Table des matières

Avant-propos	13
Chapitre 1. Optimisation de la conception par la fiabilité	17
1.1. Introduction	18
1.2. La conception par la fiabilité	19
1.2.1. Evaluation des risques par la fiabilité prévisionnelle1.2.2. Identification des éléments critiques pour la fiabilité	21
du système	22
1.2.3. Détermination de la distribution des contraintes provoquant	
les défaillances	25
1.2.4. Détermination du niveau de criticité des contraintes	27
1.2.5. Provoquer les défaillances et les analyser.	31
1.2.5.1. Essais hautement accélérés	33
1.2.5.2. Essais accélérés.	33
1.2.5.3. Analyse de la défaillance	34
1.2.6. Modélisation des défaillances	35
1.2.7. Optimisation de la conception	37
1 3 Conclusion	38
1 4 Bibliographie	39
	57
Chapitre 2. Caractérisation non destructive par ellipsométrie	
spectroscopique des interfaces de dispositifs mécatroniques	41
Pierre Richard DAHOO, Malika KHETTAB, Jorge LINARES et Philippe POUGNET	
2.1. Introduction	42
2.2. Relation entre les paramètres ellipsométriques	
et les caractéristiques optiques d'un échantillon	43

2.3. Ellipsomètres à élément tournant ou à modulateur de phase		
2.4. Relation entre les paramètres ellipsométriques et l'intensité		
du signal détectée	47	
2.5. Analyse des données expérimentales	47	
2.6. Le modèle structural à empilement	50	
2.7. Le modèle optique	50	
2.8. Application de la technique d'ellipsométrie.	52	
2.8.1. Couche mince à base de nanograins d'argent frittés		
sur un substrat de cuivre	54	
2.8.2. Analyse des spectres ellipsométriques de polymères		
sur différents substrats	56	
2.8.3. Analyse et comparaison après contrainte	63	
2.8.4. Analyse physique de l'interaction lumière-matière		
en termes d'énergie de bande interdite	65	
2.8.4.1. Analyse de l'interface B1/Quartz	65	
2.8.4.2. Analyse de l'interface B1/Aluminium	66	
2.9. Conclusion	66	
2.10. Bibliographie	67	

Chapitre 3. Méthode de caractérisation de l'environnement

électromagnétique dans des circuits hyperfréquences encapsulés	60
Samh KHEMIRI, Abhishek RAMANUJAN, Moncef KADI et Zouheir RIAH	09
3.1. Introduction.	69
3.2. Théorie des cavités métalliques	70
3.2.1. Définition	70
3.2.2. Champ électromagnétique dans une cavité	
parallélépipédique	70
3.2.3. Fréquences de résonance.	71
3.3. Effet des cavités métalliques sur les émissions rayonnées	
des circuits hyperfréquences	72
3.3.1. Circuit d'étude : ligne microruban 50 ohms	72
3.3.1.1. Effet sur les paramètres S	73
3.3.1.2. Effet sur les cartographies du champ magnétique	75
3.4. Estimation du champ électromagnétique rayonné en présence	
de la cavité à partir du champ électromagnétique rayonné sans cavité	77
3.4.1. Principe de la méthode	77
3.4.2. Modèle d'émission rayonnée	78
3.4.2.1. Topographie du modèle	79
3.4.2.2. Extraction des paramètres.	80
3.4.2.3. Obtention du vecteur initial des paramètres du modèle	80
3.4.2.4. Optimisation des paramètres	81

3.4.2.5. Modèle du cas testé 3.4.3. Résultats et discussions 3.4.4. Résultats et analyses 3.5. Conclusion 3.6. Bibliographie	82 82 83 86 87
Chapitre 4. Mesure des déformations et des déplacements statiques	00
Ioana NISTEA et Dan BORZA	89
4.1. Introduction.	90
4.2. Interférométrie speckle	92
par interférométrie speckle	92
4.2.1.1. Interférométrie speckle à intégration temporelle4.2.1.2. Mesure des déformations statiques d'origine thermique	94
ou mécanique	97
4.2.2. Description du banc de mesure par interférométrie speckle4.2.3. Exemples de mesures des champs de déplacements	99
statiques	100
4.2.3.1. 4.2.3.1 Effet du Vissage et de l'ordre de Vissage sur les déformations d'une carte électronique.	101
(mesure de déformées suite aux sollicitations	
thermomécaniques produites par convection)	103
4.2.3.3. Mesure des déformations avec dissipation thermique sur un boîtier avec des éléments chauffants (résistances)	
qui simulent les transistors de puissance	107
4.2.4. Exemples de mesures des champs de déplacements	
vibratoires	108
4.2.5. Exemples de mesures dynamiques	114
4.3. Moiré de projection	115
4.3.1. Principes de la mesure des champs de déplacements	
par moiré de projection	116
4.3.2. Description du banc de mesure par moiré de projection	117
4.3.3. Exemples de mesures des champs de déplacements	
par moiré de projection	118
4.4. Projection de lumière structurée.	118
4.4.1. Principes de la mesure de forme par lumière structurée	119
4.4.2. Description du banc de mesure par lumière structurée4.4.3. Exemples de mesures des formes 3D par projection	121
de lumière structurée	122
4.5. Conclusion	123

4.6. Bibliographie	124
Chapitre 5. Caractérisations de transistors de commutation	
aux contraintes de surtension électrique	125
Patrick MARTIN, Ludovic LACHEZE, Alain KAMDEL et Philippe DESCAMPS	
5.1. Introduction.	125
5.2. Banc de robustesse aux contraintes électriques ESD/EOV	126
5.2.1. Description du banc TPG	126
5.2.2. Contraintes appliquées sur le transistor	127
5.2.3. Procédure de test	129
5.2.4. Capacités du TPG	130
5.3. Résultats de simulation	130
5.3.1. Phénomènes mis en évidence	130
5.3.2. Influence des phénomènes parasites	131
5.4. Dispositif expérimental	134
5.4.1. Résultats de mesures et analyse des phénomènes observés	135
5.4.1.1. Mesures V _{BR} des transistors IR_CR	135
5.4.1.2. Mesures V _{BR} des transistors IR_CR, BUK_CX	
et NP110_CE	135
5.4.1.3. Interprétation des mesures $I_{DS}(V_{DS})$ et $I_{DS}(V_{GS})$.	136
5.5. Conclusion	143
5.6. Bibliographie	143
Chapitre 6. Fiabilité des transistors radiofréquence de puissance	
aux agressions électromagnétique et thermique	145
Samh KHEMIRI et Moncef KADI	
6.1. Introduction	145
6.2 La technologia CaN	145
6.2. Contrainte électromagnétique revennée	140
6.3.1 Présentation du bane de contrainte	14/
6.3.2. Résultate et analyzes	140
6.4 Contrainte continue RE CW	153
6.4.1 Présentation du banc de contrainte	153
6.4.2 Résultats et analyses	153
6.5 Contrainte thermique	155
6.5.1 Présentation du banc	155
6.5.2. Résultats et analyses	156
6.5.2.1. Etude à la température T = 90 °C	156
6.5.2.2. Etude à la température $T = -40 \text{ °C}$	157
6.6. Contraintes simultanées : RF CW + EM et Electrique + EM.	160

6.6.	1. Effet de l'application simultanée de contraintes
elec	
6.6.	2. Effet de l'application simultanée de contraintes
elec	tromagnetique et continue DC
0./. C0	nciusion
6.8. Blt	
Chapitre 7	. Mesure de la température interne
des compo	sants électroniques
Eric JOUBE	RT, Olivier LATRY, Pascal DHERBECOURT, Maxime FONTAINE,
Christian C	AUTIER, Hubert POLAERT et Philippe EUDELINE
7.1. Int	roduction.
7.2. Dis	positif expérimental
7.3. Ré	sultats des mesures
7.3.	1. Mesures IR
7.3.	2. Mesures électriques
,	7.3.2.1. Calibration de la diode
	7.3.2.2. Mesures
7.3.	3. Mesures optiques
,	7.3.3.1. Principe
7 2	4. Comparaison antra las méthodas de masuras infrarougas
7.5. at á	ectriques
74 Co	nclusion
7.1.00 7.5 Bil	liographie
7.0. Di	mographic
Chapitre 8	3. Fiabilité prévisionnelle des systèmes électroniques
	S : referentiel FIDES
et Diarra D	JUGNET, FTANCK BAYLE, HICHAME MAANANE
et Pierre K	chard DAHOO
8.1. Int	roduction
8.2. Pré	sentation du guide FIDES
8.2.	1. Modélisation globale
8.2.	2. Modèle générique
8.2.	3. Bases mathématiques.
8.2.	4. Justification du taux de défaillance/intensité constant
8.2.	b. Estimation de λ_0
8.2.	b. Facteurs a acceleration.
ð.2. 8 2	/. FIOIII de Vie
0.2.	6. Experimentation au niveau des carles electromiques
0 1	

8.2.10. Expérimentation au niveau « famille de composants »	198
8.2.11. Exemple des transistors de puissance « MOSFET »	200
8.2.11.1. Choix de la loi de la physique de la défaillance	200
8.2.11.2. Fiche de traçabilité	200
8.3. Calcul FIDES sur système mécatronique automobile	201
8.3.1. Objectifs du calcul FIDES	202
8.3.2. Méthodologie	203
8.3.3. Profil de vie	203
8.3.3.1. Saisie des données	203
8.3.4. Carte SMI	207
8.3.4.1. Résultats par type de composants	207
8.3.4.2. Carte FR4	208
8.3.4.3. Fils connexions entre les cartes SMI et FR4	209
8.3.5. Taux de défaillance du convertisseur DC/DC	209
8.3.6. Effet de l'amplitude des cycles thermiques	
sur la durée de vie	209
8.3.7. Comparaison avec les résultats du référentiel	
UTE C 80-810.	209
8.4. Conclusion	210
8.5. Bibliographie	211
Chapitre 9. Etude du contact dynamique entre solides déformables	213
Bouchaib RADI et Abdelkhalak EL HAMI	
9.1. Introduction.	213
9.2. Préliminaires	215
9.3. Résultats théoriques	216
9.4. Méthode numérique proposée	221
9.4.1. Traitement du contact	222
9.4.2. Schéma en temps	223
9.5. Résultats numériques	224
9.5.1. Principe de fonctionnement du moteur piézoélectrique.	224
9.5.2. Modélisation et résultats numériques	226
9.6. Conclusion	228
9.7. Bibliographie	229
····	/
Index	231