0%                                          |
| 1'383          | 1,244         | 1,273         | 1'513         | 1'392        | 102'1          | 1'550        | 941'1         | 1'314        | 745,1           | Out                                         |
| 988,0          | 688,0         | 0'832         | 0,244         | 280,0        | 801'1          | 161,1        | 0+2'0         | 640,0        | 1+9'0           | 0 <sub>8</sub> N                            |
| 202'11         | 11'292        | 206'11        | \$16'12       | 33'452       | 928'6          | 209'01       | 802,72        | 920'66       | 616,81          | ¢۵0ء                                        |
| 38'033         | 38'224        | 38'124        | 32,807        | 33'930       | 31'326         | 324'LC       | 34'933        | 812,568      | 34'022          | <sup>2</sup> رء0ء                           |
| 0,182          | 0,218         | 091'0         | 010'0         | 0'000        | 920'0          | 080,0        | SE0'0         | 0'000        | <b>в</b> , а    | \$0 <sup>2</sup>                            |
| 992'61         | 574,61        | \$29'EI       | £92'E         | 164'0        | 964'91         | 601'91       | 616'£         | \$1E'0       | 12,854          | 1303                                        |
| 846,1          | 1,281         | 1'052         | 955'0         | 292'O        | 92240          | 0'815        | 0'569         | 67250        | 1'102           | <sup>2</sup> OI.                            |
| 120'0          | 0'032         | 120'0         | 610'0         | 0'032        | 0:030          | 800,0        | 090'0         | 180'0        | 220'0           | <sup>2</sup> 015                            |
|                | [             |               |               | [            |                | [            |               | I            |                 |                                             |
| Tu 20          | Cœut          | Cœur          | Intermédiatre | Bordure      | Cœut           | Cœm          | ninibéanetal  | aunmod       | Cœm             | atimond                                     |
| zıəq7          | rpetz         | รมอนุๆ        | որուշ         | ruciz        | rperz          | รมวนุๆ       | ΓμειΣ         | rperz        | rperz           | aigolothi.                                  |
| t⊷q1           | 19-3          | 19-3          | र-षा          | 2-8I         | ф-в[           | £-в[         | 2-яі          | [-B]         | 9-91            | 1nio <sup>c</sup>                           |
| 8-8602-00-76   | 8-8602-DL-76  | 8-8602-01-76  | 97-JC-5098-B  | 8-8602-00-76 | 8-8602-01-76   | 8-8602-01-76 | 97-JC-5098-B  | 8-8602-DL-76 | 8-905-01-76     | enollinado                                  |
|                |               |               |               |              |                |              |               |              |                 |                                             |

| 61'1                 | 28,0              | 0'13          | 02'0         | ۲۷,0             | t L'O        | ۲٬۲۵          | 27,0               | 10'0              | <b>6</b> ,54   | Cr. / (Fe <sup>3,</sup> +Fe <sup>3</sup> )     |
|----------------------|-------------------|---------------|--------------|------------------|--------------|---------------|--------------------|-------------------|----------------|------------------------------------------------|
| \$C,8                | 01'12             | 51'33         | 33'19        | 26,15            | 51'62        | 55'04         | 51'58              | 06'96             | E1'24          | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cd)    |
| 68,12                | 69'9              | 3'53          | 64,6         | 29'E             | 3,45         | 24'E          | 9¢'E               | 51,81             | 64'0           | M&/(M&+Fc <sup>2+</sup> )                      |
| 60'29                | £6'28             | 64,23         | 64'53        | 64,26            | 64'13        | 26'69         | 25' <del>6</del> 9 | <del>7</del> 5'65 | 00,80          | Cr/(Cr+Al)                                     |
| 0'31                 | 85'0              | 64,0          | 0'42         | <b>**'</b> 0     | <b>44,0</b>  | 54,0          | 64,0               | 5'39              | 26'0           | եշ <sup>3+</sup> /Բշ <sup>3+</sup>             |
| 34'000               | 566'62            | 54'046        | 54'044       | 34'093           | 54'020       | 54'025        | 54'062             | 187,62            | 54'012         | ਮਿਹੀ                                           |
| 000'0                | 000'0             | 761'0         | £61'0        | 0'541            | 661'0        | 0'302         | 0'332              | 000'0             | SZ0'0          | uz                                             |
| 000'0                | 0'030             | 560,0         | 0'056        | ¢60,0            | 960,0        | 0:030         | <b>60,034</b>      | 110'0             | 800'0          | IN                                             |
| ה.פ.                 | .a.n              | .a.n          | n.a.         | .ธ.ส             | .в.п         | .ค.ก          |                    | '9'U              | ת.מ.           | <u>ල</u>                                       |
| ę'333                | 7,325             | 7,583         | £85,7        | \$9\$ <b>'</b> 4 | 295'2        | +LS'L         | 955'2              | 126'9             | 699'L          | ۲.<br>۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲ |
| 0'123                | 0'308             | 0'334         | 216,0        | 0'336            | 676'0        | 0'333         | 6,333              | 000'0             | 0'352          | nM                                             |
| 867,1                | 9°232             | 0'323         | 0'369        | 0'380            | 042'0        | 722°0         | 122'0              | 114,1             | 850,0          | 8M                                             |
| 916'1                | 622' <del>†</del> | 3'386         | 51 P,E       | 3'389            | 3'330        | 16C'E         | 3/2/2              | 090'SI            | 195'2          | Pe <sup>3+</sup>                               |
| 926'8                | 945'6             | 682'2         | 902'2        | 962'2            | 042'2        | 7,732         | 2,832              | 782,0             | 8'505          | Cr                                             |
| 100'0                | 0,024             | .e.n          | מימי         | . <b>а</b> .п    | .8.0         | .в.п          | .e.n               | 000'0             | 000'0          | ٨                                              |
| 184'S                | <b>596'1</b>      | 800,4         | 4,280        | 606,4            | 166,4        | <b>+</b> '593 | 862'4              | S61'0             | L91'0          | 14                                             |
| £11'0                | 0,082             | 222'0         | 0,234        | 0'546            | 0'533        | 0'343         | 672'0              | S00,0             | 0'026          | N.                                             |
| 000'0                | 610'0             | 610'0         | 0,020        | £10'0            | 0'012        | 0'015         | 600'0              | 1440              | 110'0          | IS                                             |
|                      |                   |               |              |                  |              |               |                    |                   |                |                                                |
| 662'001              | 206'26            | 844,80        | SC6'86       | 016'86           | S67,86       | LL9'66        | 990'66             | 272,101           | 66,255         | [nto]]                                         |
| 000'0                | 000'0             | 116'0         | 076'0        | 541'1            | 246'0        | 186'0         | 120'1              | 000'0             | 9'332          | Ouz                                            |
| 000'0                | 680,0             | 131'0         | 821,0        | 0'120            | 991'0        | 0°130         | 841,0              | 940'0             | 0'034          | OIN                                            |
| .B.D                 | , <b>в</b> ,п     | .в.л          | ם,א.         | ח,פ,             | .a.a         | ,в,д          | שישי               | .в.a              | .в.a           | රංග                                            |
| \$96 <sup>4</sup> 22 | 209'62            | 612'18        | 81-8'10      | 692'1E           | 092'16       | 160,56        | 892'I C            | 56,090            | 30'138         | PeO                                            |
| ÷29'0                | 268,0             | 666,1         | £16,1        | 1'364            | 1'364        | 1'382         | 1'38¢              | 000'0             | 1'561          | OuM                                            |
| 186,4                | 691'1             | 0'264         | ¢634         | 099'0            | 0'932        | 9+9'0         | 869,0              | 3,243             | <b>+80,0</b>   | O <sub>8</sub> M                               |
| ¢29'9                | 19,222            | 12'312        | 12'634       | 12'316           | 168'91       | 12'840        | 12'303             | S45,86            | 472,SE         | Fe3O3                                          |
| 45'660               | 808,04            | 34'462        | 34,236       | 34,402           | 34'362       | 34'200        | 34,831             | 1'542             | 080,46         | Cr3O3                                          |
| 0 <b>,</b> 004       | 101'0             | , <b>В</b> ,Ü | .в.п         | טישי             | .в.л         | n.e.          | ה.פ.               | 000'0             | 000'0          | ٧،03                                           |
| 926'21               | 2'934             | \$78,21       | 13'126       | 15,838           | 13'866       | 15'20         | 12,822             | 895'0             | £94'0          | VI3O3                                          |
| 9995'0               | 29C'0             | 990'1         | ¥60'I        | \$9I'I           | 780,1        | 0+1'1         | 020'1              | 0'054             | 0'328          | 1,1O2                                          |
| 0,000                | \$90 <b>'</b> 0   | 290'0         | 220'0        | St0'0            | ¢20'0        | 440,0         | 160,0              | 11211             | 9'032          | <sup>2</sup> Ois                               |
|                      |                   |               |              |                  |              |               |                    |                   |                |                                                |
| Cam                  | aumog             | Coem          | Cœm          | Cam              | Cœm          | Cœnt          | Cœm                | zwbnofi           | Juibiod        | Chromite                                       |
| Chr sil              | Chr Sil           | CPr 20        |              | Chr Sil          | CPT BIJ      | CPr Sil       | CPr 20             | Linerz            | rheir r        | Lithologic                                     |
| 0.81                 | 1.61              | 5-41          | 1-41         | 7.el             | S-RI         | 0.000 00 10   | 1.01               | 9-91              | 19-22<br>19-22 | 1cio4                                          |
| 0.8003-01-79         | T. 0.8002-01-70   | 0.8002-01-70  | 0-8609-01-26 | 0-8002-01-76     | 0.8603-01-76 | D-8608-DL-76  | 0-8608-01-76       | 8-8602-01-76      | 8-8602-DL-76   | Echantillona enollinado3                       |

| 8-9605-DL-76         | 3-8602-DL-76     | 0-8602-DL-76               | 0-8602-DL-76                | 0-8603-DL-70 | 0-8605-01-76      | 0-8602-DL-76      | 97-JC-5098-D | 0-8602-DI-76    | 0-8603-DL-76 | enollinana                                  |
|----------------------|------------------|----------------------------|-----------------------------|--------------|-------------------|-------------------|--------------|-----------------|--------------|---------------------------------------------|
| S-af                 | 1-81             | કન્વા                      | €-qī                        | E-41         | 2-91              | 1-91              | Z-nI         | 4-81            | E-al         | Point                                       |
| CPr BIJ              | Chr Sil          | Chr Sil                    | CPt 81                      | Chr Sil      | Chr Sil           | Chr Sil           | CPt BIJ      | Chr Sil         | Chr Sil      | aigolodii.                                  |
| amprog               | Cœnt             | anprog                     | Coent                       | Cœur         | Cœm               | ambroß            | amprog       | Cœur            | Cœur         | atimond3                                    |
|                      |                  |                            |                             |              |                   |                   |              |                 |              |                                             |
| 0'034                | 910'0            | £50'0                      | 110'0                       | 0'034        | 200'0             | 0'025             | 240'0        | 100'0           | 000'0        | <sup>z</sup> ois                            |
| 0'931                | 2260 21          | 065'0                      | 1259'0                      | 445,0        | 0'236             | 968'0             | 154,0        | +99'0           | 689'0        | 1011                                        |
| 6100 <sup>4</sup> 01 | 8000             | ZEI'9                      | 166'/1                      | 6000         | E12'/1            |                   | 010          | 9/+/1           | 3100         | Soft                                        |
| 0,039                | 970'0            | 120'0                      | 110'0                       | 000'0        | /0/0              | £60'0             | 671'0        | 000'0           | 219 CP       | -0-10-10-10-10-10-10-10-10-10-10-10-10-1    |
| 950 6                | 674'24           | 622 00<br>6/0 <sup>6</sup> | 623 9                       | 090/04       | E 080             | 565 UG            | 021 004      | 610.4           | 400 9        | 5010                                        |
| 96950                | 709'0            | 2//'07                     | 9/0'0                       |              | 786'9             | C85'07            | 166'07       | 612'0           | 075'0        | Each.                                       |
| 846,6                | 7.07.'0          | 260'1                      | 0500                        | 01/01        | ++6,6             | 1000              | 576'0        | 0190            | C00'0        |                                             |
| 649'0                | 00 306           | Z+6 <sup>1</sup> 0         | 7.9+'0                      | 6+5'0        | 119'0             | 199'0             | ZI6'0        | 233 90<br>740'0 | 900.90       | 014                                         |
| 07.9'97.             | 975'67           | 9/0'00                     | 906'77                      | 1///61       | cetfoz.           | +5/'67            | 009'67       | /50'07          | 960'97       | 000                                         |
| 1910                 | 11.11            | 19,02                      | 0.004                       | 'B.II        | ,8,и<br>ОООО      | .8.15             | 11,100       | 'B't1           | 18.11        | Oin or                                      |
| 0'000                | 0000             | 5000                       | 500 0<br>570 <sup>4</sup> 0 | (10'0        | 000'0             | 121'0             | 921'0        | 600'0           | 000'0        |                                             |
| 1 28 00              | 00010            | 000'0                      | 000'0                       | 000101       | 00010             | 000'0             | 00010        | 870 00          | 000'0        | (alo]                                       |
| 100'66               | 115'041          | 102'66                     | £/\$'00T                    | 602'101      | SIZ'56            | 741496            | 700'96       | 946'66          | 664'001      | 10101                                       |
| 200'0                | 0'004            | 210'0                      | 0'00                        | 900'0        | 0'001             | 0 <sup>,015</sup> | ¥10'0        | 000'0           | 000'0        | 15                                          |
| 0'139                | 960'0            | 980'0                      | 0 <sup>1</sup> 103          | 0'10+        | 801'0             | 880,0             | 260'0        | 611,0           | 211'0        | Ш                                           |
| 85338                | 2'309            | \$22'I                     | 2'312                       | 2'500        | 614'9             | 582'î             | 289'1        | +9+'S           | 2'435        | 1                                           |
| 0'013                | 900'0            | <u>9</u> ,005              | 200'0                       | 0,000        | 800,0             | 0'033             | 0'031        | 000'0           | 600,0        | ^                                           |
| 656'8                | <del>1</del> 0'6 | 96436                      | 6'186                       | ¥26,9        | 291'6             | ÷++'6             | 2S4'6        | 690'6           | 680'6        | Cr                                          |
| 164,1                | 78C,1            | 982,6                      | 1,284                       | 012'1        | 1'505             | 645,4             | 112,4        | 1,240           | 1'524        | 4 <sup>2</sup> 34                           |
| 1'439                | 1'306            | 954'0                      | 060,6                       | 928'E        | 5'138             | 954,0             | 01410        | 920'2           | 5'234        | 8M                                          |
| ¢61'0                | <u>\$61</u> '0   | \$°234                     | 0'103                       | S70,0        | 861,0             | 0'551             | 0,230        | 6¢144           | 6,144        | пM                                          |
| 266'9                | 065'9            | 096,7                      | <u>ک</u> 96'۶               | 661'\$       | 868,8             | 866,7             | 064,7        | 5,892           | 842'S        | Fc <sup>3+</sup>                            |
| טיאי                 | . <b>п</b> .а.   | ה.מ.                       | .в.а                        | .ค.ต         | .a.n              | .я.a              | п.п.         | <b>и</b> , в, п | U'8'         | <b>2</b> 0                                  |
| 200'0                | <b>₽00,0</b>     | 0'033                      | \$00'0                      | 600,0        | 000'0             | 0'036             | 160,031      | 0'005           | 0'000        | TN                                          |
| 000'0                | 00010            | 000'0                      | 0'000                       | 0'000        | 0'000             | 0'000             | 0'000        | 0,000           | 000'0        | uZ                                          |
| 33 <sup>1</sup> 998  | 53'668           | 266'82                     | 54'000                      | 266'82       | 53'666            | 53'646            | 53'668       | 54'000          | 54'001       | [মাণ্য                                      |
|                      |                  |                            |                             |              |                   |                   |              |                 |              |                                             |
| 0'33                 | 12'0             | 0'93                       | 92'0                        | 0'30         | 12,0              | 0'93              | 69'0         | 12'0            | 0'33         | <sup>+દ</sup> ગ્1∖ <sup>+દ</sup> ગ્         |
| 95'99                | 93'22            | 71,48                      | 56,68                       | 64'33        | 93'83             | 84'10             | 69'58        | 62,40           | e3'e4        | Cr/(Cr+AJ)                                  |
| 00'81                | 10291            | 2'83                       | 68'75                       | 89'24        | 12'92             | 5,84              | 2'33         | 50'92           | 06'22        | W8/(W8+Ec3+)                                |
| 01'6                 | 87,8             | 50'63                      | £1'8                        | L9'L         | 29 <sup>°</sup> L | 58'83             | 56'60        | 98'L            | S6'L         | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +AI+Cr) |
| 1'13                 | 1'13             | 64'0                       | 26'1                        | ٤٤'١         | 06,1              | 62'0              | 87,0         | 12'1            | 06,1         | Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  |

| Échantillons                                | 97・JC-5098・E | 97-JC-5098-E | 97-JC-5098-E | 97-JC-5098-E | 97-JC-5098-E | 97-JC-5098-F | 97-JC-5098-F  | 97-JC-5098-F | 97-JC-5098-F  | 97-JC-5098-F |
|---------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|
| Point                                       | la-3         | 1a-4         | 1b-1         | 1b-2         | 1b-3         | 1-1          | 1-2           | 1+3          | 1-4           | 1-5          |
| Lithologie                                  | Chr Sil       | Chr Sil      | Chr Sil       | Chr Sil      |
| Chromite                                    | Bordure      | Cœur         | Bordure      | Cœur         | Bordure      | Bordure      | Intermédiaire | Cœur         | Intermédiaire | Bordure      |
|                                             |              |              | ·            |              |              |              |               |              |               |              |
| SiO,                                        | 0,000        | 0,000        | 0,008        | 0,027        | 0,024        | 0,025        | 0,014         | 0,061        | 0,014         | 0,012        |
| TiO <sub>2</sub>                            | 0,651        | 0,630        | 0,677        | 0,652        | 0,637        | 0,666        | 0,678         | 0,574        | 0,754         | 0,570        |
| Al <sub>2</sub> O <sub>3</sub>              | 16,851       | 17,049       | 16,610       | 16,594       | 16,577       | 16,089       | 16,500        | 16,602       | 16,558        | 16,254       |
| V,03                                        | 0,000        | 0,040        | 0,033        | 0,044        | 0,037        | n.a.         | n.a.          | n.a.         | <b>D.</b> 8.  | n.a,         |
| Cr <sub>2</sub> O <sub>3</sub>              | 42,825       | 42,061       | 41,665       | 42,133       | 42,501       | 43,126       | 42,593        | 42,490       | 42,706        | 42,892       |
| Fc <sub>2</sub> O3                          | 7,091        | 6,291        | 6,863        | 6,724        | 7,043        | 7,414        | 7,589         | 7,476        | 6,868         | 6,911        |
| MgO                                         | 3,956        | 3,375        | 3,042        | 3,242        | 3,098        | 3,536        | 3,722         | 3,693        | 3,703         | 3,597        |
| MnO                                         | 0,808        | 0,859        | 0,899        | 0,845        | 0,875        | 1,004        | 1,007         | 1,023        | 1,016         | 1,038        |
| FeO                                         | 28,609       | 28,973       | 29,371       | 29,173       | 29,677       | 28,935       | 28,738        | 28,560       | 28,671        | 28,397       |
| CoO                                         | n.a.         | n.a.         | n.a.         | n.a.         | п.а.         | n.a.         | <b>Д.</b> В.  | n.a.         | n.a.          | n.a.         |
| NiO                                         | 0,040        | 0,046        | 0,032        | 0,059        | 0,022        | 0,136        | 0,131         | 0,121        | 0,102         | 0,104        |
| ZnO                                         | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,108        | 0,000         | 0,000        | 0,000         | 0,000        |
| Total                                       | 100,831      | 99,324       | 99,200       | 99,493       | 100,491      | 101,039      | 100,972       | 100,600      | 100,392       | 99,775       |
|                                             |              |              |              |              |              |              |               |              |               | I            |
| SI                                          | 0,000        | 0,000        | 0,002        | 0,007        | 0,006        | 0,007        | 0,004         | 0,016        | 0,004         | 0,003        |
| Ti                                          | 0,131        | 0,128        | 0,139        | 0,133        | 0,129        | 0,134        | 0,136         | 0,116        | 0,152         | 0,116        |
| Al                                          | 5,291        | 5,442        | 5,332        | 5,305        | 5,258        | 5,077        | 5,193         | 5,239        | 5,236         | 5,179        |
| v                                           | 0,000        | 0,009        | 0,007        | 0,010        | 0,008        | n.a.         | n.a.          | n.a.         | n.a.          | п,а.         |
| Cr                                          | 9,022        | 9,007        | 8,973        | 9,036        | 9,043        | 9,129        | 8,992         | 8,995        | 9,059         | 9,169        |
| Fc <sup>3+</sup>                            | 1,422        | 1,282        | 1,407        | 1,372        | 1,426        | 1,494        | 1,525         | 1,506        | 1,387         | 1,406        |
| Mg                                          | 1,571        | 1,363        | 1,235        | 1,311        | 1,243        | 1,412        | 1,482         | 1,474        | 1,481         | 1,450        |
| Mn                                          | 0,182        | 0,197        | 0,207        | 0,194        | 0,199        | 0,228        | 0,228         | 0,232        | 0,231         | 0,238        |
| Fe <sup>2+</sup>                            | 6,375        | 6,563        | 6,691        | 6,618        | 6,679        | 6,479        | 6,418         | 6,395        | 6,433         | 6,421        |
| Co                                          | n.a.         | л.а.         | Π.Α.         | n.a.         | n.a.         | П.А.         | n.a.          | n.a.         | n.a.          | n.a.         |
| Ni                                          | 0,008        | 0,010        | 0,007        | 0,013        | 0,005        | 0,029        | 0,028         | 0,026        | 0,022         | 0,023        |
| Zn                                          | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,021        | 0,000         | 0,000        | 0,000         | 0,000        |
| Total                                       | 24,002       | 24,001       | 24,000       | 23,999       | 23,996       | 24,010       | 24,006        | 23,999       | 24,005        | 24,005       |
|                                             |              |              |              | 1            |              |              | 1             |              | 1             |              |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,22         | 0,20         | 0,21         | 0,21         | 0,21         | 0,23         | 0,24          | 0,24         | 0,22          | 0,22         |
| Cr/(Cr+Al)                                  | 63,03        | 62,34        | 62,73        | 63,01        | 63,23        | 64,26        | 63,39         | 63,19        | 63,37         | 63,90        |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 19,77        | 17,20        | 15,58        | 16,53        | 15,69        | 17,89        | 18,76         | 18,73        | 18,71         | 18,42        |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 9,04         | 8,15         | 8,95         | 8,73         | 9,07         | 9,52         | 9,71          | 9,57         | 8,84          | 8,92         |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 1,16         | 1,15         | 1,11         | 1,13         | 1,12         | 1,14         | 1,13          | 1,14         | 1,16          | 1,17         |
|                                             |              |              |              |              |              |              |               |              |               |              |

| 18'0            | 08,0         | 0'23             | 10'0            | £0'0               | 113                | 91'1          | 21'1          | ÷1'1          | £1'I         | Cr / (Pe <sup>*+</sup> +Pe <sup>*</sup> )   |
|-----------------|--------------|------------------|-----------------|--------------------|--------------------|---------------|---------------|---------------|--------------|---------------------------------------------|
| 58'81           | 91'61        | 69'8+            | \$6'86          | 99 <sup>4</sup> S6 | 85,9               | 64,8          | 94'6          | 91'6          | 06'6         | Fe <sup>-1</sup> /(Fe <sup>-1</sup> +Al+Cr) |
| 60'9            | <i>19</i> 'S | <i>د</i> ۲,0     | 00'0            | 00'0               | 66'21              | 94,81         | 18'81         | S0'61         | 59'81        | Mg/(Mg+Fc <sup>*</sup> )                    |
| 64,65           | £8,£ð        | 10'86            | 100'00          | 100'00             | ¢2'29              | 22,63         | 62,82         | 93'38         | 86,68        |                                             |
| 14'0            | 24,0         | 1'0 <del>4</del> | 86'1            | 16'1               | ez'd               | 02'0          | ¢2'0          | 62,0          | 6,24         | +દુ∍ન\'reુન                                 |
|                 |              |                  |                 |                    |                    |               |               |               |              |                                             |
| 260,45          | 24'043       | 54,006           | 24'001          | 100'42             | 54'005             | 53,823        | 54'000        | 24'003        | 54'003       | latoT                                       |
| 0'133           | 0'120        | 90'0             | 0'000           | 000'0              | 000'0              | 0000          | 000'0         | 000'0         | 000'0        | ۵Z                                          |
| 220'0           | 60'0         | 0'032            | 640'0           | 860,0              | 220'0              | 0'054         | 0'039         | 6,023         | ¢20,0        | 1N                                          |
| טישי            | ,В,Д         | זישי             | <b>п.</b> я,    | ,в.п               | טיפי               | มาย"          | ם.פ.          | ם,פ,          | .в.п         | <b>ග</b>                                    |
| 4+1'L           | 291'2        | 404'L            | 126'2           | 296 <sup>4</sup> 2 | 264'9              | 824,8         | 514,8         | 6,392         | 404,8        | ե <sup>c</sup> 3+                           |
| 242,0           | 0'222        | 129'0            | 620,0           | 4CO,0              | 0'331              | 122,0         | 0'554         | 0,225         | 0'535        | uW                                          |
| 694,0           | 06430        | 0,054            | 000'0           | 000'0              | 1'452              | 794,1         | 984,1         | 1,504         | 894,1        | 81                                          |
| 7,927           | 126'2        | 969'L            | 69 <b>2</b> '91 | 12'338             | 284,1              | 916'1         | 1'235         | 044,1         | 699'1        | <sup>+6</sup> ə <sup>4</sup>                |
| 741,8           | 061,8        | 896'2            | 291 <b>'</b> 0  | 169'0              | 6:036              | 940,0         | 606,8         | 016'8         | 866'8        | Cr                                          |
| <b>,</b> в.д    | п,а,         | . <b>в</b> .п    | .ต.ม            | <b>.</b> 8.11      | . <b>в</b> .п      | .н.д          | ה.פ.          | .a.л          | .в. <i>п</i> | ٨                                           |
| 454,4           | 604,4        | 291'0            | 000010          | 000'0              | 2+1+5              | 661,8         | 2'369         | 675,ð         | 861'\$       | IV                                          |
| ¢61'0           | £61 'O       | 820'0            | 610,0           | 810,0              | SS1'0              | 0'120         | SET '0        | 671'0         | 611'0        | 11                                          |
| £00,0           | 600'0        | 0'055            | 0'012           | 0'012              | 110'0              | 200'0         | 610,0         | S00'0         | 200'0        | 15                                          |
|                 |              |                  |                 |                    |                    |               |               |               |              |                                             |
| SZ0'86          | 242'86       | 666,76           | 100'148         | 100,764            | 958'66             | 192'66        | £6£'66        | 100,722       | 201'001      | [ato]                                       |
| 0'933           | SI 2'0       | 951'0            | 0,000           | 0'000              | 0'000              | 0'000         | 0'000         | 000'0         | 0'000        | Ouz                                         |
| 0'130           | 021'0        | 0'143            | 861'0           | 551'0              | 0'153              | 0'115         | 0'150         | 801'0         | 6113         | OIN                                         |
| บายา            | .в.п         | <u>טיט</u>       | .в.п            | .a.п               | .в.д               | ' <b>8</b> 'Ц | ניפי.         | ה.פ.          | ח.פ.         | 000                                         |
| 186'67          | 30'132       | 417,82<br>P17,82 | 479,05          | 061'16             | 717,82             | 38,488        | 28'302        | 58'925        | 58'456       | Oəî                                         |
| 3'328           | 2'308        | 2,186            | 780,0           | 151'0              | <del>\$</del> 96'0 | 196'0         | <i>LL</i> 6'0 | 266'O         | 910'1        | OnM                                         |
| 060'1           | 910'1        | 211'0            | 00010           | 0'000              | 3°232              | 819'6         | 189'8         | 287,5         | 3'655        | O <sub>8</sub> M                            |
| 13'920          | 106'61       | 121'EE           | 68,102          | 262'99             | 2'533              | 6,453         | £18,7         | 621'2         | 069'2        | 10 <sup>1</sup> 01                          |
| 96, 164         | 36,202       | 33'989           | 989'0           | 5,863              | 45,265             | 45'300        | 578,14        | 45'548        | 45'340       | °0230                                       |
| , <b>B</b> ,N   | .6,11        | ษษ               | ישיט            | , <b>в</b> ,д      | ,a.n               | . <b>8</b> .0 | , <b>B</b> ,Ω | <u>ה.ה.</u>   | ם, פ, נ      | ٨٥٥ م                                       |
| 13'593          | 021'61       | 244'0            | 000'0           | 000'0              | 16,127             | 669'91        | 909'91        | £60'21        | 276,372      | ¥1³O²                                       |
| 906'0           | 906'0        | 0'548            | 0'022           | 620'0              | 0'162              | 967,0         | Þ99'0         | 0'642         | 955,0        | ton                                         |
| <b>₩10'0</b>    | 160'0        | 120'0            | 240'0           | 6+0'0              | 0+0'0              | 0'032         | 640'0         | 810'0         | 970'0        | etO <sub>3</sub>                            |
|                 |              |                  |                 |                    |                    |               |               |               |              | ·····                                       |
| C00111.         | ailaine      | anpiog           | Bordure         | Cœur               | Bordure            | maibômrotul   | Cœnt          | Intermédiaire | Bordure      | Chromite                                    |
| Cincitz & chico | οιμο ψ 2ιομη | ດມ່ວ ກໍ ຊາວກໍ່ງ  | hheiz à chro    | ດາກ່ວ ສີ ຊາວກັບ    | Chr Sil            | Chr Sil       | Chr Sil       | Cpr 81        | CPt BII      | Lithologie                                  |
| +·1             | E-1          | 1-5              | q1-1            | B[1-[              | 5.5                | 5.4           | 5-3           | 5-5           | 5-1          | 1uio <sup>c</sup>                           |
| 0-8605-0C-26    | D-8602-DF-26 | D-8602-DL-76     | D-8602-01-76    | D-8602-01-76       | 97-JC-5098-F       | 97-JC-5098-F  | 9-8002-01-76  | J-8602-01-76  | 97-JC-5098-F | Échantillons                                |

| Market, Market, Market, Same, S |                 |               |                |              |              |               |                |              |               |              |                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------------|--------------|--------------|---------------|----------------|--------------|---------------|--------------|---------------------------------------------|
| x <sub>1</sub> (h <sub>0</sub> , w <sub>1</sub> , d)         y <sub>1</sub> y_1         y_1         y_1 <td>66,0</td> <td>60,03</td> <td>85,0</td> <td>68,0</td> <td>68,0</td> <td>¢2'0</td> <td>10'0</td> <td>90'0</td> <td>62,0</td> <td>18,0</td> <td>Cr / (Fe<sup>3+</sup>+Fe<sup>3</sup>)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66,0            | 60,03         | 85,0           | 68,0         | 68,0         | ¢2'0          | 10'0           | 90'0         | 62,0          | 18,0         | Cr / (Fe <sup>3+</sup> +Fe <sup>3</sup> )   |
| (%)(%)(%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (%)(%)         (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58,82           | S6'46         | 43'20          | 68'21        | 89'21        | 12'94         | <b>52,8</b> 0  | 11'16        | 40,12         | 87,81        | Pe <sup>3*</sup> /(Pe <sup>3*</sup> +A]+Cr) |
| (k-v+k)         e+k+e         b-brea         100/00         a <sup>2</sup> -30         e+k-0         a <sup>2</sup> -30         e+k-0         a <sup>2</sup> -30         (b-k-0)         (b-k-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0'02            | 00'0          | 7'35           | 02'9         | 92'5         | 06'0          | 00'0           | 00'0         | 85'0          | 66'9         | Mg/(Mg+Pc <sup>2</sup> )                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100'00          | 00'001        | 86,68          | 64,42        | 64,20        | 62'56         | 00'001         | 100'00       | 80'66         | 64'49        | Ct/(Ct+AI)                                  |
| April 1         April 2         April 2 <t< td=""><td>1'54</td><td>06'1</td><td>16'0</td><td>0'36</td><td>86,0</td><td>1,00</td><td>26'I</td><td>1'83</td><td>1'09</td><td>14'0</td><td>եշ<sup>1,</sup>/Իշ<sup>2+</sup></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1'54            | 06'1          | 16'0           | 0'36         | 86,0         | 1,00          | 26'I           | 1'83         | 1'09          | 14'0         | եշ <sup>1,</sup> /Իշ <sup>2+</sup>          |
| Rem         3'4'03         3'4'03         3'4'03         3'4'03         3'4'03         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04         3'4'04 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |               |                |              |              |               |                |              |               |              |                                             |
| 11         0,0132         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0,003         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24'001          | \$4,004       | 24'483         | 54'005       | 54'022       | 54'000        | 24'002         | 54'008       | 510'42        | 54'048       | Total                                       |
| 11         0'033         0'034         0'030         0'041         0'033         0'034         0'033         0'041         0'033           200         rer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,028           | 000'0         | 260,0          | 0'518        | 981'0        | 0'036         | 910'0          | 000'0        | 280,0         | 0'112        | uZ                                          |
| 20         με         με         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1         2:1 <th2:1< th=""> <th2:1< th=""> <th2:1< th=""></th2:1<></th2:1<></th2:1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0'034           | 140'0         | 220'0          | 0'033        | 0'034        | 0,028         | 940'0          | 0'020        | 60,034        | 720,0        | IN                                          |
| sch         3.1/32         3.2/32         3.2/40         3.2/40         3.2/40         3.2/32         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/403         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43         3.2/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ю. <b>п</b>     | .8.0          | םיפי           | ה,ם,         | .в. <b>п</b> | .а.п          | ъ.а.           | .8.0         | םיפי          | п.а.         | ഗ                                           |
| μαριβίε         μετα φτρι         μετα φτρι <th< td=""><td>St 9'2</td><td>£96'2</td><td>E6E'L</td><td>961'4</td><td>\$£1,7</td><td>804,7</td><td>656'2</td><td>6¥6'L</td><td>2'395</td><td>SE1'2</td><td>Pc<sup>3+</sup></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | St 9'2          | £96'2         | E6E'L          | 961'4        | \$£1,7       | 804,7         | 656'2          | 6¥6'L        | 2'395         | SE1'2        | Pc <sup>3+</sup>                            |
| skill         0.432         0.403         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.0000         0.000         0.000 </td <td>966'0</td> <td>660,0</td> <td>0'234</td> <td>0'228</td> <td>699'0</td> <td>0'228</td> <td>0'030</td> <td>640,0</td> <td>209'0</td> <td>955,0</td> <td>uМ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 966'0           | 660,0         | 0'234          | 0'228        | 699'0        | 0'228         | 0'030          | 640,0        | 209'0         | 955,0        | uМ                                          |
| $\epsilon_{\mu}$ $3^{\circ}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +00'0           | 000'0         | 660'0          | 164,0        | 964,0        | 290'0         | 000'0          | 000'0        | 640,0         | 9455         | 8M                                          |
| 1         6         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6'345           | 12'133        | 967,8          | 277,2        | 147,5        | 966'4         | 949,81         | LIS'4I       | CLL'L         | 5'675        | <sup>16</sup> 3 <sup>4</sup>                |
| μηροξίε         με         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ¢23¢            | <b>\$08,0</b> | 181,8          | S61'8        | 8,193        | 0+0,8         | 182'0          | 914'1        | LL6'L         | 8'154        | Cr                                          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ษษ              | .B.fT         | .а.п           | ษายา         | .в. <i>п</i> | .в.п          | <i>n</i> .a.   | ניטי         | .8.0          | ם, פ. נו     | ٨                                           |
| Image         0'132         0'020         0'011         0'013         0'028         0'134         0'180         0'210         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020         0'020 <th< td=""><td>0000'0</td><td>000'0</td><td>116'0</td><td>4,527</td><td>895,4</td><td>266,0</td><td>000'0</td><td>0,000</td><td>Þ20'0</td><td>674,4</td><td>١٧</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000'0          | 000'0         | 116'0          | 4,527        | 895,4        | 266,0         | 000'0          | 0,000        | Þ20'0         | 674,4        | ١٧                                          |
| Image: second constraint         0,000         0,011         0,011         0,012         0,000         0,001         0,000         0,001         0,001         0,012         0,013         0,014         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,014         0,013         0,013         0,014         0,011         0,013         0,013         0,014         0,013         0,014         0,013         0,013         0,014         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,013         0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 860,0           | 0'030         | 015'0          | 691'0        | ₽61'0        | 850'0         | E10'0          | 910'0        | 0'020         | S61'0        | ,I                                          |
| Open         N-1         S-1         S-2         S-3         S-3 <td>910'0</td> <td>St0,0</td> <td>¢10'0</td> <td>£00'0</td> <td>000'0</td> <td>810,0</td> <td>210'0</td> <td>110'0</td> <td>£10'0</td> <td>000'0</td> <td>IS</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 910'0           | St0,0         | ¢10'0          | £00'0        | 000'0        | 810,0         | 210'0          | 110'0        | £10'0         | 000'0        | IS                                          |
| Obin         99,197         99,197         91,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,00-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-5098-0         97,0-50         97,0-50         97,0-50 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |               |                |              |              |               |                |              |               |              |                                             |
| Line         0'830         0'991         0'000         0'000         0'123         0'141         0'131         0'133           100         0'114         0'114         0'144         0'141         0'103         0'133           100         0'116         0'123         0'200         0'188         0'112         0'144         0'131         0'133           100         0'117         0'134         0'144         0'141         0'031         0'126         3'140           100         0'112         1'131         3'131         3'131         3'131         3'140         1'104         0'134         1'1034         1'1035         1'1035         1'104         3'142         1'104         1'104         3'103         1'104         3'103         1'104         1'104         1'103         1'105         1'104         1'104         1'103         1'105         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104         1'104 <t< td=""><td><b>\$\$6'86</b></td><td>105,342</td><td><b>₽</b>59'66</td><td>996'66</td><td>664,89</td><td>\$98'86</td><td>250'101</td><td>888'66</td><td>001'86</td><td>261'86</td><td>Total</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>\$\$6'86</b> | 105,342       | <b>₽</b> 59'66 | 996'66       | 664,89       | \$98'86       | 250'101        | 888'66       | 001'86        | 261'86       | Total                                       |
| Mill         0,115         0,125 6098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05         97-05         97-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0'153           | 0'000         | 811,0          | 1'025        | 688,0        | 671,0         | 990'0          | 000'0        | t 96'0        | 028,0        | Ouz                                         |
| 2000         n.a.         n.a. <th< td=""><td>0'136</td><td>691'0</td><td>160'0</td><td>1+1'0</td><td>8+1'0</td><td>9112</td><td>881,0</td><td>002'0</td><td>0'132</td><td>911'0</td><td>01N</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0'136           | 691'0         | 160'0          | 1+1'0        | 8+1'0        | 9112          | 881,0          | 002'0        | 0'132         | 911'0        | 01N                                         |
| Nonlitional         97-JC-5098-G         97-JC-5028-JC-5028-JC-5028-G         97-JC-5028-G <t< td=""><td>,8,П</td><td>.ө.u</td><td>.<b>8</b>.n</td><td>,а,п</td><td>.в.п</td><td>,в.д</td><td>.в.п</td><td>יטיטי</td><td>,<b>A</b>.đ</td><td>.в.п</td><td>000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,8,П            | .ө.u          | . <b>8</b> .n  | ,а,п         | .в.п         | ,в.д          | .в.п           | יטיטי        | , <b>A</b> .đ | .в.п         | 000                                         |
| Mandlena         1-5         1-6         2-3208-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-5098-0         97-10-509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 242,65          | 299'16        | 76°235         | 30'354       | 480'IE       | 56'116        | 31'512         | 788,05       | 38'235        | 196'62       | Osq                                         |
| 16001         1,072         0,094.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5008.0         97.40-5098.0         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 806'1           | ¥\$1'0        | 3'062          | 2,341        | 026,5        | 3' 192        | SII'O          | 881,0        | 5'353         | 2'302        | OuM                                         |
| celon         1.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 </td <td>800,0</td> <td>000'0</td> <td>0'551</td> <td>1'052</td> <td>1'035</td> <td>241,0</td> <td>000'0</td> <td>000'0</td> <td><b>\$60'0</b></td> <td>۲,072</td> <td>OgM</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 800,0           | 000'0         | 0'551          | 1'052        | 1'035        | 241,0         | 000'0          | 000'0        | <b>\$60'0</b> | ۲,072        | OgM                                         |
| 37.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       50.98.0       97.0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204,04          | 968,83        | 59,904         | 13'035       | 12,846       | 32,305        | L61'89         | 169'29       | 084'66        | 165'81       | fc <sub>2</sub> O <sub>3</sub>              |
| 201         1.5         1.5         1.5         1.5         2.10         2.5096.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098.0         97.40-5098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36,898          | 186,6         | 34'220         | 968,96       | 36,545       | 33'453        | P31,1          | 818'S        | 35'699        | 280'96       | \$0 <sup>1</sup> 0 <sup>3</sup>             |
| μ0         1.5         1.6         2.10         2.00         0,000         1,107         13,668         13,651         2,581         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .в. <b>п</b>    | הית.          | ,8,0           | ה.פ.         | ,в.a         | טיפי          | ה.ה.           | n.a.         | .в.п          | .e.n         | 100                                         |
| (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0) <td>000'0</td> <td>000'0</td> <td>185'2</td> <td>13'621</td> <td>899'61</td> <td>201'1</td> <td>0000'0</td> <td>000'0</td> <td>502'0</td> <td>13'328</td> <td>°04v</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000'0           | 000'0         | 185'2          | 13'621       | 899'61       | 201'1         | 0000'0         | 000'0        | 502'0         | 13'328       | °04v                                        |
| (0)         0,001         0,025         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0,036         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 991'0           | <b>780,0</b>  | 0'532          | 268,0        | 116'0        | 0,254         | 0'022          | 890'0        | 912'0         | 616'0        | 20)J                                        |
| Chantillons         97-JC-5098-G         97-JC-5098-G </td <td>190'0</td> <td>0'048</td> <td>840,0</td> <td>010'0</td> <td>000'0</td> <td>090'0</td> <td><b>4</b>\$0'0</td> <td>90'030</td> <td>0'022</td> <td>100'0</td> <td><sup>c</sup>ois</td>                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190'0           | 0'048         | 840,0          | 010'0        | 000'0        | 090'0         | <b>4</b> \$0'0 | 90'030       | 0'022         | 100'0        | <sup>c</sup> ois                            |
| Intentifiende         N-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0         97-05-5098-0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |               |                |              |              |               |                |              |               |              |                                             |
| intologic         Lets & chro         Lets & chro         Lets & chro         Lets & chro         S-3         S-4         S-6         S-10-2008-0           intologic         1-2         1-6         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0         3-10-2008-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bordure         | anprog        | ារសង់ហាទរពរ    | Cœur         | Cœur         | Intermédiaire | ampiog         | Cœur         | anpiog        | əninibəmətni | Chromite                                    |
| optic         1-2         1-0         2-14         5-1         5-3         5-3         5-4         5-2         5-0         2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | αιάο Α εισάλ    | οιής à stied  | τρειχ & εμτο   | οιής Α επόλ  | οιής à chio  | οιής à επόλ   | οιτο & ziord   | οιάς à ετράλ | Γμετε & chro  | ondo à zrodd | Lithologic                                  |
| chantllons 97-UC-5098-G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1·E             | 5-6           | 5.2            | 5-4          | 5-3          | 5-3           | 5-1P           | 2-Ja         | 9-1           | 1+2          | taio                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D-8602-01-76    | 0-8002-01-76  | D-8602-Dr-26   | 97-JC-5098-G | 97-JC-5098-C | 97-JC-5098-G  | 9-8602-26-76   | 97-JC-5098-Q | D-8602-DL-76  | 97-JC-5098-G | anollinado3                                 |

| 5,20                 | 5'10                | 3'48                 | 5'31                 | 56,25                | 5'85               | es'o            | 18'0           | 19'0         | 9'29             | Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  |
|----------------------|---------------------|----------------------|----------------------|----------------------|--------------------|-----------------|----------------|--------------|------------------|---------------------------------------------|
| 2'23                 | 9`53                | 92'\$                | 66'\$                | 96' <del>4</del>     | 06,1               | 08,81           | 01,81          | 62,81        | 43'23            | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +AI+Cf) |
| 82'99                | 46,54               | 4C,0à                | 29'23                | 28'23                | 04,84              | 24'0            | 29'5           | 86,38        | 1'36             | M8/(M8+Fc <sup>3+</sup> )                   |
| 62'89                | 23'82               | 54,43                | 62'59                | 64,05                | 67,87              | 96'86           | 19'69          | 89'69        | 81,00            | Cr/(Cr+AJ)                                  |
| 0'32                 | 0'53                | 0,24                 | 0'54                 | 0'34                 | 50'0               | 1'02            | 66'0           | 04'0         | 66'0             | եշ <sup>3</sup> •/Բշ <sup>3+</sup>          |
| 666'57               | 54'000              | 566'52               | 866'67               | S66'EZ               | 566'82             | £10'62          | 560'52         | 990'62       | 910,42           | mnoi                                        |
| 0'050                | 0'034               | gt0'0                | 0'050                | 0'016                | 0'054              | 650'0           | 061'0          | 502'0        | 890'0            | u7.                                         |
| 0'032                | 610'0               | 0'054                | 0'038                | 810'0                | 110'0              | 0'033           | 90'0           | 0,028        | 160,0            | IN                                          |
| . <b>в.</b> а        | . <b>н</b> .п       | יטיטי                | .a.α                 | ה.מ.                 | .в.a               | ם.מ.            | .n.a.          | טיפי         | <b>.</b> B.fT    | න<br>                                       |
| 254'E                | 4'530               | 3'128                | 3'332                | 90E'E                | 270,F              | 265'1           | 2'133          | 4CI'L        | 866'L            | ل <sup>و</sup> ي.                           |
| ¢20'0                | ¢70,0               | <b>290'0</b>         | <del>\$</del> 90'0   | 490'0                | S60'0              | 685'0           | 995'0          | 0,548        | 619'0            | пM                                          |
| 664'4                | £89'E               | 4,804                | 162,6                | £99'£                | 3'830              | SE0'0           | 124,0          | 90+'0        | 260'0            | 8M                                          |
| £78,0                | 686'0               | 627,0                | 887,0                | +8L'0                | 202'0              | 367,735         | 2,808          | 5'840        | £68'9            | Pc <sup>3+</sup>                            |
| 6'256                | £56'01              | 202'6                | € <sup>204</sup>     | 6'929                | 12,064             | 8'030           | £80,8          | 511,8        | <b>7</b> 80,8    | Ct                                          |
| £₽0'0                | 150'0               | 240'0                | 010'0                | 0'036                | 0'033              | .a.a            | n.a.           | 'B''t        | .8.0             | ٨                                           |
| 2'410                | 9C6'C               | \$'324               | 212'5                | 5,402                | 699'E              | 0'084           | 4'932          | 979'4        | 878,0            | ۲V                                          |
| 0'026                | 0'034               | 190'0                | ¢90'0                | ¢90'0                | 110'0              | 5+0'0           | 0'183          | 6+1'0        | 8+0'0            | ļ.                                          |
| £10'0                | 0'002               | 600'0                | 0'013                | 0'01 <del>3</del>    | ₽00,0              | L10'0           | 200'0          | 200'0        | 210'0            | IS                                          |
|                      |                     |                      |                      |                      |                    |                 |                |              |                  |                                             |
| 148 <sup>1</sup> 881 | 895 <sup>1</sup> 86 | ici <sup>l</sup> ioi | 622 <sup>1</sup> 001 | 264 <sup>1</sup> 001 | 4Z9'66             | 2 <b>1</b> 9'66 | L19'66         | 025'66       | S09'86           | Total                                       |
| 601'0                | 921'0               | 180'0                | 601'0                | <u>\$01'0</u>        | 9°152              | 0'539           | 0'850          | 986'0        | 0'305            | Ouz                                         |
| 0'154                | 060'0               | 811,0                | 0+140                | 0'035                | 190'0              | 4°EI '0         | 891'0          | 0'153        | 0'158            | OIN                                         |
| .B.A                 | л.а.                | טישי                 | .в.п                 | .a.n                 | n,a,               | י <b>פ</b> יע.  | טי <b>פ</b> י. | ,B,A         | ,B,R             | 000                                         |
| 16,406               | 241'61              | 990'91               | 12'439               | 62,81                | 644,81             | 011'62          | 30'456         | 30,338       | 56'556           | PeO                                         |
| 246,0                | 0'333               | SIC'O                | 0'303                | 0'303                | 0,425              | 5'586           | 5,386          | 5'301        | 5'032            | Oum                                         |
| 966'11               | 6'324               | 15'828               | 15'250               | 15'400               | 802'6              | 220°0           | 120'1          | 896'0        | 0'316            | OBM                                         |
| 119'4                | 826'4               | 166'E                | 781,6                | 4'162                | 1'043              | SSB'EE          | 13,320         | 124,61       | 30'366           | .c <sub>0</sub> 0,                          |
| 016'24               | 25'442              | 780,84               | 080,81               | 549'84               | £18'£S             | 33'425          | 364,90         | 06+'90       | 017,65           | Cr <sub>1</sub> O <sub>3</sub>              |
| 0'332                | 0'541               | 0'533                | 661'0                | 091'0                | 191'0              | '8'U            | <b>'0'U</b>    | טיפי         | .a.n             | ٥٥٤٨ ٨، ٥٥                                  |
| 842,81               | 15'920              | 18,125               | \$07,81              | PIC,81               | 492'11             | 0'534           | 900'+1         | 096'61       | 194'2            | ¢0'lA                                       |
| 616,0                | 611'0               | 0,324                | 0'345                | 855,0                | <b>\$</b> 20'0     | 861'0           | £98,0          | 202'0        | 0'511            | LiO <sub>2</sub>                            |
| 0'023                | 610'0               | 860,0                | 0*020                | 240'0                | 0 <sup>,</sup> 014 | 250'0           | 220'0          | 0'039        | 250,0            | <sup>c</sup> OIS                            |
|                      |                     | ļ                    |                      |                      | ļ                  |                 |                |              |                  |                                             |
| Cœnt                 | Bordure             | Turad                | Cœur                 | Cœur                 | Bordure            | Bordure         | Cœur           | Cœur         | วามหุ่มว่ามาวามไ | chromite Shore                              |
| CPt                  | υų                  | CPt                  | CPt                  | Срт                  | CPt                | οιής ή είμο     | οτίο à ετοίλ   | οιης & είτο  | οιάς à επο       | Lithologic                                  |
| q <del>6</del>       | 84                  | 3                    | 2                    | qt                   | 9 <u>1</u>         | S-E             | 3-4            | 3-3          | 3-2              | point                                       |
| V-Etts-Or-26         | A-6112-0L-70        | V-6112-00-76         | V-0119-00-26         | 4-5113-00-76         | 97-JC-5113-A       | 97-JC-5098-G    | D-8602-01-76   | 97-JC-5098-G | 97-JC-5098-G     | Schantillons                                |

.

| Échantillons                                | 97-JC-5113-A | 97-JC-5113-A | 97-JC-5113-B | 97-JC-5113-B | 97-JC-5113-B  | 97-JC-5113-B | 97-JC-5113-B | 97-JC-5113-B | 97-JC-5113-B | 97-JC-5113-B |
|---------------------------------------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|
| Point                                       | 5a           | 5b           | 16           | 2a           | 2b            | За           | 3b           | 4b           | 5b           | ба           |
| Lithologic                                  | Chr          | Chr          | Chr Sil      | Chr Sil      | Chr Sil       | Chr Sil      | Chr Sil      | Chr Sil      | Chr Sil      | Chr Sil      |
| Chromite                                    | Bordure      | Cœur         | Cœur         | Bordure      | Cœur          | Bordure      | Cœur         | Cœur         | Cœur         | Bordure      |
|                                             |              |              |              |              |               |              |              |              |              |              |
| SiO <sub>2</sub>                            | 0,032        | 0,025        | 0,066        | 0,009        | 0,045         | 0,048        | 0,025        | 0,049        | 0,036        | 0,057        |
| TiO <sub>2</sub>                            | 0,119        | 0,353        | 0,319        | 0,338        | 0,287         | 0,341        | 0,322        | 0,338        | 0,284        | 0,295        |
| Al <sub>2</sub> O3                          | 13,967       | 18,108       | 17,850       | 4,223        | 17,348        | 3,886        | 16,998       | 17,214       | 17,307       | 4,817        |
| V2O3                                        | 0,201        | 0,134        | 0,050        | 0,162        | 0,173         | 0,166        | 0,146        | 0,233        | 0,211        | 0,159        |
| Cr <sub>2</sub> O <sub>3</sub>              | 54,573       | 48,193       | 47,946       | 41,370       | 46,535        | 41,155       | 45,229       | 46,367       | 46,154       | 41,403       |
| Fe <sub>2</sub> O <sub>3</sub>              | 1,950        | 3,791        | 4,135        | 20,960       | 4,217         | 21,456       | 4,675        | 3,615        | 4,069        | 20,511       |
| MgO                                         | 10,240       | 11,679       | 11,029       | 1,454        | 7,242         | 1,411        | 5,104        | 5,955        | 6,571        | 1,514        |
| MnO                                         | 0,385        | 0,359        | 0,232        | 0,614        | 0,535         | 0,728        | 0,476        | 0,505        | 0,439        | 0,654        |
| FcO                                         | 18,085       | 16,698       | 17,779       | 29,356       | 23,185        | 29,206       | 26,459       | 25,155       | 24,195       | 29,362       |
| CoO                                         | n,a,         | n.a.         | n.a.         | n.a.         | Ω, <b>8</b> , | Ω.a.         | ្នា.ឧ.       | <b>Д.</b> А. | n.a.         | n.a.         |
| NiO                                         | 0,045        | 0,160        | 0,070        | 0,178        | 0,060         | 0,129        | 0,027        | 0,035        | 0,058        | 0,159        |
| ZnO                                         | 0,090        | 0,168        | 0,051        | 0,108        | 0,148         | 0,104        | 0,222        | 0,241        | 0,106        | 0,127        |
| Total                                       | 99,693       | 99,676       | 99,535       | 98,781       | 99,775        | 98,639       | 99,702       | 99,712       | 99,443       | 99,071       |
|                                             |              |              |              | [            |               |              |              |              |              | L            |
| Si                                          | 0,008        | 0,006        | 0,017        | 0,003        | 0,012         | 0,014        | 0,007        | 0,013        | 0,009        | 0,017        |
| Ti                                          | 0,023        | 0,067        | 0,061        | 0,075        | 0,057         | 0,076        | 0,064        | 0,067        | 0,056        | 0,065        |
| Al                                          | 4,285        | 5,414        | 5,370        | 1,469        | 5,357         | 1,356        | 5,341        | 5,368        | 5,385        | 1,665        |
| v                                           | 0,042        | 0,027        | 0,010        | 0,038        | 0,036         | 0,039        | 0,031        | 0,049        | 0,045        | 0,037        |
| Cr                                          | 11,232       | 9,667        | 9,676        | 9,658        | 9,639         | 9,638        | 9,534        | 9,700        | 9,633        | 9,600        |
| Fc <sup>3+</sup>                            | 0,382        | 0,724        | 0,794        | 4,657        | 0,831         | 4,782        | 0,938        | 0,720        | 0,808        | 4,526        |
| Mg                                          | 3,974        | 4,417        | 4,197        | 0,640        | 2,828         | 0,623        | 2,029        | 2,349        | 2,586        | 0,662        |
| Mn                                          | 0,085        | 0,077        | 0,050        | 0,153        | 0,119         | 0,183        | 0,108        | 0,113        | 0,098        | 0,163        |
| Fe <sup>2+</sup>                            | 3,937        | 3,543        | 3,795        | 7,249        | 5,080         | 7,234        | 5,900        | 5,566        | 5,342        | 7,201        |
| Co                                          | n.a.         | n.a.         | ц.а.         | n.a.         | n.a.          | n.a.         | n.a,         | П.А.         | n.a.         | n.a.         |
| NI                                          | 0,009        | 0,033        | 0,014        | 0,042        | 0,013         | 0,031        | 0,006        | 0,007        | 0,012        | 0,038        |
| Zn                                          | 0,017        | 0,031        | 0,010        | 0,024        | 0,029         | 0,023        | 0,044        | 0,047        | 0,021        | 0,027        |
| Total                                       | 23,994       | 24,006       | 23,994       | 24,008       | 24,001        | 23,999       | 24,002       | 23,999       | 23,995       | 24,001       |
|                                             |              |              |              |              | <u> </u>      |              |              |              |              |              |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,10         | 0,20         | 0,21         | 0,64         | 0,16          | 0,66         | 0,16         | 0,13         | 0,15         | 0,63         |
| Cr/(Cr+Al)                                  | 72,39        | 64,10        | 64,31        | 86,80        | 64,28         | 87,67        | 64,09        | 64,37        | 64,14        | 85,22        |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 50,23        | 55,49        | 52,52        | 8,11         | 35,76         | 7,93         | 25,59        | 29,68        | 32,62        | 8,42         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 2,40         | 4,58         | 5,01         | 29,50        | 5,25          | 30,31        | 5,93         | 4,56         | 5,11         | 28,66        |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 2,60         | 2,27         | 2,11         | 0,81         | 1,63          | 0,80         | 1,39         | 1,54         | 1,57         | 0,82         |

| 3'19               | 22'1           | 5'31                | 5'45               | 02'1           | 5'05               | 75't          | S2'0               | 2,09               | 66'I          | Cr / (Fe <sup>3+</sup> Fe <sup>3+</sup> )                |
|--------------------|----------------|---------------------|--------------------|----------------|--------------------|---------------|--------------------|--------------------|---------------|----------------------------------------------------------|
| 4'41               | 90'6           | 4,14                | 3'05               | 15'6           | 2'30               | 96,4          | 33'21              | 66'\$              | LL'\$         | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+C <sub>1</sub> ) |
| 64'64              | 05'56          | 16'55               | 80,81              | 26'ee          | 86,08              | <b>30'30</b>  | 86'9               | 58,12              | 52'24         | Mg/(Mg+Pe <sup>1</sup> )                                 |
| 86,67              | 80,92          | 54'49               | 29'12              | 99'08          | E1' <del>6</del> 9 | 84,60         | SE,09              | 91'49              | <b>₽</b> 6,6∂ | Cr/(Cr+Al)                                               |
| 91'0               | 82,0           | 81'0                | 21'0               | 92'0           | 12'0               | £1,0          | 27,0               | 0'31               | 61'0          | եշ <sup>3+</sup> /Բշ <sup>3+</sup>                       |
| 54'001             | 54'004         | 34'000              | 53'005             | 400'47.        | 24'008             | 53'688        | 166'67             | 766'EZ             | 566'62        | latoT                                                    |
| 670'0              | 220'0          | 0'015               | 810'0              | 2E0'0          | 160'0              | VV0'0         | 010'0              | 810'0              | 940'0         | uz                                                       |
| 610'0              | 0'033          | 160,0               | 900'0              | E+0'0          | 910'0              | 000'0         | 0'043              | 800'0              | +00'0         | ŦN                                                       |
| n.a.               | ת, מ,          | ם.פ.ח               | 'B'U               | .а.п           | ายาน               | <u></u>       | ъ.а.               | .8.0               | 0.8.          | ං<br>ා                                                   |
| 824,4              | \$'104         | 3'226               | 260'V              | 6,244          | 3,932              | 2'235         | 576'2              | 3,828              | 988'S         | +c <sub>2</sub> 4                                        |
| 011'0              | 661'0          | 080,0               | 6,104              | <b>₽</b> \$1'0 | ÷11'0              | S11'0         | 6,144              | +80,0              | 6110          | aM                                                       |
| 164'8              | 2,809          | 504'Þ               | ¥62'E              | 869'2          | 3'665              | 816,2         | 159'0              | 4'133              | 5'016         | 8M                                                       |
| 004'0              | 1'439          | \$ <del>5</del> 9'0 | OBP,0              | 281·'1         | 0+8,0              | 902'0         | 2,285              | 682'0              | 994'0         | եշ <sub>3</sub> ,                                        |
| SE1'11             | L85'11         | 287,0               | 990'11             | 11'413         | L19'6              | 065,9         | \$2\$ <b>'</b> 6   | 249'6              | 865'6         | Cr                                                       |
| 0'043              | 6+0'0          | 940,0               | 820,0              | 640 <u>,</u> 0 | 0'033              | 240'0         | 810,0              | 0'056              | 0'043         | ٨                                                        |
| 040'4              | 2,732          | 646,8               | еле, р             | 7.57,2         | 926,8              | 915'5         | 210'1              | 066,8              | 2'250         | IA                                                       |
| 160,0              | 060'0          | 920'0               | 810,0              | 661,0          | 190'0              | 650'0         | LL0'0              | 090'0              | 650'0         | IJ                                                       |
| 900'0              | 800,0          | 900'0               | 600'0              | ¢10'0          | <b>+00,0</b>       | 110'0         | 0'033              | L10'0              | 110'0         | 15                                                       |
|                    |                |                     |                    |                |                    |               |                    |                    |               |                                                          |
| 100,492            | 128'66         | 100'022             | 266'66             | 80+,001        | 227,00             | £S1'66        | 66'333             | 186,99             | 66'143        | [ota]                                                    |
| 861,0              | 6,134          | 990'0               | <b>260'0</b>       | 091'0          | S91'0              | 0'555         | 240,0              | 960'0              | 0'533         | Ouz                                                      |
| 060'0              | 0'121          | 0' 123              | 0:030              | 861'0          | <i>LL</i> O'0      | 000'0         | 181'0              | 0+0'0              | 210'0         | OIN                                                      |
| .B.(I              | 'B'U           | ם, ם,               | .a.a               | .ถ.ถ           | ព.ន.               | , <b>п</b> ,П | ,a.n               | ,6,D               | D.A.          | 000                                                      |
| 30'316             | 55'332         | 16,837              | 168,81             | 53'053         | 996,81             | 521122        | 29'62              | 288,71             | 26,337        | 02                                                       |
| 264,0              | 109'0          | 0'315               | \$ <b>7</b> \$,0   | 699'0          | 0'239              | 613,0         | S2S'0              | <b>785,0</b>       | 0'259         | O¤W                                                      |
| 277,8              | 968'9          | 169'11              | 182'6              | 949,ð          | 094,01             | 2'823         | 642'I              | 10,802             | 690'\$        | 08M                                                      |
| 242'C              | ₽£9,9          | 3'441               | 5'425              | 1'529          | 096,1              | 9,534         | 23212              | 660'\$             | 3'754         | ro <sub>t</sub> o3                                       |
| 229'85             | 0+9'89         | 562 <b>,</b> 84     | 162'89             | 25'003         | 41,512             | 029'54        | <del>6</del> 96,06 | 278,74             | 041,24        | Cr3O3                                                    |
| 0'303              | 0'553          | 0'558               | 0'139              | 102'0          | 011'0              | 0'555         | £70,0              | 14140              | 0'182         | ۲ <sup>3</sup> 0°                                        |
| 13'062             | 484,8          | 920'81              | 14,260             | 8'236          | 228,71             | 12'622        | ۲06'۲              | 298'ZI             | 11'234        | VI <sup>3</sup> O <sup>2</sup>                           |
| 851'0              | 964,0          | 866,0               | 660'0              | 189'0          | 0'312              | 262'0         | 24°C,0             | 0'313              | 0'562         | <sup>z</sup> ON                                          |
| 0'054              | 0'038          | 0'055               | 0 <b>034</b>       | 0'025          | ¢10'0              | 0'045         | 601'0              | <del>\$</del> 90'0 | 140'0         | <sup>2</sup> OIS                                         |
|                    |                |                     |                    |                |                    | l             | l                  |                    |               | <b> </b>                                                 |
| me                 | mutriog        | Contr               | and mo             | Bordum         | Coent              | minibômiain)  | ampiog             | Coent              | mermediaire   | otimord5                                                 |
|                    | GP*            |                     | -40                | CPr CPr        | Chr Sil            | Chr Sil       | CPt 2ij            | CPr SII            | Cpt 20        |                                                          |
| 40<br>V:h110:00:16 |                | V.6110.00.76        | 41<br>V.6110:00:76 | Vill Coords    |                    | 44            | #L                 |                    | 49            | tuiod                                                    |
| 1-9119-01-26       | 1 4-6112-21-70 | V-9119-01-20        | V-0113-01-20       | V-0115-01-26   | 8-6115-01-26       | 8-6113-01-20  | 8.5112-01-26       | 8-21-13-21-26      | 8-6113-01-26  | enollitus(b3                                             |

| 0'03           | 0'55          | £7,0          | 0'04                                  | 5'19               | 5'58             | 5'35           | 5'53               | 5'36          | 5'13          | Ct / (be <sub>3+</sub> +be <sub>3+</sub> )  |
|----------------|---------------|---------------|---------------------------------------|--------------------|------------------|----------------|--------------------|---------------|---------------|---------------------------------------------|
| 09'14          | 21'62         | 34'02         | 28'45                                 | 65,4               | 60' <del>1</del> | 20'8           | 91'+               | 2,88          | 96,6          | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +A)+Ct) |
| 5'44           | 0'35          | 06'E          | 91'0                                  | 40,14              | 22'89            | 18'14          | 60'85              | 24'44         | £9'1S         | Mg/(Mg+Pe <sup>2</sup> )                    |
| 89'\$6         | ¥8'66         | 89'50         | 100'00                                | SL'LL              | \$6'59           | 98'92          | 29,43              | S6'\$2        | £0,\$2        | Cr/(Cr+VI)                                  |
| <b>28'0</b>    | 9 <b>\</b> 't | 0 <b>'</b> 13 | 06'1                                  | S1'0               | 91'0             | 11'0           | 81,0               | 01'0          | 81'0          | թշ <sub>3*</sub> /թշ <sub>3</sub> ,         |
| 34'038         | 510'42        | 54'030        | 53'662                                | 33'000             | 54,005           | 54'000         | 500'12             | \$66'EZ       | 24,002        | IRIO)                                       |
| 111'0          | 0'043         | 0'138         | 000'0                                 | 810'0              | <u>۲۲0'0</u>     | 0'034          | 6,033              | 610'0         | £10'0         | uz                                          |
| 90'0           | 0'028         | 160'0         | 820'0                                 | 0'030              | 0'034            | 610'0          | 970'0              | 600'0         | 0'034         | 1N                                          |
| <u>ה.</u> א.   | ה.ת.          | . <b>в</b> .п | , <b>в</b> .п                         | .в.п               | .в.п             | л.а.           | . <b>в</b> .а      | ה.a.          | ,B.G          | 90<br>90                                    |
| 165'2          | 458'L         | 644,7         | 946'2                                 | 4'120              | 699'E            | 665'7          | 97 <i>L</i> 'E     | 16E'\$        | 3,648         | Fe <sup>44</sup>                            |
| 0'354          | 860'0         | 0'558         | 600'0                                 | 611'0              | 111'0            | 860'0          | <b>₽</b> 60'0      | <b>\$60'0</b> | S80'0         | υW                                          |
| 061'0          | 0'032         | 0'305         | E10'0                                 | 3,165              | 4'598            | 3'302          | 712,4              | 915'8         | 4'108         | 8 <sup>M</sup>                              |
| SLS'9          | \$19'11       | S8C'S         | 060'91                                | 827,0              | 51-9'0           | 984,0          | 29'0               | 254,0         | £02'0         | Pe <sup>34</sup>                            |
| 8'833          | 4'501         | <b>ð'30</b> 5 | 0'832                                 | 944'11             | 6'833            | 118'11         | <del>\$</del> 82'6 | 025'11        | 9\$9'6        | Cr                                          |
| 0'015          | 0'032         | 220'0         | 0'054                                 | 0+0,0              | 660,0            | GP0,045        | 0'04T              | 0,042         | 240,0         | ٨                                           |
| 66£'0          | 200'0         | 1'139         | 000'0                                 | 026'6              | 206,8            | 3'226          | 2'346              | 3,866         | 5,419         | ſv                                          |
| t 50'0         | 210'0         | 0'033         | 0'002                                 | 0 <sup>0</sup> 034 | 620'0            | 250'0          | 120'0              | 220'0         | 920'0         | N.                                          |
| 200'0          | 0'015         | 0'012         | S20,0                                 | 010'0              | 400'0            | 010'0          | 200'0              | 010'0         | ¢10'0         | 15                                          |
|                |               |               |                                       |                    |                  |                |                    |               |               |                                             |
| 514'66         | 999'66        | 112'66        | 870,69                                | 66+'001            | 101'033          | 267,001        | 100'843            | L6L'00I       | LS8'66        | lato]                                       |
| 66 <b>1</b> ,0 | 061'0         | 679'0         | 100'0                                 | 680'0              | 941,0            | 2/110          | 921'0              | 290'0         | 880,0         | Ouz                                         |
| 8+1,0          | 0'336         | 0'156         | 062,0                                 | <b>₽60,0</b>       | 811'0            | <b>780,0</b>   | 161,0              | 140,0         | 891'0         | OIN                                         |
| ח.מ.           | .B.A          | .8. <b>N</b>  | '0'U                                  | .B.U               | D, A.            | .a.a.          | '8'U               | 0.8.          | , <b>в</b> ,п | 000                                         |
| \$20'00        | 30'02         | 610,05        | 609'08                                | 21'180             | 224521           | 508,05         | 669'21             | 20,072        | 690,81        | O°4                                         |
| 828'0          | 946'0         | 806'0         | SEO'O                                 | 522,0              | 0'231            | 964'0          | 664,0              | 0,423         | 0'365         | Ouw                                         |
| 6,423          | 950'0         | 689'0         | 220'0                                 | 896'2              | 886,11           | 696,8          | 11'532             | 910'6         | 10'850        | OgM                                         |
| 58'820         | 436,03        | 54'131        | 009'+9                                | 3,628              | 601/E            | 5442           | 294'E              | 5'355         | 299'E         | 5°'0'                                       |
| 32,012         | 11'285        | 629'66        | 3'362                                 | £88,22             | 854'64           | 222,92         | 49,152             | 22'040        | 226,74        | Cr3O3                                       |
| 0'020          | ÷01'0         | ÷11'0         | 960'0                                 | 981'0              | £61'0            | 0'510          | 402'0              | 0,200         | 0'504         | V205                                        |
| 1'153          | 0'050         | 2'555         | 000'0                                 | 10'128             | 606'21           | 914'11         | 18'036             | 13'238        | 190'81        | <sup>s</sup> O <sup>z</sup> tv              |
| 0'552          | \$20'0        | 0'120         | 0'053                                 | 0/1'0              | 5140             | 0'188          | \$2E'0             | 651,0         | 966'0         | <sup>¢</sup> ON                             |
| 0'033          | BEO,0         | 0'020         | 280'O                                 | 0'039              | 610,0            | 0'039          | 0'038              | 0'036         | 0'024         | 2101                                        |
| ammamumu       | ampiori       | timerro       | ampiori                               | .tm.mo             | 111 770          | amanamiani     |                    | 20000200000   |               | 71100000                                    |
|                | na            | na            | L L L L L L L L L L L L L L L L L L L |                    |                  | -niolbtarretul | Cont.              | - 10.7        |               | ationnin                                    |
| 07             | WZ.           |               |                                       |                    | 240              | <br>           |                    | 00            | 27.           | 1000                                        |
| AL-0C-9114-B   |               | A1-90-9114-18 | 8-6110-00-1A                          | V-bite-or-JA       | V-6110-00-16     | V-b110-00-26   | V-6110-00-/6       | V-HILD-DD-JA  | W-LITE-DE-JE  | Bilountuma                                  |
| 0 11 301 20    |               |               |                                       | 7 711301 20        |                  | VIII 20 20     | V VII 3-01-20      | V VII 9-01-20 | 1             |                                             |

| 69'0             | 91'0                | 10'1           | 69'0               | 0'02          | 0'35           | 20'0           | St'0         | 10'0             | 80't         | Ct / (Ec <sub>3+</sub> +Ec <sub>3+</sub> )  |
|------------------|---------------------|----------------|--------------------|---------------|----------------|----------------|--------------|------------------|--------------|---------------------------------------------|
| 41'03            | 26,92               | 11'13          | 41'38              | <b>33'3</b> 9 | 89'69          | 90 <b>`</b> 32 | 18,63        | 96,46            | 66'8         | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) |
| 50'0             | 0'51                | 16,7           | 5'12               | 60'0          | £8,0           | GI'0           | 1'95         | S1'0             | 11'50        | ( <sup>16</sup> 2 <sup>3+</sup> 8M)/8M      |
| 62'80            | \$B <sup>1</sup> 66 | 21'29          | 00'26              | 27,99         | <i>LL</i> '66  | 19'66          | 92'66        | 99'66            | S4,43        | Cr/(Cr+AJ)                                  |
| <del>1</del> 8,0 | 1'20                | 0'32           | 28,0               | 98'1          | 06'1           | 18'1           | 1,12         | 69'1             | 0'50         | Fc <sup>3+</sup> /Fc <sup>3+</sup>          |
| 24'004           | 866'62              | 54'054         | 34'000             | 54'004        | 34'012         | 54'008         | 54'036       | 54'015           | 24'022       | letoT                                       |
| 0'020            | £00'0               | 0+140          | 620'0              | 910'0         | 0'02ð          | £00,0          | 160'0        | S00'0            | 292'0        | uz                                          |
| \$00°0           | 0'030               | Z10'0          | £00,0              | 0'038         | ¢¢0'0          | 990'0          | 140'0        | 020'0            | 0'030        | IN                                          |
| n.a.             | ה.a.                | ה.a.           | יטיטי              | .в.п          | י <b>פ</b> יט. | םיאי           | ายเก         | .в.п             | .в.п         | <u>ත</u>                                    |
| 202'2            | 266'T               | ۷'350          | 589'4              | 286'2         | 6+2'2          | <b>₽96'</b> L  | 959'4        | 896' <i>L</i>    | 026'9        | Ŀ°,,                                        |
| 191'0            | 0'020               | ¢\$1'0         | 651'0              | 100'0         | 191'0          | \$00'0         | £61'0        | 000'0            | 0'500        | uW                                          |
| 191'0            | 210'0               | 22S'0          | 691'0              | 200'0         | 990'0          | 0'015          | 971'0        | 0'015            | 628'0        | 8M                                          |
| 664'9            | 15'241              | 1,833          | 9'220              | 778,41        | 011'01         | 14'305         | 0+2,8        | 0\$0'\$1         | 686'1        | Fe <sup>3+</sup>                            |
| 196'8            | 3'361               | 122'6          | 200'6              | 270,1         | \$24'S         | 1'235          | 41E'Z        | 088,0            | £90'6        | Cr                                          |
| St0'0            | 010'0               | 0'020          | L10 <sup>6</sup> 0 | 000'0         | 920'0          | 000'0          | 0'033        | £10'0            | 280,0        | ٨                                           |
| 0'335            | S00,0               | 4'243          | 8/Z'O              | £00'0         | 610,0          | 900'0          | 910'0        | £00'0            | 000'S        | IV                                          |
| 0'023            | 910'0               | 6,114          | 640'0              | 200'0         | 810'0          | 600'0          | 020,0        | 900'0            | 0'105        | LL IL                                       |
| 110'0            | £10'0               | 110'0          | 810'0              | 110'0         | 910'0          | 910'0          | <u>900'0</u> | S00'0            | 010'0        | IS                                          |
|                  |                     |                |                    |               |                |                |              |                  |              |                                             |
| 182,001          | 016'66              | 610'66         | 905'66             | 66'325        | <b>06,030</b>  | <b>287,8</b> 0 | 866,86       | 658'86           | 660'001      | lato'i                                      |
| 0'322            | 0'015               | <i>44</i> 9'0  | \$\$\$'0           | 120'0         | 0,258          | 910'0          | 204,0        | \$20'0           | E6E'I        | OuZ                                         |
| 910'0            | 090'0               | 0 <b>'</b> 023 | <b>210'0</b>       | 0'115         | 621'0          | 0'592          | 991'0        | 622'0            | 760'0        | OIN                                         |
| , <b>в</b> .д    | . <b>в</b> .а       | <b>п.</b> п.   | שישי               | , <b>B</b> ,A | .в.а           | ם, פ.          | .в. <b>п</b> | םישי             | .в.п         | 000                                         |
| EOB,OE           | \$78,0E             | 612'16         | 244,05             | 30,832        | 30'124         | 30'955         | 878,92       | \$09,0£          | £6E'0E       | O.54                                        |
| LE9'0            | <b>₽61'0</b>        | 849'0          | 0'955              | <b>\$00,0</b> | 219'0          | 0'050          | S47,0        | 000'0            | 698,0        | Oum                                         |
| 196,0            | 260,0               | 086,1          | 9,375              | 0'012         | 6+1,0          | 0'036          | 222'0        | 0'052            | 191'2        | 08M                                         |
| 28,886           | 428,45              | 889'8          | 58'845             | 298,62        | 43'132         | 464'19         | 960'28       | 64,241           | 167,8        | Fe <sub>3</sub> O <sub>5</sub>              |
| 698'20           | 13'233              | 41'832         | 977,726<br>37,726  | 186,6         | \$89'62        | 6,230          | 681'00       | 3,576            | 008,14       | Cr <sub>2</sub> O <sub>3</sub>              |
| 190'0            | 140'0               | 122'0          | t 20'0             | 000'0         | 101'0          | 000'0          | 880,0        | 0'023            | +26,0        | 50 <sup>t</sup> A                           |
| 1115             | £10'0               | 347,61         | 182'0              | 600'0         | 0'032          | 0'016          | t 90'0       | 800,0            | 694,21       | °04v                                        |
| 0'533            | 890'0               | 0+5,0          | 0'512              | 0'030         | 620'0          | 260'0          | 780,0        | 0'038            | 984'0        | r07                                         |
| BEO,0            | <del>44</del> 0'0   | 010'0          | 820'0              | 960,0         | 7\$0'0         | <b>2</b> \$0'0 | 210'0        | 910'0            | 200'0        | <sup>c</sup> OIS                            |
| aniai hómraint   | ampiog              | 10200          | วมผู้ประการแก      | ampiog        | Cœnt           | ampion         | Cont         | ampioa           | coem         | amama                                       |
| qz.rejj          | dzinh               | dziaH          | dzuah              | dzītēH        | ng             | na             | ng           | nci              | na           | CP-0-1,                                     |
| 39               | 28                  | 21             | qt                 | st<br>        | 4Þ             | 86             | 90           | вС               | 30           | 3nio9                                       |
| 01-10-2114-C     | 0.4112-0L-76        | 0-4119-01-76   | 0-+119-00-76       | 0-+119-01-26  | 8-4115-01-76   | 97-JC-5114-B   | 8-4119-01-76 | 8-+119-DC-2114-B | 97-JC-5114-B | enollitnad Schantillona                     |

## .(eites analysées à la microsonde électronique (suite).

| Échantillons                                | 97-JC-5114-C | 97-JC-5114-C | 97-JC-5114-C  | 97-JC-5114-C | 97-JC-5114-C | 97-JC-5114-C  | 97-JC-5114-C | 97-JC-5115-C1 | 97-JC-5115-C1 | 97-JC-5115-C1 |
|---------------------------------------------|--------------|--------------|---------------|--------------|--------------|---------------|--------------|---------------|---------------|---------------|
| Point                                       | 2c           | 3a           | 3b            | 3c           | 4a           | 4b            | 4c           | la            | 1b            | 3             |
| Lithologie                                  | Harzb        | Harzb        | Harzb         | Herzb        | Harzb        | Harzb         | Harzb        | Chr           | Chr           | Chr           |
| Chromite                                    | Cœur         | Bordure      | Intermédiaire | Cœur         | Bordure      | intermédiaire | Cœur         | Bordure       | Cœur          | Cœur          |
|                                             |              |              |               |              |              |               |              |               |               |               |
| SiO <sub>2</sub>                            | 0,049        | 0,030        | 0,179         | 0,042        | 0,051        | 0,023         | 0,041        | 0,032         | 0,028         | 0,028         |
| TiO <sub>2</sub>                            | 0,201        | 0,040        | 0,269         | 0,436        | 0,044        | 0,289         | 0,526        | 0,309         | 0,405         | 0,376         |
| Al <sub>2</sub> O <sub>3</sub>              | 14,968       | 0,011        | 1,311         | 14,532       | 0,020        | 0,473         | 14,221       | 7,771         | 18,082        | 18,201        |
| V203                                        | 0,248        | 0,000        | 0,039         | 0,268        | 0,056        | 0,094         | 0,286        | 0,169         | 0,175         | 0,299         |
| Cr <sub>2</sub> O <sub>3</sub>              | 40,393       | 1,907        | 36,969        | 41,025       | 3,041        | 36,679        | 42,399       | 52,241        | 47,562        | 46,743        |
| Fe <sub>2</sub> O <sub>3</sub>              | 9,541        | 66,571       | 29,323        | 9,481        | 65,547       | 30,192        | 9,021        | 8,299         | 4,395         | 3,645         |
| MgO                                         | 1,558        | 0,067        | 0,502         | 1,556        | 0,000        | 0,322         | 1,837        | 4,995         | 10,590        | 8,753         |
| MnO                                         | 0,722        | 0,000        | 0,671         | 0,590        | 0,011        | 0,590         | 0,608        | 1,045         | 0,599         | 0,693         |
| FeO                                         | 30,785       | 30,813       | 30,502        | 31,309       | 31,010       | 30,602        | 31,176       | 24,497        | 18,446        | 20,932        |
| CoO                                         | n,a.         | ກ.ຄ.         | n.a.          | D.A.         | n.a.         | n.a.          | n.a.         | n.a.          | n.a.          | n.a,          |
| NIO                                         | 0,048        | 0,057        | 0,025         | 0,052        | 0,097        | 0,057         | 0,038        | 0,138         | 0,152         | 0,084         |
| ZnO                                         | 0,802        | 0,026        | 0,277         | 0,800        | 0,000        | 0,292         | 0,656        | 0,147         | 0,102         | 0,180         |
| Total                                       | 99,315       | 99,524       | 100,075       | 100,104      | 99,897       | 99,620        | 100,817      | 99,646        | 100,545       | 99,942        |
|                                             |              |              |               |              |              |               |              |               |               |               |
| Si                                          | 0,014        | 0,009        | 0,054         | 0,012        | 0,016        | 0,007         | 0,011        | 0,009         | 0,007         | 0,007         |
| Ti                                          | 0,042        | 0,009        | 0,061         | 0,091        | 0,010        | 0,066         | 0,109        | 0,065         | 0,077         | 0,073         |
| AI                                          | 4,903        | 0,004        | 0,462         | 4,734        | 0,007        | 0,169         | 4,597        | 2,552         | 5,407         | 5,533         |
| v                                           | 0,055        | 0,000        | 0,009         | 0,059        | 0,014        | 0,023         | 0,063        | 0,038         | 0,036         | 0,062         |
| Cr                                          | 8,875        | 0,466        | 8,731         | 8,966        | 0,740        | 8,767         | 9,194        | 11,510        | 9,540         | 9,533         |
| Fe <sup>3+</sup>                            | 1,995        | 15,491       | 6,591         | 1,972        | 15,190       | 6,869         | 1,862        | 1,740         | 0,839         | 0,708         |
| Mg                                          | 0,646        | 0,031        | 0,223         | 0,641        | 0,000        | 0,145         | 0,751        | 2,075         | 4,005         | 3,366         |
| Mn                                          | 0,170        | 0,000        | 0,170         | 0,138        | 0,003        | 0,151         | 0,141        | 0,247         | 0,129         | 0,151         |
| Fe <sup>2+</sup>                            | 7,155        | 7,969        | 7,620         | 7,238        | 7,987        | 7,737         | 7,151        | 5,709         | 3,914         | 4,516         |
| Co                                          | n.a.         | n.a,         | n.a.          | n.a.         | n.a.         | n.a.          | n.a.         | n.a.          | n.a.          | n.a.          |
| NI                                          | 0,011        | 0,014        | 0,006         | 0,012        | 0,024        | 0,014         | 0,008        | 0,031         | 0,031         | 0,017         |
| Zn                                          | 0,165        | 0,006        | 0,061         | 0,163        | 0,000        | 0,065         | 0,133        | 0,030         | 0,019         | 0,034         |
| Total                                       | 24,031       | 23,999       | 23,988        | 24,026       | 23,991       | 24,013        | 24,020       | 24,006        | 24,004        | 24,000        |
|                                             |              |              |               |              |              |               |              |               |               |               |
| Fe <sup>3+</sup> /Fe <sup>2+</sup>          | 0,28         | 1,94         | 0,86          | 0,27         | 1,90         | 0,89          | 0,26         | 0,30          | 0,21          | 0,16          |
| Cr/(Cr+Al)                                  | 64,41        | 99,15        | 94,97         | 65,45        | 99,06        | 98,11         | 66,67        | 81,85         | 63,83         | 63,27         |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 8,28         | 0,39         | 2,84          | 8,14         | 0,00         | 1,84          | 9,50         | 26,66         | 50,57         | 42,70         |
| Fc <sup>3+</sup> /(Fc <sup>3+</sup> +Al+Cr) | 12,65        | 97,06        | 41,76         | 12,58        | 95,31        | 43,46         | 11,90        | 11,01         | 5,31          | 4,49          |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 0,97         | 0,02         | 0,61          | 0,97         | 0,03         | 0,60          | 1,02         | 1,55          | 2,01          | 1,83          |

| Échantillons                              | 97-JC-5115-CI | 97-JC-5115-C1 | 97-JC-5115-C1 | 97-JC-5115-C1 | 97-JC-5115-CI | 97-JC-5115-C2 | 97-JC-5115-C2 | 97-JC-5115-C2 | 97-JC-5115-C2 | 97-JC-5115-C2 |
|-------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                     | 4a            | 4b            | 4c            | 2             | 9             | -             | -             | 2             | 2a            | 2b            |
| Lithologic                                | Chr           | Chr           | Chr           | Chr           | Chr           | Chr Sil       |
| Chromite                                  | Bordure       | Intermédiaire | Cœur          | Cœur          | Cœur          | Cœur          | Cœur          | Cœur          | Bordure       | Cœur          |
|                                           |               |               |               |               |               |               |               |               |               |               |
| sio,                                      | 0,026         | 0,033         | 0,036         | 0,042         | 0,032         | 0,004         | 0,065         | 0,007         | 0,049         | 0,033         |
| Tio,                                      | 0,139         | 0,389         | 0,395         | 0,383         | 0,396         | 0,236         | 0,402         | 0,139         | 0,419         | 0,373         |
| Al <sub>2</sub> O <sub>3</sub>            | 10,842        | 18,037        | 18,483        | 18,329        | 18,431        | 17,998        | 18,600        | 12,381        | 9,087         | 18,342        |
| V <sub>2</sub> O <sub>3</sub>             | 0,130         | 0,163         | 0,100         | 0,182         | 0,151         | 0,011         | 0,222         | 0,011         | 0,200         | 160'0         |
| Cr <sub>2</sub> O <sub>5</sub>            | 54,936        | 47,467        | 48,290        | 47,009        | 46,729        | 46,039        | 48,030        | 49,533        | 49,919        | 47,610        |
| Fe <sub>3</sub> O <sub>3</sub>            | 3,951         | 3,877         | 4,336         | 3,480         | 3,605         | 4,653         | 4,204         | 6,538         | 9,095         | 4,094         |
| MgO                                       | 6,600         | 9,496         | 13,099        | 9,110         | 8,769         | 600'6         | 12,728        | 6,983         | 5,993         | 11,010        |
| МпО                                       | 0,858         | 0,548         | 0,421         | P62'0         | 0,650         | 1,047         | 0,607         | 1,249         | 1,345         | 0,801         |
| FeO                                       | 23,002        | 20,108        | 14,735        | 20,547        | 21,119        | 19,843        | 15,121        | 21,618        | 22,799        | 17,507        |
| CoO                                       | п.а.          | п.а.          | n.a.          | n.a.          | п.а,          | 0'000         | п.а.          | 000'0         | n.a.          | n.a.          |
| NIO                                       | 0,062         | 0,135         | 0,137         | 0,112         | 0,118         | 0,000         | 0,124         | 000'0         | 0,185         | 0,111         |
| Zn0                                       | 0,232         | 0,137         | 0,028         | 0,118         | 0,205         | 0,286         | 0,097         | 0,187         | 060'0         | 0,129         |
| Total                                     | 100,792       | 100,392       | 100,060       | 99,914        | 100,211       | 99,126        | 100,210       | 98,646        | 99,187        | 100,109       |
|                                           |               |               |               |               |               |               |               |               |               |               |
| Si                                        | 0,007         | 0,008         | 0,009         | 0,011         | 0,008         | 100'0         | 0,016         | 0,002         | 0,013         | 0,008         |
| F                                         | 0,028         | 0,075         | 0,074         | 0,074         | 0,076         | 0,046         | 0,076         | 0,028         | 0,087         | 0,071         |
| V                                         | 3,429         | 5,440         | 5,447         | 5,556         | 5,585         | 5,511         | 5,484         | 3,959         | 2,958         | 5,483         |
| >                                         | 0,028         | 0,033         | 0,020         | 0,037         | 160'0         | 0,002         | 0,045         | 0,002         | 0,044         | 610'0         |
| ъ                                         | 11,657        | 9,603         | 9,548         | 9,560         | 9,500         | 9,457         | 9,501         | 10,626        | 10,901        | 9,547         |
| Fe <sup>3+</sup>                          | 0,798         | 0,746         | 0,816         | 0,674         | 0,697         | 0,910         | 0,791         | 1,335         | 1,890         | 0,781         |
| Mg                                        | 2,641         | 3,623         | 4,883         | 3,493         | 3,361         | 3,489         | 4,747         | 2,825         | 2,468         | 4,163         |
| Мп                                        | 0,195         | 0,119         | 0,089         | 0,130         | 0,142         | 0,231         | 0,129         | 0,287         | 0,315         | 0,172         |
| Pe''                                      | 5,163         | 4,303         | 3,082         | 4,420         | 4,541         | 4,311         | 3,164         | 4,906         | 5,266         | 3,713         |
| S                                         | n.a.          | n.a.          | n.a.          | n.a.          | n.a.          | 000'0         | n.a.          | 0'000         | ישי           | n.a.          |
| Ni                                        | 0,013         | 0,028         | 0,028         | 0,023         | 0,024         | 0'000         | 0,025         | 0'000         | 0,041         | 0,023         |
| Zn                                        | 0,046         | 0,026         | 0,005         | 0,022         | 0,039         | 0,055         | 0,018         | 0,037         | 0,018         | 0,024         |
| Total                                     | 24,005        | 24,004        | 24,001        | 24,000        | 24,004        | 24,013        | 23,996        | 24,007        | 24,001        | 24,004        |
|                                           |               |               |               |               |               |               |               |               |               |               |
| Fe"/Fe"                                   | 0,15          | 0,17          | 0,26          | 0,15          | 0,15          | 0,21          | 0,25          | 0,27          | 0,36          | 0,21          |
| Cr/(Cr+Al)                                | 77,27         | 63,84         | 63,67         | 63,24         | 62,98         | 63,18         | 63,40         | 72,86         | 78,66         | 63,52         |
| Mg/(Mg+Fc <sup>*</sup> )                  | 33,84         | 45,71         | 61,31         | 44, 14        | 42,53         | 44,73         | 60,01         | 36,54         | 31,91         | 52,86         |
| Fe"/(Fe"+AI+Cr)                           | 5,02          | 4,72          | 5,16          | 4,27          | 4,42          | 5,73          | 5,01          | 8,39          | 12,00         | 4,94          |
| Cr / (Fe <sup>**</sup> +Fe <sup>3</sup> ) | 1,96          | 1,90          | 2,45          | 1,88          | 18'1          | 1,81          | 2,40          | 1,70          | 1,52          | 2,12          |
| (tabantil)                                  | 07 10 5115 00 | 07.10.5115.00 | 07.10 5115 00 | 07 10 5115 00 | 07.10 5115.00 | 07 10 5115 00 |               | 07 10 5115 00 | 07 10 5116 1 | 07.10 5116 1  |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|
| Point                                       | 2             | 97-00-9119-02 | 37-0C-5115-C2 | 40            | 4h            | 51-0C-5115-C2 | 97-00-0110-02 | 65            | 97-JC-3118-A | 1P            |
| Point                                       | Ch- Sil       |               | 50<br>Chr Sil | Ha<br>Cha Sù  | 4B<br>Cha Sil | Cha Sil       | Obs Off       | Chr Sil       |              | 10<br>Chr     |
| Chromite                                    | Carur         | Bordure       | Carisa        | Bordur        | Carur         | Contra        | Bordum        | Carur         | Borture      | Intermédiaira |
| Chiotanic                                   |               | Dorduie       |               | Loidaic       | Cacui         |               | Dordine       | Cutui         | Dorquie      | memerate      |
| SIO,                                        | 0.007         | 0.045         | 0.033         | 0.014         | 0.040         | 0.076         | 0.043         | 0.109         | 0.094        | 0.043         |
| TiO <sub>2</sub>                            | 0,541         | 0,432         | 0,374         | 0,449         | 0,372         | 0,348         | 0,171         | 0,374         | 0,444        | 0,309         |
| Al <sub>2</sub> O <sub>3</sub>              | 8,221         | 7,932         | 18,585        | 6,538         | 18,446        | 18,472        | 10,890        | 18,784        | 2,178        | 17,411        |
| V <sub>2</sub> O <sub>3</sub>               | 0,098         | 0,173         | 0,187         | 0,217         | 0,072         | 0,118         | 0,178         | 0,251         | 0,076        | 0,225         |
| Cr <sub>2</sub> O <sub>3</sub>              | 49,761        | 51,233        | 48,007        | 51,529        | 47,031        | 46,903        | 52,081        | 46,928        | 45,600       | 45,298        |
| Fe <sub>2</sub> O <sub>3</sub>              | 9,249         | 9,114         | 3,246         | 9,875         | 3,918         | 3,501         | 5,938         | 3,427         | 19,274       | 4,610         |
| MgO                                         | 5,430         | 5,323         | 11,230        | 4,830         | 10,064        | 9,317         | 6,470         | 10,299        | 1,473        | 5,411         |
| MnO                                         | 1,437         | 1,242         | 0,776         | 1,315         | 0,896         | 0,759         | 0,999         | 0,708         | 0,868        | 0,712         |
| FcO                                         | 23,314        | 23,938        | 17,117        | 24,274        | 18,815        | 20,010        | 22,725        | 18,556        | 29,057       | 25,944        |
| CoO                                         | 0,348         | n.a.          | n.a.          | n,a.          | <b>р.</b> в.  | п.а.          | п.а.          | p.a.          | n.a,         | D.B.          |
| NIO                                         | 0,099         | 0,165         | 0,078         | 0,165         | 0,126         | 0,112         | 0,090         | 0,045         | 0,147        | 0,076         |
| ZnO                                         | 0,441         | 0,200         | 0,185         | 0,116         | 0,111         | 0,053         | 0,162         | 0,135         | 0,159        | 0,284         |
| Total                                       | 98,946        | 99,797        | 99,828        | 99,332        | 99,898        | 99,678        | 99,750        | 99,628        | 99,374       | 100,323       |
|                                             |               | l             |               | l             | ]             |               |               | [             | l            |               |
| si                                          | 0,002         | 0,012         | 0,008         | 0,004         | 0,010         | 0,020         | 0,012         | 0,028         | 0,028        | 0,011         |
| ТІ                                          | 0,114         | 0,090         | 0,071         | 0,095         | 0,072         | 0,067         | 0,035         | 0,072         | 0,099        | 0,061         |
| Al                                          | 2,710         | 2,594         | 5,553         | 2,170         | 5,555         | 5,598         | 3,481         | 5,648         | 0,760        | 5,419         |
| v                                           | 0,022         | 0,039         | 0,038         | 0,049         | 0,015         | 0,024         | 0,039         | 0,051         | 0,018        | 0,048         |
| Cr                                          | 11,002        | 11,242        | 9,622         | 11,474        | 9,502         | 9,535         | 11,169        | 9,466         | 10,672       | 9,459         |
| Fc <sup>3+</sup>                            | 1,946         | 1,903         | 0,619         | 2,093         | 0,753         | 0,677         | 1,212         | 0,658         | 4,293        | 0,916         |
| Mg                                          | 2,264         | 2,202         | 4,244         | 2,028         | 3,834         | 3,571         | 2,616         | 3,917         | 0,650        | 2,130         |
| Mn                                          | 0,340         | 0,292         | 0,167         | 0,314         | 0,194         | 0,165         | 0,230         | 0,153         | 0,218        | 0,159         |
| Fc <sup>2+</sup>                            | 5,453         | 5,556         | 3,629         | 5,717         | 4,021         | 4,303         | 5,155         | 3,959         | 7,193        | 5,730         |
| Co                                          | 0,078         | <b>n.e</b> .  | n.a.          | Π,Α,          | п.а.          | D.A.          | п.а.          | n.a.          | D.A.         | n.a.          |
| Ni                                          | 0,022         | 0,037         | 0,016         | 0,037         | 0,026         | 0,023         | 0,020         | 0,009         | 0,035        | 0,016         |
| Zn                                          | 0,091         | 0,041         | 0,035         | 0,024         | 0,021         | 0,010         | 0,033         | 0,025         | 0,035        | 0,055         |
| Total                                       | 24,044        | 24,008        | 24,002        | 24,005        | 24,003        | 23,993        | 24,002        | 23,986        | 24,001       | 24,004        |
|                                             |               |               |               |               |               |               |               |               |              |               |
| Fc <sup>3*</sup> /Fc <sup>2*</sup>          | 0,36          | 0,34          | 0,17          | 0,37          | 0,19          | 0,16          | 0,24          | 0,17          | 0,60         | 0,16          |
| Cr/(Cr+Al)                                  | 80,24         | 81,25         | 63,41         | 84,10         | 63,11         | 63,01         | 76,24         | 62,63         | 93,35        | 63,58         |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 29,34         | 28,38         | 53,91         | 26,18         | 48,81         | 45,35         | 33,66         | 49,73         | 8,29         | 27,10         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +A1+Cr) | 12,43         | 12,09         | 3,92          | 13,30         | 4,76          | 4,28          | 7,64          | 4,17          | 27,30        | 5,80          |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 1,49          | 1,51          | 2,27          | 1,47          | 1,99          | 1,91          | 1,75          | 2,05          | 0,93         | 1,42          |

| 00'0         |                    |                |               |              |               |              |               |              |              |                                             |
|--------------|--------------------|----------------|---------------|--------------|---------------|--------------|---------------|--------------|--------------|---------------------------------------------|
|              | 00'0               | \$ <u></u> 2'1 | 06,1          | 5,14         | 1'25          | 2'05         | 243           | 87,0         | 5t'z         | Cr / (Fe <sup>3</sup> *+Fe <sup>3</sup> *)  |
| 96'66        | 06'66              | 4'85           | 94'9          | 2'39         | 12'9          | S1,15        | 5,14          | 33'58        | 2'32         | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Ct) |
| 61'0         | 64,0               | 39,64          | 14'92         | 89'45        | 30,86         | 96'09        | 52'50         | 42,7         | 06'+S        | Mg/(Mg+Fc <sup>2+</sup> )                   |
| 14'50        | 20'00              | 29'69          | 12'89         | 81'69        | 83,58         | 63,23        | 29'29         | 63'33        | 63,72        | Cr/(Cr+Al)                                  |
| 5'00         | 5'00               | 91'0           | 91'0          | 62,0         | 0'12          | 12'0         | ¢1'0          | 27,0         | 6,24         | Fe <sup>3+</sup> /Fe <sup>3+</sup>          |
|              |                    |                |               |              |               |              |               |              |              |                                             |
| 34.000       | 33'986             | 24,005         | 54'004        | 24'001       | 53'666        | 54'003       | 54'011        | 54'001       | 53'662       | letoT                                       |
| 110'0        | 000'0              | 0'033          | 120'0         | 0.024        | 0'030         | 0'033        | 990'0         | 910'0        | 0'033        | uZ                                          |
| 0'033        | 0'030              | 100'0          | 610'0         | 200'0        | 900'0         | 200'0        | S10'0         | 0'020        | \$00'0       | IN                                          |
| D.A.         | п.а.               | n.a.           | מיפי          | <u></u> Ω.θ. | שיטי          | .а.д         | О, Я,         | נויפי        | ם,8,         | <u></u> න                                   |
| 186'2        | 856,7              | L9L'+          | 2'8'0         | S09'E        | 844,2         | 388,0        | 267,8         | 212'1        | 3,582        | ե <sup>շ</sup> չ+                           |
| 620'0        | 800,0              | \$\$I'0        | 841,0         | 880,0        | L+1'0         | 211'0        | 661'0         | 202'0        | 260'0        | nMa                                         |
| S10'0        | 4C0,0              | tet'e          | 3'000         | 056,4        | 5'435         | 140,4        | 5,144         | 019'0        | 09E't        | aM                                          |
| 12'632       | 12'866             | ¥92'0          | 016'0         | 668,0        | 628,0         | S18'0        | 0'815         | 2'303        | <b>748,0</b> | કલ્ <sub>3+</sub>                           |
| 100'0        | 800'0              | 109'6          | 084,9         | 584,0        | 6'232         | 064'6        | 986,9         | £52'6        | 448'6        | Cr                                          |
| 910'0        | 660,0              | 0'033          | 0'022         | St0'0        | 260,0         | 0'030        | 0'042         | 0'034        | 0'034        | ٨                                           |
| 900'0        | 800,0              | 874,8          | 10+'9         | 225'5        | 2)462         | 819'9        | 2'903         | 869'0        | 5,434        | ١٧                                          |
| ¢10'0        | 110'0              | 090'0          | <b>290'0</b>  | 090'0        | 850,0         | 290'0        | 090'0         | 0°130        | £90'0        | Ņ.                                          |
| 010'0        | 220'0              | £00,0          | 800,0         | 200'0        | 010'0         | 900'0        | 0'002         | 0'055        | ۷00'0        | 15                                          |
|              |                    |                |               |              |               |              |               |              |              |                                             |
| 608'86       | 09'66              | 026,001        | 100'401       | 100'225      | 100'322       | 870,001      | +28'66        | 787,86       | 100,454      | Total                                       |
| 9+0'0        | 100'0              | £71,0          | 0'593         | 261,0        | 0'300         | 921'0        | 9,335         | 120'0        | 811'0        | OaZ                                         |
| 280'0        | 920'O              | 900'0          | 160'0         | 760,0        | 970'0         | SE0'0        | 020'0         | 602'0        | 0'056        | OIN                                         |
| n.a.         | .а.а               | "טישי          | , <b>в</b> ,д | .в.а         | יטיש          | ,в.п         | ,в.д          | גיפי         | ,в.п         | 000                                         |
| 866,06       | 30,548             | 55'060         | 36'233        | 151'21       | 54'836        | 982,81       | 52'639        | 860'62       | 100'21       | Oaq                                         |
| ott'o        | 0,030              | 259'0          | 0'993         | 114'0        | <b>799'0</b>  | 0'243        | 0'9'0         | 618'0        | 9\$\$'0      | OnM                                         |
| 1 60'0       | 0'013              | 471,8          | 890'S         | 119'11       | 6,217         | 10'995       | 664,8         | 696'1        | 609'11       | OgM                                         |
| 67,520       | <del>1</del> 66'29 | 3,928          | 895'+         | 404,4        | 9/1'+         | 4'595        | 180,4         | 53'162       | 694'4        | Fe <sub>2</sub> O <sub>5</sub>              |
| 0'005        | 160'0              | 100'24         | 42'305        | 167,74       | \$96'S        | 212,74       | 488,44        | 082'14       | 126'24       | CL <sup>3</sup> O <sup>7</sup>              |
| 0'062        | 161'0              | 901'0          | 0'328         | 920'0        | 221'0         | 660'0        | 0'310         | 44I,0        | 891'0        | ۸۵۵                                         |
| 210'0        | 0'033              | 166'21         | 616,71        | JB'929       | 77,662        | 814,81       | 126'21        | 196'1        | 18'305       | លមា                                         |
| 190'0        | 840,0              | 205'0          | 0'310         | 0'330        | 62'0          | 0'348        | 0'305         | 225,0        | 0'333        | <sup>t</sup> ON                             |
| 6,033        | 880,0              | ¢10'0          | 0:030         | 820'0        | 660,0         | 0'034        | 0,020         | +20'0        | 220'0        | <sup>c</sup> Ole                            |
| []           |                    |                |               |              |               |              |               |              |              | [                                           |
| ແພວ          | mæŊ                | Juzo           | Internédiaire | .mao:)       | aninibànnatni | Cœur         | ənisibəmtətri | Bordure      | Cœm          | chromite                                    |
| PX A MG      | PX ₫ MG            | CPt            | Chr           | Срг.         | Cpt           | Cpt          | Chr           | Срг          | Cbr          | aigoloffi                                   |
| 5            | 1                  | 94             | qb            | 30           | qe            | .30          | SP            | <b>3</b> 8   | Ja           | Julo                                        |
| 8-9119-Dr-26 | 8-9115-20-26       | 97-JC-5116-A   | 02-7C-2116-V  | V-9115-01-26 | 9119-20-26    | V-9115-01-26 | 02-7G-2119-V  | 97-JC-5116-A | 97-JC-5116-A | schuntillons                                |

# , (suites analysées à la microsonde électronique (suite),

| Échantillons                                | 97-JC-5557-A | 97-JC-5557-A | 97-JC-5557-A | 97-JC-5557-A | 97-JC-5557-A | 97-JC-5557-B1 | 97-JC-5557-B1 | 97-JC-5557-B1 | 97-JC-5557-B1 | 97-JC-5557-B1 |
|---------------------------------------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | la           | 16           | 2b           | 3a           | 3b           | 1             | 2a            | 2b            | За            | 3b            |
| Lithologie                                  | Du à chro    | Chr Sil       |
| Chromite                                    | Bordure      | Cœur         | Cœur         | Bordure      | Cœur         | Cœur          | Bordure       | Cœur          | Bordure       | Cœur          |
|                                             |              |              |              |              |              |               |               |               |               |               |
| SiO <sub>2</sub>                            | 0,043        | 0,044        | 0,018        | 0,055        | 0,030        | 0,052         | 0,014         | 0,026         | 0,042         | 0,031         |
| TiO <sub>2</sub>                            | 0,627        | 0,616        | 0,711        | 0,495        | 0,744        | 0,777         | 0,644         | 0,710         | 0,558         | 0,636         |
| Al <sub>2</sub> O <sub>3</sub>              | 2,217        | 17,833       | 15,785       | 2,786        | 17,251       | 16,737        | 17,138        | 18,312        | 17,199        | 18,399        |
| V <sub>2</sub> O <sub>3</sub>               | 0,186        | 0,206        | 0,252        | 0,217        | 0,113        | 0,207         | 0,212         | 0,277         | 0,190         | 0,216         |
| Cr <sub>2</sub> O <sub>3</sub>              | 38,151       | 42,749       | 42,077       | 33,893       | 43,073       | 41,920        | 41,650        | 44,157        | 42,541        | 44,358        |
| Fc <sub>2</sub> O <sub>3</sub>              | 25,032       | 6,638        | 6,694        | 30,245       | 6,473        | 6,405         | 5,939         | 6,195         | 5,689         | 6,279         |
| MgO                                         | 0,411        | 6,180        | 2,007        | 0,481        | 6,244        | 2,169         | 2,669         | 9,279         | 2,882         | 9,205         |
| MnO                                         | 0,855        | 0,564        | 0,749        | 0,748        | 0,587        | 0,910         | 0,888         | 0,416         | 0,890         | 0,498         |
| FeO                                         | 30,336       | 25,281       | 30,968       | 30,866       | 25,042       | 31,099        | 29,939        | 20,878        | 29,752        | 20,989        |
| CoO                                         | <b>n.a</b> , | n.a.         | n.a.         | n.a.         | n.a.         | n.a.          | n.a.          | п.а.          | <b>∏</b> ₁A,  | n.a.          |
| NIO                                         | 0,093        | 0,120        | 0,099        | 0,077        | 0,130        | 0,071         | 0,142         | 0,114         | 0,142         | 0,105         |
| ZnO                                         | 0,074        | 0,143        | 0,265        | 0,048        | 0,149        | 0,116         | 0,198         | 0,099         | 0,214         | 0,129         |
| Total                                       | 99,542       | 100,385      | 99,640       | 99,919       | 99,851       | 100,463       | 99,449        | 100,472       | 100,102       | 100,852       |
|                                             |              |              |              |              |              |               |               |               |               |               |
| Si                                          | 0,013        | 0,011        | 0,005        | 0,016        | 0,008        | 0,014         | 0,004         | 0,007         | 0,011         | 0,008         |
| Ti                                          | 0,141        | 0,121        | 0,147        | 0,111        | 0,148        | 0,158         | 0,132         | 0,137         | 0,113         | 0,122         |
| A1                                          | 0,781        | 5,512        | 5,106        | 0,976        | 5,369        | 5,340         | 5,492         | 5,525         | 5,468         | 5,534         |
| v                                           | 0,045        | 0,043        | 0,055        | 0,052        | 0,024        | 0,045         | 0,046         | 0,057         | 0,041         | 0,044         |
| Cr                                          | 9,015        | 8,864        | 9,131        | 7,966        | 8,993        | 8,972         | 8,953         | 8,937         | 9,072         | 8,951         |
| Fe <sup>3+</sup>                            | 5,854        | 1,310        | 1,383        | 6,766        | 1,286        | 1,305         | 1,215         | 1,193         | 1,155         | 1,206         |
| Mg                                          | 0,183        | 2,416        | 0,821        | 0,213        | 2,458        | 0,875         | 1,082         | 3,541         | 1,159         | 3,502         |
| Mn                                          | 0,217        | 0,125        | 0,174        | 0,188        | 0,131        | 0,209         | 0,204         | 0,090         | 0,203         | 0,108         |
| Fc <sup>2+</sup>                            | 7,707        | 5,544        | 7,108        | 7,674        | 5,530        | 7,041         | 6,808         | 4,470         | 6,711         | 4,480         |
| Co                                          | <b>D.A</b> , | n.a.         | n.a.         | n.a.         | n,a,         | Π.θ.          | n.a.          | n.a.          | D.A.          | n.a.          |
| Ni                                          | 0,022        | 0,025        | 0,022        | 0,018        | 0,028        | 0,015         | 0,031         | 0,024         | 0,031         | 0,022         |
| Zn                                          | 0,016        | 0,028        | 0,054        | 0,010        | 0,029        | 0,023         | 0,040         | 0,019         | 0,043         | 0,024         |
| Total                                       | 23,994       | 23,999       | 24,006       | 23,990       | 24,004       | 23,997        | 24,007        | 24,000        | 24,007        | 24,001        |
|                                             |              |              |              |              |              |               | 1             | 1             |               | 1             |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,76         | 0,24         | 0,19         | 0,88         | 0,23         | 0,19          | 0,18          | 0,27          | 0,17          | 0,27          |
| Cr/(Cr+Al)                                  | 92,03        | 61,66        | 64,14        | 89,09        | 62,62        | 62,69         | 61,98         | 61,80         | 62,39         | 61,79         |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 2,32         | 30,35        | 10,35        | 2,70         | 30,77        | 11,05         | 13,71         | 44,20         | 14,73         | 43,87         |
| Fc <sup>3*</sup> /(Fc <sup>3*</sup> +Al+Cr) | 37,41        | 8,35         | 8,85         | 43,07        | 8,22         | 8,36          | 7,76          | 7,62          | 7,36          | 7,69          |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 0,66         | 1,29         | 1,08         | 0,55         | 1,32         | 1,08          | 1,12          | 1,58          | 1,15          | 1,57          |

| <u>+8,0</u>     | 01'1             | 28,0          | 01'1            | 80'1          | 62'0           | 1'02           | 94,0          | 10'1            | 89'0          | Cr / (Fe <sup>3+</sup> +Fe <sup>3+</sup> )  |
|-----------------|------------------|---------------|-----------------|---------------|----------------|----------------|---------------|-----------------|---------------|---------------------------------------------|
| 20'22           | 59'2             | 56,07         | 8'03            | 00,8          | 56,16          | 65'8           | 21'33         | 09'01           | 32'22         | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +AI+Cr) |
| 08,2            | 80,01            | €2°C          | 13'39           | 10'20         | 68,4           | £4'01          | 82'1          | 24,8            | 3'54          | W8\(W8+6c3+)                                |
| SL'+L           | 15'69            | 16'19         | 62,83           | 98'29         | 28,87          | 93' <u>7</u> 2 | 96'86         | \$0'\$9         | 61'89         | Cr/(Cr+Al)                                  |
| 24'0            | 21'0             | 55'0          | 81,0            | 81,0          | \$\$'0         | 61'0           | 1'04          | 0'53            | £2'0          | եշ <sup>3+</sup> /Բշ <sup>3+</sup>          |
| 33'988          | 53'666           | 53'660        | 54'003          | 54'004        | 53'922         | 54'009         | 54'000        | 966'EZ          | 536'82        | កែរស                                        |
| 660,0           | 0'031            | 670'0         | 0'034           | 0+0'0         | ٢٥٥,٥          | 160'D          | 6,023         | PP0,0           | £10'0         | uz                                          |
| 0'033           | St0'0            | 610'0         | 0'035           | ٢٥٬٥ ٢        | 860,0          | 0'030          | 6£0'0         | 910'0           | 6,024         | 5N                                          |
| ,в,п            | .в.п             | .a.n          | ה.פ.            | าย น          | าษาน           | ם, פ. ה        | .в.л          | טיטי            | 'B'tt         | മ                                           |
| 066'2           | PE1,7            | 584,7         | 656'9           | 980'2         | 544,7          | 601'2          | 942'2         | 697'4           | 185'7         | Pe <sup>2+</sup>                            |
| 0'543           | 0'509            | 6,287         | 202'0           | 0'354         | 542'0          | Z61'0          | 891'0         | 612'0           | 0'539         | nM                                          |
| 0,455           | 008,0            | 162'0         | <b>+86'0</b>    | 668,0         | 686,0          | 1 58,0         | 061,0         | 899'0           | 0'524         | 8W                                          |
| 3°420           | +61'1            | 960' <i>V</i> | 1,248           | 1'543         | 960't          | 466,1          | £80,8         | S+9'I           | t /5'S        | Pc <sup>3+</sup>                            |
| 6'133           | 851'6            | 5445          | 266'8           | 686'8         | 411'6          | 8'613          | EOZ'L         | 120'6           | 906'8         | Cr                                          |
| <b>FF</b> 0,0   | 960,0            | 850'0         | 9'022           | S+0'0         | 640'0          | 860,0          | 560,0         | 0'095           | 610'0         | ٨                                           |
| 180'E           | 2'363            | 121'2         | 2'333           | 116'9         | 2,445          | 2'531          | 694,0         | 948'4           | £61'1         | ١٧                                          |
| 671'0           | 291'0            | \$01'0        | 691,0           | 681'0         | 0'155          | 961'0          | 060'0         | 0,200           | 811'0         | 1.1                                         |
| 200'0           | 900'0            | 800,0         | 100'0           | 110'0         | 610,0          | 010'0          | 0'013         | 900'0           | 860,0         | IS                                          |
|                 |                  |               |                 |               |                |                |               |                 |               |                                             |
| 190'66          | \$98 <b>'</b> 66 | 951/001       | 859'001         | 165'001       | <i>LLL</i> *66 | ¥60'101        | 882'001       | 69'001          | 100'332       | ្រាស]                                       |
| 0'185           | £01'0            | 0'132         | 0'153           | 661'0         | 1 60'0         | <b>\$81,0</b>  | £01,0         | 212'0           | 0'093         | O <sup>u</sup> 2                            |
| S60'0           | 890'0            | 0'081         | 0'105           | 0'154         | 691'0          | 0'150          | 0'103         | £20'0           | 660'0         | OIN                                         |
| .а.д            | .в.a             | ה.פ.          | . <b>в</b> .а   | .а.л          | ษาษา           | ъ.я. <b>л</b>  | ת, מ.         | ບເສເ            | .в.п          | 0%                                          |
| 007,05          | 542'IE           | 866'00        | 9 <b>4</b> 8,0E | 31'535        | 162'08         | 31'663         | 406'08        | 31'262          | £67,0£        | 0°2                                         |
| 966'0           | 268,0            | 1'125         | 906'0           | 626'0         | 1'005          | 01/8,0         | 099'0         | 946,0           | 846,0         | OnW                                         |
| 650't           | \$96'I           | 929'0         | 2647            | 540'7         | 068,0          | 290'2          | 0'314         | 1'938           | 629'0         | OgM                                         |
| 826'91          | 118'9            | 18'820        | 6+1*9           | 001'9         | 18,832         | P78,8          | 32'836        | 066'2           | 52'148        | \$0 <sup>1</sup> 01                         |
| E80,0P          | 45'450           | 41'32L        | 45,180          | 41'005        | 29,663         | 41'815         | 266,06        | ¥69'I¥          | 38'399        | 50 <sup>2</sup> 03                          |
| 0'133           | 991'0            | 0'525         | 0'522           | 202'0         | 6,213          | 221'0          | 751,0         | 482,0           | 620'0         | °0°/                                        |
| 580'6           | 16,350           | 186,8         | 047,81          | 569,81        | 941'4          | 10'023         | 215,1         | 920'51          | 0++,6         | rom                                         |
| <b>S6</b> S'0   | 618,0            | 081,0         | <b>\$06,0</b>   | 0'636         | 0'295          | 896'0          | 866,0         | 272,0           | ¢23¢          | roi.                                        |
| 0'054           | 0'033            | 220'0         | ¢004            | 140'0         | 940,0          | 200'0          | 860,0         | 0'031           | 0'150         | <sup>t</sup> Ois                            |
|                 |                  | ļ             | ļ               |               |                |                |               |                 |               |                                             |
| antrog          | Cœur             | Bordine       | Cœnt            | Caur          | ລາມກາວຢ        | Cœnt           | Bordure       | Cœur            | Subroll       | Chromite                                    |
| onna à crim     | Chrsil           | CPr Sil       | Chr Sil         | Chr Sil       | Chr Sil        | ChrSil         | Chr Sil       | Chr Sil         | Chr Sll       |                                             |
|                 | 96               | 40            | 3               | 3P            | 28             | qt             | at            | ٩Þ              | 86            | tuio <sup>c</sup>                           |
| 54-72-552-01-76 | 97-JC-5557-82    | 01-1C-2222-85 | 28-78-555-51-79 | 01-10-5555-B2 | 97-JC-5555-B2  | 57-JC-5555-B2  | 97-JC-5557-B2 | 18-72-552-51-76 | 97-JC-5557-B1 | enollitnadož                                |

.(suites) auprovide electronique (suite), and provide electronique (suite).

| Échantillons                                | 97-JC-5557-B3 | 97-JC-5557-B3 | 97-JC-5557-B3 | 97-JC-5557-B3 | 97-JC-5557-B3 | 97-JC-5557-B3 | 97-JC-5557-C | 97-JC-5557-C  | 97-JC-5557-C | 97-JC-5557-C |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|--------------|--------------|
| Point                                       | 1b            | lc            | 2a            | 2b            | За            | Зb            | la           | 1b            | 10           | 2a           |
| Lithologie                                  | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb å chro  | Harzb A chro  | Harzb à chro  | Harzb        | Harzb         | Harzb        | Harzb        |
| Chromite                                    | Intermédiaire | Cœur          | Bordure       | Cœur          | Bordure       | Cœur          | Bordure      | Intermédiaire | Cæur         | Bordure      |
|                                             |               |               |               |               |               |               |              |               |              |              |
| SiO <sub>2</sub>                            | 0,016         | 0,045         | 0,381         | 0,042         | 0,052         | 0,052         | 0,043        | 0,025         | 0,042        | 1,115        |
| TiO <sub>2</sub>                            | 0,729         | 0,771         | 0,481         | 0,748         | 0,582         | 0,975         | 0,014        | 0,376         | 0,881        | 0,028        |
| Al <sub>2</sub> O <sub>3</sub>              | 15,986        | 17,303        | 2,493         | 16,301        | 2,453         | 15,574        | 0,007        | 1,196         | 15,422       | 0,077        |
| V203                                        | 0,226         | 0,173         | 0,161         | 0,245         | 0,107         | 0,222         | 0,043        | 0,190         | 0,362        | 0,000        |
| Cr <sub>2</sub> O <sub>3</sub>              | 41,451        | 42,960        | 36,307        | 41,930        | 39,017        | 41,486        | 0,455        | 30,777        | 40,276       | 0,300        |
| Fe <sub>2</sub> O <sub>3</sub>              | 6,729         | 6,768         | 26,136        | 6,407         | 24,113        | 6,442         | 67,976       | 35,371        | 9,232        | 67,527       |
| MgO                                         | 2,088         | 7,292         | 0,556         | 3,229         | 0,382         | 1,924         | 0,018        | 0,235         | 3,407        | 0,789        |
| MnO                                         | 0,912         | 0,423         | 1,000         | 0,721         | 0,914         | 0,861         | 0,037        | 1,541         | 1,075        | 0,009        |
| FcO                                         | 30,550        | 23,503        | 29,539        | 29,048        | 30,460        | 30,935        | 30,759       | 30,002        | 28,481       | 29,214       |
| CoO                                         | n,a.          | n.a.          | п.а.          | n.a.          | n.a.          | n.a.          | n.a.         | n.a.          | n.a.         | n.a.         |
| NiO                                         | 0,063         | 0,151         | 0,068         | 0,106         | 0,080         | 0,085         | 0,146        | 0,042         | 0,140        | 0,060        |
| ZnO                                         | 0,190         | 0,097         | 0,148         | 0,156         | 0,145         | 0,180         | 0,033        | 0,289         | 0,294        | 0,171        |
| Total                                       | 98,970        | 99,501        | 97,281        | 98,957        | 98,317        | 98,749        | 99,538       | 100,053       | 99,612       | 99,478       |
|                                             |               |               |               |               |               |               |              |               |              |              |
| Si                                          | 0,004         | 0,012         | 0,116         | 0,012         | 0,016         | 0,014         | 0,013        | 0,007         | 0,011        | 0,340        |
| TÌ                                          | 0,151         | 0,152         | 0,110         | 0,154         | 0,132         | 0,203         | 0,003        | 0,085         | 0,181        | 0,007        |
| Al                                          | 5,194         | 5,361         | ð,894         | 5,244         | 0,873         | 5,084         | 0,002        | 0,424         | 4,953        | 0,028        |
| v                                           | 0,050         | 0,036         | 0,039         | 0,054         | 0,026         | 0,049         | 0,011        | 0,046         | 0,079        | 0,000        |
| Cr                                          | 9,035         | 8,929         | 8,732         | 9,050         | 9,318         | 9,086         | 0,111        | 7,319         | 8,677        | 0,072        |
| Fc <sup>3+</sup>                            | 1,396         | 1,339         | 5,983         | 1,316         | 5,481         | 1,343         | 15,835       | 8,006         | 1,893        | 15,490       |
| Mg                                          | 0,858         | 2,858         | 0,252         | 1,314         | 0,172         | 0,794         | 0,008        | 0,105         | 1,384        | 0,358        |
| Mn                                          | 0,213         | 0,094         | 0,258         | 0,167         | 0,234         | 0,202         | 0,010        | 0,393         | 0,248        | 0,002        |
| Fc <sup>2+</sup>                            | 7,044         | 5,167         | 7,514         | 6,632         | 7,695         | 7,166         | 7,963        | 7,547         | 6,490        | 7,447        |
| Co                                          | n.a.          | D,A,          | n.a.          | n,a,          | n.a.          | <b>й.а</b> ,  | D.A.         | n.a.          | ŋ,a.         | n.a.         |
| Ni                                          | 0,014         | 0,032         | 0,017         | 0,023         | 0,020         | 0,019         | 0,036        | 0,010         | 0,031        | 0,015        |
| Zn                                          | 0,039         | 0,019         | 0,033         | 0,031         | 0,032         | 0,037         | 0,007        | 0,064         | 0,059        | 0,039        |
| Total                                       | 23,998        | 23,999        | 23,948        | 23,997        | 23,999        | 23,997        | 23,999       | 24,006        | 24,006       | 23,798       |
|                                             |               |               |               |               |               |               |              | I             |              |              |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,20          | 0,26          | 0,80          | 0,20          | 0,71          | 0,19          | 1,99         | 1,06          | 0,29         | 2,08         |
| Cr/(Cr+Al)                                  | 63,50         | 62,48         | 90,71         | 63,31         | 91,43         | 64,12         | 98,23        | 94,52         | 63,66        | 72,00        |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 10,86         | 35,61         | 3,24          | 16,54         | 2,19          | 9,97          | 0,10         | 1,37          | 17,58        | 4,59         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 8,93          | 8,57          | 38,33         | 8,43          | 34,97         | 8,66          | 99,29        | 50,83         | 12,19        | 99,36        |
| Cr / (Fc <sup>2+</sup> +Fe <sup>3+</sup> )  | 1,07          | 1,37          | 0,65          | 1,14          | 0,71          | 1,07          | 0,00         | 0,47          | 1,04         | 0,00         |

| 1'33              | OB,I          | 35,1          | +2*1          | 82,1               | 04'1              | 26'0         | CS'0           | 10'0           | 0'23          | Cr / (Fe <sup>3+</sup> +Fe <sup>3</sup> )                |
|-------------------|---------------|---------------|---------------|--------------------|-------------------|--------------|----------------|----------------|---------------|----------------------------------------------------------|
| 62,8              | 5'85          | 04,8          | 3'50          | 09'2               | 62'4              | 13'32        | 59,86          | 68'86          | 59'51         | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+C <sub>1</sub> ) |
| 32'80             | t t'07        | 46'46         | 18'62         | 72,737             | 98'91             | 09'9         | 24'1           | 2'33           | 80,S          | M&/(M&+Fc <sup>2+</sup> )                                |
| 60'19             | 09'82         | 16,18         | 49'67         | 84'19              | 83'22             | L9'E9        | 03'55          | 86'39          | 14'06         | (IV+10)/10                                               |
| 0,22              | 20'0          | 0*32          | 80,0          | 12'0               | 0 <sup>1</sup> 13 | 62'0         | 86'0           | 80,2           | ¥6'0          | •c <sup>24</sup> /•c <sup>2</sup> •                      |
|                   |               |               |               |                    |                   |              |                |                |               |                                                          |
| 200,12            | 33'920        | 23'001        | 23'665        | 53'662             | 33'880            | 54'032       | 100'62         | 528'62         | 54,005        | ព្រះប                                                    |
| 0'032             | 220'0         | 0'038         | 6,013         | St 0'0             | 200'0             | +SI'0        | 950'0          | 210'0          | 650'0         | u                                                        |
| 0'033             | 600'0         | 0'031         | S10'0         | 420'0              | 810'0             | 9'032        | 800'0          | 610'0          | 160,0         | 11                                                       |
| נויפי             | .в.а          | טיטי.         | יטיט          | บายา               | .ก.ก.             | טיטי         | . <b>в</b> .п  | 'B'U           | .6.0          | ¢ر                                                       |
| 006'S             | 6'520         | 2'503         | 666'9         | 842'S              | <b>0'2</b> 59     | 7,213        | 505'L          | 2'423          | \$25'L        | +r <sup>3</sup> .                                        |
| 0 <sup>1155</sup> | 961'0         | \$80,0        | 641'0         | 0'138              | £21'0             | 026,0        | 664,0          | 000'0          | 6,363         | սյ                                                       |
| 150'2             | 925'1         | 5/24          | \$28'I        | 2/1/2              | 1'353             | 0'210        | 0'115          | 916'0          | 191'0         | 8M                                                       |
| 1'564             | 9440          | 816'1         | 205,0         | 1105               | 0,755             | S90'℃        | 212,72         | 12'232         | 071'2         | ·c <sup>3</sup>                                          |
| 108,8             | 12,070        | 218'8         | 862'11        | 056'8              | 15'396            | 9'239        | 968,7          | 191'0          | <b>₽99</b> '2 | j. Ju                                                    |
| 150'0             | 0'003         | 260,0         | 210'0         | 0'024              | 0,062             | S80'0        | 240,0          | 900'0          | <b>4</b> 90'0 |                                                          |
| 909'5             | 782,c         | 2'204         | Sf0,f         | 289'9              | 5'950             | 028'+        | 029'0          | 420'0          | 618,0         | ť                                                        |
| C11'0             | 4E0,0         | 911'0         | 21000         | 0'155              | 890'0             | 841'0        | 880,0          | 200'0          | 0\$1'0        | ļ                                                        |
| 0'005             | 690,0         | SI 0'0        | 600'0         | S10'0              | 2E0'0             | 110'0        | 900'0          | 0'525          | 900'0         | 1                                                        |
|                   |               |               |               |                    |                   |              |                |                |               |                                                          |
| 100'244           | 169'66        | 688,001       | 621'001       | 325,001            | 01/9,86           | 210'86       | 102'86         | 824,00         | 825,99        | lato                                                     |
| 0'181             | 0°130         | 561,0         | \$90'0        | LL0'0              | 0'035             | S+2'0        | 0'320          | 0'022          | 892'0         | Ou                                                       |
| F21,0             | 600'0         | £01'0         | 290'0         | 671'0              | 220'0             | 951'0        | 0'033          | 870,0          | 221'0         | 01                                                       |
| .п.п              | 11'9'         | .ө.л          | าษาบ          | ,в.п               | נישי              | р.а,         | ח.פ.           | 13.8.          | , <b>в</b> .л | 00                                                       |
| 56,780            | 27,032        | 24'042        | 56,525        | 56,234             | 21'428            | 30,823       | 36°330         | 59,184         | 961 '06       | 09                                                       |
| 845,0             | 629'0         | 585,0         | 0,630         | 12S'0              | 812'0             | 1'200        | S29'l          | 000'0          | 624'1         | Out                                                      |
| 2'333             | 818,6         | 542,7         | 4'920         | 21242              | 3'155             | 122'1        | 0 <b>,</b> 245 | ¥16'0          | 095,0         | 081                                                      |
| 9'232             | 5'136         | 122'9         | 166'2         | Z10 <sup>(</sup> 9 | 3'238             | 808,9        | 9\$6'1£        | E09'29         | 31'242        | ¢103                                                     |
| 43'525            | 22'145        | 43'100        | 23'836        | 186,24             | E91'SS            | 585,85       | 92428          | 0'632          | 32,322        | 1,3O3                                                    |
| 0'5#3             | 982'0         | 081'0         | 0'508         | 0'524              | 6,273             | 876,0        | ¥81'0          | 0'056          | 0'592         | \$U3                                                     |
| +S0'81            | +20'0I        | 742,81        | 15'695        | 668,71             | 7,821             | L9L'\$1      | 1'284          | 990'0          | 5'301         | 1303                                                     |
| \$9S'0            | \$91'0        | 265'O         | 0'530         | 919'0              | 025,0             | 248'0        | 0'385          | 160'0          | ¢99'0         | 102                                                      |
| 600'0             | 0'559         | 650'0         | 0'033         | 950'0              | 0'115             | 1+0'0        | 020'0          | 0'832          | 020'0         | <sup>2</sup> Ol                                          |
|                   |               |               |               |                    |                   |              |                |                |               | 1                                                        |
| cœnt.             | ລາເກເວຍ       | ມາເອວ         | Bordure       | Cœm                | อาปมาจร์ไ         | Cœut         | minibiuristal  | Bordure        | Coentr        | hromite                                                  |
| CPt 2IJ           | Chr Sil       | Chr Sil       | Chr Sil       | Chr Sil            | CPr SII           | dzis]j       | Дягар          | dzint          | dznati        | thologic                                                 |
| 96                | ыC            | 3P            | 28            | 91                 | ыl                | 3c           | qe             | BE             | qz            | tuio                                                     |
| 01-7C-2222-D1     | 97-JC-5555-D1 | 01-1C-2225-D1 | 01-1C-2221-D1 | 97-JC-5557-D1      | 01-1C-2221-D1     | 0-7888-01-76 | 97-JC-5557-C   | 0-76-555-0L-76 | 0-7888-01-76  | enollinano                                               |
|                   |               |               |               |                    |                   |              |                |                |               |                                                          |

| Cr / (Fe <sup>3+</sup> +Fe <sup>3+</sup> )  | 9C'I         | 1,27          | 44'I         | 10'0         | 11'0            | 9 <sup>,</sup> 0 | 1,22            | 11'0           | 69'0              | 60'0               |
|---------------------------------------------|--------------|---------------|--------------|--------------|-----------------|------------------|-----------------|----------------|-------------------|--------------------|
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Ci) | 7,32         | 7,52          | 12'2         | 90'86        | 82'58           | 41,14            | 06,30           | 82'14          | 43'28             | 60'88              |
| (* <sup>5</sup> -94+8M)/8M                  | £6'EE        | 82'S2         | 32'55        | 00'0         | <b>₽</b> \$,0   | 80,4             | 50'33           | 11/0           | 47,E              | 6,33               |
| Cr/(Cr+Al)                                  | L6'09        | 96,20         | 10'89        | 12'86        | ZS'66           | 80,89            | 20'99           | S1'66          | 91'66             | 68'66              |
| եշ <sup>3+</sup> /Բշ <sup>3+</sup>          | 0'53         | 0,20          | 42'0         | 5'00         | 1'15            | 98'0             | 0'53            | 12'1           | 68'0              | 92'1               |
|                                             |              |               |              |              |                 |                  |                 |                |                   |                    |
| latoT                                       | \$3,998      | 24'003        | 266'EZ       | 53'668       | 54'004          | 24'032           | 24'024          | 500,152        | 24'033            | 24'006             |
| uz                                          | 010'0        | 120'0         | 810,0        | 610,0        | 0'051           | 651'0            | PEP,0           | \$10'0         | ¢124              | 220'0              |
| IN                                          | 0'056        | 670'0         | 0'033        | 860,0        | 0'030           | ¢10'0            | \$10'0          | 0'038          | 210'0             | 0'043              |
| <u>ත</u>                                    | 18,N         | .B.A          | ,B,Q         | 290'0        | ה.פ.            | ה.פ.             | '#'U            | .B.O.          | <b>.</b> в.а      | .a.a               |
| يدي.<br>تريد                                | 2'584        | 86,938        | 601'9        | 188,7        | 986'2           | 2'236            | 861,8           | 666,7          | 295'2             | E40,7              |
| uΜ                                          | S60'0        | 011'0         | 0'083        | 000'0        | 0'032           | 221'0            | 0'103           | 90'0           | 861,0             | +10'0              |
| 8M                                          | \$1714       | <b>5</b> '062 | 3'826        | 000'0        | 640,0           | 0'330            | 285'T           | 6,033          | 0'584             | 0'039              |
| ارد <sup>عه</sup>                           | 841,1        | 871,1         | 1(2)1        | 189'91       | 13'958          | 684,8            | 1'445           | 999'C1         | 902'9             | 14'015             |
| Cr                                          | 098,8        | 6'030         | 671'6        | 206,0        | 2,285           | 660'6            | 6'535           | 5,345          | 896'8             | 268,1              |
| ٨                                           | 190'0        | 0:030         | 090'0        | 000'0        | 000'0           | £00,0            | 440,0           | 0'015          | 220'0             | 0'030              |
| 11                                          | 129'9        | 154'5         | 2'390        | +00'0        | 110'0           | 871,0            | 4'112           | 0'030          | 920'0             | 0'005              |
|                                             | 221'0        | 011'0         | ÷11'0        | 000'0        | 120'0           | 040'0            | 290'0           | 120'0          | 290'U             | 0 <sup>1</sup> 012 |
| 15                                          | 600'0        | £10'0         | \$00'0       | 200'0        | \$00 <b>'</b> 0 | 010'0            | 00110           | 0'002          | 800,0             | S10'0              |
|                                             |              |               |              |              |                 |                  |                 |                |                   |                    |
| lato1                                       | 061,020      | 2S1'66        | 874,60       | 101'130      | 100'66          | 696'66           | 102'66          | 692'66         | 687,60            | 606'66             |
| Ouz                                         | 0,052        | 801'0         | 160'0        | 161'0        | 60'0            | ÷12'0            | 3°128           | 890'0          | 169'0             | 611'0              |
| OIN                                         | 861,0        | 9'132         | 801,0        | 991'0        | 611,0           | 920'0            | 990'0           | \$t1'0         | 020'0             | 911'0              |
| 002                                         | n.a.         | ,B.Q          | טישי         | 922,0        | . <b>n</b> .n   | ם,ם,             | าย-น            | .ย.น           | , <b>B</b> ,f     | ,в, <b>п</b>       |
| 02                                          | 54'010       | 56,540        | 976,62       | 018'00       | 720,0E          | \$8 <b>7</b> ,92 | 961'22          | 188'00         | <b>266'6</b> 2    | C16'0E             |
| Ouw                                         | 821,0        | 784,0         | 026,0        | 000'0        | 800,0           | ZZ9'0            | 9++'0           | 2£1'0          | 088,0             | 0'024              |
| OgM                                         | 816'9        | 691'9         | 7,289        | 000'0        | 960 <b>'</b> 0  | 012'0            | 206'E           | 270,0          | 0 <sup>4</sup> 84 | 0'029              |
| <sup>د0</sup> ره:                           | S67,8        | 2'823         | 021'9        | 166,80       | 20'05           | 58'203           | 560,7           | 869,88         | 752,62            | 209'09             |
| *0 <sup>1</sup> J                           | 42,582       | 169'25        | 43'852       | £22'I        | 124,0           | P70,8C           | 43,127          | <b>₽</b> \$9'6 | 665'26            | 787,7              |
| ····                                        | 142'0        | 661,0         | 0,283        | 000'0        | 000'0           | +10'0            | 0,200           | 0;050,0        | ETT'0             | 080,0              |
| 1302                                        | 18,285       | 062'21        | 12,302       | 010'0        | 0:030           | 0'200            | 658,61          | 550'0          | 0'513             | S00'0              |
| ١,0 <sup>2</sup>                            | 0'645        | 969'0         | 925,0        | 000'0        | 160'0           | 605,0            | 675,0           | 160'0          | 962'0             | \$90 <b>'</b> 0    |
| 3102                                        | SE0,0        | 6+0'0         | 610'0        | 0'053        | 810,0           | 6.033            | 696'0           | 910'0          | 0'059             | 81+0'0             |
|                                             |              |               |              |              |                 |                  |                 |                |                   |                    |
| shoonds                                     | Cœnt ·       | Cœnt          | Coent        | ມແລວງ        | anbrofi         | Intermédiaire    | ງແສວ            | Bordure        | Cœur              | Bordure            |
| aigolothi.                                  | Chr Sil      | Chr Sil       | Chr Sil      | 12 noli7     | Perid           | Perid            | Perid           | Perid          | Perid             | Perid              |
| tuioc                                       | t            | 5             | 3            | I            | Bİ              | 91               | 10              | ях             | ባፘ                | nC                 |
| enoliinnadəž                                | 97-JC-5557-R | 3-72252-DL-70 | 3-2555-01-26 | 8-6695-HM-76 | 1V-2495-HW-26   | 14.5482-HM-70    | 1V-21-95-11W-26 | 14-2495-HM-70  | 14-2495-HM-70     | 11-2492-HM-79      |

| 86,1         | 16'0          | 86,1          | 26,1                | 1'33               | 96'1         | 1'40         | 1'32           | st't          | 04'0              | Cr / (Fe <sup>3++Fe<sup>3+</sup>)</sup>     |
|--------------|---------------|---------------|---------------------|--------------------|--------------|--------------|----------------|---------------|-------------------|---------------------------------------------|
| 84,7         | 52'12         | 40'L          | 40'L                | 28,8               | ts'L         | 56,7         | +L'L           | 89'6          | 38,06             | Fc <sup>3+</sup> /(Fc <sup>3+</sup> +AI+Ct) |
| 34'28        | 11'43         | 53'55         | 64,62               | 52'23              | 53'34        | 64,45        | 54'01          | 51'41         | 22,4              | M&/(M8+Fe <sup>2+</sup> )                   |
| 82'99        | <b>38,</b> 48 | 19'99         | 09'99               | 68,22              | 66'99        | 80'29        | 24,88          | 48'99         | 02'26             | Cr/(Cr+Al)                                  |
| 0'50         | 95'0          | 61'0          | 61'0                | 62 <b>,</b> 0      | 02'0         | 02'0         | 0'31           | 6,23          | 62'0              | եշ <sup>3</sup> */Բշ <sup>2</sup> ՝         |
|              |               |               |                     |                    |              |              |                |               |                   |                                             |
| 54'020       | 140'42        | 54'046        | 24,043              | 240'62             | 240,45       | 54'040       | 54'048         | 54'115        | 54'038            | Total                                       |
| E61'0        | 0'150         | +81'O         | 221'0               | 991'0              | \$61'0       | 951'0        | 181'0          | <u> </u>      | 061'0             | <sup>u</sup> Z                              |
| 000'0        | 200'0         | 0'000         | 000'0               | 000'0              | 000'0        | 000'0        | 000'0          | 200'0         | 0'005             | IN                                          |
| 220'0        | 0'023         | 820,0         | 610'0               | 240,0              | £00,0        | 0'033        | 0,026          | ,в,q          | . <b>в</b> .л     | <u>හ</u>                                    |
| 2'890        | 6\$6'9        | 166'S         | 780,8               | 500,8              | 000'9        | 928'9        | 266'9          | 002'9         | 165'L             | Fc <sup>3+</sup>                            |
| 121'0        | 0'332         | 0'123         | ÷91'0               | 671,0              | 0'120        | 121'0        | 121'0          | 0°134         | 841,0             | uM                                          |
| 076'1        | <b>268</b> '0 | 218'1         | 868,1               | \$9 <b>2</b> '1    | 728,1        | 486'I        | 9 <b>2</b> 8't | \$01'I        | 966,0             | Mg                                          |
| 081,1        | 066,6         | Z11'T         | 111'1               | S0+'1              | 881,1        | 1'103        | 1'333          | 60S'I         | 789,2             | եշ <sup>3+</sup>                            |
| 052'6        | 616'6         | <b>+87,</b> e | SS7,9               | 928'6              | 962'6        | 868,9        | 189'6          | 804,9         | 644'6             | Cr                                          |
| +t0'0        | 610'0         | 120'0         | 0'050               | ¢10'0              | S10'0        | £00'0        | £10'0          | 0,028         | 0'035             | ۸                                           |
| t \$8'₽      | 692'1         | 406,4         | \$16' <del>\$</del> | 009'+              | 4,828        | 4'850        | 568,6          | £99'₽         | 0'593             | ١٧                                          |
| 940,0        | 261,0         | 260,0         | 640'0               | 000'0              | 660,0        | S£0'0        | 0'043          | 890'0         | S70,0             | ۲۱.                                         |
| 800,0        | 200'0         | ¢004          | 800,0               | 00'00 <del>4</del> | 000'0        | 600'0        | <u>\$00'0</u>  | 010'0         | 900'0             | IS                                          |
|              |               |               |                     |                    |              |              |                |               |                   |                                             |
| 66'833       | 100'001       | 100'048       | 240'001             | 602'65             | £8C,001      | 290'001      | 100'333        | 196'66        | 26,932            | latoT                                       |
| 896'0        | 685'0         | 6,923         | 268,0               | 728,0              | 186'0        | 582'0        | 116'0          | 166'2         | 648,0             | Ouz                                         |
| 000'0        | 0:030         | 000'0         | 000'0               | 00000              | 0000         | 0'000        | 000,0          | 0'033         | 800'0             | OIN                                         |
| 0'139        | 0'556         | 0'158         | 980,0               | ¢104               | ¢10'0        | 801'0        | 0'150          | .a.n          | ца, <u>п</u> , а, | 000                                         |
| 36'106       | 587,85        | 56,585        | 56,595              | 56'378             | 289'92       | 56,127       | 56,434         | 840,028       | \$27,24           | Oag                                         |
| 092'0        | 616'0         | 0'125         | 817,0               | 0'123              | 989'0        | 154'0        | 054'0          | 165,0         | 929'0             | Oum                                         |
| +22'+        | 180,2         | 112,4         | 182,4               | 636,4              | 655,4        | 168,4        | 589'+          | 589'7         | 647,0             | O <sub>8</sub> M                            |
| 5,813        | 990'81        | 2,485         | \$84'S              | £98,ð              | P78,2        | 942'5        | 240'9          | 692'L         | 56'562            | Fe2O3                                       |
| 60L'SH       | +26,64        | 42'054        | 668,84              | 42'315             | 580,86       | 40'500       | 42'282         | \$\$1'E\$     | S72,965           | Cr3O3                                       |
| 990'0        | 280,0         | 660'0         | 0'035               | 990'0              | 690'0        | +10'0        | 0'005          | 0'136         | Z60'0             | ٨٥٥،                                        |
| 12'329       | \$61'S        | 12'445        | E61/SI              | 946,41             | 12'539       | 12'534       | 12'464         | 14'329        | 964'0             | °041V                                       |
| 0'332        | 0'633         | \$B1'0        | 0'544               | 000'0              | 0'163        | 2/1/0        | 0'508          | 066,0         | 826,0             | LIO2                                        |
| 0'036        | 0'054         | 0'012         | 0'056               | 910'0              | 000'0        | 0'033        | 210'0          | SEO'O         | 610'0             | <sup>c</sup> ois                            |
|              | <u></u>       |               |                     | 1                  | <u> </u>     | 1            |                | <u> </u>      | 1                 | 1                                           |
| Cœm.         | Bordure       | Cœm           | Bordure             | Cœur               | Bordure      | Tuad         | aubioß         | Cœnt          | əninibəməətul     | Chromite                                    |
| Chio Sll     | Chro Sil      | Chro Sil      | Chto Sil            | Chro Sil           | Chro Sil     | Chro Sil     | lie ondO       | birəʻi        | Perid             | Lithologic                                  |
| dÞ.          | вħ            | 3P            | RE                  | 3P                 | За           | q1           | al Ia          | 30            | qe                | Juiof                                       |
| 97-MH-5642-B | 8-2495-HM-26  | 8-5495-HM-76  | 8-2492-HW-26        | 8-2+95-HM-76       | 8-2692-HM-70 | 8-2495-HM-76 | 8-2495-HM-76   | 14-2692-HM-70 | 1A-2422-HM-70     | enollinnada                                 |
|              |               |               |                     |                    |              |              |                |               |                   |                                             |

| 82,0           | <del>1</del> 9'0    | 05,0           | S2'0           | 2 <b>5</b> '0 | ES'O             | 66'1               | 96'1                | 28'I          | 06'0                | Cr / (Fe <sup>3+</sup> +Fe <sup>3</sup> )   |
|----------------|---------------------|----------------|----------------|---------------|------------------|--------------------|---------------------|---------------|---------------------|---------------------------------------------|
| 82,44          | 34,66               | 54,84          | 96'41          | 09'6E         | 42,32            | 62'2               | 19'2                | 60,8          | 52'94               | Pe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Ci) |
| 2 <b>5</b> '0  | 5'62                | 92'0           | 5,35           | 1'13          | 12'0             | 52'23              | 96'CZ               | 34'98         | 86,11               | Mg/(Mg+Fe <sup>3+</sup> )                   |
| 59'86          | 62'65               | <b>98'</b> 26  | 86,28          | 99'1-8        | £2'26            | <b>₽</b> ८'99      | I S'99              | <b>F8,</b> 88 | \$6' <del>5</del> 8 | Cr/(Cr+Al)                                  |
| <b>28'0</b>    | 0S,0                | 96'0           | 0'32           | 08,0          | ¥6'0             | 12'0               | 0'50                | 0'33          | 85'0                | եշ <sup>յ</sup> , [ եշ <sup>յ</sup> ,       |
|                |                     |                |                |               |                  |                    |                     |               |                     |                                             |
| 34'033         | 54'024              | 24'042         | 54'085         | 24'043        | 54'045           | 54'022             | 54'025              | 54'036        | 54'042              | LatoT                                       |
| 620'0          | 0'536               | 621.0          | 0'300          | 0'312         | 0/1/0            | 66110              | 091'0               | 0'193         | 0'142               | uz                                          |
| 0'012          | 100'0               | 0'00           | 0'00           | 000'0         | 800'0            | 000'0              | 000'0               | 0'000         | 610,0               | IN                                          |
| 270,0          | 0'033               | 740,0          | 0'020          | \$20'0        | 090'0            | 0'033              | 0,029               | 000'0         | 0'023               | <u>ං</u> ට                                  |
| 688,7          | 219'2               | 7,830          | 8'326          | £02'2         | 687,7            | 262'S              | 866,8               | 649,8         | 126'9               | ى                                           |
| 202,0          | 872,0               | 062'0          | 486,0          | 0'583         | 0,280            | 0'192              | 691'0               | 621'0         | 0'512               | aM                                          |
| 0,045          | 0'502               | 0'055          | 661'0          | 280,0         | 910'0            | 986't              | 178,1               | 846,1         | 868'0               | 8M                                          |
| <u>998'9</u>   | 062'6               | 815'2          | 220'2          | <u>6,125</u>  | 466,7            | 1'532              | 1'502               | 1'525         | 4'012               | *°34                                        |
| 8'233          | 7,287               | 467,7          | 2'230          | 606'L         | 186'2            | 092'6              | 977,9               | 962'6         | 688'6               | Cr                                          |
| 0'032          | 0'100               | 0 <b>'03</b> 4 | 940,0          | 0'036         | 0,042            | 0'005              | 0'003               | 220'0         | 0'033               | ٨                                           |
| 211'0          | 4,294               | 0/1/0          | 780,4          | eep,1         | S81,0            | 698,4              | 268'4               | 068,1         | 657,1               | TA                                          |
| C61'0          | 202'0               | 91Z'0          | 0'620          | 021'0         | 6°164            | 010'0              | 0'035               | 820,0         | £01'0               | LI.                                         |
| ττο'ο          | 0,003               | 0'013          | 200,0          | 460'D         | 610'0            | 900'0              | 200,0               | <b>⊆00'0</b>  | 800'0               | IS                                          |
|                |                     |                |                |               |                  |                    |                     |               |                     |                                             |
| 809'001        | 96 <sup>°</sup> 532 | \$61'86        | <b>FIG,8</b> 8 | 241'66        | 116'86           | 186'66             | SZS'66              | 100,234       | 68'66               | [nto]                                       |
| ¢35¢           | 0+1'1               | 094'0          | 1'430          | 926'0         | \$\$ <b>2</b> '0 | \$00'I             | 0'805               | 218,0         | 099'0               | Ouz                                         |
| t+90'0         | £00,0               | 000'0          | 0'000          | 000'0         | \$C0'0           | 000'0              | 000'0               | 000'0         | 950'0               | OIN                                         |
| 0'333          | ++1'0               | 261'0          | 0'528          | 881,0         | 0'542            | 6+140              | 0'135               | 000'0         | 0'556               | 0°0                                         |
| 78E,1E         | 35'002              | 026,06         | 125,46         | \$68,0E       | 30,428           | 52'190             | 56,243              | 56,053        | 58'205              | Oəq                                         |
| 518'0          | 1'123               | 011'1          | 985,1          | 611'1         | 180'1            | 972'0              | 867,0               | \$82'0        | 828'0               | Oum                                         |
| 101'0          | E84,0               | 640'0          | 294,0          | 961'0         | 0'032            | 196'4              | 4'938               | 998,4         | 620'Z               | O <sub>8</sub> M                            |
| 186,00         | 869'21              | 32'411         | 6'995          | 242'27        | 91,864           | 860'9              | 616'S               | 962'9         | 214,81              | rc <sub>2</sub> O <sub>2</sub> 3            |
| 32'88 <u>9</u> | 33'386              | 467,16         | 621'46         | 484'CC        | 300'EE           | 228'SÞ             | 694,24              | 42'840        | 691'66              | Cr3O3                                       |
| 601,0          | 0440                | 961,0          | 0'301          | 0'101         | 121'0            | 110'0              | ¢10'0               | 0'132         | 661,0               | ٥٥٤ ٨                                       |
| 0`336          | 12,804              | 100,0          | 13'140         | 600,f         | f1819            | 15 <sup>1</sup> 34 | 856 <sup>1</sup> 51 | 12'564        | 6,133               | °04                                         |
| 058'0          | 896'0               | 0'658          | 4'433          | 852'0         | SI 7,0           | 840'0              | 951'0               | 0+140         | 274,0               | LiO3                                        |
| BEO,0          | 600'0               | 860,0          | 800,0          | 511'0         | +90'0            | 0'033              | 900'0               | 810'0         | 220'0               | ¢Ois                                        |
|                |                     |                |                |               |                  |                    |                     |               |                     |                                             |
| minibiamaini   | Cœur                | Bothing        | Court          | misib3anaini  | ampiog           | Cœur               | autrog              | Cœur          | autnog              | Chromite                                    |
| Harzb A chro   | Webst               | Mcbat          | Webat          | Webst         | Mcbat            | Chr Sil            | Chrail              | CPr BIJ       | CPr BIJ             | -ithologic                                  |
| 91             | 42                  | 34             |                | 91            |                  | 99                 | 89                  |               | 89                  | Juiod                                       |
| CO-1767-HM-70  | 10-1262-HW-26       | 10-12-2-HW-26  | 10-1202-HW-26  | 10-1262-HW-26 | 10-1202-HW-26    | R.Chaz.KM.70       | 8-2492-HM-76        | 8-242-HM-79   | 8.2482-HM-79        | enollinanto3                                |

| Cr / (Fe <sup>3++Fe34</sup> ) / 10          | 16'0                | 25'0               | 58'0           | 84,0                        | S8,0           | 0'22               | 58'0            | 2S'0              | £6'0          | 85,0           |
|---------------------------------------------|---------------------|--------------------|----------------|-----------------------------|----------------|--------------------|-----------------|-------------------|---------------|----------------|
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 96'£1               | 43'65              | 80,81          | 69'09                       | 16,52          | 59'51⁄             | 26 <b>'</b> 91  | 62'EÞ             | 15'02         | 16,64          |
| W8/(W8+Ec3)                                 | 06'9                | ¢6'0               | 69,4           | SC'0                        | 86,4           | 09'0               | 12'4            | 16,1              | £6'L          | £1'I           |
| Cr/(Cr+AJ)                                  | 64,52               | 85'96              | 81,68          | 66'86                       | 66'29          | 20'86              | £0'29           | 02'26             | 93°42         | St'26          |
| Fe <sup>3+</sup> /Fe <sup>3+</sup>          | 06,00               | 98,0               | 16,0           | 00'1                        | 66,0           | 06'0               | SE'0            | £8,0              | 0*39          | 68,0           |
|                                             |                     |                    |                |                             |                |                    |                 |                   |               |                |
| latoT                                       | 54'032              | 54'031             | 54'013         | \$4,024                     | 54'039         | 54'036             | 54'036          | 54'052            | 210,45        | 54'051         |
| чz                                          | 101'0               | 940'0              | 690'0          | 950'0                       | <b>₽60'0</b>   | £11'0              | 180'0           | 180'0             | 940'0         | 0'095          |
| IN                                          | 000'0               | 600 <sup>4</sup> 0 | 000'0          | 810'0                       | 000'0          | 900'0              | 000'0           | 0'013             | 000'0         | S00'0          |
| <u>ల</u>                                    | 0'032               | 940'0              | 120'0          | 250'0                       | 760,0          | ZLO'O              | 290'0           | 0'035             | 0'056         | 690'0          |
| Pc <sup>2+</sup>                            | 926'2               | 2,893              | 228,7          | 188'2                       | 929'2          | 068'2              | 072,7           | 896'2             | 545,7         | 126'2          |
| αM                                          | 581'0               | 0'303              | 202'0          | 281'0                       | 202'0          | 661'0              | 0'302           | 871,0             | SE1,0         | 091'0          |
| 8M<br>B                                     | 245,0               | S20'0              | 086,0          | 820'0                       | 0'325          | 840,0              | ¥26'0           | 901'0             | 6633          | 160'0          |
| *c <sup>3+</sup>                            | 5'116               | 182'9              | 5'415          | 206'2                       | 5'231          | 1 <sup>,00,7</sup> | 5'930           | £17,ð             | C88,1         | 01-9'9         |
| Ct                                          | 699'8               | 696,8              | 017,8          | 149'2                       | 969'8          | 8'346              | 8,624           | 946' <del>8</del> | 895'8         | 644,8          |
| ٨                                           | 0'033               | 0'033              | £20'0          | C20'0                       | 0\$0'0         | 610'0              | 7E0,0           | 910'0             | 0'034         | 840,0          |
| IV                                          | \$9L'\$             | 967'0              | 188,6          | 870,0                       | 560'+          | 0'195              | 242,42          | 0,241             | 2'125         | 842,0          |
| Li                                          | 0'123               | 0'332              | \$\$\$'0       | 0'143                       | <b>782,0</b>   | 0'300              | 0,200           | 0'564             | 0'129         | 642,0          |
| !5                                          | 100'0               | £10'0              | £00 <b>,</b> 0 | 110'0                       | 100'0          | 210'0              | 100'0           | 800,0             | 600'0         | 110'0          |
|                                             |                     |                    |                |                             |                |                    |                 |                   |               |                |
| [AIO]                                       | 260'001             | S28'66             | 611001         | 86'503                      | 100.155        | \$61.001           | 001:001         | 229.927           | 100'123       | 889.99         |
| Ouz                                         | ¢6¢'0               | 145,0              | 0'333          | 0'549                       | 0'429          | 205'0              | 665,0           | 0'363             | 6.375         | 0'380          |
| OIN                                         | 000'0               | 250'0              | 000'0          | t 20'0                      | 000'0          | 0'052              | 000'0           | 0'024             | 0'000         | 0'050          |
| 000                                         | 0'114               | 0'319              | <b>4</b> 60'0  | 0,230                       | 6,164          | 0'588              | 222'0           | ÷61,0             | 211.0         | 0'505          |
| 0-1                                         | 958'16              | 006'16             | 33'595         | 0°220                       | 35'966         | 31,283             | 33'310          | 219'16            | 35'030        | 695'16         |
| OuM                                         | 682'0               | 062'0              | 178,0          | +12'0                       | 028,0          | 182'0              | 0'892           | 669'0             | 282'0         | 0'932          |
| 0 <sup>8</sup> W                            | 1'332               | 291'0              | 206'0          | 090'0                       | 148,0          | 901'0              | S68,0           | 0'536             | 1'248         | 0'505          |
| بور <b>ی</b>                                | 10 <sup>1</sup> 424 | \$88 <b>,</b> 92   | 004'11         | 540,95                      | 786'11         | 921'16             | 924,21          | 209'62            | 621'6         | 50'510         |
| Cr <sub>3</sub> O <sub>3</sub>              | 30'220              | 180'98             | 821'60         | 31'330                      | 181'60         | 34'288             | 966'86          | 92'124            | 209'60        | 196'96         |
| ٥٢٨،                                        | 841,0               | 160'0              | PES,0          | <del>6</del> 0'0            | 0'553          | 220'0              | 991'0           | 0,065             | 0'122         | 861'0          |
| °041                                        | 062,41              | 268,0              | 112'11         | 0'312                       | 926'21         | 0'422              | 12,849          | 089,0             | 12'639        | S69'0          |
| <sup>2</sup> ON                             | 0,732               | 0'665              | 2,146          | 619'0                       | 1'390          | 188,0              | 0'920           | 962'1             | , 992,0       | 1'336          |
| <sup>t</sup> Ois                            | 0'002               | 640,0              | 610,0          | 2E0'0                       | 0'003          | 0'022              | 610,0           | 220'0             | <b>₽</b> £0,0 | 260,0          |
|                                             |                     |                    |                |                             |                |                    |                 |                   |               |                |
| Chromite                                    | Cœm                 | Bordure            | Cœm            | Bordure                     | τιωΟ           | Intermédiaire      | Cœur            | ambroß            | Cœur          | antnoa         |
| rithologic                                  | Harzh à chro        | Hurzh à chro       | Наггр à спго   | нагар & срго                | Harzb à chro   | ondo à drush       | ordo à driaH    | dzıaH             | dzneiti       | dstaH          |
| 1ujod                                       | ງເ                  | 58                 | 42             | аЄ                          | 9E             | qb                 | <b>ə</b> ţ      | в[                | <b>q</b> 1    | 28             |
|                                             | 1                   |                    |                | 1 m n n 1 n 1 1 1 1 1 n 1 n | 20.1101.004.00 | 20.2102.000.00     | I PO TIOLIUM IC | I conticinum ic   | 1 CONTINUES   | CONT /CINUMA/G |

| <b>Echantillons</b>                       | 57-1757-HM-79 | 60-1767-HM-79 | 60-1757-HM-79 | 97-MH-7371-03 | 97-MH-7371-03 | 97-MH-7371-03 | 97-MH-7371-03 | 97.MH.7371.03 | 07-MH-7271-03 | 07-Mil-7471-00 |
|-------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|
| Point                                     | 2b            | 3a            | 3b            | 4 <b>a</b>    | 4b            | Sa            | Sh            |               |               | 51-1411-1-0    |
| Lithologic                                | Harzb         | Harzb         | Harzb         | Harzb         | Harzh         | Harzh         | Hamb          | Hout          |               |                |
| Chromite                                  | J.            | Bomburg       |               |               | 071011        |               | LIAIZO        | 11ALZO        | Harzb         | Harzb          |
|                                           |               | munici        |               | ampior        | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       | Cœur           |
| sio.                                      | avo o         | 0.005         | 0000          |               |               |               |               |               |               |                |
| Com.                                      | 00010         | 670'D         | 600'n         | 120'0         | 0,015         | 0,080         | 0,035         | 0,012         | 0,043         | 0,021          |
| 110 <sup>3</sup>                          | 1,926         | 1,348         | 1,322         | 0,957         | 0,916         | 0,698         | 1,239         | 0,525         | 0,469         | 1,025          |
| Al <sub>2</sub> O <sub>3</sub>            | 12,480        | 0,563         | 16,319        | 1,001         | 14,205        | 0,141         | 1,048         | 12,161        | 0,058         | 1,669          |
| V205                                      | 0,223         | 0,143         | 0,094         | 0,052         | 0,144         | 0,161         | 0,100         | 0,197         | 0,027         | 260.0          |
| Cr <sub>2</sub> O <sub>3</sub>            | 39,687        | 36,420        | 40,044        | 37,878        | 40,970        | 27,689        | 35,440        | 38,558        | 18.209        | 36.209         |
| Fe <sub>3</sub> O <sub>3</sub>            | 10,750        | 28,248        | 7,185         | 26,835        | 9,573         | 39,188        | 29,155        | 14,834        | 48.080        | 27.958         |
| MgO                                       | 1,187         | 0,175         | 1,786         | 0,249         | 1,351         | 0,132         | 0,263         | 1.031         | 0.000         | 0.304          |
| MnO                                       | 0,684         | 0,689         | 0,576         | 0,731         | 0,846         | 0,487         | 0,602         | 0,697         | 0,311         | 0.635          |
| Pc0                                       | 33,046        | 31,734        | 32,270        | 31,220        | 32,064        | 31,345        | 31.758        | 31.870        | 30.809        | 31 528         |
| coo                                       | 0,155         | 0,224         | 0,159         | 0,200         | 0,194         | 0.548         | 0.263         | 0.173         | 0.353         | 0.060          |
| NIO                                       | 0,000         | 0,015         | 0,030         | 0,000         | 000'0         | 0,131         | 0,082         | 0.000         | 0.005         | 0.020          |
| ZnO                                       | 0,285         | 0,297         | 0,361         | 0,282         | 0.401         | 0.312         | 0.286         | 0.300         | 1 306         | 0.975          |
| Total                                     | 100,431       | 99,881        | 100,155       | 99,426        | 100.679       | 100.912       | 100.271       | 100.358       | 08 760        | 00010          |
|                                           |               |               |               |               |               |               |               |               | no llar       | 010100         |
| Si                                        | 0,002         | 0,007         | 0,002         | 0,006         | 0,004         | 0,024         | 0,010         | 0,003         | 0.013         | 0.006          |
| ĨŢ                                        | 0,404         | 0,306         | 0,272         | 0,217         | 0,190         | 0,158         | 0,279         | 0,111         | 0,109         | 0.231          |
| ۸I                                        | 4,101         | 0,200         | 5,255         | 0,356         | 4,615         | 0,050         | 0'370         | 4,018         | 0.021         | 0.589          |
| >                                         | 0,050         | 0,035         | 0,021         | 0,013         | 0,032         | 0,039         | 0,024         | 0,044         | 0,007         | 0,023          |
| ප්                                        | 8,749         | 8,683         | 8,650         | 9,041         | 8,929         | 6,589         | 8,396         | 8,545         | 4,455         | 8,573          |
| Fe <sup>3+</sup>                          | 2,256         | 6,410         | 1,477         | 6,097         | 1,986         | 8,875         | 6,574         | 3,129         | 11,197        | 6,300          |
| Mg                                        | 0,493         | 0,079         | 0,727         | 0,112         | 0,555         | 0,059         | 0,117         | 0,431         | 0,000         | 0,136          |
| Mn                                        | 0, 162        | 0,176         | 0,133         | 0,187         | 0,198         | 0,124         | 0,153         | 0,165         | 0,081         | 0,161          |
| Fc <sup>2+</sup>                          | 7,706         | 8,003         | 7,373         | 7,883         | 7,392         | 7,890         | 7,958         | 7,471         | 7,974         | 7,896          |
| 8                                         | 0,035         | 0,054         | 0,035         | 0,048         | 0,043         | 0,132         | 0,063         | 0,039         | 0,088         | 0,016          |
| īž                                        | 0,000         | 0,004         | 0,007         | 0,000         | 0'00          | 0,032         | 0,020         | 000'0         | 0,001         | 0,005          |
| Zn                                        | 0,059         | 0,066         | 0,073         | 0,063         | 0,082         | 0,069         | 0,063         | 0,062         | 060'0         | 0,083          |
| Totai                                     | 24,017        | 24,023        | 24,025        | 24,023        | 24,026        | 24,041        | 24,027        | 24,018        | 24,036        | 24,019         |
| ;                                         |               |               |               |               |               |               |               |               |               |                |
| Fer/Fer                                   | 0,29          | 0,80          | 0,20          | 0,77          | 0,27          | 1,12          | 0,83          | 0,42          | 1,40          | 0,80           |
| Cr/(Cr+Al)                                | 68,09         | 97,75         | 62,21         | 96,21         | 65,93         | 99,25         | 95,78         | 68,02         | 99,53         | 93,57          |
| Mg/(Mg+Fc <sup>*</sup> )                  | 6,01          | 0,98          | 8,98          | 1,40          | 6,98          | 0,74          | 1,45          | 5,45          | 00'0          | 1,69           |
| Fe"/(Fe"+Al+Cr)                           | 14,93         | 41,91         | 9,60          | 39,35         | 12,79         | 57,21         | 42,86         | 19,94         | 71,44         | 40,75          |
| Cr / (Pe <sup>2+</sup> +Fe <sup>3</sup> ) | 0,88          | 0,60          | 0,98          | 0,65          | 0,95          | 0,39          | 0,58          | 0,81          | 0,23          | 0,60           |

| C1 (19, 16, 16, 17)     0°04     0'13     0°04     0'13     0'13     0'13     0'14     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11     1'11<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | ( 010 1        | #olo 1        |                     | 0010          |               |               | · • • • •     | anta 1              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------------|---------------------|---------------|---------------|---------------|---------------|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 19'0           | 0.02          | 00°T                | £9.0          | 50.1          | 84.0          | 26'0          | 99'0                | 0'13           | Ct / (Ec3+Fc3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MR(MR-K)     0     5/0     5/0     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2     5/2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99'11         | 11.95          | 67.79         | 58.01               | 58.05         | 99.8          | £7.02         | 13.00         | 16.76               | 83.86          | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| μενημεν     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52.54         | 19'1           | 00.0          | 52'52               | 1'29          | 24.55         | 0'25          | 02'6          | 06'1                | 00'0           | ( <sup>1</sup> 54+8M)/8M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sk_Nk_s_s     1''e     0''s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +1.68         | 65'19          | 00'001        | 62,92               | 64'96         | 19'21         | <b>₩8,8</b> 0 | 92'92         | 65'95               | 12'66          | Cr/(Cr+VI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lamin     S4/02     S4/01     S4/02     S4/03     S4/03 <th< td=""><td>00'0</td><td>08,0</td><td>1'04</td><td>0'30</td><td>0'83</td><td>0'53</td><td>1'05</td><td>0'58</td><td>92'0</td><td>99'î</td><td>եշ<sup>3+</sup>\Բշ<sup>3+</sup></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00'0          | 08,0           | 1'04          | 0'30                | 0'83          | 0'53          | 1'05          | 0'58          | 92'0                | 99'î           | եշ <sup>3+</sup> \Բշ <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Second     Second<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 600'47        | 700'47         | 000/67        | 550 <sup>1</sup> 12 | 540'47        | 770'47        | 120'52        | 610'17        | 000'12              | 770'17         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| x     0,016     0,000     0,010     0,000     0,010     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,000     0,011     0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31 000        | 180'0          | 0'030         | 240'0               | 90'0'S        | 890'0         | 34 031        | 800'0         | 31 030              | 1000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| M     Ούτις     Ούσι     Ούσι <th<< td=""><td>910'0</td><td>800'0</td><td>910'0</td><td>600'0</td><td>110'0</td><td>010'0</td><td>500°0</td><td>100'0</td><td>200'0</td><td>010'0</td><td>111</td></th<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 910'0         | 800'0          | 910'0         | 600'0               | 110'0         | 010'0         | 500°0         | 100'0         | 200'0               | 010'0          | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Corr     Corr <thcorr< th="">     Corr     Corr     <th< td=""><td>000'0</td><td>+90'0</td><td>060'0</td><td>/60'0</td><td>990'0</td><td>et0'0</td><td>0,010</td><td>0001</td><td>160'0</td><td>910 0<br/>SC0'0</td><td>N</td></th<></thcorr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000'0         | +90'0          | 060'0         | /60'0               | 990'0         | et0'0         | 0,010         | 0001          | 160'0               | 910 0<br>SC0'0 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spannillow     0,000     0,141     0,1230     0,1230     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123     0,123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 441'0         | 600'/          | 0000          | 600'0               | 980 0         | 0/6'0         | 600'1         | 9011          | 1000                | 076'/          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| βμικη     βγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CR1'0         | 0992           | 000'0         | 2 400               | 712'0         | 020 5         | 008 Z         | 861 2         | 112.2               | 926 2          | B <sup>0</sup> 3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Math     Open     Open <t< td=""><td></td><td>141'0</td><td>000'0</td><td>9010</td><td>271'0</td><td>561 0</td><td>55C U</td><td>10110</td><td>080.0</td><td>1700</td><td>8<br/>8</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 141'0          | 000'0         | 9010                | 271'0         | 561 0         | 55C U         | 10110         | 080.0               | 1700           | 8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Schull     Π     L     L     C     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S </td <td>682 I</td> <td>(17,0</td> <td>0000</td> <td>928 6</td> <td>6/0'0</td> <td>1 043</td> <td>1400</td> <td>292.0</td> <td>691 U</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 682 I         | (17,0          | 0000          | 928 6               | 6/0'0         | 1 043         | 1400          | 292.0         | 691 U               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Characterilization     97-MH-7771-04     97-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 208.0         |                | 500 51        | 909 1               | 026.9         | 896 1         | . 026.2       | 3 031         | 698.2               | 681 61         | 5°31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alternilization     Stantilization     Stantilization <tt>Stantilization</tt>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 298.8         | 222 8          | 1690          | 692.8               | 848.8         | 191.6         | 1992          | 088.8         | 8,902               | 612.2          | Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Abiti     Jack     Abit     Abit </td <td>0033</td> <td>0.038</td> <td>0013</td> <td>0 034</td> <td>500 0</td> <td>6100</td> <td>0 003</td> <td>0030</td> <td>EEUU</td> <td></td> <td><u>^</u></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0033          | 0.038          | 0013          | 0 034               | 500 0         | 6100          | 0 003         | 0030          | EEUU                |                | <u>^</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chandlibona     77-00-10     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70     97-00-17-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 950 7         | 272.0          | 0000          | 891 5               | 685.0         | 090 S         | 060 0         | 2090          | 602.0               | 800.0          | tv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| According     Provint Provided in the Prov | 9910          | 0 132          | 2000          | 261 0               | 861 0         | 920 0         | £110          | 0 184         | 0 302               | \$00.0         | ۶ <u>۱</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Activitization     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-04     97-441-7371-041-7371-041-7371-041-7371-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0003          | 600 0          | 8100          | 100 0               | 800.0         | 0000          | 600 0         | 0.002         | 0100                | ¥10'0          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Activity     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-17371.04     37.400-1732.04     37.400-1732.04 <td>£\$9'66</td> <td>006'66</td> <td>EFE,001</td> <td>100'083</td> <td>685,66</td> <td>018'66</td> <td>624'66</td> <td>206,001</td> <td>100<sup>4</sup>66</td> <td>+18'00I</td> <td>1610.1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £\$9'66       | 006'66         | EFE,001       | 100'083             | 685,66        | 018'66        | 624'66        | 206,001       | 100 <sup>4</sup> 66 | +18'00I        | 1610.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Activity     37.4H1-7371.04     37.4B0     37.4B0       Chock     Chock     Chock     Chock     Chock     Chock     Chock     Chock     Chock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0'523         | S65,0          | 0,247         | 0'319               | 0'436         | ++E'0         | 0'341         | 0'336         | E/Z'0               | 572'0          | 042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Activity     Descriptions     97-MH-7371-04     97-MH-7371-04<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £40'0         | 160,0          | ¥10'0         | 1 +0'0              | \$P0,0        | 240'0         | 910'0         | /00'0         | /00'0               | S90'0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Schamillana 97-MH-7371-04 97-MH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000'0         | 692'0          | 196,0         | 954,0               | 956'0         | 890'0         | 9/1'0         | 991'0         | 785'0               | 912'0          | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Schanillona   97-MH-7371-04   97-MH-737-04   97-MH   97-MH   97-MH   97-MH   97-MH <td< td=""><td>081'/2</td><td>20'985</td><td>146,05</td><td>52'52</td><td>026,05</td><td>59'91.5</td><td>199'00</td><td>766'08</td><td>LSO'LE</td><td>641,16</td><td>0.9</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 081'/2        | 20'985         | 146,05        | 52'52               | 026,05        | 59'91.5       | 199'00        | 766'08        | LSO'LE              | 641,16         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Absolutions   97-MH-7371-04   97-MH-737-97-97-97-97-97-97-97-97-97-97-97-97-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108'0         | 670'1          | 000'0         | 7/4'0               | 290'1         | 869'0         | 706'0         | 810'1         | 861'1               | 90110          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Schantillonia   97.MH-7371.04   97.19   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013 <td< td=""><td>156,6</td><td>415'0</td><td>000'0</td><td>+00/9</td><td>1/2'0</td><td>0/8'5</td><td>060'0</td><td>1,000</td><td>9:270</td><td>000'0</td><td>M80</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156,6         | 415'0          | 000'0         | +00/9               | 1/2'0         | 0/8'5         | 060'0         | 1,000         | 9:270               | 000'0          | M80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Schentillons   97.MH-7371.04   97.MH-737.04   97.MH-737.04   97.MH-737.04   97.MH-737.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/6'8         | 51/300         | 76/'99        | 664'8               | E+0'8Z        | S6/'9         | 6///₩         | SS/'6         | SOL C               | +86'/6         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Columnilions   97-MH-7371-04   97-MH-7371-04 </td <td>086'16</td> <td>091'/2</td> <td>9//'1</td> <td>/6/'1#</td> <td>610'/2</td> <td>C6Z'Eb</td> <td>9//10</td> <td>68/10h</td> <td>9164/5</td> <td>+05'11</td> <td>C1303</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 086'16        | 091'/2         | 9//'1         | /6/'1#              | 610'/2        | C6Z'Eb        | 9//10         | 68/10h        | 9164/5              | +05'11         | C1303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Schenntllona   97-MH-7371-04   97-MH-7371-04 </td <td>0'122</td> <td>911'0</td> <td>640'0</td> <td>SIL'O</td> <td>170'0</td> <td>0,026</td> <td>/00'0</td> <td>8/1'0</td> <td>1+1'0</td> <td>070'0</td> <td>2-0<br/>403</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0'122         | 911'0          | 640'0         | SIL'O               | 170'0         | 0,026         | /00'0         | 8/1'0         | 1+1'0               | 070'0          | 2-0<br>403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chantillona     97-MH-7371-04     97-MH-737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>      | 3,120          | 000'0         | 19'234              | £60't         | 689'91        | 752'0         | /15,61        | 97.0'7              | 570'0          | 5091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Schenntillona     97-MH-7371.04     97-MH-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 614'0         | <u> </u>       | 250'0         | 989'0               | 809'0         | 946'0         | S640          | 688'0         | 916'0               | +z0'0          | 50U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| λοιαιατίβοπε   97.ΜΗ.7371.04   97.ΜΗ.7371.04   97.MH.7371.04   97.MH.7371.04<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | £10'0         | 0'036          | 650'0         | 500'0               | 0'039         | 000'0         | 670'0         | \$30'0        | +50,0               | 960'0          | interest of the second s |
| موال:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |               |                     |               |               |               | 200 0         |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Altropole     Dremariliona     D7-MH-7371.04     D7-MH 7371.04     D7-MH 7371.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cœur          | oninitriumonal | aubiofi       | Cœur                | Bordure       | Cœm           | ənisibəmətat  | Cœm           | nisibèmətni         | Bordure        | Chromite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Point     1s     1b     1c     2b     2b     3c     3a     3b     4a     4b     4c       Point     1s     1b     1c     2b     3c     3a     3b     4c     4c <t< td=""><td>Нагар à съго</td><td>ondo à danali</td><td>tarzb à chra</td><td>ento à driaH</td><td>tarzb à chro</td><td>она à drush</td><td>олло à dauah</td><td>endo à druaH</td><td>ordo à danaH</td><td>outo à drusti</td><td>aigolottii.</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Нагар à съго  | ondo à danali  | tarzb à chra  | ento à driaH        | tarzb à chro  | она à drush   | олло à dauah  | endo à druaH  | ordo à danaH        | outo à drusti  | aigolottii.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| anollinado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94            | qu             | 84            | 9C                  | аС            | 30            | 3P            | Jc            | 91                  | al<br>A        | Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +0-1767-HM-70 | +0-1757-HM-70  | 40-1767-HM-79 | +0-1767-HM-70       | 40-1767-HM-70 | +0-1767-HM-70 | 40-1767-HM-79 | +0-1765-HM-70 | 40-1767-HM-70       | +0-1767-HM-70  | Schantillons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|               |               |                |               | ····           |                    |               |               |               |                    |                                           |
|---------------|---------------|----------------|---------------|----------------|--------------------|---------------|---------------|---------------|--------------------|-------------------------------------------|
| 29'0          | 60'1          | 85,0           | 80'1          | 09'0           | 00'1               | 90'î          | 69'0          | £0,1          | SC'0               | Cr / (Fe <sup>3++Fe</sup> <sup>3+</sup> ) |
| 43'58         | 16,01         | 52'EÞ          | 09'6          | 45'31          | 10'33              | 86,9          | 85'65         | 58'01         | <del>\$</del> 2'09 | Fc3*/(Fc3*+AI+Ct)                         |
| 26'1          | 13'16         | 50'1           | 87,71         | 06'0           | St/6               | 56'41         | 15'1          | 11'51         | 84,0               | M8/(M8+Fe <sup>34</sup> )                 |
| 51'+6         | ¥6'19         | 20'26          | 98,00         | ET '96         | 95'32              | 89'09         | 66,533        | 17,28         | <b>48,8</b> 0      | (IA+10)/10                                |
| 98'0          | 6,24          | <b>78,0</b>    | 52'0          | <b>\$8,0</b>   | ZZ'0               | 0'35          | 87,0          | 0'32          | 1'50               | եշ <sup>34</sup> /Իշ <sup>34</sup>        |
|               |               |                |               |                |                    |               |               |               |                    |                                           |
| 160,42        | 54'013        | 54'032         | 24'002        | 24'038         | 54'013             | 54'050        | 54'032        | 24'012        | 24,043             | Total                                     |
| 60'0          | 910'0         | Z90'0          | 0,045         | <b>\$60'0</b>  | 250'0              | ++0'0         | 950'0         | 280,0         | 680,0              | uZ                                        |
| 010'0         | 000'0         | 100'0          | 000'0         | 0'019          | 000'0              | 000'0         | 0'050         | 000'0         | 0'035              | IN                                        |
| 190'0         | 0,026         | +20'0          | 500'0         | ¢20'0          | 0'051              | 690'0         | 860'0         | 810,0         | 860,0              | စ                                         |
| 619'2         | 6,842         | 7,830          | SI S'9        | 208,7          | 6+1'2              | 202'9         | L8L'L         | SE7,8         | 606'2              | եշ <sup>3+</sup>                          |
| 0'503         | 061'0         | 0'532          | ÷21'0         | 0,228          | 621'0              | 0,182         | 6,217         | 081'0         | 971'0              | υW                                        |
| 211'0         | 1'040         | 680,0          | 604'I         | 120'0          | 942,0              | 621'1         | 611'0         | 661'1         | 860,0              | 8W                                        |
| 804'9         | 768, I        | S6 <b>Ľ</b> '9 | 909'I         | 29S'9          | 209'1              | 474,I         | 9'102         | 769'1         | 124'6              | Pc <sup>3+</sup>                          |
| <i>LL</i> 2'8 | 127,8         | 874,8          | 8'633         | 8,642          | 662'8              | 849,8         | 122,8         | 912'8         | 6,051              | Ct                                        |
| 610'0         | 160,0         | 0'030          | 660,0         | 0'034          | 160'0              | 0'018         | 0'045         | S+0'0         | 820,0              | ٨                                         |
| 0'214         | 292'9         | 0'390          | 2'223         | 846,0          | \$'31 <del>4</del> | 2'603         | LZ9'0         | ₽81,2         | 120'0              | IV                                        |
| S61'0         | 0'102         | <b>281 '</b> 0 | 0'139         | 191'0          | 201 <b>'</b> 0     | 0'103         | 581'0         | 091'0         | 661,0              | I.I.                                      |
| 0'012         | 900'0         | £10'0          | 0'005         | 110'0          | £00,0              | 900'0         | 800,0         | 900'0         | 200'0              | IS                                        |
|               |               |                |               |                |                    |               |               |               |                    |                                           |
| \$92'86       | 929'86        | 182'86         | 928,828       | 006,990        | 862'86             | 682'66        | 956'66        | 060'66        | 985'001            | latoT                                     |
| 214'0         | 222'0         | 922'0          | 0'333         | 0'433          | 912,0              | 0'551         | 0'323         | 20+'0         | 0 <sup>,</sup> 372 | Ouz                                       |
| 1+0'0         | 000,0         | <b>\$00</b> °0 | 000'0         | 990'0          | 000'0              | 000'0         | 180'0         | 000'0         | 060'0              | OIN                                       |
| 152'0         | 911'0         | 202,0          | 0'032         | 0'303          | 960'0              | 0'396         | 204'0         | t 80'0        | 404,0              | 000                                       |
| 644'00        | 0\$7,95       | 30'223         | 28,666        | 587,05         | 95 <b>7</b> ,0£    | 56'255        | 30'632        | 565,295       | 172,15             | 0.99                                      |
| 162'0         | 218,0         | 298'0          | SS7,0         | 888,0          | 192'0              | 261,0         | 0\$850        | <i>LLL</i> '0 | E64,0              | OaM                                       |
| 652,0         | 3'236         | 0,182          | 874,6         | 951'0          | 109'1              | 5'610         | 0'364         | 5'639         | 280,0              | O <sub>8</sub> M                          |
| 59,346        | 016'2         | 39,465         | 296,7         | 661,82         | S89'L              | 802,7         | 56'946        | 902'8         | SI9'IÞ             | Fe3O3                                     |
| 694,463       | 40'154        | 626'46         | 821'05        | 990'98         | 040,04             | 40,253        | 36,843        | 40,236        | 52'308             | Cr103                                     |
| 620'0         | 1+1'0         | 080,0          | 821'0         | <b>∠60'0</b>   | 861,0              | £80,0         | \$21'0        | 0'503         | Stt'o              | ٥٤٨ مي                                    |
| 764,1         | 16,538        | 022'0          | 266'21        | \$ <u>46</u> 0 | 16,222             | 105'21        | 894,1         | ES0'91        | 861'0              | VI <sup>3</sup> O <sup>2</sup>            |
| +58,0         | 905'0         | 018'0          | 919'0         | 904'0          | ¥19'0              | 905'0         | 618'0         | +22'0         | 0'010              | LiO <sup>3</sup>                          |
| 840,0         | 120'0         | 0'045          | 800,0         | 860,0          | 010'0              | 0'054         | 0'036         | 0'035         | 0'032              | <sup>z</sup> Ois                          |
|               |               |                | 1             | 1              | l                  |               | 1             | 1             |                    | 1                                         |
| Bordure       | Cœnt          | Bordure        | Cœm           | Bordure        | Cœm                | Cœnt          | Bordure       | Cœm.          | ວາເເກເອ            | Chromite                                  |
| Chr Sil       | Chr Sil       | Chr Sil        | Chr Sil       | Chr Sil        | Chr Sit            | Chr Sil       | Chr Sil       | IIS JUD       | Chr Sil            | sigolodrij                                |
| QP            | 2P            | 5a             | q₽            | 84             | 30                 | SP            | а2            | 91            | ы                  | Point                                     |
| S0-1767-HM-76 | 50-1767-HM-76 | S0-1757-HM-76  | 20-17CT-HM-76 | S0-1767-HM-76  | \$0-1767-HM-70     | S0-1767-HM-76 | SO-1767-HM-76 | S0-1767-HM-76 | S0-1757-HM-70      | enollinado3                               |

| Échantillons                              | 97-MH-7371-05 | 90-17371-06 | 90-17371-06 | 90-1767-HM-79 | 90-1757-HM-79 | 90-17371-06 | 97-MH-7371-06 | 97-MH-7371-06 | 90-1767-HM-79 | 97-MH-7371-06 |
|-------------------------------------------|---------------|-------------|-------------|---------------|---------------|-------------|---------------|---------------|---------------|---------------|
| Point                                     | ę             | la          | lb          | 2             | 4a            | 4b          | ß             | бя            | 6b            | 78            |
| Lithologic                                | Chr Sil       | Harzh / Chr | Harzb / Chr | Harzb / Chr   | Harzb / Chr   | Harzb / Chr | Harzb / Chr   | Harzh / Chr   | Harzb / Chr   | Harzb / Chr   |
| Chromite                                  | Cœur          | Bordure     | Cœur        | Cœur          | Bordure       | Cœur        | Cœur          | Bordure       | Cœur          | Bordure       |
|                                           |               |             |             |               |               |             |               |               |               |               |
| sio,                                      | 0,008         | 0,048       | 0,031       | 200'0         | 0,049         | 0,007       | 0,016         | 0,059         | 0,007         | 0,044         |
| Tio,                                      | 0,735         | 0,957       | 0,495       | 0,727         | 0,978         | 0,625       | 0,596         | 1,134         | 0,521         | 0,905         |
| Al <sub>3</sub> O <sub>3</sub>            | 17,462        | 5,157       | 16,825      | 16,984        | 2,613         | 17,151      | 17,576        | 1,871         | 16,836        | 4,575         |
| V <sub>2</sub> O3                         | 0,102         | 0,130       | 0,164       | 0,161         | 0,126         | 0,088       | 0,140         | 0,176         | 0,103         | 660'0         |
| Cr <sub>3</sub> O <sub>3</sub>            | 39,228        | 37,775      | 41,636      | 41,221        | 36,700        | 41,333      | 41,966        | 35,330        | 41,315        | 36,132        |
| Fe <sub>3</sub> O <sub>3</sub>            | 8,117         | 21,760      | 7,181       | 7,592         | 25,322        | 7,098       | 7,350         | 26,951        | 7,398         | 23,715        |
| MgO                                       | 3,655         | 0,499       | 3,645       | 4,713         | 0'360         | 3,885       | 6,421         | 0,285         | 3,662         | 0,429         |
| МпО                                       | 0,712         | 0,719       | 0,599       | 0,489         | 0,697         | 0,526       | 0,425         | 0,761         | 0,553         | 0,659         |
| FeO                                       | 28,585        | 31,382      | 28,553      | 27,279        | 30,993        | 28,484      | 24,725        | 30,905        | 28,569        | 31,168        |
| 000                                       | 0,000         | 0,188       | 0,065       | 000'0         | 0,235         | 0,223       | 060'0         | 0,111         | 0,074         | 0,275         |
| Nio                                       | 0,005         | 0,042       | 0,046       | 0,040         | 0,064         | 0'000       | 0,027         | 0,080         | 0'000         | 600'0         |
| Zn0                                       | 0,302         | 0,282       | 0,335       | 0,293         | 0,219         | 0:330       | 0,053         | 0,342         | 0,417         | 0,332         |
| Total                                     | 98,911        | 98,939      | 99,575      | 99,506        | 98,356        | 99,750      | 99,385        | 98,005        | 99,455        | 98,342        |
|                                           |               |             |             |               |               |             |               |               |               |               |
| SI                                        | 0,002         | 0,014       | 0,008       | 0,002         | 0,015         | 0,002       | 0,004         | 0,018         | 0,002         | 0,013         |
| F                                         | 0,150         | 0,213       | 0,101       | 0,147         | 0,222         | 0,126       | 0,119         | 0,260         | 0,106         | 0,203         |
| 7                                         | 5,582         | 1,798       | 5,360       | 5,370         | 0,931         | 5,440       | 5,479         | 0,672         | 5,371         | 1,612         |
| >                                         | 0,022         | 0,031       | 0,036       | 0,035         | 0,031         | 0'019       | 0,030         | 0,043         | 0,022         | 0,024         |
| ц                                         | 8,412         | 8,836       | 8,898       | 8,743         | 8,768         | 8,796       | 8,777         | 8,514         | 8,842         | 8,543         |
| Fe <sup>3+</sup>                          | 1,657         | 4,845       | 1,461       | 1,533         | 5,758         | 1,438       | 1,463         | 6, 182        | 1,507         | 5,336         |
| Mg                                        | 1,478         | 0,220       | 1,469       | 1,885         | 0,162         | 1,559       | 2,532         | 0,130         | 1,478         | 0,191         |
| Mn                                        | 0,164         | 0,180       | 0,137       | 0,111         | 0,178         | 0,120       | 0,095         | 0, 197        | 0,127         | 0,167         |
| Fe <sup>24</sup>                          | 6,484         | 7,765       | 6,454       | 6,120         | 7,832         | 6,411       | 5,469         | 7,878         | 6,467         | 7,795         |
| კ                                         | 000'0         | 0,045       | 0,014       | 0'00          | 0,057         | 0,048       | 0,019         | 220'0         | 0,016         | 0,066         |
| Ni                                        | 0,001         | 0,010       | 0,010       | 0,009         | 0,015         | 0,000       | 0,006         | 0,020         | 0'000         | 0,002         |
| Zn                                        | 0,061         | 0,062       | 0,067       | 0,058         | 0,049         | 0,066       | 0,010         | 0,077         | 0,083         | 0,073         |
| Total                                     | 24,013        | 24,019      | 24,015      | 24,013        | 24,018        | 24,025      | 24,003        | 24,018        | 24,021        | 24,025        |
| 2 - 2 -                                   |               |             |             |               |               |             |               |               |               |               |
| Fe /Fe                                    | 0,26          | 0,62        | 0,23        | 0,25          | 0,74          | 0,22        | 0,27          | 0,78          | 0,23          | 0,68          |
| Cr/(Cr+AI)                                | 60,11         | 83,09       | 62,41       | 61,95         | 90,40         | 61,79       | 61,57         | 92,68         | 62,21         | 84,13         |
| Mg/(Mg+Fc <sup>*</sup> )                  | 18,56         | 2,76        | 18,54       | 23,55         | 2,03          | 19,56       | 31,65         | 1,62          | 18,60         | 2,39          |
| Fe"/(Fe"+AI+Cr)                           | 10,59         | 31,30       | 9,29        | 9,80          | 37,25         | 9,17        | 16,91         | 40,23         | 9,59          | 34,45         |
| Cr / (Fe <sup>rr</sup> +Fe <sup>3</sup> ) | 1,03          | 0,70        | 1,12        | 1,14          | 0,65          | 1,12        | 1,27          | 0,61          | 1,11          | 0,65          |

| 09'0            | 61,0           | 80't          | 65'0          | 00'1          | 19'0          | 21'0           | £6'0            | 29'0          | E0'I          | Cr / (Fe <sup>2++Fe<sup>3+</sup>)</sup>                  |
|-----------------|----------------|---------------|---------------|---------------|---------------|----------------|-----------------|---------------|---------------|----------------------------------------------------------|
| 05'85           | SE,68          | 66'11         | 41'43         | 98'11         | 41'15         | £E,87          | 13,23           | 58,44         | <i>LL</i> '6  | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +AI+C <sub>4</sub> ) |
| <del>6</del> '0 | 06,9           | 47,62         | 1'34          | 16'61         | 91'1          | 00'0           | 06.7            | ÷Ľ'0          | 13'30         | W8\(W8+Ec3+)                                             |
| 82'86           | 22 <b>,</b> 80 | 20'29         | 90'46         | 62,64         | 46,46         | 08,66          | · 95'92         | 04,80         | 02'09         | Cr/(Cr+VI)                                               |
| 28,0            | <b>₽8,1</b>    | 15,0          | 08,0          | 22'0          | 18,0          | 1'29           | 0`39            | 68,0          | 0,22          | եշ <sup>3•</sup> /Բշ <sup>3•</sup>                       |
|                 |                |               |               |               |               |                |                 |               |               |                                                          |
| 54'032          | 078,62         | 54'053        | 74,027        | 24'022        | 54'031        | 54'011         | 24'034          | 54'034        | 24'002        |                                                          |
| 0'085           | 120'0          | 980'0         | 990'0         | 6114          | <b>620,0</b>  | 0'031          | 611'0           | 650,0         | 940'0         | uz                                                       |
| 900'0           | 000'0          | 0'013         | 0.003         | 000.0         | 000'0         | 000'0          | 000'0           | £00.0         | 000'0         | IN                                                       |
| S60'0           | <u>0'092</u>   | ¥10'0         | 0,082         | 800,0         | 0'103         | 180,0          | 0'090           | 880,0         | 110'0         | <u>دە</u>                                                |
| S26'2           | 190'2          | ¢'024         | S16'L         | \$62'9        | 7,872         | 649,7          | 916'2           | 898'L         | 178,8         | Pe <sup>2+</sup>                                         |
| \$02'0          | 0'023          | 0'120         | 912'0         | 021'0         | 0,227         | 0'028          | 281'0           | 0,206         | 0'123         | uM                                                       |
| S70,0           | 627,0          | 288,1         | 660'0         | 860'1         | 0'033         | 000'0          | 285,0           | 0'026         | 1'042         | 8M                                                       |
| 015'9           | 13'829         | 878,1         | 246,8         | 1'862         | e'345         | 15'385         | £06'I           | £96'9         | 265'1         | *5 <sup>2</sup> 5                                        |
| E69'8           | 5'222          | 855,8         | 244,8         | 899'8         | 8'933         | 61410          | 855,8           | 8'456         | 189'8         | Cr                                                       |
| ¢10'0           | 110'0          | 0'052         | 0'038         | 0'033         | 600'0         | 0'033          | <b>\$\$</b> 0'0 | 0'034         | 660,0         | ^                                                        |
| 0'123           | 0'033          | 2'536         | ££\$'0        | 2'196         | 094'0         | 200 <b>'</b> 0 | 860'S           | LE1'0         | 189'9         | ťV                                                       |
| 0'593           | 220'0          | 0'156         | 0'383         | 201'0         | 0'536         | 640,0          | 291'0           | 0,184         | 001'0         | N                                                        |
| 910'0           | 0'359          | 0'003         | 210'0         | 0'005         | 0'015         | 810'0          | 6,013           | 110'0         | £00'0         | 15                                                       |
|                 |                |               |               |               |               |                |                 |               |               |                                                          |
| +20.001         | 100.258        | 271.001       | 66'823        | 006'66        | 958.66        | 100.334        | 100110          | 189'66        | \$C2.99       | latol                                                    |
| 296'0           | 0'331          | 0'434         | S67'0         | 895.0         | 0.242         | ¢60'0          | 985'0           | 621'0         | 0'330         | Ouz                                                      |
| 0'052           | 000'0          | 0'023         | 610.0         | 000'0         | 000'0         | 000'0          | 000'0           | <u>910'0</u>  | 0.000         | OIN                                                      |
| 265.0           | 122'0          | 890.0         | 146.0         | 260.0         | 424.0         | 166.0          | 0.269           | 196'0         | 0.049         | 000                                                      |
| 661.16          | 121'82         | 890.72        | 31'233        | \$08.92       | 31.320        | 861.16         | 962.15          | \$90'IC       | 30.243        | 02                                                       |
| 008,0           | 0'503          | 699'0         | 268,0         | 962'0         | 169'0         | 0'536          | 182'0           | 0,803         | 999'0         | Ouw                                                      |
| 291'0           | 129'1          | 4'238         | 0'531         | 5'201         | 0'502         | 0'000          | 724.1           | 161,0         | 2'280         | OgM                                                      |
| 58'203          | 22'238         | 166,331       | 58'105        | 820'6         | 28'041        | 01/6'69        | 681'6           | 20'293        | 025'1         | °0'0                                                     |
| 924'98          | 262'01         | 694,04        | 32'282        | 412,04        | 36,286        | 871,41         | 39,340          | 32'505        | 40'139        | <sup>1</sup> 0 <sup>1</sup> 10                           |
| 090'0           | 0,044          | 811,0         | 911'0         | 241'0         | 6'036         | SC1'0          | 002'0           | 0,140         | 6/1'0         | 1,103                                                    |
| 724,0           | £60'0          | 885,01        | 1'205         | 780,01        | 862'1         | 0,020          | 12,721          | 586,0         | 164'21        | 1303                                                     |
| 1'105           | 611'0          | 0,640         | 1'524         | 0'231         | 650't         | 0'313          | SE7,0           | 909'0         | 884,0         | °OI.                                                     |
| CS0'0           | 060't          | 0'015         | 1+0'0         | 200'0         | 140'0         | 620'0          | 9+0'0           | 260,0         | 0'015         | <sup>2</sup> OIS                                         |
|                 |                | ·             |               |               |               |                |                 |               |               | }                                                        |
| Intermédiaire   | Bordure        | Cœm           | Bordure       | Cœur          | Intermédiaire | nutrofl        | Cœm             | Cœm           | Coent         | Chromite                                                 |
| исто а спо      | сплэ à сплэ    | ondo à druali | lierzh à chro | Onto & draw   | Herzh A chro  | Harzh à chro   | μειχρ φ εμιο    | Harzh à chro  | Harzb / Chr   | sigoloff).                                               |
| 49              | Bh             | 98            | лС            | 3C            | ्र            | 5u             | ्वा             | 1             | 92            | 1nio <sup>c</sup>                                        |
| 20-1267-HM-70   | 20-1202-HW-26  | 20-1202-HW-26 | 20-1267-HM-76 | 20-1267-HM-50 | 20-1767-HM-70 | 20-1265-HM-70  | 20-1767-HM-70   | 20-1767-HM-70 | 90-1267-HM-76 | anollituado5                                             |

| 89'0           | 1'32'         | 59'0          | 86,1               | ee'i          | 11'1          | 12'0                    | 91'1          | 08,0          | 68,0          | Cr / (Fe <sup>3++Fe<sup>3+</sup>)</sup> |
|----------------|---------------|---------------|--------------------|---------------|---------------|-------------------------|---------------|---------------|---------------|-----------------------------------------|
| 34'04          | 89'01         | 12'96         | 00'01              | 28,6          | 06'6          | 35'76                   | 15'6          | 27,62         | 60'+1         | $E^{c_{3*}}(E^{c_{3*}+VJ+C_1})$         |
| 5'36           | 92'66         | 2,84          | 40'3 <b>6</b>      | 19'26         | 65'91         | SI'E                    | 23'80         | 09'+          | £2'S          | M8/(M8+Fc <sup>2</sup> <sup>2</sup> )   |
| <u>99'98</u>   | 90'79         | 88,55         | 08'19              | SS'19         | 29'29         | 44 <b>,</b> 28          | 95'19         | 55,33         | 69'49         | Cr/(Cr+VJ)                              |
| 89'0           | 15'0          | +L'O          | 66,0               | 16,0          | 0'34          | <b>S9'</b> 0            | 0'32          | 05,0          | 0,29          | Ŀc <sub>3+</sub> ∫ Ec <sub>3+</sub>     |
|                |               |               |                    |               |               |                         |               |               |               |                                         |
| 54'036         | 200'42        | 54'035        | 54'000             | 566'52        | 24,008        | 54'032                  | 54'002        | 54'035        | 54'033        | Totul                                   |
| ₹20'0          | 4£0,0         | 820'0         | 0'030              | £10'0         | 940'0         | 990'0                   | 860,0         | 240'0         | 0'101         | uz                                      |
| 600'0          | 600'0         | 0'050         | 0'000              | 800'0         | 0'000         | 0'015                   | 0,008         | ÷10'0         | 000'0         | IN                                      |
| 290'0          | 000'0         | 0'054         | 0'014              | 000'0         | 910'0         | 620'0                   | 200,0         | 0'024         | 0'041         | တ                                       |
| 267,7          | 2,300         | 202'2         | 877,4              | 7992          | 624,8         | 7,634                   | 860'9         | 2'203         | 06+'L         | եշ <sub>3+</sub>                        |
| <u>0,205</u>   | 980,0         | 0'504         | 680'0              | 980'0         | 6+1'0         | 6,213                   | \$21'0        | 0,204         | 281'0         | uW                                      |
| 681,0          | 5'201         | 0'532         | 3,238              | 600'E         | 574,1         | 842,0                   | 108'1         | 296,0         | 524,0         | 8M                                      |
| 6 <i>L</i> Z'S | \$99't        | 669'S         | 1'252              | 642,1         | 1,554         | 966'b                   | 864'1         | 127,6         | 781,S         | •t <sub>5</sub> 3•                      |
| <b>438,8</b>   | LEL'8         | 102'8         | S47,8              | 977,8         | 298'8         | 900'6                   | 622'9         | 210'6         | 819'8         | Ct                                      |
| S+0'0          | 0'032         | 260'0         | 910'0              | 610'0         | 960,036       | 820'0                   | 620,0         | 0'035         | 940'0         | ٨                                       |
| 996'1          | 2+243         | 971,125       | S04,8              | 29422         | 2'585         | 1'232                   | 5,483         | 56'2          | 912'\$        | ۷I                                      |
| 581,0          | 201'0         | 781,0         | 0'153              | 0'115         | 911'0         | £91'0                   | 960'0         | ¢11'0         | 981'0         | NL NL                                   |
| 6,013          | 100'0         | 600'0         | 0'000              | £00'0         | 800,0         | S10'0                   | S00'0         | 800,0         | 0'005         | IS                                      |
|                |               |               |                    |               |               |                         |               |               |               |                                         |
| 211'66         | S07,96        | 921'66        | 999'66             | \$99'66       | <b>689'66</b> | SSI'66                  | S+6'66        | £02'66        | \$20'00I      | [ato]                                   |
| 0'358          | +21'0         | 626,0         | 0'128              | 990'0         | 0'531         | 0'303                   | <u>961'0</u>  | 912'0         | \$64'0        | OuZ                                     |
| 0'038          | 0'045         | 601'0         | 000'0              | 0'036         | 000'0         | 150'0                   | 0'039         | 090'0         | 0'00          | OIN                                     |
| 0'383          | 0'000         | ٤01'0         | 0,065              | 000'0         | 270,0         | 0'334                   | 110'0         | 0,233         | 0'183         | Co0                                     |
| 31'029         | 54'044        | 30,865        | 51'658             | 55'836        | 28'280        | 30'805                  | 316,72        | 990'18        | 33'329        | PcO                                     |
| 0'813          | 6,384         | 908,0         | £0 <del>1</del> ,0 | 986,0         | 0'920         | 768,0                   | 892'0         | 968,0         | <i>L6L</i> '0 | OnM                                     |
| 0'432          | 578,8         | 0,505         | 966,8              | L'122         | 3'995         | 195'0                   | 4'239         | 1+8,0         | 1'100         | OaM                                     |
| 33'262         | 466,8         | 32'393        | £10'8              | LL8'L         | 149'2         | \$0 <del>\$</del> '\$04 | 654'2         | 121'21        | 894'01        | Fe3O3                                   |
| 659'75         | 720,14        | 39'92         | 45'420             | 722,21        | 105'14        | 964,86                  | 865'14        | 694'66        | 36'526        | Ct <sup>3</sup> O <sup>2</sup>          |
| 881'0          | 611'0         | 951,0         | 620'0              | 0'532         | 991'0         | 0'5#5                   | 801 '0        | 261,0         | 202'0         | ٥٤٧ م.                                  |
| £68'£          | 661'21        | 891,6         | £09'71             | 269'21        | 685'91        | 46E,4                   | 12'430        | 029'8         | 14,413        | ۸۱ <sup>3</sup> O2                      |
| 0'836          | 0'243         | \$632<br>0    | 0'931              | 299'0         | 025'0         | 167,0                   | 624'0         | 0'254         | 068'0         | r0i7                                    |
| 0'045          | \$00'0        | 160'0         | 0'000              | 010'0         | 820'0         | 0\$0'0                  | 610'0         | 820,0         | 900'0         | <sup>2</sup> OIS                        |
|                |               |               |                    |               |               |                         |               |               |               |                                         |
| ampiog         | Cœnt          | aumod         | Cœut               | Cœnt          | züsibbarrınlı | Bordure                 | Cœut          | ងរាវាភាទម     | Cœm           | Chromite                                |
| Chr Sil        | CPr Sil       | Chr Sil       | CPt 2]]            | Chr Sil       | Chr Sil       | Chr Sil                 | 11S 140       | Chr Sil       | нятар й слго  | Lithologic                              |
| 59             | ٩ŀ            | вþ            | C                  | 50            | 39            | 28                      | वा            | BI            | 94            | Point                                   |
| 80-1765-HM-70  | 80-17CT-HM-70 | 80-17CT-HM-TQ | 80-1767-HM-70      | 80-1757-HM-79 | 80-1767-HM-79 | 80-1767-HM-70           | 80-1757-HM-70 | 80-1767-HM-70 | 20-1767-HM-70 | enolitnado3                             |

| 1'39              | <b>∠9'0</b>      | 1,04          | 09'0          | 90'1           | £7,0               | 20'1            | 99'0            | 36,135        | £0'T            | $Ct \setminus (E_{3+}+E_{2})$               |
|-------------------|------------------|---------------|---------------|----------------|--------------------|-----------------|-----------------|---------------|-----------------|---------------------------------------------|
| 81'6              | 06'88            | 85,01         | 45'35         | EE'01          | 58'13              | Z9'6            | 32'01           | 0 <b>2</b> '6 | 6'23            | Fc <sup>3+</sup> /(Fc <sup>3+</sup> +Al+Ct) |
| 30'32             | 5'30             | 14,12         | 1,14          | 06'21          | 21'E               | 66'91           | 2'21            | 96'8E         | 15'60           | (*57+8M)/8M                                 |
| £9'I 9            | 20,28            | 16'29         | 88'96         | 89'19          | 08'62              | 94,09           | L2,28           | 05'19         | 00'19           | Ct/(Ct+VJ)                                  |
| 0'39              | 89'0             | 42'0          | 28,0          | 52'0           | 85,0               | 6,23            | 17,0            | 16,0          | 0'33            | <sup>+€</sup> 54\*634                       |
|                   |                  |               |               |                |                    |                 |                 |               |                 |                                             |
| 54'013            | 420,45           | 54'031        | 24,027        | 54'031         | 54'030             | 54'015          | 210'62          | 54'002        | 54'015          | latoT                                       |
| 250'0             | 720'0            | \$60'0        | 840,0         | 190'0          | 190'0              | 240'0           | 090'0           | 140'0         | 1 50'0          | uZ                                          |
| 0'003             | 0'000            | 000'0         | 910'0         | 0'000          | \$00'0             | \$00 <b>,</b> 0 | 110'0           | 000'0         | 100'0           | IN                                          |
| 910'0             | \$\$0 <b>'</b> 0 | 0'014         | S60'0         | 0,043          | 240'0              | 0'031           | 9'032           | 000'0         | 810'0           | လ                                           |
| 2'241             | 49L'L            | 808,8         | 988,7         | \$°234         | 629'4              | 6'202           | 669'L           | 166'1         | 906'9           | <sup>46</sup> 34                            |
| 001'0             | \$81'0           | 6+1'0         | 681'0         | 0\$1'0         | 0'308              | 0\$t'0          | 0,204           | 680,0         | 6/1'0           | υW                                          |
| 314,2             | 061'0            | 611'1         | 160'0         | 1'452          | 0'321              | 1,344           | 861'0           | 690'E         | 966'0           | 8W                                          |
| 244'1             | 2,272            | 1,658         | 6'231         | 419'I          | 574,4              | 915'1           | \$24,2          | 1225,1        | 704,1           | ₽ <sup>6</sup> 3+                           |
| 8,622             | 942,8            | 8,820         | 8'913         | 8'939          | £98'8              | 659,8           | 8'943           | 447,8         | 999'8           | Cr                                          |
| 0'036             | 1 60'0           | 90'039        | ¢¢0'0         | 860,0          | 950,0              | SE0'0           | 940,0           | 820,0         | 660,0           | ٨                                           |
| 284,8             | 1'232            | 2'300         | 272,0         | 186,281        | 5'343              | 885'S           | £64,1           | \$4\$\$       | 2'240           | 14                                          |
| 680,0             | 921'0            | 611'0         | 0'531         | 0'148          | 0 <sup>1</sup> 194 | 160'0           | 0'148           | 501'0         | 511'0           | iT i                                        |
| 100'0             | 600'0            | 0,003         | 210'0         | 0'000          | 0,005              | 0'000           | 900'0           | 0'003         | ¢00'0           | IS                                          |
|                   |                  |               |               |                |                    |                 |                 |               |                 |                                             |
| 0/2'001           | S26'66           | 956,001       | 100'100       | 806'66         | 100,237            | S44,00          | 565'66          | 664'66        | 689'66          | latoT                                       |
| 962'0             | 166,0            | 574,0         | 6,214         | 205,0          | 0'386              | 0,227           | \$28,0          | 0'515         | 0'323           | Ouz                                         |
| 600'0             | 000'0            | 00010         | <b>₽</b> 90'0 | 0'000          | 0'033              | 0'050           | <b>\$\$0</b> ,0 | 0'000         | \$00 <b>'</b> 0 | OIN                                         |
| 870,0             | 672,0            | 690,0         | 966'0         | 861'0          | 102'0              | 860'0           | 6+1'0           | 2.00'D        | 180'0           | രം                                          |
| 52'188            | 31415            | 870,05        | 31'313        | 596'82         | 969'10             | 36'039          | 020'16          | 55'242        | 30,456          | ૦ગ્ય                                        |
| 024,0             | 647,0            | 869,0         | ++2'O         | 559'0          | 0,852              | 959'0           | 618,0           | 926'0         | 622'0           | Oum                                         |
| e'100             | 0'435            | C77,2         | 0'503         | 3'243          | 085,0              | SEC'E           | 644,0           | £78,7         | 5'463           | 0 <sup>8</sup> M                            |
| 212'2             | 59/52            | 061,8         | 28,828        | <b>#</b> \$6'2 | 50'250             | 644,7           | 54'220          | 652'2         | 966,7           | Fe3O3                                       |
| 45'431            | 555,75           | 512,14        | 2e2'9e        | 844,04         | 878,85             | 084,04          | 788,3C          | 45'383        | 524,04          | C <sup>r3</sup> O3                          |
| 0/1/0             | 161,0            | 891'0         | 0'182         | 221'0          | 6,164              | 0'105           | S61'0           | 0'132         | 091'0           | <sup>t</sup> O <sup>t</sup> ۸               |
| S02'21            | 4'450            | 662'91        | 182'0         | 826'91         | 798,8              | 965,71          | 912, p          | 292'21        | 266,71          | VJ <sup>5</sup> O <sup>2</sup>              |
| 02450             | S62'0            | 0*283         | 1,021         | ££7,0          | 222 <b>'</b> 0     | 944,0           | <i>L</i> 99'0   | 965,0         | 0'293           | rio,                                        |
| 0 <sup>,005</sup> | 160'0            | £10'0         | 850'0         | 000'0          | 810'0              | 000'0           | 0'031           | 0'010         | 6,013           | <sup>t</sup> OIS                            |
|                   |                  |               |               |                |                    |                 |                 |               |                 |                                             |
| Luao              | ລາມກາດສິ         | Cœnt          | ວມມາດອ        | Cœm            | ទារ/bioß           | Cœur            | Bordure         | Cœut          | Intermédiaire   | Chromite                                    |
| Cpr 31            | Cpt Sil          | Chr Sil       | CPt Sil       | Chrsu          | Chr Sil            | Chr Sil         | Chr Sil         | Chr Sil       | Chr Sil         | sigolodii                                   |
| 50                | Sа               | <u>q</u> t    | яl            | 92             | BY                 | <b>q9</b>       | вд              | 26            | <b>4</b> 5      | Iniof                                       |
| 60-1202-HW-26     | 60-1202-HW-26    | 60-1767-HM-76 | 60-1202-HW-26 | 80-1767-HM-76  | 80-1765-HM-70      | 80-1757-HM-70   | 80-1765-HM-79   | 80-1757-HM-72 | 80-1757-HM-79   | enollinedo3                                 |

#### .(suites) appresentes analysées à la microsonde électronique (suite).

| 0'63          | 44,0          | 20'1           | 69'0                 | 1,24           | 69'0          | 4°E'1         | 69'0                | 1'33              | £Ľ'0            | $Ct \setminus (E_{3_{3_{4}}} + E_{3_{4}})$  |
|---------------|---------------|----------------|----------------------|----------------|---------------|---------------|---------------------|-------------------|-----------------|---------------------------------------------|
| 13,14         | 24'03         | 0¢40           | 38,85                | 6'43           | 36,82         | 08,6          | 38'55               | 09'6              | <b>98'6</b> Z   | Fc <sup>3+</sup> /{Fc <sup>3+</sup> +A1+Ct} |
| 24,7          | S1+,0         | 16'91          | 56'l                 | 38,76          | 58'1          | 38,02         | 59'2                | <del>4</del> 9,46 | 18'2            | W8\(W8+Ec3+)                                |
| 62'99         | Z0'66         | 69'29          | 22'16                | 16'19          | 86'98         | 61,20         | £8,68               | 87,58             | 81,85           | Cr/(Cr+Al)                                  |
| 22'0          | 60't          | 0'32           | <i>41</i> '0         | 0'39           | ÷2'0          | te'o          | <i>LL</i> '0        | 0'33              | 19'0            | ₽c <sup>3+</sup> /₽c <sup>3+</sup>          |
|               |               |                |                      |                |               |               |                     |                   |                 |                                             |
| 54'016        | 24,024        | 54'051         | 24'034               | 54'000         | 24'033        | 54'003        | 54'036              | 24'002            | 54'033          | latoT                                       |
| 080,0         | 920'0         | 290'0          | 670,0                | 660,0          | 880,0         | \$S0'0        | 0'022               | 0'032             | 890'0           | uZ                                          |
| 800'0         | 0'013         | 900'0          | 6,023                | 000'0          | 610'0         | 0,000         | 0'032               | 600'0             | 0000            | IN                                          |
| 0'033         | 120'0         | 0'036          | 820'0                | 900'0          | 0'038         | 000'0         | 690,0               | £00'0             | 620'0           | oى                                          |
| 284,7         | \$84'L        | <b>\$65,</b> 8 | \$6 <i>L</i> 'L      | 829'2          | 287,7         | 246'4         | 164'4               | 802,5             | 189'L           | 6c3+                                        |
| 142'0         | 6,204         | 0'142          | 921'0                | 0'152          | 881'0         | 0,082         | 941'0               | 800,0             | 881,0           | uM                                          |
| 009'0         | SE0'0         | 1'345          | 9,155                | 2,284          | 241,0         | 9-034         | 0'508               | 09L'Z             | 0'333           | 8M                                          |
| £66'I         | 802,8         | 449'I          | e'032                | 284'l          | 2'133         | 242           | 846,2               | 15,1              | 029'+           | કર <sup>3+</sup>                            |
| 067,8         | 091'2         | 064,8          | 8'923                | 248,8          | 142,8         | S07,8         | 769,8               | £26'8             | 080,8           | Cr                                          |
| 0'025         | 0,005         | 200'0          | 0'054                | 160,0          | 840,0         | £60,0         | 0'030               | 2£0'0             | 610,0           | ٨                                           |
| 664,4         | 120'0         | 2'535          | 668,0                | 264,2          | 822'1         | 619'9         | <i>11</i> 6'0       | 805,3             | 166'1           | ١٧                                          |
| 026,0         | 080,0         | 0'154          | 981'0                | 060'0          | £21'0         | 680'0         | 29t'0               | 680'0             | 961,0           | ٦.                                          |
| 100'0         | 0'036         | 400'0          | ¥10'0                | 100'0          | 0'015         | 000'0         | 0'015               | 100'0             | \$00 <b>'</b> 0 | 18                                          |
|               |               |                |                      |                |               |               |                     |                   |                 |                                             |
| 100,228       | 261,92        | 81-9,001       | 742,001              | 100'032        | 205'86        | 601'001       | 966'66              | 100,324           | S⊧0'001         | Total                                       |
| 686,0         | 766,0         | 666,0          | 0'335                | 0,200          | 966'0         | 192'0         | 0'525               | 671,0             | 916,0           | Ouz                                         |
| 860,0         | 6,054         | 970'0          | 260 <sup>4</sup> 0   | 100'0          | £20'0         | 000,0         | 541'0               | ++0'0             | 000'0           | OIN                                         |
| \$01'0        | 0'388         | 891'0          | 0'356                | 0'036          | 611'0         | 000'0         | 92'0                | \$t0'0            | 855,0           | 000                                         |
| 35'528        | 924'00        | 56°333         | 91'34 <del>0</del>   | 52'263         | 30'614        | 55'125        | 001'16              | 53'805            | 894'16          | Oaq                                         |
| 1'034         | 684'0         | 969,0          | 669'0                | 255,0          | 252'0         | 126'0         | 669'0               | 666,0             | <b>59</b> 2'0   | OnM                                         |
| 156'1         | 920'0         | 846,6          | 0`320                | 96 <b>2</b> 'S | 726,0         | 678'2         | 694'0               | 920'2             | 019'0           | 08M                                         |
| 192'6         | 556'95        | 8,125          | 56'930               | 784,7          | 52'58         | 968'L         | 56,593              | 889'2             | 51'500          | Fe <sub>3</sub> O <sub>3</sub>              |
| C18'6E        | 79,557        | 6SC,1A         | 708,8C               | 45'310         | 32'800        | 45'346        | 79 <sup>2</sup> /27 | 43'580            | 116'88          | Ct3O3                                       |
| 0'339         | 120'0         | £21'0          | 660'0                | 641'0          | 861'0         | ¥91'0         | 280,0               | \$ZI'0            | <i>L</i> \$0'0  | ٥٥٢٨ مي                                     |
| 13'285        | 861'0         | 19'213         | 3/2 <sup>'</sup> 319 | 99+'11         | 3'603         | 18,013        | 887,2               | \$12'LI           | 282'S           | <sup>s</sup> O <sup>z</sup> tv              |
| 922'1         | 245,0         | <b>\$19'0</b>  | 058,0                | 224,0          | 292,0         | 254'0         | 262,0               | +5+'0             | 619'0           | <sup>2</sup> ON                             |
| \$00°0        | 980'0         | ¢10'0          | 6+0'0                | £00'0          | 010'0         | 000'0         | 1+0'0               | ¥00'0             | 210'0           | 2012                                        |
|               |               |                |                      |                |               | 1             |                     | <u> </u>          | t               | 1                                           |
| Cœur          | Bordure       | Cœnt           | Bordure              | Cœur           | anprog        | Cœur          | Bordure             | Cœm.              | ampiog          | 5hromite                                    |
| ondo A druaH  | οιας ά σκική  | CPr SIJ        | Chr Sil              | Chr Sil        | Chr Sil       | Chr Sil       | Chr Sil             | Chr Sil           | CPL SI          | aigolofii.                                  |
| 91            | al            | 99             | вд                   | 2P             | Ъa            | qt            | вр                  | 96                | RC              | 1 nio <sup>c</sup>                          |
| 01-17C7-HM-70 | 01-1267-HM-50 | 60-1727-HM-76  | 60-1202-HW-26        | 60-1282-HW-26  | 60-1267-HM-76 | 60-1262-HW-26 | 60-1267-HM-76       | 60-1282-HW-26     | 60-1202-HW-26   | Schantillons                                |
|               |               |                |                      |                |               |               |                     |                   |                 |                                             |

| 28,0          | 09'0          | 21'1            | 64,0              | £6'0               | 69'0          | £1'1          | 55,0            | S6'0          | <b>29'0</b>    | Cr / (Fe <sup>3++F</sup> e <sup>3</sup> <sup>5</sup> ) |
|---------------|---------------|-----------------|-------------------|--------------------|---------------|---------------|-----------------|---------------|----------------|--------------------------------------------------------|
| 16,03         | 41'42         | 91'6            | 24'12             | 12'94              | 28,24         | 10,23         | 66'E#           | 12'11         | 99'SE          | Fe <sup>3*</sup> /(Fe <sup>3*</sup> +Al+Ct)            |
| ۲۱٬۴          | τι'τ          | 45,65<br>23,34  | \$°5,0            | 13'32              | 06'0          | <b>48</b> ,91 | 21'1            | \$6'S         | 1'32           | M8/(M8+Fc <sup>2</sup> )                               |
| 01-169        | 92'\$6        | 94'19           | LI'66             | 19'89              | SS'96         | 96'79         | 4 <b>5</b> '26  | S1 '69        | 69'13          | Cr/(Cr+AI)                                             |
| 16,0          | 28,0          | 42 <b>,</b> 0   | 20'î              | 4C,0               | 58'0          | 0'39          | 88,0            | 6,23          | 12'0           | եշ <sup>3+</sup> / Բշ <sup>3+</sup>                    |
|               |               |                 |                   |                    |               |               |                 |               |                |                                                        |
| 24,027        | 54'031        | 34'019          | 210'62            | 24'013             | 24,032        | 24,027        | 54'039          | 54'035        | 54'044         | [Ato]]                                                 |
| 601'0         | 690'0         | 820'0           | 0,030             | 820'0              | 0'024         | 920'0         | 190'0           | 0°130         | 201'0          | uZ                                                     |
| 000'0         | £00'0         | £10'0           | 800'0             | \$00°0             | 800,0         | £00'0         | 900'0           | 000'0         | 120'0          | IN                                                     |
| SC0,0         | 180'0         | 0'005           | 1 20'0            | 0'030              | 060'0         | 7£0,0         | 020'0           | 140,0         | ₽80 <u>,</u> 0 | മ                                                      |
| 168,7         | 248,7         | \$60'9          | £06'L             | 690'2              | 218'2         | 6'533         | 108'2           | 916'2         | 952'2          | <sup>برع</sup> ط                                       |
| 112'0         | S12'0         | 641,0           | 8/1,0             | 0'393              | 0'320         | E21'0         | 0'532           | 0'520         | 922'0          | шM                                                     |
| 146,0         | 880,0         | 998'1           | 0'043             | 986'0              | 120'0         | 1'228         | 0'035           | 894,0         | 901'0          | 8M                                                     |
| 504'2         | 6,429         | 864,1           | 964,8             | 2,372              | 619'9         | 219'1         | 6*8'9           | SE2'I         | 612'5          | Fe <sup>3+</sup>                                       |
| 0+7,8         | 209'8         | 608,8           | 220'2             | 222,8              | 125'8         | 4,937         | <b>670,8</b>    | 229'8         | £78,8          | Cr                                                     |
| 0,050         | 0'015         | 0'033           | 0'033             | 190'0              | 610'0         | 210'0         | £00'0           | 0'020         | 610,0          | ٨                                                      |
| 9,854         | 924'0         | \$2\$'S         | 0'026             | 510'6              | 906'0         | 2'328         | 849,0           | 2'063         | £80't          | IV                                                     |
| 0'445         | 961'0         | 0'155           | 691'0             | <del>\$</del> 96'0 | 881,0         | 6\$0'0        | 121'0           | 861'0         | 002'0          | LI.                                                    |
| 600'0         | 010'0         | \$00 <b>'</b> 0 | 010'0             | 010'0              | 600'0         | 0'000         | 910'0           | ¢00'0         | 110'0          | IS                                                     |
|               |               |                 |                   |                    |               |               |                 |               |                |                                                        |
| 96'632        | 956'66        | 906,001         | 805,908           | 061'001            | 860,001       | E80'001       | 99 <b>,</b> 825 | 100'103       | 114,001        | [nto]                                                  |
| 0'233         | 615,0         | 0'533           | SET 'O            | 626,0              | 0'545         | 926'0         | ₽ <u>7</u> 2,0  | 0+9'0         | 894,0          | OuZ                                                    |
| 0'000         | 0'015         | 0'026           | 0'033             | 610'0              | 0'035         | £10'0         | S20,0           | 000'0         | <b>280'</b> 0  | OIN                                                    |
| 91122         | 866,0         | 800,0           | 0'386             | 680'0              | 626,0         | 0'115         | 692'0           | 781,0         | ese'0          | 000                                                    |
| 021'88        | 31'341        | 114,72          | 30'922            | 951'00             | 690'16        | 956'27        | 980'10          | 32,149        | 246,16         | O <sub>5</sub> 9                                       |
| 288,0         | 968,0         | 969,0           | 069'0             | 211'1              | 286'0         | 857,0         | S26,0           | 690'1         | 001'1          | OaM                                                    |
| 118'0         | <u>261'0</u>  | 289'4           | 960'0             | 382                | 6'126         | 688,6         | 902'0           | 651'1         | 0'340          | O <sub>8</sub> M                                       |
| 11'350        | 58'424        | 981'2           | 36,722            | 696'11             | 196,961       | 586'2         | 30'330          | 095,8         | 687,95         | FerO3                                                  |
| 191'60        | 36'326        | 406'14          | 50'350            | 060,01             | 36,026        | \$66'1+       | 24,032          | 882'60        | 006'20         | C <sup>13</sup> 0 <sup>3</sup>                         |
| 0'516         | 640'0         | 201'0           | 6,134             | 922'0              | 820'0         | 920'0         | 110'0           | 972'0         | 620'0          | <sup>د</sup> 0 <sup>1</sup>                            |
| 685,11        | 1'342         | ¥0¥'21          | <del>6</del> 91,0 | 15'586             | 0'862         | \$25'9I       | 1,634           | E29'91        | 201'E          | V1 <sup>3</sup> O <sup>2</sup>                         |
| 2'080         | 898,0         | 609'0           | BE7,0             | 847,1              | 168,0         | 162'0         | 692'0           | 926'0         | 668'0          | ri0,                                                   |
| 160,0         | 4E0,0         | 610,0           | 660,0             | 960,0              | 0'036         | 0'005         | ¢20'0           | 0'012         | 860,0          | <sup>t</sup> ois                                       |
|               |               |                 |                   |                    |               |               |                 |               |                |                                                        |
| Cœur          | Bordure       | Cœnt            | Bordure           | Cœnt               | Bordure       | Cœm           | nunog           | Cœnt          | Bordure        | Chromite                                               |
| Harzb à chro  | Harzb à chro  | Harzh à chro    | ondo à druali     | ento à driali      | Harzb à chro  | Harzb A chro  | опо à илан      | ondə â danaH  | οιης Α άτωΗ    | Lithologic                                             |
| 3P            | ъZ            | qt              | ы                 | ٩۶                 | Bh            | 96            | я£              | ٩Z            | <b>3</b> 8     | taio9                                                  |
| TT-T282-HW-26 | 11-1267-HM-79 | TI-T267-HM-70   | 11-1267-HM-70     | 01-1267-HM-70      | 01-1267-HM-70 | 01-1267-HM-79 | 01-1262-HW-26   | 01-1267-HM-70 | 01-1222-HW-26  | Echandllons                                            |
|               |               |                 |                   |                    |               |               | -               |               |                |                                                        |

•

## Tableau C.2 Composition des chromites analysées à la microsonde électronique (suite).

.

| 90't          | 99'0          | 01'1          | 90'1                  | 40'T          | S9'0          | ÷1'1           | 69'0          | 06'0               | 09'0                                  | Cr / (Fe <sup>2++</sup> Fe <sup>5</sup> )   |
|---------------|---------------|---------------|-----------------------|---------------|---------------|----------------|---------------|--------------------|---------------------------------------|---------------------------------------------|
| 05'8          | 29'98         | 82,6          | 96'6                  | 6'95          | 36'98         | 50'01          | 91'60         | 14'36              | 16,54                                 | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) |
| 15'83         | 81,1          | 70,21         | 49'8                  | 96'01         | 1'39          | 25'44          | 6Þ,I          | 29'S               | 18,0                                  | ( <sup>1</sup> 5 <sup>3</sup> +8M)/8M       |
| 24'09         | 82'66         | 63,82         | 90'99                 | 64'13         | 61'86         | 08,50          | 80'66         | 44 <sup>,</sup> 89 | 11'26                                 | Cr/(Cr+Al)                                  |
| 61'0          | 69'0          | 12'0          | 0'33                  | 12'0          | 69'0          | 9 <b>7</b> '0  | 92'0          | 06,0               | E8,0                                  | Pc <sup>3+</sup> /Fc <sup>3+</sup>          |
|               |               |               |                       |               |               |                |               |                    |                                       |                                             |
| 54'013        | 54'033        | P20,P2        | 54'030                | 54'050        | 54'030        | 24'012         | 24'038        | 54'054             | 160,45                                | latoT                                       |
| 640,0         | 0\$0'0        | 920'0         | 080'0                 | 180'0         | 680,0         | 0'025          | 260'0         | 860'0              | 120'0                                 | uZ                                          |
| 000'0         | 0'015         | £00,0         | 010'0                 | 000'0         | £00'0         | 0:030          | 600'0         | 000'0              | 100'0                                 | IN                                          |
| 0'033         | \$\$0'0       | 950'0         | 140,0                 | 0'032         | 960'0         | 110'0          | 220'0         | 820,0              | 0,082                                 | တ                                           |
| 216'9         | 600,8         | 7172          | 242,7                 | 291'L         | 8,042         | 671,3          | 278,7         | 122,7              | <b>+88,7</b>                          | եշ <sub>34</sub>                            |
| 6,124         | 921'0         | 0'150         | 0,144                 | 161,0         | P81,0         | 0'142          | EOZ'O         | 102'0              | 0'333                                 | πM                                          |
| 1'036         | 960'0         | 1'303         | 589'0                 | 0'838         | 01103         | 98 <b>2</b> 'ī | 611'0         | 0'423              | <del>\$</del> 90'0                    | 8M                                          |
| 1'338         | 683,8         | 1'425         | 1'203                 | 009't         | 2'290         | 1'252          | 610'9         | 5'224              | 868,8                                 | <sub>1</sub> 63+                            |
| 602'8         | 966'8         | 620'6         | 6'330                 | 60'6          | 0+8,8         | <u> </u>       | 904'8         | 887,8              | 8'929                                 | Ct                                          |
| 0'033         | 610'0         | S10'0         | 720,0                 | 0'050         | 0'023         | BEO,0          | 0'036         | 940,0              | 0'051                                 | ٨                                           |
| £69'S         | 849,0         | 961'S         | \$6L'\$               | 720,8         | 919'0         | 2'33           | 249'0         | 664,4              | 0'328                                 | IV                                          |
| 960'0         | 645,0         | 6°136         | 61140                 | \$91'O        | £04,0         | 241,0          | 0,254         | 0'334              | 0'333                                 | Ņ                                           |
| \$00'0        | 200'0         | S00,0         | 000'0                 | 800,0         | 210'0         | 0'00°S         | 600'0         | £00'0              | 010'0                                 | 15                                          |
|               |               |               |                       |               |               |                |               |                    | · · · · · · · · · · · · · · · · · · · |                                             |
| 100'640       | E72,001       | 294,001       | 626,329               | 100,238       | 069'66        | 781,001        | 100,277       | 100'156            | 100'103                               | ព្រះ០T                                      |
| 0'546         | 0'330         | 282,0         | 785,0                 | 204,0         | S76,0         | 0'393          | 664,0         | 924'0              | 816,0                                 | OuZ                                         |
| 000'0         | 610,0         | 210,0         | 21000                 | 0'000         | <b>+10,0</b>  | 1+1'0          | 960,0         | 000'0              | S00'0                                 | O!N                                         |
| 0'133         | 0'558         | 652'0         | 181,0                 | 911'0         | 104,0         | 0,053          | 0'333         | 0'159              | 855,0                                 | CoO                                         |
| 30,613        | 022'26        | 56'823        | 30'895                | 99E'TE        | 32,086        | 185'22         | 31'260        | 6 <b>2</b> 2'26    | 31'335                                | O54                                         |
| 0'249         | 969'0         | 0'295         | 209'0                 | 299'0         | 972'0         | 669'0          | £08,0         | 058'0              | +78,0                                 | O¤W                                         |
| 5'299         | 0'316         | 286,2         | 1'932                 | <b>5,032</b>  | 162,0         | 924'4          | 292'0         | 690'1              | 0'J44                                 | O8M                                         |
| 229'9         | 54'904        | 861,7         | E04,7                 | £62'L         | 54'929        | 808'L          | 618'92        | 609'01             | 28,873                                | PerO,                                       |
| 41'003        | 861,86        | çac,c4        | t50'5t                | 048,14        | TOE, TE       | 056'14         | 816'98        | 93'694             | 996,96                                | أأأن                                        |
| 6+1'0         | 950'0         | 690'0         | 611'0                 | 060'0         | 0'350         | 9/1'0          | 801'0         | 502,0              | <b>480'0</b>                          | ٥٤٨ م، ٥٥                                   |
| 18,007        | 948,1         | 16,120        | 264'41                | 12'205        | 1,429         | 985,91         | 1+8'1         | 815'61             | 977,0                                 | <sup>r</sup> O'IV                           |
| 874,0         | 9999'1        | 989'0         | 0'236                 | 008,0         | 882't         | 202'0          | 161'1         | 020'1              | <b>\$86,0</b>                         | LiO,                                        |
| 810'0         | 0'034         | 020'0         | 100'0                 | 0'038         | 220'0         | 200'0          | 160'0         | 010'0              | 0'034                                 | <sup>t</sup> OIS                            |
|               |               |               |                       |               |               |                |               |                    |                                       |                                             |
| Coem.         | ອມເກັກເວຍີ    | Coent         | ລາກມາວ <del>ິ</del> ຊ | Cœur          | Bordure       | mæŋ            | Bordure       | Cœur               | Bordure                               | Shromite                                    |
| Marzh à chio  | Нятър à спто  | οιής & σειθή  | ondo à drush          | Harzb à chro  | տուշ ձ մշութի | ondo à druaH   | ondo à driaĦ  | ondo à druaH       | ordo à darah                          | Lithologic                                  |
| 9P            | вС            | 92            | 2a                    | qı            | al            | qb             | 84            | qc                 | яС                                    | Juint                                       |
| 21-1757-HM-70 | 21-1727-HM-79 | 21-1727-HM-70 | 21-1727-HM-70         | 21-1767-HM-79 | 21-1767-HM-79 | 11-1267-HM-70  | 11-1267-HM-79 | 11-1267-HM-70      | 11-1267-HM-70                         | enollinano3                                 |

## .(suites) auposition des chromites analysées à la microsonde électronique (suite).

| Échantillons                   | 97-MH-7371-12 | 97-MH-7371-12 | 97-MH-7371-13A | 97-MH-7371-13A | 97-MH-7371-13A | 97•MH-7371-13A | 97-MH-7371-13A | 97-MH-7371-13A | 97-MH-7371-13A | 97-MH-7371-13A |
|--------------------------------|---------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Point                          | 4a            | 4b            | la             | 1b             | 2a             | 2b             | 4a             | 46             | 5a             | 5b             |
| Lithologic                     | Harzh à chro  | Harzb à chro  | Chr Sil        |
| Chromite                       | Bordure       | Cœur          | Bordure        | Cœur           | Bordure        | Cœur           | Bordure        | Cœur           | Bordure        | Cœur           |
|                                |               |               |                |                |                |                |                |                |                |                |
| SiO <sub>2</sub>               | 0,046         | 0,014         | 0,019          | 0,001          | 0,018          | 0,001          | 0,027          | 0,000          | 0,041          | 0,022          |
| TiO <sub>2</sub>               | 0,909         | 0,484         | 0,459          | 0,498          | 0,457          | 0,410          | 1,422          | 3,641          | 1,757          | 3,482          |
| AhO3                           | 4,415         | 18,798        | 16,976         | 18,212         | 17,688         | 18,913         | 10,344         | 14,472         | 10,138         | 13,728         |
| V2O3                           | 0,116         | 0,070         | 0,132          | 0,097          | 0,148          | 0,056          | 0,124          | 0,187          | 0,174          | 0,106          |
| Cr <sub>2</sub> O <sub>3</sub> | 36,094        | 43,013        | 42,697         | 44,081         | 42,537         | 44,439         | 47,142         | 40,744         | 45,559         | 41,159         |
| Fc <sub>2</sub> O <sub>3</sub> | 25,270        | 6,486         | 6,514          | 7,310          | 6,364          | 6,650          | 6,136          | 4,630          | 8,089          | 5,579          |
| MgO                            | 0,376         | 8,346         | 3,875          | 10,205         | 4,554          | 11,345         | 2,202          | 3,340          | 2,290          | 3,369          |
| MnO                            | 0,641         | 0,352         | 0,347          | 0,272          | 0,339          | 0,217          | 0,413          | 0,403          | 0,461          | 0,402          |
| FeO                            | 31,856        | 22,134        | 28,642         | 19,386         | 27,796         | 17,618         | 30,546         | 31,726         | 30,930         | 31,489         |
| CoO                            | 0,196         | 0,000         | 0,192          | 0,000          | 0,000          | 0,000          | 0,000          | 0,030          | 0,263          | 0,110          |
| NIO                            | 0,061         | 0,000         | 0,000          | 0,000          | 0,010          | 0,028          | 0,000          | 0,000          | 0,000          | 0,037          |
| ZnO                            | 0,351         | 0,133         | 0,283          | 0,210          | 0,263          | 0,271          | 0,293          | 0,336          | 0,196          | 0,357          |
| Total                          | 100,331       | 99,830        | 100,135        | 100,272        | 100,174        | 99,948         | 98,649         | 99,509         | 99,898         | 99,840         |
|                                |               |               |                |                |                |                |                |                |                |                |
| Si                             | 0,013         | 0,004         | 0,005          | 0,000          | 0,005          | 0,000          | 0,008          | 0,000          | 0,011          | 0,006          |
| Ti                             | 0,201         | 0,094         | 0,093          | 0,096          | 0,091          | 0,078          | 0,303          | 0,749          | 0,371          | 0,717          |
| A1                             | 1,528         | 5,729         | 5,368          | 5,477          | 5,544          | 5,644          | 3,457          | 4,667          | 3,353          | 4,430          |
| v                              | 0,027         | 0,015         | 0,028          | 0,020          | 0,031          | 0,011          | 0,028          | 0,041          | 0,039          | 0,023          |
| Сг                             | 8,382         | 8,794         | 9,057          | 8,893          | 8,944          | 8,896          | 10,568         | 8,814          | 10,107         | 8,911          |
| Fc <sup>3+</sup>               | 5,586         | 1,262         | 1,315          | 1,404          | 1,274          | 1,267          | 1,309          | 0,953          | 1,708          | 1,150          |
| Мg                             | 0,165         | 3,217         | 1,550          | 3,882          | 1,806          | 4,282          | 0,931          | 1,362          | 0,958          | 1,375          |
| Mn                             | 0,159         | 0,077         | 0,079          | 0,059          | 0,076          | 0,047          | 0,099          | 0,093          | 0,110          | 0,093          |
| Fe <sup>3+</sup>               | 7,825         | 4,786         | 6,426          | 4,137          | 6,182          | 3,731          | 7,243          | 7,259          | 7,258          | 7,211          |
| Co                             | 0,046         | 0,000         | 0,041          | 0,000          | 0,000          | 0,000          | 0,000          | 0,007          | 0,059          | 0,024          |
| Ni                             | 0,014         | 0,000         | 0,000          | 0,000          | 0,002          | 0,006          | 0,000          | 0,000          | 0,000          | 0,008          |
| Zn                             | 0,076         | 0,025         | 0,056          | 0,040          | 0,052          | 0,051          | 0,061          | 0,068          | 0,041          | 0,072          |
| Total                          | 24,022        | 24,003        | 24,018         | 24,008         | 24,007         | 24,013         | 24,007         | 24,013         | 24,015         | 24,020         |
| n 3t (n 2t                     | 0.71          | 0.05          |                |                |                | +              |                |                |                |                |
| re /re                         | 0,71          | 0,26          | 0,20           | 0,34           | 0,21           | 0,34           | 0,18           | 0,13           | 0,24           | 0,16           |
|                                | 84,58         | 60,55         | 62,79          | 61,89          | 61,73          | 61,18          | 75,35          | 65,38          | 75,09          | 66,79          |
| Mg/(Mg+Fc*')                   | 2,07          | 40,20         | 19,43          | 48,41          | 22,61          | 53,44          | 11,39          | 15,80          | 11,66          | 16,01          |
| Fe"/(Fe"+Al+Cr)                | 36,05         | 7,99          | 8,35           | 8,90           | 8,08           | 8,02           | 8,54           | 6,60           | 11,26          | 7,94           |
| Cr / (Fe''+Fe'')               | 0,63          | 1,45          | 1,17           | 1,60           | 1,20           | 1,78           | 1,24           | 1,07           | 1,13           | 1,07           |

,

| 241            | S1'1           | 1,42           | SI 'I          | 20'I           | 06'1            | 29'T           | 1,27           | 99'1           | 89'1           | Ct \ (Ee <sub>3+</sub> +Ee <sub>2</sub> )   |
|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|---------------------------------------------|
| 10'50          | 12'01          | +0'II          | 96'91          | <b>£6</b> '6   | 4 <b>5</b> '6   | 52,8           | S6,7           | 5'24           | 5'16           | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Ci) |
| 45'25          | 51'00          | 8'03           | 57'1           | 38'21          | 13,23           | 20'03          | 25'12          | 50'35          | 14,28          | M8/(M8+Fc <sup>2</sup> <sup>5</sup> )       |
| 95'49          | 69'89          | 59'16          | 01'50          | Z6'Z9          | 26'9 <u>2</u>   | 86'19          | 04'49          | 68'99          | 84'92          | Cr/(Cr+VI)                                  |
| 0'32           | 0'39           | 0,24           | SE'0           | 0'35           | 0'55            | 0'35           | 61'0           | 90'0           | \$0'0          | եշ <sup>չ,</sup> \Բշ <sup>2+</sup>          |
|                |                |                |                |                |                 |                |                |                |                |                                             |
| 54'010         | 54'004         | 54'050         | 24'052         | 53'668         | 010'42          | \$3,998        | 54'006         | 54'002         | 54'003         | latoT                                       |
| 950,0          | 0'056          | 0'046          | 190'0          | 610'0          | 0'039           | 0'050          | 240,0          | 0'055          | SF0,0          | шZ                                          |
| 0'005          | 000'0          | \$00'0         | 0'056          | 0'005          | 000'0           | 000'0          | 0'000          | 0'000          | 0'000          | IN                                          |
| 000'0          | 810'0          | 650'0          | 120'0          | 000'0          | 0'045           | 000'0          | 000'0          | 0'033          | 000'0          | മ                                           |
| £65,4          | 642'9          | 262,7          | 805,7          | 6:033          | 198'9           | 4'013          | 852,8          | 122'9          | ÷57,8          | եշ <sup>3+</sup>                            |
| <b>+80,0</b>   | 620'0          | 0,120          | 211'0          | 990'0          | 501 '0          | 0'020          | 880,0          | S60'0          | £01'0          | лМ                                          |
| 3'432          | 829'1          | 9636           | 285'0          | 700,£          | 1'04e           | 210'\$         | 192'1          | 669'1          | S21'1          | 8W                                          |
| 009'1          | 919'1          | 982'1          | 5'900          | 895,1          | 812'1           | 1'300          | 851'1          | 404,0          | 846,0          | +¢3+                                        |
| 662'8          | <i>LL</i> 0'6  | 12,814         | 609'11         | 906'8          | <b>268,</b> 01  | £78,8          | 204,0          | 986,01         | \$06'I I       | Cr                                          |
| 0'033          | 0'038          | 240,0          | 0'023          | 1+0'0          | 0'038           | 260,0          | 120'0          | 0'023          | 240'0          | ٨                                           |
| 2'388          | 2'131          | 891'1          | 021'1          | 5,248          | 3,445           | £83,8          | 2'500          | 2'140          | 099'6          | IV                                          |
| 0'158          | \$90,0         | \$60'0         | ÷12,0          | 211'0          | 0'043           | 101'0          | 860'0          | 000'0          | 610,0          | L!                                          |
| 100'0          | 200'0          | £00'0          | 110'0          | 0'005          | S00'0           | 0'002          | S00'0          | 200'0          | +00'0          | 15                                          |
|                |                |                |                |                |                 |                |                |                |                |                                             |
| 505'001        | 828'66         | <b>60'82</b> 5 | 654'66         | 750,001        | 191'001         | 848,99         | ¥85'66         | 476'66         | 198'66         | [Ato]                                       |
| 0'384          | 241'0          | 672'0          | 0'533          | 860'0          | 671'0           | 601'0          | 0'552          | 6113           | 812,0          | Ouz                                         |
| 800,0          | 000'0          | 0'033          | 601'0          | 0'010          | 0'000           | 0'000          | 0'000          | 000'0          | 000'0          | OIN                                         |
| 000'0          | 580,0          | 0,253          | 0'303          | 000'0          | 881,0           | 000'0          | 000'0          | 551'0          | 000'0          | 090                                         |
| 51'564         | £88,72         | 106'62         | 30,549         | 519'22         | 129,421         | 18'822         | 517,713        | 268'22         | 50'08<br>50'08 | 0°d                                         |
| 786,0          | 946,0          | £8£,0          | 124'0          | 862'0          | 9440            | 0'535          | 585,0          | 914'0          | 964'0          | OuM                                         |
| 206'8          | 181'5          | 634,1          | 046,1          | \$96'L         | 519'2           | 10,571         | 4'364          | 3'665          | 5'250          | O8M                                         |
| 6,243          | 226'2          | 60Gʻ2          | 292'11         | 066'L          | 2,235           | 644'9          | 912'5          | 866'I          | 999't          | 60°3                                        |
| 841'64         | 669,24         | 22'200         | 596'64         | 981'64         | 104'64          | 820,44         | 461,44         | 478,84         | 24'543         | Cr3Os                                       |
| 0'128          | 0°130          | 181,0          | 0'333          | 861'0          | \$21 <b>'</b> 0 | 081,0          | 960'0          | 242'0          | 0'515          | ٥ <sup>٢</sup> ٨،0 <sup>3</sup>             |
| 266,71         | 291'91         | 266'E          | 3'533          | 270,71         | 10,482          | 18,583         | 165,61         | 16,224         | 681'11         | 50 <sup>4</sup> 1                           |
| <b>∠99'</b> 0  | 806,0          | 454,0          | 1,240          | 669'0          | 0'505           | 0'254          | C84,0          | 000'0          | 690'0          | <sup>2</sup> OU                             |
| 0'003          | 0'039          | 0'015          | 260,0          | 900'0          | 810'0           | 0'050          | 21C'0          | 800,0          | 910'0          | <sup>2</sup> 019                            |
|                |                |                |                |                |                 |                |                |                |                |                                             |
| Cœm            | Bordure        | Cœm            | ವಗಗಾಂಟ         | Cœnt           | ವುಗಗಾಂಡಿ        | Cœur           | Bordure        | Cœur           | Bordure        | atimond2                                    |
| Chr 9il        | Chr Sil         | Chr Sil        | Chr Sil        | Chr Bil        | Chr Sil        | aigolorhi                                   |
| 3P             | вЕ             | 3P             | 38             | 91             | ษา              | ٩८             | вŢ             | <b>q</b> 9     | вд             | Point                                       |
| 861-1767-HM-79 | 861-1767-HM-70 | 861-1767-HM-79 | 861-1767-HM-70 | 861-1767-HM-70 | 861-1767-HM-79  | AE1-1767-HM-70 | VET-TTET-HM-TQ | VE1-1767-HM-70 | A61-1767-HM-79 | enollinada5                                 |

| 09'1              | 1'52              | 12'1              | 16,1          | 64'1                | 61'1           | 54'1           | 61'1           | Z9'I           | 1'53           | Cr / (Fe <sup>3+</sup> +Fe <sup>3+</sup> )  |
|-------------------|-------------------|-------------------|---------------|---------------------|----------------|----------------|----------------|----------------|----------------|---------------------------------------------|
| 8'33              | 66'L              | ÷1,8              | 8,12          | 14,8                | SS'8           | 87,7           | 89,8           | 22'8           | 94,8           | Pe <sup>3+</sup> /(Pe <sup>3+</sup> +Al+Cr) |
| 16'5+             | 72'61             | 29'6 <del>1</del> | 87,92         | 41'23               | 50'01          | 92'80          | SZ'61          | 29'84          | 23,83          | ( <sup>1</sup> 5-3+8M)/8M                   |
| 66'19             | 26,23             | 95'40             | S6'19         | 20'29               | 72,Eð          | 67'19          | 46,4A          | 72'19          | 62,93          | Cr/(Cr+Al)                                  |
| tc'o              | 0,20              | 0'35              | 6,23          | 82'0                | 12'0           | 0'52           | 12'0           | 4°E'0          | 0'53           | Fc <sup>3+</sup> /Fc <sup>3+</sup>          |
|                   |                   |                   |               |                     |                |                |                |                |                |                                             |
| 54'016            | 54'005            | 24'002            | 54'000        | 54'004              | 500,45         | 24,003         | 54'019         | 54'008         | E10,42         | նոշլ                                        |
| <del>6</del> 90'0 | 0'038             | 240'0             | 0'023         | 160'0               | 550,0          | 0'033          | C90'0          | 240,0          | 2S0'0          | uz                                          |
| 000'0             | 0'00 <del>4</del> | 0'000             | 0'000         | 000'0               | 000'0          | 000,0          | 000'0          | 000'0          | 000'0          | IN                                          |
| 0'034             | 000'0             | 000'0             | 000'0         | 000'0               | 200'0          | 000'0          | 670'0          | 200'0          | 0'053          | മ                                           |
| 605,4             | 696'9             | 620,6             | 2'283         | 289' <del>1</del>   | 166,331        | 016'4          | 262'9          | 4114           | 820'9          | بد <sub>ع</sub> ه.                          |
| 020'0             | ¢114              | 0'023             | £80,0         | 120'0               | 820'0          | 990'0          | <i>LL</i> O'0  | 0'023          | ۲ ۲۵٬۵         | иМ                                          |
| 3'923             | 1'264             | 1 26'E            | 3'368         | 3'330               | 1'94           | 801 °C         | 678,1          | £68'£          | 106'1          | 8M                                          |
| 916,1             | 1'392             | 1,288             | 1'586         | 1'356               | 1'323          | 1,227          | 69C'I          | 58C't          | ece'i          | եշ <sup>34</sup>                            |
| £86'8             | 0'230             | 120'6             | 010'6         | 190,8               | 941,0          | 816,8          | 122'6          | 888,8          | 6'083          | Cr                                          |
| 720,0             | 120'0             | 910'0             | 0'058         | 0'013               | 0'032          | 0'031          | 6,024          | 960,0          | 0'032          | ٨                                           |
| 2'233             | 5,044             | 29¢'S             | 2'232         | 224'S               | 016,8          | 2'033          | 661,8          | 2'215          | 2'340          | ١٧                                          |
| 250'0             | 990'0             | 290'0             | 620'0         | 0'105               | 920'0          | 860'0          | 920'0          | <b>\$80,0</b>  | 480'0          | ม                                           |
| 000'0             | 900'0             | £00,0             | 400'0         | £00,0               | ₽00 <b>,</b> 0 | 000'0          | £00'0          | 000'0          | 100'0          | IS                                          |
|                   |                   |                   |               |                     |                |                |                |                |                |                                             |
| 996,001           | 922'66            | 912'001           | 085,980       | 100,495             | 595'66         | +22'00I        | £\$2'65        | 666'66         | 948,90         | fetal                                       |
| 266,0             | 941'0             | 0'340             | 122'0         | ¢91'0               | 891'0          | SITO           | E1E'0          | 0'554          | 0,287          | Ouz                                         |
| 000'0             | 910'0             | 000'0             | 000'0         | 000'0               | 000'0          | 0000           | 000'0          | 000'0          | 0'000          | O!N                                         |
| 211,0             | 000'0             | 000'0             | 0,000         | 000,0               | 660,0          | 0000'0         | SE1'0          | 110'0          | €01'0          | 000                                         |
| 50'034            | 58'036            | E70,81            | 52'122        | 522,12              | 58'100         | 55'251         | 785,85         | 19,241         | 461'2Z         | 0°4                                         |
| 0'333             | ¥6¥'0             | 0'542             | 890,0         | 725,0               | 242,0          | 0'305          | <b>Lee</b> '0  | 542'0          | SIE'0          | OuM                                         |
| 895'6             | 3,862             | 909'01            | 066'S         | <u>978,8</u>        | 460't          | 020'8          | 3,905          | 10,213         | 022'\$         | OBM                                         |
| 168'9             | 681,8             | t S <i>L</i> '9   | 264,8         | <del>4</del> 48,8   | 699'9          | 016,8          | CC2'9          | 002'2          | 9'938          | جر0ء<br>ج                                   |
| 076,44            | 44'330            | 42'54             | 926'24        | 240,44              | 7E0,5P         | 43'623         | 966'64         | 896'64         | 870,24         | r0 <sup>2</sup> 10 <sup>3</sup>             |
| 0'136             | <i>L</i> 60'0     | 080,0             | 0,132         | \$90 <sup>'</sup> 0 | SIT'O          | 101'0          | 111'0          | 0/1/0          | \$91'0         | ٨،٥٥                                        |
| 18'303            | 292'91            | 18'582            | 112'21        | 920,81              | 16,724         | 18'200         | LE1,61         | 262'81         | 286'91         | °041                                        |
| 0'396             | 0'333             | 0'325             | \$62'0        | 229'0               | 896,0          | 0'205          | 9/2'0          | 564,0          | 814,0          | <sup>z</sup> on                             |
| 000'0             | 0'033             | 810,0             | 0'010         | 910'0               | S10'0          | 000'0          | 610,0          | 000'0          | 900'0          | <sup>2</sup> OIS                            |
|                   |                   |                   |               |                     |                |                |                |                |                |                                             |
| Cœnt              | Bordure           | Cœur              | numod         | ມາສວ                | Bondure        | Cœnt           | Bordure        | Cœur           | Bordure        | chromite                                    |
| Chr Sil           | Cpt 21            | Chr Sil           | Chr Sil       | Chr Sil             | Chr Sil        | Chr Sil        | CPL SI         | CPL 31         | Chr Sil        | sigolorhi                                   |
| SP                | ъS                | qt                | ы             | <b>q</b> 9          | 89             | 99             | ВĞ             | 46             | вħ             | tulo                                        |
| +1-1767-HM-79     | \$1.1757.HM-70    | 97-11371-14       | +1-1767-HM-79 | 861-1767-HM-79      | 861-1767-HM-79 | 861-1767-HM-70 | 861-1767-HM-70 | 861-1767-HM-72 | 861-1767-HM-79 | enolihaadəS                                 |

| 60'1            | 80,1          | 22'1          | 72,1          | 92'1               | 06,1                | 84'1           | 1,23                | 59't          | 82'1           | Ct / (be <sub>2+</sub> +be <sub>2+</sub> )  |
|-----------------|---------------|---------------|---------------|--------------------|---------------------|----------------|---------------------|---------------|----------------|---------------------------------------------|
| 10'8            | £9 <b>'</b> 8 | CC,8          | 13'18         | £6'L               | 06'2                | 90'8           | 72,8                | S0,8          | 08'2           | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) |
| 13'53           | 15'25         | ¢Ľ'6          | 2'91          | 19'05              | 39'10               | 96'ts          | 54'75               | 62'24         | 36'33          | W8/(W8+Ec <sup>2+</sup> )                   |
| 00'19           | 22'19         | 25,57         | 82'13         | 62,33              | 16'19               | 02'29          | <b>\$9'</b> 19      | 62,40         | 62,40          | Cr/(Cr+Al)                                  |
| 81,0            | 0'50          | 61'0          | 0'59          | 0'35               | 0'55                | 6,33           | ZZ'0                | 05,0          | 12'0           | કલ્ <sub>ર</sub> , / કલ્ <sub>ર</sub> ,     |
|                 |               |               |               |                    |                     |                |                     |               |                |                                             |
| 54'010          | 54'012        | 53'930        | 24'018        | 34'002             | \$29'62¢            | 34'009         | 54'002              | 24'003        | 100,45         | Total                                       |
| 220'0           | 8+0'0         | 0'042         | 0'029         | 0'056              | 640'0               | 0'030          | 0'042               | 220'0         | 0'033          | uZ                                          |
| 00010           | 000'0         | 0'000         | 0'000         | 000'0              | 000'0               | 000'0          | 000'0               | 000'0         | 000'0          | IN                                          |
| 600'D           | 660,0         | 640,0         | 8000          | 000'0              | 000'0               | 000'0          | 000'0               | 000'0         | 0'000          | <u> </u>                                    |
| 088,8           | 06,930        | \$10'2        | 665'2         | <del>\$</del> 26'E | 2'010               | 298'E          | 696'S               | 112,4         | £78,8          | ե <sup>ց</sup> չ,                           |
| 0'115           | 0'131         | 861,0         | 91122         | t 90'0             | \$60 <sup>1</sup> 0 | 220'0          | 001'0               | 860,0         | 880,0          | uM                                          |
| 640't           | Z66'0         | <i>LSL</i> '0 | 0440          | 120'+              | 2,302               | 660,4          | E96't               | 587,5         | 860,2          | aM                                          |
| 1'392           | 1'3e4         | 1'306         | 4E6'1         | 1'520              | 1'546               | 62Z'I          | 016,1               | 1'513         | 1'534          | * <sup>5</sup> 5 <sup>4</sup>               |
| 598'8           | 8'933         | 10'200        | 11'862        | 260'6              | 816'8               | 67143          | 780,8               | 820'6         | <b>260'6</b>   | Cr                                          |
| 820'0           | 110'0         | 610'0         | 0'054         | £10'0              | 910'0               | 210'0          | 0'036               | 420,0         | 160,0          | ٨                                           |
| 899'9           | 2'255         | C+8,C         | £70,2         | 264'S              | £09'S               | 864,8          | 5,544               | 124'9         | 5,482          |                                             |
| 120'0           | 690'0         | 220,0         | 0:030         | 290'0              | 0'095               | 950'0          | 990'0               | +20'0         | 920'0          | Lī                                          |
| 900'0           | £00'0         | 081'0         | 0,005         | 000'0              | £20'0               | 000'0          | 0'002               | 200'0         | 000'0          | 15                                          |
|                 |               |               |               |                    |                     |                |                     |               |                |                                             |
| 627,001         | 100,684       | L95'66        | £70,001       | 66 653             | 955,00              | 225'66         | P86,99              | 109'66        | 089'66         | latol                                       |
| 0'360           | 0'545         | 612'0         | 922'0         | 261'0              | 0'546               | 651'0          | 0'339               | \$11°0        | 411,0          | Ouz                                         |
| 0'000           | 000'0         | 000'0         | 000'0         | 000'0              | 100'0               | 000'0          | 000'0               | 000'0         | 000'0          | OIN                                         |
| 0+0,0           | 9'122         | £61'0         | 291'0         | 000'0              | 000'0               | 0'000          | 000'0               | 000'0         | 000'0          | 000                                         |
| 302'05          | 30'193        | 280,05        | 30,865        | 18'463             | 52'345              | 670,81         | 012'92              | 109'61        | 56,388         | 0°3                                         |
| 0'405           | 262,0         | 982'0         | 869'0         | 262,0              | 6,423               | \$\$C'0        | 0,442               | 892'0         | 0'333          | OuM                                         |
| 5'959           | 57473         | 1,820         | 1'036         | 10'958             | 68,8<br>5           | 5+7,01         | 826'+               | 698'6         | 282'5          | 0 <sub>8</sub> M                            |
| \$ <u>7</u> 2'9 | 867,8         | 6'336         | \$96'8        | 6,530              | 6,253               | <b>44</b> 8,0  | 215'9               | \$2S'9        | 191'9          | <sup>رم</sup> 0،                            |
| 848'14          | 41'835        | 006'2+        | 25,337        | 44'083             | 45'011              | 961'97         | 45'240              | 169'44        | 13'532         | 21 <sup>3</sup> O <sup>3</sup>              |
| 0,130           | 6,053         | 090'0         | 601,0         | 0'093              | 940'0               | 180'0          | 0'150               | 911'0         | S¢1'0          | \$0 <sup>2</sup> /                          |
| 846'21          | 214'71        | £69'11        | 961,9         | 18'539             | 096'21              | EE0'81         | £09 <sup>4</sup> ∠1 | 640'8I        | 224'2T         | rom                                         |
| 0'323           | 0'343         | 0'136         | 0'138         | 646,0              | 0'310               | 0'533          | <i>11</i> 2'0       | 185'0         | 186'0          | <sup>c</sup> ON                             |
| 0'054           | 0'015         | 949'0         | 0'016         | 000'0              | L72,0               | 000'0          | 610'0               | 900'0         | 000'0          | <sup>2</sup> Ois                            |
|                 |               |               |               |                    |                     |                |                     |               |                |                                             |
| Bordure         | ruæO          | อน่ณ่องการมกไ | Bordute       | Cœnt               | Bordure             | Cœm            | antnof              | n50           | ampiog         | Chromite                                    |
| Нагър ѝ съго    | Harzb à chro  | Harzb à chio  | ordo à drush  | Chr Sil            | Chr Sil             | Chr Sil        | Chr Sil             | Chr Sll       | Chr 311        | lithologie .                                |
| <u>д</u> и      | jc            | ्रा           | al            | 2P                 | Бa                  | d₽             | 86                  | qс            | яс             | )nio <sup>c</sup>                           |
| GI-1767-HM-76   | 51-1767-HM-76 | ST-T7ET-HM-76 | S1-1767-HM-70 | \$1-1767-HM-72     | 41-17E7-HM-70       | \$1-1767-HM-70 | \$1.1767.HM-70      | 41-1767-HM-70 | \$1-1767-HM-70 | schantillons                                |

| Échantillons                            | 97-MH-7371-15 | 97-MH-7371-15 | 97-MH-7371-15 | 97-MH-7371-15 | 97-MH-7371-15 | 97-MH-7371-16    | 97-MH-7371-16 | 07-MH-7971-16 | 07-MU-7971 16   | 21 1202 111 20      |
|-----------------------------------------|---------------|---------------|---------------|---------------|---------------|------------------|---------------|---------------|-----------------|---------------------|
| Point                                   | 2b            | За            | 3b            | 48            | 4b            | 41               | 28            | 26            | 01-1/C/-1141-16 | 45<br>01-1/6/-UM-/6 |
| Lithologic                              | Harzb à chro     | Harzh à chm   | Harzh A chm   | Hamh à chm      | Hamb A ahm          |
| Chromite                                | Cœur          | Bordure       | Cœur          | Bordure       | Cœur          | Coultr<br>Coultr | Port in the   |               |                 |                     |
|                                         |               |               |               |               |               |                  |               |               | amnioci         | Cent                |
| sio,                                    | 0'000         | 0,031         | 0,004         | 0,028         | 0,003         | 0,013            | 0.180         | 0.000         | 0.046           | 0 074               |
| Tio,                                    | 0,410         | 0,441         | 0,527         | 0,399         | 1/371         | 0,558            | 626,0         | 0.450         | 24.610          | 0.384               |
| Al <sub>2</sub> O <sub>3</sub>          | 18,111        | 17,041        | 18,568        | 15,499        | 17,296        | 17,199           | 4,205         | 17.085        | 2.174           | 16.281              |
| V3O3                                    | 0,050         | 0,083         | 0,003         | 0,137         | 0,069         | 0,166            | 0,137         | 0,113         | 0,055           | 800.0               |
| Cr <sub>3</sub> O <sub>3</sub>          | 43,348        | 42,330        | 43,015        | 43,589        | 44,721        | 44,228           | 40,422        | 43,684        | 40.075          | 43.558              |
| Fe <sub>3</sub> O <sub>3</sub>          | 6,843         | 6,825         | 7,223         | 6,717         | 6,976         | 7,008            | 20,743        | 6,986         | 23,700          | 6,590               |
| MgO                                     | 6,443         | 3,925         | 8,398         | 3,076         | 8,587         | 7,796            | 0,636         | 6,113         | 0,329           | 3.737               |
| MnO                                     | 0,429         | 0,488         | 0,355         | 0,458         | 0,352         | 0,440            | 0,848         | 0,426         | 806'0           | 0,612               |
| FcO                                     | 25,149        | 28,390        | 22,284        | 29,319        | 21,471        | 22,838           | 31,170        | 25,311        | 31,389          | 28,435              |
| CoO                                     | 0,000         | 0,118         | 0,036         | 0,112         | 000'0         | 0,105            | 0,252         | 0,069         | 0,244           | 000'0               |
| NiO                                     | 0,000         | 0,038         | 000'0         | 0,000         | 000'0         | 0,000            | 0,039         | 0,061         | 0'000           | 0,000               |
| ZnO                                     | 0,286         | 0,317         | 0,153         | 0,184         | 0,202         | 0,261            | 0,386         | 0,340         | 0,264           | 0,349               |
| Total                                   | 101,069       | 100,027       | 100,566       | 99,518        | 100,048       | 100,612          | 266'66        | 100,638       | 100,161         | 100,068             |
|                                         |               |               |               |               |               |                  |               |               |                 |                     |
| 55                                      | 0,000         | 0,008         | 0,001         | 0,008         | 100'0         | 0,003            | 0,053         | 000'0         | 0,014           | 0,006               |
| Ŧ                                       | 0,080         | 0,089         | 0,102         | 0,082         | 0,072         | 0,109            | 0,216         | 680'0         | 0,218           | 0,078               |
| VI                                      | 5,551         | 5,391         | 5,630         | 4,987         | 5,289         | 5,265            | 1,454         | 5,294         | 0,762           | 5,171               |
|                                         | 0,010         | 0,018         | 0,001         | 0,030         | 0,014         | 0,035            | 0,032         | 0,024         | 0,013           | 0,021               |
| 5                                       | 8,914         | 8,983         | 8,749         | 9,408         | 9,173         | 9,082            | 9,379         | 9,081         | 9,419           | 9,280               |
| Fe                                      | 1,339         | 1,379         | 1,398         | 1,380         | 1,362         | 1,370            | 4,581         | 1,382         | 5,301           | 1,336               |
| Mg                                      | 2,498         | 1,570         | 3,221         | 1,252         | 3,321         | 3,019            | 0,278         | 2,396         | 0,146           | 1,501               |
| Mn<br>3:                                | 0,094         | 0,111         | 0,077         | 0,106         | 0,077         | 260'0            | 0,211         | 0,095         | 0,229           | 0,140               |
| FC.                                     | 5,470         | 6,373         | 4,794         | 6,691         | 4,659         | 4,961            | 7,650         | 5,566         | 7,803           | 6,408               |
| 8 :                                     | 0,000         | 0,025         | 0,007         | 0,025         | 0,000         | 0,022            | 0,059         | 0,015         | 0,058           | 0,000               |
| 12                                      | 0,000         | 0,008         | 0,000         | 0,000         | 0'00          | 0'000            | 600'0         | 0,013         | 0,000           | 0'000               |
| 17.<br>17.                              | 0,055         | 0,063         | 0,029         | 0,037         | 0,039         | 0,050            | 0,084         | 0,066         | 0,058           | 0,070               |
| 10181                                   | 24,011        | 24,018        | 24,009        | 24,009        | 24,007        | 24,013           | 24,006        | 24,021        | 24,021          | 24,011              |
| 7.34.17.24                              |               |               |               |               |               |                  |               |               |                 |                     |
| re /re                                  | 0,24          | 0,22          | 0,29          | 0,21          | 0,29          | 0,28             | 0,60          | 0,25          | 0,68            | 0,21                |
|                                         | 61,62         | 62,49         | 60,85         | 65,36         | 63,43         | 63,30            | 86,58         | 63,17         | 92,52           | 64,22               |
| Mg/(Mg+Fe'')                            | 31,35         | 19,77         | 40,19         | 15,76         | 41,62         | 37,83            | 3,51          | 30,09         | 1,84            | 18,98               |
| Fe <sup></sup> /(Fe <sup></sup> +Al+Cr) | 8,47          | 8,75          | 8,86          | 8,75          | 8,61          | 8,72             | 29,72         | 8,77          | 34,24           | 8,46                |
| Cr / (Pe*+Fe*)                          | 1,31          | 1,16          | 1,41          | 1,17          | 1,52          | 1,43             | 0,77          | 1,31          | 0,72            | 1,20                |

|                    |               |                   | nata          | anta T        | 1.01.0         |                  | 1.010            |                        |                   | 1                                           |
|--------------------|---------------|-------------------|---------------|---------------|----------------|------------------|------------------|------------------------|-------------------|---------------------------------------------|
| 91'1               | 92'0          | 1.22              | \$9.0         | 0.05          | 22.1           | 84.0             | 10.0             | 1'30                   | £2'0              | Cr / Ibe <sup>3++Fe<sup>3+</sup></sup>      |
| 10,13              | <b>48.1</b> E | 6'6               | 59,85         | 63'56         | 66'8           | 21'15            | 82'86            | 8,62                   | 32,18             | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Ct) |
| £9'21              | 12'1          | 36'53             | C6'I          | 00'0          | 58'40          | 3'24             | 00'0             | 38'32                  | 5'16              | Mg/(Mg+Fe <sup>2+</sup> )                   |
| 92'29              | 92'06         | 21'69             | S7,EQ         | 00'001        | 10'69          | 98'32            | 100'00           | 87,68                  | 89'33             | Cr/(Cr+AJ)                                  |
| 0'32               | 69'0          | 22'0              | 87,0          | 1'89          | 0'32           | 60'1             | 26'1             | 0'54                   | <del>\$</del> 9'0 | հշ <sub>2+</sub> \եշ <sub>3+</sub>          |
|                    | and a         | at all a          |               | 1 1           |                |                  | and the          |                        |                   |                                             |
| 34 012             | 34,026        | 51012             | 34,028        | 34'031        | 54'016         | 23.985           | 54.036           | 54.010                 | 24.025            | LetoT                                       |
| 690.0              | 890.0         | 190'0             | 220'0         | 0 012         | 090'0          | \$20'0           | 120'0            | 850.0                  | \$20°0            | uz                                          |
| 0.000              | 000'0         | 000'0             | 000'0         | 0000          | 000'0          | 000.0            | 0.002            | 000'0                  | 000'0             | IN                                          |
| 610.0              | 0.062         | 910 <sup>.0</sup> | 990.0         | 640.0         | 0.030          | 0'042            | 0'100            | 000'0                  | 190'0             | ര                                           |
| 266'9              | S09'2         | 842'5             | 959'2         | 696'2         | ₽69'S          | 814,7            | 956'2            | 202'5                  | £17.3             | بد <sup>ع</sup> •                           |
| 0'318              | 164,0         | 0,244             | 186,0         | 0'005         | £11'0          | 0'362            | 000'0            | S01'0                  | 112'0             | иW                                          |
| 1'300              | 0'135         | 5'024             | 191'0         | 000'0         | 5'528          | 272,0            | 000'0            | 5'328                  | \$L1'0            | 8W                                          |
| £6S'I              | 166,6         | 295°t             | 296'9         | 14,820        | 914'1          | ¢90'8            | 169'51           | 1'328                  | 870,4             | *5 <sup>3</sup>                             |
| 6'392              | 6'239         | ∳26 <b>'</b> 8    | 878,8         | 1'000         | 160'6          | 966'2            | <del>6</del> 1'0 | 981'6                  | <b>29</b> £'6     | Cr                                          |
| 0,030              | 120'0         | 0'010             | 0'050         | 200,0         | 910'0          | 000'0            | 000'0            | 920'0                  | 640,0             | ٨                                           |
| 698,4              | 1'038         | 2'331             | C6S'0         | 000'0         | 2'305          | 0'135            | 000'0            | L12'9                  | 161,1             | ۲V                                          |
| S01'0              | 0'313         | zot'o             | 0'332         | t t o'o       | \$60'0         | 821'0            | 200'0            | ¢60'0                  | 112'0             | N                                           |
| 000'0              | 600'0         | 6,003             | 010'0         | 610'0         | 400 <b>'</b> 0 | £60'0            | S10'0            | 100'0                  | 900'0             | IS                                          |
|                    |               |                   |               |               |                |                  |                  |                        |                   |                                             |
| 100'663            | 208'66        | 100,843           | \$92'001      | 169'101       | 100'932        | 68'205           | 100'030          | 724,001                | 100'331           | [mtoT                                       |
| 915,0              | 906,0         | 616,0             | 0'323         | 266,0         | 605,0          | \$EE,0           | 116'0            | 262'0                  | 0'343             | OuZ                                         |
| 000'0              | 000'0         | 000'0             | 000'0         | 000'0         | 0'000          | 00010            | 800,0            | 0'000                  | 0'000             | OIN                                         |
| 090'0              | 0'390         | 690'0             | 872,0         | 0'354         | 141'0          | 0'182            | 604,0            | 000'0                  | 0'528             | രം                                          |
| 56,323             | 809'05        | 56,121            | 30,856        | 31'440        | 758,827        | 440,952          | 148,05           | 32'811                 | 015'16            | Osq                                         |
| 165'1              | E17,1         | 890't             | 915'1         | 900'0         | 905'0          | 866,1            | 000'0            | 694'0                  | 0 <b>,</b> 846    | Ouw                                         |
| 625'5              | 662'0         | 2'310             | 146,0         | 000'0         | 247,8          | 865'0            | 000'0            | 2'728                  | S65,0             | 08M                                         |
| 7,839              | 55'028        | 478,T             | 26,707        | 160'59        | 661'2          | 380,88           | £6S'29           | 6,827                  | 55'432            | 60 <sup>(</sup> )                           |
| 66C'E <del>1</del> | 955,04        | 43,819            | 058'26        | 624,453       | 43'335         | 30'936           | £62'0            | 846,54                 | 40'142            | Cr3O3                                       |
| 861,0              | 880,0         | 920'0             | 680,0         | 600'0         | 220'0          | 000'0            | 000'0            | 0'154                  | 281'0             | V303                                        |
| 12'362             | 3,935         | 847,81            | £69'I         | 000'0         | 590'41         | 995,0            | 000'0            | \$\$L'91               | 3'322             | °O'IV                                       |
| 619'0              | Z26'0         | \$IS'0            | 990'1         | 240'0         | 62+'0          | 255'0            | 160,0            | +2+'0                  | 196'0             | <sup>c</sup> ON                             |
| 000'0              | 0,030         | 110'0             | 0'035         | 440'0         | 0'012          | 606,0            | 0\$0'0           | <u>\$00'0</u>          | 120'0             | <sup>2</sup> Ois                            |
|                    |               |                   |               |               |                |                  |                  |                        |                   |                                             |
| Cœm                | ភារធ(b3៣131n1 | Cœur              | əninibəmrətni | ವುಗುಂದಿ       | Cœnt           | Intermédiaire    | ampiog           | Cœm                    | Bordure           | Chromite                                    |
| Harzb à cluo       | ondo à drusH  | ondo à drnali     | ondo à driaH  | ours à drusti | олло à dynaH   | លាវា១ ឝំ ៤ជានាអ៊ | onto à drush     | ondo â dznaH           | αιάς à chro       | aigolottri.                                 |
| 30                 | 96            | <b>3</b> 0        | SP            | ८४            | 10             | qt               | al               | qt                     | BÅ                | Point                                       |
| L1-1767-HM-70      | L1-1161-HW-16 | 21-1202-HW-26     | 21-1262-HW-26 | 21-1267-HM-70 | 21-1262-HW-26  | 21-1267-HM-70    | 21-1267-HM-70    | 91-1 <i>1</i> 52-HW-26 | 91-1262-HW-26     | នំពេលព្រំពារអាវី                            |

| Échantillons                                | 97-MH-7371-17 | 97-MH-7371-17 | 97-MH-7371-17 | 97-MH-7371-17 | 97-MH-7371-17 | 97-MH-7371-18 | 97-MH-7371-18 | 97-MH-7371-18 | 97-MH-7371-18 | 97-MH-7371-18 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 4b            | 4c            | 5b            | Sc            | 5d            | 18            | 1b            | 1c            | 2a            | 2b            |
| Lithologic                                  | Harzb à chro  | Lherz à chro  |
| Chromite                                    | Bordure       | Cœur          | Intermédiaire | Intermédiaire | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       | Intermédiaire |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO2                                        | 0,029         | 0,008         | 0,311         | 0,028         | 0,011         | 0,042         | 0,035         | 0,026         | 0,058         | 0,022         |
| TiO <sub>2</sub>                            | 1,125         | 0,678         | 0,078         | 1,049         | 0,528         | 0,000         | 2,350         | 1,941         | 0,000         | 2,196         |
| Al <sub>2</sub> O <sub>3</sub>              | 2,580         | 15,376        | 0,000         | 2,251         | 17,264        | 0,000         | 0,960         | 12,916        | 0,000         | 2,105         |
| V <sub>2</sub> O3                           | 0,038         | 0,113         | 0,000         | 0,076         | 0,099         | 0,007         | 0,067         | 0,211         | 000,0         | 0,014         |
| Cr <sub>2</sub> O <sub>3</sub>              | 39,642        | 43,841        | 2,458         | 37,380        | 43,147        | 0,454         | 37,004        | 39,644        | 0,850         | 38,277        |
| FeyO3                                       | 23,785        | 7,892         | 66,195        | 26,435        | 7,407         | 67,958        | 27,376        | 11,167        | 67,969        | 25,023        |
| MgO                                         | 0,294         | 5,522         | 0,000         | 0,231         | 6,587         | 0,000         | 4,275         | 3,166         | 0,011         | 4,360         |
| MnO                                         | 1,470         | 0,485         | 0,000         | 1,466         | 0,402         | 0,023         | 5,159         | 0,794         | 0,058         | 4,684         |
| FeO                                         | 31,270        | 25,993        | 31,083        | 31,137        | 24,693        | 30,766        | 21,866        | 29,909        | 30,902        | 22,268        |
| CoO                                         | 0,213         | 0,060         | 0,345         | 0,261         | 0,000         | 0,277         | 0,291         | 0,230         | 0,423         | 0,278         |
| NiO                                         | 0,000         | 0,000         | 0,265         | 0,005         | 0,030         | 0,087         | 0,000         | 0,029         | 0,108         | 0,007         |
| ZnO                                         | 0,468         | 0,260         | 0,222         | 0,311         | 0,153         | 0,295         | 0,523         | 0,544         | 0,246         | 0,312         |
| Total                                       | 100,914       | 100,228       | 100,957       | 100,630       | 100,321       | 99,909        | 99,906        | 100,577       | 100,625       | 99,546        |
|                                             |               |               |               |               |               |               |               |               |               |               |
| Si                                          | 0,009         | 0,002         | 0,095         | 0,008         | 0,003         | 0,013         | 0,010         | 0,007         | 0,018         | 0,006         |
| Ti                                          | 0,249         | 0,136         | 0,018         | 0,234         | 0,104         | 0,000         | 0,515         | 0,400         | 0,000         | 0,479         |
| A1                                          | 0,896         | 4,838         | 0,000         | 0,786         | 5,340         | 0,000         | 0,330         | 4,174         | 0,000         | 0,720         |
| v                                           | 0,009         | 0,024         | 0,000         | 0,018         | 0,021         | 0,002         | 0,016         | 0,046         | 0,000         | 0,003         |
| Cr                                          | 9,238         | 9,253         | 0,592         | 8,761         | 8,953         | 0,111         | 8,525         | 8,595         | 0,206         | 8,782         |
| Fc <sup>3+</sup>                            | 5,276         | 1,585         | 15,178        | 5,897         | 1,463         | 15,796        | 6,003         | 2,304         | 15,683        | 5,464         |
| Mg                                          | 0,129         | 2,197         | 0,000         | 0,102         | 2,577         | 0,000         | 1,857         | 1,294         | 0,005         | 1,886         |
| Mn                                          | 0,367         | 0,110         | 0,000         | 0,368         | 0,089         | 0,006         | 1,273         | 0,184         | 0,015         | 1,151         |
| Fc <sup>2+</sup>                            | 7,708         | 5,803         | 7,921         | 7,720         | 5,419         | 7,948         | 5,329         | 6,859         | 7,924         | 5,404         |
| Co                                          | 0,050         | 0,013         | 0,084         | 0,062         | 0,000         | 0,069         | 0,068         | 0,051         | 0,104         | 0,065         |
| NI                                          | 0,000         | 0,000         | 0,065         | 0,001         | 0,006         | 0,022         | 0,000         | 0,006         | 0,027         | 0,002         |
| Zn                                          | 0,102         | 0,051         | 0,050         | 0,068         | 0,030         | 0,067         | 0,112         | 0,110         | 0,056         | 0,067         |
| Total                                       | 24,033        | 24,012        | 24,003        | 24,025        | 24,005        | 24,034        | 24,038        | 24,030        | 24,038        | 24,029        |
|                                             |               |               |               |               |               |               |               |               |               | 1             |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,68          | 0,27          | 1,92          | 0,76          | 0,27          | 1,99          | 1,13          | 0,34          | 1,98          | 1,01          |
| Cr/(Cr+Al)                                  | 91,16         | 65,67         | 100,00        | 91,77         | 62,64         | 100,00        | 96,27         | 67,31         | 100,00        | 92,42         |
| Mg/(Mg+Fc <sup>2</sup> *)                   | 1,65          | 27,46         | 0,00          | 1,30          | 32,23         | 0,00          | 25,84         | 15,87         | 0,06          | 25,87         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 34,24         | 10,11         | 96,25         | 38,18         | 9,29          | 99,30         | 40,40         | 15,29         | 98,70         | 36,51         |
| Cr / (Fe <sup>2</sup> *+Fe <sup>3</sup> *)  | 0,71          | 1,25          | 0,03          | 0,64          | 1,30          | 0,00          | 0,75          | 0,94          | 0,01          | 0,81          |

| Échantillons                                | 97-MH-7371-18 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 2c            | За            | 3b            | 3c            | 4a            | 4b            | 4c            | Sa            | 5b            | 5c            |
| Lithologie                                  | Lherz à chro  |
| Chromite                                    | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       | Intermédiaire | Cœur          |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO <sub>2</sub>                            | 0,103         | 0,041         | 0,018         | 0,028         | 0,059         | 0,037         | 0,061         | 0,027         | 0,035         | 0,018         |
| TiO <sub>2</sub>                            | 1,956         | 0,114         | 1,368         | 1,610         | 0,000         | 1,812         | 3,671         | 0,059         | 2,435         | 1,944         |
| Al <sub>2</sub> O <sub>3</sub>              | 12,892        | 0,000         | 14,897        | 14,279        | 0,000         | 3,192         | 13,199        | 0,000         | 1,059         | 13,551        |
| V <sub>2</sub> O <sub>3</sub>               | 0,390         | 0,000         | 0,235         | 0,259         | 0,000         | 0,018         | 0,099         | 0,000         | 0,000         | 0,259         |
| Cr <sub>2</sub> O <sub>3</sub>              | 39,970        | 0,524         | 41,202        | 40,966        | 0,292         | 37,696        | 39,835        | 1,034         | 38,211        | 40,961        |
| FejO3                                       | 10,898        | 68,227        | 9,873         | 8,697         | 67,411        | 25,006        | 6,725         | 68,056        | 25,647        | 9,063         |
| MgO                                         | 4,370         | 0,619         | 6,420         | 3,199         | 0,000         | 4,874         | 3,227         | 0,366         | 4,259         | 3,999         |
| MnO                                         | 2,981         | 0,091         | 2,634         | 0,817         | 0,000         | 4,830         | 1,035         | 0,041         | 5,478         | 2,180         |
| FeO                                         | 25,590        | 29,954        | 22,763        | 29,705        | 30,467        | 20,996        | 30,958        | 30,519        | 21,585        | 27,147        |
| C00                                         | 0,154         | 0,336         | 0,000         | 0,112         | 0,328         | 0,164         | 0,074         | 0,409         | 0,206         | 0,073         |
| NIO                                         | 0,019         | 0,099         | 0,000         | 0,000         | 0,096         | 0,000         | 0,038         | 0,031         | 0,000         | 0,000         |
| ZnO                                         | 0,374         | 0,241         | 0,553         | 0,348         | 0,461         | 0,467         | 0,252         | 0,272         | 0,370         | 0,406         |
| Total                                       | 99,697        | 100,246       | 99,963        | 100,020       | 99,114        | 99,092        | 99,174        | 100,814       | 99,285        | 99,601        |
|                                             |               |               |               |               |               | ]             |               |               |               |               |
| Si                                          | 0,028         | 0,012         | 0,005         | 0,008         | 0,018         | 0,011         | 0,017         | 0,008         | 0,010         | 0,005         |
| Ti                                          | 0,402         | 0,026         | 0,274         | 0,331         | 0,000         | 0,393         | 0,763         | 0,014         | 0,536         | 0,400         |
| Al                                          | 4,157         | 0,000         | 4,683         | 4,600         | 0,000         | 1,087         | 4,299         | 0,000         | 0,365         | 4,372         |
| v                                           | 0,085         | 0,000         | 0,050         | 0,057         | 0,000         | 0,004         | 0,022         | 0,000         | 0,000         | 0,057         |
| Cr                                          | 8,646         | 0,127         | 8,689         | 8,852         | 0,072         | 8,609         | 8,705         | 0,250         | 8,841         | 8,865         |
| Fe <sup>3</sup>                             | 2,244         | 15,727        | 1,982         | 1,789         | 15,804        | 5,435         | 1,399         | 15,631        | 5,648         | 1,867         |
| Mg                                          | 1,782         | 0,283         | 2,553         | 1,303         | 0,000         | 2,099         | 1,329         | 0,167         | 1,858         | 1,632         |
| Mn                                          | 0,691         | 0,024         | 0,595         | 0,189         | 0,000         | 1,182         | 0,242         | 0,011         | 1,358         | 0,505         |
| Fc <sup>2+</sup>                            | 5,855         | 7,674         | 5,078         | 6,790         | 7,938         | 5,072         | 7,156         | 7,790         | 5,283         | 6,214         |
| Co                                          | 0,034         | 0,083         | 0,000         | 0,025         | 0,082         | 0,038         | 0,016         | 0,100         | 0,048         | 0,016         |
| NI                                          | 0,004         | 0,024         | 0,000         | 0,000         | 0,024         | 0,000         | 0,008         | 0,008         | 0,000         | 0,000         |
| Zn                                          | 0,076         | 0,055         | 0,109         | 0,070         | 0,106         | 0,100         | 0,051         | 0,061         | 0,080         | 0,082         |
| Total                                       | 24,004        | 24,035        | 24,018        | 24,014        | 24,044        | 24,030        | 24,007        | 24,040        | 24,027        | 24,015        |
|                                             |               |               |               | I             | 1             | 1             |               |               |               |               |
| Fe <sup>3+</sup> /Fe <sup>2+</sup>          | 0,38          | 2,05          | 0,39          | 0,26          | 1,99          | 1,07          | 0,20          | 2,01          | 1,07          | 0,30          |
| Cr/(Cr+Al)                                  | 67,53         | 100,00        | 64,98         | 65,80         | 100,00        | 88,79         | 66,94         | 100,00        | 96,04         | 66,97         |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 23,33         | 3,56          | 33,46         | 16,10         | 0,00          | 29,27         | 15,66         | 2,10          | 26,02         | 20,80         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 14,91         | 99,20         | 12,91         | 11,74         | 99,55         | 35,92         | 9,71          | 98,43         | 38,02         | 12,36         |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 1,07          | 0,01          | 1,23          | 1,03          | 0,00          | 0,82          | 1,02          | 0,01          | 0,81          | 1,10          |

| 80,0           | 2e'1               | 60'1          | 10'0              | 1'03          | <del>\$</del> 9'0 | 10'0              | 1'13          | <b>F8,0</b>         | 0'03           | Cr / (Pe <sup>2*</sup> +Pe <sup>2+</sup> )  |
|----------------|--------------------|---------------|-------------------|---------------|-------------------|-------------------|---------------|---------------------|----------------|---------------------------------------------|
| <b>88,85</b>   | ¥6'II              | 2e'61         | E6'86             | 69'21         | 45'35             | <b>49'8</b> 6     | 17,43         | 28'SE               | 22'26          | Pe <sup>3+</sup> /(Fe <sup>3+</sup> +A1+Cf) |
| \$6'0          | 26'24              | 35'20         | 00'0              | 96'91         | 2°33              | 00'0              | 28'62         | 64'2Z               | <b>64</b>      | Mg/(Mg+Fc <sup>2+</sup> )                   |
| 7 <b>2</b> ′66 | 86'69              | <b>48</b> '99 | 100'00            | 09'69         | 69'26             | 100'00            | 88'69         | 62'26               | 100'00         | Cr/(Cr+Al)                                  |
| 1'83           | 14,0               | ¢9'0          | 86'1              | 05,0          | 0'33              | 96'I              | 19'0          | 1,03                | 96'I           | Fc <sup>3+</sup> /Fc <sup>3+</sup>          |
|                |                    |               |                   |               |                   |                   |               |                     |                |                                             |
| 54°01S         | 510'42             | 54'025        | 34'028            | 54'041        | 54'090            | 54'046            | 54'031        | 54'054              | 24,043         | Total                                       |
| 080,0          | 190'0              | 222,0         | \$\$0'0           | 541,0         | 121'0             | 0'020             | 061,0         | <b>+80'0</b>        | 890'0          | υZ                                          |
| 0'140          | 0'033              | 0'010         | 601'0             | 0'034         | 0'032             | 180'0             | 000'0         | 000'0               | 600'0          | IN                                          |
| 0'100          | 0'000              | 000'0         | <del>4</del> 60'0 | 0'036         | 290'0             | Z20'0             | 0'033         | 940,0               | 0'154          | တ                                           |
| \$69'L         | 082,4              | 00L'Þ         | 1,928             | F22,0         | 828,8             | 096'L             | 2'183         | 612'5               | 906'2          | եշ <sup>3+</sup>                            |
| 991'0          | 690'0              | 020'1         | 000'0             | 191'0         | 1'316             | 000'0             | 288,0         | 1'308               | 910'0          | aM                                          |
| <b>₽</b> 20'0  | 15 <b>†</b> 'e     | 5'310         | 000'0             | 1'336         | \$86,0            | 000'0             | 5'303         | £70,1               | SE0'0          | 8M                                          |
| 160,41         | 898'I              | 010'E         | 12'988            | \$96'I        | 6,285             | 629'91            | 5,653         | 066'9               | 964,21         | *°54                                        |
| 552'1          | 118'8              | e7e,8         | 691 '0            | 649'8         | 696,8             | 0'319             | 087,8         | <b>\$68,8</b>       | 196,0          | Cr                                          |
| 000'0          | 0,042              | SE0'0         | 000'0             | 6+0'0         | 000'0             | 000'0             | 650'0         | 210'0               | 000'0          | ٨                                           |
| 0'002          | 196'+              | 4,154         | 000010            | 29G'b         | 0'503             | 000'0             | +87,E         | £ <del>\$</del> 7,0 | 000'0          | 1A                                          |
| 610'0          | 0+1'0              | 9991'0        | 000'0             | 0'134         | 0'205             | 910'0             | 166,0         | 0,442               | ¢10'0          | LI.                                         |
| 110'0          | 200'0              | 200'0         | St0'0             | <u>\$00'0</u> | 110'0             | 0 <sup>,012</sup> | 100'0         | 010'0               | S10'0          | IS                                          |
|                |                    |               |                   |               |                   |                   |               |                     |                |                                             |
| 924'001        | 8100,048           | SZ9'86        | 100'013           | 100,240       | 044'66            | 068,001           | 679'66        | S80'66              | 966'001        | letoT                                       |
| 0'322          | 216,0              | 811'1         | 0,245             | 227,0         | 992'0             | 0'550             | 1+9'0         | 0'333               | 6,303          | O <sup>th</sup> Z                           |
| 895'0          | 011'0              | 260,0         | 244,0             | 011'0         | S+1'0             | 675,0             | 000'0         | 0000'0              | 7£0,0          | OłN                                         |
| 605'0          | 000'0              | 000'0         | 185,0             | 0'134         | 0'52'             | 0'505             | 6,103         | 961'0               | 0'202          | 000                                         |
| 30'025         | 21,082             | 50,435        | 288,00            | 28'822        | 270,72            | ELL'IE            | 55'633        | 51,456              | £96'0E         | 0.59                                        |
| 669'0          | 916'0              | 165,4         | 000'0             | 202'0         | 297,6             | 000'0             | 718,E         | E69'4               | £20'0          | Oum                                         |
| 0'162          | 216'8              | 469'S         | 0'000             | 205,5         | 0,855             | 000'0             | 966'9         | 055'+               | 870,0          | OSM                                         |
| 806'09         | 6'228              | 14'244        | L16'L9            | L19'6         | C69'12            | ¥66'29            | 12,878        | 54'9.33             | 6++'29         | <sup>1</sup> C <sup>1</sup> O <sup>2</sup>  |
| 1'525          | 45'902             | 38'203        | \$69'0            | 024,04        | 32'015            | £68,0             | 40,557        | PT9,8E              | 56V'I          | Cr3O3                                       |
| 000'0          | 0'500              | 091'0         | 000'0             | 0'551         | 000'0             | 000'0             | 697'0         | \$20'0              | 000'0          | <sup>1</sup> 0 <sup>1</sup>                 |
| £10'0          | 19'50 <del>0</del> | 12,814        | 000,0             | 812'51        | 045'0             | 000'0             | 11'156        | 5,168               | 000'0          | VI <sup>3</sup> O <sup>2</sup>              |
| £80,0          | 912'0              | 627,0         | 000'0             | 609'0         | 5'515             | 1 20'0            | 909't         | <b>5'032</b>        | 0'026          | ro <sub>r</sub>                             |
| 9'032          | 920'0              | 970'0         | 840,0             | L10'0         | 960'0             | 860,0             | 600,0         | 960'0               | 0\$0'0         | <sup>z</sup> ois                            |
|                |                    |               |                   |               |                   |                   |               |                     |                |                                             |
| Bordure        | Cœur               | ntermédiaire  | Bordure           | Cœnt          | əninibəmrətni     | Bordure           | Cœm.          | atisti băurratu î   | anpiog         | Chromite                                    |
| ημετz & chro   | οιης Α της         | οιής à stord  | Cirità à stiad.   | οιης ά επόλ   | της κ τητο        | ουτο & εποιλ      | ουμο 🤋 κυρισ  | γρειχ & εμισ        | conto à standa | Lithologie                                  |
| 24             | ٦t                 | qı            | al                | 201           | 901               | 801               | 59            | q9                  | RÒ             | ) nio                                       |
| 61-1262-HW-26  | 61-1202-HW-26      | 61-1202-HW-26 | 61-1202-HW-26     | 61+1202+HW+26 | 61-1267-HM-70     | 61+1262+HW+26     | 81-1267-HM-70 | 81-1267-HM-70       | 81-1267-HM-70  | enollitnadož                                |

| 99'0              | 10'0          | 66'U                           | 82'0          | 10'0                | 16'0           | <b>49'0</b>        | 00'0           | 10'1              | 82'0          | Cr / (Fe <sup>2+</sup> +Fe <sup>3</sup> )                |
|-------------------|---------------|--------------------------------|---------------|---------------------|----------------|--------------------|----------------|-------------------|---------------|----------------------------------------------------------|
| 45'02             | <b>30'96</b>  | 65,61                          | 94'94         | 65'86               | 20'91          | 81,54              | 67'66          | 12'55             | 58,46         | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+C <sub>7</sub> ) |
| 84,8              | 00'0          | 24,71                          | 46'EI         | 81,0                | 14'93          | 47,21              | 00'0           | 33'98             | 19,54         | M8/(M8+Fc <sup>3†</sup> )                                |
| £8'26             | 00'001        | 64,63                          | 01'66         | 00'001              | t £'99         | 51'15              | 100'00         | 60'59             | 10'58         | Cr/(Cr+Al)                                               |
| <i>L</i> 6'0      | 96't          | 16,0                           | 81,1          | 26'I                | sc'o           | 01'1               | 66'1           | 66,0              | 26'0          | િ <sup>2+</sup> \ક્રc <sup>3+</sup>                      |
|                   |               |                                |               |                     |                |                    |                |                   |               |                                                          |
| 54'026            | 54'001        | 54'039                         | 54'069        | 24'046              | 54'036         | 090'\$2            | 070,42         | 910'52            | 24'022        | Total                                                    |
| 0'124             | 9'022         | 0'123                          | 251'0         | 610,0               | 0'156          | 0,122              | <b>\$90'</b> 0 | 280,0             | 921'0         | uZ                                                       |
| 640,0             | 0'150         | \$00'0                         | 120'0         | 801'0               | 0'032          | 1 50'0             | 211'0          | 800'0             | 0,042         | IN                                                       |
| 070,0             | 260'0         | 0,030                          | S70,0         | 920'0               | \$£0'0         | 220'O              | S11'0          | 6,013             | 150'0         | <u> </u>                                                 |
| 4C2'9             | 916'2         | 169'9                          | 196'9         | 966'4               | <b>\$28</b> '9 | S78,2              | 27922          | 9'102             | 904'5         | +2 <sup>2</sup> 5                                        |
| 1'341             | 110'0         | 6,153                          | 986'1         | 900'0               | 61210          | 949'1              | 000'0          | 0*150             | 5+5,1         | nM                                                       |
| 654,0             | 000'0         | \$04'I                         | 6,96,0        | \$10 <sup>,</sup> 0 | 921'1          | 858,0              | 000'0          | <b>₽68,1</b>      | 616,1         | 8M                                                       |
| 6,323             | 12'242        | 6L0'Z                          | 100'2         | 15,641              | 2,433          | 29 <del>6</del> ,ð | 12'133         | 076,2             | 69°'S         | Fc <sup>3+</sup>                                         |
| 8'23 <del>4</del> | 606,0         | 985'8                          | 119'2         | 0'554               | 644'B          | 8'592              | 0'115          | 065'8             | 626'8         | Ct                                                       |
| 200'0             | 100'0         | 240,0                          | 0'003         | 000'0               | 0'034          | 100'0              | 000'0          | 0'022             | 01040         | ٨                                                        |
| 681,0             | 000'0         | 669'ŧ                          | 0'225         | 000'0               | 162,6          | 0,245              | 000'0          | 209'4             | 874,1         | IA                                                       |
| 504,0             | 000'0         | 0'323                          | 0'383         | 210'0               | 96,0           | 0,445              | 000'0          | 891'0             | 0'320         | IT                                                       |
| 910'0             | 0'015         | 0 <sup>1</sup> 00 <del>1</del> | 010'0         | 010'0               | 200'0          | 800,0              | 200'0          | 0'00 <del>4</del> | 800,0         | 18                                                       |
|                   |               |                                |               |                     |                |                    |                |                   |               |                                                          |
| 960'66            | 644'001       | 100'632                        | 110'001       | 100,123             | Z28'66         | 012'66             | 119'001        | 100,622           | 100,243       | Letel                                                    |
| 289'0             | 0'5'0         | 297,0                          | 612'0         | <b>∿80,0</b>        | 6,633          | 0'229              | 0,282          | 1110              | 728,0         | OuZ                                                      |
| 941'0             | 981-0         | 0'032                          | 0'330         | 264'0               | 0'115          | 0'515              | 574,0          | 260'0             | 0,182         | OIN                                                      |
| 0,288             | 67E,0         | 861,0                          | 816,0         | 206,0               | 291'0          | 0'353              | 694'0          | 190'0             | 0'550         | രം                                                       |
| 52,832            | 262'00        | 59,224                         | 54'118        | 30'135              | 902'62         | 53'292             | 048,06         | 52'136            | 51419         | 0°d                                                      |
| 2'534             | 0'043         | <b>6,665</b>                   | 2,548         | 0'054               | <b>₽</b> 90'1  | 615'9              | 000'0          | 0'238             | 22E'9         | OaM                                                      |
| \$00'1            | 0'00'0        | 024'C                          | 5'163         | 0'030               | 2,857          | 169,1              | 000'0          | 627,4             | 3'026         | OBM                                                      |
| 517,779           | 007,700       | P81,01                         | \$ES'LE       | 844'29              | E89'11         | 758,827            | 690,88         | 202'11            | 54'586        | ႞ၯ႙ၨ                                                     |
| 2643<br>2643      | E72,1         | 620,04                         | 35'303        | L16'0               | \$\$L'8C       | 990'SC             | 0'462          | 785,0h            | 36,758        | Cr <sub>3</sub> O <sub>3</sub>                           |
| 820'0             | 600,0         | £61'0                          | ¢10'0         | 000'0               | 0'123          | 600,0              | 0'000          | 952'0             | 621'0         | <sup>1</sup> 0 <sup>2</sup> ٨                            |
| 0'233             | 000'0         | 14'693                         | 109'1         | 000'0               | 15'624         | L69'0              | 000'0          | 14'231            | 056,6         | VI <sup>3</sup> O <sup>2</sup>                           |
| 1'183             | 000'0         | 1,240                          | 1,728         | 120'0               | 952'1          | 986'1              | 000'0          | 0,830             | 1'919         | <sup>z</sup> OKL                                         |
| 0'023             | 6£0,0         | 910'0                          | 960,0         | 0'033               | 0'034          | 0'032              | ZZ0'D          | \$10'0            | 670'0         | <sup>c</sup> Ois                                         |
|                   |               |                                |               |                     |                |                    |                |                   |               |                                                          |
| Intermédiaire     | aubiofl       | ມແລວ                           | minihômnotní  | ચાતમાબ્લ            | ແຫຼວ           | ənisibəmrətri      | ambrofi        | TUXO              | nisibòmatal   | chronite                                                 |
| γρεις η εμιο      | οης à sibri   | οιμο ψ Ζιομη                   | ແນ່ລ ກໍ່ ແອນນ | οιμο φ ειοηη        | crito à stodu  | οιής Α είσαλ       | ດເຊວ ອຸ ຊາວນປ  | γρεις & chro      | οιης à stord  | aigolothiJ                                               |
| 45                | 28            | 56                             | qÞ            | ut                  | 30             | 39                 | вC             | აღ                | 3P            | taio9.                                                   |
| 61.1727.HM.7Q     | 61.1767.HM.70 | 61-1767-HM-79                  | 61-1267-HM-76 | 61-1262-HW-1.6      | 61-1284-HW-26  | 61-1267-HM-70      | 61-1262-HW-26  | 61-1202-HW-26     | 61-1767-HM-79 | \$chantilons                                             |

#### .(suites) appropriation des chromites analysées à la microsonde électronique (suite).

| 10'0           | 6,93                | 91'1          | 6,03          | 1'50               | S9'0          | 1,02               | <del>\$</del> 9'0 | 10'0          | £0'1          | Cr / (Fe <sup>3++F</sup> 5 <sup>3</sup> ) / 7O           |
|----------------|---------------------|---------------|---------------|--------------------|---------------|--------------------|-------------------|---------------|---------------|----------------------------------------------------------|
| 04,86          | 96'41               | 24'51         | 24°50         | 12'51              | 04,14         | 12'23              | 43'20             | 09,80         | 13'82         | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+C <sub>1</sub> ) |
| 00'0           | 81,71               | 12'96         | 00'0          | 96'16              | \$'E          | £9'6I              | 12'2              | 0'00          | 64'61         | M8/(M8+Ec <sup>3+</sup> )                                |
| 100'00         | 08'29               | 24'29         | 00'001        | 95'89              | 86'26         | 26,932             | 06'96             | 00'001        | T+'99         | Cr/(Cr+Vt)                                               |
| 26'I           | 6.93                | 0'23          | 16'1          | 91,0               | 88,0          | 7E,0               | S6'0              | 26'I          | 6,33          | Pe³⁺/Pe³⁺                                                |
|                |                     |               |               |                    |               |                    |                   |               |               |                                                          |
| 24'093         | 54'033              | 54'025        | 34'090        | 840,45             | 54'062        | 54'030             | 24'068            | \$4,064       | 24'012        |                                                          |
| 650'0          | 0'11 <del>'</del> 0 | 902'0         | 660'0         | 002'0              | 441,0         | 960'0              | 641,0             | 940'0         | £01'0         | ΰZ                                                       |
| 0'136          | 810,0               | 910'0         | 0'158         | 100'0              | 420'0         | 250'0              | 0'025             | 0'130         | 000'0         | <u>IN</u>                                                |
| 580'0          | 600'0               | 220'0         | \$80'0        | 810'0              | 201'0         | 0'014              | 160'0             | 101'0         | £00'0         | တ                                                        |
| Y70'4          | 999'8               | 189'd         | 169'1         | 696'i              | 189,7         | 9 <sup>1</sup> 588 | 669'9             | 026'2         | 874,8         | եշ <sup>3+</sup>                                         |
| 0'003          | L91'0               | <b>205'0</b>  | 420'0         | 7 <sup>*00</sup> 5 | 1'055         | 822'0              | 190'1             | 100'0         | 671'0         | nM                                                       |
| 000'0          | £86, t              | 5'99'2        | 000'0         | 2,334              | 0'360         | 909'1              | 099'0             | 000'0         | 895'1         | 8M                                                       |
| ¥65'S1         | 5'501               | 3/375         | 12'104        | 3'386              | 661'9         | 5,328              | E6E'9             | 12'940        | 2,137         | թշ <sup>3+</sup>                                         |
| 0'523          | 8'546               | 201'8         | 914'0         | 269,8              | 665'8         | 987,8              | 186,8             | 0'333         | 8+8,8         | Cr                                                       |
| 000'0          | 0'025               | 2\$0'0        | 000'0         | £20'0              | 0,003         | 690'0              | 900'0             | 000'0         | 61-0'0        | ۸                                                        |
| 000'0          | 288,1               | 178,4         | 000'0         | 886,6              | 221'0         | 888,0              | 0'368             | 000'0         | 926'6         | 14                                                       |
| 0°003          | 9 <sup>,</sup> 275  | 0'536         | £00'0         | 144,0              | 864,0         | 0440               | 004'0             | 000'0         | 0'553         | ķ.L                                                      |
| £10'0          | 200'0               | 200'0         | 610'0         | 100'0              | 110'0         | 0'000              | 800,0             | <b>\$00,0</b> | £00'0         | !5                                                       |
|                |                     |               |               |                    |               |                    |                   |               |               |                                                          |
| 190'001        | 154'001             | \$6°'66       | 066'001       | 870,00             | 691/66        | 192'66             | 896'26            | 100,880       | 260'001       | letoT                                                    |
| 0'393          | 0'2 <b>/</b> 3      | 1'045         | 664'0         | 066'0              | 0'642         | 691'0              | 699'0             | 0'504         | 0'215         | OnS                                                      |
| 0'250          | 280,0               | 270,0         | 0'233         | 600,0              | 660'0         | 891'0              | 0'513             | 684,0         | 000'0         | OIN                                                      |
| 946,0          | 6,043               | 971,0         | 846,0         | <b>\$80'0</b>      | 066,0         | 0'095              | 67E,0             | 114'0         | 0'012         | 000                                                      |
| 30'189         | 11162               | 50,493        | 278,05        | 51'105             | 110'92        | 52'500             | 56,254            | S96'0C        | 58'416        | O.q                                                      |
| 0'011          | 677,0               | 826'6         | 0'035         | 625'\$             | 066'E         | 5'383              | 201'#             | S00'0         | 095'0         | Ouw                                                      |
| 0'000          | 5,423               | 699'9         | 0'000         | 91 <i>L</i> 'S     | 878,0         | 827,6              | 1'535             | 000'0         | 3'826         | 08M                                                      |
| EEE'29         | 662'01              | 462'11        | 878,878       | 660'11             | 51,252        | <b>\$61'11</b>     | 548'22            | S28'29        | 214'01        | دەرO <sub>s</sub> م                                      |
| 0+0'1          | <b>484,8</b> C      | 38'315        | 3'691         | 291'04             | 626'SE        | 40'519             | 34,742            | 916'0         | 720,14        | Cr103                                                    |
| 000'0          | 0'541               | 0'564         | 0,000         | 1+2'0              | 0'011         | 0'592              | 0'032             | 000'0         | 0'559         | ٥ <sup>٢</sup> ٨ء ا                                      |
| 0,000          | 12'502              | 12°444        | 0,000         | 12,357             | 96+'0         | 666'11             | 547,0             | 100'0         | 13'634        | ℃વય                                                      |
| 800,0          | 6+C'I               | <b>₽</b> 21'1 | 0'013         | 5'140              | 976'1         | 5,118              | 647,1             | 0'00          | 980'1         | LIOz                                                     |
| 0'045          | 9'059               | 220'0         | 190'0         | <b>₽00,0</b>       | 960,0         | 000'0              | 0'032             | \$10'0        | 0'013         | <sup>t</sup> Ois                                         |
|                |                     |               |               |                    | l             | ļ                  |                   |               |               |                                                          |
| βοιάνια        | Cœur                | misibánnətni  | Sordure       | Cœur               | ounibéanotal  | Cœur               | ənlaibənnətni     | aumoa         | Coent         | ວງຫຼາຍ<br>ດານ                                            |
| Lherz à chro   | οιης & εισάλ        | οτης ή κτιση. | Lheiz à chro  | Lheiz & chro       | onio à sidul  | Cherz à chro       | Lherz à chro      | ουία & είτο   | Lherz à chưo  | sigolothi.                                               |
| 9 <sup>8</sup> |                     | 98            | 88            | ٥٢                 | ٩٤            | 29                 | 99                | BD<br>BD      | 2¢            | tnioq                                                    |
| 61-1767-HM-70  | 61-1767-HM-76       | 61+1757-HM-79 | 61-1267-HM-70 | 61-1767-HM-76      | 61-1262-HW-26 | 61-17E7-HM-70      | 61-1262-HW-26     | 61-1262-HW-26 | 61-1767-HM-70 | enollitandož                                             |

## .(suites) auposition des chromites analysées à la microsonde électronique (suite).

| Échantillons                                | 97-MH-7371-19 | 97-MH-7371-19 | 97-MH-7371-20 | 97-MH-7371-20 | 97-MH-7371-20 | 97-MH+7371-20 | 97-MH-7371-20 | 97-MH-7371-20 | 97-MH-7371-20 | 97-MH-7371-20 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 9b            | 9c            | 18            | lb            | 1c            | 2a            | 2b            | 2c            | За            | 3b            |
| Lithologie                                  | Lherz à chro  | Lherz A chro  | Lherz         |
| Chromite                                    | Intermédiaire | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       | Intermédiaire |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO <sub>2</sub>                            | 0,045         | 0,014         | 0,043         | 0,019         | 0,039         | 0,136         | 0,030         | 0,017         | 0,028         | 0,014         |
| TiO <sub>2</sub>                            | 2,281         | 1,129         | 0.024         | 1,380         | 1,372         | 0,000         | 3,661         | 2,778         | 0,077         | 3,109         |
| Al <sub>2</sub> O <sub>3</sub>              | 0,575         | 14,664        | 0,000         | 5,858         | 11,793        | 0,000         | 0,585         | 11,515        | 0,000         | 1,337         |
| V203                                        | 0,108         | 0,241         | 0,049         | 0,384         | 0,474         | 0,000         | 0,284         | 0,466         | 0,000         | 0,420         |
| Cr <sub>2</sub> O3                          | 34,111        | 38,989        | 1,359         | 35,110        | 34,742        | 0,892         | 32,396        | 35,663        | 0,809         | 34,821        |
| Fc <sub>2</sub> O <sub>3</sub>              | 29,087        | 11,461        | 67,497        | 25,476        | 17,323        | 66,431        | 29,839        | 14,919        | 67,513        | 27,212        |
| MgO                                         | 1,572         | 3,549         | 0,132         | 4,833         | 2,397         | 0,112         | 4,471         | 3,133         | 0,051         | 4,701         |
| MnO                                         | 5,589         | 1,064         | 0,073         | 3,799         | 0,761         | 0,059         | 5,577         | 2,000         | 0,058         | 6,104         |
| FeO                                         | 25,256        | 28,545        | 30,744        | 22,206        | 29,950        | 30,050        | 22,117        | 29,071        | 30,747        | 20,673        |
| CoO                                         | 0,189         | 0,041         | 0,237         | 0,368         | 0,199         | 0,244         | 0,180         | 0,238         | 0,327         | 0,240         |
| NIO                                         | 0,244         | 0,110         | 0,168         | 0,064         | 0,036         | 0,216         | 0,058         | 0,000         | 0,258         | 0,071         |
| ZnO                                         | 0,599         | 0,561         | 0,284         | 0,752         | 0,513         | 0,404         | 0,541         | 0,692         | 0,253         | 0,605         |
| Total                                       | 99,656        | 100,368       | 100,610       | 100,249       | 99,599        | 98,544        | 99,739        | 100,492       | 100,121       | 99,307        |
|                                             |               |               |               |               |               |               |               |               |               |               |
| Si                                          | 0,013         | 0,004         | 0,013         | 0,005         | 0,011         | 0,043         | 0,009         | 0,005         | 0,009         | 0,004         |
| Ti                                          | 0,513         | 0,231         | 0,006         | 0,293         | 0,289         | 0,000         | 0,804         | 0,578         | 0,018         | 0,682         |
| Al                                          | 0,203         | 4,698         | 0,000         | 1,951         | 3,896         | 0,000         | 0,202         | 3,755         | 0,000         | 0,460         |
| v                                           | 0,026         | 0,052         | 0,012         | 0,087         | 0,107         | 0,000         | 0,067         | 0,103         | 0,000         | 0,098         |
| Cr                                          | 8,070         | 8,380         | 0,329         | 7,846         | 7,700         | 0,221         | 7,484         | 7,802         | 0,197         | 8,027         |
| Fe <sup>3+</sup>                            | 6,550         | 2,345         | 15,556        | 5,418         | 3,654         | 15,632        | 6,561         | 3,107         | 15,657        | 5,971         |
| Mg                                          | 0,701         | 1,438         | 0,060         | 2,036         | 1,002         | 0,052         | 1,947         | 1,292         | 0,023         | 2,043         |
| Mn                                          | 1,417         | 0,245         | 0,019         | 0,910         | 0,181         | 0,016         | 1,380         | 0,469         | 0,015         | 1,507         |
| Fe <sup>2+</sup>                            | 6,320         | 6,489         | 7,874         | 5,249         | 7,022         | 7,859         | 5,404         | 6,727         | 7,925         | 5,041         |
| Co                                          | 0,045         | 0,009         | 0,058         | 0,083         | 0,045         | 0,061         | 0,042         | 0,053         | 0,081         | 0,056         |
| Ni                                          | 0,059         | 0,024         | 0,041         | 0,015         | 0,008         | 0,054         | 0,014         | 0,000         | 0,064         | 0,017         |
| Zn                                          | 0,132         | 0,113         | 0,064         | 0,157         | 0,106         | 0,093         | 0,117         | 0,141         | 0,057         | 0,130         |
| Total                                       | 24,049        | 24,028        | 24,032        | 24,050        | 24,021        | 24,031        | 24,031        | 24,032        | 24,046        | 24,036        |
|                                             |               |               |               | 1             | 1             |               | 1             |               |               |               |
| Fc <sup>3+</sup> /Fc <sup>7+</sup>          | 1,04          | 0,36          | 1,98          | 1,03          | 0,52          | 1,99          | 1,21          | 0,46          | 1,98          | 1,18          |
| Cr/(Cr+Al)                                  | 97,55         | 64,08         | 100,00        | 80,09         | 66,40         | 100,00        | 97,37         | 67,51         | 100,00        | 94,58         |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 9,98          | 18,14         | 0,76          | 27,95         | 12,49         | 0,66          | 26,49         | 16,11         | 0,29          | 28,84         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 44,19         | 15,20         | 97,93         | 35,61         | 23,96         | 98,61         | 46,05         | 21,19         | 98,76         | 41,30         |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 0,63          | 0,95          | 0,01          | 0,74          | 0,72          | 0,01          | 0,63          | 0,79          | 0,01          | 0,73          |

| Échantillons                                | 97-MH-7371-20 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 3c            | 4a            | 4b            | 5a            | 5b            | 5c            | ба            | 6b            | 6c            | 7a            |
| Lithologie                                  | Lherz         |
| Chromite                                    | Cœur          | Bordure       | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO,                                        | 0,227         | 0,034         | 0,007         | 0,034         | 0,023         | 0,018         | 0,023         | 0,029         | 0,008         | 0,022         |
| TiO3                                        | 2,633         | 3,104         | 2,609         | 0,088         | 1,957         | 0,895         | 0,000         | 2,363         | 2,010         | 0,056         |
| Al <sub>2</sub> O <sub>3</sub>              | 10,509        | 1,752         | 12,582        | 0,000         | 2,045         | 13,586        | 0,000         | 1,736         | 11,420        | 0,000         |
| V <sub>2</sub> O <sub>3</sub>               | 0,457         | 0,315         | 0,399         | 0,001         | 0,352         | 0,426         | 0,000         | 0,200         | 0,383         | 0,000         |
| Cr <sub>2</sub> O <sub>3</sub>              | 35,467        | 34,704        | 35,985        | 2,363         | 36,922        | 38,511        | 0,391         | 33,654        | 34,903        | 1,090         |
| Fc203                                       | 15,528        | 26,701        | 14,061        | 66,762        | 26,525        | 12,998        | 68,134        | 29,049        | 16,909        | 67,509        |
| MgO                                         | 2,464         | 4,865         | 4,563         | 0,033         | 4,842         | 3,200         | 0,007         | 4,651         | 2,690         | 0,176         |
| MnO                                         | 4,676         | 6,272         | 0,634         | 0,154         | 5,681         | 0,595         | 0,045         | 5,807         | 0,618         | 0,075         |
| FcO                                         | 26,763        | 20,211        | 28,118        | 31,097        | 19,962        | 28,929        | 30,781        | 20,279        | 30,347        | 30,599        |
| C00                                         | 0,155         | 0,177         | 0,046         | 0,337         | 0,361         | 0,145         | 0,288         | 0,151         | 0,108         | 0,224         |
| NiO                                         | 0,062         | 0,077         | 0,152         | 0,219         | 0,051         | 0,057         | 0,151         | 0,011         | 0,168         | 0,215         |
| ZnO                                         | 0,708         | 0,679         | 0,388         | 0,394         | 0,738         | 0,560         | 0,139         | 0,821         | 0,431         | 0,289         |
| Total                                       | 99,649        | 98,891        | 99,544        | 101,482       | 99,459        | 99,920        | 99,959        | 98,751        | 99,995        | 100,255       |
|                                             |               |               | l             |               |               |               |               |               |               |               |
| Si                                          | 0,064         | 0,010         | 0,002         | 0,010         | 0,007         | 0,005         | 0,007         | 0,008         | 0,002         | 0,007         |
| Ti                                          | 0,557         | 0,681         | 0,539         | 0,020         | 0,427         | 0,185         | 0,000         | 0,521         | 0,422         | 0,013         |
| Al                                          | 3,481         | 0,602         | 4,073         | 0,000         | 0,699         | 4,406         | 0,000         | 0,600         | 3,758         | 0,000         |
| v                                           | 0,103         | 0,074         | 0,088         | 0,000         | 0,082         | 0,094         | 0,000         | 0,047         | 0,086         | 0,000         |
| Cr                                          | 7,882         | 8,005         | 7,814         | 0,568         | 8,465         | 8,378         | 0,095         | 7,799         | 7,704         | 0,265         |
| Fe <sup>3+</sup>                            | 3,284         | 5,862         | 2,906         | 15,269        | 5,788         | 2,691         | 15,827        | 6,407         | 3,552         | 15,616        |
| Mg                                          | 1,032         | 2,116         | 1,868         | 0,015         | 2,093         | 1,313         | 0,003         | 2,032         | 1,120         | 0,081         |
| Mn                                          | 1,113         | 1,550         | 0,148         | 0,040         | 1,395         | 0,139         | 0,012         | 1,442         | 0,146         | 0,020         |
| Fe <sup>2*</sup>                            | 6,291         | 4,931         | 6,459         | 7,904         | 4,841         | 6,657         | 7,946         | 4,971         | 7,085         | 7,866         |
| Co                                          | 0,035         | 0,041         | 0,010         | 0,082         | 0,084         | 0,032         | 0,071         | 0,035         | 0,024         | 0,055         |
| Ni                                          | 0,014         | 0,018         | 0,034         | 0,054         | 0,012         | 0,013         | 0,038         | 0,003         | 0,038         | 0,053         |
| Zn                                          | 0,147         | 0,146         | 0,079         | 0,088         | 0,158         | 0,114         | 0,032         | 0,178         | 0,089         | 0,066         |
| Total                                       | 24,003        | 24,036        | 24,020        | 24,050        | 24,051        | 24,027        | 24,031        | 24,043        | 24,026        | 24,042        |
|                                             |               |               |               |               |               |               |               |               |               | l.            |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,52          | 1,19          | 0,45          | 1,93          | 1,20          | 0,40          | 1,99          | 1,29          | 0,50          | 1,99          |
| Cr/(Cr+Al)                                  | 69,37         | 93,01         | 65,74         | 100,00        | 92,37         | 65,54         | 100,00        | 92,86         | 67,21         | 100,00        |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 14,09         | 30,03         | 22,43         | 0,19          | 30,18         | 16,47         | 0,04          | 29,02         | 13,65         | 1,02          |
| Fc <sup>3+</sup> /(Fc <sup>3+</sup> +Al+Cr) | 22,42         | 40,51         | 19,64         | 96,41         | 38,71         | 17,39         | 99,40         | 43,27         | 23,66         | 98,33         |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 0,82          | 0,74          | 0,83          | 0,02          | 0,80          | 0,90          | 0,00          | 0,69          | 0,72          | 0,01          |

| Échantillons                                | 97-MH-7371-20 | 97-MH-7371-20 | 97-MH-7371-20 | 97-MH-7371-20 | 97-MH-7371-20 | 97-MH-7371-21 | 97-MH-7371-21 | 97-MH-7371-21 | 97-MH-7371-21 | 97-MH-7371-21 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 7b            | 7c            | 8a            | 8b            | 8c            | ia            | 1b            | 2a            | 2b            | 3a            |
| Lithologic                                  | Lherz         | Lherz         | Lherz         | Lherz         | Lherz         | Webst         | Webst         | Webst         | Webst         | Webst         |
| Chromite                                    | Intermédiaire | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       | Cœur          | Bordure       | Cœur          | Bordure       |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO <sub>2</sub>                            | 0,015         | 0,009         | 2,116         | 0,042         | 0,016         | 0,217         | 0,156         | 0,428         | 0,446         | 0,576         |
| TiO <sub>2</sub>                            | 1,070         | 1,338         | 0,000         | 2,563         | 1,018         | 0,248         | 0,244         | 0,323         | 0,264         | 0,312         |
| A12O3                                       | 15,264        | 15,400        | 0,000         | 1,468         | 15,938        | 0,000         | 0,000         | 0,018         | 0,034         | 0,033         |
| V <sub>2</sub> O <sub>3</sub>               | 0,273         | 0,329         | 0,000         | 0,189         | 0,336         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         |
| Cr <sub>2</sub> O <sub>3</sub>              | 38,123        | 38,716        | 1,451         | 33,149        | 35,222        | 0,056         | 0,059         | 0,074         | 0,076         | 0,050         |
| Fe <sub>2</sub> O <sub>3</sub>              | 12,460        | 12,146        | 69,519        | 29,405        | 13,122        | 67,209        | 67,670        | 67,093        | 67,177        | 66,751        |
| MgO                                         | 5,963         | 6,636         | 3,994         | 4,482         | 3,702         | 0,000         | 0,000         | 0,027         | 0,042         | 0,079         |
| MnO                                         | 2,065         | 0,380         | 0,110         | 5,885         | 1,141         | 0,000         | 0,058         | 0,046         | 0,114         | 0,023         |
| FeO                                         | 23,586        | 24,809        | 24,733        | 20,594        | 27,860        | 30,711        | 30,853        | 30,720        | 30,567        | 30,474        |
| CoO                                         | 0,000         | 0,022         | 0,412         | 0,137         | 0,166         | 0,360         | 0,371         | 0,404         | 0,417         | 0,330         |
| NiO                                         | 0,128         | 0,091         | 0,273         | 0,108         | 0,103         | 0,000         | 0,000         | 0,000         | 0,000         | 0,047         |
| ZnO                                         | 0,736         | 0,307         | 0,289         | 0,933         | 0,740         | 0,341         | 0,346         | 0,414         | 0,304         | 0,294         |
| Total                                       | 99,683        | 100,183       | 102,897       | 98,955        | 99,364        | 99,142        | 99,757        | 99,547        | 99,441        | 98,969        |
|                                             |               |               |               |               |               |               |               |               |               |               |
| Si                                          | 0,004         | 0,002         | 0,605         | 0,012         | 0,004         | 0,068         | 0,048         | 0,132         | 0,138         | 0,179         |
| Ti                                          | 0,216         | 0,267         | 0,000         | 0,566         | 0,209         | 0,058         | 0,057         | 0,075         | 0,061         | 0,073         |
| Al                                          | 4,828         | 4,818         | 0,000         | 0,508         | 5,126         | 0,000         | 0,000         | 0,006         | 0,012         | 0,012         |
| v                                           | 0,059         | 0,070         | 0,000         | 0,044         | 0,074         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         |
| Cr                                          | 8,089         | 8,125         | 0,328         | 7,692         | 7,599         | 0,014         | 0,014         | 0,018         | 0,019         | 0,012         |
| Fe <sup>3+</sup>                            | 2,516         | 2,426         | 14,958        | 6,494         | 2,694         | 15,719        | 15,739        | 15,596        | 15,622        | 15,571        |
| Mg                                          | 2,386         | 2,626         | 1,702         | 1,961         | 1,506         | 0,000         | 0,000         | 0,012         | 0,019         | 0,037         |
| Mn                                          | 0,469         | 0,086         | 0,027         | 1,463         | 0,264         | 0,000         | 0,015         | 0,012         | 0,030         | 0,006         |
| Fc <sup>2+</sup>                            | 5,293         | 5,507         | 5,914         | 5,054         | 6,358         | 7,982         | 7,975         | 7,936         | 7,900         | 7,900         |
| Co                                          | 0,000         | 0,005         | 0,094         | 0,032         | 0,036         | 0,090         | 0,092         | 0,100         | 0,103         | 0,082         |
| NI                                          | 0,028         | 0,019         | 0,063         | 0,026         | 0,023         | 0,000         | 0,000         | 0,000         | 0,000         | 0,012         |
| Zn                                          | 0,146         | 0,060         | 0,061         | 0,202         | 0,149         | 0,078         | 0,079         | 0,094         | 0,069         | 0,067         |
| Total                                       | 24,034        | 24,011        | 23,752        | 24,054        | 24,042        | 24,009        | 24,019        | 23,981        | 23,973        | 23,951        |
|                                             |               |               | I             |               |               |               | 1             |               |               |               |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,48          | 0,44          | 2,53          | 1,28          | 0,42          | 1,97          | 1,97          | 1,97          | 1,98          | 1,97          |
| Cr/(Cr+Al)                                  | 62,62         | 62,78         | 100,00        | 93,80         | 59,72         | 100,00        | 100,00        | 75,00         | 61,29         | 50,00         |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 31,07         | 32,29         | 22,35         | 27,95         | 19,15         | 0,00          | 0,00          | 0,15          | 0,24          | 0,47          |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 16,30         | 15,79         | 97,85         | 44,19         | 17,47         | 99,91         | 99,91         | 99,85         | 99,80         | 99,85         |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 1,04          | 1,02          | 0,02          | 0,67          | 0,84          | 0,00          | 0,00          | 0,00          | 0,00          | 0,00          |

| 20'1              | 10'0          | 26'0              | 16'0                                           | 00'0            | 00'0           | 00'0              | 00'0          | 00'0               | 00'0              | Ct \ (Ec3+Fc3)                              |
|-------------------|---------------|-------------------|------------------------------------------------|-----------------|----------------|-------------------|---------------|--------------------|-------------------|---------------------------------------------|
| 16,11             | 61,80         | 66'21             | 30'51                                          | 66'33           | 16'66          | <b>\$8'66</b>     | 06'66         | <b>18'66</b>       | 88'66             | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) |
| 11'33             | 64,1          | 86,81             | 35'13                                          | 12'0            | 00'0           | 15'0              | 00'0          | 06,0               | <b>₽</b> \$'0     | M8/(M8+Fc <sup>?</sup> )                    |
| ¢3'14             | 00'001        | 91'59             | 78,08                                          | 100'00          | 100'00         | 16'EL             | 100'00        | 00'52              | 89'62             | Cr/(Cr+Al)                                  |
| 0'59              | 5,00          | 62'0              | 96'0                                           | 5'00            | 86't           | 86'1              | 66't          | 96'1               | 86'1              | ,દુરવ,'દિત્ર'                               |
|                   |               |                   |                                                |                 |                |                   |               |                    |                   |                                             |
| 610'17            | 80,45         | 54'032            | 24,037                                         | 24,045          | 120,45         | 53'965            | 24'003        | 579,573<br>579,573 | 53'69Q            | latoT                                       |
| £70,0             | 640,0         | 660'0             | 0'153                                          | <i>LL</i> 0'0   | 090'0          | 6,043             | 880,0         | 280,0              | +01'0             | uz                                          |
| 600'0             | 640'0         | 010'0             | 420'0                                          | 160,0           | 900'0          | 010'0             | 000'0         | 0'015              | 0,000             | !N                                          |
| 120'0             | 180'0         | 0'033             | 120'0                                          | \$80'0          | \$60'0         | 611'0             | 260'0         | 201'0              | 160'0             | တ                                           |
| 689'9             | 208,7         | 048,8             | 982'4                                          | 606'2           | 126'2          | £98 <b>'</b> Z    | 616'2         | LE6'L              | 028'2             | بد <sub>2</sub> ۲                           |
| 641,0             | 940,0         | 0'539             | ¥61'I                                          | <b>620,0</b>    | 060,0          | 240,0             | 420'0         | ¢00'0              | 820,0             | лM                                          |
| 165,1             | 6113          | 105'1             | 5'358                                          | 610'0           | 000'0          | 010'0             | 000'0         | 0 <sup>,</sup> 024 | £40,0             | 8M                                          |
| 952't             | 12'932        | 1'623             | 4,582                                          | 087,21          | 967,81         | 685,51            | 242'st        | 12'220             | \$ <u>7</u> 8,875 | +€ <sub>3</sub> 4                           |
| 209'8             | 642,0         | 8'233             | 095,8                                          | 801 '0          | <b>\$10</b> ,0 | 210'0             | St0'0         | S10'0              | ÷10'0             | Cr                                          |
| 9000              | 000'0         | 190'0             | 0'033                                          | 000'0           | 000'0          | 000'0             | 000'0         | 000'0              | 000'0             | ٨                                           |
| 2'032             | 000'0         | 1921 J            | 5'032                                          | 000'0           | 0'000          | 900'0             | 000'0         | S00'0              | S00,0             | ١٧                                          |
| 0'392             | 600'0         | 064,0             | 0'393                                          | £00'0           | 090'0          | 690'0             | 1000          | 060'0              | 270,0             | , L                                         |
| <del>1</del> 00,0 | 110'0         | <del>1</del> 00'0 | \$00'0                                         | 800'0           | 660,0          | <del>1</del> 91'0 | 980'0         | 251'0              | ¥91'0             | IS                                          |
|                   |               |                   |                                                |                 |                |                   |               |                    |                   |                                             |
| <u>287,96</u>     | 100,835       | 860,001           | 26'135                                         | 100'339         | 81-5'66        | 515'66            | 99,845        | 09'545             | SS6,00            | latoT                                       |
| S96,0             | 681'0         | 884,0             | 882,0                                          | 0+£,0           | 0'391          | 881'0             | 986'0         | 292'o              | 954,0             | O <sup>u</sup> Z                            |
| 1+0'0             | 661'0         | 8+0,0             | 0'150                                          | 0'154           | 6,024          | 0+0'0             | 000'0         | 0\$0'0             | 000'0             | OIN                                         |
| 860'0             | 0'330         | 660'0             | £60'0                                          | 645,0           | 0'382          | 284,0             | 575,0         | 614,0              | 996,0             | 000                                         |
| 50'450            | 812,05        | 6 <b>7</b> 8,62   | 112'02                                         | 6E2'0E          | e77,0e         | 30'405            | 269'08        | 30'922             | 30,450            | 0°4                                         |
| 129'0             | 221'0         | 210'1             | 626'4                                          | £60'0           | Z11'0          | 651'0             | 0'055         | 0'012              | 801,0             | Очм                                         |
| 3,432             | 0'348         | 881,6             | 919'9                                          | 140'0           | 0,000          | 980'0             | 0'000         | 6,053              | ¥60'0             | OgM                                         |
| 8,584             | 98'032        | \$ <b>2</b> 4'6   | 51'205                                         | LS1'89          | SSS'29         | Z81'29            | 828'29        | S+2'99             | 026'99            | Fe <sub>2</sub> O <sub>5</sub>              |
| 140'04            | 10011         | 186,96            | 462,86                                         | 944'0           | 820'0          | 890'0             | 190'0         | 690,0              | 950'0             | Ct <sup>3</sup> O <sup>2</sup>              |
| £91'0             | 000'0         | eez'o             | 0'100                                          | 000'0           | 000'0          | 000'0             | 000'0         | 000'0              | 000'0             | V,03                                        |
| 189'51            | 000'0         | 14,125            | 890'9                                          | 000'0           | 000'0          | 910'0             | 000'0         | 0'014              | 6,013             | 5041                                        |
| 1'584             | 1+0'0         | 160'Z             | £02'1                                          | L10'0           | 0'526          | 662'0             | 6,133         | 286,0              | TIE'O             | ri0 <sub>1</sub>                            |
| 910'0             | 960,0         | ÷10'0             | 810'0                                          | 0'059           | 0'154          | 0'233             | 0,280         | 06+'0              | tes'o             | 210 <sup>3</sup>                            |
|                   |               |                   |                                                |                 |                |                   |               |                    |                   | 1                                           |
| əninibêmretni     | zmbrog        | Cœnt              | Intermédiaire                                  | autriog         | Cœnt           | anmod             | Cœnt          | Bordure            | Cœur              | Shumite                                     |
| οτιο ψ ειούη      | οιής à είλα   | τρεις & chro      | τροτικά τη | ດາດວ ອີ ຊາວດັ່ງ | Wcbat          | )edoW             | Webat         | Webst              | Webat             | aigolothiu                                  |
| qe                | вС            | 57                | qz                                             | Sa              | 92             | вГ                | 99            | 89                 | 39                | Point                                       |
| 22-1767-HM-79     | 52-1767-HM-79 | 22-1767-HM-79     | 22-1767-HM-72                                  | 22-1767-HM-79   | 12-1767-HM-70  | 12-1767-HM-70     | 12-17CT-HM-70 | 12-1767-HM-79      | 12-1767-HM-70     | Echentillons                                |
|                   |               |                   |                                                |                 |                |                   |               |                    |                   |                                             |

## .(situs) supinorites composition des chromites analysées à la microsonde électronique (suite).

| 20'0              | bb'l          | ⊆0'0               | 1,23                | 10'0          | 01'1                 | 10°0          | 00'1               | 10'0          | <i>46'0</i>      | Cr / (Pe*+Pe*)                              |
|-------------------|---------------|--------------------|---------------------|---------------|----------------------|---------------|--------------------|---------------|------------------|---------------------------------------------|
| £8,02             | 5+'01         | 24'86              | EE'11               | £1'66         | E6'11                | 55'86         | 11,43              | 10'66         | 13'21            | Fe <sup>o</sup> / (Fe <sup>o</sup> + A1+Cr) |
| 00'0              | 44'32         | 06'0               | 10'2E               | 10'0          | 23'03                | 00'0          | 16,38              | 00'0          | 12,12            | (,,,,+8W)/8M                                |
| 100'001           | 16'19         | 95'86              | 63,42               | 95'86         | +2'49                | 00'001        | 90'E9              | 00'001        | 26'+9            | Cr/(Cr+Al)                                  |
| 28,1              | ٤٤'٥          | 06'1               | EC'0                | 66'1          | 06,0                 | L6'1          | 92'0               | 86'1          | L2'0             | Ŀc <sub>3+</sub> ∖Ec <sub>3+</sub>          |
| 54'021            | 54'006        | 24'041             | 54'013              | 54'032        | 210'42               | 54,042        | 54'033             | 54,043        | 54'051           | [fato]]                                     |
| <b>\$90'0</b>     | 660,0         | 580'0              | 620'0               | 040'0         | 990'0                | 150'0         | <b>290'0</b>       | 980'0         | 920'0            | uz                                          |
| 660,0             | 200'0         | S+0'0              | ÷00'0               | 0'055         | 0'035                | 440'0         | tto'o              | 810'0         | 0'038            | IN                                          |
| 801'0             | 000'0         | 180,0              | 000'0               | 080,0         | 000'0                | 660'0         | 550'0              | 060'0         | <b>\$10'0</b>    | <u>හ</u>                                    |
| C46'2             | 056,6         | L18 <sup>4</sup> L | 285,387             | 4'652         | e'511                | 626'2         | 597,8              | SE6'2         | 649              | لوري.<br>الروحي                             |
| 100'0             | 690'0         | 240'0              | 080,0               | 620,0         | 0'100                | 910'0         | 0'182              | 110'0         | 191'0            | uM                                          |
| 000'0             | 3,547         | 140'0              | 5,646               | 100'0         | 728,1                | 000'0         | 1'332              | 000'0         | 762,1            | 8W                                          |
| 164,41            | 1'920         | 14'832             | 277, I              | 092'91        | 848,1                | 12'926        | 1+2'1              | 12'134        | 206'1            | Pc <sup>3,</sup>                            |
| 25¢'1             | 8,755         | 1'030              | S67,8               | 261'0         | 408,8                | 0,231         | 015'8              | 851,0         | 069'8            | Cr                                          |
| 000'0             | 0'031         | 000'0              | 1 CO'O              | 000'0         | 440'0                | 000'0         | 6000               | 000'0         | 240'0            | ٨                                           |
| 000'0             | 785,387       | 910'0              | £70,8               | 0'005         | 118'4                | 000'0         | 986'+              | 000'0         | 4'945            | IN                                          |
| 000'0             | 0'083         | 000'0              | 241'0               | 000'0         | 112'0                | 000'0         | 0'338              | 000'0         | 286,0            | KI.                                         |
| 200'0             | S00'0         | 0'033              | 0'00 <del>4</del>   | \$10'0        | £00'0                | £10'0         | 200,0              | 110'0         | 200'0            | IS                                          |
|                   |               |                    |                     |               |                      |               |                    |               |                  |                                             |
| 968,001           | 614'001       | 698'101            | 081,001             | +22'00I       | £0 <del>1</del> ,001 | 100'582       | 816'66             | ¥6L'66        | 100'929          | lato'T                                      |
| 782,0             | 0'309         | 186,0              | 976,0               | 805,0         | 0'335                | 0'332         | 464,0              | 876,0         | 986,0            | OuZ                                         |
| 721,0             | 0'032         | 0 <sup>,</sup> 185 | 0'018               | 680'0         | 051'0                | 621'0         | 050,0              | ۲ ۲.0'0       | 971'0            | OIN                                         |
| 0*436             | 000'0         | 846,0              | 000'0               | 6,923         | 000'0                | 004'0         | 0'323              | ¢96,0         | ¢90'0            | CoO                                         |
| 31'100            | 669'02        | 846,05             | 014'42              | 467,0£        | 54'9'12              | 808,0£        | 567729             | 178,05        | 30'231           | 0°9                                         |
| £00,0             | 0'500         | 281,0              | 0'360               | 780,0         | 144,0                | £90'0         | 208,0              | 0'043         | 959'0            | OuM                                         |
| 000'0             | 9'529         | 851'0              | 9°,722              | £00'0         | LE9'+                | 0'000         | 3 <sup>5</sup> 266 | 000'0         | 3,050            | OgM                                         |
| 62,793            | 8'233         | 92'334             | \$524<br>\$         | £20'89        | 6'143                | 079'29        | 8'203              | 889'29        | \$6Z'6           | Fe3Os                                       |
| e'03 <del>4</del> | 920'64        | 116,4              | 45'123              | 0'203         | 69,16                | 6+6'0         | 299'66             | 249,0         | 29,943<br>Epeles | Ct <sup>3</sup> O <sup>3</sup>              |
| 0000              | 101'0         | 000'0              | 861,0               | 000'0         | 0'502                | 000'0         | 951'0              | 000'0         | 0'312            | <sup>5</sup> 04                             |
| 000'0             | 092'21        | 0'043              | 16,312              | <b>₽00,0</b>  | 261'91               | 000'0         | 12'246             | 000'0         | 624'41           | <sup>6</sup> 044                            |
| 000'0             | 0'432         | 000'0              | 867,0               | 000'0         | \$ <del>1</del> 0'1  | 000'0         | £09't              | 000'0         | 298't            | roit                                        |
| 0'033             | 610'0         | 220'0              | \$10 <sup>1</sup> 0 | 0'020         | 110'0                | 1+0'0         | 210'0              | SE0'0         | 0'032            | <sup>c</sup> ois                            |
| ampion            |               | 200000             | 111222              | 2000100       | mmo                  | 210000        | 111 2022           | amprod        |                  | 2000000                                     |
|                   | 0103 ¥ 213071 | truciz 4 cuto      |                     |               |                      | CIUS 8 CULO   | CIUS & CIUS        | Bordine       |                  | anotomia                                    |
| 81                | g/            | 8/                 | 00                  | 80            |                      |               | 0+                 | 86            |                  | Jinologia                                   |
| ES-17ET-HM-19     |               | 22.1767-HM-12      | 12-11-12-1-22       | 01-MH-7371-22 |                      | 6/-WH-/3/1-22 | 77 HW-/6           | 22-122/-HW-/6 | 22-122-1-122     | Enounnansa                                  |
|                   |               | 1                  | 1                   | 1             |                      |               |                    | 1             |                  |                                             |

# , (suites analysées à la microsonde électronique (suite),
| <b>64</b>      | 56'0          | 19'0          | 60'0          | 00,1           | 65'0           | 21'0          | 26'0          | +0'0           | 68,0          | Cr / (Fe <sup>3</sup> +Fe <sup>3</sup> )                 |
|----------------|---------------|---------------|---------------|----------------|----------------|---------------|---------------|----------------|---------------|----------------------------------------------------------|
| <u>38'69</u>   | 15'44         | 41'23         | \$8'28        | 24'11          | 49,64          | +6'22         | 13'00         | 21.46          | £8'61         | Fc <sup>3+</sup> /(Fc <sup>3+</sup> +Al+C <sub>1</sub> ) |
| 5'23           | 99'8          | 2.07          | 00'0          | 10'63          | 1'23           | 00'0          | 8,20          | 00'0           | 54'9          | Mg/(Mg+Fe <sup>2</sup> )                                 |
| 66.93          | 26.53         | 61.69         | <u>\$6'66</u> | 69.69          | +0.90          | 08.00         | 92.20         | 100.00         | 59.45         | Ct/(Ct+VI)                                               |
| 26'0           | 22.0          | 28.0          | 22't          | 0.26           | 06'0           | 65'1          | 0'56          | 88,1           | 0'45          | Fc <sup>3+</sup> /Fc <sup>3</sup> '                      |
|                |               |               | unnti -       |                | 1.0011.7       | nach n        |               | inclus.        | t a min m     |                                                          |
| 54.043         | 34'00)        | 34.041        | 54 020        | 34 042         | 160 40         | 34 033        | 34,040        | 24.022         | 54.044        | Total                                                    |
| 2210           | 000's         | 0.82          | 980 0         | 891.0          | 660 0          | 980 0         | 581.0         | 0 038          | 981.0         | uz                                                       |
| 0100           | 000 0         | 9200          | 5000          | 200 0          | 1000           | 9000          | 900.0         | 6100           | 600 0         | IN                                                       |
| 0.059          | 150'0         | 920'0         | 960'0         | SE0.0          | 950.0          | 260.0         | 000'0         | 160'0          | 200'0         | Co                                                       |
| <u>\$91, 7</u> | BSO'Z         | 2.529         | 006'2         | €98.9          | 2+2-2          | 908'2         | 120.2         | 256.7          | 606.7         | L <sup>G</sup> 3+                                        |
| 846.0          | 0.334         | 0'362         | 260.0         | 515.0          | 686.0          | 961.0         | 846.0         | 0000           | 626'0         | uW                                                       |
| ¢61'0          | 699'0         | 0'126         | 0000          | 21-8-0         | 211.0          | 000.0         | 0.632         | 000'0          | \$05.0        | M <sub>R</sub>                                           |
| 260'9          | 266'1         | 915'9         | 999.61        | 862'1          | 6,825          | 12,395        | 5.031         | 789.41         | 3'042         | Fe <sup>34</sup>                                         |
| 109'8          | 8,585         | 245'8         | 1'658         | 269'8          | 6,534          | 3'205         | \$98'8        | 226'0          | 055'8         | Ct                                                       |
| 600'0          | 0'031         | 210'0         | 000'0         | 0'020          | 610,0          | 0000          | 960'0         | 0'000          | 0'036         | ^<br>^                                                   |
| 1.031          | 2'040         | 0'932         | 100'0         | 2/1/9          | 0'325          | 200'0         | 267.P         | 000'0          | 192'8         | IV IV                                                    |
| 0'00           | <u>LEI'0</u>  | 601,0         | 0'000         | £60'0          | \$60'0         | 0'000         | 611'0         | 000'0          | 252'0         | LL IL                                                    |
| 800,0          | 200'0         | 900'0         | £10'0         | 100'0          | 110'0          | 210'0         | \$00'0        | 210'0          | 0'002         | IS                                                       |
|                |               |               |               |                |                |               | in the s      |                |               |                                                          |
| 208.66         | 509.66        | 852.05        | 069 66        | 864.00         | 259.86         | 269.86        | 262.66        | EEE 001        | 119'66        | [eto]                                                    |
| 829.0          | 1.042         | 296.0         | 126.0         | 828.0          | 0440           | 226.0         | 006'0         | 621.0          | 269.0         | Ouz                                                      |
| 640.0          | 000'0         | 800.0         | 281.0         | 160,0          | 0'002          | +01'0         | 720.0         | 920'0          | 110'0         | OIN                                                      |
| 0'548          | 0'556         | 0'313         | ₩8C,0         | 0'100          | 0'538          | 281'0         | 000'0         | 125'0          | 160,0         | 000                                                      |
| 59'969         | 30'200        | 028,02        | 20'233        | 562'52         | 50'206         | 290'00        | 844,05        | 866'05         | 30,633        | P <sub>c</sub> O                                         |
| 196,1          | 624,1         | 916'1         | 0'145         | 1'321          | 484'I          | 9959'0        | 184'1         | 0'000          | <i>LL</i> S'I | OaM                                                      |
| 864.0          | 1'933         | 0'322         | 0'000         | 5'020          | 0'528          | 000'0         | 1'259         | 000'0          | £61'I         | OgM                                                      |
| 52,253         | \$0£,9        | 58'11         | 910'09        | ÷29'8          | 557,65         | 23'091        | 612'6         | <b>488,4</b> 3 | 472,41        | Fe,O,                                                    |
| 36,654         | 39,245        | 35,845        | 268'L         | 39,928         | 32'406         | 192,41        | \$75,04       | 128,5          | 38'122        | Cr <sub>2</sub> O <sub>3</sub>                           |
| 260,0          | £60'0         | 150'0         | 000'0         | 0'558          | \$20'0         | 000'0         | 0,205         | 000'0          | 0'100         | ٥٢٨ مام                                                  |
| 5,938          | 484,21        | 892'T         | \$00'0        | 666,81         | 626'0          | 610'0         | 654'41        | 000'0          | 11'500        | ែហ                                                       |
| 0'582          | 659'0         | 424,0         | 000'0         | 0240           | 81 <b>6</b> ,0 | 000'0         | 899'0         | 000'0          | 1,203         | LiO,                                                     |
| 220'0          | 420,0         | 0'050         | 1+0'0         | 400 <b>,</b> 0 | 960,036        | €0'0          | 610'0         | 6,054          | 210'0         | <sup>z</sup> Ois                                         |
|                |               |               |               |                |                |               |               |                |               |                                                          |
| Intermédiaire  | Cœur          | Intermédiaire | Bordure       | Cœnt           | Intermédiate   | Bordure       | Cœnt          | autroa         | Cœm           | Chromite                                                 |
| ondo A danaH   | orda à driaH  | thursh & chro | ordo à driaH  | ordo A drish   | ondo à danahi  | ondo à driali | Harzb & chro  | ordz â dznah   | onto à driah  | Lithologic                                               |
| 45             | 104           | 195           | 186           |                | 46             | в <u>С</u>    | 42            | 28             | 41            | Point                                                    |
| E2-17E7-HM-79  | E2-17E7-HM-79 | E2.17E7.HM.79 | E2-17E7-HM-70 | 62-1767-HM-79  | E2-17E7-HM-79  | E2.17E7-HM-70 | E2-1767-HM-70 | EC-17ET-HM-70  | ES-17ET-HM-76 | erollinan S                                              |
|                |               |               |               |                |                |               |               |                |               |                                                          |

.

| Behami<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamistan<br>Behamist                                                                                                                                                                                         |                                             |               |               |               |               |               |               |               |               |               |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Beah         Ob         Ob         Ob         Ta         T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Échantillons                                | 97-MH-7371-23 |
| Internet latencyInternet ActonInterne ActonInterne ActonInterne ActonInterne ActonInternet ActonInterne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Point                                       | 5c            | <u>ба</u>     | 6b            | 6c            | 7a            | 7a2           | 7հ            | 7b2           | 7c            | 7c2           |
| Chronine         Ceau         Bordure         Bordure         Bordure         Bordure         Intermediative         Caru         Caru           Stop         0.012         0.028         0.046         0.010         0.029         0.036         0.036         0.012         0.017           Thop         0.426         0.018         0.046         0.016         0.029         0.036         0.036         0.057         0.051         14.609         14.632           Ago         15.916         0.018         2.805         15.666         0.029         0.023         0.023         0.020         0.166         0.441           Sop.04         17.559         36.643         39.040         17.559         36.724         34.250         39.811           Peol         1.741         0.000         0.399         1.577         0.000         0.433         1.712         1.482           Paol         3.0214         30.463         29.475         30.198         29.957         35.822         26.799         29.633         30.422         30.499           Cacu         3.0214         30.465         0.9277         0.000         0.0001         0.000         0.0001         0.0001         0.0001         0.0001 <td>Lithologie</td> <td>Harzb à chro</td> <td>Harzb à chro</td> <td>Harzb à chro</td> <td>Harzb à chro</td> <td>Harzb A chro</td> <td>Harzb À chro</td> <td>Harzb à chro</td> <td>Harzh à chro</td> <td>Harzb à chro</td> <td>Harzh à chro</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithologie                                  | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb A chro  | Harzb À chro  | Harzb à chro  | Harzh à chro  | Harzb à chro  | Harzh à chro  |
| SiG <sub>1</sub> 0,012         0,046         0,010         0,041         0,029         0,035         0,036         0,012         0,017           Yi0 <sub>2</sub> 0,046         0,013         0,266         0,414         0,000         0,000         0,448         0,186         0,667         0,627           Ab <sub>0</sub> 115,916         0,018         2,805         15,666         0,022         0,023         0,022         0,111         14,605         114,522           Cr <sub>0</sub> O         39,166         17,559         36,683         30,040         17,859         4,869         36,724         34,326         39,857         39,811           Pr <sub>0</sub> O         39,166         17,759         27,055         9,537         49,544         0,403         0,414         1,489         1,489           MaG         1,393         0,644         1,354         1,466         0,655         0,000         1,433         1,371         1,472         1,489           MaG         3,214         30,463         29,775         30,502         20,923         30,324         30,469         0,020         0,323         0,361         0,924         0,302         0,336         0,462         0,775         0,161         0,446 <t< td=""><td>Chromite</td><td>Cœur</td><td>Bordure</td><td>Intermédiaire</td><td>Cœur</td><td>Bordure</td><td>Bordure</td><td>Intermédiaire</td><td>Intermédiaire</td><td>Cœur</td><td>Cœur</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chromite                                    | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       | Bordure       | Intermédiaire | Intermédiaire | Cœur          | Cœur          |
| Bhy         0,012         0,028         0,042         0,012         0,012         0,012         0,012         0,012         0,017           TOp         0,026         0,033         0,066         0,047         0,086         0,047         0,027           AlQ         0,191         0,000         0,000         0,020         0,748         0,186         0.067         0,027           ViO         0,191         0,000         0,000         0,000         0,022         0,023         0,002         0,166         0,149           ViO         0,191         0,000         0,000         0,000         0,023         0,002         0,112         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,017         0,001         0,017         0,002         0,027         0,002         0,014         0,022         0,027         0,002         0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |               |               |               |               |               |               |               |               |               |               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SiO <sub>2</sub>                            | 0,012         | 0,028         | 0,046         | 0,010         | 0,041         | 0,029         | 0,036         | 0,036         | 0,012         | 0,017         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T10 <sub>2</sub>                            | 0,426         | 0,033         | 0,266         | 0,454         | 0,000         | 0,000         | 0,448         | 0,186         | 0,667         | 0,627         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Al <sub>2</sub> O <sub>3</sub>              | 15,916        | 0,018         | 2,805         | 15,666        | 0,029         | 0,000         | 2,779         | 0,311         | 14,609        | 14,632        |
| $ \begin{array}{c c} C_{0}, & 39, 166 & 17, 559 & 36, 683 & 30, 040 & 17, 559 & 4, 869 & 36, 724 & 34, 325 & 39, 817 & 99, 811 \\ P_{0}C_{0} & 9, 411 & 50, 507 & 27, 035 & 9, 537 & 49, 564 & 62, 861 & 26, 437 & 32, 339 & 9, 627 & 9, 719 \\ M_{0}C & 1, 741 & 0, 000 & 0, 399 & 1, 6, 637 & 0, 000 & 0, 404 & 0, 140 & 1, 589 & 1, 480 \\ MnO & 1, 933 & 0, 624 & 1, 354 & 1, 466 & 0, 655 & 0, 000 & 1, 433 & 1, 371 & 1, 472 & 1, 482 \\ PeO & 30, 214 & 30, 463 & 29, 875 & 30, 198 & 29, 957 & 30, 892 & 29, 799 & 29, 693 & 30, 342 & 30, 489 \\ CCO & 0, 323 & 0, 661 & 0, 304 & 0, 220 & 0, 279 & 0, 302 & 0, 598 & 0, 355 & 0, 164 & 0, 228 \\ NIO & 0, 000 & 0, 065 & 0, 027 & 0, 000 & 0, 077 & 0, 161 & 0, 046 & 0, 077 & 0, 000 & 0, 000 \\ ZaO & 0, 941 & 0, 419 & 0, 521 & 0, 028 & 0, 472 & 0, 300 & 0, 479 & 0, 562 & 0, 705 & 0, 645 \\ Taial & 99, 734 & 99, 977 & 99, 405 & 99, 359 & 98, 633 & 99, 189 & 99, 329 & 99, 366 & 99, 210 & 99, 258 \\ SI & 0, 003 & 0, 009 & 0, 0.14 & 0, 003 & 0, 0.13 & 0, 009 & 0, 0.11 & 0, 0.11 & 0, 003 & 0, 065 \\ Ti & 0, 083 & 0, 009 & 0, 0.014 & 0, 000 & 0, 000 & 0, 0, 01 & 0, 0.11 & 0, 0.03 & 0, 0.05 \\ P_{1} & 0, 088 & 0, 006 & 0, 0989 & 5, 115 & 0, 011 & 0, 006 & 0, 083 & 0, 111 & 4, 798 & 4, 807 \\ V & 0, 0, 042 & 0, 000 & 0, 022 & 0, 0, 046 & 0, 0000 & 0, 066 & 0, 005 & 0, 000 & 0, 0.037 & 0, 0.33 \\ Cr & 8, 533 & 4, 249 & 8, 677 & 8, 51 & 4, 307 & 1, 196 & 8, 719 & 8, 265 & 8, 781 & 8, 773 \\ P_{2}^{P_{1}} & 1, 952 & 11, 633 & 0, 677 & 0, 609 & 0, 000 & 0, 013 & 0, 064 & 0, 0, 615 \\ Mm & 0, 0, 23 & 0, 162 & 0, 0, 43 & 0, 576 & 0, 000 & 0, 000 & 0, 193 & 0, 0.63 & 0, 660 & 0, 615 \\ Mm & 0, 0, 23 & 0, 162 & 0, 0, 43 & 0, 576 & 0, 000 & 0, 006 & 0, 086 & 0, 037 & 0, 051 \\ M_{2}^{P_{2}^{P_{1}}} P_{2}^{P_{1}} & 0, 58 & 0, 77 & 7, 945 & 7, 848 & 7, 562 & 7, 771 & 7, 107 \\ Co & 0, 0, 71 & 0, 089 & 0, 073 & 0, 049 & 0, 075 & 0, 096 & 0, 086 & 0, 037 & 0, 051 \\ Mm & 0, 0323 & 0, 162 & 0, 0, 43 & 0, 240 & 24, 042 & 24, 042 & 24, 046 & 24, 051 & 24, 043 & 24, 040 \\ P_{2}^{P_{1}} P_{2}^{P_{1}} P_{2}^{P_{1}} P_{2}^{P_{1}} P_{2}^{P_{$ | V <sub>2</sub> O <sub>3</sub>               | 0,191         | 0,000         | 0,090         | 0,206         | 0,000         | 0,025         | 0,023         | 0,002         | 0,166         | 0,148         |
| Peo, O         9,11         55,007         27,035         9,537         49,564         62,811         26,437         52,339         9,627         9,719           MgO         1,741         0,000         0,399         1,637         0,000         0,430         0,140         1,589         1,480           MaO         1,933         0,624         1,354         1,466         0,655         0,000         1,433         1,371         1,472         1,482           PoO         30,214         30,463         29,875         30,198         29,957         30,592         29,799         29,693         30,342         30,489           CoO         0,323         0,361         0,304         0,220         0,279         0,302         29,98         0,353         0,164         0,228           NiO         0,000         0,065         0,027         0,000         0,077         0,161         0,047         0,562         0,705         0,652           ZuaO         0,941         0,511         0,925         9,472         0,330         0,479         0,552         0,705         0,652           ZuaO         0,947         0,521         0,925         0,472         0,330         0,411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cr <sub>2</sub> O <sub>3</sub>              | 39,166        | 17,559        | 36,683        | 39,040        | 17,559        | 4,869         | 36,724        | 34,326        | 39,857        | 39,811        |
| MgO         1,741         0,000         0,000         0,000         0,400         0,140         1,589         1,480           MaO         1,933         0,624         1,354         1,466         0,655         0,000         1,433         1,171         1,472         1,482           PcO         30,214         0,064         29,875         30,198         29,597         30,522         29,799         29,693         30,342         30,049           CoO         0,323         0,361         0,204         0,220         0,279         0,302         0,398         0,353         0,164         0,228           NIO         0,000         0,665         0,027         0,000         0,074         0,302         0,479         0,562         0,705         0,604           ZaO         0,941         0,315         0,077         99,300         99,210         99,280           Total         99,734         99,077         99,459         98,633         99,189         99,032         99,360         99,210         0,028           Total         0,088         0,060         0,095         0,011         0,0043         0,140         0,131           A         0,088         0,060         0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe <sub>2</sub> O <sub>3</sub>              | 9,411         | 50,507        | 27,035        | 9,537         | 49,564        | 62,881        | 26,437        | 32,339        | 9,627         | 9,719         |
| MnO         1,993         0,624         1,354         1,466         0,665         0,000         1,433         1,371         1,472         1,482           PeO         30,214         30,463         29,875         30,198         29,957         30,592         29,799         29,693         30,312         30,489           CoO         0.323         0,361         0,304         0,220         0,279         0,302         0,388         0,377         0,000         0,065           NIO         0,000         0,065         0,027         0,000         0,077         0,161         0,046         0,077         0,000         0,000           Zao         0,941         0,519         0,521         0,925         0,472         0,330         0,479         0,502         0,705         0,625           Total         99,734         99,079         99,405         99,359         98,633         99,189         99,032         99,380         99,210         99,2180           Total         0,003         0,004         0,000         0,011         0,011         0,011         0,011         0,011         0,011         0,011         0,011         0,011         0,011         0,013         0,013         0,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MgO                                         | 1,741         | 0,000         | 0,399         | 1,637         | 0,000         | 0,000         | 0,430         | 0,140         | 1,589         | 1,480         |
| Pe0         50,214         30,463         29,875         30,987         30,692         29,799         29,693         30,42         30,489           CoO         0,323         0,361         0,304         0,220         0,279         0,302         0,398         0,433         0,164         0,228           NiO         0,000         0,065         0,027         0,000         0,017         0,161         0,046         0,077         0,000         0,000           ZaO         0,941         0,511         0,521         0,925         0,472         0,330         0,479         0,562         0,705         0,625           Toul         99,734         99,977         99,405         99,359         98,633         99,189         99,032         99,396         99,210         99,258           Toul         9,003         0,005         0,000         0,000         0,011         0,011         0,003         0,005           Si         0,005         0,006         0,095         0,000         0,000         0,011         0,043         0,140         0,111           Al         5,170         0,006         0,095         0,000         0,006         0,005         0,000         0,033         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MnO                                         | 1,393         | 0,624         | 1,354         | 1,466         | 0,655         | 0,000         | 1,433         | 1,371         | 1,472         | 1,482         |
| Cco         0,323         0,361         0,304         0,220         0,279         0,302         0,989         0,353         0,164         0,228           NiO         0,000         0,065         0,027         0,000         0,077         0,161         0,046         0,077         0,000         0,000           ZaO         0,941         0,319         0,521         0,025         0,472         0,330         0,479         0,562         0,705         0,625           Total         99,734         99,977         99,405         99,339         98,633         0,9189         99,302         99,396         99,210         99,288           Total         99,734         0,0977         99,405         0,033         0,013         0,009         0,011         0,001         0,003         0,013           1         0,088         0,008         0,060         0,095         0,000         0,000         0,101         0,011         0,011         0,011         0,014         0,013           A1         5,170         0,006         0,989         5,115         0,011         0,000         0,083         0,111         4,798         4,807           V         0,042         0,000         0,022 <td>FeO</td> <td>30,214</td> <td>30,463</td> <td>29,875</td> <td>30,198</td> <td>29,957</td> <td>30,592</td> <td>29,799</td> <td>29,693</td> <td>30,342</td> <td>30,489</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FeO                                         | 30,214        | 30,463        | 29,875        | 30,198        | 29,957        | 30,592        | 29,799        | 29,693        | 30,342        | 30,489        |
| NIO         0,000         0,065         0,027         0,01         0,046         0,077         0,000         0,000           ZaO         0,941         0,319         0,521         0,925         0,472         0,330         0,479         0,562         0,705         0,625           Total         99,734         99,977         99,405         99,359         98,633         99,189         99,032         99,396         99,210         99,258           Total         0,003         0,009         0,014         0,003         0,013         0,009         0,011         0,011         0,003         0,005           Si         0,008         0,006         0,095         0,000         0,000         0,011         0,043         0,140         0,131           Al         5,170         0,006         0,089         5,118         0,011         0,000         0,003         0,033         0,033         0,033         0,033         0,033         0,033         0,033         0,033         0,033         0,033         0,033         0,033         0,035         0,000         0,035         0,000         0,035         0,000         0,035         0,035         0,035         0,035         0,035         0,035         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C00                                         | 0,323         | 0,361         | 0,304         | 0,220         | 0,279         | 0,302         | 0,398         | 0,353         | 0,164         | 0,228         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NIO                                         | 0,000         | 0,065         | 0,027         | 0,000         | 0,077         | 0,161         | 0,046         | 0,077         | 0,000         | 0,000         |
| Total99,73499,97799,40599,35998,63399,19999,99299,39699,21099,288CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ZnO                                         | 0,941         | 0,319         | 0,521         | 0,925         | 0,472         | 0,330         | 0,479         | 0,562         | 0,705         | 0,625         |
| Si $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total                                       | 99,734        | 99,977        | 99,405        | 99,359        | 98,633        | · 99,189      | 99,032        | 99,396        | 99,210        | 99,258        |
| Si         0,003         0,009         0,014         0,003         0,013         0,009         0,011         0,011         0,003         0,005           Ti         0,088         0,006         0,060         0,095         0,000         0,000         0,011         0,043         0,140         0,131           Al         5,170         0,006         0,989         5,115         0,011         0,000         0,983         0,111         4,798         4,807           V         0,042         0,000         0,022         0,046         0,000         0,005         0,000         0,037         0,033           Cr         8,535         4,249         8,677         8,551         4,307         1,165         5,974         7,411         2,019         2,039           Mg         0,715         0,000         0,178         0,676         0,000         0,0133         0,663         0,660         0,615           Mn         0,325         0,162         0,343         0,344         0,172         0,000         0,364         0,354         0,347         0,350           Fe <sup>a</sup> 6,964         7,797         7,475         6,996         7,772         7,945         7,483         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |               |               |               |               |               |               |               |               |               |               |
| Ti         0,088         0,008         0,060         0,095         0,000         0,000         0,101         0,043         0,140         0,131           Al         5,170         0,006         0,989         5,115         0,011         0,000         0,983         0,111         4,798         4,807           V         0,042         0,000         0,022         0,046         0,000         0,005         0,000         0,037         0,033           Cr         8,535         4,249         8,677         8,551         4,307         1,166         8,719         8,265         8,781         8,773           Pe <sup>1</sup> 1,952         11,633         6,087         1,988         11,571         14,695         5,974         7,411         2,019         2,039           Mg         0,715         0,000         0,178         0,646         0,000         0,193         0,663         0,660         0,615           Mn         0,325         0,162         0,343         0,344         0,172         0,000         0,364         0,354         0,347         0,361           Ca         0,071         0,089         0,073         0,049         0,069         0,075         0,096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Si                                          | 0,003         | 0,009         | 0,014         | 0,003         | 0,013         | 0,009         | 0,011         | 0,011         | 0,003         | 0,005         |
| Al5,1700,0060,9895,1150,0110,0000,9830,1114,7984,807V0,0420,0000,0220,0460,0000,0660,0050,0000,0370,033Cr8,5354,2498,6778,5514,3071,1968,7198,2658,7818,773Pe <sup>1</sup> *1,95211,6336,0871,98811,57114,6955,9747,4112,0192,039Mg0,7150,0000,1780,6760,0000,0000,1930,0630,6600,615Mn0,3230,1620,3430,3440,1720,0000,3640,3540,3470,350Fe <sup>2*</sup> 6,9647,7977,4756,9967,7727,9457,4837,5627,0717,107Co0,0710,0890,0730,0490,0690,0750,0960,0860,0370,051NI0,0000,0160,0070,0000,0190,0400,0110,0190,0000,000Zn0,1910,0720,1150,1890,1080,0760,1060,1260,1450,129Total24,05624,04124,04024,05224,04224,04224,04624,05124,03824,040Cr/(Cr+A)6,2899,8689,7762,5799,75100,0089,8798,6764,6764,60Mg/(Mg+Fe <sup>2*</sup> )6,281,490,810,281,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ТІ                                          | 0,088         | 0,008         | 0,060         | 0,095         | 0,000         | 0,000         | 0,101         | 0,043         | 0,140         | 0,131         |
| V $0,042$ $0,000$ $0,022$ $0,046$ $0,000$ $0,066$ $0,005$ $0,000$ $0,037$ $0,033$ Cr8,535 $4,249$ 8,6778,551 $4,307$ $1,196$ 8,7198,2658,7818,773 $Fe^{3*}$ $1,952$ $11,633$ $6,087$ $1,988$ $11,571$ $14,695$ $5,974$ $7,411$ $2,019$ $2,039$ Mg $0,715$ $0,000$ $0,178$ $0,676$ $0,000$ $0,000$ $0,193$ $0,663$ $0,660$ $0,615$ Mn $0,322$ $0,162$ $0,343$ $0,344$ $0,172$ $0,000$ $0,364$ $0,354$ $0,347$ $0,350$ Fe <sup>3*</sup> $6,964$ $7,797$ $7,475$ $6,996$ $7,772$ $7,945$ $7,483$ $7,562$ $7,071$ $7,107$ Co $0,071$ $0,089$ $0,073$ $0,049$ $0,069$ $0,075$ $0,096$ $0,086$ $0,037$ $0,051$ Nl $0,000$ $0,016$ $0,007$ $0,000$ $0,019$ $0,040$ $0,011$ $0,019$ $0,000$ $0,010$ Zn $0,191$ $0,072$ $0,115$ $0,189$ $0,076$ $0,106$ $0,126$ $0,145$ $0,129$ Total $24,056$ $24,041$ $24,040$ $24,052$ $24,042$ $24,046$ $24,051$ $24,038$ $24,038$ Cr/(c*A) $62,28$ $99,86$ $89,77$ $62,57$ $99,75$ $100,00$ $89,87$ $98,67$ $64,67$ $64,60$ Mg/(Mg+Fe <sup>2*</sup> ) $9,31$ $0,00$ $2,33$ <td>Al</td> <td>5,170</td> <td>0,006</td> <td>0,989</td> <td>5,115</td> <td>0,011</td> <td>0,000</td> <td>0,983</td> <td>0,111</td> <td>4,798</td> <td>4,807</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Al                                          | 5,170         | 0,006         | 0,989         | 5,115         | 0,011         | 0,000         | 0,983         | 0,111         | 4,798         | 4,807         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                           | 0,042         | 0,000         | 0,022         | 0,046         | 0,000         | 0,006         | 0,005         | 0,000         | 0,037         | 0,033         |
| $Fe^{3^4}$ 1,95211,6336,0871,98811,57114,6955,9747,4112,0192,039Mg0,7150,0000,1780,6760,0000,0000,1930,0630,6600,615Mn0,3250,1620,3430,3440,1720,0000,3640,3540,3470,350 $Fe^{3^4}$ 6,9647,7977,4756,9967,7727,9457,4837,5627,0717,107Co0,0710,0890,0730,0490,0690,0750,0960,0860,0370,051Ni0,0000,0160,0070,0000,0190,0400,0110,0190,0000,000Zn0,1910,0720,1150,1890,1080,0760,1060,1260,1450,129Total24,05624,04124,04024,05224,04224,04224,04624,05124,03824,040Fe <sup>34</sup> /Fe <sup>34</sup> 0,281,491,850,800,980,290,290,29Cr/(Cr+A)62,2899,8689,7762,5799,75100,0089,8798,6764,6764,60Mg/(Mg+Fe <sup>37</sup> )9,310,002,338,810,000,002,510,838,547,96Cr / (Fe <sup>24+</sup> Fe <sup>3</sup> )0,960,220,640,950,220,050,650,550,970,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cr                                          | 8,535         | 4,249         | 8,677         | 8,551         | 4,307         | 1,196         | 8,719         | 8,265         | 8,781         | 8,773         |
| Mg $0,715$ $0,000$ $0,178$ $0,676$ $0,000$ $0,000$ $0,193$ $0,063$ $0,660$ $0,615$ Mn $0,325$ $0,162$ $0,343$ $0,344$ $0,172$ $0,000$ $0,364$ $0,354$ $0,347$ $0,350$ Fe <sup>7*</sup> $6,964$ $7,797$ $7,475$ $6,996$ $7,772$ $7,945$ $7,483$ $7,562$ $7,071$ $7,107$ Co $0,071$ $0,089$ $0,073$ $0,049$ $0,069$ $0,075$ $0,096$ $0,086$ $0,037$ $0,051$ Ni $0,000$ $0,016$ $0,007$ $0,000$ $0,019$ $0,040$ $0,011$ $0,019$ $0,000$ $0,000$ Zn $0,191$ $0,072$ $0,115$ $0,189$ $0,108$ $0,076$ $0,106$ $0,126$ $0,145$ $0,129$ Total $24,056$ $24,041$ $24,040$ $24,052$ $24,042$ $24,046$ $24,051$ $24,038$ $24,040$ Fe <sup>31</sup> /Fe <sup>2*</sup> $0,28$ $1,49$ $0,81$ $0,28$ $1,49$ $1,85$ $0,80$ $0,98$ $0,29$ $0,29$ Cr/(Cr+A] $62,28$ $99,86$ $89,77$ $62,57$ $99,75$ $100,00$ $89,87$ $98,67$ $64,67$ $64,60$ Mg/(Mg+Fe <sup>2*</sup> ) $9,31$ $0,00$ $2,33$ $8,81$ $0,00$ $0,00$ $2,51$ $0,83$ $8,54$ $7,96$ Fe <sup>**</sup> /(Fe <sup>**</sup> +At+Cr) $12,47$ $73,22$ $38,64$ $12,70$ $72,82$ $92,47$ $38,11$ $46,94$ $12,94$ $13,05$ Cr / (Fe <sup>2*+</sup> +Fe <sup></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fc <sup>3</sup>                             | 1,952         | 11,633        | 6,087         | 1,988         | 11,571        | 14,695        | 5,974         | 7,411         | 2,019         | 2,039         |
| $\begin{array}{ c c c c c c c } \hline Mn & 0,325 & 0,162 & 0,343 & 0,344 & 0,172 & 0,000 & 0,364 & 0,354 & 0,347 & 0,350 \\ \hline Fe^{2*} & 6,964 & 7,797 & 7,475 & 6,996 & 7,772 & 7,945 & 7,483 & 7,562 & 7,071 & 7,107 \\ \hline Co & 0,071 & 0,089 & 0,073 & 0,049 & 0,069 & 0,075 & 0,096 & 0,086 & 0,037 & 0,051 \\ \hline Ni & 0,000 & 0,016 & 0,007 & 0,000 & 0,019 & 0,040 & 0,011 & 0,019 & 0,000 & 0,000 \\ \hline Zn & 0,191 & 0,072 & 0,115 & 0,189 & 0,108 & 0,076 & 0,106 & 0,126 & 0,145 & 0,129 \\ \hline Total & 24,056 & 24,041 & 24,040 & 24,052 & 24,042 & 24,042 & 24,046 & 24,051 & 24,038 & 24,040 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mg                                          | 0,715         | 0,000         | 0,178         | 0,676         | 0,000         | 0,000         | 0,193         | 0,063         | 0,660         | 0,615         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mn                                          | 0,325         | 0,162         | 0,343         | 0,344         | 0,172         | 0,000         | 0,364         | 0,354         | 0,347         | 0,350         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fc <sup>2+</sup>                            | 6,964         | 7,797         | 7,475         | 6,996         | 7,772         | 7,945         | 7,483         | 7,562         | 7,071         | 7,107         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co                                          | 0,071         | 0,089         | 0,073         | 0,049         | 0,069         | 0,075         | 0,096         | 0,086         | 0,037         | 0,051         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NI                                          | 0,000         | 0,016         | 0,007         | 0,000         | 0,019         | 0,040         | 0,011         | 0,019         | 0,000         | 0,000         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zn                                          | 0,191         | 0,072         | 0,115         | 0,189         | 0,108         | 0,076         | 0,106         | 0,126         | 0,145         | 0,129         |
| Image: Note of the system         Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total                                       | 24,056        | 24,041        | 24,040        | 24,052        | 24,042        | 24,042        | 24,046        | 24,051        | 24,038        | 24,040        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |               |               |               |               | 1             |               |               |               | 1             |               |
| Cr/(Cr+Al)         62,28         99,86         89,77         62,57         99,75         100,00         89,87         98,67         64,67         64,60           Mg/(Mg+Fe <sup>2</sup> )         9,31         0,00         2,33         8,81         0,00         0,00         2,51         0,83         8,54         7,96           Fe <sup>3*</sup> /(Fe <sup>3*</sup> +Al+Cr)         12,47         73,22         38,64         12,70         72,82         92,47         38,11         46,94         12,94         13,05           Cr / (Fe <sup>2*</sup> +Fe <sup>3</sup> )         0,96         0,22         0,64         0,95         0,22         0,05         0,65         0,55         0,97         0,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,28          | 1,49          | 0,81          | 0,28          | 1,49          | 1,85          | 0,80          | 0,98          | 0,29          | 0,29          |
| Mg/(Mg+Fe <sup>2</sup> )         9,31         0,00         2,33         8,81         0,00         0,00         2,51         0,83         8,54         7,96           Fe <sup>3*</sup> /(Fe <sup>3*</sup> +Al+Cr)         12,47         73,22         38,64         12,70         72,82         92,47         38,11         46,94         12,94         13,05           Cr / (Fe <sup>2*</sup> +Fe <sup>3</sup> )         0,96         0,22         0,64         0,95         0,22         0,05         0,65         0,55         0,97         0,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cr/(Cr+Al)                                  | 62,28         | 99,86         | 89,77         | 62,57         | 99,75         | 100,00        | 89,87         | 98,67         | 64,67         | 64,60         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr)         12,47         73,22         38,64         12,70         72,82         92,47         38,11         46,94         12,94         13,05           Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )         0,96         0,22         0,64         0,95         0,22         0,05         0,65         0,55         0,97         0,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mg/(Mg+Fe <sup>2</sup> *)                   | 9,31          | 0,00          | 2,33          | 8,81          | 0,00          | 0,00          | 2,51          | 0,83          | 8,54          | 7,96          |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> ) 0,96 0,22 0,64 0,95 0,22 0,05 0,65 0,55 0,97 0,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 12,47         | 73,22         | 38,64         | 12,70         | 72,82         | 92,47         | 38,11         | 46,94         | 12,94         | 13,05         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 0,96          | 0,22          | 0,64          | 0,95          | 0,22          | 0,05          | 0,65          | 0,55          | 0,97          | 0,96          |

.

#### Tableau C.2 Composition des chromites analysées à la microsonde électronique (suite).

Δ.

.

| Échantillons                                | 97-MH-7371-23 | 97-MH-7371-23 | 97-MH-7371-23 | 97-MH-7374-01 | 97-MH-7374-01 | 97-MH-7374-01 | 97-MH-7374-01 | 97-MH-7374-01 | 97-MH-7374-02 | 97-MH-7374-02 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 9a            | 9b            | 9c            | 4             | 19            | 1c            | 2             | 33            | 3             | 16            |
| Lithologie                                  | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb A chro  | Harzb A chro  | Harzb à chro  | Harzb & chro  | Harzb & chro  | Harzh A chro  | Harzb à chro  |
| Chromite                                    | Bordure       | Intermédiaire | Cœur          | Cœur          | Bordure       | Cœur          | Cœur          | Cœur          | Cœur          | Intermédiaire |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO2                                        | 0,027         | 0,030         | 0,000         | 0,022         | 0,060         | 0,042         | 0,032         | 0,004         | 0,027         | 0,041         |
| TiO <sub>2</sub>                            | 0,000         | 0,391         | 0,844         | 1,292         | 0,106         | 1,649         | 1,194         | 0,726         | 0,606         | 0,566         |
| A1203                                       | 0,000         | 1,686         | 14,749        | 15,698        | 0,003         | 13,325        | 13,497        | 17,001        | 18,178        | 17,998        |
| V <sub>2</sub> O <sub>3</sub>               | 0,000         | 0,111         | 0,239         | 0,288         | 0,070         | 0,309         | 0,294         | 0,263         | 0,254         | 0,197         |
| Cr <sub>2</sub> O <sub>3</sub>              | 7,118         | 37,046        | 40,429        | 39,943        | 5,119         | 39,042        | 39,301        | 39,990        | 43,739        | 40,801        |
| Fe <sub>2</sub> O <sub>3</sub>              | 61,588        | 28,113        | 8,700         | 7,488         | 62,182        | 9,890         | 10,596        | 7,026         | 6,579         | 5,962         |
| MgO                                         | 0,000         | 0,331         | 1,649         | 1,938         | 0,033         | 1,393         | 1,482         | 1,919         | 9,408         | 2,960         |
| MnO                                         | 0,025         | 1,463         | 1,464         | 0,807         | 0,052         | 0,808         | 0,845         | 0,750         | 0,407         | 0,775         |
| FcO                                         | 31,047        | 29,981        | 30,514        | 31,363        | 30,477        | 31,959        | 31,506        | 31,169        | 20,352        | 29,607        |
| CoQ                                         | 0,329         | 0,109         | 0,218         | л,а,          | п.ө.          | п.а.          | n.a.          | n.a.          | n.a.          | n.a.          |
| NIO                                         | 0,068         | 0,105         | 0,000         | 0,072         | 0,139         | 0,128         | 0,063         | 0,000         | 0,025         | 0,116         |
| ZnO                                         | 0,188         | 0,420         | 0,887         | 0,243         | 0,041         | 0,246         | 0,173         | 0,239         | 0,083         | 0,202         |
| Total                                       | 100,390       | 99,786        | 99,693        | 99,171        | 98,521        | 98,804        | 98,991        | 99,098        | 99,669        | 99,226        |
|                                             |               |               |               |               | <u> </u>      |               |               |               |               |               |
| Si                                          | 0,008         | 0,009         | 0,000         | 0,006         | 0,019         | 0,012         | 0,009         | 0,001         | 0,007         | 0,011         |
| Ti                                          | 0,000         | 0,088         | 0,176         | 0,268         | 0,025         | 0,349         | 0,252         | 0,150         | 0,118         | 0,115         |
| A1                                          | 0,000         | 0,596         | 4,818         | 5,105         | 0,001         | 4,418         | 4,461         | 5,500         | 5,520         | 5,744         |
| v                                           | 0,000         | 0,027         | 0,053         | 0,064         | 0,018         | 0,070         | 0,066         | 0,058         | 0,052         | 0,043         |
| Cr                                          | 1,724         | 8,783         | 8,860         | 8,714         | 1,262         | 8,684         | 8,714         | 8,679         | 8,911         | 8,735         |
| Fc <sup>3+</sup>                            | 14,198        | 6,344         | 1,815         | 1,555         | 14,593        | 2,094         | 2,236         | 1,451         | 1,276         | 1,215         |
| Mg                                          | 0,000         | 0,148         | 0,681         | 0,797         | 0,015         | 0,584         | 0,619         | 0,785         | 3,614         | 1,195         |
| Mn                                          | 0,007         | 0,372         | 0,344         | 0,189         | 0,014         | 0,193         | 0,201         | 0,174         | 0,089         | 0,178         |
| Fc <sup>2+</sup>                            | 7,954         | 7,518         | 7,073         | 7,238         | 7,949         | 7,519         | 7,389         | 7,155         | 4,386         | 6,704         |
| Co                                          | 0,081         | 0,026         | 0,048         | n.a.          | n.a.          | n.a.          | n.a.          | п.а.          | n,e,          | n.a.          |
| Ni                                          | 0,017         | 0,025         | 0,000         | 0,016         | 0,035         | 0,029         | 0,014         | 0,000         | 0,005         | 0,025         |
| Zn                                          | 0,042         | 0,093         | 0,182         | 0,050         | 0,009         | 0,051         | 0,036         | 0,048         | 0,016         | 0,040         |
| Totel                                       | 24,031        | 24,029        | 24,050        | 24,002        | 23,940        | 24,003        | 23,997        | 24,001        | 23,994        | 24,005        |
|                                             |               | 1             |               |               |               |               | I             | 1             |               |               |
| Fe <sup>3+</sup> /Fe <sup>2+</sup>          | 1,79          | 0,84          | 0,26          | 0,21          | 1,84          | 0,28          | 0,30          | 0,20          | 0,29          | 0,18          |
| Cr/(Cr+Al)                                  | 100,00        | 93,65         | 64,78         | 63,06         | 99,92         | 66,28         | 66,14         | 61,21         | 61,75         | 60,33         |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 0,00          | 1,93          | 8,78          | 9,92          | 0,19          | 7,21          | 7,73          | 9,89          | 45,18         | 15,13         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 89,17         | 40,35         | 11,71         | 10,11         | 92,03         | 13,78         | 14,51         | 9,28          | 8,12          | 7,74          |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 0,08          | 0,63          | 1,00          | 0,99          | 0,06          | 0,90          | 0,91          | 1,01          | 1,57          | 1,10          |

|               |               | ·····                                   |               |              |               |               |                 |               |                   |                                             |
|---------------|---------------|-----------------------------------------|---------------|--------------|---------------|---------------|-----------------|---------------|-------------------|---------------------------------------------|
| 96'0          | 65'0          | 1,04                                    | 66'0          | £0'1         | 05'1          | 11'1          | 84,1            | 1'13          | 9 <del>6</del> ,1 | Cr / (Fe <sup>2+</sup> +Fe <sup>5+</sup> )  |
| 13'39         | 66,64         | 77,8                                    | 25'01         | ð'33         | 52,8          | 85,8          | St'2            | 8'33          | 26'2              | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +AI+Ct) |
| 84,8          | 18'1          | 11'05                                   | 28'6          | 12'11        | 45'18         | 64,41         | 39'00           | 19'98         | £5'6£             | M8/(M8+Fc <sup>2+</sup> )                   |
| 7S'S9         | ¥2'96         | £2'19                                   | 18'29         | 78,23        | 62,64         | 62'29         | 61'19           | 12'19         | 66,13             | Cr/(Cr+VI)                                  |
| 0'39          | 88,0          | 61'0                                    | 0'33          | 0*30         | 62'0          | 0'30          | ez'o            | 0*50          | 92'0              | եշ <sup>3+</sup> /Բշ <sup>3+</sup>          |
| 54'001        | 53'605        | 54'003                                  | 54'002        | 54'003       | 866'62        | 100'+2        | 966'82          | \$66'EZ       | 54'005            | [atoT                                       |
| t \$0'0       | 020'0         | \$C0'0                                  | 660,0         | 860,0        | 000'0         | 0'036         | 610'0           | 0'055         | 0'015             | aZ                                          |
| L10'0         | 000'0         | 520,0                                   | 750,0         | 0'014        | 0'035         | 0'036         | 200'0           | 0'013         | 0'033             | IN                                          |
| л.а.          | ,8. <b>N</b>  | ה.פ.                                    | . <b>я</b> .П | נז, פי       | נויטי         | ц.а.          | .a.a            | 13.6.         | .a.a              | 00                                          |
| 7,332         | £LL'L         | 690'L                                   | <u>۲</u> 91'۷ | 2'138        | 4'934         | 892'9         | P88,P           | 665'9         | 628,4             | b <sup>c</sup> 3,                           |
| 0'331         | 061'0         | 0'105                                   | 0'504         | 861'0        | 801'0         | 8/1,0         | 960'0           | S81'0         | £60'0             | υW                                          |
| 629'0         | 661,0         | 676'0                                   | 087,0         | 006'0        | ₽7E,E         | 261'1         | ESI'E           | 1/321         | 4SI'6             | 8W                                          |
| 788,1         | 018'9         | 196'1                                   | 149'1         | 614,1        | 266,1         | 1,342         | 1'150           | 1,287         | 1'320             | +t <sub>5</sub> 4                           |
| 648,8         | 965'8         | 667,8                                   | 8,722         | 087,8        | 729,8         | 926'8         | S06'8           | 008,8         | 928'8             | Cr                                          |
| <b>440,0</b>  | 0,030         | £90'0                                   | 0'045         | 290'0        | 970,0         | 0'023         | 090'0           | 1+0'0         | PF0,0             | ۸                                           |
| 959'+         | 0'580         | 814,2                                   | 2'192         | 981'S        | 646,8         | 616,8         | 2'948           | 929'9         | 969'S             | ١٧                                          |
| 0'368         | 0'136         | 0'500                                   | \$61'0        | 292'0        | 6,144         | 2£1'0         | 0'133           | 761,0         | 601'0             | I.I.                                        |
| 0'003         | 110'0         | 100'0                                   | <b>₽10,0</b>  | 800,0        | £00'0         | 0'010         | 100'0           | 0'012         | <b>₽00,0</b>      | is                                          |
|               |               |                                         |               |              |               |               |                 |               |                   |                                             |
| <b>Z11'66</b> | 260'86        | 676'66                                  | 095,66        | E20'66       | 984'66        | 868,89        | 99 <b>,</b> 354 | 290'66        | 955'66            | IntoT                                       |
| 742,0         | 780,0         | 691'0                                   | 61'0          | 881,0        | 000'0         | 921'0         | <b>∠60'0</b>    | 601'0         | 690'0             | Ouz                                         |
| 270,0         | 000'0         | 911'0                                   | 691'0         | 690'0        | 0'123         | 0,132         | 0'035           | ¢20'0         | 0'122             | OIN                                         |
| . <b>в</b> .п | . <b>в</b> ,п | .в. <b>п</b>                            | ה.פ.          | บเลเ         | ישיט          | נישי          | . <b>я.</b> п   | םיפי          | ה.פ.              | 000                                         |
| 964,16        | 30'326        | 201'16                                  | 161'10        | E79,0E       | 842,15        | 59,564        | 55'451          | £01,62        | 55'164            | 0.5                                         |
| SE6'0         | SE7,0         | <b>+</b> 04,0                           | 878,0         | 648,0        | 204,0         | 022'0         | 464,0           | 908'0         | 6,424             | OuM                                         |
| 669,1         | <b>\$16,0</b> | 562'2                                   | 906't         | 2'193        | 269'8         | 118'Z         | 210'8           | 3'569         | 141,8             | 080                                         |
| 066'8         | 59'229        | 959'9                                   | 626'2         | 158'9        | 068,8         | 9'212         | 2'17            | 805,8         | 6,384             | <sup>1</sup> 0 <sup>2</sup> 3               |
| eet'ov        | 32'210        | 929'04                                  | 60,153        | 40,354       | 968,64        | 924'14        | 43'532          | 41'020        | 43'124            | CL <sup>3</sup> O <sup>2</sup>              |
| S61'0         | 121'0         | 962'0                                   | 881,0         | 962'0        | E9E,0         | 0'541         | 782,0           | 061'0         | 112'0             | ۸ <sup>1</sup> O <sup>1</sup>               |
| 99t'Ht        | <b>P08,0</b>  | 816'91                                  | 646'51        | 066'51       | 12'455        | 884,81        | 865,81          | 124'21        | 18'320            | 50 <sup>6</sup> IV                          |
| 1,277         | 195'0         | 186'0                                   | 266'0         | 1'588        | 9,735         | £99'0         | 189'0           | 1 49'0        | 655,0             | <sup>c</sup> ON                             |
| 110'0         | 760,0         | £00'0                                   | 1 50'0        | 0'038        | 110'0         | 820'0         | ₽00 <b>,</b> 0  | 0'020         | 910'0             | <sup>2</sup> OIS                            |
| σαπ           | ជាក្រាលអ      | Contr                                   | Cœnt          | Coult        | Cœnt          | anpuog        | in 20           | poidure       | Can               | Shomic                                      |
| tiarzb à chro | ordo à driaH  | ondo à danaH                            | Harzb à chro  | οιής ή άχιθη | ordo à drinh  | Harzb à chro  | outo à driati   | Harzb à chro  | Harzb & chro      | -illologic                                  |
| 91            | Al            | ↓ · · · · · · · · · · · · · · · · · · · | 3             | 5            | d Þ           | 86            | qz              | उष            | 10                | 1010                                        |
| E0-4767-HM-70 | E0-4767-HM-70 | E0-47E7-HM-70                           | E0-47E7-HM-79 | E0-122-HM-70 | 20-4767-HM-70 | 20-4767-HM-79 | 20-4767-HM-72   | 20-4767-HM-72 | 20-4767-HM-70     | enollinana                                  |
|               |               |                                         |               |              | 1             | L             |                 |               | L                 | L                                           |

| Échantillons                                | 97-MH-7374-04 | 97-MH-7374-04 | 97-MH-7374-04 | 97-MH-7374-04 | 97·MH-7374-04 | 97-MH-7374-04 | 97-MH-7374-05 | 97-MH-7374-05 | 97-MH-7374-05 | 97-MH-7374-05 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 4             | 1             | 2a            | 2b            | 3a            | 3b            | la            | 1b            | 2             | 3             |
| Lithologie                                  | Harzb à chro  | Harzh à chro  | Harzb à chro  | Harzb à chro  | Harzb A chro  | Harzb A chro  | Lherz à chro  | Lherz à chro  | Lherz à chro  | Lherz A chro  |
| Chromite                                    | Cœur          | Cœur          | Bordure       | Cœur          | Bordure       | Cœur          | Bordure       | Cœur          | Cœur          | Cœur          |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO <sub>2</sub>                            | 0,036         | 0,045         | 0,001         | 0,028         | 0,019         | 0,027         | 0,049         | 0,036         | 0,039         | 0,045         |
| TiO <sub>2</sub>                            | 0,603         | 0,997         | 0,658         | 0,958         | 0,656         | 0,680         | 0,489         | 0,862         | 0,726         | 0,861         |
| ЛЬОЗ                                        | 19,033        | 16,690        | 1,416         | 16,759        | 17,534        | 18,175        | 4,830         | 14,040        | 17,100        | 16,314        |
| V2O3                                        | 0,347         | 0,311         | 0,189         | 0,222         | 0,204         | 0,293         | 0,281         | 0,240         | 0,212         | 0,350         |
| Cr203                                       | 42,067        | 40,586        | 37,175        | 40,570        | 40,834        | 42,506        | 39,456        | 41,381        | 41,203        | 41,515        |
| Fc2O3                                       | 6,740         | 6,961         | 27,139        | 6,812         | 6,416         | 7,120         | 22,688        | 9,888         | 7,032         | 7,317         |
| MgO                                         | 7,854         | 2,200         | 0,426         | 2,459         | 2,517         | 7,450         | 0,702         | 1,675         | 2,329         | 2,374         |
| MnO                                         | 0,494         | 0,989         | 0,926         | 0,835         | 0,888         | 0,584         | 0,787         | 0,830         | 0,773         | 0,832         |
| FeO                                         | 22,912        | 30,947        | 30,266        | 30,547        | 30,337        | 23,454        | 31,093        | 31,627        | 31,063        | 30,886        |
| Co0                                         | n.a.          |
| NIO                                         | 0,101         | 0,151         | 0,180         | 0,144         | 0,104         | 0,126         | 0,078         | 0,116         | 0,104         | 0,114         |
| ZnO                                         | 0,109         | 0,179         | 0,040         | 0,162         | 0,154         | 0,081         | 0,071         | 0,194         | 0,138         | 0,231         |
| Total                                       | 100,299       | 100,062       | 98,430        | 99,503        | 99,701        | 100,512       | 100,524       | 100,914       | 100,726       | 100,858       |
|                                             |               |               |               |               |               |               |               |               |               |               |
| Si                                          | 0,009         | 0,012         | 0,000         | 0,008         | 0,005         | 0,007         | 0,014         | 0,010         | 0,010         | 0,012         |
| Ti                                          | 0,117         | 0,204         | 0,150         | 0,197         | 0,134         | 0,133         | 0,107         | 0,178         | 0,147         | 0,175         |
| Al                                          | 5,789         | 5,347         | 0,507         | 5,386         | 5,602         | 5,555         | 1,657         | 4,540         | 5,431         | 5,192         |
| v                                           | 0,072         | 0,068         | 0,046         | 0,049         | 0,044         | 0,061         | 0,066         | 0,053         | 0,046         | 0,076         |
| Cr                                          | 8,584         | 8,723         | 8,927         | 8,746         | 8,752         | 8,715         | 9,079         | 8,977         | 8,778         | 8,864         |
| Fe <sup>3+</sup>                            | 1,309         | 1,424         | 6,203         | 1,398         | 1,309         | 1,389         | 4,969         | 2,042         | 1,426         | 1,487         |
| Mg                                          | 3,022         | 0,891         | 0,193         | 0,999         | 1,017         | 2,880         | 0,305         | 0,685         | 0,935         | 0,956         |
| Mn                                          | 0,108         | 0,228         | 0,238         | 0,193         | 0,204         | 0,128         | 0,194         | 0,193         | 0,176         | 0,190         |
| Fe <sup>2+</sup>                            | 4,945         | 7,035         | 7,687         | 6,966         | 6,877         | 5,086         | 7,568         | 7,257         | 7,000         | 6,975         |
| C∕o                                         | n.a.          | п.а.          | n.a.          | п.а.          | n.a.          | n.a.          | D.A.          | n.a.          | D.A.          | n.a.          |
| NI                                          | 0,021         | 0,033         | 0,044         | 0,032         | 0,023         | 0,026         | 0,018         | 0,026         | 0,023         | 0,025         |
| Zn                                          | 0,021         | 0,036         | 0,009         | 0,033         | 0,031         | 0,015         | 0,015         | 0,039         | 0,027         | 0,046         |
| Total                                       | 23,997        | 24,001        | 24,004        | 24,007        | 23,998        | 23,995        | 23,992        | 24,000        | 23,999        | 23,998        |
|                                             |               |               |               |               |               |               |               |               |               |               |
| Fe <sup>3+</sup> /Fe <sup>3+</sup>          | 0,26          | 0,20          | 0,81          | 0,20          | 0,19          | 0,27          | 0,66          | 0,28          | 0,20          | 0,21          |
| Cr/(Cr+AJ)                                  | 59,72         | 62,00         | 94,63         | 61,89         | 60,97         | 61,07         | 84,57         | 66,41         | 61,78         | 63,06         |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 37,93         | 11,24         | 2,45          | 12,54         | 12,88         | 36,15         | 3,87          | 8,63          | 11,78         | 12,05         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 8,35          | 9,19          | 39,67         | 9,00          | 8,36          | 8,87          | 31,64         | 13,12         | 9,12          | 9,57          |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3</sup> )   | 1,37          | 1,03          | 0,64          | 1,05          | 1,07          | 1,35          | 0,72          | 0,97          | 1,04          | 1,05          |

•

| 19'0           | 80'1          | 89'0                | 10'1                 | /9'0                | 20'1             | 10'1                                          | 64,1              | c0'1          | 70'0            | (                              |
|----------------|---------------|---------------------|----------------------|---------------------|------------------|-----------------------------------------------|-------------------|---------------|-----------------|--------------------------------|
| \$9'1+         | 15'8          | 39'10               | 18'8                 | 05,85               | 16'6             | <u>, , , , , , , , , , , , , , , , , , , </u> | 94'8              | ZU'6          | 0 (1)           | re'/(re' +AI+Cr)               |
| 5,45           | 16'81         | 3,27                | 05'11                | SE'E                | 13'30            | 01'6                                          | 64'66             | 19'21         | 8/'7            | W8/(W8+hc.)                    |
| <b>66,21</b>   | 98'19         | 60'16               | 93'34                | \$0°56              | 63,40            | 62'34                                         | 00,63             | 18'19         | 62'56           | Cr/(Cr+Al)                     |
| 0,84           | 61'0          | £2'0                | 0'50                 | LL'O                | 0'51             | 0,23                                          | 0 <sup>5</sup> 28 | 0'31          | <b>+8,0</b>     |                                |
| [              |               |                     |                      |                     |                  |                                               |                   |               |                 |                                |
| 53'668         | 54'004        | 54'001              | • 33'888             | 24,000              | 53'663           | 73,987                                        | 53'666            | 53'333        | 33'880          | latoT                          |
| £10'0          | 0'039         | L10'0               | C+0'0                | 610'0               | 0'054            | 640,0                                         | 0'033             | 160'0         | 900'0           | uZ                             |
| 0'03?          | 0,042         | 0'043               | \$10'0               | 0'033               | t t o'o          | 000'0                                         | 160,031           | 000'0         | 010'0           | IN                             |
| .а.л           | וויטי         | ายาน                | л.н.                 | ה.מ.                | יטיט.            | าษาน                                          | <b>.в</b> .а      | ,в.п          | . <b>я</b> .п   | <b>හ</b>                       |
| S17,7          | 048,8         | 977,7               | 7,032                | 112'2               | 026'9            | 052'2                                         | 4'836             | LE6'9         | 129'2           | ۲.c <sup>3</sup> *             |
| 221'0          | <b>2</b> 91'0 | 6\$1'0              | 0' 128               | 681'0               | <u>0</u> '192    | 991'0                                         | 780,0             | 281'0         | 0'304           | Wu                             |
| \$61'0         | 1,105         | 192'0               | ¥16'0                | 292'0               | 226'0            | 972'0                                         | 681,6             | 0'665         | 0'318           | 8W                             |
| 664'9          | 1'358         | †19'S               | 976,1                | 2'646               | 954,1            | 989'1                                         | 696'1             | 924'l         | 244'9           | Pe <sup>3+</sup>               |
| 827,8          | 0+8,8         | 50 <sup>,</sup> 052 | S96,8                | 80t'6               | 786,8            | ð <sup>1</sup> 055                            | 086,8             | 287,8         | 808,8           | Cr                             |
| 0,030          | 0'022         | 0'020               | 290'O                | £S0'0               | 120,0            | £70,0                                         | \$90'0            | 540,0         | 090'0           | ۸                              |
| S+6,0          | 124,8         | 288,0               | 622'9                | 574,0               | 881'5            | 708, <del>1</del>                             | £22'S             | 224'9         | SE4,0           | IA                             |
| 621'0          | 961,0         | 981'0               | 841,0                | 0'501               | 6110             | £61'0                                         | 941,0             | 6+1'0         | 0'154           | Ц.                             |
| £10'0          | £10'0         | 600'0               | 200'0                | 200 <b>'</b> 0      | S10'0            | 120'0                                         | 010'0             | 210'0         | 900'0           | IS                             |
|                |               |                     |                      |                     |                  |                                               |                   |               |                 |                                |
| £2\$'66        | 009'001       | <b>P87,00</b>       | <u>+0+,001</u>       | 298,90              | 100'300          | 100'335                                       | S6S'001           | 100'259       | <b>\$85,</b> 99 | lato]                          |
| 0'026          | 6,133         | 870,0               | 0,214                | 980,0               | 0'155            | S12'0                                         | 221'0             | 991'0         | 820'0           | OuZ                            |
| 180'0          | 0'135         | +21'0               | 990'0                | 260'0               | 0'021            | 0'000                                         | 0'120             | 000'0         | 140'0           | OIN                            |
| 'e'u           | .в.п          | .в.п                | ה                    | ם, מ,<br>ה, מ,      | .в.п             | л. <del>а</del> .                             | ה.פ.              | ນ.ສ.          | .a.n            | CºO                            |
| £69'0C         | 824,05        | 31,082              | 210'10               | 30'823              | 967,05           | 619'16                                        | 55'310            | 892'00        | 30'245          | િગ્                            |
| <b>₽69'0</b>   | 889'0         | 6,633               | 69'0                 | 847,0               | 612'0            | G17,0                                         | 666'0             | 818,0         | 108'0           | OnM                            |
| PCP,0          | 5,758         | 685,0               | 5,263                | 0,598               | 719,2            | 944'1                                         | 692'8             | 5'469         | 884,0           | 08M                            |
| 58'969         | 695'9         | 52'100              | 567,8                | 56'420              | 4C1'2            | 0/1'8                                         | 100'2             | 620'2         | 58,528          | ნიე,                           |
| 708,85         | 965'16        | 212'80              | 728,14               | 28,543              | 216'14           | 609'1\$                                       | 606'EV            | 661'14        | 260'20          | CL <sup>1</sup> O <sup>2</sup> |
| 0'152          | 0'521         | 0'515               | 0,284                | 612'0               | 0'532            | 466,0                                         | S16'0             | 0'300         | 0'521           | ۲۵۵                            |
| 746'0          | 12,208        | 5'256               | 16,524               | 846,1               | 4C2'91           | 678,41                                        | 12,295            | 180,71        | 1'530           | ۸۱ <sup>3</sup> O2             |
| <b>S9</b> 2'0  | 227,0         | 068,0               | 6,724                | £68'0               | 0'128            | ¥66'0                                         | 092,0             | 962'0         | 678,0           | r01                            |
| \$\$0'0        | 840,0         | 0'036               | 220'0                | \$10'0              | 6,054            | 220'0                                         | 0'036             | <b>₽90,0</b>  | 0200            | <sup>c</sup> OIS               |
|                | turno         | Although            | 19.000               | a line tara         | 10.000           |                                               | 11147.5           |               |                 |                                |
|                |               |                     | 01112 8 07 1811      | Olitio B Galacti    |                  |                                               |                   | minihamatni   | animo8          | Chamite                        |
| Br March       | 000 y 400H    | mde å dmalt         | 07<br>07             | Ma<br>ordo 6 deceli | ando & denail    | 0                                             | ordo & mod.1      | ավե ֆ աթվ լ   | mda & viad.1    | Lithologic                     |
| 00-6/5/2000-16 | 00-6757-UW-16 | 00-6/01-UW-16       | 10<br>00+1/0/-1/W-/6 | 00-6151-614-16      | 0011101111111111 | 5                                             | CONFICT 1114-14   | 4P            | 00-6-10-10-10   | Point                          |
| 30-0707-UM-70  | 90'9/02-HW-20 | 30.0707-UM-70       | 90/0202-MM-20        | 90.9257.HM.20       | 20.0757.HM-70    | 20-07655-HM-70                                | 50°9262°HW•26     | 20.6767.HM.70 | 20.677.7.HM.70  | enollitnadoğ                   |

| 20'1           | 20't           | £1'1          | 69'0                | 60'I               | 01'1          | Þ9'0                | 6,033         | 90't              | 0'05            | Ct / (be <sub>3+</sub> +be <sub>3+</sub> )  |
|----------------|----------------|---------------|---------------------|--------------------|---------------|---------------------|---------------|-------------------|-----------------|---------------------------------------------|
| 60'6           | 91'8           | 01,8          | SI, 85              | 04,8               | 01,8          | 39,24               | 24'19         | 2E,8              | 40'23           | եշ <sup>3+</sup> /(Բշ <sup>3+</sup> +Al+Cr) |
| 20'+1          | 12'13          | 50'53         | 3'56                | 12'00              | 06,61         | 27,6                | 26'T          | 15,22             | Z6'Z            | ( <sup>+2</sup> >3+8M)/8M                   |
| LZ'Z9          | £1'09          | ۷9'6 <u>۶</u> | 48,98               | e5' <del>4</del> 3 | 62,83         | 15'66               | ES'S6         | 20'19             | 45'46           | Cr/(Cr+Al)                                  |
| 12'0           | 61'0           | 0,20          | 9Ľ0                 | 61'0               | 81,0          | 87,0                | 1,23          | 61'0              | 18,0            | Fc <sup>3+</sup> /Fc <sup>2+</sup>          |
|                |                |               |                     |                    |               |                     |               |                   |                 |                                             |
| 54'000         | 54'003         | 54'005        | 1 70,051            | 53'666             | 54'000        | 54'000              | 54'010        | 24'000            | 54'003          | Total                                       |
| 0'034          | 0'033          | 920'0         | 010'0               | 0,040              | 960,0         | \$00 <del>'</del> 0 | 900'0         | 260,0             | 910'0           | uZ                                          |
| 0'033          | 600,0          | 910'0         | 610'0               | 0'015              | 100'0         | 0,042               | 080,0         | <b>610</b> ,0     | 010'0           | IN                                          |
| '9'U           | ם.מ.           | л.в.          | טיש                 | .a.α               | ,в,п          | יטיט                | שישי          | ה.מ.              | ניטי            | တ                                           |
| 9'822          | 062'9          | 955,9         | 992'Z               | 808'9              | 6'932         | S+L'L               | 268,7         | 526'9             | 737,7           | +د <sup>ع</sup> ظ                           |
| 261,0          | 801'0          | 6,134         | 761,0               | 861,0              | 811,0         | SS1'0               | 601'0         | 0'120             | 0/1/0           | nM                                          |
| 1'155          | 1'510          | 619'1         | 0'391               | 1,207              | 1'004         | 662'0               | 251'0         | 126'0             | 0'533           | 8W                                          |
| 1'453          | 1,281          | 422'1         | S16'S               | 1'302              | 998't         | 820'9               | 869'6         | 1'305             | 262'9           | *t <sub>o</sub> q                           |
| 878,8          | 999'8          | 8'623         | 129'8               | 628'8              | 220'6         | 8,802               | 247,8         | 092'8             | 767,8           | Cr                                          |
| 860,0          | 720,0          | 860,0         | \$90'0              | 0'02 <del>4</del>  | 0'023         | 0'055               | 820'0         | 0'023             | 540'0           | ٨                                           |
| 298'9          | 942'S          | 2,827         | S26'0               | 2,346              | 146,3         | 119'0               | 0'369         | \$6\$ <b>'</b> \$ | 0'202           | IA                                          |
| 0'142          | 161,0          | 011'0         | 661'0               | <b>†</b> 61'0      | 0'120         | 0'339               | 941'0         | 0'134             | <u>961'0</u>    | IL.                                         |
| 600'0          | 200'0          | S00,0         | \$10 <sup>'</sup> 0 | 0'013              | 200'0         | 910'0               | 800,0         | 600'0             | 800,0           | 15                                          |
|                |                |               |                     |                    |               |                     |               |                   |                 |                                             |
| 865'66         | 698'001        | 625'001       | re9,89              | 292'001            | 100'322       | <b>29†</b> '66      | <u>996'66</u> | 100'336           | <b>\$66</b> '66 | ព្រា០T                                      |
| 611'0          | 991'0          | 0'133         | <b>440,0</b>        | 0'503              | 061'0         | 210'0               | 0'030         | 781,0             | 120'0           | OuZ                                         |
| 201'0          | 610,0          | 940'0         | 870,0               | ¢0'02∉             | £00,0         | S41'0               | 0'358         | £90'0             | 891'0           | OIN                                         |
| ם.פ.ח          | .a.a           | .в.п          | n.a.                | .α. <b>π</b>       | .в.п          | ם,ם,                | <b>.</b> в.п  | ה,פ,              | มายา            | CoO                                         |
| 661'05         | LEE'OE         | 38'212        | 928'00              | 30'303             | S78,05        | 90600               | 996'08        | 966'06            | 31,043          | 0°d                                         |
| ¥6S'0          | 924'0          | 965'0         | 265,0               | 909'0              | \$12'0        | °19'0               | 984,0         | 959'0             | °29'0           | OnM                                         |
| 99 <b>2</b> 'Z | 660 <b>,</b> 6 | 080,4         | 0'283               | £00'£              | 5'639         | 029'0               | 0'346         | 21412             | 0'233           | O8M                                         |
| 156'9          | 656,9          | 986,386       | 72°115              | 964,8              | 6,222         | 56,983              | 45'122        | 914'9             | 58,009          | Fc,0,                                       |
| 161'14         | 620,01         | EE1,1A        | 906,86              | 599'1+             | 45'534        | 061'28              | 54'033        | 860'14            | <b>486,</b> 35  | Cr3O3                                       |
| 921'0          | 0'158          | 181,0         | 122'0               | 0'525              | 0'544         | 060'0               | 0'340         | 0'549             | 681,0           | <sup>2</sup> 0 <sup>2</sup>                 |
| 247,81         | 18,216         | 849'81        | 5,754               | 16,828             | 19'195        | EE7,1               | ¥\$4'0        | 209'21            | 1,434           | ۲۵٬۱۸                                       |
| 012'0          | 0'920          | 0'223         | 628'0               | L\$6'0             | <b>LET,0</b>  | 900'1               | Z\$9'0        | 199'0             | 698'0           | 1.10 <sup>3</sup>                           |
| 4E0,0          | 970'0          | 810,0         | 840,0               | 840,0              | 720,0         | SS0'0               | 0'036         | ¢0'034            | 220'0           | <sup>r</sup> ois                            |
|                |                |               |                     |                    |               |                     |               |                   |                 |                                             |
| Cœnt           | Cœn            | Cœur          | Bordure             | Cœnt               | Caeur         | Intermédiaire       | Future        | Cœur              | ənisibənrısınl  | Chromite                                    |
| Harzb à chro   | Harzh à chro   | Harzb à chro  | ավշ ն մշտի          | ныхр й спо         | Marzh à chm   | ាវារា នៃ ព័រ្យ នៅ   | ondo à driaH  | thereb à chro     | αιτο ά στισΗ    | aigolottikl                                 |
| 2              | Þ              | ЭР            | аЄ                  | 3                  | ગ             | १                   | ាន[           | 04                | df.             | Point                                       |
| 70-4727-HM-70  | 20-1-202-HM-26 | 70-4767-HM-70 | 70-4767-HM-70       | 70-4767-HM-70      | 70-4767-HM-70 | 70-4767-HM-70       | 70-4787-HM-79 | 90-4757-HM-70     | 90-4767-HM-70   | ឧកលដែរពតវេទាំង                              |

| Échantillons                                | 97-MH-7374-08 | 97-MH-7374-08 | 97-MH-7374-08 | 97-MH-7374-08 | 97-MH-7374-10 | 97-MH-7374-10 | 97-MH-7374-10 | 97-MH-7374-10 | 97-MH-7374-10 | 97-MH-7374-10 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 1             | 2             | 3             | 4b            | 1             | 2             | За            | ЗЬ            | 4             | 5             |
| Lithologie                                  | Chr Sil       |
| Chromite                                    | Cœur          | Cœur          | Cœur          | Cœur          | Cœur          | Cœur          | Bordure       | Cœur          | Cœur          | Cœur          |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO <sub>2</sub>                            | 0,039         | 0,000         | 0,050         | 0,058         | 0,032         | 0,029         | 0,038         | 0,024         | 0,050         | 0,042         |
| TiO2                                        | 0,547         | 0,586         | 0,544         | 0,564         | 0,533         | 0,497         | 0,163         | 0,469         | 0,544         | 0,462         |
| Al <sub>2</sub> O <sub>3</sub>              | 18,171        | 18,192        | 17,911        | 18,665        | 18,404        | 17,877        | 9,775         | 18,072        | 18,600        | 18,351        |
| V <sub>2</sub> O <sub>3</sub>               | 0,214         | 0,253         | 0,114         | 0,195         | 0,230         | 0,239         | 0,224         | 0,151         | 0,261         | 0,215         |
| Cr <sub>2</sub> O <sub>3</sub>              | 44,690        | 44,369        | 43,222        | 43,223        | 44,641        | 43,667        | 53,741        | 42,851        | 45,028        | 45,129        |
| Fc <sub>2</sub> O <sub>3</sub>              | 5,946         | 5,740         | 5,806         | 5,821         | 5,859         | 5,445         | 3,317         | 5,633         | 5,435         | 5,314         |
| MgO                                         | 8,383         | 8,448         | 5,614         | 7,544         | 9,203         | 5,167         | 3,058         | 4,805         | 9,723         | 9,257         |
| MnO                                         | 0,365         | 0,288         | 0,474         | 0,320         | 0,423         | 0,551         | 0,528         | 0,499         | 0,322         | 0,296         |
| FcO                                         | 22,273        | 22,079        | 26,153        | 23,446        | 20,831        | 26,813        | 28,091        | 27,298        | 20,156        | 20,683        |
| CoO                                         | n,a,          | n.a.          | n.a.          | n.a.          | <u>л</u> .а.  | n.a.          | n.a.          | п.а.          | n.a.          | n.a.          |
| NiO                                         | 0,179         | 0,093         | 0,115         | 0,102         | 0,090         | 0,000         | 0,161         | 0,016         | 0,055         | 0,042         |
| ZnO                                         | 0,122         | 0,053         | 0,080         | 0,113         | 0,062         | 0,125         | 0,142         | 0,088         | 0,085         | 0,000         |
| Total                                       | 100,941       | 100,103       | 100,094       | 100,065       | 100,333       | 100,425       | 99,240        | 99,924        | 100,283       | 99,812        |
|                                             |               |               |               |               |               |               |               |               | [             |               |
| Si                                          | 0,010         | 0,000         | 0,013         | 0,015         | 0,008         | 0,008         | 0,011         | 0,006         | 0,013         | 0,011         |
| TI                                          | 0,106         | 0,114         | 0,108         | 0,110         | 0,103         | 0,099         | 0,034         | 0,094         | 0,104         | 0,089         |
| Al                                          | 5,497         | 5,539         | 5,567         | 5,708         | 5,558         | 5,557         | 3,231         | 5,653         | 5,594         | 5,563         |
| v                                           | 0,044         | 0,052         | 0,024         | 0,040         | 0,047         | 0,050         | 0,050         | 0,032         | 0,053         | 0,044         |
| Cr                                          | 9,069         | 9,063         | 9,012         | 8,867         | 9,044         | 9,105         | 11,918        | 8,992         | 9,084         | 9,178         |
| Fc <sup>3*</sup>                            | 1,148         | 1,116         | 1,152         | 1,137         | 1,130         | 1,081         | 0,700         | 1,125         | 1,044         | 1,029         |
| Mg                                          | 3,208         | 3,254         | 2,207         | 2,918         | 3,516         | 2,032         | 1,279         | 1,901         | 3,699         | 3,550         |
| Mn                                          | 0,079         | 0,063         | 0,106         | 0,070         | 0,092         | 0,123         | 0,126         | 0,112         | 0,070         | 0,064         |
| Fe <sup>2+</sup>                            | 4,781         | 4,770         | 5,768         | 5,087         | 4,464         | 5,914         | 6,589         | 6,059         | 4,301         | 4,449         |
| Co                                          | п.а.          | n.a.          | п.а,          | n.a.          | p.a.          | n.a.          | n.a.          | n.a.          | n.a.          | n.a.          |
| NI                                          | 0,037         | 0,019         | 0,024         | 0,021         | 0,018         | 0,000         | 0,036         | 0,003         | 0,011         | 0,009         |
| Zn                                          | 0,023         | 0,010         | 0,016         | 0,022         | 0,012         | 0,024         | 0,029         | 0,017         | 0,016         | 0,000         |
| Total                                       | 24,002        | 24,000        | 23,997        | 23,995        | 23,992        | 23,993        | 24,003        | 23,994        | 23,989        | 23,986        |
|                                             |               |               |               |               |               |               | 1             |               |               |               |
| Fe <sup>3+</sup> /Fe <sup>2+</sup>          | 0,24          | 0,23          | 0,20          | 0,22          | 0,25          | 0,18          | 0,11          | 0,19          | 0,24          | 0,23          |
| Cr/(Cr+Al)                                  | 62,26         | 62,07         | 61,81         | 60,84         | 61,94         | 62,10         | 78,67         | 61,40         | 61,89         | 62,26         |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 40,16         | 40,55         | 27,67         | 36,45         | 44,06         | 25,57         | 16,26         | 23,88         | 46,24         | 44,38         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 7,31          | 7,10          | 7,32          | 7,24          | 7,18          | 6,87          | 4,42          | 7,13          | 6,64          | 6,53          |
| Cr / (Fc <sup>2+</sup> +Fc <sup>3+</sup> )  | 1,53          | 1,54          | 1,30          | 1,42          | 1,62          | 1,30          | 1,64          | 1,25          | 1,70          | 1,68          |

| 1/1645.         1/12.         0/13         1/13.         0/13         1/12.         0/13.         1/12.         0/13.         1/12.         0/13.         1/12.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.         0/13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                |               |               |               |                       |                    |                   |                     |                    |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------------|---------------|---------------|-----------------------|--------------------|-------------------|---------------------|--------------------|---------------------------------------------|
| λ <sub>2</sub> (New M+C)         0°10         32°0         3'4'1         2'13         3'20         3'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'2'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0         1'1'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21'1          | 02'0           | \$1'1         | 0'15          | 11,1          | 86,1                  | 68,0               | 1'55              | 28,0                | 29'I               | Cr / (Pc <sup>3++Pc<sup>3+</sup>)</sup>     |
| N(N(N+k))         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)         0 (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89'2          | 34'SE          | <b>34,8</b>   | 35'69         | 8,20          | 86'2                  | 16,31              | 28,7              | 32'30               | 16'9               | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +AI+Cr) |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06,41         | 3'60           | 19,72         | 20'\$         | 85'+1         | 40,66                 | 6L'S               | 1442              | 86,8                | 98'01              | Mg/(Mg+Fc <sup>2</sup> )                    |
| δκ <sup>1</sup> /γ <sup>2</sup> C 23(4)         C 23(4) <thc 23(4)<="" th=""> <thc 23(4)<="" th=""></thc></thc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22'29         | 20'46          | 16'19         | 65'88         | 62'60         | 16,23                 | 66,68              | 06,18             | 11,48               | <b>62,23</b>       | Cr/(Cr+A)                                   |
| Second<br>(main bias)         St. MH, 23, 4+11         St. MH, 23, 24, 14         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81'0          | 02'0           | 12,0          | S9'0          | 61'0          | 0,24                  | 4S'0               | 02'0              | 0'23                | 0'53               | եշ <sub>3+</sub> \Բշ <sub>3+</sub>          |
| BMI         S21999         S21999         S21991         S219910 <ths21991< th=""> <ths21991< th=""></ths21991<></ths21991<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - and the     | i anti a       |               |               |               | tur                   |                    |                   |                     |                    |                                             |
| μ         0(01)         0(02)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(03)         0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24,003        | 54.004         | 906.52        | 53 085        | 966 62        | 166 82                | 166.52             | 33,998            | 53.999              | 53,999             | letoT                                       |
| III         0°005         0°035         0°010         0°030         0°005         0°023         0°038         0°03         0°010         0°038         0°036         0°032         0°135         0°038         0°135         0°038         0°135         0°038         0°135         0°038         0°135         0°038         0°132         0°136         0°135         0°038         0°132         0°136         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°137         0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 440.0         | 010'0          | 0.032         | 610.0         | 0.032         | 810.0                 | 210'0              | 160.0             | 0.026               | 110'0              | uz                                          |
| Main         Main <th< td=""><td>810'0</td><td>0'023</td><td>0'038</td><td>220.0</td><td>0.023</td><td>600'0</td><td>660,0</td><td>0'010</td><td>0'036</td><td>0:030</td><td>IN IN</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 810'0         | 0'023          | 0'038         | 220.0         | 0.023         | 600'0                 | 660,0              | 0'010             | 0'036               | 0:030              | IN IN                                       |
| δ <sup>2</sup> ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>п.а.</u>   | <u>и</u> .я.   | <u> </u>      | <u>n.a.</u>   | บายา          | 0.8.                  | זיטי               | п.е.              | n,a,n               | n,a,               | <u>ං</u>                                    |
| Max         O,070         O,192         O,093         O,132         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,835         | \$62'2         | 116'9         | 1122          | 818,8         | 2'522                 | 125'2              | 860,8             | \$G\$'L             | 267,4              | +c <sup>34</sup>                            |
| (a)         (b)         (b)         (b)         (b)         (b)         (c)         (c) <td>261,0</td> <td>2/1/0</td> <td>161,0</td> <td>961'0</td> <td>SEI'O</td> <td>960'0</td> <td>0'185</td> <td>860'0</td> <td>0'165</td> <td>020'0</td> <td>uW</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 261,0         | 2/1/0          | 161,0         | 961'0         | SEI'O         | 960'0                 | 0'185              | 860'0             | 0'165               | 020'0              | uW                                          |
| ε <sub>n</sub> 1,967         3,946         1,323         9,012         1,324         1,003         5,036         1,037         9,030           1         0,040         0,041         0,044         0,044         0,044         0,039         0,313         0,332           1         0,040         0,044         0,044         0,044         0,044         0,039         0,044         0,039         0,040         0,030         0,030         0,041           1         0,040         0,041         0,041         0,044         0,044         0,030         0,030         0,040         0,033         0,133         0,133         0,133         0,133         0,134         0,101         0,144         0,101         0,144         0,111         0,101         0,133         0,134         0,113         0,134         0,146         0,341         0,044         0,033         0,134         0,146         0,341         0,044         0,033         0,134         0,134         0,134         0,113         0,134         0,113         0,134         0,146         0,134         0,146         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 051'1         | 162'0          | 1'220         | 226,0         | 1'194         | 5'210                 | 294,0              | 1'920             | IIS'O               | 022'8              | 8M                                          |
| Mathematility         Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 861'1         | 864,8          | 1'308         | 2'032         | 1,278         | 1'522                 | \$20' <del>1</del> | 1'536             | 9'656               | <u> 280'î</u>      | Pe <sup>3+</sup>                            |
| Optimilize         Optimil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6'030         | 6'313          | 277,8         | 6'185         | 8,955         | 210'6                 | \$8 <b>5</b> '6    | <b>\$88,8</b>     | 102'6               | ST1'6              | Cr                                          |
| 1         0,533         1,833         5,603         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,133         0,144         0,103         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,113         0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>4</b> 40'0 | 0'020          | 0\$0'0        | 600'0         | ¢90'0         | 640,0                 | 620'0              | 1 60'0            | 510'0               | 0'040              | ^                                           |
| Mainullional 97.MH-7374-L1 97.MH-7374-L1 97.MH-7374-L1 97.MH+7374-L1 97.MH+734-MH+7374-L1 97.MH+7374-L1 97.M | 296,8         | 782,0          | 966'9         | 1,183         | 196,351       | 154'5                 | 228't              | 809'S             | EE8,1               | 2 <sup>'</sup> 233 | 14                                          |
| Antilination         Antilination<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91'0          | 0,295          | 221'O         | 292'0         | 0'195         | ttt'o                 | 112'0              | 6113              | 662,0               | 0'105              | 1.1                                         |
| Antillional         North-1374-11         S7-MH+7374-11         S7-MH         S7-MH <td>010'0</td> <td>000'0</td> <td>0'300</td> <td>0'033</td> <td><b>+10'0</b></td> <td>110'0</td> <td>610'0</td> <td>800,0</td> <td>0'015</td> <td>600'0</td> <td>IS</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 010'0         | 000'0          | 0'300         | 0'033         | <b>+10'0</b>  | 110'0                 | 610'0              | 800,0             | 0'015               | 600'0              | IS                                          |
| Open         Open <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                |               |               |               |                       |                    |                   |                     |                    |                                             |
| Multilitional         Openditional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 066'66        | 964,80         | 100'234       | re7,80        | 862,001       | \$90 <sup>°</sup> 001 | t 28'86            | 616'66            | 66,86               | 100'533            | [nto]                                       |
| Opendifyease         0.0.144         0.114         0.114         0.114         0.114         0.114         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.113         0.113         0.114         0.113         0.114         0.114         0.113         0.114         0.113         0.114         0.113         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0'551         | S40,0          | 191'0         | 090'0         | 191'0         | <b>₽60'0</b>          | 080,0              | 191'0             | 611'0               | 950'0              | Ouz                                         |
| ماسال المعال (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S80,0         | 212'0          | 261,0         | 0'115         | 201'0         | 5+0'0                 | 6°164              | 840,0             | 011'0               | 0,144              | OIN                                         |
| Control         1,933         30,441-3374-11         37-MH-7374-11         37-MH-7374-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , <b>а</b> ,п | . <b>в</b> .д  | .в. <b>п</b>  | บיยา          | ח.פ.          | םיפי                  | .8.0               | ח.פ.              | .n.a.               | .в.п               | 000                                         |
| ماسال المال  المال المال المال المال المال المال المال ال                      | 361,05        | 068,06         | 56449         | 30'851        | 812,06        | 24'102                | \$09'0E            | \$61'22           | 6 <del>1</del> 2'0E | 51,939             | O <del>s</del> a                            |
| الإلى         3.04H-7374-11         3.04H-7374-11         3.04H-7374-11         3.04H-7374-15         3.04H-7374-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 619'0         | \$ 29'0        | <b>\$85,0</b> | 922'0         | 0'265         | 0,428                 | 267,0              | 964,0             | 622'0               | 125,0              | ОлМ                                         |
| 아이라(10mm)<br>(10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5'820         | 919'0          | 126'8         | S£7,0         | 5,893         | 8+6'9                 | 1'022              | 926'Þ             | 891't               | S02,8              | O <sub>8</sub> M                            |
| Ability         Ability <t< td=""><td>£88,2</td><td>400,62</td><td>955,5</td><td>55,440</td><td>6,295</td><td>926'9</td><td>624,81</td><td><del>1</del>51'9</td><td>L8L'L1</td><td>2'905</td><td>رم0<u>،</u></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £88,2         | 400,62         | 955,5         | 55,440        | 6,295         | 926'9                 | 624,81             | <del>1</del> 51'9 | L8L'L1              | 2'905              | رم0 <u>،</u>                                |
| Absolutions         97.0H17374.11         97.0H17374.12         97.0H17374.12         97.0H17374.15         97.0H17374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45'162        | 626'95         | 068,14        | 6196,86       | £86'1+        | 693'64                | 41,258             | 45'316            | 168,14              | 969'44             | Cr303                                       |
| 1)0       1,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       2,0       1,0       1,0       2,0       1,0       1,0       2,0       1,0       1,0       2,0       1,0       1,0       2,0       1,0       1,0       2,0       1,0       1,0       2,0       1,0       1,0       2,0       1,0       1,0       1,0       2,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1,0       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0'504         | 602'0          | 9'532         | 040,0         | 262'0         | 602'0                 | 222'0              | 841,0             | 061'0               | 161'0              | ٥٬٧،                                        |
| Absolution         S7.4H7.374.11         S7.4H7.374.12         S7.4H7.374.15         S7.4H7.374.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16,825        | 249'1          | 12'501        | 3'362         | 16,830        | 229'2T                | 9/2'S              | 12'654            | E0E'S               | 18'505             | V13O3                                       |
| Chantillons         77.417374.11         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15         77.417374.15 </td <td>608'0</td> <td>962'1</td> <td>0'936</td> <td>061'1</td> <td>008,0</td> <td>0'295</td> <td>£26'0</td> <td>6,564</td> <td>1'025</td> <td>0'238</td> <td>LIO1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 608'0         | 962'1          | 0'936         | 061'1         | 008,0         | 0'295                 | £26'0              | 6,564             | 1'025               | 0'238              | LIO1                                        |
| مانالاسالها         סואנול הוא האליל היא         אליל הוא האליל היא האליל הוא האליל הוא האליל הוא ה<br>האליל הוא האליל ה<br>האליל הוא האליל היא האליל הוא האליל היא האליל הוא האליל הוא האליל היא האליל הוא האליל<br>היו היא האליל הוא האליל הי<br>היו היא האליל הוא האליל הוא האליל היא האליל הוא האליל הוא האליל הוא האליל הוא האליל הוא האליל הוא האליל היא האליל הוא האליל הוא האליל הוא האליל הוא האליל היא האליל הוא האליל היא האליל הוא האליל היא האליל היא האליל הוא האליל היא האליל הוא האליל היא האלי<br>היי ה<br>היי היא האליל היא היא האליל היא האליל היא האליל היא האליל היא האליל היא האליל היא היא היא היא                    | 860,0         | 000'0          | 622,0         | 901'0         | 050,0         | 240'0                 | t-90'0             | 060,0             | 60'0                | SE0'0              | °019                                        |
| مانالالمامه       المانالالمامه       المانالمامه       المانالالمامه       المانالالمامه       الماناللمامه       الماناللمامه       المانالمامه       المانالمامه       المانالمامه       المانالمامه <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                |               |               |               |                       |                    |                   |                     |                    |                                             |
| Chantillons       97-MH-7374-11       97-MH-7374-11       97-MH-7374-11       97-MH-7374-11       97-MH-7374-15       97-MH-7374-15 <td>Cœur</td> <td>ວາເເປັນດີ</td> <td>Cœnt</td> <td>Bordure</td> <td>Coent</td> <td>Cœnt</td> <td>anprog</td> <td>Count</td> <td>autnog</td> <td>Cœur</td> <td>atimond.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cœur          | ວາເເປັນດີ      | Cœnt          | Bordure       | Coent         | Cœnt                  | anprog             | Count             | autnog              | Cœur               | atimond.                                    |
| oint     1     2a     4b     4b     3a     3b     3b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Γμειχ & εμιο  | Γμεις ψ εμιο   | Lherz à chro  | onto à snot.J | Cherz & chro  | ciria à chro          | i ordo à dznati    | ords à dans       | ondo à draith       | outo à drue H      | ithologic.                                  |
| SI-47CT-HM-70 SI-47CT-HM-70 SI-47CT-HM-70 SI-47CT-HM-70 SI-47CT-HM-70 II-47CT-HM-70 II-47CT-HM-70 II-47CT-HM-70 II-47CT-HM-70 II-47CT-HM-70 II-47CT-HM-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ЭР            | ъС             | qt            | BI            | 5             | dÞ                    | ВР                 | qz                | 28                  | l l                | tuiod                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SI.4765-HM-70 | \$1-#262-HW-26 | SI-4767-HM-79 | SI-4767-HM-79 | St-+267-HM-70 | 11-4267-HM-70         | 11-4267-HM-70      | 11-\$267-HM-70    | 11-4267-HM-70       | 11-4287-HM-70      | enolitinado3                                |

| Échantillons                                | 97-MH-7374-15 | 97-MH-7374-15 | 97-MH-7374-16 | 97-MH-7374-16 | 97-MH-7374-16 | 97-MH-7374-16 | 97-MH-7374-16 | 97-MH-7374-16 | 97-MH-7374-17 | 97-MH-7374-17 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 4a            | 4b            | 1             | 3             | 2а            | 2b            | 4a            | 4b            | 2             | 3             |
| Lithologic                                  | Lherz à chro  | Lherz à chro  | Harzb à chro  | Chr Sil       | Chr Sil       |
| Chromite                                    | Bordure       | Cœur          | Cœur          | Cœur          | Bordure       | Cœur          | Bordure       | Cœur          | Cœur          | Cœur          |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO2                                        | 0,009         | 0,041         | 0,002         | 0,025         | 0,030         | 0,032         | 0,015         | 0,032         | 0,031         | 0,049         |
| TiO <sub>2</sub>                            | 1,458         | 0,723         | 1,034         | 1,324         | 0,913         | 0,930         | 0,915         | 0,834         | 0,663         | 1,103         |
| Al <sub>2</sub> O <sub>3</sub>              | 2,271         | 15,839        | 15,421        | 15,268        | 2,451         | 16,096        | 1,488         | 16,419        | 18,469        | 15,915        |
| V <sub>2</sub> O <sub>3</sub>               | 0,137         | 0,248         | 0,133         | 0,240         | 0,161         | 0,248         | 0,268         | 0,107         | 0,200         | 0,192         |
| Cr2O3                                       | 40,494        | 42,701        | 41,209        | 41,210        | 39,212        | 41,335        | 37,952        | 40,757        | 42,772        | 41,283        |
| Fe203                                       | 21,516        | 6,337         | 7,010         | 6,853         | 23,306        | 6,693         | 25,424        | 6,868         | 6,343         | 6,978         |
| MgO                                         | 0,612         | 2,489         | 2,230         | 2,151         | 0,511         | 2,285         | 0,438         | 2,241         | 8,087         | 2,320         |
| MnO                                         | 0,732         | 0,561         | 0,953         | 0,938         | 1,070         | 0,920         | 1,051         | 0,990         | 0,530         | 1,031         |
| FeO                                         | 31,212        | 30,491        | 30,418        | 30,918        | 30,395        | 30,561        | 30,227        | 30,428        | 22,325        | 30,672        |
| CoO                                         | n,a.          | n.a.          | n.a.          | n,a.          | n.a.          | n.a.          | р, а,         | n.a.          | n.a.          | n.a.          |
| NIO                                         | 0,183         | 0,000         | 0,239         | 0,182         | 0,121         | 0,169         | 0,152         | 0,138         | 0,152         | 0,000         |
| ZnO                                         | 0,014         | 0,232         | 0,256         | 0,191         | 0,075         | 0,211         | 0,142         | 0,181         | 0,145         | 0,154         |
| Total                                       | 98,638        | 99,669        | 98,909        | 99,308        | 98,255        | 99,492        | 98,196        | 99,014        | 99,728        | 99,710        |
|                                             |               |               |               |               |               |               |               |               |               |               |
| Si                                          | 0,003         | 0,011         | 0,001         | 0,007         | 0,009         | 0,009         | 0,004         | 0,009         | 0,008         | 0,013         |
| <u>Ti</u>                                   | 0,329         | 0,149         | 0,215         | 0,274         | 0,207         | 0,192         | 0,209         | 0,172         | 0,129         | 0,227         |
| Al                                          | 0,804         | 5,100         | 5,026         | 4,960         | 0,872         | 5,196         | 0,533         | 5,317         | 5,651         | 5,127         |
| v                                           | 0,033         | 0,054         | 0,030         | 0,053         | 0,039         | 0,054         | 0,065         | 0,024         | 0,042         | 0,042         |
| Cr                                          | 9,620         | 9,224         | 9,010         | 8,982         | 9,357         | 8,951         | 9,123         | 8,855         | 8,780         | 8,922         |
| Fc <sup>3</sup>                             | 4,865         | 1,303         | 1,459         | 1,422         | 5,293         | 1,379         | 5,817         | 1,420         | 1,239         | 1,435         |
| Mg                                          | 0,274         | 1,014         | 0,919         | 0,884         | 0,230         | 0,933         | 0,199         | 0,918         | 3,130         | 0,946         |
| Mn                                          | 0,186         | 0,130         | 0,223         | 0,219         | 0,273         | 0,213         | 0,271         | 0,230         | 0,116         | 0,239         |
| Fe <sup>2+</sup>                            | 7,843         | 6,967         | 7,034         | 7,128         | 7,672         | 7,000         | 7,686         | 6,992         | 4,847         | 7,011         |
| Co                                          | n.a.          | n.a.          | n.a.          | n.a.          | n.a.          | n.a,          | n.a.          | n.a.          | n.a.          | ñ.a,          |
| NI                                          | 0,044         | 0,000         | 0,053         | 0,040         | 0,029         | 0,037         | 0,037         | 0,031         | 0,032         | 0,000         |
| Zn                                          | 0,003         | 0,047         | 0,052         | 0,039         | 0,017         | 0,043         | 0,032         | 0,037         | 0,028         | 0,031         |
| Total                                       | 24,004        | 23,999        | 24,022        | 24,008        | 23,998        | 24,007        | 23,976        | 24,005        | 24,002        | 23,993        |
|                                             |               |               |               |               |               |               |               |               |               |               |
| Fe <sup>3+</sup> /Fe <sup>2+</sup>          | 0,62          | 0,19          | 0,21          | 0,20          | 0,69          | 0,20          | 0,76          | 0,20          | 0,26          | 0,20          |
| Cr/(Cr+Al)                                  | 92,29         | 64,40         | 64,19         | 64,42         | 91,48         | 63,27         | 94,48         | 62,48         | 60,84         | 63,51         |
| Mg/(Mg+Fc <sup>2</sup> )                    | 3,38          | 12,71         | 11,56         | 11,03         | 2,91          | 11,76         | 2,52          | 11,61         | 39,24         | 11,89         |
| Fc <sup>3+</sup> /(Fc <sup>3+</sup> +Al+Cr) | 31,82         | 8,34          | 9,42          | 9,26          | 34,10         | 8,88          | 37,59         | 9,11          | 7,91          | 9,27          |
| Cr / (Fe <sup>2*</sup> +Fe <sup>3</sup> )   | 0,76          | 1,12          | 1,06          | 1,05          | 0,72          | 1,07          | 0,68          | 1,05          | 1,44          | 1,06          |

•

| Échantillons                                | 97-MH-7374-17 | 97-MH-7374-17 | 97-MH-7374-17  | 97-MH-7374-17 | 97-MH-7374-18 | 97-MH-7374-18 | 97-MH-7374-18 | 97-MH-7374-18 | 97-MH-7374-18 | 97-MH-7374-18 |
|---------------------------------------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 5             | 1b            | 4a             | 4b            | 3             | 4             | la            | lb            | 10            | 2a            |
| Lithologic                                  | Chr Sil       | Chr Sil       | Chr Sil        | Chr Sil       | Harzb         | Harzb         | Harzb         | Harzb         | Harzb         | Harzb         |
| Chromite                                    | Cœur          | Cœur          | Bordure        | Cœur          | Cœur          | Cœur          | Bordure       | Intermédiaire | Cœur          | Bordure       |
|                                             |               | ·····         |                |               |               |               |               |               |               |               |
| SiO <sub>2</sub>                            | 0,044         | 0,046         | 0,047          | 0,051         | 0,026         | 0,026         | 1,538         | 0,043         | 0,027         | 0,036         |
| TiO <sub>2</sub>                            | 0,550         | 0,545         | 0,833          | 0,552         | 0,926         | 1,377         | 0,052         | 0,213         | 0,849         | 0,082         |
| Al <sub>2</sub> O <sub>3</sub>              | 17,936        | 18,958        | 3,794          | 18,907        | 15,208        | 13,821        | 0,057         | 0,172         | 12,625        | 0,008         |
| V <sub>2</sub> O <sub>3</sub>               | 0,254         | 0,277         | 0,108          | 0,169         | 0,341         | 0,391         | 0,039         | 0,097         | 0,380         | 0,057         |
| Cr <sub>2</sub> O <sub>3</sub>              | 43,116        | 43,173        | 36,395         | 40,639        | 39,286        | 38,852        | 0,732         | 27,396        | 38,814        | 0,738         |
| Fe <sub>2</sub> O <sub>3</sub>              | 7,137         | 5,987         | 24,800         | 5,841         | 9,531         | 11,173        | 69,046        | 39,244        | 13,183        | 69,069        |
| MgO                                         | 9,009         | 8,945         | 0,577          | 4,422         | 1,433         | 1,263         | 2,261         | 0,147         | 0,864         | 0,115         |
| MnO                                         | 0,421         | 0,412         | 1,008          | 0,847         | 1,242         | 1,182         | 0,015         | 0,947         | 1,365         | 0,000         |
| FcO                                         | 20,733        | 21,079        | 30,484         | 27,411        | 31,429        | 32,159        | 27,499        | 29,890        | 31,779        | 31,372        |
| Co0                                         | n.a.          | n.a.          | n.a.           | n.a.          | 0,119         | 0,084         | 0,076         | 0,110         | 0,170         | 0,073         |
| NIO                                         | 0,089         | 0,063         | 0,106          | 0,142         | 0,152         | 0,099         | 0,037         | 0,047         | 0,067         | 0,059         |
| ZnO                                         | 0,110         | 0,162         | 0,111          | 0,108         | 0,520         | 0,498         | 0,050         | 0,200         | 0,570         | 0,025         |
| Total                                       | 99,410        | 99,655        | 98,284         | 99,100        | 100,213       | 100,925       | 101,402       | 98,506        | 100,693       | 101,634       |
|                                             |               |               |                |               |               |               |               |               |               |               |
| Si                                          | 0,011         | 0,012         | 0,014          | 0,014         | 0,007         | 0,007         | 0,453         | 0,013         | 0,008         | 0,011         |
| Ti                                          | 0,107         | 0,106         | 0,188          | 0,111         | 0,192         | 0,286         | 0,012         | 0,049         | 0,178         | 0,019         |
| AI                                          | 5,481         | 5,756         | 1,341          | 5,953         | 4,937         | 4,493         | 0,020         | 0,063         | 4,153         | 0,003         |
| v                                           | 0,053         | 0,057         | 0,026          | 0,036         | 0,075         | 0,087         | 0,009         | 0,024         | 0,085         | 0,014         |
| Cr                                          | 8,839         | 8,794         | 8,627          | 8,583         | 8,557         | 8,473         | 0,171         | 6,671         | 8,565         | 0,177         |
| Fe <sup>3+</sup>                            | 1,393         | 1,161         | 5,595          | 1,174         | 1,976         | 2,319         | 15,308        | 9,095         | 2,769         | 15,743        |
| Mg                                          | 3,483         | 3,435         | 0,258          | 1,761         | 0,588         | 0,520         | 0,993         | 0,068         | 0,359         | 0,052         |
| Mn                                          | 0,092         | 0,090         | 0,256          | 0,192         | 0,290         | 0,276         | 0,004         | 0,247         | 0,323         | 0,000         |
| Fe <sup>2+</sup>                            | 4,496         | 4,541         | 7,643          | 6,124         | 7,240         | 7,418         | 6,775         | 7,698         | 7,418         | 7,947         |
| Co                                          | D.A.          | n.a.          | 11. <b>a</b> . | D.A.          | 0,026         | 0,019         | 0,018         | 0,027         | 0,038         | 0,018         |
| Ni                                          | 0,019         | 0,013         | 0,025          | 0,031         | 0,034         | 0,022         | 0,009         | 0,012         | 0,015         | 0,014         |
| Zn                                          | 0,021         | 0,031         | 0,025          | 0,021         | 0,106         | 0,101         | 0,011         | 0,045         | 0,117         | 0,006         |
| Total                                       | 23,995        | 23,996        | 23,998         | 24,000        | 24,028        | 24,021        | 23,783        | 24,012        | 24,028        | 24,004        |
|                                             |               |               |                |               |               |               |               | ]             |               |               |
| Fc <sup>3+</sup> /Fc <sup>7+</sup>          | 0,31          | 0,26          | 0,73           | 0,19          | 0,27          | 0,31          | 2,26          | 1,18          | 0,37          | 1,98          |
| Cr/(Cr+Al)                                  | 61,72         | 60,44         | 86,55          | 59,05         | 63,41         | 65,35         | 89,53         | 99,06         | 67,35         | 98,33         |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 43,65         | 43,07         | 3,27           | 22,33         | 7,51          | 6,55          | 12,78         | 0,88          | 4,62          | 0,65          |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 8,87          | 7,39          | 35,95          | 7,47          | 12,77         | 15,17         | 98,77         | 57,46         | 17,88         | 98,87         |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 1,50          | 1,54          | 0,65           | 1,18          | 0,93          | 0,87          | 0,01          | 0,40          | 0,84          | 0,01          |

| Řebantillena                                | 97-MU-7274 10  | 07-MH-7274-10  | 07-MH-7974-10  | 07-MU-7274-10 | 07-MH-7074-10  | 07.MH-7274 10 | 97-MH-7274 10  | 07.MH-7274 10  | 07.MH-7974 10 | 07.MH 7274 10  |
|---------------------------------------------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|----------------|---------------|----------------|
| Point                                       | 91-MIT-1314-18 | 97-MIT-73/4-18 | 31-MI1-1314-19 | 1-            | 57-MIT-7574-19 | 91-MD-13/4-19 | 9/·MII·/3/4·19 | 91-MIN-13/4-19 | 97-MH-13/4-19 | 91-MIT-13/4-19 |
| Lithologia                                  |                | <u> </u>       | J              | 1 harr        | 10             | 28            | 20<br>1 bem    | 20             |               | 40             |
| Chromite                                    | Intermédiaire  | Conur          | Cant           | Bordum        | Intermédiaire  | Bordur        | Intermédiaira  | Contraction    | Bardure       | Internetlinine |
| Childhile                                   | mannadune      |                |                | Dolutic       | Internetane    | Dordare       | mermeenine     | Cacui          | Dolutie       | marmediane     |
| SiO <sub>2</sub>                            | 0,044          | 0,015          | 0,044          | 0,000         | 0,024          | 0,087         | 0,034          | 0,029          | 0,053         | 0,018          |
| TìO₂                                        | 0,851          | 0,838          | 1,072          | 0,666         | 1,885          | 0,0\$6        | 0,740          | 1,551          | 0,051         | 0,285          |
| Al <sub>2</sub> O <sub>3</sub>              | 1,252          | 12,787         | 14,657         | 0,905         | 13,844         | 0,029         | 1,273          | 10,550         | 0,013         | 0,140          |
| V <sub>2</sub> O <sub>3</sub>               | 0,237          | 0,448          | 0,379          | 0,182         | 0,378          | 0,067         | 0,191          | 0,307          | 0,091         | 0,067          |
| Сг203                                       | 34,045         | 36,426         | 39,337         | 33,024        | 37,646         | 6,784         | 32,710         | 35,673         | 0,753         | 30,162         |
| Fc2O3                                       | 31,633         | 15,973         | 9,504          | 32,071        | 9,728          | 60,863        | 32,194         | 16,615         | 67,557        | 37,308         |
| MgO                                         | 0,276          | 0,890          | 1,247          | 0,319         | 1,297          | 0,163         | 0,384          | 0,919          | 0,029         | 0,199          |
| OaM                                         | 1,237          | 1,397          | 1,561          | 1,561         | 1,659          | 0,170         | 1,312          | 1,596          | 0,000         | 1,391          |
| FeO                                         | 30,993         | 31,922         | 31,325         | 29,725        | 31,324         | 30,248        | 30,163         | 31,306         | 30,799        | 29,891         |
| Co0                                         | 0,068          | 0,089          | 0,100          | 0,066         | 0,121          | 0,094         | 0,044          | 0,053          | 0,135         | 0,077          |
| NIO                                         | 0,029          | 0,073          | 0,068          | 0,049         | 0,095          | 0,093         | 0,075          | 0,124          | 0,050         | 0,072          |
| ZnO                                         | 0,108          | 0,521          | 0,922          | 0,283         | 0,778          | 0,000         | 0,355          | 0,653          | 0,000         | 0,216          |
| Total                                       | 100,773        | 101,379        | 100,216        | 98,851        | 98,779         | 98,654        | 99,475         | 99,376         | 99,531        | 99,826         |
|                                             |                |                |                |               |                |               |                |                |               |                |
| Si                                          | 0,013          | 0,004          | 0,012          | 0,000         | 0,007          | 0,027         | 0,010          | 0,008          | 0,016         | 0,005          |
| Ti                                          | 0,191          | 0,175          | 0,223          | 0,152         | 0,399          | 0,013         | 0,168          | 0,333          | 0,012         | 0,065          |
| AI                                          | 0,439          | 4,180          | 4,780          | 0,325         | 4,591          | 0,011         | 0,453          | 3,552          | 0,005         | 0,050          |
| v                                           | 0,057          | 0,100          | 0,084          | 0,045         | U,085          | 0,017         | 0,046          | 0,070          | 0,023         | 0,016          |
| Cr                                          | 8,014          | 7,987          | 8,606          | 7,946         | 8,375          | 1,667         | 7,803          | 8,058          | 0,184         | 7,238          |
| Fc <sup>3+</sup>                            | 7,087          | 3,333          | 1,979          | 7,345         | 2,060          | 14,233        | 7,309          | 3,572          | 15,731        | 8,521          |
| Mg                                          | 0,123          | 0,368          | 0,514          | 0,145         | 0,544          | 0,076         | 0,173          | 0,391          | 0,013         | 0,090          |
| Mn                                          | 0,312          | 0,328          | 0,366          | 0,402         | 0,395          | 0,045         | 0,335          | 0,386          | 0,000         | 0,358          |
| Fe <sup>2+</sup>                            | 7,717          | 7,404          | 7,249          | 7,566         | 7,371          | 7,861         | 7,611          | 7,480          | 7,970         | 7,587          |
| Co                                          | 0,016          | 0,020          | 0,022          | 0,016         | 0,027          | 0,023         | 0,011          | 0,012          | 0,033         | 0,019          |
| Ni                                          | 0,007          | 0,016          | 0,015          | 0,012         | 0,022          | 0,023         | 0,018          | 0,029          | 0,012         | 0,018          |
| Zn                                          | 0,024          | 0,107          | 0,188          | 0,064         | 0,162          | 0,000         | 0,079          | 0,138          | 0,000         | 0,048          |
| Total                                       | 24,000         | 24,022         | 24,038         | 24,018        | 24,038         | 23,996        | 24,016         | 24,029         | 23,999        | 24,015         |
|                                             |                |                |                |               |                |               |                |                |               |                |
| Fc <sup>3</sup> */Fc <sup>2</sup> *         | 0,92           | 0,45           | 0,27           | 0,97          | 0,28           | 1,81          | 0,96           | 0,48           | 1,97          | 1,12           |
| Cr/(Cr+Al)                                  | 94,81          | 65,64          | 64,29          | 96,07         | 64,59          | 99,34         | 94,51          | 69,41          | 97,35         | 99,31          |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 1,57           | 4,73           | 6,62           | 1,88          | 6,87           | 0,96          | 2,22           | 4,97           | 0,16          | 1,17           |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 45,60          | 21,50          | 12,88          | 47,04         | 13,71          | 89,45         | 46,96          | 23,53          | 98,81         | 53,90          |
| Cr / (Fc <sup>2+</sup> +Fe <sup>3+</sup> )  | 0,54           | 0,74           | 0,93           | 0,53          | 0,89           | 0,08          | 0,52           | 0,73           | 0,01          | 0,45           |

.

| Échantillons                                | 97-MH-7374-19 | 97-MH-7374-20 | 97-MH-7374-20 | 97-MH-7374-20 | 97-MH-7374-20 | 97-MH-7374-20 | 97•MH•7374•20 | 97-MH-7374-20 | 97-MH-7374-20  | 97-MH-7374-21 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|
| Point                                       | 4c            | la            | lb            | 10            | 2             | 3a            | 3b            | 3c            | 4              | 1a            |
| Lithologie                                  | Lherz          | Harzb A chro  |
| Chromite                                    | Cœur          | Bordure       | Intermédiaire | Cœur          | Cœur          | Bordure       | Intermédiaire | Cœur          | Cæur           | Bordure       |
|                                             |               |               |               |               |               |               |               |               |                |               |
| SiO <sub>2</sub>                            | 0,025         | 0,103         | 0,029         | 0,002         | 0,054         | 0,008         | 0,027         | 0,022         | 0,021          | 0,058         |
| TiO,                                        | 1,181         | 0,051         | 1,700         | 2,012         | 2,075         | 0,082         | 1,299         | 1,924         | 1,862          | 0,078         |
| Al <sub>2</sub> O <sub>3</sub>              | 14,705        | 0,034         | 0,588         | 11,463        | 15,503        | 0,008         | 1,818         | 15,393        | 15,036         | 0,031         |
| V <sub>2</sub> O <sub>3</sub>               | 0,289         | 0,056         | 0,124         | 0,439         | 0,473         | 0,043         | 0,164         | 0,383         | 0,388          | 0,080         |
| Cr <sub>2</sub> O <sub>3</sub>              | 38,361        | 1,789         | 32,731        | 35,832        | 38,065        | 2,036         | 35,572        | 39,490        | 39,602         | 5,788         |
| Fe <sub>2</sub> O <sub>3</sub>              | 9,543         | 65,891        | 30,436        | 17,420        | 10,093        | 66,332        | 26,985        | 8,696         | 10,087         | 62,672        |
| MgO                                         | 1,370         | 0,105         | 0,666         | 7,222         | 6,094         | 0,002         | 0,860         | 5,354         | 7,588          | 0,085         |
| MnO                                         | 1,706         | 0,133         | 2,874         | 4,765         | 2,533         | 0,128         | 2,674         | 2,096         | 4,006          | 0,180         |
| FeO                                         | 30,743        | 30,285        | 28,540        | 18,771        | 23,761        | 30,824        | 28,333        | 25,220        | 19,619         | 30,760        |
| CoO                                         | 0,113         | n.a.          | n.a.          | Π, Α.         | n,a,          | <b>л.а.</b>   | <b>Л.</b> 8.  | n.a.          | 11. <b>8</b> , | D.8.          |
| NiO                                         | 0,120         | 0,403         | 0,186         | 0,223         | 0,239         | 0,294         | 0,171         | 0,148         | 0,044          | 0,025         |
| ZnO                                         | 0,869         | 0,000         | 0,429         | 0,627         | 0,623         | 0,016         | 0,403         | 0,566         | 0,783          | 0,029         |
| Total                                       | 99,025        | 98,881        | 98,326        | 98,788        | 99,524        | 99,793        | 98,312        | 99,303        | 99,044         | 99,826        |
|                                             |               |               |               |               |               |               |               |               |                |               |
| Si                                          | 0,007         | 0,032         | 0,009         | 0,001         | 0,014         | 0,002         | 800,0         | 0,006         | 0,006          | 0,018         |
| T1                                          | 0,248         | 0,012         | 0,391         | 0,413         | 0,418         | 0,019         | 0,296         | 0,390         | 0,373          | 0,018         |
| Al                                          | 4,845         | 0,012         | 0,212         | 3,691         | 4,892         | 0,003         | ` D,648       | 4,893         | 4,727          | 0,011         |
| v                                           | 0,065         | 0,014         | 0,030         | 0,096         | 0,102         | 0,011         | 0,040         | 0,083         | 0,083          | 0,020         |
| Cr                                          | 8,479         | 0,440         | 7,905         | 7,739         | 8,059         | 0,497         | 8,511         | 8,420         | 8,351          | 1,407         |
| Fe <sup>3+</sup>                            | 2,008         | 15,425        | 6,996         | 3,581         | 2,034         | 15,410        | 6,145         | 1,765         | 2,024          | 14,500        |
| Mg                                          | 0,571         | 0,049         | 0,303         | 2,941         | 2,433         | 0,001         | 0,388         | 2,153         | 3,017          | 0,039         |
| Мл                                          | 0,404         | 0,035         | 0,744         | 1,102         | 0,575         | 0,033         | 0,685         | 0,479         | 0,905          | 0,047         |
| Fc <sup>2+</sup>                            | 7,188         | 7,879         | 7,291         | 4,288         | 5,321         | 7,958         | 7,170         | 5,688         | 4,376          | 7,909         |
| Co                                          | 0,025         | п.а.          | D.A.          | n.a.          | ti.a.         | n.a.          | n.a.          | n.a.          | n.a.           | D.A.          |
| Ni                                          | 0,027         | 0,101         | 0,046         | 0,049         | 0,052         | 0,073         | 0,042         | 0,032         | 0,009          | 0,006         |
| Zn                                          | 0,179         | 0,000         | 0,097         | 0,126         | 0,123         | 0,004         | 0,090         | 0,113         | 0,154          | 0,007         |
| Total                                       | 24,046        | 23,999        | 24,024        | 24,027        | 24,023        | 24,011        | 24,023        | 24,022        | 24,025         | 23,982        |
|                                             |               |               |               |               |               |               |               |               |                |               |
| Fc <sup>3</sup> */Fc <sup>2</sup> *         | 0,28          | 1,96          | 0,96          | 0,84          | 0,38          | 1,94          | 0,86          | 0,31          | 0,46           | 1,83          |
| Cr/(Cr+Al)                                  | 63,64         | 97,35         | 97,39         | 67,71         | 62,23         | 99,40         | 92,92         | 63,25         | 63,86          | 99,22         |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 7,36          | 0,62          | 3,99          | 40,68         | 31,38         | 0,01          | 5,13          | 27,46         | 40,81          | 0,49          |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 13,10         | 97,15         | 46,29         | 23,86         | 13,57         | 96,86         | 40,15         | 11,71         | 13,40          | 91,09         |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 0,92          | 0,02          | 0,55          | 0,98          | 1,10          | 0,02          | 0,64          | 1,13          | 1,30           | 0,06          |

|                    |              |                   |               |                |                   |               | · · · · ·          |                     |                   |                                            |
|--------------------|--------------|-------------------|---------------|----------------|-------------------|---------------|--------------------|---------------------|-------------------|--------------------------------------------|
| 1'50               | 86'0         | <u>9</u> 90       | E0'I          | 19'0           | 10'0              | 50'1          | 21'1               | 80'1                | 0'05              | Ct / (be <sub>3*</sub> +be <sub>3*</sub> ) |
| 60.6               | 13.52        | 69'80             | 25.11         | 45.09          | 16.70             | <b>\$8.0</b>  | <b>6</b> '23       | \$6'6               | 01'14             | Fc <sup>3+</sup> /(Fc <sup>3+</sup> +AI+Ch |
| 28'82              | 11'30        | 94'E              | 26'11         | 5'39           | 1'31              | 13'50         | 22'42              | 12'02               | 5'21              | M8/(M8+Fe <sup>2+</sup> )                  |
| ¥6'09              | 22'89        | 35'04             | <b>#6'59</b>  | 29'96          | 66'96             | \$2'29        | 61,23              | 64'69               | 6S'‡6             | Cr/(Cr+VI)                                 |
| 0'39               | 0'30         | 08,0              | 0'39          | 28'0           | 86'1              | 0'33          | 0'52               | 0'53                | 58'0              | եշ <sup>չ,</sup> \եշ <sub>3+</sub>         |
| 500/67             | 900'17       | 566'57            | 000'1-7       | 010'+7         | 0/6'57            | 110'52        | coo'hz             | 500 <sup>4</sup> 17 | 100'47            | IPHO1                                      |
| 000'0              | / 004        | 670'0             | 500 V0        | 400'0          | 620 22<br>500'0   | 010'0         | 31,003             | 000'0               | 070'0             | 10101                                      |
| 0'019              | /10/0        | 110'0             | 010'0         | 0'037          | 970'0             | 920 0         | 650 0<br>tri0'0    | 0'022               | 0'030             | 5 <u>7</u>                                 |
| 0.010              | .B.ff        | 1100<br>11'U      | 'H'U          | 19,020         | 0 000             | 0.000         | 0014<br>U'B'U      | .8.0                | 0.028             | n<br>00                                    |
| 10/ <sup>4</sup> C | £10'/        | 6441              | e'a10         | 086,1          | 558,1             | 808,0         | 716'S              | 0'03/               | 67.0'/            |                                            |
| /11'0              | 7910         | 764'0             | 01200         | 115'0          | /00'0             | 6283          | soz'o              | /10                 | 1140              | 12-3+<br>1411                              |
| 167'7              | C69'0        | (07'0             | 0+6'0         | 581,0          | 200 0             | 1+0'1         | 900 0              | 0/1/1               | 461'D             | 84                                         |
| 0.001              | 570'Z        | 096'0             | C//1          | 800'0          | 0.006             | 170'1         | 094/1              | 000'1               | P60'0             |                                            |
| 2377 1             | 000          | 0000              | 760           | 049 9          | 770'0             | 66.1'0        | 710'9              | 9291                | 902.9             | E-3+                                       |
| 100'0              | 368 8        | 5 230             | C70 8         | 9798           | CCC 0             | 500'0         | 6198               | P08 8               | 029 8             |                                            |
| 170'0              | 1011         | 0033              | 010'4         | 160'0          | 0.075             | 06110         | 050 0              | 590 0               | 0500              |                                            |
| 105 9              | 201 9        | 952.0             | 9199          | 165.0          | 0100              | EDI S         | 559 S              | 1720 S              | 9690              |                                            |
| 910                | 0 463        | 9200              | 222.0         | 8910           | 2000              | 0.200         | 110'0              | 0 333               | 0110              | N                                          |
| 0.00               | 900 0        | 1100              | 5000          | 2000           | 1900              | 2000          | 1100               | 0.031               | 1100              | 15                                         |
| 100'323            | 856,001      | 956'66            | 100'050       | 056,86         | 100'500           | \$62'001      | 805'001            | 1/8'66              | \$0E'66           | Total                                      |
| 782,0              | 622'0        | 0'13 <del>4</del> | 896,0         | 051'0          | 910'0             | 186,0         | 006'0              | 975,0               | 880,0             | Ouz                                        |
| 980'0              | 012'0        | 240'0             | 240'0         | \$EI'0         | 0'115             | 160'0         | /90 <sup>4</sup> 0 | 891'0               | 991'0             | OIN                                        |
| ח.פ.               | .а.п         | .в.п              |               | n.a.           | . <del>в</del> .п | ה.פ.          | '8'U               | บายา                | .a.a              | 000                                        |
| 32'608             | 30'315       | 196'67            | 30,243        | 56'67          | 259'06            | 200'00        | 867,85             | 291'62              | 30'600            | 0.4                                        |
| 0'236              | 2'022        | <b>₽</b> \$6'1    | 625'1         | 894,1          | 0'038             | \$0\$'1       | 216'0              | 1,507               | 1'93 <del>4</del> | Oum                                        |
| 2'840              | 5'192        | 0'005             | 5'309         | 404'0          | 0'511             | 5/5'2         | \$21'S             | 5'200               | 664,0             | 08M                                        |
| 866'2              | LTL'6        | 36,750            | 879'8         | 58'815         | LL+'L9            | 6++'2         | 964,7              | 664'2               | 28,227            | Fe103                                      |
| 265'14             | 165,04       | 821'26            | 696,14        | 660'98         | 826,1             | 982,04        | \$61'Ib            | 910'1+              | 36,421            | CL <sup>3</sup> O <sup>3</sup>             |
| 0'513              | 914'0        | 0'136             | 876,0         | £60'0          | 201'0             | 0,242         | 0'322              | 862'0               | 202'0             | V205                                       |
| 209'21             | 15'292       | 5'123             | 14'335        | \$60'I         | 0'038             | 16,242        | 864'41             | 12'855              | 866'1             | roqu                                       |
| +82,0              | 2'122        | 250'I             | 946,1         | 682'0          | 160,0             | 080'1         | 616'0              | 580,1               | £64'0             | LIO <sup>2</sup>                           |
| 250'0              | 0'053        | 0'036             | 810'0         | 0'033          | 602'0             | 220'0         | 0,042              | 820'0               | 2000              | <sup>c</sup> Ois                           |
|                    |              |                   |               |                |                   |               |                    |                     |                   |                                            |
| Cœm                | Cœur         | minihimmini       | Coent         | ərisibəarrətri | Βοιαμικ           | ງແສວ          | Cœur               | Cau                 | niaibàmatral      | Chromite                                   |
| Негар & спго       | orda à driaH | onio à denait     | οιής ή αγιαγί | tarzb à chro   | она à druel       | ondo à drusti | ento à driat       | она à drish         | ondo à driati     | sigolodiid                                 |
| 5                  | ગ            | 91                | 940           | dħ             | 84                | е             | 3                  | 10                  | qt                | pulot                                      |
| 52-4757-HM-79      | 52.47374.722 | 52-4757-HM-72     | 18-4787-HM-70 | 12-4757-HM-72  | 12-4767-HM-70     | 12-4757-HM-72 | 12-4757-HM-T0      | 12-4757-HM-79       | 12-4787-HM-79     | \$chantillons                              |
|                    | ·······      | <u> </u>          |               |                |                   |               |                    |                     |                   |                                            |

| A02-4867-HM-70 | A02-48CT-HM-70    | A02-4867-HM-70  | A02-4807-HM-70        | A05-4867-HM-70               | A02-1867-HM-70     | 97-MH-7374-22 | 52-4757-HM-72    | 52-PT67-1374-22 | 22.47.57.HM.72 | anollinnado <sup>9</sup>                    |
|----------------|-------------------|-----------------|-----------------------|------------------------------|--------------------|---------------|------------------|-----------------|----------------|---------------------------------------------|
| ł              | 3                 | 5               | 3                     | 1                            | 2                  | +             | <u>эс</u>        | 90              | вС             | inio                                        |
| Chr Sil        | Chr Sil           | Chr Sil         | Chr Sil               | Chr Sil                      | Chr Sil            | ordo à drinti | Harzb à chro     | οιής à druh     | ) Jarzb à chro | aigolofic                                   |
| Cœnt           | Cœur              | Catur           | Cœur                  | Cœnt                         | Cœur               | ັກເສດ         | Cœur             | maintaint       | anthroa        |                                             |
| 80.0           | 0.028             | 0.050           | 820.0                 | <u>\$10.0</u>                | 160.0              | 760.0         | 820.0            | 6.033           | 220'0          | <sup>2</sup> Ois                            |
| E#2'0          | 169'0             | 199'0           | 169'0                 | S+2.0                        | 1.462              | 262'1         | 1'300            | 508.0           | 640'0          | 'ON                                         |
| 18'564         | 856.71            | 945'81          | 856.71                | 18.104                       | 13'566             | P30,P1        | 610'SI           | 0'380           | 910'0          | Vivo,                                       |
| 261'0          | 0,272             | 0'315           | 2/2'0                 | 061'0                        | 699'0              | 242,0         | 0'304            | 8/1'0           | 950'0          | °0'^                                        |
| 104,64         | 172,54            | 619'6+          | 172,24                | 43'001                       | 39'912             | 254'I+        | 39,128           | 282,55          | 5,294          | Cr3O3                                       |
| 2,233          | 046,7             | 8+2,8           | 0+6,7                 | 189'2                        | 12'280             | 800'6         | 210'01           | 818,15          | 282,78         | 10°2                                        |
| 0'620          | 201'8             | 998'6           | 201'8                 | 686'01                       | Z28'9              | 289't         | 5'129            | 705,0           | 9\$0'0         | 080                                         |
| ÷1+'0          | <del>6</del> 84,0 | 0+6,0           | 494,0                 | 0'305                        | 654'4              | SE6'1         | 1,621            | 188,1           | £80,0          | OnM                                         |
| 10'850         | 55'52             | 222'61          | 33'321                | <b>₽</b> \$0 <sup>4</sup> 61 | 19,532             | 26,477        | 30'02            | 29,382          | 31'369         | O°d                                         |
| บายา           | .в.л              | .a.a            | טיפי                  | ,в.а                         | .8,Ω               | ם, פו,        | ה.פ.             | 'B,R            | 'B'U           | 000                                         |
| 260'0          | 920'0             | 020'0           | 920'0                 | 121'0                        | 911'0              | 101'0         | 0'145            | 091'0           | 0'548          | OIN                                         |
| 840,0          | 620,0             | ÷11'0           | 0'023                 | <u> 260'0</u>                | 808,0              | 2SC'0         | 0,442            | 111'0           | 0'095          | Ouz                                         |
| 100'300        | SES'66            | 61/9'66         | SES'66                | 804'66                       | 814,90             | 692,001       | 100,312          | 909'86          | 842'101        | lato]                                       |
|                |                   |                 |                       |                              |                    |               |                  |                 |                |                                             |
| 010'0          | 200'0             | £10'0           | 200'0                 | +00'0                        | 800,0              | 010'0         | 800,0            | 010'0           | 800,0          | IS                                          |
| 541,0          | set'o             | 0'158           | SC1 '0                | \$\$1'0                      | 262'0              | \$9C'0        | 242'0            | 591'0           | 810'0          | KJ                                          |
| 109'9          | 212'5             | 5,614           | 212'5                 | 991-ic                       | 4'518              | 924'4         | 648,4            | 101'0           | 900'0          | IV                                          |
| 01010          | 720,0             | <b>+</b> 90'0   | 780,0                 | 660,0                        | 241,0              | S70,0         | <b>290'0</b>     | \$\$0'0         | ¢10'0          | Λ                                           |
| 692'8          | 602'8             | <b>\$\$8</b> ,8 | 602'9                 | 017,8                        | 2,8,7              | 228,8         | \$ <u>7</u> \$,8 | 8'130           | 6+2'0          | JC L                                        |
| 16E'1          | 664'1             | 1'506           | 1,439                 | 184,1                        | 3 <sup>1</sup> 192 | 168'1         | 5'064            | 225'2           | 245,81         |                                             |
| 06 <b>2</b> '€ | 3'120             | 3/772           | 3'120                 | 896'E                        | \$9L'Z             | 588'1         | 088,0            | 0+1'0           | 520'0          | 814                                         |
| 060'0          | 201'0             | 120'0           | 0'105                 | 990'0                        | 610'1              | 0'443         | 0,422            | 784,0           | 0'031          | uM                                          |
| 4'539          | 158,1             | 1+2,41          | 158'1                 | 280't                        | 804,1              | 086,5         | 588'9            | 519'2           | 856,7          |                                             |
| .a.n           | ח.מ.              | n.a.            | , <b>В</b> , <b>П</b> | .в.а                         | ם, מ.              | ,в,п          | .n.n             | บเล.            | .B.Cl          |                                             |
| 610'0          | 910'0             | +10'0           | 910'0                 | 0'032                        | 0'032              | 0'035         | 160,0            | 260,0           | 190'0          | 5N                                          |
| 600'0          | 010'0             | 0'033           | 010'0                 | 810,0                        | 191'0              | 120'0         | 680'0            | 0'032           | +10'0          | uz                                          |
| 53'668         | 53'661            | 266'62          | 166'62                | 54'003                       | 54'053             | 54'000        | 54,016           | 986'£2          | 966'52         | liato'i                                     |
| 66.0           | 06.0              | 0.28            | 06.0                  | 96.0                         | 0.72               | 16.0          | 0.30             | 26.0            | £6.(           | Bc3, ) Bc3,                                 |
| 57.19          | 62.19             | 21.19           | ES.19                 | 61.44                        | E6.48              | 66.42         | 09.69            | 22.86           | 6,89           | Cr/ICr+AD                                   |
| 22.74          | 25.95             | 20.7.6          | 26.95                 | 46'56                        | 98.86              | 23'62         | 11.33            | 68.1            | 16'0           | ( <sup>1</sup> <sup>5</sup> 94+8M)/8M       |
| 89'8           | 61'6              | 02'2            | 61'6                  | 946                          | 20,83              | 12,08         | 14'61            | 11'26           | 15'96          | Fe <sup>3+</sup> /(Pe <sup>3+</sup> +Al+Cr) |
| 1'29           | 86.1              | 1'93            | 1'38                  | 25'1                         | 60'1               | 1'13          | 96'0             | 0'22            | 20'0           | Cr / (Pe <sup>3++Fe<sup>3+</sup>)</sup>     |

| Échantillons                               | 97-MH-7384-20B | 97-MH-7384-20B | 97-MH-7384-20B | 97-MH-7384-20B | 97-MH-7384-20C | 97-MH-7384-200  | 00. N9C7-UM-70   | 000 1807 UM 20 |                |                |
|--------------------------------------------|----------------|----------------|----------------|----------------|----------------|-----------------|------------------|----------------|----------------|----------------|
| Point                                      | -              | ſ              | c              |                |                | 004-1001-100-10 | 207-1-00 11W- 16 | D07-600/-UM-16 | 97-MH-7384-20C | 97-MH-7384-20C |
|                                            |                | ,              | 2              | +              | -              | 2               | e                | 4              | ß              | 9              |
| Lithologic                                 | Chr Sil         | Chr Sil          | Chr Sil        | Chr Sil        | Chr Sil        |
| Chromite                                   | Cœur           | Cœur           | Cœur           | Cœur           | Cœur           | Cœur            | Cœur             | Cœur           | Cœur           | Cœur           |
|                                            |                |                |                |                |                |                 |                  |                |                |                |
| sio,                                       | 0,043          | 0,023          | 0,034          | 0,034          | 0,043          | 0,029           | 0,015            | 0,032          | 0,046          | 0,017          |
| Tio,                                       | 0,642          | 0,578          | 0,609          | 0,677          | 0,693          | 51,717          | 0,610            | 0,666          | 0,631          | 0,708          |
| Al <sub>2</sub> O <sub>3</sub>             | 17,139         | 17,144         | 17,765         | 16,669         | 12'431         | 000'0           | 18,182           | 168'11         | 18,558         | 17,978         |
| V303                                       | 0,284          | 0,290          | 0,338          | 0,268          | 0,193          | 0,000           | 0,254            | 0,192          | 0,232          | 0.262          |
| Cr <sub>3</sub> O <sub>3</sub>             | 41,144         | 41,358         | 44,113         | 41,359         | 40,202         | 0,103           | 40,848           | 41,861         | 42.871         | 41.172         |
| Fe <sub>2</sub> O <sub>3</sub>             | 6,701          | 100'2          | 6,998          | 6,886          | 7,082          | 000'0           | 7,053            | 7.192          | 7.123          | 7.272          |
| MgO                                        | 3,701          | 4,194          | 8,475          | 3,018          | 3,089          | 0.211           | 4.955            | 860.7          | 9.837          | 5 700          |
| MnO                                        | 0,638          | 0,676          | 0,410          | 0,806          | 0,672          | 1,859           | 0,651            | 0,447          | 0,333          | 0.492          |
| FeO                                        | 28,451         | 27,660         | 22,090         | 29,415         | 29,533         | 44,342          | 26,898           | 23,721         | 19,809         | 25,964         |
| CoO                                        | 0,093          | 0,104          | 0,101          | 640'0          | n.a.           | n.a.            | п.а.             | n.a.           | n.a.           | e              |
| NiO                                        | 0,108          | 0,168          | 0, 126         | 0,137          | 0,116          | 0,131           | 0,069            | 0,120          | 0,143          | 0.092          |
| ZnO                                        | 0,221          | 0,094          | 0,112          | 0,217          | 0,143          | 0,022           | 0,118            | 0,055          | 0.120          | 0.081          |
| Total                                      | 99,165         | 99,290         | 101,171        | 99,565         | 99,198         | 98,429          | 99,658           | 99,283         | 117,99         | 697.66         |
|                                            |                |                |                |                |                |                 |                  |                | ·              |                |
| Si                                         | 0,012          | 0,006          | 0,009          | 0,009          | 0,012          | 0,008           | 0,004            | 0,008          | 0,012          | 0,004          |
| F                                          | 0,131          | 0,117          | 0,117          | 0,138          | 0,142          | 10,630          | 0,122            | 0,132          | 0,122          | 0,141          |
| ۸I                                         | 5,467          | 5,444          | 5,371          | 5,336          | 5,575          | 0'000           | 5,696            | 5,547          | 5,611          | 5,602          |
| >                                          | 0,062          | 0,063          | 0,070          | 0,058          | 0,042          | 0'000           | 0,054            | 0,041          | 0,048          | 0,056          |
| ŭ                                          | 8,805          | 8,810          | 8,948          | 8,882          | 8,625          | 0,022           | 8,585            | 8,707          | 8,696          | 8,606          |
| Pe <sup>3+</sup>                           | 1,365          | 1,419          | 1,351          | 1,407          | 1,446          | 0'000           | 1,411            | 1,424          | 1,375          | 1,447          |
| Mg                                         | 1,493          | 1,685          | 3,241          | 1,222          | 1,250          | 0,086           | 1,963            | 2,784          | 3,762          | 2,258          |
| Mn                                         | 0,146          | 0,154          | 0,089          | 0,185          | 0,154          | 0,430           | 0, 147           | 0,100          | 0,072          | 0,110          |
| Fc*                                        | 6,440          | 6,232          | 4,739          | 6,681          | 6,702          | 10,136          | 5,980            | 5,219          | 4,250          | 5,741          |
| ප                                          | 0,020          | 0,022          | 0,021          | 0,017          | n.a.           | n.a.            | n.a.             | n.a.           | ц.<br>В        | n.a.           |
| ĨN                                         | 0,023          | 0,036          | 0,026          | 0,030          | 0,025          | 0,029           | 0,015            | 0,025          | 0,029          | 610'0          |
| Zu                                         | 0,044          | 0,019          | 0,021          | 0,044          | 0,029          | 0,005           | 0,023            | 0,011          | 0,023          | 0,016          |
| Total                                      | 24,008         | 24,007         | 24,003         | 24,009         | 24,002         | 21,346          | 24,000           | 23,998         | 24,000         | 24,000         |
|                                            |                |                |                |                |                |                 |                  |                |                |                |
| re /re                                     | 17'0           | 62'0           | 0,29           | 0,21           | 0,22           | 0,00            | 0,24             | 0,27           | 0,32           | 0,25           |
| Cr/(Cr+AJ)                                 | 61,69          | 61,81          | 62,49          | 62,47          | 60,74          | 100,00          | 60,11            | 61,08          | 60,78          | 60,57          |
| Mg/(Mg+Pc*)                                | 18,82          | 21,28          | 40,61          | 15,46          | 15,72          | 0,84            | 24,71            | 34,79          | 46,95          | 28,23          |
| Fe' / (Fe' +AI+Cr)                         | 8,73           | 9,05           | 8,62           | 00'6           | 9,24           | 0,00            | 8,99             | 9,08           | 8,77           | 9,24           |
| Cr / (Fe <sup>**</sup> +Fe <sup>**</sup> ) | 1,13           | 1,15           | 1,47           | 1,10           | 1,06           | 00'0            | 1,16             | 16,1           | 1,55           | 1,20           |

•

| ······         |                    |                |                 |                |                |                    |                   |               |                |                                             |
|----------------|--------------------|----------------|-----------------|----------------|----------------|--------------------|-------------------|---------------|----------------|---------------------------------------------|
| 1'12           | 1'39               | 1'13           | 1'13            | 1'63           | 11'1           | £6,1               | 1'53              | 66'I          | 1'33           | Cr / (Fe <sup>2++F</sup> e <sup>3</sup> )   |
| 21'6           | 08,8               | 9,28           | 82'6            | 64,6           | 16'6           | 86'8               | T 2'2             | 20'2          | <b>₽6'L</b>    | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +AI+Ct) |
| 22,51          | 61'22              | 53,81          | 92'21           | 14'25          | 22'61          | 13'93              | 51,84             | 92'66         | <b>99'6</b> 7  | W8\(W8+Ec3+)                                |
| 62'59          | 95'84              | 93'28          | ¢2'34           | \$S'9L         | 93'22          | 26,52              | 19'69             | SI '69        | 93'02          | Cr/(Cr+Al)                                  |
| 0'33           | 0'34               | 0'53           | 0,23            | 80'0           | 42,0           | 12'0               | 61'0              | 12,0          | 0'33           | કર,∖કર <sub>3</sub> ,                       |
|                |                    |                |                 |                |                |                    |                   |               |                |                                             |
| 54.016         | 53'096             | 54.020         | 54'010          | 24.013         | 54'003         | 54.010             | 24.004            | 54.000        | 24'003         | [hto]                                       |
| 820.0          | 210'0              | 0.058          | 0'026           | 990'0          | +C0.0          | 0'023              | 610'0             | 0'004         | 120'0          | u2                                          |
| 210'0          | 800.0              | 800'0          | 000'0           | 0'00           | 800,0          | 000'0              | 0'013             | 610'0         | 610,0          | IN                                          |
| tto'o          | 0'000              | 0'036          | 0'005           | 610'0          | 0'000          | 0'030              | +10'0             | 910'0         | 0'015          | <u>ං</u> ධ                                  |
| 284'9          | 2,803              | <u>+++</u> 9   | 64,93           | 299'9          | 685,383        | 848,8              | 9'533             | 2'330         | 019'9          | Pe <sup>34</sup>                            |
| 241,0          | £11'0              | 0,143          | 0'120           | 621'0          | 141,0          | 621'0              | 0'154             | 860'0         | 811'0          | uМ                                          |
| 1,402          | 291'2              | 99 <b></b> +'t | 1'405           | 1'133          | £29't          | 686'0              | E47,1             | 5'969         | 3'39 <u>9</u>  | 8 <sub>M</sub>                              |
| 0++1           | 7 <sup>+</sup> 386 | 1'495          | \$9 <b>†</b> 't | 242,0          | 9999'1         | 814,1              | 202'1             | 111'1         | 1'349          | •c3•                                        |
| 840'6          | 6'032              | 8'040          | 8'633           | 222'11         | 248,8          | 900'T I            | 561'6             | £ZZ'6         | 601'6          | Cr.                                         |
| 960,035        | 0'033              | 0'030          | 0'034           | 0'032          | 960'0          | St0'0              | 840,0             | 0+0'0         | 1+0'0          | 1                                           |
| 2'366          | 2'339              | 2,346          | 266,2           | G09'E          | 262,5          | 926'C              | 2,260             | 285,383       | 850,3          | 11                                          |
| 720'0          | °102               | 680'0          | ¢20'0           | 000'0          | 0'134          | 0'028              | 861,0             | 611'0         | 0'134          | 1.1                                         |
| £00'0          | 600'0              | \$00'0         | 200'0           | £00,0          | 0'004          | 600'0              | \$00'0            | 200'0         | 400 <b>'</b> 0 | 15                                          |
|                |                    |                |                 |                |                |                    |                   |               |                |                                             |
| 66'392         | 28'83              | 592'66         | 619'86          | 928'86         | 56,535         | 969'86             | 101'355           | 110'66        | 100'205        | ងៃលៀ                                        |
| 168'0          | 190'0              | 162'0          | 162'0           | 0'398          | 291'0          | 0,251              | \$60'0            | 810'0         | 901'0          | O <sup>u</sup> 2                            |
| LL0'0          | 9000               | 660,0          | 000'0           | 000'0          | 860,0          | 0000               | 950'0             | Z60'0         | 780,0          | OIN                                         |
| 0'025          | 000'0              | 091'0          | 600'0           | 0'083          | 000'0          | 0'133              | <del>1</del> 90'0 | S70,0         | 950'0          | 0%                                          |
| 58'256         | 52'885             | 201,82         | 58'430          | 476,85         | 286,72         | 58'862             | 58,228            | 868,ES        | 52'+36         | 0%                                          |
| 763,0          | 864'0              | 129'0          | 81-9'0          | 527,0          | 0'015          | 942'0              | 555,0             | 654'0         | 0,530          | OnN                                         |
| 824,6          | 2'451              | 9'624          | 3442            | 90 <b>2</b> '2 | 69B'E          | 5'340              | 4'454             | 6,832         | 6,020          | 080                                         |
| 960'2          | 698'9              | 191'2          | 061,7           | 5'201          | 7,582          | 449,0              | 690'9             | 2'280         | 082'9          | <sup>\$</sup> O <sup>t</sup> ə <sub>2</sub> |
| 45'558         | 42,574             | 629'1+         | 896'14          | 83,058         | 41'055         | £90'6 <del>1</del> | 900,44            | 170,44        | 169'66         | 0 <sup>ر</sup> 10                           |
| 6,163          | 641'0              | 0'033          | SS1'0           | +SI,0          | 991'0          | 261'0              | 0'356             | 881,0         | 61'0           | <sup>2</sup> 0 <sup>3</sup>                 |
| 16,432         | 788,81             | 612'91         | 692'91          | 206'01         | 224'91         | 860'01             | 988'91            | 11'322        | 941'41         | 1303                                        |
| 0'325          | 0'250              | 764,0          | 096,0           | 000'0          | £09,0          | 672,0              | 669'0             | <b>29</b> 9'0 | 0'939          | <sup>2</sup> 0۱.                            |
| 010'0          | 0'032              | 610'0          | 800,0           | 110'0          | 910'0          | 0'030              | £10'0             | 970'0         | 210'0          | ¢0!!                                        |
|                |                    |                |                 |                |                |                    |                   |               |                |                                             |
| Bondure        | Cœnt               | nutroa         | Cœut            | ອາມກາດຢ        | Cœut           | Bordure            | Cœur              | Cœut          | Cœnt           | chromite                                    |
| Chr Sil        | Chr Sil            | Chr Sil        | Chr Sil         | Chr Sil        | Chr Sil        | Chr Sil            | Chr Sil           | Chr Sil       | Chr Sil        | sigolodii                                   |
| BP             | 96                 | BC             | 3P              | ъz             | 91             | BI                 | I                 | 5             | E              | trio                                        |
| A10-2857-HM-70 | A10-2867-HM-79     | A10-2857-HM-70 | V10-2867-HM-79  | A10-2867-HM-70 | V10-5867-HM-70 | A10-28CT-HM-TQ     | 1M-4857-HM-70     | 1M-P867-HM-70 | 1M-4867-HM-70  | enollinada?                                 |

.

| Échantillons                                | 97-MH-7385-01A | 97-MH-7385-01A | 97-MH-7385-01A | 97-MH-7385-01A | 97-MH-7385-01B | 97•MH•7385-01B | 97-MH-7385-01B | 97-MH-7385-01B | 97-MH-7385-01B | 97-MH-7385-01B |
|---------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Point                                       | 4b             | 5a             | 5b             | 6n             | 10a            | 105            | la             | lb             | 28             | 2b             |
| Lithologie                                  | Chr Sil        |
| Chromite                                    | Cœur           | Bordure        | Cœur           | Bordure        | Bordure        | Cœur           | Bordure        | Cœur           | Bordure        | Cœur           |
|                                             |                |                |                |                |                |                |                |                |                |                |
| SiO <sub>2</sub>                            | 0,011          | 0,012          | 0,033          | 0,022          | 0,006          | 0,029          | 0,021          | 0,015          | 0,031          | 0,011          |
| Tio <sub>2</sub>                            | 0,762          | 0,551          | 0,705          | 0,648          | 0,515          | 0,541          | 0,583          | 0,540          | 0,406          | 0,451          |
| Al <sub>2</sub> O <sub>3</sub>              | 16,622         | 16,714         | 16,817         | 16,558         | 16,243         | 16,740         | 16,698         | 16,783         | 17,082         | 17,663         |
| V <sub>1</sub> O <sub>3</sub>               | 0,159          | 0,115          | 0,207          | 0,200          | 0,205          | 0,184          | 0,223          | 0,158          | 0,102          | 0,141          |
| Cr <sub>2</sub> O <sub>3</sub>              | 41,682         | 41,618         | 41,933         | 41,480         | 42,005         | 42,215         | 41,850         | 42,819         | 41,887         | 43,785         |
| Fe <sub>2</sub> O <sub>3</sub>              | 6,729          | 6,491          | 6,496          | 6,921          | 7,223          | 7,330          | 6,533          | 6,469          | 6,383          | 6,940          |
| MgO                                         | 3,704          | 3,411          | 3,837          | 3,426          | 3,010          | 4,257          | 2,864          | 4,315          | 2,947          | 7,892          |
| MnO                                         | 0,615          | 0,628          | 0,593          | 0,639          | 0,663          | 0,595          | 0,638          | 0,563          | 0,654          | 0,384          |
| FcO                                         | 28,588         | 28,645         | 28,421         | 28,800         | 29,441         | 27,830         | 29,785         | 27,686         | 29,522         | 22,619         |
| CoO                                         | 0,000          | 0,164          | 0,169          | 0,100          | 0,029          | 0,111          | 0,230          | 0,147          | 0,070          | 0,000          |
| NiO                                         | 0,000          | 0,086          | 0,000          | 0,042          | 0,038          | 0,000          | 0,003          | 0,000          | 0,000          | 0,000          |
| ZnO                                         | 0,233          | 0,265          | 0,211          | 0,259          | 0,230          | 0,177          | 0,240          | 0,198          | 0,315          | 0,118          |
| Total                                       | 99,105         | 98,700         | 99,422         | 99,095         | 99,608         | 100,009        | 99,668         | 99,693         | 99,399         | 100,004        |
|                                             |                |                |                |                |                |                |                |                |                |                |
| Si                                          | 0,003          | 0,003          | 0,009          | 0,006          | 0,002          | 0,008          | 0,006          | 0,004          | 0,008          | 0,003          |
| Ti                                          | 0,156          | 0,113          | 0,143          | 0,133          | 0,105          | 0,109          | 0,119          | 0,109          | 0,083          | 0,088          |
| Al                                          | 5,317          | 5,379          | 5,354          | 5,311          | 5,209          | 5,289          | 5,346          | 5,314          | 5,469          | 5,418          |
| v                                           | 0,035          | 0,025          | 0,045          | 0,044          | 0,045          | 0,040          | 0,049          | 0,034          | 0,022          | 0,029          |
| Cr                                          | 8,945          | 8,985          | 8,957          | 8,926          | 9,036          | 8,947          | 8,989          | 9,095          | 8,996          | 9,010          |
| Fe <sup>3+</sup>                            | 1,374          | 1,334          | 1,321          | 1,417          | 1,479          | 1,479          | 1,335          | 1,308          | 1,305          | 1,359          |
| Mg                                          | 1,499          | 1,389          | 1,545          | 1,390          | 1,221          | 1,701          | 1,160          | 1,728          | 1,194          | 3,062          |
| Mn                                          | 0,141          | 0,145          | 0,136          | 0,147          | 0,153          | 0,135          | 0,147          | 0,128          | 0,151          | 0,085          |
| Fe <sup>2+</sup>                            | 6,489          | 6,541          | 6,421          | 6,555          | 6,699          | 6,239          | 6,767          | 6,220          | 6,707          | 4,923          |
| Co                                          | 0,000          | 0,036          | 0,037          | 0,022          | 0,006          | 0,024          | 0,050          | 0,032          | 0,015          | 0,000          |
| Ni                                          | 0,000          | 0,019          | 0,000          | 0,009          | 0,008          | 0,000          | 0,001          | 0,000          | 0,000          | 0,000          |
| Zn                                          | 0,047          | 0,053          | 0,042          | 0,052          | 0,046          | 0,035          | 0,048          | 0,039          | 0,063          | 0,023          |
| Total                                       | 24,006         | 24,022         | 24,010         | 24,012         | 24,009         | 24,006         | 24,017         | 24,011         | 24,013         | 24,000         |
|                                             |                |                | 1              |                |                |                | <u> </u>       |                |                | 1              |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,21           | 0,20           | 0,21           | 0,22           | 0,22           | 0,24           | 0,20           | 0,21           | 0,19           | 0,28           |
| Cr/(Cr+Al)                                  | 62,72          | 62,55          | 62,59          | 62,70          | 63,43          | 62,85          | 62,71          | 63,12          | 62,19          | 62,45          |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 18,77          | 17,52          | 19,39          | 17,50          | 15,42          | 21,42          | 14,63          | 21,74          | 15,11          | 38,35          |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 8,79           | 8,50           | 8,45           | 9,05           | 9,41           | 9,41           | 8,52           | 8,32           | 8,28           | 8,61           |
| Cr / (Fe <sup>2</sup> + Fe <sup>3</sup> )   | 1,14           | 1,14           | 1,16           | 1,12           | 1,10           | 1,16           | 1,11           | 1,21           | 1,12           | 1,43           |

| Tableau C.2 Composition | des chromites ana | ysées à la microsonde | e électronique | (suite). |
|-------------------------|-------------------|-----------------------|----------------|----------|
|-------------------------|-------------------|-----------------------|----------------|----------|

| 61'1               | 11'1           | 01'1            | 26'1              | 91'1              | 01'1           | 20'1           | 11'1           | 1,28               | £1'1           | Cr / (Fe <sup>2++</sup> Fe <sup>5+</sup> )  |
|--------------------|----------------|-----------------|-------------------|-------------------|----------------|----------------|----------------|--------------------|----------------|---------------------------------------------|
| <b>49'8</b>        | 6,23           | 6'33            | 22'6              | 09'8              | 16'01          | 10'18          | 22'6           | 16,91              | 92'8           | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +A]+Cr) |
| 96'St              | SL'91          | 14,26           | 14'96             | 12'91             | 13'32          | 28'61          | 13'50          | \$9'67             | 12'51          | M8/(M8+Fc <sup>2+</sup> )                   |
| 93'32              | 62,81          | 96'£9           | 63,22             | 01'49             | 66,39          | 17,68          | 08'1•9         | 86,63              | 66'89          | Cr/(Cr+Al)                                  |
| 0'30               | 0'33           | 0'55            | 0'58              | 0'50              | 0,23           | 0'53           | 0'31           | 0'39               | 02'0           | Fe <sup>3</sup> '/Fe <sup>3</sup> '         |
|                    |                |                 |                   |                   |                |                |                |                    |                |                                             |
| 210'52             | 24'012         | 110'52          | 100'bZ            | 700,45            | 220'62         | 54'050         | \$20,924       | 900'tz             | 24,005         | Total                                       |
| 620'0              | 920'0          | 190'0           | 0'032             | 0,030             | 920'0          | ¢20'0          | 220'0          | 0'043              | 0'033          | uZ                                          |
| 0'050              | 0'000          | \$00'0          | 0'000             | 000'0             | 0'013          | 000'0          | 900'0          | t 00'0             | 000'0          | IN                                          |
| 000'0              | 0'05#          | 000'0           | 000'0             | 010'0             | 660,0          | 660,0          | 640,0          | 000'0              | 610,0          | പ                                           |
| 859'9              | 9'930          | 26L'9           | 2'109             | 9'932             | 816'9          | 6,820          | 6+8'9          | 819'9              | 967,36         | بد <sup>ع</sup> ،                           |
| 9 <sup>1</sup> 122 | 201'0          | 6\$1'0          | <del>1</del> 80,0 | 0,144             | 851'0          | 0121           | 691'0          | S01'0              | 0'143          | иМ                                          |
| 1,264              | 1'333          | 1'130           | 5'654             | 1'338             | 996'0          | <b>₩60'</b> 1  | 240,1          | 5'322              | 1,208          | 8M                                          |
| E9E'1              | 544'1          | 894'l           | 1'422             | 1,353             | 1'953          | 86S'T          | 954'1          | 99 <b>6</b> ,1     | 876,1          | եշ <sup>յ</sup> +                           |
| £80,9              | 226,8          | 071'6           | 200'6             | 6'519             | £2£'6          | <b>\$86,8</b>  | 6,237          | 190'6              | 281,9          | Cr                                          |
| 0'036              | 0'033          | 520'0           | 9°052             | 0'033             | 060,0          | 960,0          | 4E0,0          | +C0,0              | 820,0          | ٨                                           |
| 9/2'5              | 2'386          | 0+1'5           | S'336             | t9t's             | 942'4          | 211'S          | 810'9          | 2 <sup>'</sup> 530 | 991 <b>'</b> S | IV                                          |
| 801'0              | 00110          | 801'0           | 261,0             | 911'0             | 580'0          | 801,0          | 260'0          | 0'105              | 0'111          | Ϊ.L                                         |
| £00'0              | 200'0          | £00,0           | 1 <sup>0000</sup> | 100'0             | 0'005          | S00,0          | 900'0          | 200,0              | 200'0          | 15                                          |
|                    |                |                 |                   |                   |                |                |                |                    |                |                                             |
| 295,66             | 66'582         | 42 <b>7,</b> 80 | 058,62            | 966,000           | 220'66         | 200'145        | 888'66         | 0+9'66             | 661'66         | LetoT                                       |
| 0'384              | 086,0          | 0,300           | 061,0             | 0\$1'0            | 296,0          | 896,0          | 186,0          | 0'514              | <u>91'0</u>    | Ouz                                         |
| 160'0              | 0000           | 0'055           | 000'0             | 000'0             | 0'023          | 000'0          | 0'038          | £00'0              | 0'000          | OIN                                         |
| 0'000              | 011'0          | 0'000           | 000'0             | 440'0             | 821'0          | ¥\$1'0         | 961'0          | 000'0              | 620'0          | 000                                         |
| 56'300             | 780,057        | 264,62          | 53'585            | 280'6Z            | 260'08         | 56'67          | 596'62         | 52'502             | 59,469         | ૦ગ્સ                                        |
| £29'0              | £69,0          | 089'0           | 226'O             | 0 <sup>,624</sup> | LL9'0          | V9'0           | 989'0          | 294'0              | 219'0          | OuM                                         |
| 3'130              | 3,284          | 5'754           | 081,7             | e72,e             | 5'326          | 5'699          | 5'226          | [+6'S              | \$'96'         | OaM                                         |
| 999'9              | 250'2          | 780,7           | 926'2             | ¢09'9             | 648,7          | 018,7          | 080,7          | 1'359              | 102'9          | Pc,0,5                                      |
| 45'526             | 486,14         | 568'1+          | 244,54            | 108'24            | 43,134         | 687,11         | 43'123         | 820'EÞ             | 164'24         | Cr3O3                                       |
| 0'135              | 0'120          | +11'0           | 611'0             | £01'0             | SC1 '0         | £91'0          | 291'0          | 691'0              | 0,128          | ٥٥٢٨ م، ٥٥                                  |
| 874,81             | 824'91         | 12'836          | CS6'91            | 080,81            | 14'923         | 896'ST         | 12'283         | 169'91             | 16,038         | VI3O3                                       |
| 0'232              | 269,0          | 0'254           | £99'0             | 295'0             | 0'415          | 0'236          | £24'0          | 015,0              | 0'245          | 2013                                        |
| 0'010              | 0'032          | 0'015           | ¢10'0             | £00'0             | 800'0          | 0'016          | 120'0          | 800,0              | 0'032          | <sup>2</sup> Ois                            |
|                    |                |                 |                   |                   |                |                |                |                    |                |                                             |
| អាស្រលអ្ន          | Cœnt           | anpuog          | Cœur              | Bordute           | Cœur           | əiləib\mətri   | antnof         | ມແຫຼ               | Bordure        | ងរំពោលលើ                                    |
| Chr Sil            | Chr Sil        | Chr Sil         | Chr Sil           | Chr Sil           | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil            | Chr Sil        | sigoloditi.                                 |
| BT                 | 99             | вд              | гр                | ВЗ                | 40             | qb             | որ             | 96                 | Эв             | រជាចក                                       |
| 810-2857-HM-70     | 810-S8E7-HM-70 | H10-S8CT-HM-70  | 810-2857-HM-70    | 810-2857-HM-70    | 810-S857-HM-79 | 810-S857-HM-70 | 810-S857-HM-79 | 810-2857-HM-79     | 810-2857-HM-79 | enollinado3                                 |

Tableau C.2 Composition des chromites analysées à la microsonde électronique (suite).

| Échantillons                                | 97-MH-7385-01B | 97-MH-7385-01B | 97-MH-7385-01B | 97-MH-7385-01B | 97-MH-7385-01B | 97-MH-7385-03A | 97-MH-7385-03A | 97-MH-7385-03A | 97-MH-7385-03A | 97-MH-7385-03A |
|---------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Point                                       | 7b             | 8a,            | 8b             | 9a             | 9b             | la             | 1b             | 2a             | 2b             | За             |
| Lithologie                                  | Chr Sil        |
| Chromite                                    | Cœur           | Bordure        |
|                                             |                |                |                |                |                |                |                |                |                |                |
| sio,                                        | 0,008          | 0,031          | 0,024          | 0,018          | 0,034          | 0,021          | 0,008          | 0,031          | 0,028          | 0,009          |
| TiO <sub>2</sub>                            | 0,507          | 0,164          | 0,500          | 0,516          | 0,351          | 0,473          | 0,515          | 0,256          | 0,473          | 0,588          |
| Al <sub>2</sub> O <sub>3</sub>              | 17,269         | 16,616         | 16,803         | 16,745         | 17,091         | 17,902         | 17,659         | 13,743         | 17,957         | 16,828         |
| V <sub>2</sub> O <sub>3</sub>               | 0,137          | 0,062          | 0,154          | 0,124          | 0,139          | 0,011          | 0,211          | 0,127          | 0,118          | 0,062          |
| Cr <sub>2</sub> O <sub>3</sub>              | 42,778         | 41,242         | 40,867         | 41,560         | 41,195         | 41,873         | 43,812         | 41,776         | 41,585         | 42,238         |
| Fc7O3                                       | 6,904          | 7,676          | 7,774          | 7,128          | 7,661          | 6,319          | 6,396          | 10,063         | 6,072          | 6,508          |
| MgO                                         | 5,957          | 3,097          | 3,230          | 2,886          | 3,155          | 4,419          | 7,259          | 2,409          | 3,598          | 3,754          |
| MnO                                         | 0,455          | 0,624          | 0,604          | 0,683          | 0,653          | 0,517          | 0,369          | 0,584          | 0,578          | 0,556          |
| FeO                                         | 25,328         | 29,339         | 29,186         | 29,742         | 29,309         | 27,701         | 23,644         | 29,535         | 28,893         | 28,554         |
| CoO                                         | 0,120          | 0,208          | 0,323          | 0,022          | 0,000          | 0,223          | 0,000          | 0,161          | 0,140          | 0,174          |
| NIO                                         | 0,000          | 0,038          | 0,072          | 0,028          | 0,088          | 0,000          | 0,000          | 0,000          | 0,000          | 0,000          |
| ZnO                                         | 0,221          | 0,369          | 0,273          | 0,353          | 0,219          | 0,279          | 0,166          | 0,261          | 0,166          | 0,315          |
| Total                                       | 99,684         | 99,766         | 99,810         | 99,805         | 99,895         | 99,738         | 100,039        | 98,946         | 99,608         | 99,586         |
|                                             |                |                |                |                |                |                |                |                |                |                |
| Si                                          | 0,002          | 0,009          | 0,006          | 0,005          | 0,009          | 0,006          | 0,002          | 0,009          | 0,007          | 0,002          |
| Ti                                          | 0,101          | 0,095          | 0,102          | 0,105          | 0,071          | 0,095          | 0,101          | 0,054          | 0,096          | 0,119          |
| AL                                          | 5,396          | 5,314          | 5,362          | 5,354          | 5,440          | 5,637          | 5,438          | 4,511          | 5,687          | 5,356          |
| v                                           | 0,029          | 0,014          | 0,033          | 0,027          | 0,030          | 0,002          | 0,044          | 0,028          | 0,025          | 0,013          |
| Cr                                          | 8,966          | 8,847          | 8,749          | 8,914          | 8,797          | 8,844          | 9,051          | 9,199          | 8,836          | 9,019          |
| Fe <sup>3+</sup>                            | 1,377          | 1,567          | 1,584          | 1,455          | 1,557          | 1,270          | 1,258          | 2,109          | 1,228          | 1,323          |
| Mg                                          | 2,354          | 1,253          | 1,304          | 1,167          | 1,270          | 1,760          | 2,827          | 1,000          | 1,441          | 1,511          |
| Mn                                          | 0,102          | 0,143          | 0,139          | 0,157          | 0,149          | 0,117          | 0,082          | 0,138          | 0,132          | 0,127          |
| Fe <sup>2+</sup>                            | 5,615          | 6,657          | 6,609          | 6,748          | 6,620          | 6,189          | 5,166          | 6,879          | 6,494          | 6,449          |
| Co                                          | 0,025          | 0,045          | 0,070          | 0,005          | 0,000          | 0,048          | 0,000          | 0,036          | 0,030          | 0,038          |
| NI                                          | 0,000          | 0,008          | 0,016          | 0,006          | 0,019          | 0,000          | 0,000          | 0,000          | 0,000          | 0,000          |
| Zn                                          | 0,043          | 0,074          | 0,055          | 0,071          | 0,044          | 0,055          | 0,032          | 0,054          | 0,033          | 0,063          |
| Total                                       | 24,010         | 24,026         | 24,029         | 24,014         | 24,006         | 24,023         | 24,001         | 24,017         | 24,009         | 24,020         |
|                                             |                |                |                |                |                |                |                |                |                |                |
| Fc <sup>3*</sup> /Fc <sup>2+</sup>          | 0,25           | 0,24           | 0,24           | 0,22           | 0,24           | 0,21           | 0,24           | 0,31           | 0,19           | 0,21           |
| Cr/(Cr+Al)                                  | 62,43          | 62,47          | 62,00          | 62,48          | 61,79          | 61,07          | 62,47          | 67,10          | 60,84          | 62,74          |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 29,54          | 15,84          | 16,48          | 14,74          | 16,10          | 22,14          | 35,37          | 12,69          | 18,16          | 18,98          |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 8,75           | 9,96           | 10,09          | 9,25           | 9,86           | 8,06           | 7,99           | 13,33          | 7,80           | 8,43           |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 1,28           | 1,08           | 1,07           | 1,09           | 1,08           | 1,19           | 1,41           | 1,02           | 1,14           | 1,16           |

| Échantillons                   | 97-MH-7385-03A | 97-MH-7385-03D | 97-MH-7385-03D |
|--------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Point                          | 3b             | 4a             | 4b             | 5a             | ба             | 6b             | 7а             | 7b             | la             | 16             |
| Lithologie                     | Chr Sil        |
| Chromite                       | Cœur           | Bordure        | Cœur           | Bordure        | Bordure        | Cœur           | Bordure        | Cœur           | Bordure        | Cæur           |
|                                |                |                |                |                |                |                |                |                |                |                |
| sio <sub>1</sub>               | 000'0          | 0,00B          | 0'000          | 0,042          | 0,022          | 0,029          | 0,016          | 0'000          | 0,021          | 0,021          |
| TIO1                           | 0,645          | 0,521          | 0,708          | 0,061          | 0,489          | 0,568          | 0,518          | 0,817          | 0,408          | 0,408          |
| A1203                          | 16,969         | 15,658         | 16,019         | 0,060          | 15,710         | 15,978         | 15,793         | 15,696         | 16,762         | 16,061         |
| V303                           | 0,104          | 0,093          | 0,119          | 0000'0         | 0,214          | 0,156          | 9,193          | 0,131          | 0,111          | 0.075          |
| Cr <sub>3</sub> O <sub>5</sub> | 44,062         | 42,712         | 42,769         | 27,405         | 42,548         | 42,527         | 43,054         | 42,456         | 42,821         | 43,853         |
| Fe2Os                          | 6,496          | 7,136          | 6,937          | 39,955         | 7,499          | 7,182          | 6,838          | 6,880          | 6, 165         | 6,190          |
| MgO                            | 7,649          | 3,193          | 3,949          | 0,034          | 3,282          | 3,509          | 3,258          | 3,278          | 2,985          | 3,044          |
| MnO                            | 0,329          | 0,556          | 0,540          | 1,128          | 0,576          | 0,592          | 0,627          | 0,607          | 0,806          | 0,859          |
| FcO                            | 22,899         | 29,116         | 28,313         | 29,879         | 29,001         | 28,758         | 29,046         | 29,236         | 29,423         | 29,270         |
| CoO                            | 0,000          | 0,130          | 0,152          | 216,0          | 0,144          | 0,003          | 0,000          | 0, 150         | 660'0          | 0'000          |
| OIN                            | 0,000          | 0,040          | 0,005          | 0,043          | 0'000          | 0,000          | 0'00           | 000'0          | 0,042          | 000'0          |
| ZnO                            | 0,316          | 0,416          | 0,062          | 0,314          | 0,313          | 0,197          | 0,331          | 0,260          | 0,260          | 0,212          |
| Total                          | 99,469         | 99,579         | 99,573         | 99,238         | 99,798         | 99,499         | 99,674         | 99,514         | 60'66          | 66'66          |
|                                |                |                |                |                |                |                |                |                |                |                |
| Si                             | 0'000          | 0,002          | 000'0          | 0,013          | 0,006          | 0,008          | 0,004          | 0'000          | 0,006          | 0,006          |
| Ti                             | 0,127          | 0,107          | 0,144          | 0,014          | 0,100          | 0,116          | 0,106          | 0,167          | 0,083          | 0,083          |
| V                              | 5,257          | 5,033          | 5,108          | 0,022          | 5,033          | 5,115          | 5,062          | 5,042          | 5,348          | 5, 132         |
| >                              | 0,022          | 0,020          | 0,026          | 000'0          | 0,047          | 0,034          | 0,042          | 0,029          | 0,024          | 0,016          |
| C,                             | 9,157          | 9,210          | 9,149          | 6,642          | 9,145          | 9,132          | 9,258          | 9,148          | 9,165          | 9,400          |
| Fe <sup>34</sup>               | 1,285          | 1,465          | 1,412          | 9,216          | 1,534          | 1,468          | 1,399          | 1,411          | 1,256          | 1,263          |
| Mg                             | 2,997          | 1,298          | 1,593          | 0,016          | 1,330          | 1,421          | 1,321          | 1,332          | 1,205          | 1,230          |
| Mn                             | 0,073          | 0,128          | 0,124          | 0,293          | 0,133          | 0,136          | 0,145          | 0,140          | 0,185          | 0,197          |
| Fo <sup></sup>                 | 5,034          | 6,641          | 6,406          | 7,659          | 6,593          | 6,532          | 6,606          | 6,663          | 6,661          | 6,636          |
| 3 :                            | 0,000          | 0,028          | 0,033          | 0,078          | 0,031          | 100'0          | 0,000          | 0,033          | 0,021          | 000'0          |
| NI I                           | 000'0          | 0,009          | 0,001          | 0,011          | 0'000          | 0,000          | 0,000          | 000'0          | 600'0          | 000'0          |
| Zu                             | 0,061          | 0,084          | 0,012          | 0,071          | 0,063          | 0,039          | 0,066          | 0,052          | 0,052          | 0,042          |
| lotal                          | 24,013         | 24,025         | 24,008         | 24,035         | 24,015         | 24,002         | 24,009         | 24,017         | 24,015         | 24,005         |
| r. 31, r. 20                   |                |                |                |                |                |                |                |                |                |                |
| re /re                         | 0,26           | 0,22           | 0,22           | 1,20           | 0,23           | 0,22           | 0,21           | 0,21           | 0, 19          | 0,19           |
| ur/(ur+Al)                     | 63,53          | 64,66          | 64,17          | 79'66          | 64,50          | 64,10          | 64,65          | 64,47          | 63, 15         | 54,68          |
| Mg/(Mg+Fc <sup>-</sup> )       | 37,32          | 16,35          | 19,91          | 0,21           | 16,79          | 17,87          | 16,66          | 16,66          | 15,32          | 15,64          |
| Fe /(Fe +AI+Cr)                | 8,19           | 9,33           | 9,01           | 58,04          | 9,76           | 9,34           | 8,90           | 9,04           | 7,96           | 8,00           |
| Cr / (Fe**+Pe*)                | 1,45           | 1,14           | 1,17           | 0,39           | 1,13           | 1,14           | 1,16           | 1,13           | 1,16           | 1,19           |
|                                |                |                |                |                |                |                |                |                |                |                |

| Échantillons                                | 97-MH-7385-03D | 97-MH-7385-03F | 97-MH-7385-03F |
|---------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Point                                       | 2a             | 2b             | 3a             | 3b             | 4a             | 4b             | бя             | 6c             | 1b             | 2a             |
| Lithologie                                  | Chr Sil        |
| Chromite                                    | Bordure        | Cœur           | Bordure        | Cœur           | Bordure        | Cœur           | Bordure        | Cœur           | Cœur           | Bordure        |
|                                             |                |                |                |                |                |                |                |                |                |                |
| SiO <sub>2</sub>                            | 0,023          | 0,010          | 0,000          | 0,010          | 0,012          | 0,014          | 0,033          | 0,013          | 0,006          | 0,024          |
| TiO <sub>2</sub>                            | 0,352          | 0,529          | 0,380          | 0,457          | 0,460          | 0,435          | 0,473          | 0,328          | 0,492          | 0,454          |
| Al <sub>2</sub> O <sub>3</sub>              | 16,811         | 16,829         | 16,319         | 16,323         | 16,416         | 16,040         | 16,785         | 17,011         | 17,324         | 15,829         |
| V <sub>2</sub> O <sub>3</sub>               | 0,262          | 0,056          | 0,152          | 0,119          | 0,078          | 0,243          | 0,126          | 0,155          | 0,049          | 0,063          |
| Cr <sub>2</sub> O3                          | 42,643         | 42,713         | 42,947         | 43,332         | 43,084         | 43,356         | 42,677         | 42,731         | 44,230         | 44,150         |
| Fe <sub>2</sub> O <sub>3</sub>              | 6,282          | 5,942          | 6,517          | 6,652          | 5,952          | 6,290          | 6,161          | 5,984          | 6,655          | 5,719          |
| MgO                                         | 3,001          | 3,051          | 3,059          | 3,723          | 2,831          | 3,051          | 2,920          | 3,000          | 7,820          | 3,458          |
| MnO                                         | 0,813          | 0,816          | 0,818          | 0,832          | 0,851          | 0,852          | 0,868          | 0,853          | 0,339          | 0,537          |
| FeO                                         | 29,290         | 29,410         | 29,135         | 28,320         | 29,530         | 29,109         | 29,538         | 29,255         | 22,710         | 28,706         |
| CoO                                         | 0,259          | 0,109          | 0,013          | 0,054          | 0,142          | 0,144          | 0,145          | 0,000          | 0,000          | 0,000          |
| NiO                                         | 0,014          | 0,036          | 0,042          | 0,000          | 0,000          | 0,000          | 0,000          | 0,000          | 0,000          | 0,016          |
| ZnO                                         | 0,313          | 0,356          | 0,281          | 0,152          | 0,286          | 0,200          | 0,308          | 0,213          | 0,205          | 0,225          |
| Total                                       | 100,063        | 99,857         | 99,663         | 99,974         | 99,642         | 99,734         | 100,034        | 99,573         | 99,830         | 99,181         |
|                                             |                |                |                |                |                |                |                |                |                |                |
| Si                                          | 0,006          | 0,003          | 0,000          | 0,003          | 0,003          | 0,004          | 0,009          | 0,004          | 0,002          | 0,006          |
| Ti                                          | 0,072          | 0,108          | 0,078          | 0,093          | 0,094          | 0,089          | 0,096          | 0,067          | 0,097          | 0,093          |
| Al                                          | 5,356          | 5,369          | 5,226          | 5,186          | 5,264          | 5,139          | 5,351          | 5,435          | 5,334          | 5,085          |
| v                                           | 0,057          | 0,012          | 0,033          | 0,026          | 0,017          | 0,053          | 0,027          | 0,034          | 0,010          | 0,014          |
| Cr                                          | 9,114          | 9,142          | 9,227          | 9,236          | 9,268          | 9,318          | 9,127          | 9,158          | 9,136          | 9,515          |
| Fe <sup>a+</sup>                            | 1,278          | 1,210          | 1,333          | 1,349          | 1,219          | 1,287          | 1,254          | 1,221          | 1,308          | 1,173          |
| Mg                                          | 1,209          | 1,231          | 1,239          | 1,496          | 1,148          | 1,236          | 1,178          | 1,212          | 3,046          | 1,405          |
| Mn                                          | 0,186          | 0,187          | 0,188          | 0,190          | 0,196          | 0,196          | 0,199          | 0,196          | 0,075          | 0,124          |
| Fe <sup>2+</sup>                            | 6,621          | 6,658          | 6,621          | 6,385          | 6,720          | 6,617          | 6,682          | 6,632          | 4,962          | 6,544          |
| Co                                          | 0,056          | 0,024          | 0,003          | 0,012          | 0,031          | 0,031          | 0,031          | 0,000          | 0,000          | 0,000          |
| Ni                                          | 0,003          | 0,008          | 0,009          | 0,000          | 0,000          | 0,000          | 0,000          | 0,000          | 0,000          | 0,003          |
| Zn                                          | 0,063          | 0,071          | 0,056          | 0,030          | 0,057          | 0,040          | 0,061          | 0,049          | 0,040          | 0,045          |
| Total                                       | 24,021         | 24,023         | 24,013         | 24,006         | 24,017         | 24,010         | 24,015         | 24,008         | 24,010         | 24,007         |
|                                             |                |                | <u> </u>       |                |                |                | 1              |                |                |                |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,19           | 0,18           | 0,20           | 0,21           | 0,18           | 0,19           | 0,19           | 0,18           | 0,26           | 0,18           |
| Cr/(Cr+Al)                                  | 62,99          | 63,00          | 63,84          | 64,04          | 63,78          | 64,45          | 63,04          | 62,76          | 63,14          | 65,17          |
| Mg/(Mg+Fc <sup>3+</sup> )                   | 15,44          | 15,60          | 15,76          | 18,98          | 14,59          | 15,74          | 14,99          | 15,45          | 38,04          | 17,68          |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 8,12           | 7,70           | 8,44           | 8,55           | 7,74           | 8,17           | 7,97           | 7,72           | 8,29           | 7,44           |
| Cr / (Fe <sup>2+</sup> +Fc <sup>3+</sup> )  | 1,15           | 1,16           | 1,16           | 1,19           | 1,17           | 1,18           | 1,15           | 1,17           | 1,46           | 1,23           |

| 1,23           | 04'1           | 1'50           | 1'+3           | 1,23           | 1'50           | 1'31           | 8t't           | <u>۲۱</u> ٬۲   | 8C'I           | Cr / (Pe <sup>2*</sup> +Pe <sup>3*</sup> )  |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------------------------------------|
| 08'4           | 24'B           | 8'23           | 28,7           | 2+43           | £0,8           | 99'2           | <b>ZS'8</b>    | 66,8           | 8,22           | Fe <sup>3+</sup> /(Pe <sup>3+</sup> +A1+Cr) |
| 69'81          | 10'+6          | 74,81          | 11'SE          | 8S'21          | 21'61          | 18'91          | 80,02          | 12'35          | 90'EE          | ( <sup>1</sup> 64+8 <sup>4</sup> )/8M       |
| 66'49          | SZ'C9          | 82,63          | <b>93'2</b> 4  | 65,27          | 63,52          | 61'59          | <b>41,6</b> ð  | 11'49          | L+'E9          | Cr/(Cr+Al)                                  |
| 61'0           | 0'32           | 0'51           | 6,24           | 81,0           | 0,20           | 81,0           | 12'0           | 0'30           | \$2 <b>,</b> 0 | եշ <sub>3+</sub> \Բշ <sup>3+</sup>          |
|                |                |                |                |                |                |                |                |                |                |                                             |
| 54'036         | 566'62         | 24'000         | 24'008         | 510'12         | 54'003         | 54'003         | 24'003         | 54'033         | 900't+Z        | fatoT                                       |
| 290'0          | 900'0          | 0,042          | 540,0          | 670,0          | £60,0          | 690'0          | 0'033          | 680,0          | 81-0,0         | uZ                                          |
| 000'0          | 000'0          | 000'0          | 000'0          | 000'0          | 000'0          | 000'0          | 000'0          | £00'0          | 000'0          | IN                                          |
| 250'0          | 000'0          | 000'0          | 0'005          | 110'0          | 0'031          | 120'0          | 000'0          | 6000           | 000'0          | စ                                           |
| 824,8          | 292'9          | 49 <b>6</b> ,8 | 961'S          | 9'232          | 064,3          | 665'9          | 6,354          | 6,545          | 196'9          | E <sup>6</sup> 3+                           |
| 811,0          | 880,0          | 0'155          | 870,0          | 161,0          | 0'150          | 971,0          | 6113           | 821'0          | 180,0          | uM                                          |
| 1,484          | 512'2          | 494'I          | 2,812          | 1,394          | 1'232          | 1'333          | 965't          | 176,1          | 2,648          | 8M                                          |
| 1'359          | 1,336          | 1'346          | 1,231          | 891'1          | 292't          | 1'504          | ese'i          | 616'1          | 1'535          | իշ <sup>3+</sup>                            |
| 814'6          | 6'516          | 42£'6          | 6,217          | 605'6          | 8'505          | 194'6          | 811'6          | SEZ'6          | ESI'6          | Cr                                          |
| 0'033          | 520'0          | 160'0          | 0'032          | 4E0,0          | 0'035          | 140'0          | 0'034          | 160,0          | 2£0,0          | ٨                                           |
| £70,2          | 2'545          | 780,8          | 2,288          | 090'S          | 2,285          | 2'023          | 2'334          | 691'S          | 2'396          | ٦V                                          |
| 001'0          | 580'0          | <i>LL</i> 0'0  | 601'0          | 960'0          | 660'0          | 001'0          | £80,0          | T 60'0         | 211'0          | h.L                                         |
| £00'0          | 800,0          | 0'010          | £00°0          | 1×00,0         | <b>₽00'0</b>   | 610,0          | £00'0          | 800'0          | S00'0          | IS                                          |
|                |                |                |                |                |                |                |                |                |                |                                             |
| 198'66         | ¥15'66         | 015'66         | 651,001        | 696'66         | St/66          | 100'043        | 919'66         | 05+420         | 028'66         | णिव्य                                       |
| 0'333          | 0,033          | 0'510          | 0,233          | S9C'O          | £71,0          | \$62'0         | 291'0          | 0'415          | 0,248          | OuZ                                         |
| 0'000          | 000'0          | 000'0          | 000'0          | 000'0          | 000'0          | 000'0          | 000'0          | 910'0          | 000'0          | OIN                                         |
| 0'393          | 000'0          | 000'0          | 010'0          | 120'0          | 860'0          | 860'0          | 000'0          | 091'0          | 000'0          | රංර                                         |
| 58'333         | 53'826         | 28,483         | 867,65         | 58,865         | 515'82         | 59'145         | 58'501         | 292'82         | 54'351         | Osi                                         |
| 019'0          | 0'333          | 0'256          | 0'320          | £78,0          | 0'232          | 0'248          | 464'0          | 0'223          | 696,0          | Onm                                         |
| 199'8          | 668'9          | 619'8          | 2,205          | 1945           | 562'E          | EOE,E          | ₽79,E          | 196'6          | 867,8          | 08M                                         |
| 166'9          | 967,8          | 165'9          | 642,8          | 167,231        | 6,243          | 606'9          | S78,8          | 166,0          | 6'212          | Fc103                                       |
| 108,61         | 691'44         | 119'64         | 44'235         | 44'456         | 691,54         | 261,44         | 42,804         | 166'24         | 719,64         | Cr3O3                                       |
| 0'100          | 611'0          | 441,0          | 0'150          | 651'0          | 0'100          | 881,0          | 0'111          | 6+143          | 0'125          | ٥ <sup>6</sup> ٨،                           |
| 12'830         | 948,81         | 906'91         | 0+1'21         | 12'891         | 19'93          | 12'836         | 992'91         | 19'116         | 796'9t         | °041V                                       |
| 164'0          | 064,0          | 645,0          | 6,55,0         | 124'0          | 684,0          | 164'0          | 804,0          | 244'0          | 885,0          | ro <sub>z</sub>                             |
| £10'0          | 1 60,0         | 860,0          | 810'0          | 610,0          | 210'0          | ۷۷۵٬۵          | 910'0          | 0:030          | 610'0          | rois                                        |
|                |                |                |                |                |                |                |                |                |                |                                             |
| Bordure        | Cœnt           | ລາມກາດຊ        | Coent          | ສາມກາດຊ        | Juso           | ងពេលឲ្យ        | Canur          | Bordure        | Cœm            | Chromite                                    |
| Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | -igoloffil                                  |
| 87             | <b>q</b> 9     | яд             | વદ             | ВG             | qı             | 84             | 9E             | uС             | 5P             | Point                                       |
| 92-MH-7385-03F | 97-MH-7385-03F | 9C0-28C7-HM-70 | 920-2857-HM-70 | 950-2867-HM-79 | 97.MH-7385.03F | 97-MM-7385-03F | 97-MH-7385-03F | 97.MH-7385-03F | 97-MH-7385-03F | สินที่มีการ                                 |

| Mark          Mark          Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |            |            |                |                 |            |                     |            |            |                    |                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|------------|----------------|-----------------|------------|---------------------|------------|------------|--------------------|---------------------------------------------|
| μ, μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1'39           | 1'34       | 12'0       | 1'34           | 22'0            | 96'1       | \$ <b>2</b> '0      | 26'1       | 27,0       | 6S'T               | Cr / (Fe <sup>3*</sup> +Fe <sup>3</sup> )   |
| Riverky, J         (3:4)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)         (3:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۷0'9           | 6†'9       | 34'66      | 81'9           | 11'28           | 82,6       | 32'68               | 15'9       | 64,66      | £1,8               | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Ct) |
| λ(λ(λ+ν)(θ)         θ <sup>4</sup> (2)         9 <sup>2</sup> \1, 1         0 <sup>2</sup> <                                                                                                                                                                                                                                                                                            | 14'61          | 50'59      | 89'5       | £6'2I          | £1'9            | 34'62      | 96'1⁄               | £1'6Z      | 4,54       | 45'44              | ( <sup>2</sup> 94+8M)/8M                    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62,34          | S2'19      | SC,98      | 62,13          | <b>78,</b> 98   | e1'54      | \$9 <sup>,</sup> 54 | 22,13      | LL'88      | 64,63              | Cr/(Ct+Al)                                  |
| main         Solution         Solution <th< td=""><td>St'0</td><td>91'0</td><td>£2'0</td><td>st'o</td><td>89'0</td><td>61'0</td><td>89'0</td><td>81,0</td><td>04'0</td><td>82,0</td><td>£c³*\Fc²*</td></th<>                                                                                                                                                                                                                         | St'0           | 91'0       | £2'0       | st'o           | 89'0            | 61'0       | 89'0                | 81,0       | 04'0       | 82,0               | £c³*\Fc²*                                   |
| HPH         S2400         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |            |            |                |                 |            |                     |            |            |                    |                                             |
| 1         0'023         0'031         0'031         0'031         0'031         0'031         0'031         0'031         0'031         0'031         0'032         0'032         0'032         0'032         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'033         0'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 800,42         | 24,006     | 010'+2     | 54'014         | 52'623          | 24,005     | 866'62              | 54'002     | 800,45     | 24'000             | IntoT                                       |
| 1         0,000         0034         0,014         0,020         0,034         0,034         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,035         0,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 650'0          | 950'0      | 010'0      | 690'0          | 160,0           | 0'031      | 0'032               | 2+0'0      | 0'045      | 620,0              | uz                                          |
| 5         0°000         υυ         υυ         υυ         υυ         υυ         υυ           5         0°000         0°231         0°1λ36         0°341         0°140         0°230         0°233         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°130         0°140         0°130         0°140         0°130         0°140         0°130         0°140         0°130         0°140         0°130         0°140         0°130         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°140         0°14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 220'0          | 610'0      | 0\$0'0     | 0'031          | 0'030           | 0'058      | 620,0               | 210'0      | 460,0      | 000'0              | IN                                          |
| 5         4/91C         2/31         2/36         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         2/32         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ษษ             | ח.מ.       | .в.п       | ה              | 'B'U            | п.а.       | וז.פ.               | 'e'u       | ם.פ.       | 000'0              | <del>ر</del> ە                              |
| IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,333          | 282'9      | 064'2      | \$E\$'9        | 966,7           | 6/1'9      | 609'L               | 262,3      | £15'L      | 919'+              | +t <sup>o</sup> d                           |
| 8         3'403         0'324         5'343         5'344         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'304         0'3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 661'0          | 91'0       | 0'320      | 0'333          | 092'0           | 241'0      | 242                 | 641'0      | 0'531      | 0'093              | лМ                                          |
| 5         1.332         2.332         1.034         2.103         0.032         0.034         0.031         0.034         0.031         0.034         0.034           0.010         0.011         0.013         0.022         0.032         0.033         0.012         0.013         0.014         0.013           0.010         0.013         0.014         0.014         0.013         0.014         0.014         0.013           0.010         0.013         0.014         0.013         0.023         0.014         0.014         0.014         0.014           0.010         0.014         0.143         0.023         0.014         0.013         0.014         0.014         0.014         0.014         0.014         0.014           0.010         0.013         0.033         0.014         0.013         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014         0.014 <td< td=""><td>1'232</td><td>1'269</td><td>896,0</td><td>90<b>6</b>,I</td><td>621+'0</td><td>5,742</td><td>0'345</td><td>5'568</td><td>296,0</td><td>£0<del>1</del>,E</td><td>8M</td></td<>                                                                                                                                                                                                                                                                                                                                               | 1'232          | 1'269      | 896,0      | 90 <b>6</b> ,I | 621+'0          | 5,742      | 0'345               | 5'568      | 296,0      | £0 <del>1</del> ,E | 8M                                          |
| Problem         8,932         6,332         6,534         8,034         6,510         6,123         6,112         6,011         6,013         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         6,014         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0'823          | 1'050      | 669,8      | 126'0          | \$,004          | 686'0      | 201'5               | 1'034      | 2,239      | £82'I              | بد <sup>ع</sup> ،                           |
| multiple         0,010         0,011         0,031         0,031         0,031         0,031         0,031         0,048         0,031         0,049         0,043         0,031         0,044         0,043         0,031         0,044         0,043         0,031         0,044         0,043         0,031         0,044         0,043         0,031         0,044         0,043         0,041         0,031         0,044         0,043         0,043         0,044         0,044         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,044         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043         0,043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>6'</b> 505  | t 20'6     | SS1'6      | 6' 123         | 015'6           | 6'034      | 425'6               | £20'6      | 9,236      | 6'392              | Ct                                          |
| Image         5,132         1,032         5,243         1,032         5,240         1,012         5,010         5,014         0,104         0,101         5,014         0,101         0,104         0,101           1000         0,103         0,103         0,104         0,113         0,003         0,014         0,103         0,004         0,101         0,101         0,104         0,101           1000         0,103         0,013         0,013         0,014         0,103         0,003         0,014         0,103         0,004         0,004         0,003           1000         0,103         0,103         0,033         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114         0,114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0'043          | 8+0,0      | 120'0      | 0'020          | C20,0           | 0'034      | 250,0               | 2000       | 1+0'0      | 910'0              | ^                                           |
| Image         0,098         0,104         0,143         0,093         0,141         0,103         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104         0,104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2'228          | 2'916      | 160'1      | 2'280          | 270,1           | 612'9      | \$66'0              | 229'5      | 891'1      | SZI'S              | ١٧                                          |
| Image         0'008         0'008         0'011         0'003         0'023         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014         0'014 <th< td=""><td>101'0</td><td>6,104</td><td>+E1'0</td><td>9'102</td><td>1+1'0</td><td>660'0</td><td>0'145</td><td>€01,0</td><td>661,0</td><td>860'0</td><td>13</td></th<>                                                                                                                                                                                                                                                                                                                | 101'0          | 6,104      | +E1'0      | 9'102          | 1+1'0           | 660'0      | 0'145               | €01,0      | 661,0      | 860'0              | 13                                          |
| Image         Image <th< td=""><td>800,0</td><td>900'0</td><td>200'0</td><td>0'003</td><td>820'0</td><td>0'003</td><td>L10'0</td><td>800,0</td><td>800,0</td><td>800'0</td><td>15</td></th<>                                                                                                                                                                                                                                                                                                                | 800,0          | 900'0      | 200'0      | 0'003          | 820'0           | 0'003      | L10'0               | 800,0      | 800,0      | 800'0              | 15                                          |
| μμυμημουυ         30'380         36'801         100'181         38'023         0'133         0'134         0'134         0'133         0'133         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |            |                |                 |            |                     |            |            |                    |                                             |
| Display         0'113         0'133         0'124         0'124         0'134         0'133         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         0'134         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 628'66         | 026'001    | 68'853     | 018'66         | 699'86          | 100'359    | 569,89              | 181'001    | 198'66     | 086,02             | lato'i                                      |
| 0         0,000         0,145         0,095         0,134         0,164         0,096         0,209         0,089         0,134           0         0,000         0,145         0,045         0,134         0,164         0,096         0,209         0,039         0,134           0         0,000         0,145         0,045         0,134         0,164         0,096         0,039         0,134         0,134           0         0,000         0,145         0,016         0,032         0,032         0,032         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,134         0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0'366          | 0,286      | 0'043      | 675,0          | 0'145           | ¢91'0      | 2S1'0               | 0,233      | 661'0      | 611'0              | Ouz                                         |
| OCO         0'000         D'U         U'U         U'U <thu< th=""></thu<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0'134          | 680'0      | 0'500      | 960'0          | \$91 <b>'</b> 0 | ÷£1'0      | \$60'0              | 820'0      | S+1'0      | 000'0              | OIN                                         |
| 0     51'131     30'433     52'443     59'988     53'842     59'402     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     59'403     50'403     50'403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .в.п           | .8.1       | .8.0       | n.a.           | 11.6.           | ח.פ.       | -B,R                | n.a.       | זא.מ.      | 0'000              | 000                                         |
| 000         0'380         0'601         2'803         0'402         0'403         1'033         0'401         0'834         0'834         0'802         0'814           000         8'133         0'810         2'803         0'142         2'028         1'033         1'033         1'033         1'034         1'032         0'810         0'816         1'152           000         9'133         0'114         0'114         0'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'114         1'1114         1'114         1'114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58,252         | 28,403     | Z66'6Z     | 58,624         | 59+462          | 53'842     | 39'988              | 55,443     | 564,0E     | 221'12             | 0°2                                         |
| 00         8'139         0'8'10         2'869         0'10e         2'802         1'01e         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 629'0          | 728,0      | 066'0      | 270,0          | 1'035           | 699'0      | 926'0               | 508,0      | ¢26'0      | 982'0              | Oun                                         |
| 107       6,524       33,288       5,117       22,667       5,058       2,1334       4,602       24,180       5,126       4,725         100       0,076       6,524       0,172       0,176       0,233       4,394       40,01       4,107       38,776       43,429       43,429         100       0,076       0,070       0,070       0,027       0,172       0,176       0,233       0,097       0,031       0,027       0,020       0,227       0,010       0,010       17,617       3,101       18,021       17,617       0,029       0,231       0,175       0,020       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021       0,021 <td< td=""><td>218'6</td><td>840,4</td><td>928'0</td><td>012,5</td><td>870,1</td><td>280,7</td><td>994'0</td><td>698,8</td><td>018,0</td><td>667,8</td><td>OgM</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                             | 218'6          | 840,4      | 928'0      | 012,5          | 870,1           | 280,7      | 994'0               | 698,8      | 018,0      | 667,8              | OgM                                         |
| 100       45,336       07.0017       75,336       07.0017       75,336       07.0017       0.0175       07.017       0.0175       07.017       0.0175       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010       07.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4'122          | 2'159      | 081,42     | 4,802          | 55'334          | 850'S      | 52'667              | 2/1/5      | 53'282     | 6,524              | <sup>2</sup> c <sup>3</sup> O <sup>2</sup>  |
| 0         0         0.037         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.172         0.176         0.176         0.176         0.166         0.231         0.037         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031 </td <td>43'455</td> <td>676,61</td> <td>38'775</td> <td>£20'E¥</td> <td>10+'0+</td> <td>\$66'EF</td> <td>40,233</td> <td>199'64</td> <td>878,966</td> <td>986,31</td> <td>Cr3O3</td>                                                                                                                                                                                                                                                                                             | 43'455         | 676,61     | 38'775     | £20'E¥         | 10+'0+          | \$66'EF    | 40,233              | 199'64     | 878,966    | 986,31             | Cr3O3                                       |
| 00         16,645         3,3358         18,168         2,819         18,681         3,056         17,617         3,101         18,027         0,529         0,534         0,633         0,633         0,633         0,633         0,633         0,633         0,633         0,633         0,633         0,630         0,524         0,034         0,436         0,434         0,436         0,434         0,436         0,434         0,434         0,434         0,434         0,434         0,434         0,436         0,434         0,436         0,434         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436         0,436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102'0          | 0'551      | 980'0      | 162,0          | <b>260'0</b>    | \$91'0     | 262,0               | 941'0      | ZL1'0      | 920'0              | <sup>5</sup> 0 <sup>2</sup> /               |
| Op         0,200         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,500         0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>₽</b> 65,71 | 720,81     | 3'101      | 219'21         | 3'02Q           | 189,81     | 618'2               | 891'81     | 3'328      | SF0,01             | <sup>c</sup> O <sup>2</sup> IV              |
| Op         0,029         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,024         0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 661/0          | 0'254      | 26S'0      | 0'250          | 0;630           | 805'0      | 6633                | 6,528      | 229'0      | 005'0              | LiO <sup>3</sup>                            |
| Imaniliana         97.MH-7365-03F         97.MH-7465         97.                                                                                                                                                                                                                                                                                                                                 | 620'0          | 0'034      | 0'034      | 0'010          | 0'595           | 010'0      | 0'022               | 0'030      | 0'056      | 0'036              | 2013                                        |
| للمستللات<br>المستللات<br>المستللات<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي<br>العالي |                |            |            |                |                 |            |                     |            |            |                    |                                             |
| pologic         Chr Sil         Chr Sil <t< td=""><td>ວາເປັນເອ</td><td>ມາລວ</td><td>ముగుంట</td><td>Çœnt</td><td>aumoll</td><td>Coent</td><td>ລາມກາວຊ</td><td>Cœnt</td><td>Bordure</td><td>Cœm</td><td>c)hromite</td></t<>                                                                                                                                                                                                                                       | ວາເປັນເອ       | ມາລວ       | ముగుంట     | Çœnt           | aumoll          | Coent      | ລາມກາວຊ             | Cœnt       | Bordure    | Cœm                | c)hromite                                   |
| Intertilions     7b     3c     3c<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CPr Sil        | Chr Sil    | Chr Sil    | Chr Sil        | CPr SIJ         | Chr Sil    | CPt 21              | Chr Sil    | Chr Sil    | Chr Sil            | sigolodii.                                  |
| 2847-HM-76 2847-HM-76 2847-HM-76 2847-HM-76 2847-HM-76 2847-HM-76 2847-HM-76 2847-HM-76 2847-HM-76 3847-HM-76 3847-HM-76 3847-HM-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tað            | 44         | 86         | 39             | я£              | 92         | 58                  | 91         | <u>је</u>  | ٩٤                 | 1ujo <sub>c</sub>                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2847-HM-70     | S847-HM-76 | 2847-HM-79 | 2847-HM-70     | S847-HM-76      | S847.HM-76 | S847-HM-70          | 5847.HM-70 | S847-HM-70 | 950-2857-HM-79     | anollinana                                  |

| 65'0           | 60'0              | 70'0        | P0'0       | 00'0           | 00'0          | 7711         | 1.10       | 01-11         |            | 1 24 24 1/10                                |
|----------------|-------------------|-------------|------------|----------------|---------------|--------------|------------|---------------|------------|---------------------------------------------|
| 05 U           | 0.00              | 06'60       | 80'00      | 10'66          | 11'56         | 77'0         | 12.0       | BA I          | 501        |                                             |
| 58 61          | 86,0              | 30.08       | 89.88      | 28 00          | 22.00         | 00'03        | 29 50      | 519           | 09.9       | Fc <sup>3+</sup> 1(Pc <sup>3+</sup> +A1+Ct) |
| 02.0           | 86.0              | 00 C        |            | 12.0           | 90 U          | 95 51        | 10         | 34.21         | 12.02      | Werlington 22                               |
| 60'0           | 0/11              | 80 18       | 92.00      | 10'7           | 00'z          | 50 69        | 1810       | 02.19         | 11/2       | 0+1/0+1                                     |
| 68.0           | 92 1              | <b>PB</b> U |            | 102            |               | 510          | 92.0       | 610           | 210        | E-3+1E-3+                                   |
| 54'009         | 53'008            | 54'015      | 24'001     | 23,987         | 53'661        | 110'12       | 200'+2     | 54'010        | 54'055     | IntoT                                       |
| 5+0,0          | 000'0             | ₽90'0       | 110'0      | 000'0          | 000'0         | S80'0        | 140'0      | 640,0         | 080,0      | uz                                          |
| 1 50'0         | 0'030             | ¢10'0       | ¢¢0'0      | 900'0          | 200'0         | 120'0        | 5+0'0      | 0'033         | 440,0      | IN                                          |
| л.н.           | .в.п              | ניטי        | טיפי       | י <b>פ</b> יט  | .в.п          | ายาน         | זי.מ,      | .a.a          | .8.0       | <del>ر</del> ه<br>ک                         |
| 882,7          | 126'L             | C82,7       | 856'2      | 616'2          | 896'2         | 1+9'9        | 415'L      | 2,207         | 842'9      | +c <sup>34</sup>                            |
| 0'501          | 90'0              | 881,0       | +00'0      | 210'0          | ¥00'0         | 621'0        | 0'393      | 551'0         | 0/1/0      | ΠW                                          |
| 0'518          | 0:030             | 0'343       | 0'015      | <b>4</b> \$0'0 | 610'0         | 1,224        | 6,323      | 202'2         | 1'035      | 8M                                          |
| 282'9          | £46'£1            | 6,334       | ÷11'÷1     | 688,21         | 806'51        | LL6'0        | 2'295      | <b>\$96,0</b> | 960,1      | Fc <sup>3+</sup>                            |
| 8'220          | 666'1             | 849'8       | 118'1      | 200'0          | 0'032         | 6'315        | 192'6      | 201'6         | 6'133      | Ct                                          |
| 0'036          | 910'0             | 250,0       | ٥'٥١٦      | ¥\$0'0         | 670'0         | 550,0        | 0,028      | 0'035         | 6,053      | ^                                           |
| L64'0          | £00'0             | 678'0       | 800,0      | +t0'0          | 110'0         | 014'9        | 0,825      | 629,2         | 612'5      | IV                                          |
| 240'0          | 010'0             | 940,0       | 100,0      | 910'0          | 010'0         | 260'0        | 141'0      | 6,104         | 6,103      | F.I.                                        |
| 110'0          | 0'004             | 0'005       | 810'0      | 610,0          | 010'0         | 010'0        | S10'0      | 900'0         | \$00'0     | 15                                          |
|                |                   |             |            |                |               |              |            |               |            |                                             |
| 208'865        | \$9 <b></b> \$'66 | 600'001     | 581,001    | 280'66         | 010'66        | 206'66       | 265,60     | 100,133       | 100,223    | Total                                       |
| 9,205          | 000'0             | 062'0       | 0\$0'0     | 000'0          | 0'000         | 224'0        | 281'0      | 0'551         | 20+'0      | Ouz                                         |
| 0°130          | 121'0             | 820'0       | 621'0      | 0'054          | 670'0         | 960'0        | 881,0      | 0°124         | 0'309      | OIN                                         |
| . <b>в</b> .п  | נישי              | ה.פ.        | .а.п       | טישי           | ה.פ.          | מיפי         | ח.מ.       | גיא,          | n.a.       | 000                                         |
| 30'390         | 727,0E            | 474,0C      | 641,1E     | 30,495         | 30'933        | 50'308       | 221'0E     | 23,883        | 266'22     | Oot                                         |
| 064'0          | 861,0             | 9\$2'0      | 0'012      | S≯0'0          | 510'0         | <b>487,0</b> | 1'040      | 102'0         | 192'0      | OnM                                         |
| 681,0          | 990'0             | 545,0       | 0'039      | 0'154          | 140,0         | 6E0'E        | 0'128      | 996'9         | 101'+      | O8M                                         |
| 30'024         | 990'09            | 58'586      | 666,18     | 100'89         | S96'29        | 408,4        | 24'822     | 116'4         | 6SI 'S     | Fc <sub>3</sub> O <sub>3</sub>              |
| 36,062         | 261'8             | 988,95      | 664'L      | 0'036          | 001'0         | 209'EÞ       | 262'62     | 621'44        | 43'580     | Cr3O3                                       |
| 0'120          | ¢90'0             | 0'133       | 140'0      | 912'0          | ÷11'0         | 0'328        | 811'0      | 121'0         | 0'540      | ۸۵۵ کار                                     |
| 204,1          | 800,0             | 3'363       | 0,022      | 860,0          | 0'036         | 966'91       | 5,350      | 896,81        | \$\$S'21   | <sup>°</sup> O²i∀                           |
| 202'0          | P40,0             | 202'0       | 210'0      | 020'0          | 140'0         | 874,0        | 829'0      | 0,530         | 0'215      | rio,                                        |
| 960,0          | ¢10'0             | 200'0       | 0'026      | 1+0'0          | 0'035         | 260,0        | 0\$0\$0    | 0'050         | ÷10'0      | <sup>t</sup> OIS                            |
|                |                   |             |            |                |               |              |            |               |            |                                             |
| atiaibšartatni | antrod            | Coent       | Bordure    | Cœnt           | Cœur          | Cœur         | ಮಗುಗಾಂಟ    | Cœur          | ລາມກາວຢ    | otimord)                                    |
| Mebat Ol       | Mcbat Ol          | Webst Of    | Mepat OI   | ĐM ≜ X9        | DM A X9       | Chr Sil      | Chr Sil    | Chr Sil       | CPt BII    | -ithologic                                  |
| 30             | BS                | <u>q</u> 1  | BI BI      | 3              | T             | dð           | 89         | 9 <u>9</u>    | 582        | Point                                       |
| 6647-HM-70     | 6647.HM.7e        | 6647-HM-76  | 6647.HM-76 | A-0647-HM-76   | V-061-7-HM-86 | 2847-HM-70   | 5847.HM-70 | 2847-HM-70    | 5867-HM-79 | Schantillons                                |

| Échantillons                                | 97-MH-7499   | 97-MH-7499 | 97-MH-7499    | 97-MH-7499 | 97-MH-7499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97-MH-7499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97-MH-7499 | 97-MII-7499   | 97-MH-7499 | 97-MH-7499                            |
|---------------------------------------------|--------------|------------|---------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------|---------------------------------------|
| Point                                       | 2c           | За         | 36            | 3c         | 4 <u>a</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4c         | 5b            | 5c         | ба                                    |
| Lithologie                                  | Webst Ol     | Webst Ol   | Webst Ol      | Webst Ol   | Webst Ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Webst Ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Webst Ol   | Webst Ol      | Webst Ol   | Webst Ol                              |
| Chromite                                    | Cœur         | Bordure    | Intermédiaire | Cœur       | Bordure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Intermédiaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cœur       | Intermédiaire | Cœur       | Bordure                               |
|                                             |              |            |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |               |            |                                       |
| SiO2                                        | 0,024        | 0,944      | 0,021         | 0,011      | 0,058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,032      | 0,022         | 0,020      | 0,043                                 |
| TiO <sub>2</sub>                            | 1,473        | 0,073      | 0,303         | 0,660      | 0,114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,194      | 0,212         | 0,458      | 0,011                                 |
| ۸l <sub>2</sub> O3                          | 16,048       | 0,105      | 1,922         | 17,376     | 0,056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15,425     | 2,007         | 15,264     | 0,006                                 |
| V203                                        | 0,337        | 0,072      | 0,086         | 0,224      | 0,152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,290      | 0,107         | 0,283      | 0,064                                 |
| Cr203                                       | 41,248       | 12,488     | 37,106        | 40,426     | 27,528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36,359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41,972     | 38,228        | 41,135     | 6,768                                 |
| Fc2O3                                       | 5,319        | 55,532     | 28,428        | 6,024      | 39,422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30,563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,404      | 27,258        | 8,518      | 61,299                                |
| MgO                                         | 2,386        | 1,062      | 0,507         | 2,395      | 0,136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,248      | 0,554         | 2,026      | 0,062                                 |
| MnO                                         | 0,666        | 0,133      | 0,789         | 0,664      | 0,541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,747      | 0,668         | 0,838      | 0,011                                 |
| FcO                                         | 30,920       | 29,064     | 30,526        | 30,307     | 30,202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30,067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30,973     | 30,466        | 30,397     | 30,681                                |
| CoO                                         | <u>β</u> .ä, | n.a.       | <b>Д</b> ,₿,  | D.a.       | п.а.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | л.а,       | n.a.          | n.a.       | n.a.                                  |
| NIO                                         | 0,138        | 0,123      | 0,115         | 0,073      | 0,125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,077      | 0,109         | 0,074      | 0,128                                 |
| ZnO                                         | 0,552        | 0,060      | 0,239         | 0,844      | 0,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,676      | 0,230         | 0,757      | 0,003                                 |
| Total                                       | 99,125       | 99,656     | 100,050       | 99,017     | 98,524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99,155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,041    | 99,877        | 99,772     | 99,092                                |
|                                             |              |            |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |               |            |                                       |
| Si                                          | 0,007        | 0,285      | 0,006         | 0,003      | 0,018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,009      | 0,007         | 0,006      | 0,013                                 |
| Ti                                          | 0,304        | 0,017      | 0,068         | 0,136      | 0,026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,246      | 0,048         | 0,095      | 0,003                                 |
| Al                                          | 5,196        | 0,037      | 0,676         | 5,605      | 0,020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4,975      | 0,706         | 4,953      | 0,002                                 |
| v                                           | 0,074        | 0,017      | 0,020         | 0,049      | 0,037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,064      | 0,026         | 0,063      | 0,016                                 |
| Cr                                          | 8,960        | 2,983      | 8,747         | 8,748      | 6,705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8,741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9,081      | 9,015         | 8,954      | 1,658                                 |
| Fc <sup>3+</sup>                            | 1,100        | 12,627     | 6,378         | 1,241      | 9,139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,319      | 6,118         | 1,765      | 14,291                                |
| Mg                                          | 0,977        | 0,478      | 0,225         | 0,977      | 0,062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,917      | 0,246         | 0,832      | 0,029                                 |
| Mn                                          | 0,155        | 0,034      | 0,199         | 0,154      | 0,141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,173      | 0,169         | 0,195      | 0,003                                 |
| Fc <sup>7*</sup>                            | 7,104        | 7,344      | 7,612         | 6,937      | 7,781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,089      | 7,599         | 6,999      | 7,949                                 |
| Co                                          | n,a,         | n.a.       | n.a.          | n.a.       | n,a,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n.a.       | п.а.          | n.a.       | n,a,                                  |
| Ni                                          | 0,030        | 0,030      | 0,028         | 0,016      | 0,031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,017      | 0,026         | 0,016      | 0,032                                 |
| Zn                                          | 0,112        | 0,013      | 0,053         | 0,171      | 0,041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,137      | 0,051         | 0,154      | 0,001                                 |
| Total                                       | 24,019       | 23,865     | 24,012        | 24,037     | 24,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24,027     | 24,011        | 24,032     | 23,997                                |
|                                             |              | 1          |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |            | · · · · · · · · · · · · · · · · · · · |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,15         | 1,72       | 0,84          | 0,18       | 1,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,19       | 0,81          | 0,25       | 1,80                                  |
| Cr/(Cr+Al)                                  | 63,29        | 98,77      | 92,83         | 60,95      | 99,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64,61      | 92,74         | 64,38      | 99,88                                 |
| Mg/(Mg+Fc <sup>3+</sup> )                   | 12,09        | 6,11       | 2,87          | 12,35      | 0,79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11,45      | 3,14          | 10,62      | 0,36                                  |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 7,21         | 80,70      | 40,36         | 7,96       | 57,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,58       | 38,63         | 11,26      | 89,59                                 |
| Cr / (Fc <sup>2+</sup> +Fc <sup>3+</sup> )  | 1,09         | 0,15       | 0,63          | 1,07       | 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,08       | 0,66          | 1,02       | 0,07                                  |
|                                             |              |            |               |            | and the second se | and the second sec |            |               |            |                                       |

| 89'1          | 64,0           | 52'1              | 12'1          | 99'1               | 0'62              | 16'1            | 1'0 <del>4</del> | 640           | <b>64</b>        | $C_{r} / (E_{a^{+}+E_{a^{+}}})$                          |
|---------------|----------------|-------------------|---------------|--------------------|-------------------|-----------------|------------------|---------------|------------------|----------------------------------------------------------|
| 2+43          | \$2'0 <u>9</u> | 2'50              | <i>LL</i> 'S  | 4'95               | 19'24             | 56,4            | 90'9             | £0'1S         | 40,42            | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+C <sub>1</sub> ) |
| 16'96         | 89,8           | 9C'0 <del>5</del> | 40,04         | 98'67              | 60'2              | 12,24           | 26'2ŀ            | 81'9          | 2,86             | M8/(M8+Fc <sup>2</sup> )                                 |
| 12'99         | 60'46          | ES'49             | 64'15         | 05'49              | 64'96             | 68,10           | 16,48            | 61'26         | 64'62            | Cr/(Cr+AI)                                               |
| 81'0          | 60't           | 21'0              | 0'30          | 6,13               | 0'05              | 81,0            | 61'0             | 60'1          | £8,0             | .દ <sup>3+</sup> /મેદ <sup>3+</sup>                      |
| 800,45        | 100'52         | 100'62            | 24'00         | 33'668             | 54'001            | 966'82          | 800'52           | 010'+7        | 61D'62           | teno t                                                   |
| 9032          | £10'0          | 9'032             | 860,0         | 620'0              | 110'0             | £10'0           | 150'0            | 200'0         | 850'0            | uz                                                       |
| 0'033         | 920'0          | 0'054             | 0'033         | 200'0              | 220'0             | +20'0           | 050,0            | 040'0         | 610'0            | 1N                                                       |
| . <b>в</b> .п | л.я.           | าษาน              | 18, ft        | ,a.n               | שי <del>ש</del> י | บาษาน           | ישיש             | n.a.          | ายาน             |                                                          |
| 868'4         | 876,7          | ZZL'+             | 599'Þ         | \$'23 <del>4</del> | 116'2             | 91E'+           | £81'4            | 064,7         | 009'/            |                                                          |
| 260'0         | 901'0          | 621'0             | <u> /21'0</u> | 161,0              | 6+1'0             | 980,0           | 280'0            | L01'0         | 061'0            | 11                                                       |
| 3'045         | 0'238          | S61'E             | 9,234         | 5'329              | 855'0             | 3'633           | 3,765            | 684,0         | 0'554            | 8 <sub>M</sub>                                           |
| 958,0         | 900'8          | 228,0             | 616'0         | 267,0              | 012'9             | £84'0           | 008,0            | 890'8         | 114'9            | Pe <sup>3+</sup>                                         |
| 989'6         | 945'2          | 829'6             | 555'6         | <b>LE</b> L'6      | 8'954             | 152'6           | 229'6            | 842,7         | 146'8            | Ct                                                       |
| 0'030         | 0,024          | 610,0             | 1+0'0         | ££0,033            | 0'023             | 0+0,0           | SE0'0            | 0,024         | ¢10'0            | ٨                                                        |
| 2'585         | 0'339          | 616,8             | 2+c's         | 656,8              | E14'0             | 2'52            | 2'321            | \$61'O        | 805'0            | IV                                                       |
| C90'0         | Z90'0          | <u>990'0</u>      | 0'020         | 650'0              | Z20'0             | £90'0           | 490'O            | 190'0         | 0,042            | Li II                                                    |
| 900'0         | 960,0          | <b>+10,0</b>      | S00'0         | 110'0              | 120'0             | 010,0           | 900'0            | 0'015         | 200'0            | IS                                                       |
|               |                |                   |               |                    |                   |                 |                  |               |                  |                                                          |
| 018'66        | 66'233         | 962'001           | 100'825       | 21/8/66            | ZI 2'66           | 610'001         | 100,245          | 780,001       | 956'66           | latol                                                    |
| 6,183         | 950,0          | 0'130             | 861'0         | 051'0              | 6+0'0             | \$ <b>20</b> '0 | 691'0            | 6,033         | 0'363            | Ouz                                                      |
| +01'0         | 916'0          | 6,113             | 0'115         | 0'035              | 0'335             | 911'0           | \$\$T'0          | 162'0         | 080,0            | OIN                                                      |
| <b>,</b> в,л  | ם,ם            | .a.n              | שישי          |                    | л.я.              | . <i>а.</i> п   | บาษา             | , <b>B</b> ,Q | . <b>в</b> .л    | 0%                                                       |
| 55'418        | 59,333         | 119'12            | 189'17        | 52'046             | 59,284            | 50'043          | 19,543           | 56'67         | 946'06           | 0,                                                       |
| 264'0         | S14,0          | 0'293             | 683,0         | 0'935              | 882,0             | ¢66'0           | 065'0            | 0'433         | 867,0            | Ouw                                                      |
| 21812         | 621'1          | 8,278             | 164,8         | 186'S              | 452't             | L9+'6           | 898'6            | 1'062         | 0'203            | N <sup>g</sup> O                                         |
| 996,4         | 126'SC         | 4'550             | 617,4         | 689'6              | 1 78,92           | 4'045           | 4'122            | 622'SE        | 574,82           | دم <sub>0</sub> ء                                        |
| 46,896        | EE7,1E         | 41,281            | 026'96        | 119'96             | 865,86            | 016,74          | 569'24           | 258'1E        | 86L'LE           | Cr2O3                                                    |
| <b>₽60'0</b>  | 660'0          | 890'0             | 0,200         | ÞSI '0             | L12,0             | £61'0           | 121'0            | 660'0         | 250'0            | 103                                                      |
| 551,771       | 9636           | 464,71            | 669,71        | 12,210             | \$21*1            | 166'21          | 852'21           | 0'220         | 1'440            | <sup>s</sup> O <sup>r</sup> Iv                           |
| S16,0         | ¥22'0          | 966,0             | 205'0         | 0*362              | 0'350             | 0'333           | 466,0            | 0/2'0         | 881,0            | LIO <sup>3</sup>                                         |
| 0'033         | 0'130          | 0'023             | 610'0         | 140'0              | 180'0             | 860,0           | 0'054            | 860'0         | 0'054            | rOis                                                     |
| 111222        | ampiog         | Casur             |               | Contra             | anntog            | crent.          |                  | atinhior      | tti ano          | attrout                                                  |
|               | Cutran         | Cut an            |               | 118,100            | Cill Sil          | 115.00          |                  |               |                  | and a structure                                          |
| a/            | 8/             | 0                 | e             | 03-40<br>04        | 10-40             | 7               | 10 °C            | 110 440       | 00               | nno                                                      |
| 1094-11-26    | 1094-110-76    | 1057-HM-10        | 109/-HW-/6    | 109/-11/0          | 109/:#₩-/6        | 109/-110-76     |                  | 109/-109/     | 19<br>666/.HW./6 | Summing                                                  |
|               |                | L                 |               |                    |                   | L               |                  | 1.032 111 20  | L                | L                                                        |

| 85,0          | 0'55         | 06'0             | 65'0              | 80,0           | 16'0               | 1+'0              | <b>78,0</b>  | 65,0            | 91'0         | Cr / (Fe <sup>2+</sup> +Fe <sup>3</sup> )   |
|---------------|--------------|------------------|-------------------|----------------|--------------------|-------------------|--------------|-----------------|--------------|---------------------------------------------|
| 29'44         | 92'62        | 24'81            | L1'64             | 22,88          | 11'61              | 26,36             | £0,81        | 43'58           | 01'62        | Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Ct) |
| 5'41          | 16,0         | 85,9             | 2'74              | S0'0           | £0'0I              | 81'1              | £9,8         | 92'2            | 05,0         | W8/(W8+Ec2)                                 |
| 09'66         | 16'66        | 56'49            | 69'96             | 00'001         | 85'59              | 12'66             | 44'S9        | 82'26           | 100,001      | Cr/(Cr+Al)                                  |
| <b>28</b> '0  | 24'1         | 22'0             | S8'0              | 92't           | 06,0               | <b>Z</b> I'I      | +£,0         | <b>78,0</b>     | 82,1         | Pc <sup>3</sup> · / Pc <sup>3</sup> ·       |
|               |              |                  |                   |                |                    |                   |              |                 |              |                                             |
| 24'032        | 54'033       | 54'036           | 54'051            | 54'050         | 24'038             | 210'62            | 160,42       | 54'035          | 210'42       | ी का जो                                     |
| 220'0         | 690,0        | 121'0            | 940,0             | \$00'0         | 811,0              | 860,0             | 0'158        | S70,0           | 0'015        | uZ                                          |
| 760,0         | 610'0        | 500'0            | 0'030             | 840,0          | 610'0              | 910'0             | 900'0        | 0'038           | 820'0        | IN                                          |
| 940,0         | 240'0        | 160,0            | 0'020             | 640,0          | 920'0              | 0+0'0             | 0'030        | 140,0           | 220'0        | စာ                                          |
| 206'2         | 216'2        | LT+'L            | 048,7             | 286'L          | 2'582              | 208,7             | E62'L        | 568'2           | 146'2        | .د <sup>ع</sup> ه                           |
| 980'0         | 190'0        | 080,0            | 0'105             | 000'0          | 680,0              | <u>ک</u> 90'0     | 060'0        | 901'0           | 220'0        | Ma                                          |
| S61'0         | 0'032        | 984'0            | 122'0             | £00'0          | 0'813              | <del>1</del> 60'0 | 689'0        | 0'555           | 0+0'0        | 8M                                          |
| <b>478,</b> ð | 009'11       | 2,037            | <u> </u>          | 290'61         | 5,164              | 928'8             | 5,499        | 969'9           | 12,581       | եշ <sup>3+</sup>                            |
| <b>₽15'8</b>  | 162,4        | 864,8            | 905'8             | 1'852          | 969,8              | P28,8             | 8'293        | 645,8           | 3'564        | Cr                                          |
| 660,0         | 0'051        | 680,0            | 0'036             | 910'0          | 980'0              | 620,0             | 890'0        | 1 60'0          | 0'035        | ٨                                           |
| \$£0,0        | 0'004        | 585,6            | 26 <b>2</b> '0    | 000'0          | 663,4              | 020,0             | 4'233        | 662,0           | 000'0        | ١٧                                          |
| 962'0         | 0+0'0        | 196'0            | 0'308             | 120,0          | 252'0              | 680'0             | 0+140        | 0'515           | 0+0'0        | Ы                                           |
| 900'0         | 900'0        | 200'0            | €00,0             | 400 <b>,</b> 0 | 200'0              | £00'0             | £00,0        | 0,002           | £00,05       | 15                                          |
|               |              |                  |                   |                |                    |                   |              |                 |              |                                             |
| 100,002       | 644,001      | 99†'66           | <b>\$\$6</b> ,944 | 100,452        | 882'66             | 688'66            | 818'66       | 100'01          | £64,001      | িণঝা                                        |
| 2S2'0         | 0'380        | 467,0            | 902'0             | 810'0          | S2S'0              | 691'0             | 629,0        | 1+6,0           | 6,053        | OuZ                                         |
| 0'125         | 820'0        | 120'0            | 280,0             | b61'0          | 980'0              | 090'0             | 970'0        | 121,0           | ¢11,0        | OIN                                         |
| 681'0         | 0'135        | Let'o            | 702,0             | 0'501          | 0 <sup>1</sup> 132 | 991'0             | 9,135        | 121'0           | 0'513        | 000                                         |
| 946,1E        | 980'16       | 628'18           | 112'10            | 31'503         | 31,412             | 31,072            | 31'342       | 31'328          | \$21'IE      | PeO P                                       |
| 266,0         | 0'332        | 0'341            | 201-0             | 0,002          | 0'322              | 0'526             | 185,0        | 614'0           | 580'0        | OuM                                         |
| 0,433         | 990'0        | 968'1            | \$6¥'0            | 600'0          | \$96'I             | 0,208             | 199'1        | 864,0           | 680'0        | OgM                                         |
| 30'582        | 20'921       | 6,733            | 56'284            | 601'19         | 126'01             | 768,85            | 266'11       | 187,92          | 068,42       | Fe <sub>2</sub> O <sub>3</sub>              |
| 102'98        | 12,562       | 768,86           | 32'818            | 7,547          | 39,388             | 58'245            | 66,86        | 891'98          | 13'223       | Cr <sub>2</sub> O <sub>3</sub>              |
| 0'130         | +80,0        | τ.26'0           | 191'0             | 990'0          | 585,0              | 211'0             | \$05,0       | 671'0           | 0,130        | ٥٤٧ رومي                                    |
| \$60'0        | 010'0        | <b>689,CI</b>    | 668,0             | 0'000          | 698'61             | <u> </u>          | 662'61       | 878,0           | 000'0        | °0'IV                                       |
| 1'021         | 921'0        | 1,728            | L26'0             | 680'0          | 1,232              | 0'330             | 299'0        | 446'0           | 921'0        | roi I                                       |
| 0,020         | 610'0        | 0,005            | 610'0             | ÷10'0          | 0'052              | 210'0             | <b>210'0</b> | 900'0           | 910'0        | <sup>t</sup> ois                            |
|               |              |                  |                   |                |                    |                   |              | l               |              | <u> </u>                                    |
| Cœm           | Sortine      | Cœnt             | Intermédiaire     | Bordure        | Cœur               | Bordure           | Cœnt         | อาโลโอรักการโตไ | Bordure      | Chromite                                    |
| druaH         | drugH        | drigH            | dziaH             | Herzb          | drugh              | dzīaH             | Herzb        | dznaH           | drnaH        | Lithologic                                  |
| 45            |              | DE LA COOLUME LE | 48                | 85             | 51 4444 200 44     | 38                | 10           |                 | BI           | Point                                       |
| A.FO27.HM-70  | A.FOZ7.HM-70 | A.FOZT.HM.70     | A.EO27.HM.70      | A-E027-HM-72   | A-E027-HM-70       | A-E027-HM-76      | A-EO27-HM-76 | A-E027-HM-70    | A-CO27-HM-70 | Échantillons                                |

Tableau C.2 Composition des chromites analysées à la microsonde électronique (suite).

| Échantilions                                | 97-MH-7503-B1 | 97•MH-7503-B1 | 97-MH-7503-B1 | 97-MH-7503-B1 |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                                       | 1             | 2             | 3             | 4a            | 4b            | 5             | 6             | 7a            | 7b            | 8a            |
| Lithologie                                  | Chr Sil       |
| Chromite                                    | Cœur          | Cœur          | Cœur          | Bordure       | Cœur          | Cœur          | Cœur          | Bordure       | Cœur          | Bordure       |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SiO <sub>2</sub>                            | 0,016         | 0,000         | 0,000         | 0,004         | 0,003         | 0,000         | 0,005         | 0,000         | 0,000         | 0,000         |
| TiO <sub>2</sub>                            | 0,302         | 0,351         | 0,288         | 0,286         | 0,283         | 0,319         | 0,311         | 0,146         | 0,335         | 0,135         |
| Al <sub>2</sub> O <sub>3</sub>              | 15,535        | 15,407        | 15,515        | 15,576        | 15,543        | 15,528        | 15,453        | 10,875        | 15,394        | 11,587        |
| V <sub>2</sub> O <sub>3</sub>               | 0,181         | 0,143         | 0,125         | 0,191         | 0,180         | 0,162         | 0,210         | 0,131         | 0,166         | 0,176         |
| Cr <sub>2</sub> O <sub>3</sub>              | 47,304        | 46,620        | 46,678        | 46,947        | 47,215        | 47,178        | 47,589        | 53,837        | 46,938        | 53,046        |
| Fe <sub>2</sub> O <sub>3</sub>              | 5,004         | 5,376         | 5,409         | 5,320         | 5,170         | 4,948         | 5,208         | 3,280         | 5,504         | 3,417         |
| MgO                                         | 6,019         | 5,919         | 5,985         | 5,930         | 6,072         | 5,969         | 6,027         | 4,709         | 5,901         | 4,989         |
| MnO                                         | 0,323         | 0,346         | 0,349         | 0,378         | 0,395         | 0,365         | 0,339         | 0,410         | 0,328         | 0,356         |
| FeO                                         | 25,045        | 25,041        | 24,927        | 25,122        | 24,882        | 25,035        | 25,199        | 26,042        | 25,261        | 25,766        |
| C0O                                         | 0,081         | 0,116         | 0,096         | 0,130         | 0,090         | 0,092         | 0,105         | 0,139         | 0,107         | 0,101         |
| NIO                                         | 0,000         | 0,035         | 0,000         | 0,023         | 0,004         | 0,014         | 0,000         | 0,041         | 0,000         | 0,033         |
| ZnO                                         | 0,000         | 0,000         | 0,048         | 0,109         | 0,058         | 0,037         | 0,000         | 0,104         | 0,000         | 0,038         |
| Total                                       | 99,810        | 99,354        | 99,420        | 100,016       | 99,895        | 99,647        | 100,446       | 99,714        | 99,934        | 99,644        |
|                                             |               |               |               |               |               |               |               |               |               |               |
| SI                                          | 0,004         | 0,000         | 0,000         | 0,001         | 0,001         | 0,000         | 0,001         | 0,000         | 0,000         | 0,000         |
| Ti                                          | 0,060         | 0,071         | 0,058         | 0,057         | 0,057         | 0,064         | 0,062         | 0,030         | 0,067         | 0,028         |
| AL                                          | 4,875         | 4,864         | 4,890         | 4,885         | 4,874         | 4,884         | 4,825         | 3,520         | 4,835         | 3,732         |
| V                                           | 0,039         | 0,031         | 0,027         | 0,041         | 0,038         | 0,035         | 0,045         | 0,029         | 0,035         | 0,039         |
| Cr                                          | 9,959         | 9,872         | 9,870         | 9,877         | 9,932         | 9,954         | 9,967         | 11,690        | 9,890         | 11,462        |
| Fe <sup>3+</sup>                            | 1,003         | ٤,083         | 1,089         | 1,065         | 1,035         | 0,994         | 1,038         | 0,678         | 1,104         | 0,703         |
| Mg                                          | 2,389         | 2,364         | 2,386         | 2,352         | 2,408         | 2,374         | 2,380         | 1,928         | 2,344         | 2,032         |
| Mn                                          | 0,073         | 0,078         | 0,079         | 0,085         | 0,089         | 0,082         | 0,076         | 0,095         | 0,074         | 0,082         |
| Fe <sup>2+</sup>                            | 5,577         | 5,609         | 5,575         | 5,590         | 5,537         | 5,587         | 5,583         | 5,981         | 5,630         | 5,889         |
| Co                                          | 0,017         | 0,025         | 0,021         | 0,028         | 0,019         | 0,020         | 0,022         | 0,031         | 0,023         | 0,022         |
| Ni                                          | 0,000         | 0,008         | 0,000         | 0,005         | 0,001         | 0,003         | 0,000         | 0,009         | 0,000         | 0,007         |
| Zn                                          | 0,000         | 0,000         | 0,010         | 0,022         | 0,011         | 0,007         | 0,000         | 0,021         | 0,000         | 0,008         |
| Total                                       | 23,996        | 24,005        | 24,005        | 24,008        | 24,002        | 24,004        | 23,999        | 24,012        | 24,002        | 24,004        |
|                                             |               |               |               |               |               |               |               |               |               |               |
| Fe <sup>3+</sup> /Fe <sup>2+</sup>          | 0,18          | 0,19          | 0,20          | 0,19          | 0,19          | 0,18          | 0,19          | 0,11          | 0,20          | 0,12          |
| Cr/(Cr+Al)                                  | 67,14         | 66,99         | 66,87         | 66,91         | 67,08         | 67,08         | 67,38         | 76,86         | 67,16         | 75,44         |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 29,99         | 29,65         | 29,97         | 29,61         | 30,31         | 29,82         | 29,89         | 24,38         | 29,40         | 25,65         |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 6,33          | 6,85          | 6,87          | 6,73          | 6,53          | 6,28          | 6,56          | 4,27          | 6,97          | 4,42          |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 1,51          | 1,48          | 1,48          | 1,48          | 1,51          | 1,51          | 1,51          | 1,76          | 1,47          | 1,74          |

| 09'1          | 62'1            | 99'1          | 85'1               | 29'1          | 1'63          | 95't               | 1'64               | 82,1           | 1'20               | Cr / (Fe <sup>2++Fe<sup>2+</sup>)</sup>     |
|---------------|-----------------|---------------|--------------------|---------------|---------------|--------------------|--------------------|----------------|--------------------|---------------------------------------------|
| e'30          | 96,8            | SI 'EI        | 6,53               | 6,63          | 94,8          | 16'9               | 56'7               | 09'9           | 19'9               | Fc <sup>3+</sup> /(Fc <sup>3+</sup> +A1+C1) |
| 33,58         | 46,81           | 91'0E         | 16'88              | 33'30         | el'se         | 31'65              | 30'58              | 34'03          | 70,0£              | Mg/(Mg+Fc <sup>2</sup> 7)                   |
| SC'29         | \$L'26          | 10'76         | 91'29              | 24'49         | EE,7à         | 67'29              | 20'92              | £2'29          | 81'29              | Cr/(Cr+Al)                                  |
| 61'0          | 0,21            | 86,0          | 0'30               | 0'50          | 0'30          | 81,0               | 60'0               | 0'50           | 61'0               | Ŀc <sub>3</sub> , \ Ŀc <sub>3</sub> ,       |
|               |                 |               |                    |               |               |                    |                    |                |                    |                                             |
| 54'00+        | 34,006          | 597,43        | 54'000             | 53'998        | 54'004        | 54'010             | 54'002             | 53'666         | 54'001             | leioT                                       |
| 000'0         | 010'0           | 000'0         | 000'0              | 000'0         | 000'0         | 0'033              | S10'0              | 0'000          | 000'0              | uz                                          |
| 910'0         | 600'0           | 0'033         | 000'0              | 0'000         | 0'003         | 0,002              | +00'0              | 000'0          | 0'005              | IN                                          |
| \$10'0        | 0'034           | 810'0         | 610'0              | <b>\$10,0</b> | 120'0         | 0 <sup>0</sup> 033 | 0'031              | t t oʻo        | 120'0              | <del>ග</del>                                |
| 2,288         | 864,8           | 2'323         | 2'322              | 2'312         | 5112          | £14,2              | 2,505              | 2'391          | 995'5              | եշ <sup>3+</sup>                            |
| 980,0         | 0+140           | 911'0         | 0 <sup>0</sup> 022 | £20'0         | 880,0         | C60'0              | <del>\$</del> 60'0 | <b>280,0</b>   | 880,0              | uМ                                          |
| 5,673         | 1,446           | 2,312         | 969'T              | 5,654         | 5,843         | 5°238              | 7'363              | 517,5          | 5,393              | 8M                                          |
| 196'0         | 1'335           | 5'010         | 1,034              | 1'020         | 1'054         | 866'0              | 274,0              | 1,046          | 1,045              | եշ <sup>3+</sup>                            |
| 000'01        | 13'443          | 12,213        | 6,945              | 926'6         | 096'6         | 10'009             | 199'11             | <b>**</b> 6'6  | 126,921            | Cr                                          |
| 160,0         | 0'022           | 840,0         | 1000               | 260'0         | 970'0         | 2 <b>20</b> '0     | Sł0'0              | 620'0          | 540,0              | ٨                                           |
| Lt8't         | 1'023           | 090'1         | 4 <sup>9</sup> 862 | 028,6         | ср8,р         | 028,1              | 95 <b>8</b> 'C     | 748,4          | 948,4              | IV                                          |
| 990'0         | 250'0           | 690'0         | £90'0              | 0'026         | 190'0         | 990'0              | 210'0              | 690'0          | 120'0              | , LL                                        |
| 100'0         | 000'0           | 0'255         | 000'0              | 000'0         | 000'0         | 0'005              | 000'0              | £00'0          | £00,0              | 15                                          |
|               |                 |               |                    |               |               |                    |                    |                |                    |                                             |
| 969'66        | £10'001         | 248,001       | S80'001            | 100'001       | 100,224       | 166'66             | 601'001            | L9L'66         | 100'508            | latoT                                       |
| 000'0         | 0'046           | 0'000         | 000'0              | 000'0         | 000'0         | 911'0              | S70,0              | 0'000          | 000'0              | OuZ                                         |
| \$20'0        | 660,0           | 860'0         | 0'000              | 0'000         | ¥10'0         | 800'0              | 0'031              | 000'0          | 200'0              | OIN                                         |
| £20'0         | 0'140           | 620'0         | 160'0              | 890'0         | 860'0         | 201'0              | 860'0              | £20'0          | 860'0              | ංං                                          |
| 53'851        | 26,827          | 53'164        | 962'62             | 24'032        | 53'523        | 676,42             | 54'459             | 53'521         | 32'083             | 640                                         |
| 086,0         | 918,0           | 961'0         | 224'0              | 0'354         | 46E,0         | 2010               | 11+'0              | \$98 <b>\$</b> | 066'0              | OuM                                         |
| 992'9         | 086,6           | 2'916         | 618,8              | 267,32        | 052'1         | 6,412              | 626'2              | 6,872          | 840,8              | 08M                                         |
| 606'\$        | 6,123           | 629'6         | 2'303              | 922'5         | ¢21'9         | \$66'¥             | 5'341              | 2,248          | 2'533              | Pe <sub>3</sub> O <sub>5</sub>              |
| 159'26        | 26'523          | S76,88        | 469'24             | 40L'L4        | 886'24        | 559'24             | 135,42             | 984,74         | 582'L <del>1</del> | CL <sup>3</sup> O <sup>3</sup>              |
| 0,144         | 862,0           | 912'0         | 441,0              | £71,0         | 0'133         | 0'152              | 902'0              | 201'0          | 0'510              | 4°0° م                                      |
| E64,21        | 3'1 12          | 3'501         | 12'954             | 12'405        | 12'933        | 12'300             | 15,142             | 12'236         | 664,81             | VJ <sup>3</sup> O <sup>2</sup>              |
| 666,0         | 0'365           | see'o         | 815,0              | 862'0         | 0,309         | 0'358              | 580'0              | 0,344          | £S£'0              | 10 <sup>3</sup>                             |
| 0'005         | 000'0           | £68'I         | 0'000              | 000'0         | 0'000         | 200'0              | 000'0              | 610,0          | 010'0              | ٤OIS                                        |
|               |                 |               |                    |               |               |                    |                    |                |                    |                                             |
| Coent         | วน์ดไปรัตการใกไ | ລາມກາວຊີ      | Cœnt               | Cœut          | Cœnt          | Cœut               | ລາກprog            | Cœur           | Juan               | Shromite                                    |
| Chr           | CJrt            | Срг           | CPL                | CPt           | CPL           | CPL                | CPL                | CPt            | Chr Sil            | Lithologic                                  |
| 99            | qş              | вд            | 9                  | t.            | 3             | 39                 | Sв                 | I              | 98                 | Jaioq                                       |
| 28-CO27-HM-76 | 28-E027-HM-76   | 28-CO27-HM-70 | 28-C037-HM-76      | 97-MH-7503-B2 | 97-MH-7503-B2 | 97-MH-7503-B2      | 97-MH-7503-B2      | 28-E027-HM-79  | 18-COST-HM-76      | gebandlons                                  |

# , (stiue) supinorites chromites analysées à la microsonde électronique (suite).

| Échantillons                                | 97-MH-7504-A | 97-MH-7504-A | 97-MH-7504-A | 97-MH-7504-A | 97-MH-7504-A | 97-MH-7504-A | 97•MH-7504-A | 97-MH-7504-A | 97-MH-7504-A | 97-MH-7504-A |
|---------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Point                                       | 2            | 3            | la           | 16           | 4a           | 4b           | 5a           | 5b           | ба           | 6b           |
| Lithologic                                  | Chr Sil      |
| Chromite                                    | Cœur         | Cœur         | Bordure      | Cœur         | Bordure      | Cœur         | Bordure      | Cœur         | Bordure      | Cœur         |
|                                             |              |              |              |              |              |              |              |              |              |              |
| SiO <sub>2</sub>                            | 0,029        | 0,000        | 0,012        | 0,011        | 0,016        | 0,000        | 0,028        | 0,003        | 0,065        | 0,000        |
| TiO <sub>2</sub>                            | 0,211        | 0,152        | 0,243        | 0,327        | 0,264        | 0,274        | 0,387        | 0,284        | 0,348        | 0,327        |
| Al <sub>2</sub> O <sub>3</sub>              | 1,001        | 9,789        | 8,027        | 16,871       | 6,782        | 16,791       | 4,173        | 16,553       | 7,500        | 16,553       |
| V203                                        | 0,175        | 0,152        | 0,141        | 0,091        | 0,194        | 0,117        | 0,241        | 0,139        | 0,209        | 0,092        |
| Cr <sub>2</sub> O <sub>3</sub>              | 61,311       | 52,690       | 52,877       | 45,682       | 53,219       | 45,636       | 54,047       | 45,321       | 49,868       | 44,961       |
| Fc203                                       | 5,113        | 4,803        | 6,134        | 4,300        | 7,084        | 4,194        | 8,564        | 4,317        | 8,334        | 4,576        |
| MgO                                         | 1,490        | 2,800        | 2,451        | 4,258        | 2,192        | 4,062        | 1,752        | 3,973        | 2,089        | 4,130        |
| MnO                                         | 0,707        | 0,545        | 0,667        | 0,583        | 0,663        | 0,434        | 0,644        | 0,482        | 0,592        | 0,560        |
| FeO                                         | 28,997       | 28,695       | 28,803       | 27,822       | 29,018       | 28,103       | 29,262       | 27,970       | 28,908       | 27,636       |
| C0O                                         | 0,140        | 0,140        | 0,108        | 0,103        | 0,146        | 0,137        | 0,141        | 0,116        | 0,145        | 0,110        |
| NIO                                         | 0,000        | 0,051        | 0,032        | 0,000        | 0,026        | 0,055        | 0,051        | 0,011        | 0,032        | 0,005        |
| ZnO                                         | 0,007        | 0,022        | 0,063        | 0,110        | 0,109        | 0,132        | 0,000        | 0,095        | 0,140        | 0,086        |
| Total                                       | 99,181       | 99,839       | 99,558       | 100,158      | 99,713       | 99,935       | 99,290       | 99,264       | 98,230       | 99,036       |
|                                             |              |              |              |              |              |              |              |              |              |              |
| Si                                          | 0,009        | 0,000        | 0,003        | 0,003        | 0,004        | 0,000        | 0,008        | 0,001        | 0,019        | 0,000        |
| TI                                          | 0,047        | 0,032        | 0,052        | 0,066        | 0,057        | 0,055        | 0,085        | 0,058        | 0,076        | 0,067        |
| A1                                          | 0,349        | 3,226        | 2,683        | 5,313        | 2,282        | 5,309        | 1,433        | 5,273        | 2,554        | 5,279        |
| v                                           | 0,042        | 0,034        | 0,032        | 0,020        | 0,044        | 0,025        | 0,056        | 0,030        | 0,049        | 0,020        |
| Cr                                          | 14,359       | 11,650       | 11,855       | 9,651        | 12,014       | 9,681        | 12,448       | 9,686        | 11,392       | 9,620        |
| Fc <sup>3+</sup>                            | 1,140        | 1,011        | 1,309        | 0,865        | 1,522        | 0,847        | 1,877        | 0,878        | 1,812        | 0,932        |
| Мв                                          | 0,658        | 1,167        | 1,036        | 1,696        | 0,933        | 1,625        | 0,761        | 1,601        | 0,900        | 1,666        |
| Mn                                          | 0,177        | 0,129        | 0,160        | 0,132        | 0,160        | 0,099        | 0,159        | 0,110        | 0,145        | 0,128        |
| Fc <sup>3+</sup>                            | 7,183        | 6,711        | 6,831        | 6,218        | 6,929        | 6,306        | 7,129        | 6,323        | 6,985        | 6,254        |
| Co                                          | 0,033        | 0,031        | 0,025        | 0,022        | 0,033        | 0,030        | 0,033        | 0,025        | 0,034        | 0,024        |
| NI                                          | 0,000        | 0,011        | 0,007        | 0,000        | 0,006        | 0,012        | 0,012        | 0,002        | 0,008        | 0,001        |
| Zn                                          | 0,001        | 0,005        | 0,013        | 0,022        | 0,023        | 0,026        | 0,000        | 0,019        | 0,030        | 0,017        |
| Total                                       | 23,998       | 24,007       | 24,006       | 24,008       | 24,007       | 24,015       | 24,001       | 24,006       | 24,004       | 24,008       |
|                                             |              |              |              |              |              |              |              |              |              |              |
| Fc <sup>3+</sup> /Fc <sup>2+</sup>          | 0,16         | 0,15         | 0,19         | 0,14         | 0,22         | 0,13         | 0,26         | 0,14         | 0,26         | 0,15         |
| Cr/(Cr+Al)                                  | 97,63        | 78,31        | 81,54        | 64,49        | 84,04        | 64,58        | 89,68        | 64,75        | 81,69        | 64,57        |
| Mg/(Mg+Fc <sup>2+</sup> )                   | 8,39         | 14,81        | 13,17        | 21,43        | 11,87        | 20,49        | 9,65         | 20,20        | 11,41        | 21,04        |
| Fe <sup>3+</sup> /(Fe <sup>3+</sup> +Al+Cr) | 7,19         | 6,36         | 8,26         | 5,46         | 9,62         | 5,35         | 11,91        | 5,54         | 11,50        | 5,89         |
| Cr / (Fe <sup>2+</sup> +Fe <sup>3+</sup> )  | 1,73         | 1,51         | 1,46         | 1,36         | 1,42         | 1,35         | 1,38         | 1,35         | 1,29         | 1,34         |

| <u> </u>     | 0010               | 1011           |              | colu            | 2010           | co11               |               |              | hala         |                                            |
|--------------|--------------------|----------------|--------------|-----------------|----------------|--------------------|---------------|--------------|--------------|--------------------------------------------|
|              | 99.0               | 201            | 0'92         | 60 I            | 89.0           | 1.09               | 59°0          | 00'0         | 0.00         | Ct / (E <sup>2</sup> 3+E <sup>2</sup> 32)  |
| 159          | 66 26              | PG 2           | LU 80        | 112             | PP 96          | 86.8               | 99.26         | 95'66        | 67 66        | Ec <sup>2+</sup> /(Ec <sup>2+</sup> +A)+C4 |
|              | 90'06              | 00'00          | 98.0         | 29.01           | 190            | 50 11              | 200           | 100          | 200          | (te states)                                |
| 1505         | 09.08              | 09 09          | 15 66        | 20.09           | 02.16          | 22.65              | 92.16         | 16.62        | 06'29        | Cr((Cr+A))                                 |
| 510          | 92.0               | 91.0           | 22.0         | 910             | V2.0           | 910                | 92.0          | 96.1         | 96.1         | Pc3+ / Pc3+                                |
| 54'038       | 54'013             | 54'034         | 54'010       | 54'030          | 24,007         | 54'033             | 54'011        | 166'82       | 286'62       | laioT                                      |
| 741,0        | 0'003              | 951'0          | 0°023        | 0'139           | 840,0          | 0 <sup>1</sup> 124 | 620'0         | 000'0        | 610'0        | uz                                         |
| E10'0        | 0'038              | 0'054          | 810'0        | 0'038           | 910'0          | 110'0              | 120'0         | 900'0        | \$00'0       | IN                                         |
| л.а.         | <b>.</b> в.п       | ה.פ.           | .a.n         | ח.פ.            | .в.п           | .a.n               | ה.פ.          | 'ម'ប         | .e.n         | <b>හ</b>                                   |
| £86'9        | L69'L              | 850'2          | 669'2        | 688,8           | 069'L          | 720,7              | 217,7         | 120'8        | 066'4        | ارد <mark>ع. ا</mark>                      |
| 0'122        | 961'0              | +21'0          | 0'333        | 0'185           | 122'0          | 961,0              | 861'0         | 0'010        | £10'0        | uМ                                         |
| 888,0        | 0'532              | 618,0          | 722,0        | 066'0           | 861'0          | 168'0              | 0'536         | L10'0        | 000'0        | 8W                                         |
| 120'1        | £28,23             | 1'130          | 296'S        | 1'115           | 2'99'5         | 666'0              | 668,8         | 967,ðt       | 12'983       | եշ <sup>3+</sup>                           |
| EE7,8        | 958,8              | 977,8          | 798,8        | 8,733           | 950'6          | 192'8              | 478,8         | 150'0        | S20'0        | Cr                                         |
| 0'046        | 0:030              | 290 <b>'</b> 0 | 290'0        | 0+0'0           | 940'0          | 0'044              | 910'0         | £20'0        | £20'0        | ٨                                          |
| 146,8        | 616'0              | 90L'S          | 812'0        | £08,2           | 0,820          | 868,2              | <i>L6L</i> '0 | 810,0        | 0'036        | ١٧                                         |
| 680'0        | <del>6</del> 91'0  | 6,123          | 881 '0       | 811'0           | \$61'O         | 0 <sup>115</sup>   | 9'162         | £20'0        | 920'0        | IJ                                         |
| 600'0        | 0,002              | 200,0          | 000'0        | 200'0           | 900'0          | 000'0              | ¢10'0         | 900'0        | ٢٥'٥         | 15                                         |
|              |                    |                |              |                 |                |                    |               |              |              |                                            |
| 100'203      | 225,99             | 802'66         | 166'66       | 286'66          | 628,89         | 11/9'66            | ESE,66        | 868'86       | \$00'66      | lato <sup>T</sup>                          |
| 012'0        | 0'585              | 922'0          | 262,0        | 169'0           | 6,214          | 892'0              | 89£'0         | 00010        | <b>480,0</b> | OuZ                                        |
| 090'0        | 0'150              | 601'0          | 920'0        | 6,134           | 290'0          | 0'025              | 680'0         | 220'0        | 0'050        | OIN                                        |
| ษาย          | .в.п               | .а.п           | יטיט         | ัย'บ            | .R.N           | .в.л               | л.а.          | .в.a         | .в.п         | 000                                        |
| 31'013       | 387,05             | 31'050         | 507,05       | 30'233          | 272,06         | 500'TE             | 30,806        | 418,05       | 942'08       | Ost                                        |
| 089'0        | £22'0              | 954'0          | ÷28'0        | \$6 <b>2</b> '0 | 690'1          | 165'0              | 622'D         | 6£0,0        | 0\$0'0       | Очи                                        |
| 5'513        | 0'238              | 5'050          | 205,0        | 29462           | 0'445          | 5,205              | 672'0         | 960,0        | S90'0        | 0 <sup>8</sup> M                           |
| 2'041        | 288'32             | 218'S          | 56'405       | 57475           | P10,25         | 868,6              | 52'654        | 981'29       | 040'49       | be'0'                                      |
| 41'058       | 894'7C             | 062'0+         | 90+'LC       | 40'339          | 880,86         | 688,04             | 704,7E        | 802'0        | 0'555        | Cr10,                                      |
| 0'556        | 0 <sup>1</sup> 132 | 206'0          | 252'0        | 0,185           | 681'0          | 6,204              | 261'0         | £12'0        | 162'0        | <sup>0</sup> ¢۷                            |
| 18'124       | 3'908              | ¥62'21         | 5'031        | 18,247          | 5'312          | 734,81             | 5'500         | 0'020        | 120'0        | <sup>8</sup> O'IV                          |
| 664,0        | 167,0              | 0'03           | 968,0        | 683,0           | 698,0          | 055'0              | 998'0         | 018'0        | 0'354        | rio <sub>2</sub>                           |
| 6,033        | 200'0              | 800,0          | 000'0        | 220'0           | 0'031          | 0'000              | 240,0         | 610'0        | 0*022        | <sup>z</sup> OIS                           |
|              |                    |                |              | [               |                |                    |               |              |              |                                            |
| Cœnt         | Bordure            | Cœur           | Bordure      | Cœm             | Bordure        | Cœur               | Bordure       | Cœut         | Caeur        | Chromite                                   |
| Chr Sil      | Chr Sil            | Chr Sil        | CPt BIT      | Chr Sil         | Chr Sil        | Chr Sil            | CPr 3II       | DM ≜ xq      | DM & X9      | Lithologie                                 |
| 46           | 86                 | 46             | aE           | 3P              | 50             | 1                  | 81            | 5            | I            | foint                                      |
| 8.7027.HM.70 | R.7027.HM.70       | H-2027-HM-70   | 8.7027.HM.70 | A.7027.HM-76    | T 8-7027-HM-70 | A-7027-HM-70       | 8-7027-HM-79  | 0-7027-HM-76 | 3.7027-HM-79 | Rentillona                                 |

### . (suites chromites analysées à la microsonde électronique (suite).

| Échantillons                                | 98-MH-4055            | 98-MH-4055 | 98-MH-4089 | 98-MH-4089 | 98-MH-4089   | 98-MH-4089 | 98-MH-4089 | 98-MH-4089 | 98-MH-4089 | 98-MH-4089 |
|---------------------------------------------|-----------------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|
| Point                                       | 1                     | 2          | 18         | lb         | 2a           | 2b         | 3a         | Зb         | 4a         | 4b         |
| Lithologie                                  | Du (Sch)              | Du (Sch)   | Chr        | Chr        | Chr          | Chr        | Chr        | Chr        | Chr        | Chr        |
| Chromite                                    | Cœur                  | Cœur       | Bordure    | Cœur       | Bordure      | Cœur       | Bordure    | Cœur       | Bordure    | Cœur       |
|                                             |                       |            |            |            |              |            |            |            |            |            |
| SiO2                                        | 0,016                 | 0,018      | 0,013      | 0,050      | 0,023        | 0,032      | 0,025      | 0,027      | 0,023      | 0,074      |
| TiO <sub>2</sub>                            | 0,015                 | 0,021      | 0,097      | 0,358      | 0,062        | 0,371      | 0,097      | 0,366      | 0,124      | 0,393      |
| Al <sub>2</sub> O <sub>3</sub>              | 0,004                 | 0,024      | 16,257     | 20,635     | 17,234       | 20,741     | 13,870     | 20,559     | 17,729     | 21,989     |
| V <sub>2</sub> O <sub>3</sub>               | 0,026                 | 0,065      | 0,131      | 0,229      | 0,176        | 0,143      | 0,212      | 0,162      | 0,292      | 0,246      |
| Cr <sub>2</sub> O <sub>3</sub>              | 0,008                 | 0,056      | 49,444     | 42,933     | 48,583       | 42,828     | 51,473     | 42,853     | 47,990     | 43,445     |
| Fe <sub>2</sub> O <sub>3</sub>              | 67,883                | 68,398     | 3,368      | 4,520      | 3,360        | 4,745      | 2,885      | 4,823      | 2,568      | 2,434      |
| MgO                                         | 0,006                 | 0,017      | 6,551      | 7,536      | 6,805        | 7,735      | 5,785      | 7,644      | 6,978      | 8,370      |
| MnO                                         | 0,000                 | 0,003      | 0,450      | 0,543      | 0,475        | 0,378      | 0,508      | 0,434      | 0,467      | 0,371      |
| FeO                                         | 30,565                | 30,820     | 24,385     | 23,529     | 24,120       | 23,491     | 24,750     | 23,507     | 23,645     | 22,536     |
| CoO                                         | n.a.                  | n.a.       | n.a,       | n,a,       | <u>л</u> .ц. | n.a.       | n.a.       | Ω,Ą.       | П.А.       | n.a.       |
| NIO                                         | 0,111                 | 0,187      | 0,012      | 0,126      | 0,068        | 0,077      | 0,064      | 0,110      | 0,096      | 0,087      |
| ZnO                                         | 0,038                 | 0,000      | 0,302      | 0,366      | 0,241        | 0,358      | 0,225      | 0,357      | 0,310      | 0,214      |
| Total                                       | 98,672                | 99,609     | 101,013    | 100,828    | 101,158      | 100,902    | 99,896     | 100,852    | 100,229    | 100,168    |
|                                             |                       |            |            |            |              |            |            |            |            |            |
| SI                                          | 0,005                 | 0,006      | 0,003      | 0,013      | 0,006        | 0,008      | 0,007      | 0,007      | 0,006      | 0,019      |
| Tİ                                          | 0,004                 | 0,005      | 0,019      | 0,069      | 0,012        | 0,071      | 0,020      | 0,070      | 0,024      | 0,075      |
| AI                                          | 0,001                 | 0,009      | 5,014      | 6,218      | 5,276        | 6,236      | 4,387      | 6,193      | 5,453      | 6,579      |
| v                                           | 0,007                 | 0,016      | 0,027      | 0,047      | 0,037        | 0,029      | 0,046      | 0,033      | 0,061      | 0,050      |
| Cr                                          | 0,002                 | 0,014      | 10,230     | 8,679      | 9,978        | 8,638      | 10,921     | 8,660      | 9,902      | 8,720      |
| Fe <sup>3+</sup>                            | 15,959                | 15,927     | 0,663      | 0,870      | 0,657        | 0,911      | 0,583      | 0,928      | 0,504      | 0,465      |
| Мg                                          | 0,003                 | 0,008      | 2,555      | 2,872      | 2,635        | 2,942      | 2,314      | 2,913      | 2,714      | 3,168      |
| Mn                                          | 0,000                 | 0,001      | 0,100      | 0,117      | 0,105        | 0,082      | 0,115      | 0,094      | 0,103      | 0,080      |
| Fe <sup>2+</sup>                            | 7,986                 | 7,976      | 5,337      | 5,031      | 5,240        | 5,012      | 5,554      | 5,025      | 5,160      | 4,784      |
| Co                                          | <b>D</b> , <b>A</b> , | n.a.       | n.a,       | n.a.       | n.a.         | n.a.       | n.a.       | Д.Д,       | n.a.       | n,a.       |
| NI                                          | 0,028                 | 0,047      | 0,003      | 0,026      | 0,014        | 0,016      | 0,014      | 0,023      | 0,020      | 0,018      |
| Zn                                          | 0,009                 | 0,000      | 0,058      | 0,069      | 0,046        | 0,067      | 0,044      | 0,067      | 0,060      | 0,040      |
| Total                                       | 24,004                | 24,009     | 24,009     | 24,011     | 24,006       | 24,012     | 24,005     | 24,013     | 24,007     | 23,998     |
|                                             |                       |            |            |            |              |            |            |            |            |            |
| Fc <sup>3*</sup> /Fc <sup>2*</sup>          | 2,00                  | 2,00       | 0,12       | 0,17       | 0,13         | 0,18       | 0,10       | 0,18       | 0,10       | 0,10       |
| Cr/(Cr+Al)                                  | 66,67                 | 60,87      | 67,11      | 58,26      | 65,41        | 58,07      | 71,34      | 58,30      | 64,49      | 57,00      |
| Mg/(Mg+Fe <sup>2+</sup> )                   | 0,04                  | 0,10       | 32,37      | 36,34      | 33,46        | 36,99      | 29,41      | 36,70      | 34,47      | 39,84      |
| Fc <sup>3+</sup> /(Fc <sup>3+</sup> +Al+Ci) | 99,98                 | 99,86      | 4,17       | 5,52       | 4,13         | 5,77       | 3,67       | 5,88       | 3,18       | 2,95       |
| $Cr / (Fe^{2^{+}}+Fe^{3^{+}})$              | 0,00                  | 0,00       | 1,71       | 1,47       | 1,69         | 1,46       | 1,78       | 1,45       | 1,75       | 1,66       |

# ANNEXE C.3

ANALYSES DES SERPENTINES

| 14'21         | 24'8            | 15'10         | 13'38         | 82'6         | 5'03         | 99'91             | 00'0         | 52'2         | 1,04         | Cr#                            |
|---------------|-----------------|---------------|---------------|--------------|--------------|-------------------|--------------|--------------|--------------|--------------------------------|
| <b>63'31</b>  | 81'26           | <b>35'50</b>  | £1'26         | 54'66        | 62'86        | 10'26             | <b>29'96</b> | 81,82        | 65,72        | #8M                            |
| 0'103         | 180'0           | 0'005         | 680,0         | 990'0        | 990'0        | oto'o             | 640,0        | 090'0        | 270,0        | vi v                           |
| 0'038         | 000,0           | 000,0         | 000'0         | 000'0        | 000'0        | 000'0             | 000'0        | 000'0        | 000'0        | VI IA                          |
|               |                 |               |               |              |              |                   |              |              |              |                                |
| 646'4         | 246'4           | 146'4         | 446,4         | 246,45       | 156'4        | £66, p            | 840,4        | 246'4        | 118,6        | latoT                          |
| \$00'0        | 900'0           | 900'0         | 800,0         | £00'0        | 400'0        | £00'0             | \$00'0       | <b>⊆00'0</b> | S10'0        | IN                             |
| 612'0         | 0'555           | 0'333         | 0'333         | 281'0        | 8/110        | 080 <u>,</u> 0    | 260'0        | 101'0        | 281'0        | ور <sup>34</sup>               |
| £00'0         | 0,002           | 100'0         | 200'0         | 200'0        | £00'0        | 200,0             | t 00'0       | 100'0        | 000'0        | aM                             |
| 100'0         | 000'0           | 000'0         | 100'0         | t00'0        | 100'0        | 000'0             | 000'0        | 000'0        | 0'005        | Ca                             |
| 5'205         | 5'913           | 519'Z         | 2'903         | 199'Z        | 2'983        | 5,770             | 122'2        | 2,757        | 186,281      | 8M                             |
| 0'058         | 800,0           | 600'0         | <b>₽10'0</b>  | 200'0        | 0'005        | 0'005             | 000'0        | S00'0        | 100'0        | Cr                             |
| 161,0         | 180'0           | 0'0e3         | 680,0         | 990'0        | 990'0        | 010'0             | rf0,0        | 090'0        | Z20'0        | ۱۷                             |
| 100'0         | 100'0           | 000'0         | 100'0         | 100'0        | 100'0        | 0'000             | 100'0        | 100'0        | 0000'0       | I.I.                           |
| 126'1         | 5'013           | 5,024         | 5,005         | 810'Z        | 510'2        | 190'Z             | 5'030        | 5'018        | 5'123        | IS                             |
|               |                 |               |               |              |              |                   |              |              |              |                                |
| 265,001       | ¥t0'101         | 101,227       | 100,626       | 100,142      | 601'101      | 100'005           | 168,001      | E87,001      | 981'001      | [Bto]                          |
| 15'125        | 12,842          | 12,8,21       | 877,21        | 187,21       | 216'21       | 740,61            | 500'61       | 896'71       | 15'003       | OcH                            |
| 0'130         | 0'130           | 941'0         | 0'506         | £80,0        | 101'0        | 620'0             | 0'143        | 0+1'0        | 866,0        | OIN                            |
| 695'S         | ₹ <b>1</b> 9'S  | 289'5         | 199'S         | SLL'V        | 925,6        | 5'555             | 513'2        | 3'600        | 018,4        | Osq                            |
| 290'0         | 120'0           | 810'0         | SS0'0         | 190'0        | 0'022        | 0'025             | 0'033        | 910'0        | 200'0        | OuM                            |
| 210'0         | S00'0           | S00,0         | 210'0         | St0'0        | 800,0        | 0'003             | \$00'0       | 000'0        | 9+0'0        | CHO                            |
| 026'90        | SI S'40         | 112'20        | 32'303        | 860,86       | 19L'8E       | 40'454            | 40,304       | 240'04       | 34'362       | OaM                            |
| 667,0         | 0'301           | 0'550         | 026'0         | 081,0        | 250,0        | 840,0             | 000'0        | 0+140        | 0'031        | Cr3O3                          |
| 5'322         | E24'1           | 1'139         | 609'1         | 961'1        | 1,210        | 921'0             | 0,810        | \$60'1       | 1'304        | VI <sup>3</sup> O <sup>7</sup> |
| 810'0         | 0'051           | 900'0         | \$10'0        | \$10'0       | S10'0        | 800,0             | 810'0        | 0,024        | 000'0        | LIO <sup>3</sup>               |
| 41'850        | 43,104          | 064,64        | 617,24        | 800,64       | 966,64       | \$\$ <b>8</b> ,66 | 110'44       | ee7,e4       | 46,335       | ¢0is                           |
|               |                 |               |               |              |              |                   |              |              |              |                                |
| inconu        | ημεουμη         | nuuooui       | nuuosuj       | กบบออบเ      | іпсопц       | inconnu           | inconnu      | ทนนองมา      | nuuoouj      | (.obuseq) (proudo.)            |
| Chr Sil       | Chr Sil         | Chrsu         | Chr Sil       | οιμο ψ τι Ο  | Du à chro    | Chr Sil           | Chr Sil      | Chr Sil      | 12 notin     | sigolorbid                     |
| 2             | C               | 3             | T             | 5            | ı ı          | E                 | 5            | 1            | 1            | Point                          |
| 97-JC-5557-B1 | 18-12-222-21-16 | 97-JC-5557-B1 | 97-JC-5557-B1 | V-2555-01-26 | 97-JC-5557-A | 97-JC-5113-B      | 8-6112-00-76 | 8-5113-3L-76 | 97-CD-5639-B | Schantillons                   |

| Échantillons                   | 97-JC-5557-B2 | 97-JC-5557-B3 | 97-JC-5557-C | 97-JC-5557-C | 97-MH-7371-18 | 97-MH-7371-19 | 97-MH-7371-19 | 97-MH-7371-22 | 97-MII-7371-22 | 97-MH-7371-22 |
|--------------------------------|---------------|---------------|--------------|--------------|---------------|---------------|---------------|---------------|----------------|---------------|
| Point                          | 1             | 1             | 1            | 2            | 1             | 1             | 2             | 2             | 3              | 4             |
| Lithologie                     | Chr Sil       | Harzb à chro  | Harzb        | Harzb        | Lherz à chro   | Lherz à chro  |
| Minéral (pseudo.)              | inconnu       | 01            | inconnu      | inconnu      | ol            | inconnu       | inconnu       | Ol            | 01             | 01            |
|                                |               |               |              |              |               |               |               |               |                |               |
| SiO <sub>2</sub>               | 40,578        | 40,833        | 42,772       | 42,362       | 43,433        | 40,953        | 40,563        | 40,977        | 41,271         | 40,570        |
| TiO <sub>2</sub>               | 0,010         | 0,019         | 0,023        | 0,029        | 0,000         | 0,000         | 0,000         | 0,000         | 0,000          | 0,000         |
| Al <sub>2</sub> O <sub>3</sub> | 4,648         | 3,103         | 1,187        | 1,588        | 0,773         | 1,449         | 2,780         | 1,673         | 2,085          | 2,420         |
| Cr <sub>2</sub> O <sub>3</sub> | 0,185         | 0,926         | 0,079        | 0,045        | 0,000         | 0,000         | 0,000         | 0,000         | 0,000          | 0,000         |
| MgO                            | 36,727        | 35,972        | 36,243       | 36,162       | 41,632        | 40,408        | 39,996        | 41,300        | 40,073         | 40,845        |
| CaO                            | 0,014         | 0,045         | 0,008        | 0,021        | 0,000         | 0,001         | 0,000         | 0,004         | 0,000          | 0,000         |
| МлО                            | 0,039         | 0,048         | 0,127        | 0,145        | 0,024         | 0,052         | 0,045         | 0,040         | 0,029          | 0,022         |
| FeO                            | 5,457         | 5,609         | 7,343        | 7,350        | 1,017         | 2,749         | 2,759         | 1,736         | 2,864          | 1,653         |
| NiO                            | 0,173         | 0,113         | 0,050        | 0,075        | 0,000         | 0,000         | 0,000         | 0,000         | 0,000          | 0,000         |
| H <sub>2</sub> O               | 12,774        | 12,574        | 12,687       | 12,669       | 12,950        | 12,597        | 12,680        | 12,676        | 12,712         | 12,654        |
| Total                          | 100,605       | 99,242        | 100,519      | 100,446      | 99,829        | 98,209        | 98,823        | 98,406        | 99,034         | 98,164        |
|                                |               |               |              |              |               |               |               |               | [              |               |
| Si                             | 1,905         | 1,948         | 2,022        | 2,005        | 2,011         | 1,950         | 1,918         | 1,939         | 1,947          | 1,923         |
| Ti                             | 0,000         | 0,001         | 0,001        | 0,001        | 0,000         | 0,000         | 0,000         | 0,000         | 0,000          | 000,0         |
| A1                             | 0,257         | 0,175         | 0,066        | 0,089        | 0,042         | 0,081         | 0,155         | 0,093         | 0,116          | 0,135         |
| Cr                             | 0,007         | 0,035         | 0,003        | 0,002        | 0,000         | 0,000         | 0,000         | 0,000         | 0,000          | 0,000         |
| Mg                             | 2,570         | 2,558         | 2,554        | 2,552        | 2,874         | 2,868         | 2,820         | 2,913         | 2,818          | 2,886         |
| Ca                             | 0,001         | 0,002         | 0,001        | 0,001        | 0,000         | 0,000         | 0,000         | 0,000         | 0,000          | 0,000         |
| Mn                             | 0,002         | 0,002         | 0,005        | 0,006        | 0,001         | 0,002         | 0,002         | 0,002         | 0,001          | 0,001         |
| fe <sup>2</sup> '              | 0,214         | 0,224         | 0,290        | 0,291        | 0,039         | 0,110         | 0,109         | 0,069         | 0,113          | 0,066         |
| Ni                             | 0,007         | 0,004         | 0,002        | 0,003        | 0,000         | 0,000         | 0,000         | 0,000         | 0,000          | 0,000         |
| Total                          | 4,963         | 4,948         | 4,943        | 4,949        | 4,968         | 5,010         | 5,004         | 5,015         | 4,995          | 5,010         |
|                                |               |               |              |              |               |               |               |               |                |               |
| AI <sup>IV</sup>               | 0,095         | 0,053         | 0,000        | 0,000        | 0,000         | 0,051         | 0,082         | 0,062         | 0,053          | 0,077         |
| A1 <sup>V1</sup>               | 0,162         | 0,122         | 0,066        | 0,089        | 0,042         | 0,031         | 0,073         | 0,032         | 0,063          | 0,058         |
| Mg#                            | 92,31         | 91,96         | 89,79        | 89,76        | 98,65         | 96,32         | 96,28         | 97,69         | 96,14          | 97,78         |
| Cr#                            | 2,65          | 16,71         | 4,33         | 1,94         | 0,00          | 0,00          | 0,00          | 0,00          | 0,00           | 0,00          |

.
| Échantillons                   | 97-MH-7371-22 | 97-MH-7374-01 | 97-MH-7374-01 | 97-MH-7374-02 | 97-MII-7374-03 | 97-MH-7374-03 | 97-MH-7374-03 | 97-MH-7374-03 | 97-MH-7374-05 | 97-MH-7374-05 |
|--------------------------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|
| Point                          | 5             | 2             | 3             | 1             | 1              | 2             | 3             | 4             | 11            | 2             |
| Lithologie                     | Lherz à chro  | Harzb à chro  | Harzb A chro  | Harzb & chro  | Harzb à chro   | Harzb à chro  | Harzb à chro  | Harzh à chro  | Lherz à chro  | Lherz à chro  |
| Minéral (pseudo.)              | Орх           | inconnu       | inconnu       | Орх           | Орх            | 01            | Орх           | 01            | Px            | <u>o</u> i    |
|                                |               |               | L             |               |                |               |               |               |               |               |
| SiO <sub>2</sub>               | 40,823        | 43,234        | 42,478        | 43,490        | 42,390         | 37,709        | 43,225        | 42,672        | 42,950        | 43,087        |
| TiO <sub>2</sub>               | 0,000         | 0,023         | 0,029         | 0,006         | 0,016          | 0,019         | 0,024         | 0,018         | 0,036         | 0,018         |
| Al <sub>2</sub> O3             | 1,238         | 0,836         | 1,560         | 0,813         | 2,087          | 1,607         | 1,177         | 1,374         | 1,618         | 1,390         |
| Cr <sub>2</sub> O <sub>3</sub> | 0,000         | 0,102         | 0,337         | 0,097         | 0,543          | 0,264         | 0,097         | 0,111         | 0,522         | 0,168         |
| MgO                            | 42,058        | 37,409        | 36,679        | 38,512        | 36,851         | 35,622        | 37,113        | 37,224        | 37,612        | 37,843        |
| Ca0                            | 0,017         | 0,011         | 0,011         | 0,016         | 0,009          | 3,681         | 0,012         | 0,017         | 0,014         | 0,011         |
| MnO                            | 0,026         | 0,074         | 0,065         | 0,014         | 0,066          | 0,081         | 0,077         | 0,063         | 0,000         | 0,076         |
| FeO                            | 1,353         | 5,821         | 6,674         | 4,378         | 6,372          | 5,379         | 6,479         | 6,401         | 6,066         | 5,839         |
| NIO                            | 0,000         | 0,072         | 0,109         | 0,140         | 0,098          | 0,106         | 0,077         | 0,100         | 0,126         | 0,113         |
| H <sub>2</sub> O               | 12,653        | 12,753        | 12,728        | 12,829        | 12,811         | 12,019        | 12,813        | 12,759        | 12,909        | 12,878        |
| Total                          | 98,168        | 100,335       | 100,670       | 100,295       | 101,243        | 96,487        | 101,094       | 100,739       | 101,853       | 101,423       |
|                                |               |               |               |               |                |               |               |               |               |               |
| Si                             | 1,935         | 2,033         | 2,001         | 2,033         | 1,984          | 1,882         | 2,023         | 2,006         | 1,995         | 2,007         |
| Ti                             | 0,000         | 0,001         | 0,001         | 0,000         | 0,001          | 0,001         | 0,001         | 0,001         | 0,001         | 0,001         |
| Al                             | 0,069         | 0,046         | 0,087         | 0,045         | 0,115          | 0,095         | 0,065         | 0,076         | 0,089         | 0,076         |
| Cr                             | 0,000         | 0,004         | 0,013         | 0,004         | 0,020          | 0,011         | 0,004         | 0,004         | 0,019         | 0,006         |
| Mg                             | 2,972         | 2,622         | 2,576         | 2,684         | 2,572          | 2,650         | 2,590         | 2,608         | 2,605         | 2,627         |
| Ca                             | 0,001         | 0,001         | 0,001         | 0,001         | 0,001          | 0,197         | 0,001         | 0,001         | 0,001         | 0,001         |
| Mn                             | 0,001         | 0,003         | 0,003         | 0,001         | 0,003          | 0,004         | 0,003         | 0,003         | 0,000         | 0,003         |
| Fc <sup>2+</sup>               | 0,054         | 0,229         | 0,263         | 0,171         | 0,250          | 0,225         | 0,254         | 0,252         | 0,236         | 0,228         |
| Nİ                             | 0,000         | 0,003         | 0,004         | 0,005         | 0,004          | 0,004         | 0,003         | 0,004         | 0,005         | 0,004         |
| Total                          | 5,031         | 4,941         | 4,948         | 4,943         | 4,948          | 5,066         | 4,942         | 4,954         | 4,950         | 4,952         |
|                                |               |               | 1             |               |                |               |               |               |               |               |
| AI <sup>TV</sup>               | 0,065         | 0,000         | 0,000         | 0,000         | 0,016          | 0,119         | 0,000         | 0,000         | 0,005         | 0,000         |
| AI <sup>VI</sup>               | 0,004         | 0,046         | 0,087         | 0,045         | 0,099          | -0,024        | 0,065         | 0,076         | 0,084         | 0,076         |
| Mg#                            | 98,23         | 91,97         | 90,74         | 94,00         | 91,16          | 92,19         | 91,08         | 91,21         | 91,70         | 92,03         |
| Cr#                            | 0,00          | 7,50          | 12,63         | 7,25          | 14,81          | 10,00         | 5,11          | 4,98          | 17,87         | 7,58          |
|                                |               |               |               |               |                |               |               |               |               |               |

| Tableau | <b>C.3</b> | Composition | des serp | entines ar | nalysées à | la i | microsonde | e électronic | ue( | suite | ), |
|---------|------------|-------------|----------|------------|------------|------|------------|--------------|-----|-------|----|
|---------|------------|-------------|----------|------------|------------|------|------------|--------------|-----|-------|----|

|                                | ,<br>         |               |               |               |               |               |               |               |               |               |
|--------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Échantillons                   | 97-MH-7374-05 | 97-MH-7374-06 | 97-MH-7374-06 | 97-MH-7374-06 | 97-MH-7374-06 | 97-MH-7374-06 | 97-MH-7374-07 | 97-MH-7374-11 | 97-MH-7374-11 | 97-MH-7374-15 |
| Point                          | з             | 1             | 2             | 3             | 4             | 5             | 2             | 2             | 5             | 2             |
| Lithologic                     | Lherz A chro  | Harzb à chro  | Harzb A chro  | Harzb A chro  | Harzb A chro  | Harzb & chro  | Harzb À chro  | Harzb à chro  | Harzb A chro  | Lherz à chro  |
| Minéral (pseudo.)              | oi            | 01            | 01            | 01            | inconnu       | inconnu       | inconnu       | inconnu       | inconnu       | inconnu       |
|                                |               |               |               |               |               |               |               |               |               |               |
| SiO2                           | 43,097        | 42,421        | 43,535        | 43,896        | 42,452        | 41,949        | 42,274        | 41,679        | 41,395        | 44,177        |
| TIO2                           | 0,012         | 0,025         | 0,016         | 0,016         | 0,036         | 0,002         | 0,000         | 0,034         | 0,012         | 0,007         |
| Al <sub>2</sub> O <sub>3</sub> | 1,442         | 2,324         | 1,089         | 1,141         | 2,186         | 3,168         | 7,581         | 3,523         | 3,876         | 0,555         |
| Cr <sub>2</sub> O <sub>3</sub> | 0,256         | 0,607         | 0,166         | 0,210         | 0,466         | 0,608         | 2,768         | 0,828         | 1,205         | 0,055         |
| MgO                            | 37,846        | 38,128        | 39,028        | 38,544        | 37,848        | 37,924        | 31,015        | 37,953        | 38,308        | 39,402        |
| CaO                            | 0,022         | 0,007         | 0,024         | 0,011         | 0,010         | 0,000         | 4,410         | 0,033         | 0,035         | 0,009         |
| MnO                            | 0,055         | 0,030         | 0,002         | 0,057         | 0,034         | 0,038         | 0,027         | 0,010         | 0,040         | 0,090         |
| FcO                            | 6,128         | 4,910         | 4,501         | 5,031         | 5,233         | 4,536         | 2,815         | 3,845         | 3,162         | 3,922         |
| NIO                            | 0,103         | 0,150         | 0,149         | 0,152         | 0,147         | 0,199         | 0,135         | 0,158         | 0,169         | 0,150         |
| H₂O                            | 12,916        | 12,919        | 12,962        | 13,015        | 12,879        | 12,916        | 13,256        | 12,903        | 12,952        | 12,990        |
| Total                          | 101,877       | 101,521       | 101,472       | 102,073       | 101,291       | 101,369       | 104,353       | 100,992       | 101,269       | 101,357       |
|                                |               |               |               |               |               |               |               |               |               |               |
| Si                             | 2,001         | 1,969         | 2,014         | 2,023         | 1,977         | 1,948         | 1,913         | 1,937         | 1,917         | 2,039         |
| Ti                             | 0,001         | 0,001         | 0,001         | 0,001         | 0,001         | 0,000         | 0,000         | 0,001         | 0,001         | 0,000         |
| AL                             | 0,079         | 0,127         | D,059         | 0,062         | 0,120         | 0,173         | 0,404         | 0,193         | 0,212         | 0,030         |
| Cr                             | 0,010         | 0,022         | 0,006         | 0,008         | 0,017         | 0,022         | 0,099         | 0,031         | 0,044         | 0,002         |
| Mg                             | 2,620         | 2,638         | 2,692         | 2,648         | 2,627         | 2,625         | 2,092         | 2,630         | 2,644         | 2,712         |
| Ca                             | 0,001         | 0,000         | 0,001         | 0,001         | 0,001         | 0,000         | 0,214         | 0,002         | 0,002         | 0,001         |
| Mn                             | 0,002         | 0,001         | 0,000         | 0,002         | 0,001         | 0,002         | 0,001         | 0,001         | 0,002         | 0,004         |
| Fc <sup>2+</sup>               | 0,238         | 0,191         | 0,174         | 0,194         | 0,204         | 0,176         | 0,107         | 0,150         | 0,123         | 0,152         |
| NI                             | 0,004         | 0,006         | 0,006         | 0,006         | 0,006         | 0,008         | 0,005         | 0,006         | 0,006         | 0,006         |
| Total                          | 4,955         | 4,955         | 4,953         | 4,942         | 4,954         | 4,953         | 4,834         | 4,949         | 4,949         | 4,944         |
|                                |               |               |               |               |               |               |               |               |               |               |
| AI IV                          | 0,000         | 0,031         | 0,000         | 0,000         | 0,023         | 0,052         | 0,087         | 0,063         | 0,083         | 0,000         |
| A1 VI                          | 0,079         | 0,096         | 0,059         | 0,062         | 0,097         | 0,121         | 0,317         | 0,130         | 0,128         | 0,030         |
| Mg#                            | 91,67         | 93,27         | 93,92         | 93,18         | 92,80         | 93,72         | 95,16         | 94,62         | 95,57         | 94,71         |
| CrN                            | 10,73         | 14,88         | 9,20          | 11,11         | 12,57         | 11,38         | 19,67         | 13,65         | 17,22         | 6,20          |
|                                |               |               |               |               |               |               |               |               |               |               |

.

| 69 <b>'</b> I  | S0'6          | 3'05          | 02'9          | J9'20           | t S'9           | ÷0'9              | 74,81         | 85,71         | 15'30            | Cr#                |
|----------------|---------------|---------------|---------------|-----------------|-----------------|-------------------|---------------|---------------|------------------|--------------------|
| 80'68          | 12'69         | 61'68         | 56'26         | 92'26           | 80'66           | 16,69             | 51,69         | 60'\$6        | 94'46            | #8W                |
| 980'0          | 960'0         | 0'013         | 650'0         | 860'0           | 020'0           | 960,0             | 1 50'0        | £80,0         | 420 <b>,</b> 054 | N IN               |
| 0'005          | L10'0         | 000'0         | 000'0         | 820,0           | 000'0           | 000'0             | 000'0         | <b>400,0</b>  | 000'0            | VI IA              |
|                |               |               |               |                 |                 |                   |               |               |                  |                    |
| 728 <u>,</u> 4 | 4'622         | 4,952         | 446,4         | 4'825           | 296'Þ           | 646'4             | 646'4         | t S6'#        | 846,4            | ស្រែបា             |
| £00,0          | 0'003         | £00,0         | ¢00,0         | \$00 <b>'</b> 0 | \$00'0          | 0'002             | 900'0         | 900'0         | S00,0            | IN                 |
| 616,0          | 0'565         | 605,0         | toz'o         | 812,0           | 661'0           | 261'0             | 961'0         | 661,0         | 051,0            | եշ <sup>3</sup> ՝  |
| \$00'0         | 0'003         | 0'002         | 600,0         | £00,0           | 0'005           | £00,0             | 100'0         | 000'0         | 0'005            | nM                 |
| 100'0          | \$00'0        | 100'0         | 100'0         | t00'0           | 600'0           | 100'0             | 900'0         | 200'0         | 000'0            | Ca                 |
| 5'220          | 2,546         | 5'220         | 869,5         | 5'903           | \$L9'S          | 878,2             | 2'92L         | 969'Z         | 012'2            | 8W                 |
| 0'005          | 110'0         | 0'005         | £00,0         | 0'032           | ¥00'0           | 200,0             | 0'015         | 610'0         | 800,0            | 70                 |
| 880,0          | 611,0         | 270,0         | 620'0         | 0'132           | 0'020           | 9°032             | 0'021         | 780,0         | 0'024            | 11                 |
| 000'0          | 100'0         | 100'0         | 100'0         | 100'0           | 100'0           | 100'0             | 100'0         | 100'0         | 100'0            | IJ                 |
| 866'1          | E86'I         | 3'010         | 5,024         | 270,1           | 5'012           | 5'033             | 5'016         | 966'1         | 5'050            | 15                 |
|                | _             |               |               |                 |                 |                   |               |               |                  | <u></u>            |
| 992ť00t        | 699'001       | 101'538       | 100,824       | E8E'001         | 100'295         | 500'101           | 100,842       | 111'101       | 101'209          | latol              |
| \$29'ZI        | 12,683        | 12,742        | 128'21        | 15*233          | 15'805          | 12,885            | 15'843        | 15'642        | 13,004           | 04                 |
| 270,0          | 690,0         | S70,0         | 011'0         | 611.0           | 0'133           | 0'131             | 961,0         | 891'0         | 0'138            | OIN                |
| S68'L          | 986,7         | 648,7         | 241'S         | 645'S           | +20'S           | 566, <del>1</del> | 620'S         | \$6\$'£       | 988,C            | 03:                |
| ÷11'0          | 7£0,0         | 9119          | 570,0         | S60'0           | E\$0'0          | C90'0             | 120'0         | \$00'0        | 0'044            | OnW                |
| 800,0          | \$60'0        | 0'050         | 110'0         | 910'0           | 281'0           | 410'0             | 6,124         | 541'0         | 200'0            | 040                |
| 96,144         | 911'98        | 36,350        | 690'80        | 850'75          | 562 <b>,</b> 86 | 109'80            | 921'8E        | 040,95        | 124'66           | Ogh                |
| 0'043          | 006,0         | C90'0         | 680'0         | 899'0           | 960'0           | 690'0             | 0,310         | £0\$'0        | 202'0            | <sub>2</sub> 0ءرار |
| 1/2'1          | 3'030         | +06,1         | 220'1         | 5'328           | 016'0           | 768,0             | 0'655         | 1'289         | £86'0            | 50 <sup>2</sup> 11 |
| <b>\$00,0</b>  | 0'050         | 120'0         | 610'0         | 0,020           | 210'0           | 910'0             | 0,030         | 0'016         | B10,0            | ,Ol                |
| 45'535         | 666'14        | 45'200        | 645,64        | 178,14          | 43'013          | 929'64            | 742,64        | 001,64        | 118'6+           | ۲O۱:               |
|                |               |               |               |                 |                 |                   |               |               |                  |                    |
| xqO            | inconn        | xdO           | xdO           | to              | xqO             | хdО               | Cpx           | nuuooui       | nuuoon           | (iobuseq) Isrishi  |
| dz1811         | dziaH         | dznahl        | therzb & chro | ondo à danaH    | tharzb à chro   | οιής à driah      | ondo à drieH  | τρεις & είπο  | αιίο à stad.     | sigolothi.         |
| 4              | E             | t             | 9             | Ś               | 4               | 3                 | ī             | v             | E                | trio               |
| 81-4767-HM-70  | B1-4767-HM-70 | 81-47CT-HM-TQ | 91-47CT-HM-Te | 91-47ET-HM-Te   | 91-122-11W-26   | 91-+202-HW-26     | 91-4787-HM-70 | St-#267-HM-70 | SI-+767-HM-72    | enollitnado        |

| 0'65          | 28'9               | 5'60              | 60'#           | 3,43              | 5'05          | 5'40          | 3'00                | 88'I            | 26'9          | C <sup>1</sup> #   |
|---------------|--------------------|-------------------|----------------|-------------------|---------------|---------------|---------------------|-----------------|---------------|--------------------|
| 18'56         | 26'66              | 06'68             | 20'06          | <i>26</i> '06     | 18'69         | 4£'06         | 88,00               | Z9'06           | 89'68         | #8W                |
| 620'0         | 0*100              | 801'0             | S60'0          | 0'035             | ¢91'0         | 060'0         | £70,0               | 961'0           | \$80'0        | <i>۱۸ ۱۷</i>       |
| 0,002         | 441,0              | 0'039             | 110'0          | 200'0             | 0+1'0         | 800'0         | 000'0               | 660'0           | 000'0         | AI IV              |
|               |                    |                   |                |                   |               |               |                     |                 |               |                    |
| 626'4         | 080,4              | LS6'4             | \$\$6'\$       | 956'4             | 586'4         | 956'\$        | 996'+               | 626'4           | 4'024         | Total              |
| 100'0         | 600,0              | ¢00'0             | £00'0          | <b>400,0</b>      | £00,0         | £00'0         | \$00'0              | £00,0           | £00'0         | IN                 |
| 0'150         | 0'12 <del>4</del>  | 282'0             | 0,283          | 0'528             | 982'0         | 942'0         | 0'393               | 0'398           | 0'582         | بد <sub>ع</sub> ۰  |
| £00'0         | <b>+00'0</b>       | £00,0             | <b>\$00</b> ,0 | <del>1</del> 00,0 | 200'0         | 200,0         | \$00 <sup>4</sup> 0 | \$00 <b>,</b> 0 | 0'005         | uM                 |
| 100'0         | 100'0              | 000'0             | 100'0          | 000'0             | t 00'0        | £00'0         | 100'0               | 100'0           | 100'0         | ъ<br>Ся            |
| 3,753         | 3,635              | 5'225             | 59S'Z          | 96S'Z             | 5'233         | 625'Z         | 2'604               | 595'2           | 5'295         | 8W                 |
| 100'0         | 0'033              | <del>1</del> 00'0 | S00'0          | <del>1</del> 00'0 | 900'0         | £00'0         | 0'005               | \$00'0          | \$00'0        | Ct                 |
| 180'0         | <b>\$0</b> C,0     | 0'134             | 901'0          | 660'0             | \$06,0        | 860'0         | 670,0               | 0'332           | <b>6,084</b>  | Ví                 |
| 0'003         | 100,0              | 100'0             | 100'0          | 100'0             | 100'0         | 0'005         | 100'0               | 100'0           | 100'0         | L.                 |
| 666'1         | 958'1              | <b>₽</b> 26'1     | 686'1          | £66'I             | 098't         | £66'I         | 5'009               | 106'1           | 5'002         | IS                 |
|               |                    |                   |                |                   |               |               |                     |                 |               |                    |
| SI P,001      | 100'662            | 169'001           | 100'053        | 099'001           | 100'511       | 100'362       | 15+'001             | 691'001         | 100,625       | [AtoT]             |
| 806'21        | 15'833             | 869'21            | 13'930         | 15'238            | 15'606        | 15'677        | 15'206              | 15'637          | 12,684        | 0 <sup>4</sup> H   |
| 0'033         | 690'0              | <b>₽60'0</b>      | 220'0          | \$60'0            | 120'0         | 820'0         | 160'0               | 880,0           | 220'0         | OIN                |
| 3,093         | 9 <del>1</del> 6'E | 7,257             | 211'2          | <b>262,</b> 9     | 261'2         | 126'9         | 6,642               | 069'9           | 454'L         | PcO                |
| <b>\$90'0</b> | 0'105              | <b>\$80,0</b>     | 601'0          | 980,0             | <b>₽</b> 20'0 | 2000          | 001'0               | 260'0           | 240'0         | Oum                |
| 6,013         | 810'0              | 100'0             | 210'0          | 900'0             | 910'0         | 240'0         | 610'0               | 610,0           | £10'0         | C#O                |
| 39,742        | 37,820             | 36,242            | 36,206         | 36,982            | 925'90        | 045'96        | 31,012              | 36,258          | ESE'9E        | OBM                |
| 910'0         | 109'0              | 801,0             | 0'155          | ¥60'0             | 291'0         | <b>₽</b> 90'0 | 0'003               | 211'0           | 0110          | Ct3O3              |
| 081,1         | 2'231              | 2'401             | 688,1          | 922'1             | 214'S         | 992'1         | 206'1               | 4'501           | 664'I         | ۲i,0,              |
| 840,0         | 820,0              | 110'0             | \$10'0         | 110'0             | 110'0         | 240'0         | 0'050               | S10'0           | 610'0         | LiO <sup>3</sup>   |
| 610'64        | \$724<br>29,724    | \$6L'I+           | 41,857         | 45'332            | 960'68        | 45'150        | 864,24              | £20'0₽          | 146,54        | <sup>2</sup> OIS   |
|               | 1                  |                   |                |                   |               |               |                     |                 |               |                    |
| xqO           | xqO                | xqO               | 10             | nuuooui           | 10            | xdO           | 10                  | xqO             | inconn        | (.obuseq) IsrišniM |
| ะบวนา         | 21947              | rherz             | ะเวนุๆ         | risur             | zıəq7         | בוסעק         | rherz               | รมอนุว          | Няггр         | Lithologic         |
| 2             | T                  | L                 | 9              | 8                 | t,            | 3             | 5                   | T               | 2             | Point              |
| 02-4727-HM-70 | 02-4757-HM-72      | 61-4727-HM-70     | 61.4727.HM.70  | 01-47E7-HM-70     | 61.4727.HM-70 | 01-4727-HM-70 | 01-4757-HM-70       | 61.47257.HM-7Q  | 81-4757-HM-79 | ទី៤ពិភពពីរៀលក្នុ   |

| 5'31          | 5'20              | 96'6            | 3'86          | 0+'1             | 3'62          | 66'1          | 5'40             | 85'11         | 5,93          | Cr#               |
|---------------|-------------------|-----------------|---------------|------------------|---------------|---------------|------------------|---------------|---------------|-------------------|
| 80'66         | C6'C6             | 65'23           | 92,14         | 92,88            | 86'26         | 92'96         | <b>66,32</b>     | 86,40         | 94,84         | #8W               |
| 821,0         | 690'0             | 870,0           | 890'0         | 1 20'0           | 290'0         | 650,0         | 650,0            | 250'0         | 160'0         | IN IV             |
| 0'083         | 900'0             | 060,0           | 0,000         | 000'0            | 000'0         | 000'0         | 000'0            | 000'0         | 000'0         | NI IV             |
|               |                   |                 |               |                  |               |               |                  |               |               |                   |
| \$26'\$       | 296' <del>1</del> | £72,6           | 556'\$        | 296,P            | 196'4         | 096'4         | \$\$6'\$         | 926'4         | £26'4         | Total             |
| \$00'0        | 0'003             | 600,0           | <b>₽00,0</b>  | £00'0            | £00'0         | 0'005         | 6,003            | 600,0         | 0'005         | IN                |
| 961'0         | 921'0             | 0'319           | 0'332         | \$02'0           | 202'0         | <b>₩60'0</b>  | 901'0            | 191'0         | 261,0         | +e <sup>2</sup> d |
| 0'004         | £00'0             | 200,0           | <b>₩00</b> ,0 | \$00'0           | £00,0         | £00'0         | 100'0            | 900'0         | <b>₽00,0</b>  | пM                |
| 100'0         | 100'0             | 100'0           | 000'0         | £00'0            | 0'000         | 100'0         | 000'0            | 0'005         | 100'0         | Ca                |
| 3'932         | 5'214             | 5'670           | 2,69,2        | 57673            | 629'2         | S67,2         | 5'171            | 90L'Z         | \$02'Z        | 8W                |
| \$00'0        | 0,002             | 400 <b>,</b> 0  | 0'005         | 100'0            | £00'0         | 100'0         | 200'D            | 800'0         | £00'0         | Cr                |
| 0'310         | S70,0             | 801,0           | 890,0         | 120'0            | <b>490'0</b>  | £20'0         | 650'0            | 220'0         | T60'0         | ١٧                |
| 100'0         | 100'0             | 100'0           | 100'0         | 100'0            | 100'0         | 100'0         | 100'0            | 100'0         | t 00'0        | IT.               |
| 916'1         | ¢66'1             | 026'1           | 5'009         | 5'001            | 2,004         | 5'015         | 5'014            | 5'011         | 5'000         | IS                |
|               |                   |                 |               |                  |               |               |                  |               |               |                   |
| +02'101       | 101'295           | 010'101         | 421'101       | 484,101          | 891'101       | 101'064       | 60 <b>6</b> ,001 | \$67,101      | 100,932       | lato'T            |
| 15'033        | 15'693            | 12,828          | 159'81        | 15'815           | 15,880        | 13'056        | 15'634           | 15,948        | 15'639        | O <sup>t</sup> H  |
| 0'150         | 080,0             | 980,0           | 201'0         | 020'0            | 870,0         | 0'025         | 240'0            | 980'0         | <b>L</b> SO'0 | OIN               |
| 150'5         | 168'4             | 2'215           | S77,8         | 2,280            | \$61'S        | 5'458         | 5,727            | 651,4         | 108,6         | Do9               |
| £60'0         | 290'0             | 260,0           | 060'0         | 0'155            | 690'0         | 90°0          | 0'051            | 091'0         | 980'0         | ОлМ               |
| 0'032         | \$10'0            | 110'0           | 200'0         | 890'0            | 0'005         | 0'013         | 200'0            | 260,0         | 0'015         | CaO               |
| 38'150        | 39,345            | 38'311          | 086'45        | 669'8C           | 265,85        | CC7,04        | £60'01⁄          | 261'68        | 901'60        | OBM               |
| 161,0         | 0,053             | 660'0           | 620,0         | 6,024            | 040'0         | 810'0         | 640,0            | 0'501         | +20'0         | Cr3O3             |
| 3,643         | 62E'I             | 196'1           | 1,238         | 1,287            | 112'1         | <b>\$86'0</b> | 920't            | 050'1         | 029'1         | \$OsiA            |
| 810'0         | 260,0             | 0'052           | +10'0         | 860,0            | 020'0         | 860,0         | 0'032            | 960,0         | 220'0         | <sup>c</sup> O/T  |
| 896,14        | 160'6+            | 45'140          | 43'026        | 480,64           | 940,64        | 507,54        | 964,64           | 124,64        | 43'133        | <sup>c</sup> ois  |
|               |                   |                 |               |                  |               |               |                  |               |               |                   |
| nuuoouj       | xdQ               | nuuosui         | 10            | าเน่นออมา        | 10            | 10            | xdO              | KID           | 10            | (,obuseq) (minim  |
| Η κιχρ φ ςμιο | Ηατερ & chro      | натар à спро    | ondo à danaH  | Herzb à chro     | она à driat   | ราวที่ป       | rpcrz            | Lherz         | zısıq         | Lithologic        |
| 5             | ι                 | tł .            | 3             | 5                | 1             | 9             | s                | t             | E             | Point             |
| 97-MH-7374-22 | 97-MH-7374-22     | 12-12-12-11W-26 | 12.47CT.HM-T0 | 12-12-1202-HW-70 | 12-4757-HM-79 | 02.47CT.HM-TQ | 02-1/22-1-10-70  | 02-+757-HM-70 | 02-4767-HM-70 | Échantillona      |

| Échantillons                   | 97-MH-7374-22 | 97-MH-7385-03A | 97-MH-7385-03A | 97-MH-7499 | 97-MH-7499 | 97-MH-7499 | 97·MH·7499 | 97•MH•7499 | 97-MH-7499 | 97-MH-7499 |
|--------------------------------|---------------|----------------|----------------|------------|------------|------------|------------|------------|------------|------------|
| Point                          | 3             | 2              | 3              | 1          | 2          | 3          | 4          | 5          | 6          | 7          |
| Lithologic                     | Harzb A chro  | Chr Sil        | Chr Sil        | Wcbst Ol   | Webst Ol   |
| Minéral (pseudo.)              | 01            | inconnu        | inconnu        | Срх        | Орх        | 01         | Срх        | Орх        | 01         | Срх        |
|                                |               |                |                |            |            |            |            |            |            |            |
| SiO,                           | 43,527        | 39,613         | 41,023         | 41,760     | 42,533     | 42,973     | 41,997     | 43,328     | 43,232     | 41,436     |
| TiO,                           | 0,019         | 0,000          | 0,000          | 0,017      | 0,021      | 0,039      | 0,017      | 0,015      | 0,018      | 0,016      |
| Al <sub>2</sub> O <sub>3</sub> | 1,230         | 1,526          | 1,534          | 1,874      | 1,495      | 1,237      | 1,788      | 0,866      | 1,089      | 1,977      |
| Cr <sub>2</sub> O <sub>3</sub> | 0,099         | 0,043          | 0,096          | 0,818      | 0,175      | 0,217      | 0,810      | 0,077      | 0,087      | 1,095      |
| MgO                            | 39,175        | 37,337         | 37,230         | 37,316     | 37,906     | 38,048     | 37,567     | 38,382     | 38,172     | 37,123     |
| CaO                            | 0,012         | 0,000          | 0,004          | 0,006      | 0,029      | 0,001      | 0,006      | 0,004      | 0,000      | 0,018      |
| MnO                            | 0,124         | 0,074          | 0,064          | 0,028      | 0,065      | 0,047      | 0,058      | 0,039      | 0,019      | 0,026      |
| FeO                            | 4,676         | 6,164          | 6,521          | 5,307      | 5,349      | 5,101      | 5,324      | 4,890      | 5,029      | 5,299      |
| NiO                            | 0,103         | 0,000          | 0,000          | 0,073      | 0,097      | 0,105      | 0,085      | 0,113      | 0,093      | 0,073      |
| H₂O                            | 13,012        | 12,238         | 12,498         | 12,677     | 12,773     | 12,813     | 12,740     | 12,828     | 12,826     | 12,641     |
| Total                          | 101,977       | 96,995         | 98,970         | 99,876     | 100,443    | 100,581    | 100,392    | 100,542    | 100,565    | 99,704     |
|                                |               |                |                |            |            |            |            |            |            |            |
| Si                             | 2,006         | 1,941          | 1,969          | 1,975      | 1,997      | 2,011      | 1,977      | 2,026      | 2,021      | 1,966      |
| Ti                             | 0,001         | 0,000          | 0,000          | 0,001      | 0,001      | 0,002      | 0,001      | 0,001      | 0,001      | 0,001      |
| Al                             | 0,067         | 0,088          | 0,087          | 0,105      | 0,083      | 0,068      | 0,099      | 0,048      | 0,060      | 0,111      |
| Cr                             | 0,004         | 0,002          | 0,004          | 0,031      | 0,007      | 0,008      | 0,030      | 0,003      | 0,003      | 0,041      |
| Mg                             | 2,692         | 2,728          | 2,663          | 2,632      | 2,653      | 2,655      | 2,636      | 2,675      | 2,661      | 2,625      |
| Ca                             | 0,001         | 0,000          | 0,000          | 0,000      | 0,002      | 0,000      | 0,000      | 0,000      | 0,000      | 0,001      |
| Mn                             | 0,005         | 0,003          | 0,003          | 0,001      | 0,003      | 0,002      | 0,002      | 0,002      | 0,001      | 0,001      |
| Fe <sup>2</sup>                | 0,180         | 0,253          | 0,262          | 0,210      | 0,210      | 0,200      | 0,210      | 0,191      | 0,197      | 0,210      |
| Ni                             | 0,004         | 0,000          | 0,000          | 0,003      | 0,004      | 0,004      | 0,003      | 0,004      | 0,004      | 0,003      |
| Total                          | 4,958         | 5,014          | 4,987          | 4,957      | 4,958      | 4,950      | 4,958      | 4,949      | 4,947      | 4,958      |
|                                |               |                |                |            |            |            |            |            |            |            |
| AL IV                          | 0,000         | 0,059          | 0,032          | 0,025      | 0,003      | 0,000      | 0,023      | 0,000      | 0,000      | 0,035      |
| A1 <sup>V1</sup>               | 0,067         | 0,029          | 0,055          | 0,080      | 0,080      | 0,068      | 0,076      | 0,048      | 0,060      | 0,076      |
| Mg#                            | 93,72         | 91,53          | 91,05          | 92,61      | 92,67      | 93,00      | 92,64      | 93,33      | 93,11      | 92,59      |
| Cr#                            | 4,98          | 1,94           | 4,14           | 22,59      | 7,28       | 10,49      | 23,36      | 5,45       | 5,14       | 27,06      |

| Échantillons                   | 97•MH•7499 | 97-MH-7499 | 97-MH-7499 | 97-MH-7499 | 97-MH-7499 | 97-MH-7499 | 97-MH-7501 | 97-MH-7503-A | 97-MH-7503-A | 97-MH-7503-A |
|--------------------------------|------------|------------|------------|------------|------------|------------|------------|--------------|--------------|--------------|
| Point                          | 8          | 9          | 10         | 11         | 12         | 13         | 1          | 1            | 2            | 3            |
| Lithologie                     | Webst Ol   | Chr Sil    | Harzb        | Harzb        | Harzb        |
| Minéral (pseudo.)              | 01         | 01         | Орх        | Срх        | Орх        | 01         | inconnu    | 01           | inconnu      | inconnu      |
|                                |            |            |            |            |            |            |            |              |              |              |
| SiO <sub>2</sub>               | 43,210     | 43,028     | 42,837     | 42,504     | 43,098     | 42,743     | 43,743     | 42,603       | 43,349       | 42,259       |
| TiO <sub>2</sub>               | 0,013      | 0,009      | 0,024      | 0,031      | 0,026      | 0,030      | 0,006      | 0,000        | 0,000        | 0,000        |
| Al <sub>2</sub> O <sub>3</sub> | 0,964      | 1,021      | 1,354      | 1,516      | 1,191      | 1,370      | 1,069      | 0,680        | 0,685        | 1,249        |
| Cr <sub>2</sub> O <sub>3</sub> | 0,114      | 0,047      | 0,118      | 0,329      | 0,079      | 0,213      | 0,002      | 0,145        | 0,000        | 0,464        |
| MgO                            | 38,174     | 38,197     | 38,431     | 37,776     | 38,168     | 37,927     | 40,614     | 36,898       | 37,543       | 37,360       |
| CaO                            | 0,011      | 0,004      | 0,007      | 0,012      | 0,009      | 0,006      | 0,017      | 0,000        | 0,000        | 0,000        |
| MnO                            | 0,046      | 0,009      | 0,058      | 0,004      | 0,018      | 0,026      | 0,032      | 0,000        | 0,020        | 0,020        |
| FeO                            | 4,794      | 5,001      | 4,906      | 5,333      | 5,197      | 5,203      | 2,330      | 7,233        | 6,743        | 7,009        |
| NiO                            | 0,093      | 0,101      | 0,105      | 0,091      | 0,099      | 0,104      | 0,144      | 0,000        | 0,000        | 0,000        |
| H2O                            | 12,792     | 12,777     | 12,831     | 12,763     | 12,832     | 12,783     | 13,025     | 12,648       | 12,810       | 12,710       |
| Total                          | 100,211    | 100,194    | 100,671    | 100,359    | 100,717    | 100,405    | 100,982    | 100,207      | 101,150      | 100,747      |
|                                |            |            |            |            |            |            | [          |              |              |              |
| si                             | 2,026      | 2,020      | 2,002      | 1,997      | 2,014      | 2,005      | 2,014      | 2,020        | 2,029        | 1,994        |
| Ti                             | 0,001      | 0,000      | 0,001      | 0,001      | 0,001      | 0,001      | 0,000      | 0,000        | 0,000        | 0,000        |
| A1                             | 0,053      | 0,057      | 0,075      | 0,084      | 0,066      | 0,076      | 0,058      | 0,038        | 0,038        | 0,070        |
| Cr                             | 0,004      | 0,002      | 0,004      | 0,012      | 0,003      | 0,008      | 0,000      | 0,006        | 0,000        | 0,017        |
| Mg                             | 2,668      | 2,673      | 2,678      | 2,646      | 2,659      | 2,653      | 2,788      | 2,608        | 2,620        | 2,605        |
| Ca                             | 0,001      | 0,000      | 0,000      | 0,001      | 0,001      | 0,000      | 0,001      | 0,000        | 0,000        | 0,000        |
| Mn                             | 0,002      | 0,000      | 0,002      | 0,000      | 0,001      | 0,001      | 0,001      | 0,000        | 0,001        | 0,001        |
| Fe <sup>2+</sup>               | 0,188      | 0,196      | 0,192      | 0,210      | 0,203      | 0,204      | 0,090      | 0,287        | 0,264        | 0,277        |
| NI                             | 0,004      | 0,004      | 0,004      | 0,004      | 0,004      | 0,004      | 0,005      | 0,000        | 0,000        | 0,000        |
| Total                          | 4,945      | 4,951      | 4,957      | 4,954      | 4,951      | 4,952      | 4,957      | 4,958        | 4,952        | 4,963        |
|                                |            |            |            |            |            |            |            |              |              |              |
| AI <sup>IV</sup>               | 0,000      | 0,000      | 0,000      | 0,003      | 0,000      | 0,000      | 0,000      | 0,000        | 0,000        | 0,006        |
| A1 VI                          | 0,053      | 0,057      | 0,075      | 0,081      | 0,066      | 0,076      | 0,058      | 0,038        | 0,038        | 0,063        |
| Mg#                            | 93,42      | 93,16      | 93,32      | 92,66      | 92,91      | 92,86      | 96,8B      | 90,09        | 90,85        | 90,40        |
| Crw                            | 7,39       | 3,00       | 5,40       | 12,73      | 4,38       | 9,55       | 0,00       | 12,64        | 0,00         | 19,88        |

.

| Échantillons                   | 97-MH-7507-B | 97-MH-7507-B | 97•MH•7507•B | 97-MII-7507-B |
|--------------------------------|--------------|--------------|--------------|---------------|
| Point                          | 1            | 2            | 3            | 4             |
| Lithologie                     | Chr Sil      | Chr Sil      | Chr Sil      | Chr Sil       |
| Minéral (pseudo.)              | inconnu      | inconnu      | inconnu      | inconnu       |
|                                |              |              |              |               |
| SiO <sub>2</sub>               | 39,899       | 40,275       | 41,191       | 40,424        |
| TiO <sub>2</sub>               | 0,026        | 0,013        | 0,008        | 0,021         |
| Al <sub>2</sub> O <sub>3</sub> | 4,157        | 3,274        | 2,676        | 3,349         |
| Cr <sub>2</sub> O <sub>3</sub> | 1,193        | 1,191        | 0,959        | 1,091         |
| MgO                            | 34,355       | 34,253       | 34,632       | 34,380        |
| CaO                            | 0,003        | 0,015        | 0,009        | 0,007         |
| MnO                            | 0,054        | 0,082        | 0,044        | 0,056         |
| FcO                            | 7,829        | 8,404        | 8,365        | 8,005         |
| NIO                            | 0,149        | 0,131        | 0,122        | 0,133         |
| H20                            | 12,553       | 12,512       | 12,596       | 12,525        |
| Total                          | 100,218      | 100,150      | 100,602      | 99,991        |
|                                |              |              |              |               |
| Si                             | 1,906        | 1,930        | 1,961        | 1,936         |
| TI                             | 0,001        | 0,001        | 0,000        | 0,001         |
| ۸۱                             | 0,234        | 0,185        | 0,150        | 0,189         |
| Cr                             | 0,045        | 0,045        | 0,036        | 0,041         |
| Mg                             | 2,447        | 2,447        | 2,458        | 2,454         |
| Са                             | 0,000        | 0,001        | 0,001        | 0,000         |
| Mn                             | 0,002        | 0,003        | 0,002        | 0,002         |
| Fe <sup>2+</sup>               | 0,313        | 0,337        | 0,333        | 0,321         |
| NI                             | 0,006        | 0,005        | 0,005        | 0,005         |
| Total                          | 4,954        | 4,954        | 4,945        | 4,949         |
|                                |              |              |              | 1             |
| Al <sup>IV</sup>               | 0,094        | 0,070        | 0,039        | 0,065         |
| A1 <sup>VI</sup>               | 0,140        | 0,115        | 0,111        | 0,125         |
| Mg#                            | 88,67        | 87,90        | 88,07        | 88,45         |
| Cr#                            | 16,13        | 19,65        | 19,35        | 17,92         |
|                                |              |              |              |               |

# **ANNEXE C.4**

ANALYSES DES CHLORITES

| 12'20         | 89'L          | 5,64              | +£,0                | 61'0          | 09'0         | 89'71        | 9 <b>1</b> 2'40    | 10'44           | 20'0         | Ct#                            |
|---------------|---------------|-------------------|---------------------|---------------|--------------|--------------|--------------------|-----------------|--------------|--------------------------------|
| 61'25         | £9'16         | 16'26             | 65'88               | 83'52         | 76'S6        | S1'86        | ££,89              | ¥0'86           | SE'92        | *8M                            |
| 945'0         | 0+6'0         | E1+'1             | 086'1               | 5'040         | 1'232        | 861,1        | £20'1              | ¥61'1           | 5'516        | <sub>له</sub> ۱۷               |
| 112'0         | 800't         | 1'205             | 5'101               | 5'512         | LE9'1        | 929'1        | 819'1              | 1'239           | 3/2/2        | AI IV                          |
|               |               |                   |                     |               |              |              |                    |                 |              |                                |
| S+6'61        | 096'61        | 20'072            | 50'040              | 50'082        | 20,040       | 210'02       | 50'028             | 50,005          | 20'02        | latoT                          |
| 6,II          | в.п           | 000'0             | 0'003               | 100'0         | 400,0        | 010'0        | 100,0              | 600'0           | 8.U          | ٨                              |
| <u>в.п</u>    | <u>я.п</u>    | 680,0             | 000'0               | 0'005         | 000'0        | 600'0        | 200'0              | 100'0           | <u>в.л</u>   | Я                              |
| 8.0           | <b>n.</b> n   | 0'003             | £00'0               | 900'0         | 900'0        | 900'0        | \$00'0             | 600'0           | 900'0        | вИ                             |
| SE0,0         | 6'034         | 0'032             | S10'0               | 0'033         | 600'0        | 6:0'0        | 4E0,0              | 200'0           | 960,0        | 1N                             |
| 656,0         | 0'003         | 0+7,0             | 1'945               | 1'925         | 721,0        | 6110         | <b>₽</b> 21'0      | 0'502           | 2,312        | <sup>4c</sup> 3+               |
| 100'0         | 610,0         | 200'0             | 610'0               | 610'0         | 000'0        | 0'005        | 400'0              | 000'0           | 260,0        | υW                             |
| 610'0         | 600,0         | £00'0             | \$00 <sup>1</sup> 0 | 100'0         | 0'005        | 100'0        | 100'0              | 0'003           | 0'005        | Ca                             |
| SE1'01        | <b>206'</b> 6 | £69'6             | 696,8               | C1 C'B        | 10,042       | 10,227       | 10'341             | 10'526          | Z94'L        | 8Mg                            |
| 0'536         | 0'193         | 620'0             | +10'0               | 800'0         | 610'0        | \$66,0       | 264 <sup>,</sup> 0 | 216'0           | £00'0        | Ct.                            |
| 1,287         | 846'1         | 5,915             | 180'                | 4'522         | 3'162        | \$174        | 169'2              | 5'250           | 265'¥        | ١٧                             |
| £0040         | 400'0         | 200'0             | S00'0               | 000'0         | 900'0        | <b>₽00,0</b> | 100'0              | 0'005           | 600,0        | ۶.                             |
| 682,7         | 766'9         | 864'9             | 668'5               | S87,8         | 6,363        | 6,424        | 6,382              | ÷2+'9           | 5,624        | 15                             |
|               |               |                   |                     |               |              |              |                    |                 |              |                                |
| 100,214       | 100150        | 504,001           | \$24,80             | 68'555        | \$\$8'66     | E61'66       | 885'66             | 998'86          | 865,86       | Total:                         |
| 15'607        | 13'939        | 869'71            | 12,164              | 12,120        | 15'21        | 15'993       | 12'694             | 15'929          | 646'11       | O <sup>r</sup> H               |
| <u>н.п</u>    | 8.0           | 000'0             | 210'0               | 600'0         | 0'036        | 990'0        | \$00°0             | 0'093           | <u>в.п</u>   | <sup>6</sup> 0°۸               |
| <u>в</u> ,п   | <b>D.A</b>    | 245,0             | 000'0               | 200'0         | 100'0        | 010'0        | 200'0              | \$00 <b>'</b> 0 | а.а          | O <sub>c</sub> y               |
| в.д           | B.R           | S00'0             | 600'0               | 910'0         | \$10'0       | 210'0        | <b>\$10'0</b>      | 6,023           | S10'0        | O <sup>t</sup> en              |
| 0,228         | 691'0         | 0'163             | <b>₩60'0</b>        | 1+1'0         | 090'0        | 0'524        | 122'0              | S≯0'0           | 122'0        | OIN                            |
| 668'S         | 629'5         | 289' <del>6</del> | 926'6               | 501'01        | 2,720        | 1'550        | z01't              | 1'555           | 994'61       | ૦ગ્ય                           |
| 600'0         | 620'0         | 0'045             | ÷11'0               | stt'o         | 000'0        | 0'015        | 220'0              | 000'0           | 212,0        | ОлМ                            |
| £60'0         | 910'0         | Et0'0             | 0'053               | 900'0         | 600'0        | 200'0        | 200'0              | 600'0           | t10'0        | CaO                            |
| 0EL'SE        | E96'#E        | 34'455            | 844,85              | 58'126        | 678,85       | 36,216       | 36,352             | 70E,8E          | 126'62       | Oam                            |
| 129'1         | 920'1         | 0'231             | 0'035               | <b>₽</b> 20'0 | 671'0        | 3,633        | 3'539              | 5,117           | 120'0        | Cr3O3                          |
| 667,39        | 669'9         | \$60'EI           | 095'21              | 18'543        | 14'533       | 15'122       | 15'082             | 15'128          | 266'61       | VI <sup>3</sup> O <sup>2</sup> |
| L20'0         | 970'0         | G10'0             | teo'o               | 000'0         | 940,0        | 0'036        | 800'0              | 910'0           | 0'033        | L103                           |
| 116'96        | 808,86        | 66C'+C            | 56'67               | 59'530        | 33,892       | 116'88       | 122'55             | 34'120          | 28,003       | <sup>t</sup> OIS               |
|               |               |                   |                     |               |              |              |                    |                 | 1            |                                |
| Chr ail       | Сһт зі        | D <i>n</i> έ chro | DM & X9             | DM & x9       | CPt          | CPL          | Chr                | Chr             | Filon St     | ង់ទ្រស់លំការដែ                 |
| 9             | 4             | ĩ                 | 5                   | 1             | 1            | 3            | 3                  | 1               | I            | tniog                          |
| 18-2555-DL-76 | 18-2929-00-26 | 97-JC-5557-A      | 97-JC-5116-B        | 8-9115-07-26  | A-0118-0L-76 | 97-JC-5113-A | 97-JC-5113-A       | 97-JC-5113-A    | 97.CD-5638.B | Bchantillona                   |

| Echantillons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97-JC-5557-C                                                                                                   | 97-JC-5557-D | 97-JC-5557-D | 97-JC-5557-D                                                                                                   | 97-JC-5557-D | 97-JC-5557-D | 97-JC-5557-E | 97-JC-5557-E                                                                                                   | 97-JC-5557-E | 97-JC-5557-E |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                             | 1            | 2            | 3                                                                                                              | 4            | 5            | 1            | 2                                                                                                              | 3            | 4            |
| Lithologie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Harzb                                                                                                          | Chr sil      | Chr sil      | Chr sil                                                                                                        | Chr sil      | Chr sil      | Chr sil      | Chr sil                                                                                                        | Chr sil      | Chr sil      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |              |              |                                                                                                                |              |              |              |                                                                                                                |              |              |
| SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33,274                                                                                                         | 31,994       | 34,406       | 33,493                                                                                                         | 33,560       | 33,697       | 35,232       | 33,886                                                                                                         | 33,797       | 35,574       |
| TiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,007                                                                                                          | 0,024        | 0,009        | 0,000                                                                                                          | 0,003        | 0,030        | 0,000        | 0,009                                                                                                          | 0,035        | 0,020        |
| Al <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12,511                                                                                                         | 17,460       | 13,396       | 11,260                                                                                                         | 11,200       | 13,614       | 8,641        | 10,890                                                                                                         | 13,029       | 10,698       |
| Cr <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,097                                                                                                          | 0,422        | 0,512        | 4,919                                                                                                          | 5,007        | 1,718        | 4,238        | 3,646                                                                                                          | 1,712        | 3,708        |
| MgO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32,547                                                                                                         | 34,510       | 35,718       | 35,037                                                                                                         | 34,815       | 35,461       | 35,758       | 35,305                                                                                                         | 35,152       | 34,577       |
| CaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,018                                                                                                          | 0,017        | 0,013        | 0,034                                                                                                          | 0,023        | 0,000        | 0,025        | 0,006                                                                                                          | 0,014        | 0,104        |
| MnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,074                                                                                                          | 0,006        | 0,018        | 0,011                                                                                                          | 0,035        | 0,005        | 0,035        | 0,013                                                                                                          | 0,003        | 0,036        |
| FeO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,026                                                                                                          | 2,121        | 1,993        | 2,002                                                                                                          | 1,698        | 1,985        | 1,848        | 2,060                                                                                                          | 2,250        | 1,972        |
| NIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,099                                                                                                          | 0,195        | 0,284        | 0,260                                                                                                          | 0,337        | 0,382        | 0,267        | 0,257                                                                                                          | 0,293        | 0,259        |
| Na <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                          | 0,027        | 0,033        | 0,020                                                                                                          | 0,007        | 0,009        | 0,004        | 0,000                                                                                                          | 0,004        | 0,013        |
| K₂O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,014                                                                                                          | 0,024        | 0,005        | 0,024                                                                                                          | 0,001        | 0,024        | 0,006        | 0,004                                                                                                          | 0,005        | 0,016        |
| V <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,074                                                                                                          | 0,000        | 0,000        | 0,101                                                                                                          | 0,000        | 0,084        | 0,009        | 0,022                                                                                                          | 0,000        | 0,000        |
| H3O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,289                                                                                                         | 12,750       | 12,706       | 12,597                                                                                                         | 12,552       | 12,722       | 12,500       | 12,505                                                                                                         | 12,615       | 12,684       |
| Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98,030                                                                                                         | 99,550       | 99,093       | 99,758                                                                                                         | 99,238       | 99,731       | 98,563       | 98,603                                                                                                         | 98,909       | 99,661       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |              |              |                                                                                                                |              |              |              |                                                                                                                |              |              |
| Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,495                                                                                                          | 6,019        | 6,495        | 6,378                                                                                                          | 6,413        | 6,353        | 6,761        | 6,500                                                                                                          | 6,426        | 6,728        |
| Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,001                                                                                                          | 0,003        | 0,001        | 0,000                                                                                                          | 0,000        | 0,004        | 0,000        | 0,001                                                                                                          | 0,005        | 0,003        |
| Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,878                                                                                                          | 3,871        | 2,980        | 2,527                                                                                                          | 2,523        | 3,025        | 1,954        | 2,462                                                                                                          | 2,920        | 2,384        |
| Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,015                                                                                                          | 0,063        | 0,076        | 0,741                                                                                                          | 0,757        | 0,256        | 0,643        | 0,553                                                                                                          | 0,257        | 0,554        |
| Мв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,471                                                                                                          | 9,679        | 10,052       | 9,946                                                                                                          | 9,919        | 9,967        | 10,230       | 10,096                                                                                                         | 9,964        | 9,748        |
| Са                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,004                                                                                                          | 0,003        | 0,003        | 0,007                                                                                                          | 0,005        | 0,000        | 0,005        | 0,001                                                                                                          | 0,003        | 0,021        |
| Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,012                                                                                                          | 0,001        | 0,003        | 0,002                                                                                                          | 0,006        | 0,001        | 0,006        | 0,002                                                                                                          | 0,000        | 0,006        |
| Fe <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,147                                                                                                          | 0,334        | 0,315        | 0,319                                                                                                          | 0,271        | 0,313        | 0,297        | 0,330                                                                                                          | 0,358        | 0,312        |
| Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,015                                                                                                          | 0,030        | 0,043        | 0,040                                                                                                          | 0,052        | 0,058        | 0,041        | 0,040                                                                                                          | 0,045        | 0,039        |
| Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,000                                                                                                          | 0,010        | 0,012        | 0,007                                                                                                          | 0,003        | 0,003        | 0,002        | 0,000                                                                                                          | 0,001        | 0,005        |
| к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,004                                                                                                          | 0,006        | 0,001        | 0,006                                                                                                          | 0,000        | 0,006        | 0,002        | 0,001                                                                                                          | 0,001        | 0,004        |
| v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,012                                                                                                          | 0,000        | 0,000        | 0,015                                                                                                          | 0,000        | 0,013        | 0,001        | 0,003                                                                                                          | 0,000        | 0,000        |
| Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20,054                                                                                                         | 20,019       | 19,981       | 19,988                                                                                                         | 19,949       | 19,999       | 19,942       | 19,989                                                                                                         | 19,980       | 19,804       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |              |              |                                                                                                                |              |              |              |                                                                                                                |              |              |
| A1 <sup>IV</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,505                                                                                                          | 1,981        | 1,505        | 1,622                                                                                                          | 1,587        | 1,647        | 1,239        | 1,500                                                                                                          | 1,574        | 1,272        |
| AJ VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,373                                                                                                          | 1,890        | 1,475        | 0,905                                                                                                          | 0,936        | 1,378        | 0,715        | 0,962                                                                                                          | 1,346        | 1,112        |
| Mg#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89,20                                                                                                          | 96,66        | 96,96        | 96,89                                                                                                          | 97,34        | 96,96        | 97,18        | 96,83                                                                                                          | 96,53        | 96,90        |
| Cr#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,52                                                                                                           | 1,60         | 2,49         | 22,67                                                                                                          | 23,08        | 7,80         | 24,76        | 18,34                                                                                                          | 8,09         | 18,86        |
| The rest of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local | the second second second second second second second second second second second second second second second s |              |              | the second second second second second second second second second second second second second second second s |              |              |              | the second second second second second second second second second second second second second second second s |              |              |

| 5'80          | 86,6                                  | 60'1           | 28,1                         | 00'0               | ÷1'6          | 82'61        | 13,72                                                                                                          | £1'S                                  | 26'81          | Cr#                           |
|---------------|---------------------------------------|----------------|------------------------------|--------------------|---------------|--------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|-------------------------------|
| 91'06         | 61,24                                 | <b>\$9</b> ,89 | 65'82                        | 6†'96              | 24'S6         | 91'96        | 87,52                                                                                                          | <b>79'96</b>                          | L6'96          | #8W                           |
| 1241          | 1,452                                 | 1'593          | 847,1                        | 1'205              | 086,1         | 846'0        | 1,224                                                                                                          | 1'365                                 | 646'0          | <sup>۲</sup> ۱۸               |
| 1'993         | 625'1                                 | 656,1          | L26'1                        | 918'1              | EE7,1         | 079't        | 620,1                                                                                                          | 1'235                                 | 684'1          | VI IV                         |
|               |                                       |                |                              |                    |               |              |                                                                                                                |                                       |                |                               |
| 1 70,05 1     | 20'012                                | 50'036         | 70,057                       | 511'02             | 50'053        | 20,023       | 267,92                                                                                                         | 886'61                                | £26'61         | Total:                        |
| ם.פ           | 000'0                                 | <u>в,д</u>     | 8,0                          | 8.0                | គ.ព           | B,N          | 8. <b>0</b>                                                                                                    | \$00'0                                | 000'0          | ٨                             |
| a.n           | £00'0                                 | 8.0            | A.n                          | а.п                | B,N           | <b>В</b> .Ц  | <b>B</b> .N                                                                                                    | 100,0                                 | 400 <b>'</b> 0 | Я                             |
| ង.ព           | 800,0                                 | 800,0          | t⁄00'0                       | 200'0              | 400,0         | 800'0        | טיפ                                                                                                            | 100'0                                 | 000'0          | BN                            |
| 0'012         | 910'0                                 | 000'0          | 660,0                        | 000'0              | S10,0         | 620,0        | 110'0                                                                                                          | 440,0                                 | 940,0          | IN                            |
| SE0'1         | 610,0                                 | 894'0          | 5'116                        | 696,0              | 294,0         | 004'0        | 167,0                                                                                                          | 196,0                                 | 615'0          | ե <sup>գ</sup> յ,             |
| 600'0         | <b>\$00,0</b>                         | 900'0          | 0,023                        | 0'005              | t 00'0        | 100'0        | 800'0                                                                                                          | 0,002                                 | t00'0          | uM                            |
| 200'0         | 0'005                                 | 000'0          | 600,0                        | 000'0              | 000'0         | 000'0        | 200,0                                                                                                          | 200'0                                 | 0'005          | Ca                            |
| 884,0         | 805'6                                 | 10'561         | 666 <b>'</b> L               | 561,01             | 6,843         | 400'0I       | 765,922                                                                                                        | 10'031                                | 190'01         | 8W                            |
| 680'0         | 901'0                                 | 0'030          | 890'0                        | 000'0              | ete'o         | 0'033        | Z9E'0                                                                                                          | 851,0                                 | 655'0          | Cr                            |
| 980,5         | teo'e                                 | 5'933          | 3,675                        | 804,C              | et t'e        | 5'268        | 5'511                                                                                                          | 5,924                                 | 2'468          | IA                            |
| 200'0         | £00,0                                 | 100'0          | 000'0                        | 000'0              | 000'0         | 000'0        | 0'005                                                                                                          | 200'0                                 | 200 <b>'</b> 0 | i'T                           |
| 266,8         | 121,8                                 | 149'9          | £70,ð                        | <del>1</del> 81,84 | L92'9         | 086,3        | 246'9                                                                                                          | 894,8                                 | 119'9          | IS                            |
|               |                                       |                |                              |                    |               |              |                                                                                                                |                                       |                |                               |
| 261'66        | 222'86                                | 872,001        | \$*0 <b>`</b> 05 <b>'</b> 05 | 66'145             | 901'001       | 976'66       | 614,001                                                                                                        | \$LE'86                               | 942'86         | :lato]                        |
| 15,442        | 12,380                                | 12,824         | 15'042                       | 15'699             | 512'21        | 15'953       | 15'230                                                                                                         | 15'219                                | 12,528         | O <sup>t</sup> H              |
| <b>в</b> .п   | 000'0                                 | 8.0            | B.D                          | <b>в</b> .а        | ន.ព           | 8,0          | <b>в</b> ,п                                                                                                    | 920'0                                 | 000'0          | ۸۵۵۶                          |
| в.0           | 0'015                                 | 8.0            | В.П                          | A.U                | <b>В</b> .Л   | <b>в</b> ,д  | <b>B</b> , <b>D</b>                                                                                            | £00,0                                 | St0'0          | K <sup>1</sup> O              |
| 8.0           | 0'033                                 | 120'0          | 110'0                        | 0'050              | 110'0         | 0'053        | <u>в</u> .п                                                                                                    | £00'0                                 | 000'0          | Oran                          |
| 860'0         | £01'0                                 | 000'0          | 0'502                        | 000'0              | 960'0         | 261'0        | 120'0                                                                                                          | 0,286                                 | 106,0          | OIN                           |
| 814,8         | 2'934                                 | 5,993          | 680,61                       | 565,235            | 196'Z         | 5'219        | 768,4                                                                                                          | <b>3</b> 61'2                         | 196'1          | 0.99                          |
| 0'025         | 720,0                                 | 660,0          | 961'0                        | S10'0              | 200'0         | £00,0        | 840,0                                                                                                          | 0'010                                 | 200'0          | OuM                           |
| SE0'0         | 010'0                                 | 000'0          | 910'0                        | 000'0              | 000'0         | 000'0        | 110'0                                                                                                          | 110'0                                 | 0'010          | CaO                           |
| 610,66        | 32'618                                | 662'98         | 56'643                       | 39'039             | 32'000        | 616'56       | 804,55                                                                                                         | 32'52                                 | 32,248         | 08M                           |
| <b>\$85,0</b> | 169'0                                 | 261'0          | 664,0                        | 000'0              | 260'2         | 612,4        | 5'452                                                                                                          | 860,1                                 | 069'8          | C13O3                         |
| £72,61        | 222'51                                | +68'11         | 859'51                       | 12'308             | 14'000        | 296,11       | 10'543                                                                                                         | 13'006                                | 966'01         | 1 <sup>3</sup> O <sup>2</sup> |
| 91-0'0        | 810'0                                 | 200'0          | 000'0                        | 000'0              | 000'0         | 000'0        | 910'0                                                                                                          | 210'0                                 | S+0'0          | <sup>z</sup> O!J              |
| 178,55        | 33,140                                | 32'204         | S6*'0E                       | 867,56             | 612'55        | 33,575       | 36,838                                                                                                         | 116'88                                | S00,FC         | 2019                          |
|               | • • • • • • • • • • • • • • • • • • • |                | ]                            |                    |               |              |                                                                                                                |                                       | 1              | [                             |
| μαιχρψ σμο    | Harzb à chro                          | רוופוש ע בוונט | Webat                        | οιής Α τισήλ       | Chr sil       | Chr ail      | Perid                                                                                                          | Chr all                               | Chr all        | aigoloditi                    |
| t             | 1                                     | 1              | I.                           | 1                  | 5             | т            | 5                                                                                                              | 9                                     | 2              | Point                         |
| 10-4767-HM-70 | 10-4767-HM-70                         | 22-1767-HM-72  | 12-1767-HM-70                | 81-1262-HW-26      | 8-21-95-HM-70 | 8-2+95-HM-79 | A-2482-HM-70                                                                                                   | 97-JC-5557-E                          | 97-JC-5557-E   | Echantillons                  |
|               |                                       |                |                              |                    |               |              | the second second second second second second second second second second second second second second second s | القاو ببعد تعلي وجبانا في عباد المرجب |                |                               |

•

| 62'11                                                                                                           | 69,8           | 13,51          | 81'9           | 68'E           | 65,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2'03          | 1,22          | 5'59          | 49' <del>4</del>  | Cr#                |
|-----------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|-------------------|--------------------|
| 81'+6                                                                                                           | S6'E6          | 54,21          | 63'63          | 05'62          | 69'16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19'16         | 64,52         | 62,43         | 11/56             | #8W                |
| 890'1                                                                                                           | 861,1          | 622'0          | 1'536          | 682'1          | 686'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1'513         | 664'1         | 1'238         | 688,I             | ۳۱                 |
| 344,1                                                                                                           | 1'356          | <b>\$28,0</b>  | 1,482          | 1'202          | 680'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1'242         | 199'1         | 1'282         | 5,122             | VI IV              |
|                                                                                                                 |                |                |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |               |               |                   |                    |
| 50'032                                                                                                          | <b>+</b> 26'61 | 906'61         | 50'032         | 30,068         | \$86'61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 460'0Z        | 201'02        | 070,02        | 50'023            | Total:             |
| 000'0                                                                                                           | 600,0          | 400'0          | 200'0          | 000'0          | B.II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0'00          | 000'0         | \$00°0        | 000'0             | ٨                  |
| 0'005                                                                                                           | 0'005          | £00,0          | 0'005          | 80,038         | 8.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,002         | 860'0         | 221'0         | 0'00S             | к                  |
| 600'0                                                                                                           | 000'0          | 100'0          | 800,0          | 900'0          | B.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200'0         | £00,0         | 110'0         | S00'0             | BN                 |
| 0'035                                                                                                           | 0'031          | 0'036          | 220'0          | 0:030          | 610'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 610'0         | 210'0         | 0'034         | 0'032             | IN                 |
| 519'0                                                                                                           | 6639           | 229'0          | 622'0          | 977,0          | 0,902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 268'O         | 064'0         | +22'0         | 0,452             | ب <sup>2</sup> 3۰  |
| 100'0                                                                                                           | 200'0          | 800,0          | \$00'0         | 100'0          | 100'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200'0         | <b>\$00,0</b> | 0'002         | 400,0             | nM                 |
| £00'0                                                                                                           | 0,003          | S00'0          | ₽00 <b>,</b> 0 | t 00'0         | 0'005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 600,0         | 0'000         | 200'0         | 110,0             | e)                 |
| 556 <sup>4</sup> 6                                                                                              | 426'6          | \$61'01        | £62'6          | 868,9          | 946'6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | £62'6         | 6'923         | 200'6         | 004'6             | 8M                 |
| 0,334                                                                                                           | 0'533          | 9'522          | 641'0          | £11'0          | 6,123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 811,0         | 6£0'0         | S60'0         | 0'192             | Cr.                |
| 5'213                                                                                                           | 294'S          | ££9't          | 81 <i>L</i> 'Z | 562'2          | B70,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 857,5         | 091'E         | 611'E         | 110'4             | ٤٨                 |
| 0'005                                                                                                           | £00,0          | £00'0          | 000'0          | 900'0          | £00'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0'00S         | ¢00'0         | 0'005         | 000'0             | Ņ                  |
| 555'9                                                                                                           | 178,8          | 941'2          | 815'9          | \$64'9         | 116'9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 551,6         | 6'336         | SI 4'9        | 878,8             | IS                 |
|                                                                                                                 |                |                |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |               |               |                   |                    |
| 292'00t                                                                                                         | 069,001        | 860,001        | 962'001        | 008'001        | 0\$6'00t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100,582       | 100,218       | 905'66        | 018'66            | :latoT             |
| 15'673                                                                                                          | 15'229         | 13'696         | 15'991         | 12,740         | 15'238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15'923        | 15,653        | 15,543        | 15'695            | O <sup>t</sup> H   |
| 000'0                                                                                                           | 220'0          | 920'0          | 640,0          | 000'0          | ន.ព                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 810'0         | 0'000         | SE0'0         | 0,000             | <sup>\$06</sup> ۷  |
| 600'0                                                                                                           | 900'0          | 210'0          | 600'0          | 651'0          | ค.ต                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 010'0         | 904'0         | 727,0         | 010'0             | O <sup>r</sup> X   |
| 0'054                                                                                                           | 000'0          | \$00'0         | 0'033          | 210'0          | a.n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 610'0         | 200'0         | 000'0         | 0'01 <del>4</del> | O <sub>6</sub> BN  |
| 0'313                                                                                                           | 761,0          | 221'0          | SF1,0          | S61'0          | 0'159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0'152         | 6113          | \$S1'0        | 0'551             | OIN                |
| £88,£                                                                                                           | 190'#          | 070,6          | 416'4          | 867,4          | 67729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 099'S         | 486'4         | 4,842         | 5'826             | 0.5R               |
| 800,0                                                                                                           | 660,0          | 020'0          | 0'035          | 100,0          | +00'O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110'0         | \$20'0        | 6,033         | 920'0             | OnM                |
| 460,0                                                                                                           | £10'0          | 0'033          | 0'050          | \$00'0         | 600'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0'015         | 100'0         | 010'0         | 502'0             | CaO                |
| 192'56                                                                                                          | 32,412         | 361 '90        | 34'92          | 32'025         | 32'435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34'921        | 991'46        | 961,66        | 99C'CC            | OaM                |
| 5'530                                                                                                           | 025'1          | 202'1          | 761,1          | 092'0          | 928'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 986'0         | 0'595         | 829'0         | 1'305             | 50 <sup>1</sup> 03 |
| ¥92'11                                                                                                          | 161,11         | SEE,7          | 13'124         | 15'201         | 198'6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 545,21        | 541,41        | 608,61        | 18'009            | 50°1V              |
| S10'0                                                                                                           | 0'033          | SZ0'0          | 0'000          | tto'0          | 0'055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 410,0         | 220'0         | 710,0         | 000'0             | ro,                |
| 34'934                                                                                                          | 94¥'SC         | 628,76         | 601,46         | 564'¢E         | 26,703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 840,46        | 044,66        | 33'245        | 101'16            | coia               |
|                                                                                                                 |                |                |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |               |               |                   |                    |
| Harzh à chro                                                                                                    | nhə â dzıah    | onito à danali | οιής Α ήγιαΗ   | ondo à druell  | οιής Α τισίλ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | αιμο γ Ζιομη  | силэ à driah  | ondo à druaH  | Harzb à chro      | sigolothi          |
| S                                                                                                               | 3              | t              | ε              | 1              | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I             | ε             | 3             | 1                 | tnioq              |
| 70.4727-HM-70                                                                                                   | 70-4787-HM-70  | 70-4787-HM-79  | 90-1222-HM-26  | 90-1-267-HM-76 | 20-4767-HM-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20-4727-HM-79 | 20-4727-HM-79 | 20-4727-HM-79 | 20-4727-HM-72     | echandllons        |
| Verse and the second second second second second second second second second second second second second second |                | *              |                |                | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |               |               | ······        |                   |                    |

| cula I                                                                                                         | citio         | colo          | 10111         |                | (the )             | 0.111         | inte          | anta I             |                 |                                |
|----------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|----------------|--------------------|---------------|---------------|--------------------|-----------------|--------------------------------|
| 610                                                                                                            | 00.8          | 69.6          | 14.84         | 96 5           | 21 61              | 64.11         | 28.7          | 2.06               | 54.2            | Cr#                            |
| SE 96                                                                                                          | 62.96         | 66.96         | 26 26         | 99.96          | 21.26              | 21-26         | 6.96          | S0 <sup>.</sup> 26 | 00.70           | #8W                            |
| SPEI                                                                                                           | 2011          | 055.1         | 950.1         | 2191           | 1.245              | 1'350         | 1,528         | 811.1              | 124.1           | NIA.                           |
| 2291                                                                                                           | 1991          | 868.1         | 424.1         | PE7.1          | 1.635              | 6121          | 208.1         | 299't              | 1'013           | <u>۱۱ ارم</u>                  |
|                                                                                                                |               |               |               |                |                    |               |               |                    |                 |                                |
| 50.018                                                                                                         | 926'61        | 686.61        | 689.01        | 200.02         | +26'61             | \$66'61       | 50'001        | 20'032             | 886'61          | Total:                         |
| <u>500.0</u>                                                                                                   | 0.000         | 0.000         | 600'0         | 0.000          | 210'0              | \$00'0        | 6,003         | 0'00               | 600'0           | ^                              |
| \$00.0                                                                                                         | 0.002         | 0.005         | 0000          | <u> </u>       | 0.003              | 100'0         | 0'002         | 000'0              | 100'0           | К                              |
| 110'0                                                                                                          | 0'015         | 600'0         | 0'005         | 600'0          | 600'0              | 0'003         | 600'0         | 0'03               | 900'0           | BN                             |
| 240'0                                                                                                          | 940,0         | PF0,0         | 51-0'0        | 640,0          | 260,0              | 21000         | 1 90'0        | 0'053              | 0'023           | IN IN                          |
| S2E'0                                                                                                          | 0'330         | 915,0         | 6/2/0         | 146,0          | 0'586              | 0,289         | 016,0         | 905,0              | 806,0           | بد <sub>ع</sub> ب              |
| 0,000                                                                                                          | 200,0         | £00'0         | \$00'0        | 000'0          | 000'0              | 100'0         | 1×00'0        | £00,0              | \$00 <b>'</b> 0 | uМ                             |
| 0'030                                                                                                          | 860'0         | 0'030         | 900'0         | S00,0          | 0 <sup>0</sup> 002 | 100'0         | <b>†00'0</b>  | 100'0              | 100'0           | Ca                             |
| 169'6                                                                                                          | 942'6         | 6'633         | 801'01        | 828'6          | 420'6              | 976'6         | 008,9         | 650'01             | ¥26'6           | 8W                             |
| 906,0                                                                                                          | 0/2/0         | 216'0         | 144,0         | 0'500          | 264'0              | 665,0         | \$92'0        | 191'0              | 921'0           | Cr                             |
| 3'035                                                                                                          | 886'Z         | 886,2         | 5'230         | 3'521          | 2'880              | S10'E         | see'e         | 920'E              | \$90'E          | ۲۷                             |
| 000'0                                                                                                          | 0'003         | 0'003         | 200'0         | \$00'0         | 0'000              | ¥00'0         | 200'0         | 0,000              | 0,005           | iT                             |
| e'333                                                                                                          | 664,8         | 6,362         | 925'9         | 9'500          | 9'362              | 182'9         | £61'9         | 6,343              | <b>486,</b> 8   | IS                             |
|                                                                                                                |               |               |               |                |                    |               |               |                    |                 |                                |
| <b>06'05</b> 9                                                                                                 | 66'023        | 605,001       | 100'023       | 100,634        | <b>799'66</b>      | 951'66        | <b>482,99</b> | 204,001            | P81,001         | laioT                          |
| 12,594                                                                                                         | 15'935        | 12,784        | 15'735        | 268,21         | 189,21             | 15'959        | 269'21        | 15'822             | 12,806          | O <sup>t</sup> H               |
| 160'0                                                                                                          | 000'0         | 000'0         | \$90,0        | 0000'0         | 111'0              | £20'0         | 810'0         | 820,0              | 0'028           | <sup>\$02</sup> ٧              |
| 0,020                                                                                                          | 200'0         | 0'050         | 0,000         | P10,0          | £10'0              | \$00°0        | 0,023         | 000'0              | +00,0           | С <sup>1</sup> У               |
| 200'0                                                                                                          | 0'033         | 0,025         | 900'0         | 0'034          | 0'054              | 600'0         | 0'052         | 600'0              | L10'0           | O <sub>t</sub> aN              |
| 606,0                                                                                                          | 006,0         | \$57°0        | 262'0         | 882,0          | 262'0              | 805,0         | 966,0         | 874,0              | 245,0           | OIN                            |
| 5'321                                                                                                          | 920'2         | 5'002         | 022'1         | 2,184          | 928'1              | 128'1         | 7'662         | 856'1              | \$96'î          | 0.94                           |
| 0,002                                                                                                          | Eto'o         | 420'0         | 620'0         | 000'0          | 000'0              | 400,0         | 0'035         | 810'0              | 0'035           | OuM                            |
| 5110                                                                                                           | 681,0         | 0'105         | 0'058         | 6,023          | \$70'0             | 900'0         | 810,0         | ¥00'0              | S00'0           | CaO                            |
| 968,46                                                                                                         | 724,427       | £74,85        | 901'98        | 064'SE         | 92'164             | 35,047        | 662'46        | 870,85             | 81 L'SE         | OBM                            |
| 5'031                                                                                                          | 1'805         | 5'140         | 5'626         | 79E, 1         | ZZ6'Z              | 5'012         | 116'1         | 601'1              | 681'1           | Cr <sub>3</sub> O <sub>3</sub> |
| 13,462                                                                                                         | 13'321        | 019'61        | 666'11        | 74,772         | 616'21             | 13'200        | LL6'+1        | 136'61             | 088,51          | ۲DGI                           |
| 0'003                                                                                                          | 610'0         | 0'032         | \$10'0        | 0'032          | 000'0              | 0'036         | 210'0         | 000'0              | SE0'0           | r0i7                           |
| 661'66                                                                                                         | 016'66        | 206'66        | 249,45        | 095'66         | 33'650             | 33,060        | 677,25        | 416'EE             | 860,46          | <sup>z</sup> Ois               |
|                                                                                                                |               |               |               |                |                    | [             | 1             |                    |                 |                                |
| Chr ail                                                                                                        | Chr sil       | Chr ail       | Chr sil       | Chr ail        | Chr ail            | Chr ail       | Chr ail       | Chr ail            | Chr ail         | sigolothia                     |
| ŧ                                                                                                              | 3             | 3             | t             | 9              | S.                 | b             | E             | 5                  | ĩ               | triof                          |
| 01-4767-HM-79                                                                                                  | 01-4767-HM-70 | 01-4757-HM-70 | 01-4767-HM-70 | 80-1-262-HW-26 | 80-1767-HM-70      | 80-4757-HM-70 | 80-4767-HM-70 | B0-1767-HM-70      | 80-1257-HM-70   | enollituario3                  |
| here and a second second second second second second second second second second second second second second s |               |               |               | ······         |                    |               | *             |                    |                 |                                |

# .(stius) euposition des chlorites analysées à la micosonde électronique (suite).

| 21'1          | 60'E          | 0'03              | <u>ζ</u> ε,²   | 12,23         | 54'4          | 9 <b>6</b> ,81    | 06'11          | 13'39          | 21'6          | Ct#                            |
|---------------|---------------|-------------------|----------------|---------------|---------------|-------------------|----------------|----------------|---------------|--------------------------------|
| 96'69         | <b>99'16</b>  | 69'88             | 92,24          | 24'45         | ¥9'86         | L2'96             | 96'46          | 40 <b>'</b> S6 | LC'86         | #8W                            |
| 1,314         | 966,1         | 1,237             | 1'593          | 827,0         | 6+2'1         | 046'0             | 851'1          | 290'T          | 949'1         | ۱۸ IV                          |
| 1'222         | 1'913         | 3332 J            | 665,1          | 988,0         | ¥19'1         | JE+,I             | 6 <b>29</b> 'I | 064,1          | 184't         | ۸۱ ۱۷                          |
|               |               |                   |                |               |               |                   |                |                |               |                                |
| 911'02        | 50'132        | 50'030            | 50'080         | 066'61        | 30,076        | 30,006            | 170,051        | 666'61         | 868,91        | :lstoT                         |
| 0'003         | 0°005         | ษาน               | B.N            | в.П           | 000'0         | 200'0             | 000'0          | 900'0          | 000'0         | ٨                              |
| 0'036         | 0'033         | ម'ប               | <u>в.п</u>     | <u>а</u> .п   | 0'054         | £00,0             | 000'0          | 100'0          | 200'0         | к                              |
| 000'0         | 0'002         | ង.ព               | גיט            | <u>я</u> .n   | 600,0         | £00,0             | \$00'0         | 000'0          | <b>\$00,0</b> | BN                             |
| 6,013         | 200'0         | 6,013             | 810,0          | 0'033         | 0'033         | 0'039             | \$10'0         | 0'036          | 0'032         | 1N                             |
| \$20't        | <b>688,0</b>  | 712,1             | 0'854          | 909'0         | 029'0         | 804,0             | \$6S'0         | 615'0          | 991'0         | ا <sup>يد</sup> ع.             |
| 110'0         | 200'0         | 900 <b>'</b> 0    | 900'0          | 000'0         | 0,002         | 200,0             | £00,0          | 900'0          | Z00'0         | nM                             |
| 100'0         | 0'002         | 900'0             | 0'002          | 0'031         | 000'0         | St0'0             | \$00'0         | £00'0          | 292'0         | вЭ                             |
| <b>6</b> ,634 | 102'6         | 145'6             | <i>L6L</i> '6  | 10'520        | <b>298'6</b>  | 860,01            | 56'6           | £00'01         | 264,9         | 81                             |
| 60,034        | 0'033         | 910'0             | 0'195          | 0'530         | 961,0         | 0+4,0             | 656,0          | 0'325          | 645,0         | Cr                             |
| 5'809         | 5,948         | 3'215             | 2,855          | 4l9'l         | C96'Z         | 2'40 <del>0</del> | 2,817          | 764,5          | 724,6         | ١٧                             |
| 0'003         | 0,004         | <b>\$00,0</b>     | 900'0          | 0,003         | 000'0         | ₽00 <u>,</u> 0    | 600,0          | 010'0          | S00'0         | N                              |
| 544'9         | 886,3         | 599,8             | 204'9          | ÷11'2         | 986,3         | P95'9             | 196,341        | 029'9          | 612'9         | 15                             |
|               |               |                   |                |               |               |                   |                |                |               |                                |
| 862,001       | 892,001       | 66'625            | 108'66         | 876,001       | 100'640       | 100150            | 622'66         | 069'66         | 690'101       | :lato]                         |
| 129'21        | 15'010        | 815'21            | 12,516         | 12,734        | 12,742        | 13'998            | 15'245         | 12,627         | L06'21        | ٥٤H                            |
| 6,013         | £10'0         | ម'ប               | 8.8            | ษาบ           | 000'0         | 610,0             | 000'0          | 0+0'0          | 000'0         | \$O <sup>2</sup> /             |
| 021'0         | 926'o         | <b>ค.</b> ก       | a.n            | 8.0           | 860'0         | 0'015             | 200,0          | £00'0          | 0'036         | <sup>0</sup> 4                 |
| 000'0         | \$10'0        | םיש               | ם,ת            | <b>в</b> ,п   | 800,0         | 800,0             | 610,0          | 100'0          | 0'013         | Osav                           |
| 280,0         | 8+0,0         | \$80,0            | 811,0          | 0'125         | \$SI'0        | £71,0             | <b>\$60'0</b>  | 671,0          | 041'0         | OI                             |
| 9'132         | 299'9         | <del>1</del> 69'L | 2'143          | 058'8         | 4'522         | 9,144             | 912'8          | 3'592          | 990't         | Os'                            |
| 690'0         | 0'043         | 0'038             | 9032           | 000'0         | SI 0'0        | Z10'0             | 910'0          | 960,0          | S10'0         | Out                            |
| 200'0         | 220'0         | 720,0             | 0'033          | £01'0         | 0'005         | £20'0             | 110'0          | 210'0          | 046,1         | OBC                            |
| 708,EE        | 34'508        | 004'66            | 34'581         | 165'96        | 191'SC        | 195'56            | 368,46         | 32'355         | 34'043        | OgM                            |
| 0'354         | 119'0         | 201'0             | 890'1          | 856,1         | 0,926         | 5+6+5             | 5/375          | 5'340          | 5'338         | cOs10                          |
| 15'21         | 741,61        | 78C,11            | 13'938         | 692'2         | SSE,E1        | 187,01            | 124,497        | 11'125         | 649'SI        | <sup>c</sup> O <sup>t</sup> II |
| 810'0         | 0:030         | 0'032             | 240'0          | 0'054         | 000'0         | 160'0             | 0'051          | L90'0          | \$C0'0        | °O!.                           |
| 93'LL'EE      | 285'56        | 34'184            | 33,428         | L9L'LE        | 93'054        | 399'46            | +SI'EE         | 782,4c         | 294,66        | <sup>t</sup> OIS               |
|               |               | 1                 | <b></b>        |               | [             |                   |                |                |               |                                |
| Harzb à chro  | олар à съю    | dznaH             | ondo à drinh   | ημεις ή εμιο  | Cherz à chro  | Harzb à chro      | Harzh à chro   | ondo à danah   | Harzb A chro  | algolodii.                     |
| 3             | 1             | 3                 | z              | t             | 1             | 2                 | ŀ              | 3              | l             | tnio <sup>c</sup>              |
| 12-4767-HM-79 | 12-4757-HM-70 | 81-4757-IIM-70    | 91.47257.HM-70 | 21-4767-HM-70 | S1-4787-HM-79 | 11-4765-HM-50     | 11-4767-HM-70  | 11-47CT-HM-72  | 11-4767-HM-70 | enollinnada3                   |
|               |               |                   |                |               |               | ·····             |                | A              |               |                                |

| 18,85      | 24,21               | 60'51              | 1,82           | <b>6</b> ,54   | 4'36           | 02'6                | 66'2           | 76'1            | 54'2                                  | Cr#                |
|------------|---------------------|--------------------|----------------|----------------|----------------|---------------------|----------------|-----------------|---------------------------------------|--------------------|
| 60'66      | L1'+6               | 04 <sup>+</sup> 13 | 04'16          | 91'16          | 92'36          | 12,20               | 94'46          | 20'46           | 24'16                                 | #8W                |
| 906'0      | 688,0               | <b>786,0</b>       | 0'222          | 927,0          | 665,1          | 857,1               | 124'1          | 246,1           | 962'0                                 | MIA                |
| 919'1      | CS+'1               | 1'903              | 162'0          | 768,0          | 679,1          | 780,1               | E08'1          | 1'951           | 977,0                                 | VI IA              |
|            |                     |                    |                |                |                |                     |                |                 |                                       |                    |
| 50'062     | 30'082              | 20'02              | 50'102         | 2¢6'61         | 020'02         | 50'033              | 20,033         | 50'130          | 946'61                                | :latoT             |
| 000'0      | 810,0               | 200,0              | 8.0            | <u>A</u> ,N    | ษน             | 8,0                 | в,ц            | \$10 <b>'</b> 0 | 000'0                                 | ٨                  |
| 0,003      | 0'002               | 400'O              | ษบ             | в,п            | <u>в</u> ,п    | B,fl                | <b>8</b> .N    | 620'0           | 000'0                                 | К                  |
| C,002      | 900'0               | 100'0              | 6.N            | 0'005          | 900'0          | 900'0               | 910'0          | 800,0           | 600,0                                 | вN                 |
| 0'033      | 040,0               | 0'034              | 000'0          | ÷10'0          | 800,0          | 0'013               | 60'034         | 0'013           | 0'010                                 | 1N                 |
| 0'938      | 0'935               | 0'933              | 066'0          | 026'0          | 78P,0          | 281,0               | 295'0          | 069,0           | St6'0                                 | * <sup>5</sup> 94  |
| £00,0      | 900'0               | \$00'0             | 800,0          | 010'0          | 000'0          | 0,002               | 0'005          | <b>1</b> 00'0   | £10'0                                 | лМ                 |
| 000'0      | <b>1</b> 00,0       | 000'0              | 100'0          | 000'0          | 000'0          | 1 60,0              | 000'0          | £00,0           | £00'0                                 | ۶Ga                |
| 668'6      | 150'01              | 196'6              | 10'256         | 900'01         | 666'6          | 585,6               | 199'6          | 066'6           | 10'135                                | 8M                 |
| 985'0      | 0'436               | 094'0              | 0'032          | 041'0          | 141,0          | 441,0               | 0'585          | 820,0           | C+0,0                                 | 10                 |
| 3'233      | 5'339               | 3,589              | 966,1          | 1'015          | 270,E          | S\$2'E              | 3,274          | 896'Z           | 1'235                                 | IA                 |
| 100'0      | +00'0               | 100'0              | 000'0          | 000'0          | 000'0          | 0'015               | 000'0          | ¢00'0           | 000'0                                 | 11                 |
| \$86,3     | 262,8               | 865,8              | 602'2          | £91'Z          | 6,327          | 6,013               | 261'9          | 646,8           | 7,274                                 | IS                 |
|            |                     |                    |                |                |                |                     |                |                 |                                       |                    |
| 909'66     | 29466               | 824,99             | 812'86         | 100'321        | 044'66         | 186'66              | 101'548        | 766,001         | 969'001                               | :latoT             |
| 15'202     | 15'236              | 15'212             | 12,368         | 15'932         | 969'71         | 13'920              | 12,821         | 12/21           | 827,21                                | 0 <sup>e</sup> H   |
| 000'0      | 811,0               | 610,0              | <b>ਸ.</b> ת    | 8.1            | .a.n           | <b>в</b> , п        | <u>р.п</u>     | 860'0           | 000'0                                 | 80 <sup>6</sup> A  |
| 110'0      | 610'0               | 6,014              | 8.0            | я.п            | a.n            | <b>в</b> , <b>ц</b> | 8,0            | 242             | 0,000                                 | K <sup>3</sup> O   |
| 200'0      | 810,0               | 600,0              | 8.0            | \$00'0         | 910'0          | 210'0               | 440,0          | 0'031           | 600'0                                 | OcaN               |
| 0'513      | 0*397               | 6,224              | 000'0          | S60'0          | 842,0          | 980'0               | 0,224          | LL0'0           | S90'0                                 | OIN                |
| 3'612      | 188,6               | 088,6              | ¢114           | 801'9          | 3,085          | 3,042               | 3'627          | \$66'E          | ₽66'S                                 | 0°5                |
| 720,0      | 0'032               | 0'058              | 840,0          | 0'095          | 000'0          | 110'0               | 510'0          | 0'053           | 190'0                                 | OuM                |
| 000'0      | 0,022               | 0'005              | 900'0          | 000'0          | 000'0          | <b>#</b> \$1'0      | 000'0          | S10'0           | 120'0                                 | 040                |
| 819'46     | 702,25              | 34'862             | S94'9C         | 32'358         | 32'205         | 806'66              | 069,66         | 865,86          | 390'98                                | O8M                |
| £98,C      | 118'8               | 960,6              | £91'0          | CE1'1          | 146'0          | 296'0               | 906'1          | <b>785,0</b>    | 0,286                                 | 50 <sup>3</sup> 03 |
| 11,158     | 10'348              | 294,11             | 268'S          | 261'L          | +6L'EI         | 16,756              | 028,41         | 13'322          | 058'9                                 | ٥²١٧               |
| 900'0      | 720,0               | 900'0              | 000'0          | 000'0          | 000'0          | \$80'0              | 000'0          | 1 60'0          | 0'000                                 | LIO2               |
| 93'584     | 681, <del>1</del> 6 | 585,55             | 262,76         | 869'25         | 884,66         | 012'16              | 33'155         | 068,66          | 265'88                                | <sup>2</sup> OIS   |
|            |                     |                    |                |                |                |                     |                |                 |                                       |                    |
| Chr ail    | Chr ail             | lie rdD            | Chr ail        | Chr ail        | Chr ail        | Chr ail             | Chr all        | αιής à drinh    | Harzh à chro                          | aigoloriti.        |
| E          | 5                   | I I                | t              | 4              | 5              | I I                 | 1              | t               | 3                                     | tuloq              |
| 2812-HM-70 | 2847-HM-70          | S847.HM-70         | AE0-2867-HM-70 | AE0-2867-HM-70 | A60-2867-HM-70 | ACO-28CT-HM-70      | 810-2867-HM-70 | 52-4757-HM-72   | 12-4757-HM-70                         | anollinnano3       |
|            |                     | ·····              |                |                |                |                     |                |                 | · · · · · · · · · · · · · · · · · · · |                    |

| 12'94        | 86,0         | 64'0         | 13,14      | 12'61           | 53'59        | 02'61          | 8C'S1               | 6'03           | 76,81          | Cr#                            |
|--------------|--------------|--------------|------------|-----------------|--------------|----------------|---------------------|----------------|----------------|--------------------------------|
| 84'26        | 22'18        | 00'98        | 00'46      | 94'46           | 64'30        | 10'+6          | 64'54               | 64'33          | 54°52          | #8M                            |
| 1,034        | 5'308        | 5'559        | 980'I      | ÷27,0           | 962'0        | 869,0          | 699'0               | 1,133          | 169'0          | <sub>1</sub> ۸۱۸               |
| 1'932        | 5'450        | 5'458        | 219'1      | 266'0           | 1'244        | 622'0          | SE7,0               | 1'212          | 941 <b>'</b> 1 | <mark>۸۱</mark> ۲۷             |
|              |              |              |            |                 |              |                |                     |                |                |                                |
| 50'07        | 50'031       | 20,085       | 50'090     | ¥68'61          | 196,951      | 956'61         | \$06'6t             | 30,055         | 820'02         | :latoT                         |
| \$00'0       | 0'051        | 100'0        | 8'U        | <u>в.п</u>      | ย.ต          | B,R            | B,Ω                 | B.Q.           | <i>в.</i> а    | ٨                              |
| 000'0        | 000'0        | +00'0        | ម'ប        | B.N             | p.a          | <b>a</b> .n    | <u>в.</u> а         | 8'U            | 8.A            | К                              |
| 200'0        | £00,0        | 200'0        | 6.A        | 8.II            | 8.0          | A.N            | <u>в.</u> й         | <u>טיפ</u>     | 8.0            | BN                             |
| 900'0        | 0'002        | 000'0        | 0'032      | 0,082           | <b>480,0</b> | 240'0          | 600'0               | 860,0          | 660,0          | 1N                             |
| 0'564        | 1'120        | 126'1        | 169'0      | 882'0           | 609'0        | 199'0          | 0'930               | 0,602          | S29'0          | Pc <sup>2+</sup>               |
| \$00'O       | 260'0        | 610'0        | \$00'0     | 100'0           | 200'0        | 010'0          | 0'015               | 200'0          | 0'003          | nM                             |
| 0'005        | 000'0        | £00'0        | 100'0      | 900'0           | 120'0        | 600,0          | 0'003               | 600,0          | 200'0          | ta<br>رو                       |
| eez'01       | 278,7        | 6423         | 168'G      | 810'01          | 268,6        | 695'01         | 106,01              | 900'01         | 10'546         | aM                             |
| 64,0         | 810'0        | 0'033        | 604'0      | 07120           | 009'0        | 0,225          | 0'52 <del>'</del> 0 | 692'0          | 054,0          | Cr                             |
| 5'923        | 621,4        | 4'924        | 507,2      | 992'1           | 626'1        | 714,1          | 866'1               | 869'2          | 998'I          | ١٧                             |
| 000'0        | 0,005        | 800,0        | 0'003      | 500,0           | £00'0        | £00'0          | £00'0               | £00'0          | 0'005          | N.                             |
| S/£'9        | 2'280        | 578,8        | 686,3      | 800'2           | 992'9        | 122'2          | 592'2               | 584,6          | 6,825          | 15                             |
|              |              |              |            |                 |              |                |                     |                |                |                                |
| 965'66       | 66'159       | 162'26       | 941,001    | 026'66          | 66'133       | 100'530        | 911'001             | <b>786,8</b> 6 | 086,08         | Total:                         |
| 13'928       | 15'504       | 13,164       | 15'951     | 15'637          | 424'21       | 102'21         | E07,51              | 12,524         | 15'232         | H <sup>3</sup> O               |
| 9032         | CE1'D        | 600'0        | <u>6,0</u> | 8.0             | B,R          | В,П            | в,п                 | B.R            | ອາປ            | <sup>5</sup> 0²۸               |
| 000'0        | 000'0        | St0'0        | B.R        | טיט             | a.n          | <u>в</u> .п    | <u>н</u> ,п         | <u>в</u> ,п    | B,R            | K³O                            |
| 0'016        | 200'0        | 610'0        | 8,0        | <b>B</b> .ft    | B,N          | в,п            | <u>טיפ</u>          | ษ.น            | ង.ព            | Oran                           |
| 0'043        | 0'033        | 000'0        | 0,227      | 665,0           | 1+2'0        | 116,0          | 6\$2,0              | 0'544          | 0`522          | OIN                            |
| 699'1        | CB9'01       | 915,8        | 896'E      | 102'6           | 087,5        | 681,6          | 886'£               | 3'262          | 906'8          | 0-9                            |
| \$C0'0       | 0'333        | ÷11'0        | 520,0      | 600'0           | 940'0        | <b>\$90</b> ,0 | 870,0               | 960,0          | 0'031          | OnM                            |
| 600'0        | 000'0        | \$10'0       | 900'0      | 0'058           | 0'105        | 610,0          | 910'0               | sto'o          | 110'0          | C#O                            |
| 36,253       | 488,82       | 78'92¥       | 016'46     | 32'403          | 624,453      | 828'96         | 665'96              | 35,045         | 216'98         | OgM                            |
| 5,293        | 611'0        | 241'0        | 122'2      | 2,801           | 866,6        | 1'208          | <b>₩</b> 02'1       | 662'1          | <i>LLL</i> 'T  | Ct <sup>3</sup> O <sup>3</sup> |
| 916'11       | 31416        | 30'036       | 15,067     | \$68 <b>'</b> 2 | 8,720        | 896,8          | 182'9               | £67,11         | 272,8          | ۲ <sup>3</sup> O3              |
| 100'0        | 90'039       | 950'0        | 610'D      | 860,0           | 0'034        | 0'051          | 120'0               | 120'0          | 210'0          | riO,                           |
| 299'88       | 58'386       | 58'526       | 93'284     | 396'61          | 32'055       | 38,233         | 674,86              | 33,858         | 699'SE         | <sup>t</sup> OIS               |
|              |              |              |            |                 |              |                |                     |                |                |                                |
| ChrBil       | DM & X4      | DM ≜ ×9      | Chr all    | Chr all         | lia ndO      | Chr all        | Chr ail             | Chr all        | Chr sil        | aigolodiki                     |
| 1            | 3            | I            | <u> </u>   | 9               | ç            | *              | 3                   | 2              | T              | Point                          |
| \$6\$7-HM-70 | A-0047-HM-70 | A-0047-HM-70 | 2867.HM-79 | 2847.HM-70      | 2847.HM.79   | 2847-HM-70     | 2847.HM-70          | 2847-HM-70     | S847-HM-70     | enollitnado3                   |

### .(stius) supposition des chlorites analysées à la micosonde électronique (suite).

| Échantillons                   | 97-MH-7494 | 97-MH-7494 | 97-MH-7501 | 97-MH-7503-B1 | 97-MH-7503-B1 | 97-MH-7503-B1 | 97-MH-7503-B1 | 97-MH-7503-B1 | 97-MH-7503-B1 | 97-MH-7503-B1 |
|--------------------------------|------------|------------|------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                          | 2          | 3          | 2          | 1             | 2             | 3             | 4             | 5             | 6             | 7             |
| Lithologic                     | Chr Sil    | Chr Sil    | Chr Sil    | Chr Sil       | Chr Sil       | Chr Sil       | Chr Sil       | Chr Sil       | Chr Sil       | Chr Sil       |
|                                |            |            |            |               |               |               |               |               |               |               |
| SiO <sub>2</sub>               | 33,230     | 33,682     | 37,315     | 32,882        | 32,524        | 31,155        | 33,819        | 33,354        | 29,902        | 32,983        |
| TiO₂                           | 0,011      | 0,024      | 0,021      | 0,009         | 0,004         | 0,026         | 0,006         | 0,023         | 0,000         | 0,024         |
| Al <sub>2</sub> O <sub>3</sub> | 12,628     | 11,394     | 7,806      | 11,989        | 12,074        | 14,588        | 12,123        | 14,908        | 17,059        | 11,306        |
| Cr <sub>2</sub> O <sub>3</sub> | 3,297      | 4,665      | 1,485      | 4,400         | 4,807         | 4,913         | 2,992         | 0,114         | 3,476         | 5,626         |
| MgO                            | 35,568     | 35,594     | 37,321     | 34,961        | 34,744        | 33,968        | 35,877        | 35,628        | 33,064        | 35,314        |
| CaO                            | 0,019      | 0,017      | 0,017      | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         |
| MnO                            | 0,018      | 0,008      | 0,048      | 0,006         | 0,027         | 0,016         | 0,006         | 0,001         | 0,000         | 0,007         |
| FeO                            | 1,340      | 1,313      | 2,557      | 1,827         | 1,878         | 2,447         | 1,669         | 2,090         | 2,602         | 1,604         |
| NIO                            | 0,224      | 0,314      | 0,256      | 0,192         | 0,261         | 0,205         | 0,189         | 0,203         | 0,085         | 0,203         |
| Na <sub>2</sub> O              | 0,098      | 0,000      | <b>D.A</b> | 0,016         | 0,044         | 0,016         | 0,022         | 0,015         | 0,021         | 0,017         |
| K2O                            | 0,040      | 0,003      | n.a        | п.ң           | n.a           | 11.A          | n,a           | n.a           | n.a           | n.a           |
| V <sub>2</sub> O <sub>3</sub>  | 0,040      | 0,049      | n.a        | n.a           | n.a           | n.a           | n,a           | n,a           | <b>D</b> ,A   | n.a           |
| H <sub>2</sub> O               | 12,586     | 12,633     | 12,701     | 12,508        | 12,485        | 12,580        | 12,652        | 12,702        | 12,477        | 12,579        |
| Total:                         | 99,099     | 99,696     | 99,527     | 98,790        | 98,848        | 99,914        | 99,355        | 99,038        | 98,686        | 99,663        |
|                                |            |            |            |               |               |               |               |               |               |               |
| Si                             | 6,319      | 6,391      | 7,047      | 6,306         | 6,249         | 5,941         | 6,412         | 6,299         | 5,749         | 6,290         |
| Ti                             | 0,002      | 0,003      | 0,003      | 0,001         | 0,001         | 0,004         | 0,001         | 0,003         | 0,000         | 0,003         |
| Al                             | 2,830      | 2,548      | 1,738      | 2,710         | 2,734         | 3,278         | 2,709         | 3,318         | 3,865         | 2,541         |
| Cr                             | 0,496      | 0,700      | 0,222      | 0,667         | 0,730         | 0,741         | 0,449         | 0,017         | 0,528         | 0,848         |
| Mg                             | 10,083     | 10,068     | 10,507     | 9,995         | 9,951         | 9,656         | 10,140        | 10,030        | 9,476         | 10,039        |
| Ca                             | 0,004      | 0,003      | 0,003      | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         |
| Mn                             | 0,003      | 0,001      | 0,008      | 0,001         | 0,004         | 0,003         | 0,001         | 0,000         | 000,0         | 0,001         |
| Fc <sup>2+</sup>               | 0,213      | 0,208      | 0,404      | 0,293         | 0,302         | 0,390         | 0,265         | 0,330         | 0,418         | 0,256         |
| Ni                             | 0,034      | 0,048      | 0,039      | 0,030         | 0,040         | 0,032         | 0,029         | 0,031         | 0,013         | 0,031         |
| Na                             | 0,036      | 0,000      | n.a        | 0,006         | 0,016         | 0,006         | 0,008         | 0,006         | 0,008         | 0,006         |
| К                              | 0,010      | 0,001      | n,a        | n.e           | n.a           | n.a           | D,A           | n.a           | n.a           | 11.A          |
| v                              | 0,006      | 0,007      | n.a        | D.A           | n.a           | n.a           | n.a           | n.a           | n.a           | n,a           |
| Total:                         | 20,036     | 19,978     | 19,971     | 20,009        | 20,027        | 20,051        | 20,014        | 20,034        | 20,057        | 20,015        |
|                                | I.         |            |            |               |               |               |               |               |               |               |
| A1 <sup>IV</sup>               | 1,681      | 1,609      | 0,953      | 1,694         | 1,751         | 2,059         | 1,588         | 1,701         | 2,251         | 1,710         |
| Al <sup>VI</sup>               | 1,149      | 0,939      | 0,785      | 1,016         | 0,983         | 1,219         | 1,121         | 1,617         | 1,614         | 0,831         |
| Mg#                            | 97,93      | 97,98      | 96,30      | 97,15         | 97,05         | 96,12         | 97,45         | 96,81         | 95,78         | 97,51         |
| Cr#                            | 14,91      | 21,55      | 11,33      | 19,75         | 21,07         | 18,44         | 14,22         | 0,51          | 12,02         | 25,02         |

| 22'0         | 2+'SI        | 50'12               | 01'91         | 12'61                                                                                                           | ES'6I         | 55'39         | 76'61         | 54'53                                                                                                          | 50'13                                                                                                          | Cr.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|--------------|---------------------|---------------|-----------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28,25        | 48,40        | 95'56               | 21'96         | <del>6</del> 9'S6                                                                                               | \$6'96        | S0'26         | £9'26         | 00'26                                                                                                          | 20'26                                                                                                          | #8W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 676'1        | 1,284        | 020'1               | 812,1         | 120'1                                                                                                           | 1'135         | 160,1         | <b>†66'0</b>  | 006'0                                                                                                          | £66'0                                                                                                          | ۱۷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2,085        | 1,864        | 0/8'1               | 828't         | +6L'I                                                                                                           | 506' I        | 288,1         | 1'266         | 989'1                                                                                                          | \$0 <b>2</b> ′1                                                                                                | VI 1۷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |              |                     |               |                                                                                                                 |               |               |               |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 890'02       | 50'003       | 20,032              | 50'019        | 20,040                                                                                                          | 50'053        | 50'008        | 626'61        | 626'61                                                                                                         | 50'010                                                                                                         | :hatoT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 000'0        | A,II         | B,A                 | A.N           | A.(I                                                                                                            | <b>в</b> .п   | 8,0           | в,п           | а.п                                                                                                            | <u>п.а</u>                                                                                                     | ٨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 000'0        | B.N          | в.п                 | A.(1          | в.п                                                                                                             | <u>я.п</u>    | 19'U          | B'U           | a.n                                                                                                            | <u>р.а</u>                                                                                                     | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| +00'0        | 900'0        | 200'0               | 400'0         | 0,002                                                                                                           | 010'0         | 900'0         | 0'005         | 0,002                                                                                                          | 200'0                                                                                                          | BN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 800,0        | 0'031        | 0'055               | 810'0         | 220'0                                                                                                           | 120'0         | 0'030         | 0'036         | 0,028                                                                                                          | SE0'0                                                                                                          | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5'164        | 0'233        | 0'425               | 061,0         | 644,0                                                                                                           | 60£'0         | 0'508         | 0,244         | 906,0                                                                                                          | 206,0                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0'031        | £00,0        | 810'0               | 200,0         | t 00'0                                                                                                          | 000'0         | <b>+</b> 00,0 | 200,0         | £00,0                                                                                                          | £10'0                                                                                                          | up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0'005        | 0,000        | 000'0               | 000'0         | 000'0                                                                                                           | 000'0         | 000'0         | 000'0         | 000'0                                                                                                          | 000'0                                                                                                          | ВÇ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| £68'L        | 685'6        | 122'6               | 6'925         | 248'6                                                                                                           | £18'6         | 662'6         | 690,01        | 116'6                                                                                                          | 626'6                                                                                                          | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 110'0        | 925'0        | 0'143               | 009'0         | 169'0                                                                                                           | 7£7,0         | 668,0         | 549'0         | 728,0                                                                                                          | 0,680                                                                                                          | <u>, 1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \$10'\$      | 3,148        | 3'640               | 3'159         | 5'812                                                                                                           | 260'e         | 516'2         | 2'233         | 2,586                                                                                                          | 869'Z                                                                                                          | IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 900'0        | 0'003        | 000'0               | 200'0         | 0'005                                                                                                           | 100'0         | 100'0         | 000'0         | 0'005                                                                                                          | 100'0                                                                                                          | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 916'9        | 961,8        | 6,130               | e'133         | 902'9                                                                                                           | S60'9         | 811'9         | 10+'9         | \$1C'9                                                                                                         | S62,0                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |              |                     |               |                                                                                                                 |               |               |               |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| £27,80       | 178'66       | 959'86              | 515,99        | 454'66                                                                                                          | 154'06        | 66'343        | 611'001       | 000'101                                                                                                        | 898'66                                                                                                         | :lato'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13'032       | 12,584       | 13'400              | 15'254        | 15'233                                                                                                          | 15'294        | 15'252        | 12,707        | 15'242                                                                                                         | 15'952                                                                                                         | Oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 000'0        | в.п          | 8.0                 | я.п           | я,п                                                                                                             | 8.0           | в,п           | в,п           | 8,0                                                                                                            | B.IT                                                                                                           | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 000'0        | ស.ព          | <b>B</b> , <b>N</b> | в.л           | в.п                                                                                                             | ษาน           | A.N           | B.N           | 8.0                                                                                                            | 8.11                                                                                                           | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 110'0        | St0'0        | 610'0               | 010'0         | 200'0                                                                                                           | 220'0         | 910'0         | 900'0         | 900'0                                                                                                          | 610'0                                                                                                          | O <sub>f</sub> B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 630,0        | 0+140        | 0+140               | 211'0         | \$ <u>4</u> 1'0                                                                                                 | 0'134         | 61'0          | 261'0         | 781,0                                                                                                          | 0,230                                                                                                          | Oli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| +SI'EI       | 942'6        | 867,2               | 190'8         | 5,802                                                                                                           | 966'1         | 658'1         | 1'240         | 146,1                                                                                                          | 266't                                                                                                          | 09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0'151        | 810,0        | 601'0               | 110'0         | 900'0                                                                                                           | 000'0         | S20'0         | 610,0         | 070'0                                                                                                          | 6,104                                                                                                          | Ouk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 600'0        | 0000'0       | 000'0               | 000'0         | 000'0                                                                                                           | 000'0         | 000'0         | 000'0         | 000'0                                                                                                          | 000'0                                                                                                          | OB:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 56,544       | 5+7,66       | 93'124              | E08,EE        | 34'485                                                                                                          | 624'46        | 34'333        | 32'SE         | 32'354                                                                                                         | 262,25C                                                                                                        | 080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 890'0        | 3,822        | 628,4               | 196'C         | 195'\$                                                                                                          | 088,1         | 11/2'5        | 4'334         | 2'220                                                                                                          | 4'234                                                                                                          | <sup>13</sup> O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| +20'21       | 14'013       | 15'805              | 248'CI        | 024'21                                                                                                          | 864,61        | 206'21        | ¥99'11        | 099'11                                                                                                         | 15'025                                                                                                         | ଂଠ୍ୟ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0'036        | 910'0        | 000'0               | ¢10'0         | +10'0                                                                                                           | 010'0         | 900'0         | 000'0         | 110'0                                                                                                          | \$00 <b>'</b> 0                                                                                                | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 59'922       | 33'193       | SOL'IE              | 95'16         | 32,396                                                                                                          | 31'653        | 31,948        | E16'EE        | 33'220                                                                                                         | 861'EE                                                                                                         | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| [            |              |                     |               |                                                                                                                 | 1             |               |               |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DM X4        | Chr Sil      | Chrait              | Chr Sil       | Chr Sil                                                                                                         | CJrt          | Clirt         | Chr           | Chr all                                                                                                        | Chr all                                                                                                        | aigolorbi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| t            | S            | b                   | E             | 1                                                                                                               | 3             | t             | 01            | 6                                                                                                              | 8                                                                                                              | tuio,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D-7027-HM-72 | A-4027-HM-70 | A-4027-HM-70        | A-4027-11M-70 | A-4027-HM-70                                                                                                    | 28-C027-HM-79 | 28-E027-HM-79 | 57-MH-7503-B2 | 18-E027-HM-79                                                                                                  | 18-0027-HM-79                                                                                                  | enollitrati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |              |                     |               | and the second second second second second second second second second second second second second second secon |               |               |               | the second second second second second second second second second second second second second second second s | the second second second second second second second second second second second second second second second s | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |

386

| Behantillan.                   | 0 101 100    |
|--------------------------------|--------------|
|                                | D-/00/-HW-/6 |
| Point                          | 2            |
| Lithologic                     | Px MG        |
|                                |              |
| sio,                           | 29,213       |
| Tio,                           | 0,015        |
| Al <sub>3</sub> O <sub>3</sub> | 17,461       |
| Cr <sub>3</sub> O <sub>3</sub> | 0,125        |
| MgO                            | 25,131       |
| CaO                            | 0'000        |
| МпО                            | 0,139        |
| FeO                            | 15,122       |
| NIO                            | 0,041        |
| Na <sub>2</sub> O              | 0,007        |
| K <sub>2</sub> O               | 0,001        |
| V20s                           | 0,114        |
| H <sub>J</sub> O               | 11,982       |
| Total:                         | 99,351       |
|                                |              |
| Si                             | 5,848        |
| Ti                             | 0,002        |
| AI                             | 4,120        |
| с,                             | 0,020        |
| Mg                             | 7,500        |
| Ca                             | 0'000        |
| Mn                             | 0,024        |
| Fe <sup>3</sup>                | 2,532        |
| NI                             | 0,007        |
| Na                             | 0,003        |
| Х                              | 0,000        |
| >                              | 0,018        |
| Total:                         | 20,074       |
|                                |              |
| AI IV                          | 2,152        |
| AI <sup>VI</sup>               | 1,968        |
| Mg#                            | 74,76        |
| Cr#                            | 0,48         |

.

# ANNEXE C.5

ANALYSES DES AMPHIBOLES

| Échantillous                   | 97-JC-5557-B1 | 97-JC-5557-B2 | 97-JC-5557-B2 | 97-JC-5557-B2 | 97-JC-5557-B2 | 97-MH-7371-21 | 97-MH-7371-21 | 97-MH-7371-21 | 97-MH-7371-21 | 97-MH-7374-07 |
|--------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                          | 1             | 1             | 2             | 3             | 4             | 2             | 3             | 4             | 5             | 1             |
| Lithologic                     | Chr sil       | Webst         | Webst         | Webst         | Wehst         | Harzb à chro  |
| Groupe amphibole.              | Na-Ca         | Ca            | Са            | Ca            |
|                                |               |               |               |               |               |               |               |               |               |               |
| SiO <sub>2</sub>               | 55,017        | 58,956        | 59,096        | 58,983        | 58,955        | 51,292        | 52,961        | 56,26         | 57,246        | 57,706        |
| TiO,                           | 0,824         | 0,005         | 0,021         | 0,037         | 0,000         | 0,038         | 0,000         | 0,000         | 0,000         | 0,007         |
| Al <sub>2</sub> O <sub>3</sub> | 5,173         | 0,057         | 0,077         | 0,155         | 0,104         | 5,786         | 4,099         | 0,621         | 0,495         | 0,847         |
| FeO                            | 1,999         | 2,111         | 2,167         | 2,233         | 1,891         | 7,620         | 7,799         | 6,289         | 5,315         | 1,420         |
| MnO                            | 0,045         | 0,072         | 0,060         | 0,095         | 0,092         | 0,142         | 0,293         | 0,128         | 0,297         | 0,037         |
| MgO                            | 24,839        | 23,493        | 23,426        | 22,943        | 23,441        | 19,158        | 19,989        | 20,240        | 21,423        | 24,428        |
| CaO                            | 4,289         | 13,557        | 13,400        | 13,385        | 13,449        | 10,149        | 10,387        | 13,174        | 12,204        | 13,130        |
| Na <sub>2</sub> O              | 3,111         | 0,093         | 0,114         | 0,178         | 0,093         | 2,073         | 1,178         | N, 195        | 9,34          | 0,167         |
| K₂O                            | 0,042         | 0,020         | 0,013         | 0,022         | 0,023         | 0,051         | 0,046         | 0,060         | 0             | 0,033         |
| ZnO                            | 0,000         | 0,025         | 0,000         | 0,000         | 0,022         | n.a.          | n.a.          | n.a.          | n.a.          | 0,047         |
| Cr <sub>7</sub> O3             | 2,729         | 0,047         | 0,095         | 0,130         | 0,079         | 0,000         | 0,000         | 0,000         | 0,028         | 0,513         |
| NIO                            | 0,187         | 0,147         | 0,222         | 0,048         | 0,136         | 0,068         | 0,024         | 0,030         | 0,064         | 0,014         |
| H <sub>2</sub> O               | 2,218         | 2,209         | 2,212         | 2,204         | 2,209         | 2,097         | 2,113         | 2,131         | 2,157         | 2,208         |
| F                              | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | n.a,          | 11,6,         | <b>n.a.</b>   | n.a.          | 0,000         |
| CI                             | 0,003         | 0,013         | 0,012         | 0,003         | 0,000         | n.a.          | n.a.          | n.a.          | n.a.          | 0,003         |
| Total                          | 100,476       | 100,805       | 100,915       | 100,416       | 100,494       | 98,477        | 98,889        | 99,098        | 99,569        | 100,560       |
|                                |               |               |               |               |               |               |               |               |               |               |
| SI                             | 7,436         | 7,991         | 7,999         | 8,019         | 8,003         | 7,332         | 7,516         | 7,914         | 7,956         | 7,832         |
| Ti                             | 0,084         | 0,001         | 0,002         | 0,004         | 0,000         | 0,004         | 0,000         | 0,000         | 0             | 0,001         |
| Al                             | 0,824         | 0,009         | 0,012         | 0,025         | 0,017         | 0,975         | 0,686         | 0,103         | 0,081         | 0,136         |
| Fc                             | 0,226         | 0,239         | 0,245         | 0,254         | 0,215         | 0,911         | 0,926         | 0,740         | 0,618         | 0,161         |
| Mn                             | 0,005         | 0,008         | 0,007         | 0,011         | 0,011         | 0,017         | 0,035         | 0,015         | 0,035         | 0,004         |
| Mg                             | 5,004         | 4,747         | 4,727         | 4,650         | 4,744         | 4,083         | 4,229         | 4,245         | 4,439         | 4,943         |
| Са                             | 0,621         | 1,969         | 1,943         | 1,950         | 1,956         | 1,554         | 1,580         | 1,986         | 1,817         | 1,909         |
| Na                             | 0,815         | 0,024         | 0,030         | 0,047         | 0,024         | 0,574         | 0,324         | 0,045         | 0,092         | 0,044         |
| к                              | 0,007         | 0,003         | 0,002         | 0,004         | 0,004         | 0,010         | 0,008         | 0,011         | 0             | 0,006         |
| Zn                             | 0,000         | 0,003         | 0,000         | 0,000         | 0,002         | n,a           | 11.A          | n.a           | រា.ព          | 0,005         |
| Cr                             | 0,292         | 0,005         | 0,010         | 0,014         | 0,008         | 0,000         | 0,000         | 0,000         | 0,003         | 0,055         |
| NI                             | 0,020         | 0,016         | 0,024         | 0,005         | 0,015         | 0,008         | 0,003         | 0,003         | 0,007         | 0,001         |
| F                              | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | n.a           | n.a           | n.a           | n.a           | 0,000         |
| CI                             | -0,001        | -0,003        | -0,003        | -0,001        | 0,000         | 11.4          | n.a           | n.a           | n.a           | -0,001        |
| Total                          | 15,333        | 15,012        | 14,998        | 14,982        | 14,999        | 15,468        | 15,307        | 15,062        | 15,048        | 15,096        |
|                                |               |               |               |               |               |               | 1             | ]             | 1             | ]             |
| AL IV                          | 0,564         | 0,009         | 0,001         | 0,000         | 0,000         | 0,668         | 0,484         | 0,086         | 0,044         | 0,168         |
| AI VI                          | 0,260         | 0,000         | 0,011         | 0,025         | 0,017         | 0,307         | 0,202         | 0,017         | 0,037         | 0,000         |
| (Ca+Na)B                       | 1,436         | 1,993         | 1,973         | 1,997         | 1,980         | 2,000         | 1,904         | 2,000         | 1,909         | 1,953         |
| Na <sub>b</sub>                | 0,815         | 0,024         | 0,030         | 0,047         | 0,024         | 0,446         | 0,324         | 0,014         | 0,092         | 0,044         |
| (Na+K) <sub>A</sub>            | 0,007         | 0,003         | 0,002         | 0,004         | 0,004         | 0,138         | 0,008         | 0,042         | 0,000         | 0,006         |
| Mg#                            | 0,957         | 0,952         | 0,951         | 0,948         | 0,957         | 0,818         | 0,820         | 0,852         | 0,878         | 0,968         |

### Tableau C.5 Composition des amphiboles analysées à la microsonde électronique.

| Échantillons                   | 97-MH-7374-10 | 97-MH-7374-10 | 97-MH-7374-10 | 97-MH-7374-11 | 97-MH-7374-11 | 97-MH-7374-11 | 97-MH-7374-11 | 97-MH-7374-11 | 97-MH-7374-11 | 97-MH-7374-11 |
|--------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Point                          | 1             | 2             | 3             | 2             | 3             | 4             | 5             | 7             | 8             | 9             |
| Lithologie                     | Chr sil       | Chr sil       | Chr sil       | Harzb A chro  | Harzb à chro  | Harzb á chro  | Harzh A chro  | Harzb à chro  | Harzb à chro  | Harzb à chro  |
| Groupe amphibole               | Ca            | Са            | Ся            | Ca            | Ca            | Са            | Са            | Ca            | Ca            | Ca            |
|                                |               |               |               |               |               |               |               |               |               |               |
| SiO <sub>2</sub>               | 57,513        | 58,287        | 58,289        | 58,127        | 57,55         | 57,808        | 57,829        | 57,731        | 58,35         | 57,649        |
| TiO,                           | 0,034         | 0,050         | 0,048         | 0,022         | 0,026         | 0,035         | 0,043         | 0,051         | 0,053         | 0,024         |
| Al <sub>2</sub> O <sub>3</sub> | 1,383         | 0,383         | 0,395         | 0,515         | 0,674         | 0,450         | 0,472         | 0,656         | 0,399         | 0,669         |
| FcO                            | 1,934         | 1,272         | 1,245         | 1,601         | 1,652         | 1,685         | 1,69          | 1,550         | 1,875         | 1,609         |
| MnO                            | 0,054         | 0,031         | 0,042         | 0,057         | 0,081         | 0,078         | 0,07          | 0,084         | 0,051         | 0,035         |
| MgO                            | 23,447        | 24,224        | 24,100        | 23,823        | 23,716        | 23,930        | 23,709        | 23,947        | 24,182        | 23,729        |
| CaO                            | 13,432        | 13,315        | 13,483        | 13,308        | 13,165        | 13,254        | 13,275        | 13,218        | 13,162        | 13,351        |
| Na <sub>2</sub> O              | 0,420         | 0,156         | 0,178         | 0,141         | 0,191         | 0,150         | 0,156         | 0,136         | 0,210         | 0,224         |
| K₂O                            | 0,083         | 0,042         | 0,041         | 0,038         | 0,067         | 0,026         | 0,022         | 0,056         | 0,068         | 0,057         |
| ZnO                            | 0,000         | 0,023         | 0,022         | 0,031         | 0,006         | 0,008         | 0             | 0,109         | 0,000         | 0,007         |
| Cr <sub>2</sub> O <sub>3</sub> | 0,248         | 0,116         | 0,109         | 0,300         | 0,289         | 0,279         | 0,388         | 0,431         | 0,021         | 0,695         |
| NiO                            | 0,048         | 0,000         | 0,065         | 0,041         | 0,000         | 0,062         | 0,116         | 0,027         | 0,079         | 0,048         |
| н,о                            | 2,144         | 2,203         | 2,141         | 2,201         | 2,187         | 2,194         | 2,141         | 2,199         | 2,204         | 2,178         |
| F                              | 0,131         | 0,000         | 0,132         | 0,000         | 0,000         | 0,000         | 0,11          | 0,000         | 0,011         | 0,044         |
| CI                             | 0,006         | 0,007         | 0,008         | 0,006         | 0,003         | 0,002         | 0,006         | 0,001         | 0,006         | 0,000         |
| Total                          | 100,877       | 100,109       | 100,298       | 100,211       | 99,607        | 99,961        | 100,027       | 100,196       | 100,671       | 100,319       |
|                                |               |               |               |               |               |               |               |               |               |               |
| Si                             | 7,812         | 7,927         | 7,924         | 7,914         | 7,888         | 7,897         | 7,902         | 7,870         | 7,914         | 7,860         |
| Ti                             | 0,003         | 0,005         | 0,005         | 0,002         | 0,003         | 0,004         | 0,004         | 0,005         | 0,005         | 0,002         |
| Λ1                             | 0,221         | 0,061         | 0,063         | 0,083         | 0,109         | 0,072         | 0,076         | 0,105         | 0,064         | 0,108         |
| Fc                             | 0,220         | 0,145         | 0,141         | 0,182         | 0,189         | 0,192         | 0,193         | 0,177         | 0,213         | 0,183         |
| Mn                             | 0,006         | 0,004         | 0,005         | 0,007         | 0,009         | 0,009         | 0,008         | 0,010         | 0,006         | 0,004         |
| Mg                             | 4,748         | 4,911         | 4,884         | 4,835         | 4,846         | 4,873         | 4,83          | 4,867         | 4,889         | 4,823         |
| Ca                             | 1,955         | 1,940         | 1,964         | 1,941         | 1,933         | 1,940         | 1,944         | 1,931         | 1,913         | 1,950         |
| Na                             | 0,111         | 0,041         | 0,017         | 0,037         | 0,051         | 0,040         | 0,041         | 0,036         | 0,055         | 0,059         |
| к                              | 0,014         | 0,007         | 0,007         | 0,007         | 0,012         | 0,004         | 0,001         | 0,010         | 0,012         | 0,010         |
| Zn                             | 0,000         | 0,002         | 0,002         | 0,003         | 0,001         | 0,001         | 0             | 0,011         | 0,000         | 0,001         |
| Сг                             | 0,027         | 0,012         | 0,012         | 0,032         | 0,031         | 0,030         | 0,042         | 0,046         | 0,002         | 0,075         |
| Ni                             | 0,005         | 0,000         | 0,007         | 0,004         | 0,000         | 0,007         | 0,013         | 0,003         | 0,009         | 0,005         |
| F                              | -0,055        | 0,000         | -0,056        | 0,000         | 0,000         | 0,000         | -0,046        | 0,000         | -0,005        | -0,019        |
| CI                             | -0,001        | -0,002        | -0,002        | -0,001        | -0,001        | 0,000         | -0,001        | 0,000         | -0,001        | 0,000         |
| Total                          | 15,066        | 15,053        | 15,003        | 15,046        | 15,071        | 15,069        | 15,01         | 15,071        | 15,076        | 15,061        |
|                                |               |               | <u></u>       |               |               |               |               |               |               |               |
| AI IV                          | 0,188         | 0,073         | 0,076         | 0,086         | 0,112         | 0,103         | 0,098         | 0,130         | 0,086         | 0,140         |
| Al VI                          | 0,033         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | 0             | 0,000         | 0,000         | 0,000         |
| (Ca+Na) <sub>B</sub>           | 2,000         | 1,981         | 2,000         | 1,978         | 1,984         | 1,980         | 1,985         | 1,967         | 1,968         | 2,000         |
| Na <sub>B</sub>                | 0,045         | 0,041         | 0,036         | 0,037         | 0,051         | 0,040         | 0,041         | 0,036         | 0,055         | 0,050         |
| (Na+K) <sub>A</sub>            | 0,080         | 0,007         | 0,018         | 0,007         | 0,012         | 0,004         | 0,004         | 0,010         | 0,012         | 0,019         |
| Mg#                            | 0,956         | 0,971         | 0,972         | 0,964         | 0,962         | 0,962         | 0,962         | 0,965         | 0,958         | 0,963         |

| Échantillons                   | 97-MH-7374-20 | 97-MH-7385-03A        | 97-MH-7385-03A | 97-MH-7385-03D | 97-MH-7385-03D | 97-MII-7385-03D | 97-MH-7385-03D | 97-MH-7385-03D | 97-MH-7385-03D |
|--------------------------------|---------------|-----------------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|
| Point                          | 1             | 1                     | 2              | 1              | 2              | 3               | 4              | 5              | 6              |
| Lithologie                     | Lherz         | Chr sil               | Chr sil        | Chr sil        | Chr sil        | Chr sil         | Chr sil        | Chr sil        | Chr sil        |
| Groupe amphibole               | Na-Ca         | Ся                    | Са             | Ca             | Са             | Ca              | Ca             | Ca             | Ca             |
|                                |               |                       |                |                |                |                 |                |                |                |
| SiO <sub>2</sub>               | 46,682        | 58,697                | 58,855         | 58,191         | 59,088         | 58,715          | 58,629         | 58,83          | 58,649         |
| TiO <sub>2</sub>               | 1,578         | 0,000                 | 0,000          | 0,000          | 0,000          | 0,000           | 0,001.         | 0,000          | 0,000          |
| Al <sub>2</sub> O <sub>3</sub> | 11,504        | 0,108                 | 0,082          | 0,239          | 0,162          | 0,192           | 0,277          | 0,251          | 0,173          |
| FeO                            | 1,380         | 1,480                 | 1,220          | 3,123          | 1,217          | 1,990           | 1,419          | 1,304          | 1,405          |
| MnO                            | 0,109         | 0,000                 | 0,000          | 0,002          | 0              | 0,000           | 0,000          | 0,000          | 0,000          |
| MgO                            | 28,052        | 23,704                | 23,906         | 22,621         | 23,871         | 23,494          | 23,617         | 24,032         | 23,728         |
| CaO                            | 0,455         | 13,761                | 13,691         | 13,557         | 13,379         | 13,431          | 13,646         | 13,167         | 13,865         |
| Na <sub>2</sub> O              | 5,058         | 0,004                 | 0,021          | 0,045          | 0,044          | 0,081           | 0,076          | 0,068          | 0,043          |
| K <sub>2</sub> O               | 0,085         | 0,000                 | 0,000          | 0,000          | 0              | 0,000           | 0,000          | 0,005          | 0,000          |
| ZnO                            | 0,028         | n.a.                  | n.a.           | n.a.           | n.a.           | n.a,            | n.a.           | п.а.           | n.a.           |
| Cr <sub>2</sub> O <sub>3</sub> | 1,915         | 0,000                 | 0,000          | 0,022          | 0              | 0,000           | 0,069          | 0,000          | 0,000          |
| NiO                            | 0,123         | 0,003                 | 0,064          | 0,124          | 0,08           | 0,145           | 0,074          | 0,124          | 0,131          |
| H <sub>2</sub> O               | 2,061         | 2,202                 | 2,206          | 2,188          | 2,21           | 2,204           | 2,203          | 2,207          | 2,205          |
| F                              | 0,244         | n.a.                  | ព.គ.           | n.a.           | n.a.           | n.a.            | n.a,           | n.a.           | n.a.           |
| C1                             | 0,000         | <b>D</b> , <b>A</b> , | n.a.           | n.a.           | n.a.           | n.a.            | n.a.           | n.a.           | n.a.           |
| Total                          | 99,274        | 99,959                | 100,045        | 100,112        | 100,051        | 100,252         | 100,011        | 99,988         | 100,199        |
|                                |               |                       |                |                |                |                 |                |                |                |
| Si                             | 6,430         | 7,993                 | 7,998          | 7,974          | 8,017          | 7,989           | 7,980          | 7,992          | 7,975          |
| Ti                             | 0,163         | 0,000                 | 0,000          | 0,000          | 0              | 0,000           | 0,000          | 0,000          | 0,000          |
| AI                             | 1,868         | 0,017                 | 0,013          | 0,039          | 0,026          | 0,031           | 0,044          | 0,040          | 0,028          |
| Fe                             | 0,159         | 0,169                 | 0,139          | 0,358          | 0,138          | 0,226           | 0,162          | 0,148          | 0,160          |
| Mn                             | 0,013         | 0,000                 | 0,000          | 0,000          | 0              | 0,000           | 0,000          | 0,000          | 0,000          |
| Mg                             | 5,760         | 4,812                 | 4,843          | 4,621          | 4,829          | 4,765           | 4,792          | 4,867          | 4,810          |
| Ca                             | 0,067         | 2,008                 | 1,993          | 1,991          | 1,945          | 1,958           | 1,990          | 1,917          | 2,020          |
| Na                             | 1,351         | 0,001                 | 0,006          | 0,012          | 0,012          | 0,021           | 0,020          | 0,018          | 0,011          |
| К                              | 0,015         | 0,000                 | 0,000          | 0,000          | 0              | 0,000           | 0,000          | 0,001          | 0,000          |
| Zn                             | 0,003         | n.a.                  | <u>n.a.</u>    | <u>n.a</u>     | n.a            | <u>n.a.</u>     | n.a.           | n,a.           | n.a.           |
| Cr                             | 0,209         | 0,000                 | 0,000          | 0,002          | 0              | 0,000           | 0,007          | 0,000          | 0,000          |
| Ni                             | 0,014         | 0,000                 | 0,007          | 0,014          | 0,009          | 0,016           | 0,008          | 0,014          | 0,014          |
| F                              | -0,103        | <u>n.a.</u>           | <u>n,a,</u>    | n.a            | <u>n.a</u>     | n.a.            | n.a.           | <u>n.a.</u>    | <u>n.a.</u>    |
| CI                             | 0,000         | <u>n.a.</u>           | n.a.           | n.a            | n.a            | 1.8.            | n.a.           | <u>n.a.</u>    | n.a.           |
| Total                          | 15,949        | 15,000                | 14,999         | 15,011         | 14,976         | 15,006          | 15,003         | 14,997         | 15,018         |
|                                |               |                       |                | ļ              |                |                 |                | L              | L              |
| ALIV                           | 1,570         | 0,007                 | 0,002          | 0,026          | 0,000          | 0,011           | 0,020          | 0,008          | 0,025          |
|                                | 0,298         | 0,010                 | 0,011          | 0,013          | 0,026          | 0,020           | 0,024          | 0,032          | 0,003          |
| (Ca+Na) <sub>B</sub>           | 1,418         | 2,000                 | 1,999          | 2,000          | 1,957          | 1,979           | 2,000          | 1,935          | 2,000          |
| Na <sub>B</sub>                | 1,351         | 0,000                 | 0,006          | 0,009          | 0,012          | 0,021           | 0,010          | 0,018          | 0,000          |
| (Na+K)A                        | 0,015         | 0,001                 | 0,000          | 0,003          | 0,000          | 0,000           | 0,010          | 0,001          | 0,011          |
| Mg#                            | 0,973         | 0,966                 | 0,972          | 0,928          | 0,972          | 0,955           | 0,967          | 0,970          | 0,968          |

.

.

# ANNEXE C.6

ANALYSES DES CARBONATES

•

| Échantillons | 97-CD-5638-B | 97-CD-5638-B | 97-CD-5639-B | 97-MH-5642-A      | 97-MH-5642-A      | 97-MH-7374-02 | 97-MH-7374-04 |
|--------------|--------------|--------------|--------------|-------------------|-------------------|---------------|---------------|
| Point        | I            | 2            | 1            | 1                 | 2                 | 1             | 1             |
| Lithologie   | Filon Sf     | Filon Sf     | Filon Sf     | Périd             | Périd             | Harzb å chro  | Harzb à chro  |
| Localisation | Veine        | Veine        | Veine        | Veine (Carbonat.) | Veine (Carbonat.) | •             | "Cumulus"     |
| Mg(CO3)      | 38,939       | 41,090       | 88,284       | 87,189            | 88,259            | 40,665        | 44,991        |
| Ca(CO3)      | 52,011       | 51,760       | 0,322        | 0,291             | 0,267             | 55,217        | 50,064        |
| Mn(CO3)      | 1,385        | 0,757        | 1,600        | 0,130             | 0,168             | 0,362         | 0,479         |
| Fe(CO3)      | 4,913        | 4,569        | 10,214       | 11,745            | 11,018            | 2,022         | 3,098         |
| Sr(CO3)      | n.a.         | n.a.         | p.a.         | 0,016             | 0,019             | 0,127         | 0,000         |
| Total        | 97,248       | 98,176       | 100,420      | 99,371            | 99,731            | 98,393        | 98,632        |
| Mg(CO3)      | 0,892        | 0,928        | 1,817        | 1,815             | 1,827             | 0,914         | 1,002         |
| Ca(CO3)      | 1,003        | 0,985        | 0,006        | 0,005             | 0,005             | 1,045         | 0,940         |
| Mn(CO3)      | 0,023        | 0,013        | 0,024        | 0,002             | 0,003             | 0,006         | 0,008         |
| Fc(CO3)      | 0,082        | 0,075        | 0,153        | 0,178             | 0,166             | 0,033         | 0,050         |
| Sr(CO3)      | Π,Α          | D.A          | n.a          | 0,000             | 0,000             | 0,002         | 0,000         |
| Total        | 2,000        | 2,001        | 2,000        | 2,000             | 2,001             | 2,000         | 2,000         |

| Tableau C.6 | Composition | des carbonates | s analysés à la | microsonde | électronique. |
|-------------|-------------|----------------|-----------------|------------|---------------|
|             | <b>▲</b>    |                |                 |            |               |

| Échantillons | 97-MH-7374-04 | 97-MH-7374-05  | 97-MH-7374-05 | 97-MH-7374-10  | 97-MH-7374-10  | 97-MH-7374-21 | 97-MH-7374-22 |
|--------------|---------------|----------------|---------------|----------------|----------------|---------------|---------------|
| Point        | 2             | 1              | 2             | 1              | 2              | 1             | 1             |
| Lithologie   | Harzb A chro  | Lheiz à chro   | Lheiz à chro  | Chr Sil        | Chr Sil        | Harzb à chro  | Harzh à chro  |
| Localisation | Veine         | "intercumulus" | Veine         | "Intercumulus" | "Intercumulus" | Veine         | Veine         |
| Mg(CO3)      | 42,320        | 43,265         | 43,025        | 1,533          | 1,256          | 0,758         | 0,403         |
| Cn(CO3)      | 53,222        | 53,981         | 53,515        | 98,460         | 99,402         | 101,040       | 100,146       |
| Mn(CO3)      | 0,406         | 0,395          | 0,475         | 0,070          | 0,073          | 0,195         | 0,116         |
| Fe(CO3)      | 2,465         | 3,110          | 2,812         | 0,143          | 0,100          | 0,323         | 0,070         |
| Sr(CO3)      | 0,084         | 0,107          | 0,131         | 0,169          | 0,124          | 0,043         | 0,046         |
| Total        | 98,497        | 100,858        | 99,958        | 100,375        | 100,955        | 102,359       | 100,781       |
| Mg(CO3)      | 0,948         | 0,947          | 0,950         | 0,036          | 0,029          | 0,018         | 0,009         |
| Ca(CO3)      | 1,004         | 0,996          | 0,996         | 1,958          | 1,966          | 1,973         | 1,987         |
| Mn(CO3)      | 0,007         | 0,006          | 0,008         | 0,001          | 0,001          | 0,003         | 0,002         |
| Fe(CO3)      | 0,040         | 0,050          | 0,045         | 0,002          | 0,002          | 0,005         | 0,001         |
| Sr(CO3)      | 0,001         | 0,001          | 0,002         | 0,002          | 0,002          | 0,001         | 0,001         |
| Total        | 2,000         | 2,000          | 2,001         | 1,999          | 2,000          | 2,000         | 2,000         |

# **ANNEXE C.7**

ANALYSES DES SULFURES (Éléments majeurs)

| 74,101          | 40,001          | 71'66           | 100'33          | 100'05          | 19'001          | 101,14          | <b>26'66</b>    | 100,64          | Total          |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|
| 16,34           | 55,44           | 95,44           | 27.44           | 75,44           | 84,44           | 42,10           | 44'20           | 68,44           | ۳V             |
| 20'81           | 92'22           | 55'86           | 53'03           | 52'63           | 24'30           | 24'32           | 53'86           | 52'15           | <b>0</b> 0     |
| 00'0            | 00'0            | 20'0            | 0'03            | 00'0            | 10'0            | 6,03            | 90'0            | 00'0            | c <sup>a</sup> |
| \$6'\$I         | 66'2            | \$,04           | S9'8            | 643             | 06'2            | 21'8            | 66,8            | 66,3            | ŦN             |
| 5'89            | 4'22            | 3'45            | 49'E            | 54'4            | 9,84            | 345             | 3,85            | 5,80            | Fe.            |
| 50'53           | 61'02           | 20'12           | 50'15           | 50'13           | 20'08           | 20,04           | \$0,14          | £8'61           | S              |
|                 |                 |                 |                 |                 |                 |                 |                 |                 |                |
| 10              | 3               | 5               | 1               | 6               | 8               | 2               | 9               | S               | Grains         |
| Sulfoarséniures | Sulfoarséniures | Sulfoarséniures | Sulfoarseniures | Sulfoarséniures | Sulfoarséniures | seruinėsusoilu2 | Sulfoerséniures | Sulfoarséniures | Minéral        |
| Harzb à chro    | Harzb à chro    | Наггр à сhro    | Harzb à chro    | Harzb à chro    | Harzb à chro    | Нагzb à chro    | Harzb à chro    | Harzb à chro    | Lithologie     |
| 70-4787-HM-79   | 20-1757-HM-79   | 97-MH-7371-02   | 20-1767-HM-79   | 20-1757-HM-79   | 20-1757-HM-79   | 20-1767-HM-79   | 97-MH-7371-02   | 20-1757-HM-70   | Echantillons   |

# **Tableau C.7** Composition des sulfures (éléments majeurs) analysés à la microsonde électronique.

| Total        | 09'101          | 12,501          | 16'101          | 84,86           | 94'66           | 91'101          | 10'66           | 90'201          | 105'33          |
|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| sA           | 42'13           | 45'54           | 42'23           | 45'22           | 43'65           | 42'54           | 44'36           | 42'35           | L\$'\$\$        |
| 9            | 12'81           | 50'35           | 80'61           | 18'13           | 06'71           | 19'93           | 16,81           | 26'61           | 19,52           |
| Cn           | 00'0            | 00'0            | 00'0            | 00'0            | 00'0            | 00'0            | 00'0            | 91'0            | 61'0            |
| TN           | 89'41           | 13,74           | [4,4]           | 15,70           | 14'34           | 94,01           | 99'51           | 15'25           | 13'15           |
| 91           | 18,2            | SE'E            | 5,63            | \$6'S           | 47,4            | 5'62            | \$L'T           | 68'8            | 70,E            |
| 8            | 50'58           | 30'39           | 50'59           | 18,57           | <u>91'61</u>    | 20,21           | 58'61           | 12,02           | 30'39           |
|              |                 | I               |                 |                 |                 |                 |                 |                 |                 |
| Grains       | 8               | 4               | S               | 9               | 2               | 8               | 6               | 1               | 5               |
| [arbnim      | Sulfoarséniures | Sulfoarséniures | Sulfoarséniures | Sulfoaraéniurea | Sulfoarséniures | Sulfoarséniures | seruineerseiluZ | Sulfoerséniures | Sulfoarséniures |
| Lithologie   | Harzb à chro    | Harzb à chro    | Harzb à chro    | НаггЬ à сhro    | Нагар à сhro    | Harzb à chro    | Наггр à сhro    | Harzb à chro    | Harzb à chro    |
| Echantillons | 70-4757-HM-79   | 70-4767-HM-70   | 70-4787-HM-79   | 70-4727-HM-79   | 70-4757-HM-79   | 70-4757-HM-70   | 70-4757-HM-79   | 91-4757-HM-70   | 91-4757-HM-79   |
|              |                 |                 |                 |                 |                 |                 |                 |                 |                 |

|              |                 |               | And Annual state that a state |               |               |               |               | فسألف ويعرب والبراسية الشروع والبراعات | the second second second second second second second second second second second second second second second s |
|--------------|-----------------|---------------|-------------------------------|---------------|---------------|---------------|---------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Total        | 01'101          | 89'66         | 68'66                         | 66'66         | 18,001        | £6'66         | 96'26         | <i>₽</i> 2'66                          | 96'66                                                                                                          |
| **           | 42'35           | 20'0          | <b>40,0</b>                   | <u>9'02</u>   | 00'0          | 0'03          | 00'0          | 0'03                                   | 0'03                                                                                                           |
| 00           | 16,27           | 00'0          | 00'0                          | 00'0          | 69'0          | 89'0          | 94'0          | 00'0                                   | 00'0                                                                                                           |
| Cu .         | 60'0            | 34'12         | 34'58                         | 34'01         | 00'0          | 00'0          | 00'0          | 34'50                                  | 34'33                                                                                                          |
| IN           | 12'13           | £0'0          | 0'03                          | 01'0          | 08,63         | 62,94         | St'19         | 0'03                                   | 0'03                                                                                                           |
| F.o.         | 19'8            | 54,05         | 30,44                         | 30,28         | 09'0          | 0'28          | 89'1          | 19'06                                  | 19'06                                                                                                          |
| 8            | 50'16           | 34,98         | 20'96                         | 34,92         | 32'12         | 39'98         | 34'91         | 34'96                                  | 34'65                                                                                                          |
|              |                 |               |                               |               |               |               |               |                                        |                                                                                                                |
| Grains       | 8               | 4             | 83                            | 2P            | 4             | S             | 9             | I                                      | 5                                                                                                              |
| Mindral      | Sulfoarséniures | Chalcopyrite  | Chalcopyrite                  | Chalcopyrite  | Millérite     | Millérite     | Millérite     | Chalcopyrite                           | Chalcopyrite                                                                                                   |
| Lithologie   | Harzb à chro    | Chr Sil       | Chr Sil                       | Chr Sil       | Chr Sil       | Cht Sil       | Chr Sil       | Chr Sil                                | US THO                                                                                                         |
| Echantillons | 91-4757-HM-79   | 1M-4857-HM-79 | 1M-4827-HM-70                 | 1M-4857-HM-79 | 1M-4857-HM-79 | IM-4857-HM-79 | 1M-4867-HM-70 | 1M-48ET-HM-Te                          | 1M-48E7-HM-79                                                                                                  |
|              |                 |               |                               |               |               |               |               |                                        |                                                                                                                |

| Echantillons | 97-MH-7384-M1   | 97-MH-7384-M1 | <u>97-MH-7384-M1</u> | 97-MH-7384-M1                         | 97-MH-7507-B | 97-MH-7507-B    | 97-MH-7507-B    | 97-MH-7507-B    | 97-MH-7507-B    |
|--------------|-----------------|---------------|----------------------|---------------------------------------|--------------|-----------------|-----------------|-----------------|-----------------|
| Lithologie   | Chr Sil         | Chr Sil       | Chr Sil              | Chr Sil                               | Chr Sil      | Chr Sil         | Chr Sil         | Chr Sil         | Chr Sil         |
| Minéral      | Chalcopyrite    | Millérite     | Millérite            | Millérite                             | Arséniure    | Arséniure       | Arséniure       | Arséniure       | Arséniure       |
| Grains       | 3               | 1             | 2                    | 3                                     | 1            | 10              | 2               | 3               | 4               |
|              |                 |               |                      |                                       |              |                 |                 |                 |                 |
| 8            | 35,04           | 35,60         | 35,63                | 35,79                                 | 0,24         | 0,25            | 0,42            | 0,21            | 0,34            |
| Fe           | 30,56           | 0,52          | 0,49                 | 0,72                                  | 0,47         | 0,59            | 0,86            | 0,72            | 0,65            |
| Ni           | 0,03            | 63,51         | 63,67                | 63,29                                 | 43,84        | 43,68           | 42,89           | 43,08           | 43,68           |
| Cu           | 34,54           | 0,00          | 0,00                 | 0,00                                  | 0,00         | 0,00            | 0,00            | 0,00            | 0,00            |
| Co           | 0,00            | 0,58          | 0,51                 | 0,49                                  | 0,05         | 0,00            | 0,00            | 0,00            | 0,07            |
| As .         | 0,04            | 0,01          | 0,03                 | 0,02                                  | 54,89        | 55,25           | 54,81           | 54,90           | 54,99           |
| Total        | 100,24          | 100,24        | 100,40               | 100,36                                | 99,50        | 99,76           | 98,97           | 98,91           | 99,71           |
|              |                 |               |                      |                                       |              |                 |                 |                 |                 |
|              |                 |               |                      |                                       |              |                 |                 | ·               |                 |
| Echantillons | 97-MH-7507-B    | 97-MH-7507-B  | 97-MH-7507-B         | 97-MH-7507-B                          | 97-MH-7507-B | 97-MH-7507-B    | 97-MH-7507-B    | 97-MH-7507-B    | 97-MH-7507-B    |
| Lithologie   | Chr Sil         | Chr Sil       | Chr Sil              | Chr Sil                               | Chr Sil      | Chr Sil         | Chr Sil         | Chr Sil         | Chr Sil         |
| Geoleg       | Arseniure       | Arseniure     | Arséniure            | Arséniure                             | Arséniure    | Sulfoarseniures | Sulfoarsóniures | Sulfoarséniures | Sulfoarséniures |
| OTILIAS      | 3               | <u> </u>      |                      | 8                                     | 9            |                 | 2               | 3               | 4               |
| 6            | 0.30            | 0.20          | 0.17                 | 0.00                                  | 0.00         | 10.04           | 10.00           |                 |                 |
| Fo           | 0,39            | 1.04          | 0,17                 | 0,22                                  | 0,28         | 19,94           | 19,97           | 20,03           | 20,01           |
| NI           | 43.00           | 1,24          | 0,55                 | 1,00                                  | 0,50         | 2,82            | 3,77            | 2,72            | 3,17            |
| Cn           | 0.00            | 43,09         | 43,39                | 43,12                                 | 43,02        | 0,21            | 14,50           | 9,26            | 9,23            |
| Co           | 0,00            | 0,00          | 0,00                 | 0,00                                  | 0,00         | 0,00            | 0,00            | 0,00            | 0,00            |
| A.           | 55 50           | 54.05         | 55.44                | 55.15                                 | 0,00         | 22,49           | 16,09           | 20,88           | 21,33           |
| Total        | 00,52           | 00.66         | 00.79                | 00.40                                 | 55,10        | 44,78           | 45,23           | 44,70           | 44,95           |
| X OCAL       | 99,00           | 99,00         | 99,73                | 99,49                                 | 99,50        | 98,24           | 99,56           | 97,58           | 98,70           |
|              |                 |               |                      |                                       |              |                 |                 |                 |                 |
| Echan illons | 97-MH-7507-B    | 96-CD-5638-B  | 96-CD-5638-B         | 1 96-CD-5638-B                        | 96-CD-5638-B | 96-CD-5638-B    | 96-CD-5638-B    | 96-CD-5638-B    | 96-CD-5638-B    |
| Lithologie   | Chr Sil         | Filon Sf      | Filon Sf             | Filon Sf                              | Filon Sf     | Filon Sf        | Filon Sf        | Filon Sf        | Filon Sf        |
| Minéral      | Sulfoarséniures | Chalconvrite  | Chalcopyrite         | Chalconvrite                          | Chalcopyrite | Chalconvrite    | Pentlendite     | Pentlandite     | Pentlendite     |
| Grains       | 5               | 1             | 2                    | 3                                     | 3            | 4               | 1               | 2               | 3               |
|              |                 |               | t                    | t                                     |              | f               | <u> </u>        |                 |                 |
| 8            | 19,99           | 34,92         | 34,74                | 34,83                                 | 34,56        | 34.83           | 33.24           | 33.36           | 33.14           |
| Fe           | 2,17            | 30,32         | 30,56                | 30,42                                 | 30,71        | 30,42           | 29,59           | 30,10           | 29,44           |
| NI           | 8,31            | 0,03          | 0,03                 | 0,16                                  | 0,01         | 0,06            | 36,76           | 36,59           | 36,62           |
| Cu           | 0,00            | 33,48         | 33,67                | 33,36                                 | 33,18        | 33,38           | 0,02            | 0,06            | 0,15            |
| Co           | 22,73           | 0,00          | 0,00                 | 0,00                                  | 0,00         | 0,00            | 0,00            | 0,00            | 0.00            |
| As           | 44,74           | 0,03          | 0,04                 | 0,04                                  | 0,02         | 0,01            | 0,03            | 0,02            | 0,02            |
| (D-A-1       | 07.04           | 1 00.00       |                      | · · · · · · · · · · · · · · · · · · · | 1            |                 |                 |                 |                 |

Tableau C.7 Composition des sulfures (éléments majeurs) analysés à la microsonde électronique (suite).

| Echantillons | 96-CD-5638-B   | 96-CD-5638-B   | 96-CD-5638-B                           | 96-CD-5638-B      | 96-CD-5638-B            | 96-CD-5638-B      | 96-CD-5638-B      | 96-CD-5638-B | 96-CD-5638-B             |
|--------------|----------------|----------------|----------------------------------------|-------------------|-------------------------|-------------------|-------------------|--------------|--------------------------|
| Lithologie   | Filon Sf       | Filon Sf       | Filon Sf                               | Filon Sf          | Filon Sí                | Filon Sf          | Filon Sf          | Filon Sf     | Filon Sf                 |
| Minéral      | Pentlandite    | Pentlandite    | Pyrite-Pyrrhotite                      | Pyrite-Pyrrhotite | Pyrite-Pyrrhotite       | Pyrite-Pyrrhotite | Pyrite-Pyrrhotite | Violarite    | Violarite                |
| Grains       | 4              | 5              | 1                                      | 2                 | 3                       | 4                 | 5                 | 1            | 2                        |
|              |                |                |                                        |                   |                         |                   |                   |              |                          |
| 8            | 33,21          | 33,34          | 53,44                                  | 53,41             | 53,44                   | 53,85             | 53,15             | 38,55        | 39,03                    |
| Fe           | 29,61          | 29,68          | 43,75                                  | 44,89             | 45,28                   | 44,81             | 45,83             | 29,61        | 29,15                    |
| Ni           | 36,60          | 36,52          | 0,15                                   | 0,21              | 0,03                    | 0,09              | 0,16              | 23,75        | 24,51                    |
| Cu           | 0,17           | 0,12           | 0,08                                   | 0,03              | 0,11                    | 0,08              | 0,06              | 0,41         | 0,62                     |
| Co           | 0,00           | 0,00           | 2,65                                   | 1,25              | 1,06                    | 1,46              | 0,24              | 0,00         | 0,00                     |
| As           | 0,03           | 0,05           | 0,02                                   | 0,02              | 0,02                    | 0,02              | 0,04              | 0,00         | 0,02                     |
| Total        | 99,68          | 99,75          | 100,13                                 | 99,88             | 99,97                   | 100,35            | 99,53             | 92,33        | 93,38                    |
|              |                |                |                                        |                   |                         |                   |                   |              |                          |
|              |                |                | ······                                 |                   |                         |                   |                   |              |                          |
| Echantillons | 96-CD-5638-B   | 96-CD-5638-B   | 96-CD-5638-B                           | 96-CD-5639-B      | 96-CD-5639-B            | 96-CD-5639-B      | 96-CD-5639-B      | 96-CD-5639-B | 96-CD-5639-B             |
| Lithologie   | Filon Sf       | Filon Sf       | Filon Sf                               | Filon Sf          | Filon Sf                | Filon Sf          | Filon Sf          | Filon Sf     | Filon Sf                 |
| Minéral      | Violarite      | Violarite      | Violarite                              | Chalcopyrite      | Chalcopyrite            | Chalcopyrite      | Chalcopyrite      | Chalcopyrite | Millérite                |
| Grains       | 3              | 4              | 5                                      | 1                 | 2                       | 3                 | 4                 | 5            | 11                       |
|              |                |                |                                        |                   |                         |                   |                   |              |                          |
| 8            | 38,84          | 38,28          | 39,53                                  | 34,83             | 34,69                   | 34,94             | 34,79             | 34,95        | 35,32                    |
| Fo           | 28,93          | 31,09          | 29,58                                  | 30,22             | 30,27                   | 30,27             | 30,44             | 30,58        | 1,37                     |
| N1           | 24,28          | 21,77          | 24,02                                  | 0,01              | 0,03                    | 0,03              | 0,02              | 0,02         | 62,20                    |
| Cu           | 0,18           | 0,43           | 0,50                                   | 33,79             | 34,00                   | 33,75             | 33,82             | 33,93        | 0,00                     |
| Co           | 0,00           | 0,00           | 0,00                                   | 0,00              | 0,00                    | 0,00              | 0,00              | 0,00         | 0,45                     |
| A8           | 0,03           | 0,02           | 0,04                                   | 0,04              | 0,04                    | 0,03              | 0,02              | 0,03         | 0,02                     |
| TOTAL        | 92,28          | 91,60          | 93,73                                  | 98,93             | 99,05                   | 99,10             | 99,12             | 99,57        | 99,41                    |
|              |                |                |                                        |                   |                         |                   |                   |              |                          |
| Tohantillone | 1 06 CD 5620 B | 06 CD 5620 B   | 06 CD 5620 B                           | 06 CD 5620 P      | 06 CD 5620 P            | 06 CD 5620 P      | L 06 0D 5620 P    | 06 OD 5620 B | 06 CD 5620 B             |
| Lithologie   | Biles St       | Files St       | 90-CD-3039-D                           | 90-CD-5039-D      | 90-CD-3039-D            | 90-CD-3039-D      | 90-CD-3039-D      | A0-CD-202A-D | 90-CD-3039-D             |
| Mináral      | Millárita      | Millárita      | Filon Si                               | Filon St          | Phon Si<br>Dention dite | Plion SI          | Pilon Si          | Filon Si     | Pilon Si<br>Deputer dite |
| Graine       | Millente       | willente       | Millente                               | Willerice         | rentiandite             | Pentianoite       | Pentiandite       | Pentiandite  | Pentianalle              |
| Cretities    | 4              |                | ······································ | +                 |                         |                   |                   | ·····        |                          |
| 8            | 35.35          | 35 31          | 35.05                                  | 35.75             | 33.14                   | 33.33             | 33.36             | 33.07        | 33.04                    |
| Ta           | 1 48           | 1 20           | 1.03                                   | 1 32              | 03.05                   | 25.41             | 23.04             | 25.24        | 26.18                    |
| NI           | 61 49          | 61.98          | 61 77                                  | 62.04             | 41.00                   | 41 10             | 42,27             | 40.65        | 40.12                    |
| Cu           | 0.00           | 0.00           | 0.00                                   | 0.00              | 0.00                    | 0.00              | 0.00              | 0.00         | 0.00                     |
| Co           | 0.57           | 0.54           | 0.51                                   | 0.53              | 0.53                    | 0.03              | 0.75              | 0.51         | 0.58                     |
| As           | 0.01           | 0.00           | 0.02                                   | 0.03              | 0.03                    | 0.03              | 0.02              | 0.04         | 0.04                     |
| Total        | 98.96          | 99.20          | 98.82                                  | 99.68             | 99.72                   | 99.98             | 99.52             | 99.75        | 100.21                   |
| 1            | 1 30150        | 1 <u>77</u> 40 | 1 90,04                                | 1 39,00           | 1 77,14                 | 1 77,70           | 79,04             | 22,10        | 1 100,61                 |

 Tableau C.7 Composition des sulfures (éléments majeurs) analysés à la microsonde électronique (suite).

| Echantillons | 96-CD-5639-B      | 96-CD-5639-B      | 96-CD-5639-B      | 96-CD-5639-B      | 96-CD-5639-B      | 96-CD-5639-B | 96-CD-5639-B |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|--------------|
| Lithologie   | Filon Sf          | Filon Sf     | Filon Sf     |
| Minéral      | Pyrite-Pyrrhotite | Pyrite-Pyrrhotite | Pyrite-Pyrrhotite | Pyrite-Pyrrhotite | Pyrite-Pyrrhotite | Violarite    | Violarite    |
| Grains       | 1                 | 2                 | 3                 | 4                 | 5                 | 1            | 2            |
|              |                   |                   |                   |                   |                   |              |              |
| 8            | 53,42             | 53,56             | 53,10             | 53,87             | 53,49             | 23,32        | 23,81        |
| Fe           | 45,88             | 45,14             | 43,88             | 44,23             | 43,38             | 21,09        | 26,80        |
| Ni           | 0,16              | 0,20              | 0,15              | 0,52              | 0,94              | 31,15        | 26,60        |
| Cu           | 0,01              | 0,21              | 0,02              | 0,00              | 0,03              | 1,27         | 0,95         |
| Co           | 0,05              | 0,94              | 2,10              | 1,50              | 2,24              | 0,40         | 0,39         |
| As           | 0,08              | 0,06              | 0,52              | 0,05              | 0,02              | 0,02         | 0,03         |
| Total        | 99,64             | 100,20            | 99,81             | 100,22            | 100,15            | 77,34        | 78,64        |

Tableau C.7 Composition des sulfures (éléments majeurs) analysés à la microsonde électronique (suite).

## **ANNEXE C.8**

ANALYSES DES SULFURES (Éléments du Groupe du Platíne, Cobalt)

| Echantillons | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Lithologie   | Filon Sf     |
| Sulfure      | Ptl          | Vio          | Ptl          | Vio          | Ptl          | Ptl          | Vio          | Ptl          | Сру          |
| Grains       | la           | la           | <u>1b</u>    | 1b           | 1c           | 2a           | 2a           | 2b           | 3a           |
| %            |              |              |              |              |              |              |              |              |              |
| Pd           | 0,000        | 0,000        | 0,004        | 0,000        | 0,008        | 0,015        | 0,000        | 0,005        | 0,005        |
| Rh           | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,001        |
| Pt           | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,005        | 0,000        |
| lr .         | 0,000        | 0,000        | 0,003        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,004        |
| Os           | 0,005        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        |
| Co           | 0,020        | 0,000        | 0,000        | 0,000        | 0,002        | 0,003        | 0,000        | 0,002        | 0,000        |
|              | 06 OD 5628 D | 06 0D 5600 D | 06 OD 5600 D | 06 0D 5600 D | 06 0D 5600 D |              |              | 04 0D 5400 D |              |
| Echancillons | 90-CD-3038-B | 96-CD-5638-B | 90-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B |
| Lithologie   | Filon St     | Filon Sf     | Filon St     | Filon Sf     |
| Sumre        | V10          | Сру          | Pti          | Py/Po        | Vio          | Сру          | Py/Po        | Сру          | Pil          |
| oriuna<br>o  | <u> </u>     | 30           | 30           | 30           | 30           | 30           | 30           | 48           | <u>4a</u>    |
| 70           | 0.000        | 0.010        | 0.004        | 0.001        | 0.000        | 0.000        |              | 0.000        |              |
| Pa           | 0,000        | 0,010        | 0,004        | 0,001        | 0,000        | 0,000        | 0,013        | 0,000        | 0,005        |
| RA           | 0,000        | 0,001        | 0,000        | 0,000        | 0,000        | 0,001        | 0,002        | 0,003        | 0,000        |
| π.           | 0,000        | 0,003        | 0,011        | 0,011        | 0,000        | 0,014        | 0,000        | 0,003        | 0,003        |
| 17           | 0,000        | 0,004        | 0,000        | 0,010        | 0,000        | 0,007        | 0,000        | 0,009        | 0,000        |
| 01           | 0,000        | 0,000        | 0,003        | 0,015        | 0,000        | 0,000        | 0,000        | 0,000        | 0,001        |
| Co           | 000,0        | 0,000        | 0,000        | 1,295        | 0,000        | 0,000        | 1,054        | 0,007        | 0,007        |
|              |              |              |              |              |              |              |              |              |              |
| Echantillons | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B |
| Lithologie   | Filon Sf     |
| Sulfure      | Сру          | Ptl          | Py/Po        | Vio          | Сру          | Py/Po        | Сру          | Ptl          | Pv/Po        |
| Grains       | 4b           | <u>4b</u>    | <u>4b</u>    | <u>4b</u>    | 4c           | 4c           | 5a           | <u> </u>     | 5a           |
| %            |              |              |              |              |              |              |              |              |              |
| Pd           | 0,007        | 0,000        | 0,016        | 0,000        | 0,000        | 0,007        | 0,007        | 0,000        | 0,009        |
| Rh           | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,001        | 0,002        | 0,003        | 0,001        |
| Pt           | 0,002        | 0,006        | 0,000        | 0,000        | 0,000        | 0,004        | 0,007        | 0,000        | 0,004        |
| Ir           | 0,008        | 0,005        | 0,007        | 0,000        | 0,006        | 0,011        | 0,013        | 0,000        | 0,001        |
| Os           | 0,002        | 0,000        | 0,008        | 0,000        | 0,000        | 0,014        | 0,000        | 0,000        | 0,000        |
| Co           | 0,000        | 0,022        | 0,924        | 0,000        | 0,000        | 0,070        | 0,000        | 0,034        | 0,020        |

| Tableau | C.8 Concentration | on en platino | oïdes en solution | n solide dans l | es différents sulfures. |
|---------|-------------------|---------------|-------------------|-----------------|-------------------------|

| Echantillons        | 96-CD-5638-B | 96-CD-5638-B  | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5638-B | 96-CD-5639-B | 96-CD-5639-B |
|---------------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Lithologie          | Filon Sf     | Filon Sf      | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     |
| Sulfure             | Ptl          | Py/Po         | Ptl          | Py/Po        | Vio          | Сру          | Py/Po        | Сру          | Pv/Po        |
| Grains              | <u> 3a</u>   | Зa            | 5b           | 5b           | 5b           | 5c           | 5c           | Sa           | За           |
| %                   |              |               |              |              |              |              |              |              |              |
| Pd                  | 0,000        | 0,007         | 0,003        | 0,013        | 0,000        | 0,001        | 0,014        | 0,009        | 0,014        |
| Rh                  | 0,000        | 0,003         | 0,000        | 0,000        | 0,000        | 0,000        | 0,003        | 0,003        | 0.002        |
| Pt                  | 0,000        | 0,004         | 0,000        | 0,003        | 0,000        | 0,005        | 0,010        | 0.004        | 0.001        |
| Ir                  | 0,001        | 0,018         | 0,000        | 0,008        | 0,000        | 0,010        | 0,004        | 0.000        | 0.003        |
| 0.                  | 0,002        | 0,011         | 0,005        | 0,005        | 0,000        | 0,000        | 0.002        | 0.000        | 0.003        |
| Co                  | 0,000        | 0,000         | 0,039        | 0,428        | 0,000        | 0,000        | 0.000        | 0.000        | 0.000        |
| Chantillong         | 06 CD 5629 P | 06 (CD 5608 D | 06 OD 5600 D | 04 00 F400 D |              |              |              |              |              |
| Lithelesie          | 90-CD-3038-D | 90-CD-5038-B  | 90-CD-2039-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B |
| Spléure             | Pullon St    | Filon St      | Filon St     | Filon St     | Filon Sf     |
| Graine              | <u> </u>     | V10           | Pa           | Py/Po        | Сру          | Ptl          | Py/Po        | Сру          | Ptl          |
| 94                  |              | <u> 48</u>    | 48           | <u>4a</u>    | 4b           | 4b           | <u>4b</u>    | 4c           | <u>4c</u>    |
| Pd                  | 0.000        | 0.000         | 0.000        | 0.010        | 0.000        |              |              |              |              |
| Ph                  | 0,009        | 0,000         | 0,000        | 0,012        | 0,003        | 0,000        | 0,010        | 0,000        | 0,000        |
| Pt                  | 0,001        | 0,000         | 0,000        | 0,002        | 0,001        | 0,000        | 0,001        | 0,002        | 0,000        |
| Ir.                 | 0,003        | 0,000         | 0,000        | 0,004        | 0,000        | 0,000        | 0,010        | 0,000        | 0,000        |
| Os.                 | 0,000        | 0,000         | 0,000        | 0,000        | 0,012        | 0,000        | 0,006        | 0,002        | 0,000        |
| Co                  | 0,003        | 0,000         | 0,000        | 0,000        | 0,000        | 0,003        | 0,004        | 0,000        | 0,002        |
|                     | 0,202        | 0,000         | 0,923        | 1,429        | 0,000        | 1,155        | 1,067        | 0,000        | 1,036        |
| <b>H</b> - <b>1</b> | 06.00.5600.0 |               |              |              |              |              |              |              |              |
| E-chancinons        | 96-CD-5638-8 | 96-CD-5638-B  | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B |
| Calfano             | Filon St     | Filon Sf      | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     |
| Sulture             | Vio          | Сру           | Сру          | Mil          | Ptl          | Py/Po        | Сру          | Mil          | Py/Po        |
| Grains              | 58           | 5b            | 5b           | <u>5b</u>    | 5b           | 5b           | <u>5</u> c   | 5c           | 5c           |
| 70                  |              |               |              |              |              |              |              |              |              |
| Pa                  | 0,000        | 0,003         | 0,014        | 0,020        | 0,000        | 0,012        | 0,003        | 0,013        | 0,006        |
| 18CA                | 0,000        | 0,001         | 0;000        | 0,002        | 0,000        | 0,004        | 0,002        | 0,001        | 0,001        |
| FL.                 | 0,000        | 0,007         | 0,003        | 0,000        | 0,000        | 0,016        | 0,000        | 0,004        | 0,005        |
| <u></u>             | 0,000        | 0,011         | 0,007        | 0,007        | 0,000        | 0,005        | 0,008        | 0,003        | 0,011        |
| C                   | 0,000        | 0,000         | 0,000        | 0,001        | 0,000        | 0,002        | 0,000        | 0,000        | 0,011        |
|                     | 0,000        | 0,000         | 0,000        | 0,660        | 0,784        | 0,804        | 0,000        | 0,625        | 1,469        |

.

Tableau C.8 Concentration en platinoïdes en solution solide dans les différents sulfures (suite).

|                     |              |              |              |              |              |               |               | •             |               |
|---------------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|
| <b>cohantillons</b> | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-10-5557-D1 |
| Lithologie          | Filon Sf     | Chr Sil       | Chr Sil       | Chr Sil       | 12-100001-11  |
| Sulfure             | Cpy          | Py/Po        | Сру          | Pv/Po        | Cnv          | Cov (nodula)  | Mil (inc)     |               |               |
| Grains              | 3b           | 3b           | ę            | 30           | 48           | 6             |               | 2             | Sim 2         |
| %                   |              |              |              |              |              |               | 4             | •             | 0             |
| Pd                  | 0,005        | 0.010        | 0.007        | 0.009        | 0.008        | 0000          |               | 000           | 0010          |
| Rh<br>A             | 0000         | 0000         |              | 1000         | 20010        | -000          | 10010         | 10010         | 0,012         |
|                     | 0000         | 20010        | 0000         | Innin        | 0,004        | 0,001         | 0,004         | 0,001         | 0,013         |
| 2                   | 100'0        | 0,004        | 0,000        | 0,003        | 0,001        | 000'0         | 0,000         | 0.000         | 0.004         |
| Ŀ                   | 0,000        | 0,011        | 0'010        | 0,006        | 0.007        | 0.004         | 0.010         | 0.003         | 9000          |
| 5                   | 0,000        | 0,002        | 0'000        | 0.010        | 0.000        | 0.000         | 0.010         | 0000          |               |
| 8                   | 0,000        | 1,757        | 0000         | 1.006        | 0.000        | 0000          | 0515          | 0.444         |               |
|                     |              |              |              |              |              | 2222          | 222           |               | 2222          |

| (suite)            |
|--------------------|
| sulfures (         |
| différents         |
| ans les            |
| solide d           |
| solution s         |
| platinoïdes en     |
| Concentration en J |
| <b>C.8</b> (       |
| Tableau            |

|             | 1 00 00 2000 |              |              |              |              |               |               |               |            |
|-------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|------------|
| ECDADULIODS | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 96-CD-5639-B | 97-JC-5557-D1 | 97-MH-7371-16 | 97-MH-7371-16 | 97-MH-737  |
| Lithologie  | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     | Filon Sf     | Chr Sil       | Harzh à chro  | Harsh à chro  | Harrh à ob |
| Sulfure     | Py/Po        | Сру          | IIM          | R            | Pv/Po        | Mil (inc)     | Cov (inc)     | Del (inc)     | Du/Do line |
| Grains      | 4c           | 5a           | 5a           | 5a           | 5a           |               | 1 (AL)        | 1 11 1110     |            |
| %           |              |              |              |              |              |               | -             |               | -          |
| Pd          | 0,012        | 0.000        | 0.003        | 0.000        | 0000         | 0.006         | 0100          | 0100          | 0.046      |
| 24          | 0000         | 0000         | 0000         | ,000         | 2000         | 00010         | 01010         | 210'0         | 0,040      |
|             | 2,000        | 20010        | 0,000        | 0,001        | 0,004        | 600'0         | 0,008         | 0,008         | 0,026      |
| 2           | 0,000        | 0,007        | 000'0        | 0,000        | 0,007        | 0.002         | 0.006         | 0.006         | 0000       |
| Ir          | 0,007        | 0,006        | 0,002        | 0.000        | 0.013        | 0.014         | 0000          |               | 000        |
| <b>0</b> #  | 0,007        | 000'0        | 0.000        | 0.000        | 0.002        | 0.004         | 0000          | 0000          | 21000      |
| S           | 0,729        | 0,000        | 0.637        | 0,000        | 2 091        | 0 530         | 0000          | 1150          | 000,0      |

| <b>Echantillons</b> | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-MH-7374-11 | 97-MH-7374-12 | 97-MH-7374-12     | 97.MH-7374-13     |
|---------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------------|-------------------|
| Lithologie          | Chr Sil       | Harzh à chro  | Harzh à chro  | Harsh à chro      | Harsh à abra      |
| Saffare             | Cpy (nodule)  | Cpy (nodule)  | Mil (inc)     | Pal           | Cov (inc)     | SAs           | SAs           | Dil lino de ohrol | Del line de check |
| Grains              |               |               |               |               | 0             | 20            | 2 C           |                   |                   |
| %                   |               |               |               |               | ľ             | 3             | ,             | N N               | ~                 |
| M                   | 0,000         | 0.000         | 0.013         | 0.003         | 1000          | 0.061         |               | 0.00              | 0000              |
| Rh                  | 000           | 100 0         | 0.007         | 1000          | 1000          | 10010         | 00010         | C10'0             | 0,000             |
|                     | 1000          | 10010         | 100,0         | 100,0         | 0,015         | 0,000         | 0,000         | 0,005             | 0,003             |
| 2                   | 0'010         | 0,008         | 0'000         | 0,000         | 0,000         | 600'0         | 000'0         | 0.000             | 0.000             |
| Ir                  | 0,022         | 0,012         | 0,013         | 000'0         | 0.013         | 0,000         | 0000          | 0,000             |                   |
| 0                   | 0,000         | 0'000         | 0,006         | 0.000         | 0,000         | 0.000         |               | 20000             |                   |
| ů                   | 000'0         | 0'000         | 0.615         | 0.442         | 0.000         | a 1           | a             | 1 147             | 1021              |
|                     |               |               |               |               |               | ŝ             |               | 1.171             | 1.0.1             |

| Echantillons | 97-JC-5557-D1 | 97-JC-5557-D1     | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-JC-5557-D1 | 97-JC-5557-D1     | 97-MH-7374-20  |
|--------------|---------------|-------------------|---------------|---------------|---------------|---------------|---------------|-------------------|----------------|
| Lithologie   | Chr Sil       | Chr Sil           | Chr Sil       | Chr Sil       | Chr Sil       | Chr Sil       | Chr Sil       | Chr Sil           | Harzb à chro   |
| Sulfure      | Cpy (nodule)  | Mil (inc)         | Cpy (inc)     | Cpy/Ptl (inc) | Mil (nodule)  | Mil (nodule)  | Mil (inc)     | Mil (inc)         | SAs            |
| Grains       | 3             | 3                 | 4             |               |               |               |               |                   | 11             |
| %            |               |                   |               |               |               |               |               |                   |                |
| Pd           | 0,000         | 0,003             | 0,015         | 0,007         | 0,018         | 0,009         | 0,013         | 0,014             | 0,000          |
| Rh           | 0,001         | 0,007             | 0,032         | 0,007         | 0,001         | 0,000         | 0,009         | 0,005             | 0,000          |
| Pt           | 0,000         | 0,008             | 0,009         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000             | 0,000          |
| Ir           | 0,009         | 0,009             | 0,017         | 0,005         | 0,008         | 0,003         | 0,013         | 0,019             | 0,015          |
| Os           | 0,000         | 0,000             | 0,010         | 0,000         | 0,015         | 0,008         | 0,013         | 0,001             | 0,000          |
| Co           | 0,000         | 0,539             | 0,239         | 0,553         | 0,584         | 0,567         | 0,559         | 0,525             | n.a.           |
|              |               |                   |               |               |               |               |               |                   |                |
| Echantillons | 97-MH-7374-07 | 97-MH-7374-07     | 97-MH-7374-08 | 97-MH-7374-08 | 97-MH-7374-09 | 97-MH-7374-09 | 97-MH-7374-10 | 97-MH-7374-11     | 97-MH-7384-20A |
| Lithologie   | Harzb à chro  | Harzb à chro      | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb à chro      | Chr Sil        |
| Sulfure      | Ptl           | SAs               | Ptl           | SAs           | Ptl           | SAs           | SAs           | Ptl (inc ds chro) | Ptl            |
| Grains       | 1             | 1                 | 5             | 16            | 6             | 2a            | 2b            | <u>2a</u>         | 6              |
| %            |               |                   |               |               |               |               |               |                   |                |
| Pd           | 0,000         | 0,192             | 0,000         | 0,120         | 0,000         | 0,104         | 0,125         | 0,000             | 0,002          |
| Rh           | 0,002         | 0,000             | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | 0,101             | 0,001          |
| Pt           | 0,000         | 0,000             | 0,000         | 0,000         | 0,000         | 0,001         | 0,000         | 0,000             | 0,006          |
| Ir           | 0,005         | 0,000             | 0,000         | 0,007         | 0,000         | 0,000         | 0,001         | 0,000             | 0,000          |
| Os           | 0,008         | 0,000             | 0,000         | 0,000         | 0,000         | 0,006         | 0,000         | 0,000             | 0,000          |
| Co           | 1,114         | n.a.              | 0,352         | n,a.          | 2,067         | n,a,          | n,a.          | 0,000             | 0,688          |
| <b></b>      | 0.5           |                   |               |               |               |               |               |                   |                |
| E-CREACINORS | 97-MH-7374-13 | 97-MH-7374-14     | 97-MH-7374-14 | 97-MH-7374-15 | 97-MH-7374-16 | 97-MH-7374-17 | 97-MH-7374-18 | 97-MH-7374-19     | 97-MH-7384-M1  |
| Lithologie   | Harzb a chro  | Harzb a chro      | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb à chro  | Harzb à chro      | Chr Sil        |
| Sumure       | SAs           | Pil (inc ds chro) | SAs           | SAs           | SAs           | SAs           | SAs           | SAs               | Mil            |
| Grains       | 4             | 4                 | 5             | 6             | 7             | 8             | 9             | 10                | <u>5c</u>      |
| %            |               |                   |               |               |               |               |               |                   |                |
| Pd           | 0,030         | 0,000             | 0,000         | 0,000         | 0,060         | 0,271         | 0,580         | 0,000             | 0,012          |
| Kh           | 0,000         | 0,009             | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000             | 0,000          |
| Pt           | 0,000         | 0,000             | 0,001         | 0,007         | 0,000         | 0,003         | 0,000         | 0,000             | 0,000          |
| Lr .         | 0,007         | 0,000             | 0,000         | 0,002         | 0,012         | 0,000         | 0,000         | 0,000             | 0,008          |
| 01           | 0,000         | 0,000             | 0,000         | 0,000         | 0,000         | 0,000         | 0,000         | 0,000             | 0,010          |
| C0           | n,a,          | 1,040             | <u>ກ</u> .ສ.  | n.a.          | n.a.          | n,a.          | n.a.          | n.a.              | 0,821          |

Tableau C.8 Concentration en platinoïdes en solution solide dans les différents sulfures (suite).
| Echantillons | 97-MH-7374-21 | <u>97-MH-7384-20A</u> | 97-MH-7384-20A | 97-MH-7384-20A | 97-MH-7384-20A | 97-MH-7384-20A | 97-MH-7384-20A | 97-MH-7384-20A | 97-MH-7384-20A |
|--------------|---------------|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Lithologie   | Harzb à chro  | Chr Sil               | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        |
| Sulfure      | SAa           | Сру                   | Ptl            | Сру            | Ptl            | Сру            | Ptl            | Сру            | Ptl            |
| Grains       | 12            | 1                     | 1              | 2              | 2              | 3              | 3              | 4              | 4              |
| %            |               |                       |                |                |                |                |                |                |                |
| Pd           | 0,000         | 0,009                 | 0,010          | 0,008          | 0,002          | 0,010          | 0,007          | 0,002          | 0,010          |
| Rh           | 0,000         | 0,000                 | 0,000          | 0,000          | 0,000          | 0,002          | 0,002          | 0,000          | 0.000          |
| Pt           | 0,000         | 0,005                 | 0,000          | 0,000          | 0,001          | 0,004          | 0,000          | 0,003          | 0.000          |
| Ir           | 0,000         | 0,021                 | 0,000          | 0,008          | 0,000          | 0,000          | 0,003          | 0,002          | 0,001          |
| Qa .         | 0,000         | 0,000                 | 0,000          | 0,000          | 0,002          | 0,000          | 0,000          | 0,000          | 0,000          |
| Co           | n.a.          | 0,000                 | 0,617          | 0,000          | 0,600          | 0,000          | 0,714          | 0,000          | 0,709          |
|              |               |                       |                |                |                |                |                |                |                |
| Echantillons | 97-MH-7384-M1 | 97-MH-7384-M1         | 97-MH-7384-M1  | 97-MH-7384-M1  | 97-MH-7384-M1  | 97-MH-7384-M1  | 97-MH-7384-M1  | 97-MH-7384-M1  | 97-MH-7384-M1  |
| Lithologie   | Chr Sil       | Chr Sil               | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        |
| Sulfure      | Сру           | Mil                   | Сру            | Mil            | Сру            | Mil            | Сру            | Mil            | Cnv            |
| Grains       | 4a            | 4a                    | 4b             | 4b             | 40             | 40             | 58             | 5a             | 5h             |
| %            |               |                       |                |                |                |                |                |                |                |
| Pd           | 0,004         | 0.000                 | 0.009          | 0.010          | 0.004          | 0.008          | 0.001          | 0.010          | 0.000          |
| Rh           | 0,003         | 0,000                 | 0,000          | 0,000          | 0.000          | 0.001          | 0.001          | 0.001          | 0.001          |
| Pt           | 0,000         | 0,000                 | 0,000          | 0,003          | 0.005          | 0.003          | 0.008          | 0.000          | 0.000          |
| Ir           | 0,012         | 0,000                 | 0,004          | 0,009          | 0,019          | 0,004          | 0.008          | 0.007          | 0.008          |
| Os           | 0,000         | 0,000                 | 0,000          | 0,011          | 0,000          | 0,003          | 0,000          | 0,000          | 0,000          |
| Co           | 0,000         | 0,000                 | 0,000          | 0,760          | 0,000          | 0,727          | 0,000          | 0,833          | 0,000          |
|              |               |                       |                |                |                |                |                |                |                |
| Echantillons | 97-MH-7384-M1 | 97-MH-7384-M1         | 97-MH-7384-M1  | 97-MH-7384-M1  | 97-MH-7384-M1  | 97-MH-7507-B   | 97-MH-7507-B   | 97-MH-7507-B   | 97-MH-7507-B   |
| Lithologie   | Chr Sil       | Chr Sil               | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        | Chr Sil        |
| Sulfure      | Сру           | Mil                   | Сру            | Mil            | Сру            | Ars            | SAs            | Ars            | SAs            |
| Grains       | 6a            | ба                    | бb             | 6b             | бс             | 1              | 1              | 2              | 2              |
| %            |               |                       |                |                |                |                |                |                |                |
| Pd           | 0,000         | 0,000                 | 0,001          | 0,011          | 0,000          | 0,000          | 0,000          | 0,000          | 0.000          |
| Rh           | 0,003         | 0,056                 | 0,001          | 0,007          | 0,000          | 0,003          | 0,000          | 0,001          | 0,000          |
| Pt           | 0,014         | 0,000                 | 0,000          | 0,000          | 0,000          | 0,029          | 0,002          | 0,019          | 0,000          |
| Ir           | 0,008         | 0,000                 | 0,010          | 0,004          | 0,000          | 0,007          | 0,000          | 0,004          | 0,000          |
| Os           | 0,000         | 0,000                 | 0,000          | 0,002          | 0,000          | 0,000          | 0,000          | 0,000          | 0,000          |
| Co           | 0,000         | 0,210                 | 0,000          | 0,647          | 0,000          | n.a.           | n,a.           | n.a.           | n.a.           |
|              |               |                       |                |                |                |                |                | 1              |                |

| Tablea | u C.8 | Concentration e | en platinoïdes | s en solution | solide dans | les | différents | sulfures | (suite). |
|--------|-------|-----------------|----------------|---------------|-------------|-----|------------|----------|----------|
|--------|-------|-----------------|----------------|---------------|-------------|-----|------------|----------|----------|

| Echantillons | 97-MH-7384-20A | 97-MH-7384-20A | 97-MH-7507-B | 97-MH-7507-B | 97-MH-7507-B | 97-MH-7507-B | 97-MH-7507-B | 97-MH-7507-B | 97-MH-7507-B |
|--------------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Lithologie   | Chr Sil        | Chr Sil        | Chr Sil      | Chr Sil      | Chr Sil      | Chr Sil      | Chr Sil      | Chr Sil      | Chr Sil      |
| Sulfure      | Сру            | Ptì            | Ars          | SAs          | Ars          | SAs          | Ara          | Ars          | Ars          |
| Grains       | 5              | 5              | 4            | 4            | 5            | 5            | 6            | 7            | 8            |
| %            |                |                |              |              |              |              |              |              |              |
| Pd           | 0,004          | 0,012          | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        |
| Rh           | 0,002          | 0,000          | 0,000        | 0,000        | 0,000        | 0,000        | 0,004        | 0,000        | 0,002        |
| Pt           | 0,000          | 0,000          | 0,022        | 0,000        | 0,017        | 0,000        | 0,029        | 0,028        | 0,030        |
| Ir           | 0,001          | 0,000          | 0,004        | 0,000        | 0,000        | 0,000        | 0,005        | 0,014        | 0,006        |
| Os           | 0,000          | 0,002          | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        |
| Co           | 0,000          | 0,700          | n.a.         | n,a.         | n.a.         | n.a.         | n,a,         | n.a.         | n.a.         |
|              |                |                |              |              |              |              |              |              |              |
| Echantillons | 97-MH-7384-M1  | 97-MH-7384-M1  | 97-MH-S1     | 97-MH-S1     | 97-MH-S1     | 97-MH-S1     | 97-MH-S1     | 97-MH-S1     | 97-MH-S1     |
| Lithologie   | Chr Sil        | Chr Sil        | Filon Sf     |
| Sulfure      | Mil            | Сру            | Сру          | Сру          | Mil          | Py/Po        | Vio          | Сру          | Mil          |
| Grains       | 5b             | 5c             | 1            | 2            | 2            | 2            | 2            | 3            | 3            |
| %            |                |                |              |              |              |              |              |              |              |
| Pd           | 0,019          | 0,012          | 0,006        | 0,000        | 0,017        | 0,003        | 0,000        | 0,000        | 0,010        |
| Rh           | 0,000          | 0,003          | 0,003        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        | 0,000        |
| Pt           | 0,000          | 0,000          | 0,003        | 0,000        | 0,000        | 0,002        | 0,000        | 0,000        | 0,007        |
| Ir           | 0,000          | 0,011          | 0,003        | 0,013        | 0,020        | 0,013        | 0,000        | 0,009        | 0,011        |
| Os           | 0,008          | 0,000          | 0,000        | 0,000        | 0,011        | 0,010        | 0,000        | 0,003        | 0,008        |
| Co           | 0,864          | 0,000          | 0,000        | 0,000        | 0,269        | 0,525        | 0,000        | 0,014        | 0,272        |
|              |                |                |              |              |              |              |              |              |              |
| Echantillons | 97-MH-7507-B   | 97-MH-7507-B   | 97-MH-S1     |
| Lithologie   | Chr Sil        | Chr Sil        | Filon Sf     |
| Sulfure      | Ars            | SAs            | Mil          | Py/Po        | Сру          | Mil          | Py/Po        | Сру          | Сру          |
| Grains       | 3              | 3              | 5            | 5            | 6            | 6            | 6            | 7            | 8            |
| %            |                |                |              |              |              |              | 1            | [            | 1            |
| Pd           | 0,000          | 0,000          | 0,012        | 0,000        | 0,004        | 0,011        | 0,006        | 0,000        | 0,005        |
| Rh           | 0,001          | 0,000          | 0,000        | 0,001        | 0,000        | 0,000        | 0,001        | 0,001        | 0,002        |
| Pt           | 0,019          | 0,004          | 0,000        | 0,004        | 0,000        | 0,000        | 0,000        | 0,002        | 0,004        |
| Ir           | 0,005          | 0,000          | 0,015        | 0,000        | 0,008        | 0,005        | 0,019        | 0,002        | 0,006        |
| Os           | 0,000          | 0,000          | 0,010        | 0,011        | 0,000        | 0,018        | 0,015        | 0,000        | 0,000        |
| Co           | n.a.           | n.a,           | 0,291        | 1,460        | 0,000        | 0,287        | 0,184        | 0,000        | 0,000        |

| Tableau C.8 | Concentration | en platino | ïdes en sol | lution solide | e dans les | différents | sulfures | (suite). |
|-------------|---------------|------------|-------------|---------------|------------|------------|----------|----------|
|             |               |            |             |               |            |            |          |          |

| Lohantillons | 97-MH-7507-B | 97-MH-7507-B | 1S-HM-76 | 1S-HM-76 | 12-HM-79 |
|--------------|--------------|--------------|----------|----------|----------|
| Lithologie   | Chr Sil      | Chr Sil      | Filon Sf | Filon Sf | Filon Sf |
| Bulfure      | Ars          | Ars          | Mil      | Pv/Po    | Vio      |
| Grains       | 6            | 10           | -        |          |          |
| %            |              |              |          |          |          |
| Pd           | 000'0        | 000'0        | 0.011    | 0.009    | 0000     |
| Rh           | 0'000        | 000'0        | 0.001    | 0.001    | 0000     |
| ¥.           | 0,022        | 0,023        | 000      | 0.011    | 0000     |
| Ir           | 0,007        | 0,005        | 0.000    | 0.009    | 0000     |
| 08           | 0,000        | 0,000        | 0.005    | 110.0    |          |
| S            | n.a.         | n.a.         | 0.289    | 1.559    |          |

| ite).   |
|---------|
| ns)     |
| ures    |
| ulf     |
| nts     |
| Ĩére    |
| s dif   |
| is le   |
| dan     |
| olide   |
| n sc    |
| lutic   |
| n so    |
| ese     |
| noïd    |
| olati   |
| en I    |
| tion    |
| ntra    |
| nce     |
| ပိ      |
| с.<br>П |
| lea     |
| Tab     |

| Echantillons | 1S-HM-76 | 1S-HM-79 | 97-MH-S1 | 1S-HM-76 | 1S-HM-79 |
|--------------|----------|----------|----------|----------|----------|
| Lithologie   | Filon Sf | Filon Sf | Filon Sf | Filon Sf | Filon Sf |
| Sulfure      | Py/Po    | Cpy      | Mil      | Pv/Po    | Cov      |
| Grains       | 3        | 4        | 4        | 4        | 24       |
| %            |          |          |          |          |          |
| Pd           | 0,000    | 0,002    | 0.021    | 0.007    | 0.001    |
| Rh           | 0,000    | 0,003    | 0.000    | 0,003    | 0.001    |
| Ł            | 0,009    | 000'0    | 0,000    | 0,000    | 0.012    |
| Ir           | 0,007    | 600'0    | 0,013    | 0.007    | 0.001    |
| 0            | 0,008    | 000'0    | 0,005    | 010'0    | 0.000    |
| రి           | 1,131    | 0,018    | 0.291    | 0.971    | 0000     |
|              |          |          |          |          |          |

| Echantillons | 97-MH-S1 | 1S-HM-79 |
|--------------|----------|----------|
| Lithologie   | Filon Sf | Filon Sf |
| Sulfure      | Cpy      | Сру      |
| Grains       | 6        | 10       |
| %            |          |          |
| Pd           | 0,000    | 0'000    |
| Rh           | 0'000    | 0,003    |
| 7            | 0,003    | 0,008    |
| II.          | 0,000    | 0000     |
| 03           | 0'000    | 0,003    |
| ço           | 0'000    | 0,006    |
|              |          |          |

# ANNEXE D

# MÉTHODE ANALYTIQUE

LISTE D'ÉCHANTILLONS, LES LIMITES DE DÉTECTION, LES MÉTHODES ANALYTIQUES ASSOCIÉES AUX ANALYSES GÉOCHIMIQUES ET LES CONDITIONS D'OPÉRATION, LES STANDARDS UTILISÉS, LES LIMITES DE DÉTECTION ET LES COMPOSITIONS DES STANDARDS ASSOCIÉES AUX ANALYSES MINÉRALOGIQUES

#### **D.1 LISTE DES ÉCHANTILLONS**

La section qui suit présente la liste de tous les échantillons recueillis lors des périodes de cartographie en 1997-1998. Le tableau D.1 indique les lames minces effectuées, le type d'analyse effectué, la méthode analytique utilisée ainsi que le type de préparation effectué sur chaque échantillon recueilli.

#### ABBRÉVIATIONS

#### AFF = Affleurement

- Indice = Indice de Ressources minière Pro-Or
- LM = Lames minces polies
- X = Échantillons

#d'analyse = Numéro d'analyse du laboratoire

- \* = Spectre complet pour les platinoïdes
- Préparation des échantillons

BR = type de broyage pour pulvériser l'échantillon

- A = Mortier en agate
- W = Anneaux ou billes de carbure de tungstène
- P = Meules de fer-manganèse
- F = Meules de ferrochrome

#### Types d'analyses lithogéochimiques

CRM = Centre de recherche minérale, gouvernement du Québec

- A3 = Éléments traces dosés par spectrométrie d'émission atomique à source plasma
- A4 = Éléments traces dosés par fluorescence des rayons X
- A6 = Éléments traces dosés par activation neutronique
- A10 = Ensemble des composés : FeO et S
- A11 = Éléments du groupe du platine dosés par spectrométrie d'émission atomique à source plasma
- A14 = Éléments majeurs dosés par fluorescence des rayons X
- B13 = Carbone total exprimé sous la forme de CO<sub>2</sub> dosé par Leco CR-12
- B14 = Chrome dosé par spectrophotométrie d'absorption atomique
- ATR = Terres rares dosées par activation neutronique instrumentale

INRS-Géo = INRS-Géoressources (Institut National de Recherche Scientifique, U. du Québec)

- MAJ = Éléments majeurs dosés par ICP-AES
- Tr = Éléments traces dosés par ICP-AES et ICP-MS
- HFSE = Éléments traces dosés par ICP-MS
- TR = Terres rares dosées par ICP-MS
- ÉGP = Éléments du groupe du platine dosés par ICP-MS

| FOUN  | TUIORE   | 1          |             | Tim                                         | <u> </u>                  | _              | _            |                |               |                       | AT 170-          |          |          |          |          |          | A D'ARAT BOR |            |
|-------|----------|------------|-------------|---------------------------------------------|---------------------------|----------------|--------------|----------------|---------------|-----------------------|------------------|----------|----------|----------|----------|----------|--------------|------------|
| ECHA  | I ILLONS | AFF        | INDICE      | 1                                           | LITHOGÉOCHIMIQUE8         |                |              |                | J F D'ANALYSE | BR                    |                  |          |          |          |          |          |              |            |
| 1     |          |            | 1           | ł                                           | <b> </b>                  |                |              | CR             |               |                       |                  | 1        | 11       | IR8-G    | ŧo.      |          | 1            | 1          |
|       |          |            |             |                                             | A14                       | A3             | A4           | A6             | ATR           | A10                   | A11              | MĀJ      | TR       | HFS      | ETR      | EGP      | 1            |            |
| 96 CD | 5098     | 97-MH-7385 | Cr-1        | X                                           | X                         | X              | X            | X              |               | X                     | X•               |          |          |          |          | 1        | 96010505     | W-P        |
| 96 CD | 5093-A   | 97-MH-7372 | Cr-31       | X                                           | X                         | X              | X            | X              |               | X                     | X.               |          |          |          |          |          | 96010502     | W-P        |
| 96 CD | 5096-B   | 97-MH-7374 | Cr-17-20    | ₩÷                                          | X                         | <u>I×</u>      | 1 X          | L <del>∑</del> | <b> </b>      | X                     | I X              | ļ        | 1        | I        | +        | 1        | 96010501     | W-P        |
| 96 CD | 5097-B1  | 97-MH-7374 | Cr-17-20    | ₩÷                                          | ₩÷                        | <del>1 ÷</del> | ₩÷           | ₩÷             | ┣             | ₩÷                    | <u> </u>         | <u> </u> | ╂—       | ┣        | +        | ╂        | 96010503     | W-P        |
| 96 CD | 5000-P   | 97-MH-7324 | Cr-16-18-10 | ÷                                           | <u>†</u> ÷                | ₩÷             | ₩÷           | ₩÷             | <b> </b>      | ÷÷                    | + 🔆              |          | 1        | ┣        | +        | ╂──      | 96010504     | W-P<br>W-P |
| 96 CD | 5099-C1  | 97-MH-7384 | Cr-16-18-19 | $\frac{\pi}{x}$                             | <del>1 x</del>            | Î              | Îx           | 1 <del>x</del> |               | 1 x                   | † <del>x</del> - | <u> </u> | ┣──      | <u> </u> | +        | ╂───     | 96010507     | W-P        |
| 96 CD | 5112-82  | 97-MH-7371 | Cr-8        | X                                           | x                         | X              | x            | x              | <u> </u>      | x                     | X•               |          | t        |          | 1        | 1        | 96010508     | W-P        |
| 96 CD | 5112-C   | 97-MH-7371 | Cr-8        | X                                           | X                         | X              | X            | X              |               | X                     | X*               |          |          |          |          | 1        | 96010509     | W-P        |
| 96 CD | 5113-C   | 97-MH-7499 | Cr-7        | X                                           | X                         | X              | X            | X              |               | X                     | X•               |          |          |          |          |          | 96010510     | W-P        |
| 96 CD | 5114-B1  | 97-MH-7495 | Cr-5        | X                                           | X                         | ×              | <u>×</u>     | X              |               | X                     | X*               | <u> </u> | <u> </u> | L        | +        | ļ        | 96010514     | W-P        |
| 96 CD | 5114-C1  | 97-MH-7495 | <u>Cr-5</u> | ÷                                           | <u>₩</u>                  | <del>, X</del> | ÷            | ÷              | <u> </u>      | ÷                     | X.               | <b> </b> |          | ┣───     | +        | ∔—       | 96010511     | W-P        |
| 96 CD | 5115-01  | 97-MH-7494 | Cr-2        | ÷                                           | <u>l</u> ÷÷               | <del>l </del>  | ÷            | 1÷             |               | <u>I</u> <del>€</del> | <u>X</u> •       | ┣───     | ╂        | <u> </u> | ┿╌       |          | 96010512     | W-P        |
| 96 CD | 5115-D   | 97-MH-7494 | Cr-2        | $\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}}$ | <del>Î</del> <del>x</del> | <del>Î</del>   | <del>Î</del> | Î              |               | <del>Î</del>          | x.               |          | +        | <b>{</b> |          | ╉───     | 96010516     | W-P        |
| 96 CD | 5116-C   | 97-MH-7490 | Cr-4        | x                                           | x                         | x              | x            | X              |               | x                     | X*               |          | ┢──      | ┢╌──     | +        |          | 96010515     | W-P        |
| 97 CD | 5638-B   | 98-MH-4212 | S-22        | х                                           | х                         | x              | х            | х              |               | X                     | X*               |          |          |          |          |          | 97015124     | W-P        |
| 97 CD | 5639-B   | 97-MH-7490 | S-1         | X                                           | X                         | X              | X            | X              |               | X                     | X⁺               |          |          |          | Γ        |          | 97015126     | W-P        |
| 97 CD | 5642-A1  | 97-MH-7460 | Cr-13       | X                                           | x                         | X              | ×            | X              |               | <u> </u>              | X                |          |          |          |          |          | 97015189     | W-P        |
| 97 CD | 5642-B   | 97-MH-7460 | Cr-13       | X.                                          | L <u>÷</u>                | X              | x            | ×.             |               | X                     | X                | <u> </u> | Ļ        |          |          | <u> </u> | 97015170     | W-P        |
| 97 JC | 5096-A   | 97-MH-7374 | Cr-17-20    | ₩÷                                          | <u> </u>                  | <u> </u>       |              |                | <u> </u>      | ┣                     | <u> </u>         |          |          | <u> </u> | +        |          | 97012879     | W-P        |
| 97 JC | 5096-C   | 97-MH-7374 | Сг-17-20    | ÷                                           |                           |                |              |                |               | ┨────                 |                  |          |          |          | +        |          |              |            |
| 97 JC | 5096-D   | 97-MH-7374 | Cr-17-20    | <del>x</del>                                | ┝──                       |                |              |                |               | ┟╼╼╸                  | ┠┄╼╾┥            |          |          |          | +        |          |              |            |
| 97 JC | 5096-E   | 97-MH-7374 | Cr-17-20    | x                                           |                           |                |              |                |               |                       |                  |          |          |          | +        |          |              |            |
| 97 JC | 5096-F   | 97-MH-7374 | Cr-17-20    | х                                           |                           |                |              |                |               |                       |                  |          |          |          | İ.       |          |              |            |
| 97 JC | 5096-G   | 97-MH-7374 | Cr-17-20    | Х                                           |                           |                |              |                |               |                       |                  | _        |          |          |          |          |              |            |
| 97 JC | 5096-H   | 97-MH-7374 | Cr-17-20    | X                                           | X                         | X              |              |                | X             |                       |                  |          |          |          |          |          | 97012880     | W-P        |
| 97 JC | 5098-A   | 97-MH-7385 | Cr-1        | - <del>x</del>                              |                           |                |              | _              |               |                       |                  |          |          |          |          | <b></b>  |              |            |
| 97 JC | 5098-B   | 97-MH-7385 |             | X                                           | -                         |                |              |                |               |                       |                  |          |          |          | -        | -        |              |            |
| 97 JC | 5098-D   | 97-MH-7385 | Cr-1        | x                                           | x                         | x              |              |                | x             |                       |                  |          |          |          | -        |          | 97012881     | W-P        |
| 97 JC | 5098-E   | 97-MH-7385 | Cr-1        | x                                           | x                         | X              |              |                | X             |                       |                  |          |          |          | 1        |          | 97012882     | W-P        |
| 97 JC | 5098-F   | 97-MH-7385 | Cr-1        | X                                           | х                         | х              |              |                | х             |                       |                  |          |          |          |          |          | 97012883     | W-P        |
| 97 JC | 5098-G   | 97-MH-7385 | Cr-1        | X                                           | х                         | X              |              |                | X             |                       |                  |          |          |          |          |          | 97012884     | W-P        |
| 97 JC | 5099-A   | 97-MH-7384 | Cr-16-18-19 | x                                           |                           |                |              |                |               |                       |                  |          |          |          |          |          |              |            |
| 97 JC | 5099-B   | 97-MH-7384 | Cr-16-18-19 | X                                           | X                         | X              |              |                | <u>x</u>      |                       |                  |          |          |          | _        |          | 97012885     | W-P        |
| 97 JC | 5099-C   | 97-MH-7384 | Cr-16-18-19 | ÷                                           | Ŧ                         | - <del>v</del> |              |                | ·Y            |                       |                  |          |          |          | ┣        |          | 97012886     | W.P        |
| 97 JC | 5112-A   | 97-MH-7371 | Cr-8        | x                                           | L^                        | Ĥ              |              |                | <u> </u>      |                       |                  |          |          |          | +        |          | 97012000     | - W-F      |
| 97 JC | 5112-B   | 97-MH-7371 | Cr-8        | x                                           | x                         | х              | - 1          |                | х             |                       |                  |          |          |          |          |          | 97012887     | W-P        |
| 97 JC | 5112-C   | 97-MH-7371 | Cr-8        | x                                           |                           |                |              |                |               |                       |                  |          |          |          | t        | _        |              |            |
| 97 JC | 5112-D   | 97-MH-7371 | Cr-8        | х                                           | Х                         | X              |              |                | X             |                       |                  |          |          |          |          |          | 97012888     | W-P        |
| 97 JC | 5113-A   | 97-MH-7499 | Cr-7        | X                                           | X                         | X              |              |                | x             |                       | _                |          |          |          |          |          | 97012889     | W-P        |
| 97 JC | 5113-B   | 97-MH-7499 | Cr-7        | X                                           |                           |                |              |                |               |                       |                  |          |          | _        | Ļ        |          | 07010000     |            |
| 97 10 | 5114-A   | 97-MH-7495 | <u> </u>    | - <del>×</del>                              | X                         | ×              |              |                | <u>x</u>      |                       |                  |          |          |          | _        |          | 97012890     | W-P        |
| 97 JC | 5114-B   | 97-MH-7495 | Cr-5        | ÷                                           |                           |                | {            |                |               |                       |                  |          |          |          | <u> </u> |          |              |            |
| 97 JC | 5115-A   | 97-MH-7494 | Cr-2        | x                                           |                           |                |              |                |               |                       |                  |          |          |          |          |          |              |            |
| 97 JC | 5115-CI  | 97-MH-7494 | Cr-2        | x                                           | x                         | x              |              | - 1            | x             |                       |                  |          |          |          |          |          | 97012891     | W-P        |
| 97 JC | 5115-C2  | 97-MH-7494 | Cr-2        | X                                           |                           |                |              |                |               |                       |                  |          |          |          |          |          |              |            |
| 97 JC | 5115-D   | 97-MH-7494 | Cr-2        | X                                           |                           |                |              |                |               |                       |                  |          |          |          |          |          |              |            |
| 97 JC | 5115-E   | 97-MH-7494 | Cr-2        | X                                           | X                         | X              |              |                | _X            |                       |                  |          |          |          |          |          | 97012892     | W-P        |
| 97 JC | 5115-F   | 97-MH-7494 | Cr-2        | X                                           |                           | <del>.</del>   | +            |                |               |                       |                  |          |          |          |          |          | 07010002     | WD         |
| 97 JC | 5115-G   | 97-MH-7494 | Cr-2        | ÷                                           |                           | -              |              |                |               |                       |                  |          |          |          |          |          | 97012893     | W-P        |
| 97 JC | 5115-1   | 97-MH-7494 | Cr-2        | X                                           |                           |                | - 1          |                |               |                       |                  |          |          |          |          |          |              |            |
| 97 JC | 5116-A   | 97-MH-7490 | Cr-4        | x                                           |                           |                | -+           | -+             |               |                       |                  |          |          |          |          |          |              |            |
| 97 JC | 5116-B   | 97-MH-7490 | Cr-4        | х                                           |                           |                |              |                |               |                       |                  |          |          |          |          |          |              |            |
| 97 JC | 5116-C   | 97-MH-7490 | Cr-4        | X                                           |                           |                |              |                |               |                       |                  |          |          |          |          |          |              |            |
| 97 JC | 5116-D   | 97-MH-7490 | Cr-4        | x                                           |                           |                |              |                |               |                       |                  |          |          |          |          | _        |              |            |
| 97 JC | 5116-F   | 97-MH-7490 | Cr-4        | ÷                                           | x                         | <u>×</u>       |              |                | х             |                       |                  |          |          |          |          |          | 97012894     | W-P        |
| 97 30 | 5557-D1  | 97-MH-7372 | Cr-31       | ÷                                           | _                         |                |              |                |               |                       |                  |          |          |          |          |          |              |            |
| 97 JC | 5557-82  | 97-MH-7372 |             | ÷                                           |                           |                |              |                |               |                       |                  |          | +        |          |          |          |              |            |
| 97 JC | 5557-B3  | 97-MH-7372 | Cr-31       | x                                           |                           | -+             | -+           |                |               |                       |                  |          | -+       |          |          |          |              |            |
| 97 JC | 5557-C   | 97-MH-7372 | Cr-31       | x                                           |                           | -+             | -+           | -+             |               |                       | - +              |          | +        |          | H        |          |              |            |
| 97 JC | 5557-D1  | 97-MH-7372 | Cr-31       | x                                           | x                         | xt             | +            | -+             | X             |                       |                  |          | +        |          |          |          | 97012895     | W-P        |

# **Tableau D.1** Liste des échantillons du Complexe de Menarikayant fait l'objet d'une ou plusieurs analyses chimiques.

| ÉCHAI | TILLONS           | AFP        | INDICE       | LM                        | ABALY828<br>LITHOGÉOCHIMIQUES |                |                |                           |          |                | # D'ANALYSE    | BR                  |                    |                |                                       |                                       |                      |              |
|-------|-------------------|------------|--------------|---------------------------|-------------------------------|----------------|----------------|---------------------------|----------|----------------|----------------|---------------------|--------------------|----------------|---------------------------------------|---------------------------------------|----------------------|--------------|
|       |                   |            |              | ł                         |                               |                |                | CI                        | anc 🛛    |                |                |                     |                    | RB-GI          | ю.                                    |                                       | 1                    |              |
| L     |                   |            |              | I                         | A14                           | A3             | <u>A4</u>      | <u>A6</u>                 | ATR      | A10            | A11            | MAJ                 | TR                 | HFSE           | TR                                    | EGP                                   | ······               | <b></b>      |
| 97 JC | 5557-E            | 97-MH-7372 | <u>Cr-31</u> | ÷                         | l v                           | ł÷             | ł              | l v                       | <u> </u> | ┝┯             | ┨╶┯            | <u> </u>            | <u> </u>           |                |                                       | <u> </u>                              | 07015100             | W.D          |
| 97 MH | 7485              | 97-MH-7485 |              | 1 x                       | $\frac{1}{x}$                 | Ŧ              | <del>Î x</del> | Î                         | <u> </u> | <del>Î</del> x | <del>Î x</del> | <u> </u>            | +                  |                | 1                                     | <u> </u>                              | 970188               | W-P          |
| 97 MH | 7487              | 97-MH-7487 |              | x                         | x                             | X              | x              | X                         |          | X              | X              |                     |                    |                | t –                                   |                                       | 97015051             | W-P          |
| 97 MH | 7513              | 97-MH-7513 | I            | X                         | X                             | X              | X              | X                         |          | X              | X              |                     |                    |                |                                       |                                       | 97015053             | W            |
| 97 MH | 7371-01           | 97-MH-7371 | Cr-8         | X                         | L                             |                | L              |                           |          |                |                | X                   | X                  | X              | X                                     | X                                     | 01-HR981             | A            |
| 97 MH | 7371-02           | 97-MH-7371 | <u>Cr-8</u>  | <u>I ÷</u>                | ₩÷                            | ₩÷             | Η÷             | ₩÷                        | <u> </u> | Η÷             | ₩÷             | <del>  ÷</del>      | <del>ا</del> چ     | X<br>V         | <u>†÷</u>                             | <del>ب</del>                          | P7015190 / 02-HR98   | W-P-A        |
| 97 MH | 7371-03           | 97-MH-7371 | Cr-8         | <del>l ŵ</del>            | <del>Î</del>                  | tŵ             | tŵ             | <del>l</del> <del>x</del> | +        | <del>l ŵ</del> | <del>  </del>  | <del>Î</del>        | 1÷                 | <del>Î</del>   | <del>l ŵ</del>                        | <del>Î</del> <del>x</del>             | 97015191 / 04-HR98   | W-P-A        |
| 97 MH | 7371-05           | 97-MH-7371 | Cr-8         | 1 x                       | x                             | <del>Î x</del> | 1 <del>x</del> | x                         | t        | <del>1 x</del> | t <del>ÿ</del> | $\frac{\pi}{x}$     | 1 x                | X              | x                                     | x                                     | 97015183 / 05-HR98   | W-P-A        |
| 97 MH | 7371-06           | 97-MH-7371 | Cr-8         | X                         |                               | 1              |                |                           |          |                | 1              | x                   | X                  | X              | X                                     | X                                     |                      |              |
| 97 MH | 7371-07           | 97-MH-7371 | Cr-8         | X                         |                               |                |                |                           |          |                |                | X                   | X                  | X              | x                                     | X                                     | 06-HR981             | Ā            |
| 97 MH | 7371-08           | 97-MH-7371 | Cr-8         | X                         | <u> </u>                      | <u> </u>       | <b></b>        | <b> </b>                  | L        | ┣              | <b> </b>       | X                   | Г <u>х</u>         | X              | X                                     | L <u>X</u>                            | 97015184 / 07-HR98   |              |
| 97 MH | 7371-09           | 97-MH-7371 | Cr-8         | ÷                         | ┣──                           | <u> </u>       | -              | <u> </u>                  | ┢╼╍╍     | <b>├</b> ──    | ─              | × ×                 | ÷                  | -÷-            | ÷                                     | Ŷ                                     | 97015185             |              |
| 97 MH | 7371-11           | 97-MH-7371 | Cr-8         | $\frac{\hat{x}}{\hat{x}}$ | <u> </u>                      | 1-             |                |                           | <u> </u> | <u> </u>       | <u>+</u>       | $\frac{\hat{x}}{x}$ | Î                  | x              | $\frac{\hat{\mathbf{x}}}{\mathbf{x}}$ | $\frac{2}{x}$                         | 5/013132 / 00-11K30  |              |
| 97 MH | 7371-12           | 97-MH-7371 | Cr-8         | x                         |                               |                | t              |                           |          | t              |                | x                   | x                  | x              | x                                     | x                                     | 09-HR981             | A            |
| 97 MH | 7371-13           | 97-MH-7371 | Cr-8         | X                         |                               |                |                |                           |          | I              |                | X                   | x                  | X              | X                                     | X                                     |                      |              |
| 97 MH | 7371-13A          | 97-MH-7371 | Cr-8         | X                         |                               |                |                |                           |          |                |                | X                   | X                  | x              | X                                     | x                                     | 10-HR981             | Ā            |
| 97 MH | 7371-14           | 97-MH-7371 | Cr-8         | <del>X</del>              | X                             | X              | X              | X.                        |          | X              | X              | X                   | X                  | X              | X                                     | X                                     | 97015171 / 11-HR98   | W-P-A        |
| 97 MH | 7371-15           | 97-MH-7371 | Cr-8         | <u>I</u> ≎                | ┝ᢩᢚ                           | ┝≏             | <u>⊢</u> ≏     | <u>⊢</u> ≏-               | ┣──      | <u> </u>       |                | ÷                   | <b>X</b>           |                | ÷                                     | <del>\</del>                          | 13-HP081             | W-P-A        |
| 97 MH | 7371-17           | 97-MH-7371 | Cr-8         | <del>Î</del> x            | <u> </u>                      |                |                |                           | <u> </u> |                |                | $\frac{\hat{x}}{x}$ | Î                  | x              | <del>x</del>                          | $\frac{\hat{\mathbf{x}}}{\mathbf{x}}$ | 14-HR981             | Ā            |
| 97 MH | 7371-18           | 97-MH-7371 | Cr-8         | x                         | x                             | x              | x              | x                         |          | x              | x              | x                   | x                  | x              | x                                     | X                                     | 97015193 / 15-HR981  | W-P-A        |
| 97 MH | 7371-19           | 97-MH-7371 | Cr-8         | X                         |                               |                |                |                           |          |                |                | X                   | X                  | Х              | Х                                     | X                                     | 16-HR981             | Ā            |
| 97 MH | 7371-20           | 97-MH-7371 | Cr-8         | X                         |                               |                |                |                           |          |                |                | X                   | х                  | X              | х                                     | х                                     | 17-HR981             | A            |
| 97 MH | 7371-21           | 97-MH-7371 | Cr-8         | L <u>×</u>                | ×                             | ×              | L X            | X                         |          | X              | X              | X                   | X                  | X              | L Č                                   | X V                                   | 97015194 / 18-HR98   | W-P-A        |
| 97 MH | 7371-22           | 97-MH-7371 | Cr-8         | <u>⊢</u> ≎-               |                               |                |                |                           |          | ╂───੶          | ┢              | ÷                   | ÷                  | ×<br>Y         | H                                     | Ŷ                                     | 19-118981            |              |
| 97 MH | 7374-01           | 97-MH-7374 | Cr-17-20     | x                         | x                             | x              | x              | x                         |          | x              | x              | $\frac{2}{x}$       | $\frac{2}{x}$      | X              | x                                     | x                                     | 97015195 / 20-HR981  | W-P-A        |
| 97 MH | 7374-02           | 97-MH-7374 | Cr-17-20     | X                         | х                             | X              | x              | х                         |          | x              | X              | х                   | X                  | X              | x                                     | х                                     | 97015186 / 21-HR981  | W-P-A        |
| 97 MH | 7374-03           | 97-MH-7374 | Cr-17-20     | х                         |                               |                |                |                           |          |                |                | X                   | X                  | X              | X                                     | х                                     | 22-HR981             | Α            |
| 97 MH | 7374-04           | 97-MH-7374 | Cr-17-20     | X                         |                               |                |                |                           |          |                |                | x                   | x                  | X              | X                                     | X                                     | 23-HR981             | <u>_</u>     |
| 97 MH | 7374-05           | 97-MH-7374 | Cr-17-20     | - <del>Č</del> -          | <u>×</u>                      | L <u>×</u>     | <u>×</u>       | ×.                        | ·        | <u>×</u>       | X              | X                   | ÷                  | - <del>-</del> | <del>×</del>                          | ÷                                     | 97015196 / 24-HR981  | W-P-A        |
| 97 MH | 7374-07           | 97-MH-7374 | Cr-17-20     | $\hat{\mathbf{x}}$        |                               |                |                |                           |          |                |                | $\frac{2}{x}$       | ÷                  | Ŷ              | Ŷ                                     | x                                     | 25-HR981             | Â            |
| 97 MH | 7374-08           | 97-MH-7374 | Cr-17-20     | x                         | x                             | x              | x              | х                         |          | x              | x              | X                   | x                  | X              | x                                     | х                                     | 97015173 / 27-HR981  | W-P-A        |
| 97 MH | 7374-10           | 97-MH-7374 | Cr-17-20     | X                         |                               |                |                |                           |          |                |                | х                   | X                  | X              | х                                     | х                                     | 28-HR981             | A            |
| 97 MH | 7374-11           | 97-MH-7374 | Cr-17-20     | x                         | х                             | х              | x              | X                         |          | X              | х              | X                   | x                  | X              | x                                     | x                                     | 97015187 / 29-HR98   | W-P-A        |
| 97 MH | 7374-15           | 97-MH-7374 | Cr-17-20     | -÷                        |                               |                |                |                           |          |                |                |                     | ÷                  | ×              | X                                     | -÷                                    | 30-HR981             | <u> </u>     |
| 97 MH | 7374-10           | 97-MH-7374 | Cr-17-20     | <del>-</del>              |                               | $\vdash$       |                |                           |          |                |                | - <u>~</u>          | $\hat{\mathbf{x}}$ | - <del>÷</del> | Ŷ                                     | Ŷ                                     | 32-HR981             |              |
| 97 MH | 7374-18           | 97-MH-7374 | Cr-17-20     | x                         |                               |                |                |                           |          |                |                | X                   | $\frac{\alpha}{x}$ | x              | x                                     | x                                     | 33-HR981             | Ā            |
| 97 MH | 7374-19           | 97-MH-7374 | Cr-17-20     | х                         | X                             | X              | X              | X                         |          | x              | x              | х                   | x                  | x              | х                                     | X                                     | 97015197 / 34-HR981  | W-P-A        |
| 97 MH | 7374-20           | 97-MH-7374 | Cr-17-20     | Х                         |                               |                |                |                           |          |                |                |                     |                    |                |                                       |                                       |                      |              |
| 97 MH | 7374-21           | 97-MH-7374 | Cr-17-20     | x                         |                               |                |                |                           |          |                |                |                     |                    |                |                                       |                                       |                      |              |
| 97 MH | 7374-22<br>7290-P | 97-MH-7374 | Cr-17-20     | X                         |                               | ÷              |                | v                         |          |                |                | <u> </u>            | ×                  | _ <u>×</u>     | ÷                                     | <u> </u>                              | 35-HR981<br>97015062 | A<br>W-P     |
| 97 MH | 7384-20           | 97-MH-7382 | Cr-16-18-19  | Ŷ                         | <u>^</u>                      | Ĥ              | _              | ^                         |          | <u></u>        | <u>^</u>       |                     |                    |                | <u> </u>                              |                                       | 97013062             | Wer          |
| 97 MH | 7384-30           | 97-MH-7384 | Cr-16-18-19  | X                         | x                             | x              | x              | х                         |          | х              | x              | -                   |                    |                |                                       |                                       | 97015198             | W-P          |
| 97 MH | 7384-M1           | 97-MH-7384 | Cr-16-18-19  | X                         | х                             | х              | х              | x                         |          | X              | X              |                     |                    |                |                                       |                                       | 97015178             | Α            |
| 97 MH | 7385-01           | 97-MH-7385 | Cr-1         | X                         | X                             | Х              | х              | х                         |          | X              | х              |                     |                    |                |                                       | _                                     | 97015176             | W-P          |
| 97 MH | 7385-03A          | 97-MH-7385 | <u>Cr-1</u>  | X                         |                               |                |                |                           |          |                |                |                     |                    |                |                                       |                                       | ·                    |              |
| 97 MH | 7385-030          | 97-MH-7385 | Cr-1         | X                         |                               |                |                |                           |          |                |                |                     |                    |                |                                       |                                       |                      |              |
| 97 MH | 7385-05           | 97-MH-7385 | Cr-1         | x                         | x                             | x              | x              | x                         |          | x              | x              |                     | -+                 |                |                                       |                                       | 97015174             | W-P          |
| 97 MH | 7402-A            | 97-MH-7402 |              | x                         | x                             | x              | x              | x                         |          | x              | x              |                     |                    |                | x                                     |                                       | 97015063             | W-P          |
| 97 MH | 7420-01           | 97-MH-7420 | Cr-9         | х                         | х                             | X              | х              | X                         |          | х              | х              |                     |                    |                |                                       |                                       | 97015177             | W-P          |
| 97 MH | 7421-A            | 97-MH-7421 |              | x                         | x                             | x              | Х              | X                         |          | x              | X_             |                     |                    |                | X                                     |                                       | 97015064             | W-P          |
| 97 MH | 7463-A            | 97-MH-7463 |              | ÷                         | X                             | ÷              | ÷              | ÷                         |          | X              | - <del>x</del> |                     |                    |                | <u>×</u>                              |                                       | 97015061             | W-P          |
| 97 MH | 7503-8            | 97-MH-7502 | Cr+14        | ÷                         | X                             | ÷              | ÷              | ÷                         |          | -÷             | ÷              |                     |                    |                |                                       |                                       | 970150552            | W-P          |
| 97 MH | 7503-B1           | 97-MH-7503 | Cr-14        | ÷                         |                               | -              | -              | -                         |          | <u>^</u>       | <u> </u>       |                     | +                  |                | -+                                    | - 1                                   | 5101002              | <u>–––</u> – |
| 97 MH | 7503-B2           | 97-MH-7503 | Cr-14        | x                         | x                             | x              | x              | x                         |          | х              | x              |                     | -1                 |                |                                       |                                       | 97015179             | w            |
| 97 MH | 7504-A            | 97-MH-7504 | Cr-12        | х                         | х                             | X              | x              | х                         |          | X              | X              |                     |                    |                |                                       |                                       | 97015180             | W            |
| 97 MH | 7507-B            | 97-MH-7507 | Cr-28-29     | X                         | X                             | X              | X              | X                         |          | Х              | X              |                     |                    |                |                                       |                                       | 97015181             | W            |

## **Tableau D.1** Liste des échantillons du Complexe de Menarik ayant fait l'objet d'une ou plusieurs analyses chimiques.

| ECHANTILLONS      | AFF                | INDICE   | LM | [   |    | _  |    |      | ARA | LYSE | 8     |    |       |     |     | . D'ANALYSE | BR  |
|-------------------|--------------------|----------|----|-----|----|----|----|------|-----|------|-------|----|-------|-----|-----|-------------|-----|
|                   |                    |          | 1  |     |    |    |    | LITH | OGE | осни | TIQUE | .8 |       |     |     |             |     |
|                   |                    |          |    |     |    |    | CR | JML. |     |      |       | Ω  | RS-GÉ | 0.  |     |             |     |
|                   | I .                | 1        |    | A14 | A3 | A4 | A6 | ATR  | A10 | A11  | MAJ   | TR | HFSE  | TR  | EGP |             |     |
| 97 MH (K-88-18-B) | forage             |          | X  | X   | X  | X  | X  | Γ    | X   | l x  |       |    |       |     |     | 97015060    | W-P |
| 97 MH IK-88-18-B  | forage             |          | X  | X   | X  | X  | X  |      | X   | х    |       |    |       |     |     | 97015059    | W-P |
| 97 MH 1K-88-18-B2 | forage             |          | X  | ×   | х  | Х  | X  | [    | X   | X    |       |    |       |     |     | 97015055    | W-P |
| 97 MH 1K-88-18-B2 | forag <del>e</del> |          | X  | X   | х  | X  | X  |      | х   | X    |       |    |       |     |     | 97015054    | W-P |
| 97 MH MK-88-18-B  | forage             |          | X  | X   | X  | X  | X  |      | X   | X    |       |    |       |     |     | 97015058    | W   |
| 97 MH MK-88-18-B  | forage             |          | X  | X   | Х  | X  | X  | -    | X   | х    |       |    |       | X   |     | 97015057    | W-P |
| 97 MH MK-88-18-B  | forage             |          | X  | X   | X  | X  | X  |      | Х   | X    |       |    |       |     |     | 97015056    | W-P |
| 97 MH MK-88-2-B9  | forage             |          | X  | Х   | X  | X  | Х  |      | х   | х    |       |    |       |     |     | 97015066    | W-P |
| 97 MH MK-88-8-B1  | forage             |          | X  | x   | X  | X  | X  |      | X   | X    |       |    |       |     |     | 97015068    | W-P |
| 98 MH 4055        | 98-MH-4055         |          | X  |     |    |    |    | -    |     |      |       |    |       |     |     |             |     |
| 98 MH 4089        | 98-MH-4089         | Cr-10    | X  |     |    |    |    |      |     |      |       |    |       |     |     |             |     |
| 98 MH 4107        | 98-MH-4107         |          | X  |     |    |    |    |      |     |      | -     |    |       |     |     |             |     |
| 98 MH 4212        | 98-MH-4212         |          | Х  |     |    |    |    |      |     |      |       |    |       |     |     |             |     |
| 98 MH 4215        | 98-MH-4215         |          | X  |     |    |    |    |      |     |      |       |    | _     |     |     |             |     |
| 98 MH 4216        | 98-MH-4216         |          | X  | х   | Х  | х  | X  |      | X   |      |       |    |       |     |     | 98018762    |     |
| 98 MH 7421        | 97-MH-7421         |          | X  | х   | Х  | X  | Х  | _    | X   |      |       | _  |       |     |     | 98018756    |     |
| 98 MH 7443        | 97-MH-7443         |          | X  | x   | Х  | X  | Х  |      | x   |      |       |    |       |     |     | 98018752    | A   |
| 98 MH 7463        | 97-MH-7463         |          | x  | X   | X  | х  | х  |      | X   |      |       |    |       | x   |     | 98018759    |     |
| 98 MH 7494        | 97-MH-7494         | Cr-2     | X  |     |    |    |    |      |     |      |       |    |       |     |     |             |     |
| 98 MH 7499        | 97-MH-7499         | Cr-7     | X  | X   | X  | X  | х  |      | X   |      |       |    |       |     |     | 98018753    | A   |
| 98 MH 4083-A      | 98MH-4083          |          | X  | X   | X  | X  | х  |      | x   |      |       |    |       | X   |     | 98018763    | A   |
| 98 MH 4083-B      | 98MH-4083          |          | X  | X   | X  | х  | х  |      | x   |      |       |    |       |     |     | 98018761    | A   |
| 98 MH 4104-A1     | 98-MH-4104         |          | х  | x   | X  | X  | х  |      | x   |      | _     |    |       | X   |     | 98018760    | A   |
| 98 MH 4104-B      | 98-MH-4104         |          | X  | x   | X  | X  | X  |      | X   |      |       |    |       |     |     | 98018754    |     |
| 98 MH 4117-A2     | 98-MH-4117         |          | X  | x   | X  | X  | Х  |      | x   |      |       |    |       |     |     | 98018764    |     |
| 98 MH 7392-C1     | 97-MH-7392         |          | X  | X   | X  | X  | Х  |      | х   |      |       |    |       |     |     | 98018758    |     |
| 98 MH 7392-C2     | 97-MH-7392         |          | X  | X   | X  | X  | Х  |      | X   |      |       |    |       |     |     | 98018751    | A   |
| 98 MH 7490 S1 N   | 97-MH-7490         | Cr-4     | X  |     |    |    |    |      |     |      |       |    |       | - 1 |     |             |     |
| 98 MH 7490 S1 S   | 97-MH-7490         | Cr-4     | X  |     |    |    |    |      |     |      | 1     |    |       |     |     |             |     |
| 98 MH 7490-A      | 97-MH-7490         | Cr-4     | X  | X   | х  | x  | X  |      | х   |      |       |    |       | x   |     | 98018755    |     |
| 98 MH 7507-C      | 97-MH-7507         | Cr-28-29 | X  | X   | x  | x  | x  |      | x   |      |       |    |       |     |     | 98018757    | A   |

## **Tableau D.1** Liste des échantillons du Complexe de Menarik ayant fait l'objet d'une ou plusieurs analyses chimiques.

#### D.2 Limites de détection

Cette section comprend les limites de détection pour tous les éléments majeurs et traces analysés au laboratoire du Centre de Recherche Minérale (Tableau D.2) et au laboratoire de l'INRS-Géoressources (Tableau D.3). Seules les limites de détection des éléments du groupe du platine pour les sections détaillées ne sont pas comprises dans l'annexe D.2. Elles seront incluses dans l'annexe D.3.2, où la méthode de dosage et de mise en solution des ÉGP sera décrite en détail.

# Tableau D.2 Limites de détection pour les analyses effectuées au CRM.

|    | A        | 13                  |
|----|----------|---------------------|
|    | Éléments | Limite de détection |
| Ba |          | 1 ppm               |
| Be |          | 1 ppm               |
| Cd |          | 2 ppm               |
| Ce |          | 3 ppm               |
| Co |          | 3 ррт               |
| Cu |          | 1 ppm               |
| Dу |          | 1 ppm               |
| Eu |          | 1 ppm               |
| La |          | 2 ppm               |
| Li |          | 1 ppm               |
| Мо |          | 4 ppm               |
| Nd |          | 25 ppm              |
| Ni |          | 1 ppm               |
| РЪ |          | 12 ppm              |
| Pr |          | 10 ppm              |
| Sm |          | 2 ppm               |
| V  |          | 2 ppm               |
| Zn |          | 2 ppm               |

| A4       |                     |  |
|----------|---------------------|--|
| Éléments | Limite de détection |  |
| Sn       | 10 ppm              |  |
| Ga       | 3 ppm               |  |
| NЪ       | 3ppm                |  |
| Rb       | 3 ppm               |  |
| Sr       | 3 ррт               |  |
| Ta       | 5 ppm               |  |
| Те       | 10 ppm              |  |
| Th       | 3 ppm               |  |
| Y        | 3 ppm               |  |
| Zr       | 3 ppm               |  |

| A14                                   |                     |  |
|---------------------------------------|---------------------|--|
| Éléments                              | Limite de détection |  |
| SiO <sub>2</sub>                      | 0,04%               |  |
| Al <sub>2</sub> O <sub>3</sub>        | 0,02%               |  |
| Fe <sub>2</sub> O <sub>3</sub> (tot.) | 0,02%               |  |
| MgO                                   | 0,05%               |  |
| CaO                                   | 0,02%               |  |
| Na <sub>2</sub> O                     | 0,10%               |  |
| K <sub>2</sub> O                      | 0,01%               |  |
| TiO <sub>2</sub>                      | 0,01%               |  |
| MnO                                   | 0,01%               |  |
| P <sub>2</sub> O <sub>5</sub>         | 0,01%               |  |
| Cr <sub>2</sub> O <sub>3</sub>        | 0,01%               |  |
| V <sub>2</sub> O <sub>5</sub>         | 0,01%               |  |
| ZrO <sub>2</sub>                      | 0,01%               |  |

| ATR      |                     |
|----------|---------------------|
| Éléments | Limite de détection |
| Се       | 2 ppm               |
| Cs       | 0,2 ppm             |
| Eu       | 0,1 ppm             |
| Gd       | 5 ppm               |
| Hf       | 0,2 ppm             |
| Но       | 0,5 ppm             |
| La       | 0,5 ppm             |
| Lu       | 0,05 ppm            |
| Nd       | 2 ppm               |
| Sm       | 0,05 ppm            |
| Sc       | 0,02 ppm            |
| Та       | 0,1 ppm             |
| ТЪ       | 0,1 ppm             |
| Th       | 0,05 ppm            |
| Tm       | 0,2 ppm             |
| U        | 0,5 ppm             |
| ΥЪ       | 0,2 ppm             |

| A6       |                     |  |
|----------|---------------------|--|
| Éléments | Limite de détection |  |
| Sb       | 0,1 ppm             |  |
| As       | l ppm               |  |
| Br       | 1 ppm               |  |
| Cs       | l ppm               |  |
| Au       | 5 ppb               |  |
| Se       | 10 ppm              |  |
| Tm       | 2 ppm               |  |
| W        | 1 ppm               |  |
| ប        | 0,2 ppm             |  |

| A10      |                     |
|----------|---------------------|
| Éléments | Limite de détection |
| FeO      | < 0,01 %            |
| Soufre   | < 0,01 %            |

| B-13    |                     |  |
|---------|---------------------|--|
| Élément | Limite de détection |  |
| $CO_2$  | 0,01%               |  |
|         | B-14                |  |
| Cr      | 20 ppm              |  |

| A11     |                     |  |
|---------|---------------------|--|
| Élément | Limite de détection |  |
| Pd      | 6 ppb               |  |
| Pt      | 6 ppb               |  |
| Rh      | б ррb               |  |
| Ru      | n.d.                |  |
| lr      | n.d.                |  |
| Os      | n.d.                |  |

|                                 | ICP-AES                                    | 8      |
|---------------------------------|--------------------------------------------|--------|
|                                 | Na <sub>2</sub> O <sub>2</sub> Métborate L |        |
|                                 | %                                          | %      |
| Na <sub>2</sub> O               | -                                          | 0,0040 |
| Al <sub>2</sub> O <sub>3</sub>  | 0,0010                                     | 0,0100 |
| MgO                             | 0,0020                                     | 0,0080 |
| P <sub>2</sub> O <sub>5</sub>   | -                                          | 0,0030 |
| SiO <sub>2</sub>                | 0,7200                                     | 0,0140 |
| TiO <sub>2</sub>                | 0,0001                                     | 0,0001 |
| MnO                             | 0,0003                                     | 0,0001 |
| K₂O                             | 0,3000                                     | 0,0040 |
| CaO                             | 0,0030                                     | 0,0004 |
| Fe <sub>2</sub> O <sub>3t</sub> | 0,0020                                     | 0,0025 |
| S                               | -                                          | 0,0030 |

| <b>Tableau D.3</b> Limites de détection pour les analyses effectuées |
|----------------------------------------------------------------------|
| au laboratoire de INRS-Géoressources.                                |

|    | ICP-AES                        |              |
|----|--------------------------------|--------------|
|    | Na <sub>2</sub> O <sub>2</sub> | Métborate Li |
|    | %                              | %            |
|    | ppm                            | ppm          |
| Cr | 33,92                          | 12,410       |
| Nī | 15,04                          | 2,820        |
| Cu | 0,05                           | 1,080        |
| Zn | 1,61                           | 0,250        |
| Co | -                              | 11,350       |
| Cd | -                              | 0,100        |
| Sc | -                              | 0,150        |
| v  | 2,97                           | 0,500        |

| ICP-MS |                                |               |                 |
|--------|--------------------------------|---------------|-----------------|
| Limite | Dilution 10000                 | Dilution 5000 | Dilution 500    |
|        | Na <sub>2</sub> O <sub>2</sub> | Métaborate Li | Digestion acide |
|        | ppm                            | ppm           | ppm             |
| Rb     | 0,0357                         | 0,0178        | 0,0030          |
| Sr     | 0,2403                         | 0,1202        | 0,0200          |
| Y      | 0,2659                         | 0,1329        | 0,0200          |
| Zr     | 0,0421                         | 0,0210        | 0,0100          |
| ΝЪ     | 0,0537                         | 0,0268        | 0,0200          |
| Cs     | 0,0906                         | 0,0453        | 0,0030          |
| Ba     | 0,0699                         | 0,0350        | 0,0200          |
| La     | 0,0163                         | 0,0082        | 0,0020          |
| Ce     | 0,0181                         | 0,0090        | 0,0020          |
| Pr     | 0,0031                         | 0,0016        | 0,0005          |
| Nd     | 0,0088                         | 0,0044        | 0,0020          |
| Sm     | 0,0257                         | 0,0128        | 0,0020          |
| Eu     | 0,0035                         | 0,0017        | 0,0010          |
| Gd     | 0,0419                         | 0,0210        | 0,0050          |
| ТЬ     | 0,0109                         | 0,0054        | 0,0010          |
| Dy     | 0,0086                         | 0,0043        | 0,0020          |
| Ho     | 0,0024                         | 0,0012        | 0,0001          |
| Er     | 0,0122                         | 0,0061        | 0,0020          |
| Tm     | 0,0017                         | 0,0008        | 0,0005          |
| ΥЪ     | 0,0054                         | 0,0027        | 0,0020          |
| Lu     | 0,0013                         | 0,0007        | 0,0005          |
| Hf     | 0,0102                         | 0,0051        | 0,0020          |
| Та     | 0,0039                         | 0,0019        | 0,0005          |
| Pb     | 0,0240                         | 0,0120        | 0,0050          |
| Th     | 0.0065                         | 0,0033        | 0,0020          |

•

# D.3 Méthodes analytiques utilisées pour l'analyse en spectrométrie de masse à source plasma

Les méthodes analytiques qui seront détaillées dans cette section sont: la mise en solution par digestion acide et le dosage et la mise en solution des platinoïdes. Ces méthodes analytiques ont été effectuées dans le cadre de ce mémoire de maîtrise.

#### D.3.1 Digestion acide (TR)

La digestion acide consiste à mettre en solution des roches par l'entremise d'acides ultrapures. Cette technique de mise en solution des échantillons a été développée à l'Université de Montpellier II (CNRS) et par la suite modifiée par Dr. Marc Richer-Laflèche au laboratoire de INRS-Géoressources.

#### D.3.1.1 Décontamination des bombes

1) Mettre environ 5 ml d'acide nitrique Reagent HNO<sub>3</sub> dans les bombes de téflon Savillex;

2) Refermer les bombes et laisser chauffer sur une plaque chauffante pendant environ 1 heure (~140°C).

#### D.3.1.2 Mise en solution des poudres de roches

Cette procédure est effectuée pour des roches ultramafiques qui sont susceptibles de contenir une proportion appréciable d'oxyde comme la chromite. Il est à noter que si la proportion de chromite est trop importante, les échantillons devront être insérés dans des bombes à haute pression pendant environ 5 jours. Pour des roches mafiques comme des basaltes ou des gabbros (moins de phases réfractaires comme la chromite), l'acide  $HClO_4$  peut être remplacé par de l'eau régale ( $HCl/HNO_3$ ). Par contre, le HF doit toujours être utilisé pour pouvoir détruire les silicates (volatilisation de la Si).

- Prendre 100 mg de poudre de roche en y ajoutant quelques 1ere attaque: gouttes d'eau (milliQ) pour amalgamer la poudre en une gouttelette visqueuse - Ajouter 1,0 ml de HClO<sub>4</sub> Seastar suivit de 2,5 ml HF Seastar -On peut ajouter quelques millilitres (~3) d'eau « ultrapure » pour homogénéiser le fond de la bombe de téflon - Fermer les bombes - Agiter la bombe pour bien mélanger les acides et la poudre - Laisser les bombes Savillex ~24 h sur une plaque chauffante, ~120° C Évaporation: - Refroidir les bombes à la T<sup>o</sup> de la pièce - Ouvrir les - Ajouter de l'eau (milliQ) sur le couvercle pour maximiser la récupération de l'échantillon - Transvider l'eau à l'intérieur de la bombe de téflon - Évaporer à ~140°C jusqu'à l'obtention d'une pâte visqueuse (presque sèche) ~ 15-16 h, taper régulièrement la bombe pour faire disparaître les petites gouttelettes d'acide perchlorique sur les bordures de la bombe Savillex
- **<u>2° attaque:</u>** Ajouter 0,5 ml de HClO₄ Seastar (d'abord) et 1,0 ml de HF (ensuite) Seastar

# Il est important de rincer le couvercle pour récupérer les gouttes de condensation sur les parois

- Évaporation: Évaporer l'échantillon jusqu'à l'obtention d'une pâte visqueuse (presque sèche) ~ 7-8 h, taper régulièrement la bombe pour faire disparaître les petites gouttelettes d'acide sur les bordures de la bombe Savillex
- **<u>3° attaque:</u>** Ajouter 0,5 ml de HClO<sub>4</sub> Seastar

| Évaporation:        | - Évaporer jusqu'à l'obtention d'une pâte visqueuse (presque                                                                        |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                     | sèche) ~ 4 h (pousser un peu plus l'évaporation)                                                                                    |
| <u>4• attaque:</u>  | - Ensuite ajouter 0,25 ml de HClO₄ Seastar                                                                                          |
| <u>Évaporation:</u> | - Évaporer jusqu'à l'obtention d'une pâte visqueuse (presque<br>sèche) ~ 4 h (pousser un peu plus l'évaporation)                    |
| <u>5• attaque:</u>  | - Ajouter 0,25 ml de HClO₄ Seastar                                                                                                  |
| Évaporation:        | <ul> <li>Évaporer jusqu'à l'obtention d'une pâte visqueuse (presque<br/>sèche) ~ 4 h (pousser un peu plus l'évaporation)</li> </ul> |

#### Attention de ne pas surchauffer

Cette étape est fondamentale car elle permet la destruction des composés de fluorure de calcium qui peuvent complexer fortement les éléments traces comme le Zr, l'Hf, le Nb et le Ta. Ainsi, en chauffant les bombes à ~140°C, les surplus de fluorure de calcium (CaF) et d'acide fluorhydrique (HF) quittent la bombe car le point d'ébullition (170-180°C) de l'acide perchlorique (HClO<sub>4</sub>) est plus élevé que celui du HF. En plus il faut faire très attention de ne pas dépasser 200°C car les bombes de téflon vont fondre.

# D.3.1.3 Analyse à spectrométrie de masse à source plasma (ICP-MS)

#### Transfert pour l'analyse:

Reprendre l'échantillon à sec et mouiller avec un peu d'eau ultrapure et ajouter 1,0 ml d'acide nitrique (HNO3) et 0,25 ml d'acide chloridrique (HCl) Seastar. Jauger à 50 ml pour obtenir une solution acide à 2,5 % pour le passage à l'ICP-MS.

#### D.3.1.4 Évolution de la qualité des analyses des roches

Avant d'interpréter les données géochimiques, il est important de vérifier si les valeurs analyses chimiques sont fiables. Une façon simple d'évaluer la qualité des données est de comparer les résultats de l'analyse du standard certifié à ceux généralement admis dans la littérature pour ce même standard. Une autre façon de vérifier la qualité de nos analyses est d'examiner la pureté des blancs analytiques. Les blancs analytiques permettent d'évaluer la présence de contaminant reliés à l'utilisation de certains réactifs (eau, acides, etc.), du matériel employé (vaisselle, instrument, etc.) et bien sûr de l'environnement dans lequel les analyses ont pu être préparées (poussières, aérosols, etc.).

Les éléments traces analysés par ICP-MS, suite à différentes méthodes de digestion (fusion au métaborate de lithium, fusion au peroxyde de sodium et attaque acide), sont les terres rares, les éléments à fort champ ionique et le Pb. La figure D.1 présente une comparaison des valeurs de la littérature et celles obtenues pour un standard certifié, Bir-1 (un basalte), pour les différentes mises en solution des poudres de roche. Les échantillons attaqués au métaborate de lithium sont les plus nombreux et correspondent à des roches ultramafiques (péridotites et pyroxénites). Les échantillons attaqués au peroxyde de sodium sont des roches riches en chromite (chromitites, chromitites à silicates et péridotites à chromite). L'utilisation de ces deux méthodes de digestion causent des problèmes sur les éléments comme le Cs, le Rb, le Th, le Ta, le Nb et l'Hf. Ces éléments ne seront pas utilisés compte tenu du signal trop faible, des blancs analytiques ou de la différence importante entre l'analyse du standard certifié et les valeurs certifiées. Le Ba et le Sr ne seront pas utilisés dans le cas de la fusion au peroxyde de sodium à cause d'une interférence avec le Zr. Dans ces échantillons, le Zr n'a pas été dosé car les creusets utilisés pour la fusion au peroxyde de sodium sont en zirconium. Cependant, les TR montrent des valeurs similaires aux valeurs certifiées et les blancs analytiques montrent aucune contamination dans les deux méthodes de digestions.



**Figure D.1** Graphique montrant la variation entre les valeurs certifiées d'un standard (Bir-1, un basaite) et les teneurs analysées à ICP-MS par une méthode de fusion au métaborate de lithium (a), une fusion au peroxyde de sodium (b) et une digestion acide (c).

Les échantillons attaqués par une attaque acide correspondent aux gabbros et aux pyroxénites avec très peu de chromite. La cotation des standards certifiés est très bonne et aucune contamination dans les blancs analytiques n'a été observé.

#### D.3.2 Dosage et mise en solution des ÉGP

La méthode analytique utilisée pour le dosage des éléments du groupe du platine est celle développée par Gueddari (Gueddari et al., 1998). Cette méthode permet d'obtenir d'excellentes limites détection pour les roches basiques et ultrabasiques.

#### D.3.2.1 Réactifs et matériel utilisé

Le détail des réactifs et du matériel utilisé lors de ces manipulations ne sera pas exposé ici. La nature, la préparation et le type des réactifs, des solutions et du matériel sont détaillés dans les travaux de Gueddari et al.(1998).

#### **D.3.2.2** Protocole analytique

Échantillon **Fusion au Na<sub>2</sub>O<sub>2</sub>** Mise en solution Évaporation (à 130°C) Filtration de la silice en milieu acide **Extraction** J Ajout d'une solution de Se & Te & IK J Ajout d'une solution de SnCl<sub>2</sub>

#### Filtration

Reprise du précipité à l'eau régale Évaporation (à 75°C) Reprise à l'eau régale et H<sub>2</sub>O<sub>2</sub> millipore Analyse par ICP-MS

Figure D.2 Schéma simplifié du protocole analytique d'extraction des ÉGP (modifié de Gueddari, 1996).

#### D.3.2.3 Mode opératoire

#### 1er Étape - Décontamination

Avant de débuter toute manipulation, on doit effectuer la décontamination de la vaisselle (creusets, béchers, etc.). Cette étape se divise en deux sous-étapes :

#### 1 a) Décontamination du matériel en pyrex

Le matériel en pyrex comme les béchers, doit être lavé à l'eau savonneuse. La vaisselle doit être rincée à l'eau du robinet et à l'eau déminéralisée. Par la suite la vaiselle doit trempée pendant environ 20 minutes, dans une solution acide composée d'eau régale (2/3 d'acide chlorhydrique [HCl] & 1/3 d'acide nitrique [HNO<sub>3</sub>]. Par la suite, le matériel est rincé avec de l'eau millipore (eau ultrapure).

Note : La solution d'eau régale peut être conservée trois jours. Le deuxième jour, le temps de trempage est d'environ 1 heure et le troisième jour, d'environ 3 heures.

#### 1 b) Décontamination des creusets de zirconium

Les creusets utilisé pour fondre et homogénéiser les poudres de roches sont en zirconium. Cet élément est très réfractaire, peu réactif et évite la contamination en éléments du groupe du platine. La décontamination s'effectue à l'aide du peroxyde de sodium (Na<sub>2</sub>O<sub>2</sub>) et du



carbonate de sodium et potassium (NaKCO<sub>3</sub>). La méthode consiste à mettre le fondant dans le fond du creuset en zirconium (correspond à environ 1/3 du volume du creuset). Le fondant est un mélange de 2/3 de Na<sub>2</sub>O<sub>2</sub> pour 1/3 de NaKCO<sub>3</sub>. Une fois le mélange effectué, on est prêt à fondre en chauffant à l'aide d'un bec Bunsen, créant ainsi une sorte de magma. Lorsqu'on chauffe le mélange de fondants (Na<sub>2</sub>O<sub>2</sub> + NaKCO<sub>3</sub>), il est important que le liquide de fusion soit en contact avec le maximum de la surface du creuset pour enlever le maximum de contaminant sur les parois du creuset. Par la suite, on recycle le fondant pour les 2<sup>e</sup>, 3<sup>e</sup> et 4<sup>e</sup> creusets (transvider à chaud).

#### 2° Étape - Attaque des échantillons

Pour l'attaque des échantillons, on utilise la fusion par la méthode au peroxyde de sodium  $(Na_2O_2)$ . Entre 2,40 et 2,60 g de carbonate de potassium et de sodium  $(NaKCO_3)$  sont ajoutés à 3 g de l'échantillon en poudre. À la dernière minute, on ajoute le peroxyde de sodium dans le creuset et on homogénéise le mélange avant de le faire chauffer sur le bec Bunsen. La quantité de



peroxyde de sodium est variable dépendant du type de roche attaqué.

#### • Pour les roches mafiques et ultramafiques :

La quantité de peroxyde de sodium  $(Na_2O_2)$  utilisé pour dissoudre ce type de roche est d'environ 4 fois la quantité d'échantillon en poudre mis dans le creuset. Dans ce cas-ci, on met environ 12 g de peroxyde de sodium.

#### • Pour les chromitites :

La quantité de peroxyde de sodium (Na<sub>2</sub>O<sub>2</sub>) utilisé pour dissoudre ce type de roche est d'environ 20 g. Il est également conseillé de mettre seulement 2 g d'échantillon pour les chromitites dû à la difficulté de fondre ce matériel très réfractaire.

#### • Pour les sulfures :

La quantité de peroxyde de sodium (Na<sub>2</sub>O<sub>2</sub>) utilisé pour fondre les échantillons riches en sulfures est moindre que pour les autres types de roches. Dans ce cas-ci, on met environ 6 g de peroxyde de sodium ce qui facilite la fusion. Lorsque le mélange est complètement fondu (environ 10 minutes), on ajoute 15 pastilles d'hydroxyde de sodium (KOH) et on laisse chauffer sous le bec Bunsen encore 5 minutes. L'ajout de l'hydroxyde de sodium est nécessaire pour mettre en solution les microparticules réfractaires qui peuvent rester dans le mélange en fusion.

#### 3° Étape - Mise en solution dans un milieu acide

Après le refroidissement complet des creusets et du matériel en fusion, on peut procéder à la mise en solution du matériel. On dépose le creuset avec le liquide figé dans un bécher contenant 150 ml d'eau millipore ce qui dissous l'échantillon. On peut accélérer la réaction en chauffant légèrement le bécher sous le bec Bunsen



mais il faut faire attention de ne pas porter la solution au point d'ébullition pour éviter toute perte possible du matériel. Une fois tout le matériel dissout, on enlève le creuset et la tige de verre en prenant garde de bien rincer avec de l'eau millipore la vaisselle pour ne pas perdre d'échantillon.

La solution obtenue est constituée de deux phases : une liquide et l'autre solide (un genre de pulpe). Pour obtenir une solution monophasée (phase liquide seulement), on ajoute environ 100 ml d'acide chlorhydrique « Arister (37%)». La quantité d'acide chlorhydrique (HCl) ajoutée est variable et dépend beaucoup du type de roche mis en solution. L'acide doit être ajouté de façon méticuleuse car le mélange de la solution et de l'acide provoque de l'effervescence. Ensuite, on doit ajouter 1 ml de peroxyde d'hydrogène (H<sub>2</sub>O<sub>2</sub>) pour oxyder la chromite. Si on est en présence de chromitites, on met 2 ml de H<sub>2</sub>O<sub>2</sub>. Un excès de peroxyde d'hydrogène risque de créer des problèmes lors de la réduction ultérieure de l'échantillon. Si l'échantillon est riche en chrome la solution devient verte sinon elle restera jaune. Par la suite, la solution est déposée sur une plaque chauffante (à 130-150°C) jusqu'à évaporation complète (~3 jours). À la fin du processus d'évaporation, la silice précipite dans le fond du bécher. En même temps, l'osmium se libère sous forme de tétroxyde d'osmium en raison de sa grande volatilité. Dans certains cas, le ruthénium peut également être libéré sous la forme de tétroxyde de ruthénium. Cependant, l'emploi du peroxyde d'hydrogène minimise le problème grâce à la formation de monoxyde de ruthénium qui ne se volatilise pas à de telles températures.

## 4º Étape - Filtration de la silice

Une fois les échantillons complètements secs, le résidu est repris à l'aide d'une solution de 50 ml  $H_2O_2$  (MilliQ) et de 20 ml de HCl (Aristar, qualité trace metal) et chauffé. Une réattaque du résidu à l'acide chlorydrique permet la mise en solution des oxydes de fer. La silice qui n'est pas dissoute, pourra être filtrée dans un erlenmeyer en utilisant des filtres de 3 µm. Le résidu qui est retenu dans les filtres ne doit pas être coloré, sinon il peut encore contenir des platinoïdes.

#### 5<sup>e</sup> Étape - Extraction des platinoïdes

L'extraction à froid des platinoïdes se fait par co-précipitation au Se-Te et par l'ajout du chlorure stanneux. À la solution précédemment filtrée, sont ajoutés 10 ml de Se (1 g/l), 10 ml de Te (0,25 g/l) et 10 ml de IK (500 g/l). La solution de IK est ajoutée pour maximiser le taux de récupération de l'iridium (Gueddari, 1996). À cette solution, 90 ml de HCl est ajouté pour obtenir une solution de 4M. Celle-ci est amenée à ébullition. Pendant l'ébullition, l'ajout de quelques gouttes de HF permet de complexer d'éventuelles traces de silice résiduelle.

À l'apparition des premières bulles d'ébullition, le  $SnCl_2$  (à 25 %) est ajouté, goutte à goutte, jusqu'à la disparition totale de la couleur jaune ou verte de la solution mère (due à la présence de sels ferriques). La quantité de chlorure stanneux dépend beaucoup de la nature de la roche. En effet, la couleur de la solution est indicatrice de la teneur en chrome. Une solution jaune (typiques pour les péridotites) est caractéristique d'une roche contenant très peu de chrome comparativement à une solution verte qui est caractéristique d'une roche riche en chrome (chromitite). Toutes les couleurs intermédiaires sont possibles et sont fonction die l'abondance de chrome dans les échantillons. Pour les échantillons de cette étude, la quantité de chlorure stanneux utilisée est la suivante :

# Péridotite (pauvre en chromite) : ajout d'environ 20 ml de SnCl<sub>2</sub> Péridotite à chromite (riche en chromite) : ajout d'environ 30 ml de SnCl<sub>2</sub> Chromitite (très riche en chromite) : ajout d'environ 40 ml de SnCl<sub>2</sub>

Les solutions de Se, Te et IK sont utilisées comme entra\_îneurs pour coprécipiter les ÉGP. La formation de complexes [ÉGP  $Sn_4Cl_4$ ]<sup>4+</sup> es**t** assurée par la réduction des ÉGP avec la solution de chlorure stanneux. L'ébullition de la solution mère permet la décomposition de complexes de séléniures et de tellurures relativement insolubles.

#### 6° Étape - Filtration

Lors du refroidissement, la solution tend à se séparer en de ux phases : une phase liquide et une phase solide (résidu contenant les platinoïdes). La filtration de cette solution sur un filtre Millipore d'acétate de cellulose  $(0,22\mu m)$  permet de récupérer les ÉGP complexés par le Se et Te. Les ÉGP sont co-ntenus dans le précipité noir qui est déposé sur le filtre sous la forme de séléniures et de tellurures. Il ne faut pas laisser refroidir la solution trop longtemps si on veut récupérer le maximum du précipité car celui-ci a tendance à coller sur les parois du bécher et de l'entonnoir. Une fois le précipité récupéré, il est évaporé à sec (à 75 °C). À cette étape, l'échantillon est stable pour une très longue période de temps (plusieurs mois).

#### 7° Étape - Reprise du précipité

La reprise du précipité consiste en la mise en solution du résidu à l'aide de l'eau régale (quelques gouttes d'acide nitrique et d'acide chlorhydrique). La dissolution s'effectue à chaud permettant ainsi de libérer les ÉGP des séléniures et des tellurures et de les retrouver sous forme de complexes chlorés dans la solution. La solution obtenue est jaugée à 5 ml (H<sub>2</sub>O millipore) dont 0,1 ml d'une solution de standard interne. La dilution de la solution est variable dépendant de la richesse des échantillons et de la limite de détection désirée. C'est cette solution qui fera l'objet de l'analyse à l'ICP-MS.

#### D.3.2.4 Instrumentation et conditions d'analyse

La détermination des teneurs en ÉGP a été effectuée à l'aide du ICP-MS [VG-PlasmaQuad Turbo 2+] du laboratoire de l'INRS-Géoressources. La sensibilité, la rapidité et le dosage multi-élémentaires d'un appareil de ce type sont des avantages par rapport à d'autres méthodes analytiques. Le principe de l'analyse spectrométrique et le fonctionnement de la spectrométrie de masse à plasma à couplage inductif sont élaborés plus en détail dans la thèse de doctorat de Gueddari (1996) Les conditions d'opération de ICP-MS pour la détermination des teneurs en ÉGP sont présentées dans le tableau suivant :

Ϊ,

**Tableau D.4** Conditions opératoires et paramètres d'acquisition de l'ICP-MS (tirés de Gueddari, 1996).

```
Puissance du générateur : 1 350 W
Puissance d'énergie réfléchie : < 2 W
Gaz : argon
Débit d'alimentation : 13 l/min
Débit auxiliaire : 1 l/min
Débit d'injection : 0,94 l/min
Chambre de nébulisation : MK2 Quartz
Type de nébuliseur : Meinhardt
```

Temps de stabilisation («uptake») : 90 s Nombre d'acquisitions : 3 Temps d'acquisition : 21 s/acquisition Temps de lavage : 90 s

Type de détecteur : Galileo modèle 4 870V Mode de détection : comptage d'impulsions («pulse counting») Mode d'acquisition : saut de pic («peak jumpping») Nombre de points par pic : 3 Temps de lecture/uma («dwell-time») : 10 240 µs Temps de balayage («time/sweep») : 0,98 s

#### D.3.2.5 Interférences et choix des isotopes

Le choix des isotopes pour le dosage des platinoïdes est essentiellement imposé par leurs abondances naturelles et par l'absence d'interférence de masse. Lors de l'analyse à l'ICP-MS, plusieurs types d'interférences peuvent se produire. Il existe principalement des interférences spectroscopiques et non spectroscopiques. Parmi les interférences spectroscopiques, on retrouve les interférences isobariques, aux ions doublement chargés, aux ions polyatomiques et aux oxydes réfractaires. Les interférences non spectroscopiques regroupent les effets physiques, les effets de surpression analytique et les effets mémoires. Ces types d'interférences ne seront pas abordés plus en détails car ce n'est pas le sujet de ce mémoire. Cependant, ces interférences sont rapportées dans la thèse de doctorat de Gueddari (1996).

| #        | Élément | Masse    | Isotope     | Interférences                                          | Choix des isotopes                                                        |
|----------|---------|----------|-------------|--------------------------------------------------------|---------------------------------------------------------------------------|
| atomique |         | atomique | (abondance) |                                                        |                                                                           |
| 77       | Ir      | 192,2    | 191 (37,3)  | - Absentes                                             | <sup>1931</sup> r (1,2)                                                   |
|          |         |          | 193 (62,7)  |                                                        | ( <sup>191</sup> Ir+ <sup>193</sup> Ir)/2 ( <sup>3</sup> , <sup>4</sup> ) |
| 44       | Ru      | 101,07   | 96 (5,51)   | - fréquentes sur                                       |                                                                           |
|          |         |          | 98 (1,87)   | 96Ru, 98Ru, 100Ru                                      |                                                                           |
|          |         |          | 99 (12,72)  | (Totland et al.,                                       |                                                                           |
|          |         |          | 100 (12,62) | 1993)                                                  | ( <sup>99</sup> Ru+ <sup>101</sup> Ru)/2 ( <sup>1</sup> )                 |
|          |         |          | 101 (17,07) | - observées sur                                        | <sup>101</sup> Ru (2)                                                     |
|          |         |          | 102 (31,63) | <sup>99</sup> Ru, <sup>100</sup> Ru, <sup>104</sup> Ru | ( <sup>101</sup> Ru+ <sup>102</sup> Ru)/2 ( <sup>3</sup> , <sup>4</sup> ) |
|          |         |          | 104 (18,58) | (Gueddari, 1996)                                       |                                                                           |
|          |         |          |             | - <sup>99</sup> Ru, <sup>100</sup> Ru                  |                                                                           |
|          |         |          |             | (ce travail)                                           |                                                                           |
| 45       | Rh      | 102,91   | 103 (100)   | - Absentes                                             | <sup>103</sup> Rh (1,2,3,4)                                               |
| 78       | Pt      | 195,09   | 190 (0,013) |                                                        |                                                                           |
|          |         |          | 192 (0,78)  | - Absentes                                             |                                                                           |
|          |         |          | 194 (32,9)  |                                                        | ( <sup>194</sup> Pt+ <sup>195</sup> Pt)/2 ( <sup>2</sup> )                |
|          |         |          | 195 (33,8)  |                                                        |                                                                           |
|          |         |          | 196 (25,3)  |                                                        | ( <sup>194</sup> Pt+ <sup>195</sup> Pt+ <sup>196</sup> Pt)/3              |
|          |         |          | 198 (7,21)  |                                                        | ( <sup>3</sup> , <sup>4</sup> )                                           |
| 46       | Pd      | 106,4    | 102 (0,96)  | - Absentes                                             |                                                                           |
|          |         |          | 104 (10,97) | (Totland et                                            | <sup>105</sup> Pd (1,2)                                                   |
|          |         |          | 105 (22,23) | al.,1993)                                              | ( <sup>105</sup> Pd+ <sup>106</sup> Pd+ <sup>108</sup> Pd)/3              |
|          |         |          | 106 (27,33) |                                                        | (3)                                                                       |
|          |         |          | 108 (26,71) | - <sup>106</sup> Pd, <sup>108</sup> Pd                 | ou <sup>105</sup> Pd ( <sup>3</sup> , <sup>4</sup> )                      |
|          |         |          | 110 (11,81) | (Gueddari, 1996 et                                     |                                                                           |
|          |         |          |             | ce travail)                                            |                                                                           |

Tableau D.5 Abondances, interférences et choix des isotopes (modifiés de Gueddari, 1996).
<sup>1</sup> Jarvis et al., 1992; <sup>2</sup> Jackson et al., 1990; <sup>3</sup> Gueddari, 1996; <sup>4</sup> ce travail

#### D.3.2.6 Standards internes et calibration externe

Lors du dosage d'ultratraces par ICP-MS, on doit contrôler la sensibilité et la variation du signal obtenu. Une façon efficace de contrôler ces paramètres est d'effectuer une standardisation interne qui consiste à ajouter, dans la solution à analyser, une concentration connue d'un ou de plusieurs éléments. Une correction est ultérieurement faite pour ramener la concentration de l'élément ajouté à sa concentration initiale. Le choix de ces éléments est crucial pour corriger efficacement les effets de dérive de l'instrument. Certains facteurs doivent être considérés avant de choisir les isotopes qui seront utilisés comme standards internes. Tout d'abord, l'isotope choisi ne doit pas interférer avec d'autres isotopes et la masse atomique doit être voisine des éléments à doser. L'isotope de standardisation interne doit être à facilement ionisé et posséder le moins d'isotopes possibles (Gueddari, 1996). De plus, l'élément de standardisation ne doit pas être présent dans les échantillons à doser. Sinon, on doit ajouter une quantité beaucoup plus grande afin que la concentration initiale de l'échantillon soit négligeable ou encore il faut connaître la concentration de cet élément dans les échantillons qui seront analysés.

Gueddari (1996) propose d'utiliser le <sup>93</sup>Nb et le <sup>187</sup>Re pour les ÉGP légers et les ÉGP lourds. Ces éléments n'interfèrent pas avec les masses des ÉGP dosés et donnent des résultats fiables. Pour ce travail, le <sup>93</sup>Nb, <sup>187</sup>Re et le <sup>111</sup>Cd ont été utilisés pour la standardisation interne. Le cadmium est également utilisé pour les ÉGP légers car le niobium peut devenir instable à courte échéance. Le meilleur élément entre les deux sera utilisé. Le <sup>111</sup>Cd et <sup>205</sup>Tl respectivement pour les ÉGP légers et pour les ÉGP lourds sont généralement employés (Jackson et al., 1990; Oguri et al., 1999).

La calibration a été effectuée en utilisant des solutions d'étalonnage. Ces solutions contiennent les éléments à doser à des concentrations connues. Sept solutions ont été préparées contenant des concentrations identiques pour chaque ÉGP de 0, 5, 10, 20, 50, 80 et 100 ppb. La réponse du signal (CPS) en fonction de la concentration est une fonction linéaire régie par un coefficient de régression linéaire. Ces solutions d'étalonnage sont choisies en fonction de la gamme des teneurs que nous supposons pour les échantillons à doser. Le passage des étalons s'effectue au début, au cours et à la fin de la séquence analytique. Ceci permet d'observer la variation du signal et d'établir une droite de calibration. Dans ce travail, le choix des étalons ne correspond pas exactement à la fourchette des teneurs auxquelles on peut s'attendre. Les concentrations attendues des échantillons minéralisés en ÉGP peuvent aller au-delà de 1000 ppb. Le droite de calibration, avec les solutions étalons (0 à 100 ppb), est calculée pour que les échantillons dosés soient dans cet intervalle de concentration après un facteur de dilution important.

#### D.3.2.7 Limite de détection

La définition exacte de la limite de détection analytique est problématique (Jenner et al., 1996). La limite de détection peut être décrite comme étant la concentration minimale d'un élément que l'on peut déterminer dans un blanc analytique (Keith et al., 1983; Long et al., 1983). Par contre, l'établissement de limite de détection peut prendre plusieurs directions. Potts (1987) a discuté et a proposé une série de termes pour décrire la limite de détection. Selon les travaux de Potts (1987), la limite de détection varie de 3 à 10 $\sigma$  dépendant de la terminologie utilisée. La limite minimale de détection (LLD: lower limit of detection) correspond à  $3\sigma$ , la limite minimale de détermination (LOD: lower limit of determination) correspond à  $6\sigma$  et la limite de quantification (LOQ: limit of quantification) correspond à  $10\sigma$ . Dans cette étude, la définition de Keith et al. (1983) et Long et al. (1983) va être utilisé.

#### D.3.2.8 Contamination et blanc analytique

Le blanc analytique permet de vérifier la qualité du matériel utilisé et de la propreté du laboratoire. Certains réactifs peuvent contenir des traces de quelques platinoïdes et ainsi contaminer les échantillons. Le protocole analytique utilisé pour préparer les blancs est identique à celui utilisé pour la préparation des échantillons (moins la poudre de l'échantillon). Le tableau D.5 montre les teneurs en platinoïdes analysées dans un blanc lors de ce travail comparées avec les teneurs obtenues par Gueddari pour des blancs effectuées au laboratoire de INRS-Géoressources (comm. pers. K. Gueddari) et également pour des blancs effectuées au laboratoire de Grenoble (Gueddari, 1996). Les teneurs en ÉGP du blanc de ce travail sont beaucoup plus élevées que dans le cas de Gueddari.

|                                             | Ir     | Ru   | Rh    | Pt   | Pd   |
|---------------------------------------------|--------|------|-------|------|------|
| Blanc (ce travail)                          | 0,34   | 0,52 | 0,26  | 5,45 | 0,62 |
| Blanc (INRS-Géo.)                           | < 0,01 | 0,04 | 0,026 | 0,33 | 0,26 |
| (Gueddari, comm. pers.)<br>Blanc (Grenoble) | 0,01   | 0,03 | 0,03  | 0,35 | 0,15 |
| (Gueddari, 1996)                            |        |      |       |      |      |

Tableau D.6 Teneurs en ÉGP d'un blanc des réactifs utilisés en ppb.

Plusieurs hypothèses (réactifs utilisés, propreté du matériel, etc) peuvent être avancées pour expliquer la différence importante entre les différentes études. Les réactifs ne peuvent pas expliquer ces variations, les produits chimiques employés ont été analysés lors des travaux de Gueddari et aucune concentration importante en platinoïdes n'a été détectée. Évidemment, il peut y avoir quelques différences entre deux stocks d'un même produit de qualité ultratrace, mais pas suffisamment pour observer de telles variations. La propreté de l'environnement et le matériel employé lors des manipulations des échantillons sont des facteurs qui ne sont pas négligeables. Une partie des teneurs des blancs peut provenir de cette étape. Il était raisonnable quand même de prévoir des blancs analytiques légèrement supérieurs à ceux obtenues par Gueddari. Ces travaux (Gueddari) consistaient en la manipulation de roches de massifs ultramafiques alpins où les teneurs en platinoïdes sont (Pagé, en préparation), c'est-à-dire de quelque ppb à une dizaine de ppb. En ce qui a trait à cette étude, elle concerne des roches ultramafiques d'une intrusion stratifiée où les teneurs en platinoïdes sont de quelques dizaines de ppb à quelques milliers de ppb. Étant donné que la manipulation s'effectuait avec des échantillons beaucoup plus riches, l'environnement était certainement plus porteur en ÉGP pendant cette période. Il est raisonnable de penser que la contamination des blancs analytiques pourrait provenir de l'étape d'évaporation où des particules de EGP se retrouvent en suspension dans l'air sous la forme d'aérosol.

L'analyse des blancs n'est pas le seul élément à prendre en considération lors de la vérification des analyses géochimiques. Des standards de roches ont également été utilisés pour vérifier l'exactitude des résultats expérimentaux. Les standards employés sont des roches similaires à celles analysées soient un gabbro (WGB-1), une péridotite (WPR-1) et un minerai de ÉGP (SARM-7). Le tableau D.6 montre les résultats obtenus pour les standards certifiés et les comparent également avec d'autres valeurs pour les mêmes standards obtenus dans d'autres travaux.

L'écart entre les valeurs proposées et les valeurs obtenues pour ce travail sont généralement acceptables. Les valeurs obtenues pour Pt sont plus éloignées des valeurs proposées. L'écart entre les valeurs proposées et les valeurs obtenues pour le platine varie de -26 à -3 % tandis que pour les autres éléments du groupe du platine, il varie de -19 à -2%. Le Pt semble avoir été légèrement sous-dosé lors de ces analyses. Les ÉGP sont des éléments chimiques très difficiles à doser, ce qui est montré aussi par les résultats répertoriés dans la littérature pour le dosage de standards certifiés. L'écart important entre les valeurs proposées et les valeurs obtenues peuvent être le résultat de l'hétérogénéité de l'échantillon pour la distribution de ces éléments chimiques (effet de pépite). La prise d'une quantité très restreinte de poudre d'échantillon augmente la possibilité d'avoir des variations importantes entre la valeur certifiée et celle analysée. Par exemple, lors de ces manipulations, la prise d'échantillon variait de 2,0 à 3,0 g de poudre comparativement entre 15 et 20 g de poudre pour la méthode de fusion à la bille de nickel ce qui diminue beaucoup l'effet pépite.

| Échantillon de          | Ir              | Ru                                    | Rh              | Pt        | Pđ          |
|-------------------------|-----------------|---------------------------------------|-----------------|-----------|-------------|
| référence               |                 |                                       |                 |           | •           |
|                         |                 | • • • • • • • • • • • • • • • • • • • |                 |           |             |
| WGB-1                   |                 |                                       |                 |           |             |
| Valeurs proposées       | $0,33 \pm 0,17$ | 0,3                                   | $0,32 \pm 0,21$ | 6,1 ± 1,6 | 13,9 ± 2,1  |
| Gueddari (INRS-Géo)     | 0,36            | 0,5                                   | 0,5             | б         | 11,1        |
| Gueddari (1996)         | 0,36 ± 0,08     | 0,6 ± 0,14                            | 0,53 ± 0,3      | 6,2 ± 2   | 10 ± 1,4    |
| Ce travail              | n.d.            | n.d.                                  | n.d.            | 5,9       | 10,2 (11,2) |
| Écart entre valeurs     | -               | -                                     | -               | -3 %      | -27 %       |
| proposées et ce travail |                 |                                       |                 |           |             |
| WPR-1                   |                 |                                       |                 |           |             |
| Valeurs proposées       | 13,5 ± 1,8      | 22 ± 4                                | 13,4 ± 0,9      | 285 ± 12  | 235 ± 9     |
| Gueddari (INRS-Géo.)    | 14,2            | 21,9                                  | 13              | 277       | 234         |
| Gueddari (1996)         | $14,2 \pm 1$    | 19,9 ± 1,6                            | 12,5 ± 1,2      | 271 ± 6   | 236 ± 15    |
| Oguri et al. (1999)     | 15,3            | 19,1                                  | 12,2            | 273       | 208,7       |
| Ce travail              | 11,9            | 21,6                                  | 16,5            | 216,2     | 210,0       |
| Écart entre valeurs     | -12 %           | -2 %                                  | +23 %           | -24 %     | -11 %       |
| proposées et ce travail |                 |                                       |                 |           |             |
| SARM-7                  |                 |                                       |                 |           |             |
| Valeurs proposées       | 74 ± 12         | 430 ± 57                              | 240 ± 13        | 3740 ± 45 | 1530 ± 32   |
| Jackson et al. (1990)   | 71              | 397                                   | 212             | 3395      | 1353        |
| Oguri et al. (1999) *   | 74              | 388                                   | 198             | 2802      | 1255        |
| **                      | 77              | 402                                   | 200             | 3287      | 1405        |
| ***                     | 74              | 430                                   | 220             | 3541      | 1373        |
| Ce travail              | 65,1            | 458,9                                 | 225,7           | 2777,9    | 1470,2      |
| Écart entre valeurs     | -12 %           | +7 %                                  | -6 %            | -26 %     | -4 %        |
| proposées et ce travail |                 |                                       |                 |           |             |

**Tableau D.7** Teneurs en ÉGP (ppb) de trois échantillons de référence comparées à celles obtenues dans le cadre de différents travaux.

\* Récupération des ÉGP sous des conditions normales (minimales)
 \*\* Récupération des ÉGP sous des conditions normales (maximales)

\*\*\* Récupération des ÉGP sous des conditions réductrices (moyenne de 10 échantillons)

La qualité des résultats pour les standards permet de considérer les résultats obtenus comme de bons résultats expérimentaux. Cependant, certains points restent à éclaircir. Premièrement, le taux de dilution avant le passage à ICP-MS a été beaucoup trop important ce qui a entraîné une augmentation de la limite de détection empêchant l'analyse de plusieurs éléments (Ir, Rh, Ru) pour de nombreux échantillons. Ce phénomène est mis en évidence par le standard WGB-1 où le Pt et le Pd sont très bien cotés alors que l'Ir, le Rh et le Ru ne sont même pas détectés. En ce qui concerne la contamination des blancs, plusieurs hypothèses ont été amenées pour tenter d'éclaircir cette observation. Par contre, si on veut impliquer une contamination (surtout Pt) non négligeable des blancs, comment se fait-il que le standard WGB-1 cote très bien à environ 6 ppb et que le blanc est à environ 5 ppb? La contamination des blancs par des aérosols riches en vapeurs platinifères lors de l'évaporation des échantillons est une source probable de la contamination des blancs. En même temps que s'effectuait l'évaporation des blancs analytiques, quelques échantillons riches en platinoïdes subissaient également leur évaporation dans la même hotte. Certains aérosols ont pu ainsi contaminer les blancs analytiques sans pour autant influencer les concentrations observées dans les échantillons riches en ÉGP étant donnée que les concentrations élevées de ceux-ci. Compte tenu que les présentes manipulations ont été faites dans des conditions similaires que les travaux de Gueddari (INRS-Géoressources), nous avons soustrait les blancs analytiques de cette étude avant de procéder au traitement des résultats.

#### **D.4 Microanalyse**

#### **D.4.1 Conditions d'opération**

Les analyses des minéraux ont été effectuées avec la microsonde électronique CAMECA SX-100 de l'Université Laval. L'opérateur de l'appareil était le Dr. Marc Choquette. Les conditions analytiques sont les suivantes pour les différentes phases analysées :

## CHROMITE, PYROXÈNE, CHLORITE, AMPHIBOLE ET CARBONATE

- Spectromètre à dispersion de longueur d'onde (WDS)
- Voltage d'excitation : 15 kV
- Ampérage : 20 nA
- Diamètre du faisceau : ± 5 µm
- Durée de comptage : 20 sec, bruit de fond (Bkg) 10 sec.
- Analyses : Ponctuelles, profils chimiques, cartographie de grain, images (BSE)
- Procédure de correction : PAP (Pouchou et Pichoir, 1985) ; ZAF modifié par CAMECA

#### SERPENTINE

- Spectromètre à dispersion de longueur d'onde (WDS)
- Voltage d'excitation : 15kV
- Ampérage : 30 nA
- Diamètre du faisceau : ± 5 µm
- Durée de comptage : 20 sec, bruit de fond (Bkg) 10 sec
- Analyses : Ponctuelles, images (BSE)
- Procédure de correction : PAP (Pouchou et Pichoir, 1985) ; ZAF modifié par CAMECA

## SULFURE (Majeurs)

- Spectromètre à dispersion de longueur d'onde (WDS)
- Voltage d'excitation : 15 kV
- Ampérage : 50 nA
- Diamètre du faisceau : ± 10 μm
- Durée de comptage : 40 sec, bruit de fond (Bkg) 20 sec
- Analyses : Ponctuelles, images (BSE)
- Procédure de correction : PAP (Pouchou et Pichoir, 1985) ; ZAF modifié par CAMECA

Les analyses chimiques pour les minéraux du groupe du platine ont été effectuées au LABORATOIRE de MICROANALYSE de l'Université Laval en utilisant le microscope électronique à balayage JEOL JSM-6400. Les opérateurs de l'appareil était le Dr Marc Choquette et le technicien Jean-Pierre Tremblay. Les conditions sont les suivantes pour les différentes phases minéraux du groupe du platine :

#### MINÉRAUX DU GROUPE DU PLATINE (MGP)

- Spectromètre à dispersion de longueur d'onde (EDS)
- Voltage d'excitation : 15 et 20 kV
- Ampérage : 10<sup>-9</sup> A
- Diamètre du faisceau : ~ 5 nm
- Durée de comptage : 100 s ou moins (dans ce cas-ci ~ 50 s)
- Analyses : Ponctuelles, semi-quantitatives

Procédure de correction : ZAF

#### D.4.2 Standards utilisés et limites de détection

Les tableaux suivants présentent les standards utilisés et les limites de détection pour tous les programmes d'analyse utilisés à la microsonde. Les programmes d'analyse sont : chromite, pyroxène, chalorite, carbonate, amphibole, serpentine et sulfure. Il est à noter que le programme d'analyse employé pour les sulfures comprend uniquement les constituants majeurs. Les limites de détection sont obtenues à partir de la formule proposée par CAMECA. Le contenu en platinoïdes des sulfures a également fait l'objet d'analyse à la microsonde.

**Tableau D.8** Tableau montrant les standards utilisés et les limites de détection pour lesdifférents programmes employés.

٠

| Ēléments                            | Standard | Limite de détection (%) |
|-------------------------------------|----------|-------------------------|
| Cr <sub>2</sub> O <sub>3</sub> (Cr) | chromi   | 0,119 (0,0816)          |
| FeO (Fe)                            | hemvz    | 0,136 (0,1059)          |
| MnO (Mn)                            | willevz  | 0,088 (0,0684)          |
| ZnO (Mn)                            | willevz  | 0,085 (0,0679)          |
| NiO (Ni)                            | nick     | 0,054 (0,0427)          |
| V <sub>2</sub> O <sub>3</sub> (V)   | $V_2O_5$ | 0,044 (0,0299)          |
| CoO (Co)                            | skux     | 0,049 (0,0386)          |
| TiO <sub>2</sub> (Ti)               | rut      | 0,022 (0,0129)          |
| SiO <sub>2</sub> (Si)               | qzvz     | 0,028 (0,0133)          |
| Al <sub>2</sub> O <sub>3</sub> (Al) | chros    | 0,042 (0,0220)          |
| MgO (Mg)                            | chros    | 0,045 (0,0270)          |

CHROMITE

() Éléments directement analysés à la microsonde

|                                     | <u>PYROXÈNE</u> |                         |
|-------------------------------------|-----------------|-------------------------|
| Éléments                            | Standard        | Limite de détection (%) |
| NiO (Ni)                            | nick            | 0,000 (0,0000)          |
| FeO (Fe)                            | hemvz           | 0,044 (0,0343)          |
| MnO (Mn)                            | willevz         | 0,034 (0,0263)          |
| Cr <sub>2</sub> O <sub>3</sub> (Cr) | chromi          | 0,000 (0,0000)          |
| TiO <sub>2</sub> (Ti)               | rut             | 0,044 (0,0266)          |
| CaO (Ca)                            | plagvz          | 0,016 (0,0116)          |
| K <sub>2</sub> O (K)                | ortho           | 0,011 (0,0095)          |
| SiO <sub>2</sub> (Si)               | qzvz            | 0,036 (0,0168)          |
| Al <sub>2</sub> O <sub>3</sub> (Al) | cor             | 0,022 (0,0118)          |
| MgO (Mg)                            | mgo             | 0,031 (0,0187)          |
| Na2O (Na)                           | alb             | 0,026 (0,0195)          |

() Éléments directement analysés à la microsonde

| Éléments                            | Standard               | Limite de détection (%) |
|-------------------------------------|------------------------|-------------------------|
| FeO (Fe)                            | Hemvz                  | 0,097 (0,0753)          |
| Cr <sub>2</sub> O <sub>3</sub> (Cr) | Chromi                 | 0,092 (0,0631)          |
| V <sub>2</sub> O <sub>3</sub> (V)   | $V_2O_5$               | 0,000 (0,0000)          |
| MnO (Mn)                            | Willevz                | 0,042 (0,0329)          |
| NiO (Ni)                            | Nick                   | 0,044 (0,0342)          |
| TiO <sub>2</sub> (Ti)               | rut                    | 0,043 (0,0260)          |
| K <sub>2</sub> O (K)                | ortho                  | 0,011 (0,0092)          |
| CaO (Ca)                            | plagvz                 | 0,014 (0,0097)          |
| Na <sub>2</sub> O (Na)              | alb                    | 0,023 (0,0170)          |
| MgO (Mg)                            | mgo                    | 0,030 (0,0181)          |
| Al <sub>2</sub> O <sub>3</sub> (Al) | COL                    | 0,025 (0,0133)          |
| SiO <sub>2</sub> (Si)               | qzvz                   | 0,035 (0,0164)          |
| Н                                   | Analysé par différence | -                       |
| 0                                   | Analysé par différence | -                       |

**CHLORITE** 

() Éléments directement analysés à la microsonde

# CARBONATE

| Éléments               | Standard | Limite de détection (%) |
|------------------------|----------|-------------------------|
| FeCO <sub>3</sub> (Fe) | hemvz    | 0,108 (0,0842)          |
| MnCO3 (Mn)             | willevz  | 0,044 (0,0343)          |
| CaCO₃ (Ca)             | calcs    | 0,028 (0,0201)          |
| MgCO <sub>3</sub> (Mg) | mgo      | 0,027 (0,0163)          |
| SrCO <sub>3</sub> (Sr) | celest   | 0,058 (0,0346)          |
|                        |          |                         |

() Éléments directement analysés à la microsonde
| Éléments                            | Standard               | Limite de détection (%) |
|-------------------------------------|------------------------|-------------------------|
| SiO <sub>2</sub> (Si)               | qzvx                   | 0,036 (0,0169)          |
| TiO <sub>2</sub> (Ti)               | rut                    | 0,043 (0,0260)          |
| Al <sub>2</sub> O <sub>3</sub> (Al) | cor                    | 0,025 (0,0134)          |
| Cr <sub>2</sub> O <sub>3</sub> (Cr) | chromi                 | 0,082 (0,0561)          |
| MgO (Mg)                            | mgo                    | 0,028 (0,0167)          |
| CaO (Ca)                            | plagvz                 | 0,016 (0,0112)          |
| MnO (Mn)                            | willevz                | 0,034 (0,0265)          |
| FeO (Fe)                            | hemvz                  | 0,051 (0,0395)          |
| NiO (Ni)                            | nick                   | 0,133 (0,1044)          |
| Na <sub>2</sub> O (Na)              | alb                    | 0,029 (0,0212)          |
| K <sub>2</sub> O (K)                | ortho                  | 0,011 (0,0093)          |
| F                                   | apt                    | (0,1453)                |
| Cl                                  | tugvz                  | (0,0106)                |
| Н                                   | Analysé par différence | -                       |
| 0                                   | Analysé par différence | -                       |

AMPHIBOLE

() Éléments directement analysés à la microsonde

| Éléments                                        | Standard               | Limite de détection (%) |  |  |  |  |
|-------------------------------------------------|------------------------|-------------------------|--|--|--|--|
| MnO (Mn)                                        | willevz                | 0,077 (0,0596)          |  |  |  |  |
| FeO (Fe)                                        | hemvz                  | 0,064 (0,0501)          |  |  |  |  |
| Cr <sub>2</sub> O <sub>3</sub> (Cr)             | chromi                 | 0,023 (0,0159)          |  |  |  |  |
| NiO (Ni)                                        | nick                   | 0,029 (0,0231)          |  |  |  |  |
| CaO (Ca)                                        | plagvz                 | 0,009 (0,0063)          |  |  |  |  |
| TiO2 (Ti)                                       | rut                    | 0,013 (0,0077)          |  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> (Al)             | cor                    | 0,014 (0,0072)          |  |  |  |  |
| SiO <sub>2</sub> (Si)                           | qzvz                   | 0,028 (0,0132)          |  |  |  |  |
| MgO (Mg)                                        | MgO                    | 0,022 (0,0134)          |  |  |  |  |
| н                                               | Analysé par différence | -                       |  |  |  |  |
| 0                                               | Analysé par différence | -                       |  |  |  |  |
| ) Éléments directement analysés à la microsonde |                        |                         |  |  |  |  |

SERPENTINE

|          | SULFURE  |                     |
|----------|----------|---------------------|
| Éléments | Standard | Limite de détection |
| Fe       | G1FeS2   | 0,0968              |
| Ni       | G3NiS    | 0,0614              |
| Cu       | G1CuFeS2 | 0,0792              |
| Со       | G1FeS2   | 0,0266              |
| As       | skux     | 0,3732              |
| S        | skux     | 0,0663              |

() Éléments directement analysés à la microsonde

### D.4.3 Conditions d'analyses pour ÉGP dans les sulfures

La présence d'éléments traces en solution solide dans les sulfures intéresse la communauté scientifique depuis plusieurs décennies (Fleischer, 1955; Hawley et Níchol, 1961). L'avènement de la microanalyse avec des instruments comme la microsonde électronique, la sonde ionique et la sonde protonique permet aujourd'hui de caractériser et d'analyser *in situ* les éléments en traces en solution solide. Les seuils de détection avec ce type d'appareil sont très variables allant de centaines de ppm pour la microsonde jusqu'à quelques ppm pour la sonde protonique.

Un certain nombre de grains de chalcopyrite, de pyrite, de millérite, de pentlandite, de sufoarséniure et d'arséniures ont été dosés pour leur contenu respectif en éléments du groupe du platine (Pd, Rh, Ir, Pt, Os). Le ruthénium n'a pu être dosé car il n'avait pas de standard disponible pour cet élément. Les platinoïdes ont été analysés sur plusieurs échantillons choisis dont on connaissait leurs teneurs élevées en ÉGP et/ou une phase sulfureuse importante. La raie La a été utilisée pour le dosage du palladium et du rhodium tandis que la raie Ma a été utilisée pour le platine, l'iridium et l'osmium. Les conditions d'analyse pour les éléments du groupe du platine sont les suivantes:

### ÉLÉMENTS DU GROUPE DU PLATINE DANS LES SULFURES

- Spectromètre à dispersion de longueur d'onde (WDS)
- Voltage d'excitation : 15 kV
- Ampérage : 100 nA
- Diamètre du faisceau : ± 1 µm
- Durée de comptage : 100 sec
- Analyses : Ponctuelles

Procédure de correction : PAP (Pouchou et Pichoir, 1985) ; ZAF modifié par CAMECA

Pour la détermination du bruit de fond, nous disposions d'étalons stériles en platinoïdes pour chaque phase analysée provenant du laboratoire CAMNET. Une dizaine de mesures de bruit de fond d'une durée de 100 secondes ont été effectuées pour chaque phase étudiée. Pour le dosage des métaux nobles, nous disposions de plusieurs étalons minéralisés provenant également du laboratoire de CAMNET. Les standards stériles et les standards minéralisés sont répertoriés à la section D.4.5. Pour les arséniures, les standards stériles et minéralisés des sulfoarséniures ont été utilisés. Le tableau D.9 montre les résultats de la détermination du bruit de fond et des limites de détection. **Tableau D.9** Mesures du bruit de fond dans les standards stériles des différentes phasesminéralogiques.

|                       | Element     | Pđ     | Rh      | Pt      | lr      | Os              |
|-----------------------|-------------|--------|---------|---------|---------|-----------------|
| Chalcopyrite          | Std         | G4PdS  | G3FeRhS | G3PtFe  | G2Ir    | G2Os            |
| Std sterile: G1CuFeS2 | Spectro     | 1 PET  | 2 LPET  | 2 LPET  | 3 LPET  | <b>3LPET</b>    |
|                       | с           | 76,84  | 0,52    | 77,74   | 100,00  | 100,00          |
|                       | N (comptes) | 771980 | 35240   | 1275750 | 1695480 | 1682470         |
|                       | Nb1         | 2640   | 9600    | 3780    | 3100    | 2700            |
|                       | Nb2         | 2610   | 9510    | 3870    | 3240    | 2800            |
|                       | Nb3         | 2720   | 9550    | 3770    | 3280    | 2820            |
|                       | Nd4         | 2620   | 9630    | 3750    | 3080    | 2770            |
|                       | Nb5         | 2600   | 9610    | 3640    | 3190    | 2740            |
|                       | Nb6         | 2700   | 9670    | 3830    | 3150    | 2750            |
|                       | Nb7         | 2610   | 9370    | 3710    | 3150    | 2710            |
|                       | Nb8         | 2530   | 9650    | 3790    | 3170    | 2730            |
|                       | Nb9         | 2620   | 9710    | 3890    | 3240    | 2640            |
|                       | Nb10        | 2620   | 9570    | 3820    | 3130    | 2740            |
|                       | Moy Nb      | 2627   | 9587    | 3785    | 3173    | 2740            |
|                       | 30          | 158,1  | 288,5   | 222,8   | 193,9   | 153,6           |
| Limite CAMECA         | LDM 1 (%)   | 0,0142 | 0,0033  | 0,0111  | 0,0109  | 0,0108          |
| Limite avec 3(Nb)1/2  | LDM 2 (%)   | 0,0153 | 0,0043  | 0,0112  | 0,0100  | 0,0093          |
| Limite avec 3 o Nb    | LDM 3 (%)   | 0,0157 | 0,0043  | 0,0136  | 0,0114  | 0 <b>,009</b> 1 |

|                      | Element     | Pd     | Rh      | Pt      | Ir      | Os             |
|----------------------|-------------|--------|---------|---------|---------|----------------|
| Pyrite               | Std         | G4PdS  | G3FeRhS | G3PtFe  | G2Ir    | G2Os           |
| Std sterile: G1FeS2  | Spectro     | 1 PET  | 2 LPET  | 2 LPET  | 3 LPET  | <b>3LPET</b>   |
|                      | С           | 76,84  | 0,52    | 77,74   | 100,00  | 100,00         |
|                      | N (comptes) | 771980 | 35240   | 1275750 | 1695480 | 1682470        |
|                      | Nb1         | 2310   | 8260    | 3760    | 3190    | 2690           |
|                      | Nb2         | 2330   | 8140    | 3690    | 3090    | 2690           |
|                      | Nb3         | 2340   | 8110    | 3780    | 3190    | 2660           |
|                      | Nd4         | 2280   | 8160    | 3890    | 3140    | 2730           |
|                      | Nb5         | 2360   | 8320    | 3840    | 3140    | 2610           |
|                      | Nb6         | 2330   | 8190    | 3790    | 3170    | 2700           |
|                      | Nb7         | 2330   | 8060    | 3840    | 3200    | 2660           |
|                      | NbS         | 2360   | 8120    | 3830    | 3170    | 2710           |
|                      | Nb9         | 2270   | 8130    | 3840    | 3140    | 2620           |
|                      | Nb10        | 2230   | 8120    | 3740    | 3230    | 2610           |
|                      | Moy Nb      | 2314   | 8161    | 3800    | 3166    | 2668           |
|                      | 30          | 125,9  | 231,3   | 177,8   | 119,3   | 129,5          |
| Limite CAMECA        | LDM 1 (%)   | 0,0141 | 0,0033  | n.d.    | 0,0100  | 0,0095         |
| Limite avec 3(Nb)1/2 | LDM 2 (%)   | 0,0144 | 0,0040  | 0,0113  | 0,0100  | 0, <b>0092</b> |
| Limite avec 3 o Nb   | LDM 3 (%)   | 0,0125 | 0,0034  | 0,0108  | 0,0070  | 0, <b>0077</b> |

|                           | Element     | Pd     | Rh      | Pt             | lr      | Os           |
|---------------------------|-------------|--------|---------|----------------|---------|--------------|
| Millerite                 | Std         | G4PdS  | G3FeRhS | G3PtFe         | G2Ir    | G2Os         |
| Std sterile: G3NiS        | Spectro     | 1 PET  | 2 LPET  | 2 LPET         | 3 LPET  | <b>3LPET</b> |
|                           | С           | 76,84  | 0,52    | 77,74          | 100,00  | 100,00       |
|                           | N (comptes) | 771980 | 35240   | 1275750        | 1695480 | 1682470      |
|                           | Nb1         | 2660   | 9850    | 3960           | 3140    | 2810         |
|                           | Nb2         | 2630   | 9710    | 3970           | 3270    | 2780         |
|                           | Nb3         | 2590   | 9880    | 3950           | 3230    | 2910         |
|                           | Nd4         | 2550   | 9920    | 3860           | 3250    | 2850         |
|                           | Nb5         | 2620   | 9730    | 3870           | 3160    | 2720         |
|                           | Nb6         | 2740   | 9820    | 3910           | 3290    | 2860         |
|                           | Nb7         | 2470   | 9530    | 3850           | 3380    | 2760         |
|                           | Nb8         | 2640   | 9610    | 3870           | 3270    | 2810         |
|                           | Nb9         | 2580   | 9740    | 3820           | 3140    | 2820         |
|                           | Nb10        | 2560   | 9770    | 3810           | 3220    | 2800         |
|                           | Moy Nb      | 2604   | 9756    | 3887           | 3235    | 2812         |
|                           | 3σ          | 217,8  | 361,7   | 1 <b>72,</b> 7 | 225,1   | 160,5        |
| Limite CAMECA             | LDM 1 (%)   | 0,0145 | 0,0034  | 0,0116         | 0,0114  | 0,0111       |
| Limite avec 3(Nb)1/2      | LDM 2 (%)   | 0,0152 | 0,0044  | 0,0114         | 0,0101  | 0,0095       |
| Limite avec 3 $\sigma$ Nb | LDM 3 (%)   | 0,0217 | 0,0053  | 0,0105         | 0,0133  | 0,0095       |

|                      | Element     | Pd     | Rh      | Pt      | Ir      | Os           |
|----------------------|-------------|--------|---------|---------|---------|--------------|
| Pentlandite          | Std         | G4PdS  | G3FeRhS | G3PtFe  | G2Ir    | G2Os         |
| Std sterile: ptlX    | Spectro     | 1 PET  | 2 LPET  | 2 LPET  | 3 LPET  | <b>3LPET</b> |
|                      | С           | 76,84  | 0,52    | 77,74   | 100,00  | 100,00       |
|                      | N (comptes) | 771980 | 35240   | 1275750 | 1695480 | 1682470      |
|                      | Nbl         | 2770   | 9600    | 3900    | 3250    | 2750         |
|                      | Nb2         | 2730   | 9740    | 3950    | 3380    | 2870         |
|                      | Nb3         | 2740   | 9750    | 3920    | 3440    | 2800         |
|                      | Nd4         | 2750   | 9830    | 3880    | 3350    | 2800         |
|                      | Nb5         | 2610   | 9790    | 3900    | 3350    | 2870         |
|                      | Nb6         | 2690   | 9790    | 3840    | 3250    | 2900         |
|                      | Nb7         | 2690   | 9750    | 3930    | 3260    | 2860         |
|                      | Nb8         | 2750   | 9910    | 3790    | 3240    | 2930         |
|                      | Nb9         | 2820   | 9860    | 3820    | 3270    | 2750         |
|                      | Nb10        | 2780   | 10010   | 3920    | 3230    | 2870         |
|                      | Moy Nb      | 2733   | 9803    | 3885    | 3302    | 2840         |
|                      | 3σ          | 175,0  | 330,8   | 156,4   | 216,7   | 184,9        |
| Limite CAMECA        | LDM 1 (%)   | 0,0146 | 0,0034  | 0,0115  | 0,0114  | n.d.         |
| Limite avec 3(Nb)1/2 | LDM 2 (%)   | 0,0156 | 0,0044  | 0,0114  | 0,0102  | 0,0095       |
| Limite avec 3 o Nb   | LDM 3 (%)   | 0,0174 | 0,0049  | 0,0095  | 0,0128  | 0,0110       |

|                           | Element     | Pđ     | Rh      | Pt      | Ir      | Os             |
|---------------------------|-------------|--------|---------|---------|---------|----------------|
| Sulfoarseniure de Co      | Std         | G4PdS  | G3FeRhS | G3PtFe  | G2Ir    | G2Os           |
| Std sterile: skutx        | Spectro     | 1 PET  | 2 LPET  | 2 LPET  | 3 LPET  | <b>3LPET</b>   |
|                           | С           | 76,84  | 0,52    | 77,74   | 100,00  | 100,00         |
|                           | N (comptes) | 771980 | 35240   | 1275750 | 1695480 | 1682470        |
|                           | Nb1         | 3467   | 12662   | 3787    | 3300    | 2942           |
|                           | Nb2         | 3504   | 12703   | 3790    | 3177    | 2978           |
|                           | ND3         | 3635   | 12747   | 3740    | 3178    | 3004           |
|                           | Nd4         | 3486   | 13063   | 3704    | 3241    | 3088           |
|                           | Nb5         | 3547   | 12800   | 3815    | 3158    | 2945           |
|                           | Nb6         | 3492   | 12598   | 3717    | 3212    | 2971           |
|                           | Nb7         | 3479   | 12751   | 3819    | 3161    | 2974           |
|                           | Nb8         | 3523   | 13060   | 3729    | 3224    | 2945           |
|                           | Nb9         | 3529   | 12883   | 3776    | 3302    | 3008           |
|                           | NB10        | 3463   | 12990   | 3742    | 3186    | 3022           |
|                           | Moy Nb      | 3513   | 12826   | 3762    | 3214    | 2988           |
|                           | 3σ          | 153,0  | 497,6   | 122,6   | 159,3   | 134,9          |
| Limite CAMECA             | LDM 1 (%)   | n.d.   | n.d.    | n.d.    | n.d.    | n.d.           |
| Limite avec 3(Nb)1/2      | LDM 2 (%)   | 0,0177 | 0,0050  | 0,0112  | 0,0100  | 0, <b>0097</b> |
| Limite avec 3 $\sigma$ Nb | LDM 3 (%)   | 0,0152 | 0,0073  | 0,0075  | 0,0094  | 0,0080         |

Note: les comptes sont pour 100 sec et 100nA

N: intensite dans le standard

Nb: bruit de fond dans le standard sterile

C: concentration dans le standard %

LDM: limite de détection minimum

Le seuil de détection (LDM, pour limite de détection minimum) peut être évalué de plusieurs façons. Le premier seuil de détection (LDM 1) correspond à une intensité (%) de :

$$C_{\min}(LDM1) = \left[\frac{FC_t}{I_t - B_t}\right]^{\epsilon} \left[\frac{\lambda(\alpha, \beta)}{2t_e} \sqrt{\frac{4Bete(1 + \alpha_{e-1})}{\lambda(\alpha, \beta)}}\right]$$

où F: facteur de correction

Ct: concentration du témoin

It: intensité du pic dans le standard

Bt: intensité du bruit de fond dans le standard

Be: intensité du bruit de fond dans l'échantillon

te: durée de comptage pour le pic d'intensité dans l'échantillon

α<sub>e</sub>: constante introduite pour considérer la différence de la durée de comptage

de la mesure du pic et du bruit de fond

#### $\lambda$ ( $\alpha$ , $\beta$ ): paramètre statistique

 $\alpha$ : est la probabilité pour considérer la vraie concentration plus grande que 0 quand en réalité elle est égale à 0.

 $\beta$ : est la probabilité pour considérer la vraie concentration égale à 0 lorsqu'elle est en réalité plus grande que 0.

Dans le logiciel de Cameca, 
$$\lambda$$
 est pris pour  $\alpha = \beta = 5$  %.

C'est cette formule que la microsonde éléctronique utilise pour le calcul de sa limite de détection (Ancey, Bastenaire et Tixier, 1979). Dans le cadre de ce travail, cette limite de détection est utilisée pour l'analyse de toutes les phases minéralogiques pour les éléments majeurs et traces (à l'exception des ÉGP).

La deuxième façon d'évaluer le seuil de détection (LDM 2) correspond à une intensité équivalente à  $\overline{Nb}+3\sqrt{\overline{Nb}}$  (Cabri et al., 1976; Goldstein et al., 1981; Cabri et al., 1984; Harris et al., 1984) où  $\overline{Nb}$  est le bruit de fond moyen pour une durée de 100 secondes. Donc, le seuil de détection pour nos échantillons correspond à:

$$LDM2 = \left[ \left( 3\sqrt{Nb} \right) / N \right] * C$$

La troisième façon d'évaluer le seuil de détection (LDM 3) est d'utiliser les notions de statistique, c'est-à-dire d'employer  $3\sigma + \overline{Nb}$  correspondant à un degré de certitude de 95 %. Donc, le seuil de détection pour nos échantillons correspond à:

$$LDM3 = 3\sigma(\overline{Nb}/N) C$$

On remarque que les trois méthodes pour estimer la limite de détection pour la microsonde électronique ne sont pas très différentes. La limite utilisée par Cameca est généralement plus basse que les deux autres. Pour ce travail, le seuil de détection utilisé pour la détermination des platinoïdes est la limite qui fait appel à la moyenne au quelle s'ajoute trois fois l'écart-type, c'est-à-dire la LDM 3. De plus, elle a l'avantage d'être la seule à tenir compte de la variation sur l'intensité du signal pour le pic de l'élément. Alors, même avec un échantillonnage plus important, la moyenne serait beaucoup améliorée mais l'écart-type resterait sensiblement le même. Cette méthode est conservatrice pour la limite de détection compte tenu que c'est généralement la limite la plus élevée lorsque les trois méthodes diffèrent significativement.

#### **D.4.4 Compositions des standards**

Les noms des standards se terminant par vz ou x indiquent qu'ils sont des standards naturels (hemvz : hématite naturelle & skux : skuttérudite naturelle).

### <u>Standards pour les silicates et les oxydes</u>

#### STANDARD : alb

| Origine | Minéral | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Na <sub>2</sub> O | K <sub>2</sub> O | Total |  |
|---------|---------|------------------|--------------------------------|-------------------|------------------|-------|--|
| P&H     | Albite  | 68,67            | 19,50                          | 11,74             | 0,13             | 100,4 |  |
|         |         |                  |                                |                   |                  |       |  |

### **STANDARD** : plagvz

| Origine    | Minéral          | SiO <sub>2</sub> | <b>Al</b> <sub>2</sub> <b>O</b> <sub>3</sub> | Na <sub>2</sub> O | CaO   | K <sub>2</sub> O | FeO  | Total |
|------------|------------------|------------------|----------------------------------------------|-------------------|-------|------------------|------|-------|
| ASTIMEX-VZ | Plagio           | 51,51            | 30,04                                        | 3,95              | 13,46 | 0,14             | 0,50 | 99,73 |
|            | An <sub>65</sub> |                  |                                              |                   |       |                  |      |       |

### **STANDARD : chros**

| Origine     | Minéral  | $Cr_2O_3$ | Al <sub>2</sub> O <sub>3</sub> | MgO   | FeO   | TiO <sub>2</sub> | MnO  | Total |
|-------------|----------|-----------|--------------------------------|-------|-------|------------------|------|-------|
| SHITHSONIAN | Chromite | 60,50     | 9,92                           | 15,21 | 13,05 | 0,12             | 0,10 | 98,89 |

### **STANDARD : hemvz**

| Origine    | Minéral  | FeO   | <b>Al<sub>2</sub>O<sub>3</sub></b> | MnO  | <b>V</b> <sub>2</sub> <b>O</b> <sub>3</sub> | Total  |
|------------|----------|-------|------------------------------------|------|---------------------------------------------|--------|
| ASTIMEX-VZ | Hématite | 99,85 | 0,26                               | 0,04 | 0,07                                        | 100,22 |

#### STANDARD : ortho

| Origine | Minéral    | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Na <sub>2</sub> O | K <sub>2</sub> O | Total | ~~~ |
|---------|------------|------------------|--------------------------------|-------------------|------------------|-------|-----|
| P&H     | Orthoclase | 65,03            | 18,54                          | 1,36              | 14,67            | 99,75 |     |

### STANDARD : willevz

| Origine    | Minéral   | SiO2  | ZnO   | MnO  | Total |  |
|------------|-----------|-------|-------|------|-------|--|
| ASTIMEX-VZ | Willemite | 28,09 | 66,90 | 4,82 | 99,80 |  |

### STANDARD : calcs

| Origine     | Minéral | CaO   | CO <sub>2</sub> | Total  |  |
|-------------|---------|-------|-----------------|--------|--|
| SHITHSONIAN | Calcite | 56,11 | 44,01           | 100,11 |  |

### STANDARD : celest

| Origine | Minéral   | SrO   | SO <sub>3</sub> | Total |
|---------|-----------|-------|-----------------|-------|
| P&H     | Celestite | 56,41 | 43,57           | 99,98 |

# STANDARD : qzvz

| Origine    | Minéral | TiO <sub>2</sub> | Total |
|------------|---------|------------------|-------|
| ASTIMEX-VZ | Quartz  | 99,99            | 99,99 |

#### **STANDARD : chromi**

| Origine | Minéral  | Cr <sub>2</sub> O <sub>3</sub> | Total |  |
|---------|----------|--------------------------------|-------|--|
| P&H     | Chromite | 99,99                          | 99,90 |  |

### STANDARD : nick

| Origine | Minéral   | NiO   | Total |
|---------|-----------|-------|-------|
| P&H     | Nickeline | 99,99 | 99,90 |

### STANDARD : mgo

| Origine | Minéral   | MgO   | Total |
|---------|-----------|-------|-------|
| P&H     | Périclase | 99,97 | 99,97 |

### STANDARD : cor

| Origine | Minéral  | Al <sub>2</sub> O <sub>3</sub> | Total |  |
|---------|----------|--------------------------------|-------|--|
| P&H     | Corindon | 99,99                          | 99,99 |  |
|         |          |                                |       |  |

### STANDARD : rut

| Origine | Minéral | TiO <sub>2</sub> | Total  |
|---------|---------|------------------|--------|
| P&H     | Rutile  | 100,00           | 100,00 |

### STANDARD : v2o5

| Origine     | Minéral                       | <b>V</b> <sub>2</sub> <b>O</b> <sub>5</sub> | Total |  |
|-------------|-------------------------------|---------------------------------------------|-------|--|
| SHITHSONIAN | V <sub>2</sub> O <sub>5</sub> | 99,98                                       | 99,98 |  |

## Standards pour les sulfures et les platinoïdes

### STANDARD : ptix

| Origine   | Minéral     | Ni    | Fe    | Co   | S     | Total  |
|-----------|-------------|-------|-------|------|-------|--------|
| ASTIMEX-X | Pentlandite | 36,12 | 30,77 | 0,10 | 33,01 | 100,00 |

.

## STANDARD : skux

| Origine    | Minéral      | As    | Со    | Ni   | Fe   | S    | Total  |
|------------|--------------|-------|-------|------|------|------|--------|
| ASTIMEX-VZ | Skuttérudite | 79,09 | 15,45 | 4,39 | 0,95 | 0,12 | 100,00 |

### **STANDARD : G1CuFeS2**

| Origine | Minéral      | Cu    | Fe    | S     | Total |
|---------|--------------|-------|-------|-------|-------|
| CANMET  | Chalcopyrite | 34,62 | 30,43 | 34,94 | 99,99 |

### **STANDARD : G3FeRhS**

| Origine | Minéral                             | Fe    | Rh   | S     | Total  |
|---------|-------------------------------------|-------|------|-------|--------|
| CANMET  | (Fe,Rh) <sub>7</sub> S <sub>8</sub> | 59,95 | 0,52 | 39,53 | 100,00 |

# **STANDARD : G1FeS2**

| Origine | Minéral | Fe    | S     | Total  |
|---------|---------|-------|-------|--------|
| CANMET  | Pyrite  | 46,55 | 53,45 | 100,00 |

## STANDARD : G3NiS

| Origine | Minéral   | Ni    | S     | Total  |
|---------|-----------|-------|-------|--------|
| CANMET  | Millérite | 32,53 | 35,32 | 100,00 |

## STANDARD : G4PdS

| Origine | Minéral | Pđ    | S     | Total  |
|---------|---------|-------|-------|--------|
| CANMET  | PdS     | 76,84 | 23,16 | 100,00 |

## STANDARD : G3PtFe

| Origine | Minéral | Pt    | Fe    | Total  |
|---------|---------|-------|-------|--------|
| CANMET  | PtFe    | 77,74 | 22,26 | 100,00 |

## STANDARD : G2Ir

| Origine | Minéral | Ir     | Total  |
|---------|---------|--------|--------|
| CANMET  | Iridium | 100,00 | 100,00 |

### STANDARD : G2Os

| Origine | Minéral | Os     | Total  |
|---------|---------|--------|--------|
| CANMET  | Osmium  | 100,00 | 100,00 |